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FURTHER STOCHASTIC ANALYSIS OF THE K-SERVER
PROBLEM ON THE CIRCLE

JARETT SCHWARTZ

Abstract. We consider a stochastic version of the k-server problem, analyzing the cost

of the greedy algorithm on the circle. We fully characterize the distribution yielded by this

process for k = 2. Next, we show new results for larger values of k. Then, we consider

other variants of this process. Finally, we con�rm the above results in simulations of the

process.

1.Preliminaries

The k-server problem [8] is central to the study of online algorithms. In the traditional version

of the problem, let k ≥ 2 be an integer and let M = (M,d) be a metric space over a set of points

M with |M | > k and distance function d. The k-server problem uses an algorithm A to satisfy a

sequence of requests r = {r1, r2, . . .}, where each ri ∈ M and r is an in�nite stream. For each

request ri, A chooses one of k “servers” to satisfy these requests by moving that server from

its current position in M to ri. The cost Ci(A) for each step of the algorithm is the distance in

M traveled by that server. In the traditional online setting of the k-server problem, the (online)

algorithm A is compared against the optimal (o�ine) algorithm A∗ using competitive analysis.

The algorithm A is C-competitive if there exists a c ≥ 0 such that for all request sequences r,
Ci(A) ≤ C · Ci(A∗) + c for all i. The competitive ratio for A is the in�mum over all C for which

A is C-competitive. In the deterministic setting, there is a lower bound for the competitive ratio

of Ω(k) and a (2k − 1)-competitive algorithm [6] is known. In the randomized setting, there is a

lower bound for the competitive ratio of Ω(
log k

log log k
), and a polylog(k)-competitive randomized

algorithm [7] was recently shown.

In this report, we will consider a stochastic version of the k-server problem, following the setting

of [10] and using their results to simplify the setup. Rather than analyzing an adversary’s choice

of the requests, as in the traditional setting, each ri will be chosen identically and independently

(i.i.d.) from some distribution over the points in M . While di�erent distributions and metric

spaces may yield interesting problems, this report will analyze the particular process generated

by the greedy algorithm on requests from the uniform distribution over a circle of circumference

k. The positions of requests and servers can take any real value in the interval [0, k). The greedy

algorithm sends the server closest to ri at each step. Ties may be broken uniformly at random

when the servers are equidistant from the request in opposite directions on the circle. When the

closest servers are at the same point in M , then we choose one such that the ordering of the

servers in clockwise order stays �xed. Given this tie-breaking scheme, note that servers will never

cross over each other using the greedy algorithm, so their clockwise ordering is invariant.

[10] also de�ned a discrete version of the stochastic problem, where all requests are chosen

from ` < ∞ equidistant positions on the circle. They also showed that the discrete version

UC Berkeley.
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converges to the continuous version as ` increases. So, this report only considers the continuous

version. The continuous version can be modeled by a Markov chain (Sn)n≥0 on the state space

Σ = {p = (p0, p1, . . . , pk−1) ∈ [0, k); pj ≤ pj+1 ≤ . . . ≤ p0 ≤ p1 ≤ . . . pj−1 for some j}.
Each pi represents the position of the ith server on the circle counted in the clockwise direction,

and one time step in the Markov chain re�ects the change in p after one request. For notational

convenience, we will also sometimes use negative indices to label the servers, using the convention

p−j = pk−j . In turn, each p−j represents the position of the jth server on the circle counted in the

counterclockwise direction. More generally, pi = pj if i ≡ j (mod k). For example, pk+1 = p1.
Although it was not assumed in the original description of the process in [10], let the initial

positions of the servers S0 be equidistant around the circle, so d(pi, pi+1) = 1 for all i. This does

not change the behavior of Sn as n→∞, but does simplify some results through symmetry, as

the distance between servers, d(pi, pi+1), is equally distributed for all choices of i throughout the

process.

From the main theorem in [10], we know that Sn converges exponentially fast to a stationary

distribution π and

1

n

∑n
i=1Ci converges to Eπ[C] as n→∞, where Eπ[C] denotes the expected

cost of a step in the process after one move from starting positions p chosen from π. See [10]

and [9] for more precise convergence bounds. So, in order to analyze the expected average cost

of one step in the continuous process, it su�ces to analyze the expected cost of one step of the

process with initial p chosen from π.

