
Machine Learning for Automatic Resource Management in
the Datacenter and the Cloud

Neeraja Yadwadkar

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-110
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-110.html

August 10, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Machine Learning for Automatic Resource Management in the Datacenter and the Cloud

by

Neeraja Jayant Yadwadkar

A dissertation submitted in partial satisfaction of the
requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Professor Randy H. Katz, Co-chair
Assistant Professor Joseph E. Gonzalez, Co-chair

Professor Ken Goldberg
Professor Vern Paxson

Summer 2018

Machine Learning for Automatic Resource Management in the Datacenter and the Cloud

Copyright 2018
by

Neeraja Jayant Yadwadkar

1

Abstract

Machine Learning for Automatic Resource Management in the Datacenter and the Cloud

by

Neeraja Jayant Yadwadkar

Doctor of Philosophy in Computer Science

University of California, Berkeley

Professor Randy H. Katz, Co-chair

Assistant Professor Joseph E. Gonzalez, Co-chair

Traditional resource management techniques that rely on simple heuristics often fail to achieve
predictable performance in contemporary complex systems that span physical servers, virtual
servers, private and/or public clouds. My research aims to bring the benefits of data-driven models
to resource management of such complex systems. In my dissertation, I argue that the advancements
in machine learning can be leveraged to manage and optimize today