Figure 1. k-server on circle labeling

Let X be the random variable equal to d(p0, p1) with p chosen from π. As noted above, the

distance d(pi, pi+1) is identically distributed for any choice of i ∈ 0 . . . k− 1 due to symmetry. Let

f(x) for x ∈ [0, k] be the probability density function of X . Let Y be the random variable equal to

d(p1, p2) and Z be the random variable equal to d(p0, p−1). Let Wi be the random variable equal

to d(pi, pi+1) and W−i be the random variable equal to d(p−i+1, p−i) for i ∈ [0, k − 1]. Note that

X = W0, Y = W1, and Z = W−1. Similar to the labeling of pi, Wi = Wj if i ≡ j (mod k). Let

f(wi, wj) be the joint probability density function of the intervals corresponding to Wi and Wj .

For a given set of positions, p, the variables x, y, z, wi refer to the lengths of the intervals in p of

the corresponding random variables X, Y, Z,Wi. Refer to Figure 1 for an example of this labeling.

In this example, wi is i segments away from x in the clockwise direction and j segments away in

the counterclockwise direction.
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Figure 2. Example of a request in segment x satis�ed by the greedy algorithm

Eπ[C] is related to E[X2] through the following observations. If X = x, a request lands in

the range [p0, p1] with probability
x
k
. The distance that a server moves to satisfy this request is

uniformly distributed between [0, x/2], since in the greedy algorithm, a server can move up to half

of the length of its neighboring segment. In expectation, the distance moved is x/4. See Figure 2

for an example request. In this example, ri arrives closest to the server located at p1, so the server

at p1 moves to the position of ri. Let c = d(ri, p1). Then, after this step, d(p0, p1) = x − c and

d(p1, p2) = y + c.
Integrating over all choices of length x and summing over all k segments yields the following

useful result (also shown in [10]).

Lemma 1.1. Eπ[C] = E[X2]/4.

Proof.

Eπ[C] = E[Eπ[C|p]]

= k

∫ k

0

x

k
f(x)

x

4
dx

=
1

4

∫ k

0

x2f(x)dx

=
E[X2]

4
.

�

So, it su�ces to calculate E[X2] to determine Eπ[C]. In the following sections, Ek[C], fk(x),
and Ek[X

2] will be used to refer to these values given a particular choice of k.
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2.Precise Analysis of 2 Servers

In this section a new analysis is provided of the expected cost E2[C] of the stochastic k-server

process on the circle with k = 2 servers. This analysis relies on symmetry properties of the distri-

bution f2(x), so it may be extensible to analogous results for a wider class of process/distribution

pairs. It is also shown that f2(x) does not admit a closed form, a question that was left open

in [10].

2.1. Fabius Function Background. The de�nition of the Fabius function is rather ambiguous,

as it has been independently derived several times, and the exact de�nition varies from source

to source. In this report, the Fabius function is de�ned over [0, 1], though it is often extended to

[0,∞]. The Fabius function F is the unique function that satis�es both F (x) =
∫ 2x

0
F (s)ds and

F (x) = 1 − F (1 − x) over [0, 1]. The Rvachëv function, up(x), following the setting of [1], is

de�ned over [−1, 1] and takes the value F (1 + x) for x ∈ [−1, 0] and F (1− x) for x ∈ [0, 1].
Several facts about the Fabius function will be helpful in the analysis of the k-server process.

When introducing his eponymous function, Fabius showed the following theorem.

Theorem 2.1. [4] F (x) is nowhere analytic.

F (x) takes rational values for dyadic x (where x = 1/2k for some nonnegative k). Calculations

of these values can be found in [1] and [5]. One can also derive the moments of up(x) from similar

calculations. The following result from [1] will be useful.

Lemma 2.2. [1]
∫ 1

−1 x
2up(x)dx = 1/9.

2.2. Distribution of f2(x). This section will show that the distribution f2(x) is characterized by

the Rvachëv function. Then, the known results on the moments of the up(x) function can be used

to directly calculate E2[C].
First, by analyzing when one step of the process generates d(p0, p1) = x, it can be shown that

f2(x) satis�es the following recurrence.

Lemma 2.3. For x ∈ [0, 1], f2(x) =
∫ 2x

0
f2(s)ds.

Proof. Let s be the initial value of d(p0, p1). Then, consider any step in the process that makes

d(p0, p1) = x. Since π is the stationary distribution, taking one step in the process leaves f2(x)
�xed. Thus, the total density of these steps is equal to f2(x).

First, consider the case where the request falls in [p0, p1]. In this case, s becomes s − c for

some choice of c ∈ [0, s/2]. So, choices of c that satisfy x = s − c create an interval of size x.

Substituting the range [0, s/2] for c gives s ∈ [x, 2x]. Note that the upper bound x ≤ 1 guarantees

that 2x is a valid interval length. The probability density for being in a state with interval length

s is f2(s). The request falls in [p0, p1] with probability s/2. A particular choice of c from the

uniform distribution over [0, s/2] has density 2/s. Integrating over all choices of s, this contributes∫ 2x

x
f2(s)(s/2)(2/s)ds =

∫ 2x

x
f2(s)ds to the total density of steps that generate d(p0, p1) = x.

Next, consider the case where the request falls in the complementary interval of length 2− s. In

this case, s becomes s+ c for some choice of c ∈ [0, (2− s)/2]. Choices of c that satisfy x = s+ c
will yield an interval of size x. Note that (2 − s)/2 + s = 1 + s/2 ≥ 1 ≥ x, so x can always

be reached if s ≤ x. Substituting the range [0, (2 − s)/2] for c gives s ∈ [0, x]. So, this case

contributes

∫ x
0
f2(s)ds to the total density of steps that generate d(p0, p1) = x.

Summing both cases, the total probability density f2(x) equals

∫ 2x

0
f2(s)ds. �
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Lemma 2.4. For 0 ≤ x ≤ 2, f2(x) = f2(2− x).

Proof. If d(p0, p1) = x, then d(p1, p0) = 2 − x. Since each interval is identically distributed, by

symmetry, f2(x) = f2(2− x). �

Lemma 2.5.
∫ 1

0
f2(s)ds = 1/2.

Proof. This is true via symmetry, but it can also be computed from Lemma 2.4.

∫ 1

0
f2(s)ds =

1

2

( ∫ 1

0
f2(s)ds+

∫ 2

1
f2(2− s)ds

)
=

1

2

( ∫ 1

0
f2(s)ds+

∫ 2

1
f2(s)ds

)
=

1

2

∫ 2

0
f2(s)ds =

1

2
. �

Lemmas 2.4 and 2.5 can be combined with Lemma 2.3 in order to get a similar symmetry result

on the interval [0, 1]. The intuition is that the integral

∫ 2x

0
f2(s)ds in the recurrence for f2(x) can

be mirrored over x = 1 and de�ned just on the interval [0, 1].

Lemma 2.6. For 0 ≤ x ≤ 1, f2(x) = 1− f2(1− x).

Proof. Let x ∈ [1/2, 1].

f2(x) =

∫ 2x

0

f2(s)ds (by Lemma 2.3)

=

∫ 1

0

f2(s)ds+

∫ 2x

1

f2(s)ds

= 1/2 +

∫ 1

2−2x
f2(s)ds (by Lemmas 2.4 and 2.5)

= 1/2 +

(
1/2−

∫ 2−2x

0

f2(s)ds

)
= 1− f2(1− x) (by Lemma 2.3)

The result follows for x ∈ [0, 1/2] by substituting x′ = 1− x.

�

Lemmas 2.3 and 2.2 are enough to fully characterize the distribution f2(x) in terms of the

Rvachëv Function up(x).

Theorem 2.7. f2(x) = up(x− 1) for x ∈ [0, 2]. Additionally, f2(x) is nowhere analytic.

Proof. Lemmas 2.3 and 2.2 exactly match the de�nition of F (x) over x ∈ [0, 1]. Hence, on [0, 1],
up(x − 1) = F (x) = f2(x). On [1, 2], up(x − 1) = F (2 − x) = f2(x) by Lemma 2.4. f2(x) is

nowhere analytic due to Theorem 2.1. �

This theorem proves the conjecture in [10] that f2(x) does not yield a closed form. It also allows

for the calculation of E2[C] using properties of up(x), as follows.

Corollary 2.8. E2[C] = 5/18.
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Proof.

E2[C] = E2[X
2]/4 (by Lemma 1.1)

=
1

4

∫ 2

0

x2f2(x)dx

=
1

4

∫ 2

0

x2up(x− 1)dx (by Theorem 2.7)

=
1

4

∫ 1

−1
(x+ 1)2up(x)dx

=
1

4
(E[up(x)2] + 2E[up(x)] + 1)

=
1

36
+ 0 +

1

4
(by Lemma 2.2)

= 5/18.

�

These results and the connection to the Fabius function do not easily generalize to k ≥ 3 servers.

For instance, in the smallest case of k = 3, the mapping to a pair of intervals (x, y) after one

step in the process is the union of intervals of the form (x− c, y), (x + c, y), (x, y + c), (x, y −
c), (x− c, y + c), (x+ c, y − c). These intervals are more di�cult to analyze. In addition, fk(x) is

no longer symmetric around x = 1. So, in the next section, the analysis is conducted using only

expectations, rather than properties of fk(x).

3.Analysis of k Servers

3.1. Alternative calculation of E2[X
2]. In order to demonstrate the technique for analyzing

Ek[X
2], we present an alternative calculation of E2[X

2] which does not require knowledge of the

distribution f2(x). The following proof will re�ect the analysis of the interval length Z in [10].

Proof. (Alternative proof of Corollary 2.8)

Consider the expectation of X2
after one request r0. Let c = mini(d(r0, pi)) be the cost of the

request. Integrating over c and splitting the analysis into cases corresponding to ri landing inside

or outside of the interval [p0, p1] yields:

E2[X
2] =

∫ 2

0

(
x

∫ x/2

0

(x− c)2 1

x
dc+ (2− x)

∫ (2−x)/2

0

(x+ c)2
1

2− x
dc)

)
f2(x)dx

=

∫ 2

0

(∫ x/2

0

(x− c)2dc+

∫ (2−x)/2

0

(x+ c)2dc

)
f2(x)dx

=

∫ 2

0

(
7x3/24 + (−7x3/24 + x2/4 + x/2 + 1/3)dc

)
f2(x)dx

=
E2[X

2]

4
+
E2[X]

2
+

1

3

=
E2[X

2]

4
+

5

6
.
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Hence, E2[X
2] = 10/9, and by Lemma 1.1, E2[C] = E2[X

2]/4 = 5/18.

�

This matches the value calculated forE2[X
2] in the previous section. Note that theE2[X

3] term

canceled out in this proof. For k > 3 the analogous calculation does not lead to this cancellation.

However, we can still �nd the value of Ek[X
2] in terms of Ek[X

3], as we now demonstrate.

3.2. Moments for k > 2. The following proofs will make extensive use of the fact that X, Y, Z ,

and allWi are identically distributed. So, for instance,Ek[X] = Ek[Y ] andEk[X
aY b] = Ek[X

bZa]
(by rotational symmetry). However, it is not obvious that Ek[X

aY b] = Ek[X
aW b

i ] for all i, as

the interval corresponding to Wi might not be the same distance on the circle from X as Y is.

Nonetheless, this further symmetry can in fact be shown. The following lemmas will establish the

equivalence Ek[X
2Wi] = Ek[X

2Wj] for all i, j, but similar techniques work for other choices of

a, b.

Lemma 3.1. Ek[X2Wi] = Ek[X
2Wi−1]/2 + Ek[X

2Wi+1]/2 for all i ≥ 2.

Proof. Consider the value of XWi after one step in the process. Then,

Ek[XWi] = E[Ek[XWi|p]]

=
1

k

∫ k

0

∫ k

0

(
2

∫ x/2

0

(x− c)widc+ 2

∫ wi/2

0

x(wi − c)dc+

∫ y/2

0

(x+ c)widc

+

∫ z/2

0

(x+ c)widc+

∫ wi−1/2

0

x(wi + c)dc+

∫ wi+1/2

0

x(wi + c)dc

+

∫ k−x−y/2−z/2−wi−wi−1/2−wi+1/2

0

xwidc

)
fk(x,wi)dwidx.

Each term in the above integral arises from a di�erent location of the request r1 that de�nes the

single step of the process. Since i > 2, the intervals corresponding to X and Wi are not adjacent,

so at most one of x or wi changes after one step. The terms containing (x − c) and (wi − c)
correspond to ri landing in the intervals corresponding to X and Wi respectively. The terms

containing (x+ c) correspond to ri landing in the halves of the intervals corresponding to Z and

Y that are closer to p0 and p1 respectively. Similarly, the terms containing (wi + c) correspond to

to ri landing in the halves of the intervals corresponding to Wi−1,Wi+1 that are closer to pi and

pi+1 respectively. Finally, the last term corresponds to ri landing in a interval that does not result

in a change in x or wi.
Expanding the above integral gives:
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Ek[XWi] =
3Ek[X

2Wi]

4k
+

3Ek[XWi]

4k
+
Ek[WiXY ]

2k
+
Ek[WiY

2]

8k
+
Ek[WiXZ]

2k
+
Ek[WiZ

2]

8k

+
Ek[W

2
i−1X]

8k
+
Ek[Wi−1WiX

2k
+
Ek[W

2
i+1X]

8k
+
Ek[Wi+1WiX]

2k
+ Ek[WiX]

− Ek[Wi−1WiX]

2k
− Ek[Wi+1WiX]

2k
+
Ek[Z

3]

24k
− Ek[X

3]

k
− Ek[X

2Y ]

2k
− Ek[X

2Z]

2k

− Ek[WiXY ]

2k
− Ek[WiXZ]

2k
− Ek[W

2
i X]

k
− Ek[WiX

2]

k

= −Ek[X
2Wi]

2k
+
Ek[X

2Wi−1]

4k
+
Ek[X

2Wi+1]

4k
+ Ek[WiX].

Rearranging gives: Ek[X
2Wi] =

Ek[X
2Wi−1] + Ek[X

2Wi+1]

2
.

�

Lemma 3.1 relates X2Wi to its neighbors X2Wi+1 and X2Wi−1. Applying this lemma j times

leads to a similar relation to neighbors j intervals away.

Corollary 3.2. For i ≥ 2 and j < i, Ek[X2Wi−j] = (j + 1)Ek[X
2Wi] − jEk[X2Wi+1] and for

i ≥ 2 and j < k − i, Ek[X2Wi+j] = (j + 1)Ek[X
2Wi]− jEk[X2Wi−1].

Proof. Proceed via induction on j. The base case, j = 1, is satis�ed by Lemma 3.1. Now, assume

that the Corollary is true for all ` ≤ j.

Ek[X
2Wi−j−1] = 2Ek[X

2Wi−j]− Ek[X2Wi−j+1] (by Lemma 3.1)

= (2j + 2)Ek[X
2Wi]− 2jEk[X

2Wi+1]

+ (j − 1)Ek[X
2Wi+1]− jEk[X2Wi] (by Inductive Hypothesis)

= (j + 2)Ek[X
2Wi]− (j + 1)Ek[X

2Wi+1].

The corresponding equation for Ek[X
2Wi+j] follows from rotational symmetry. �

By applying Corollary 3.2 around the circle until we reach Y in one direction and Z in the other

direction, we can show further equivalences.

Lemma 3.3. Ek[X2Wi] = Ek[X
2Wj] for all j > i > 0.

Proof. From Corollary 3.2, iEk[X
2Wi]− (i− 1)Ek[X

2Wi+1] = Ek[X
2Wi−(i−1)] = Ek[X

2W1] =
Ek[X

2W−1] = Ek[X
2Wi+(k−i−1)] = (k − i)Ek[X

2Wi] − (k − i − 1)Ek[X
2Wi+1. So, unless

i = (k − i), Ek[X2Wi] = Ek[X
2Wi+1]. If i = (k − i), then i = k/2 and i − 1 6= (k − (i − 1)),

so Ek[X
2Wi−1] = Ek[X

2Wi]. By symmetry, Ek[X
2Wi−1] = Ek[X

2Wk/2−1] = Ek[X
2Wk/2+1] =

Ek[X
2Wi+1]. So, Ek[X

2Wi] = Ek[X
2Wi+1] for all i.

Then, Ek[X
2Wi] = Ek[X

2Wi+1] = . . . = Ek[X
2Wj−1] = Ek[X

2Wj]. �

This lemma enables the removal of Wi terms from an expansion of Ek[X
aWi].

Lemma 3.4. Ek[XaY ] = (kEk[X
a]− Ek[Xa+1])/(k − 1)
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Proof.

Ek[X
aY ] = Ek[X

a(k −
∑
j 6=1

Wj)]

= kEk[X
a]− Ek[Xa+1]− (k − 2)

∑
j 6=0,1

Ek[X
aWj]

= kEk[X
a]− Ek[Xa+1]− (k − 2)Ek[X

aY ] (by Lemma 3.3)

= (kEk[X
a]− Ek[Xa+1])/(k − 1).

�

Then, applying Lemma 3.4 yields an expression for Ek[X
3] in terms of just Ek[X

2].

Theorem 3.5. Ek[X3] =
3k

2k + 1
Ek[X

2].

Proof. Consider the value of Ek[X
2] after one step in the process.

Ek[X
2] = E[Ek[X

2|p]]

=
1

k

∫ k

0

(
2

∫ x/2

0

(x− c)2dc+

∫ y/2

0

(x+ c)2dc

+

∫ z/2

0

(x+ c)2dc+

∫ k−x−y/2−z/2

0

x2dc

)
fk(x)dx

=
7Ek[X

3]

12k
+
Ek[X

2Y ]

2k
+
Ek[XY

2]

4k
+
Ek[Y

3]

24k
+
Ek[X

2Z]

2k
+
Ek[XZ

2]

4k

+
Ek[Z

3]

24k
− Ek[X

3]

k
− Ek[X

2Y ]

2k
− Ek[X

2Z]

2k
+ Ek[X

2]

= Ek[X
2]− Ek[X

3]

3k
+
Ek[X

2Y ]

2k

= Ek[X
2]− Ek[X

3]

3k
+

Ek[X
2]

2(k − 1)
− Ek[X

3]

(2k)(k − 1)
(by Lemma 3.4)

=
2k + 1

3k
Ek[X

3].

�

This technique can be extended to �nd expressions for Ek[X
a] for a > 3 in terms of Ek[X

2],
but it requires further analysis to simplify Ek[X

aY b] (if a, b are both even, longer calculations

ensue). It may be possible to generate a more general expression for all a, and use these moment

bounds to characterize the function fk(x).

4.Open Problems and Future Directions

4.1. Open Problems. We have addressed several of the open problems posed in [10], but some

still remain. While this report fully characterized the distribution of f2(x), there remain many

interesting questions for k > 2. Not only is the distribution of fk(x) unknown for all k > 2, but

9



it is not even known if Ek[C] is bounded as k →∞. Fully determining the distribution of fk(x)
seems like a di�cult challenge. On the other hand, showing that Ek[C] is bounded or exactly

calculating Ek[C] for all k seems more tractable, based on the new results on the analysis of

moments in Section 3.2.

This report only focused on the greedy algorithm on requests from the uniform distribution

over the circle, but generalizing the setup may allow for similar results that apply to other

processes. When analyzing the stochastic k-server on the circle, the greedy algorithm is only

optimal (minimizing cost) for k = 2. Fully characterizing the optimal policy for k > 2 is still open,

so the performance of other algorithms is of interest. Choosing distributions other than uniform

for the placement of each ri could also lead to the analysis of other processes. In the next section,

we de�ne a more general framework that allows us to model these related processes.

4.2. Future Directions. One proposed way to generalize the stochastic k-server process is to

allow for a nonuniform distribution of requests [10]. It is possible to generalize further by

considering distributions D1, D2(x), D3(i) and the following steps. Note that D2 takes parameter

x from the length of the interval chosen by D1 and D3 takes parameter i from the index of the

interval chosen by D1.

Start with k intervals w0, w1, . . . wk−1 of size 1.

(1) Select an interval from D1 with support over all intervals. Let this interval be wi, with

length x.

(2) Set wi’s length to x− c, where c is chosen from D2(x) with support over [0, x]
(3) Pick an interval from D3(i) with support over all k intervals, and increase its length by c

We call the process determined by D1, D2(x), D3(i) a “wealth redistribution” process because

the sum of the lengths of all k intervals remains �xed at k at every step. The wealth redistribution

process can model the stochastic k-server process as follows: Let D1 be weighted by the interval

lengths, D2(x) be uniform over [0, x/2], and D3(i) be uniformly random over wi’s two neighbors

on the circle. Note that the greedy algorithm is modeled by the selection of lengths in D2(x) and

the geometry of the circle comes from the selection of neighbors in D3(i). Changing each Di can

lead to models of very di�erent processes, independent of the geometry exhibited by stochastic

k-server on the circle.

For example, it is possible to capture a process studied in economics and physics and analyzed

in [2] and [3]. Consider k people each starting with 1 dollar. At each time step, each person gives 1
cent to another person uniformly at random. In the limit, this leads to an exponential distribution

on the size of each interval. This process can be modeled by the following wealth redistribution

process: Let D1 be uniform over all intervals, D2(x) = 0.01 be a constant, and D3(i) be uniform

over all intervals. This shows that wealth redistribution processes may be of general interest for

applications in various �elds, even with these choices of simple distributions Di.

It is also possible to slightly modify the Di that model the greedy algorithm for the k-server

problem on the circle to de�ne a new process with di�erent properties. As an example, in the next

section, we modify D2(x) and analyze the ensuing process using techniques from Section 2.

4.3. Modifying k-server process by changing D2(x). Choose α ∈ (0, 1). Then, consider a

wealth redistribution process de�ned as follows: D1 is weighted by interval lengths, D2(x) is

uniformly random over [0, xα], and D3(i) is uniformly random over the two neighbors of wi.
Setting α = 1/2 yields the process that models the greedy algorithm for the k-server problem

described in Section 1. Note that α = 0 results in a degenerate case where no intervals change

10



and α = 1 in the limit results in a single interval of length k that does a random walk around the

intervals of the circle.

Now, consider the two remaining cases: α < 1/2 and α > 1/2. If α < 1/2, then the resulting

process models the greedy algorithm for the k-server problem over the circle where the requests

always land in the outer 2α fraction of an interval. On the other hand, α > 1/2 does not directly

model a variant of the stochastic k-server process. Instead, this process can be thought of as

selecting an interval with the same weighting as the k-server process and reallocating up to an α
fraction of the length of that interval to a random neighbor. Though this models a qualitatively

di�erent process, it can be analyzed via the techniques in Section 2.

Let g2(x) denote the probability density of d(p0, p1) for this modi�ed process with α > 1/2.

Then, the following result follows from an argument similar to the proof of Lemma 2.3.

Theorem 4.1. For α > 1/2 and 2− 2α ≤ x ≤ 2α, g2(x) =
1

2α
.

Proof. Let s be the initial value of d(p0, p1). Then, consider any step in the process that makes

d(p0, p1) = x. Since π is the stationary distribution, taking one step in the process leaves g2(x)
�xed. Thus, the total density of these steps is equal to g2(x).

First, consider the case where the request falls in [p0, p1]. In this case, s becomes s − c for

some choice of c ∈ [0, sα]. So, choices of c that satisfy x = s − c create an interval of size x.

Substituting the range [0, sα] for c gives s ∈ [x, x/(1 − α)]. For any x ≥ 2 − 2α, the possible

range of s is [x, 2], since x/(1− α) ≥ 2. The probability density for being in a state with interval

length s is g2(s). The request falls in [p0, p1] with probability s/2. A particular choice of c from the

uniform distribution over [0, sα] has density
1
sα

. Integrating over all choices of s, this contributes∫ 2

x
g2(s)(s/2) 1

sα
ds =

∫ 2

x
g2(s)
2α

ds to the total density of steps that generate d(p0, p1) = x.

Next, consider the case where the request falls in the complementary interval of length 2− s. In

this case, s becomes s+ c for some choice of c ∈ [0, α(2− s)]. Choices of c that satisfy x = s+ c
will yield an interval of size x. Note that (2− s)α + s ≥ (2− s)/2 + s = 1 + s/2 ≥ 1 ≥ x, so x
can always be reached if s ≤ x. Substituting the range [0, (2− s)/2] for c gives s ∈ [0, x]. So, this

case contributes

∫ x
0
g2(s)
2α

ds to the total density of steps that generate d(p0, p1) = x.

Summing both cases, the total probability density g2(x) equals

∫ 2

0
g2(s)
2α

ds = 1
2α

. �

Con�rmation of Theorem 4.1 and the shape of g2(x) for α ∈ (0, 1) are shown in Figure 5 in the

following section. Since we were able to derive some properties of g2(x), it seems possible that a

general framework could analyze the larger set of processes de�ned by di�erent choices of Di.

5.Simulations

5.1. Distribution of fk(x). In Section 2.2 we fully characterized the distribution of f2(x). The

results in Section 3 only explored relationships between the moments of fk(x) for k > 2. However,

we can approximate the distribution of fk(x) via simulation as shown in Figure 3.

f2(x) matches up(x− 1) as expected, but fk(x) for k > 2 does not exhibit the same symmetry

properties. For instance, fk(x) is not symmetric around x = 1 and does not take a maximum

value at fk(1). f50(x) closely approximates the stationary distribution, as it does not deviate much

from simulations of larger choices of k. fk(x) appears to decrease very quickly for x > 1. One

strategy to show that Ek[C] is bounded as k →∞ may be to show that fk(x) is bounded above

by an exponentially decreasing function. Further work would still be necessary to �nd the precise

value of limk→∞Ek[C].
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Figure 3. Graph of fk(x) for various choices of k.

5.2.

Ek[X
2]

Ek[Xa]
for varying a. Section 3.2 showed a relationship between Ek[X

3] and Ek[X
2].

Though it could also be obtained via further calculation, Figure 4 shows the relationship between

Ek[X
a] and Ek[X

2] for a > 3.

Figure 4.

Ek[X
2]

Ek[Xa]
for choices of a

As expected by the limit of the formula obtained in Theorem 3.5,

Ek[X
2]

Ek[X3]
approaches

2

3
as k

increases. Similarly, each

Ek[X
2]

Ek[Xa]
approaches a nonzero value, suggesting that they may also be

de�ned by a rational function with a �nite limit. One could run a regression on rational functions

to generate a conjecture for a general formula for

Ek[X
2]

Ek[Xa]
.
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5.3. Distribution of g2(x) for di�erent α. As mentioned in Section 4.2, one possible modi�ca-

tion to the k-server process is to change D2(x) from α = 1/2 to a value α ∈ (0, 1), as shown in

Figure 5.

Figure 5. Graph of g2(x) for various choices of α

As predicted by Theorem 4.1, when α > 1/2, there is a range for which g2(x) is constant. For

instance, for α = 3/4, g2(x) = 2/3 for x ∈ [1/2, 3/2]. When α < 1/2, there is still a unique

maximum value, but it is greater than the maximum of f2(1) = 1. Finding a formula for these

new maxima might help characterize the distribution for α < 1/2.

References

[1] de Reyna, J . A. Arithmetic of the fabius function, 2017.

[2] Dragulescu, A. , and Yakovenko, V. M. Statistical mechanics of money. European Physics Journal B
(2000).

[3] Ellenberg, J . When random people give money to other random people.

https://quomodocumque.wordpress.com/2017/06/27/when-random-people-give-money-to-random-other-

people/, 2017.

[4] Fabius, J . A probabilistic example of a nowhere analytic in�nitely di�erentiable function. Probability Theory
and Related Fields 5, 2 (1966), 173–174.

[5] Haugland, J . K. Evaluating the fabius function, 2016.

[6] Koutsoupias, E . , and Papadimitriou, C. H. On the k-server conjecture. Journal of the ACM (JACM)
42, 5 (1995), 971–983.

[7] Lee, J . R . Fusible hsts and the randomized k-server conjecture. CoRR abs/1711.01789 (2017).

[8] Manasse, M. S . , McGeoch, L. A. , and Sleator, D. D. Competitive algorithms for server problems.

Journal of Algorithms 11, 2 (1990), 208–230.

[9] Meyn, S . , and Tweedie, R. L . Markov Chains and Stochastic Stability, 2nd ed. Cambridge University Press,

New York, NY, USA, 2009.

[10] Upfal, E. , Kontoyiannis , I . , Guillotin-Plantard, N. , Dombry, C. , and Anagnostopoulos,

A. Stochastic analysis of the k-server problem on the circle. Discrete Mathematics & Theoretical Computer Science
(2010).

13


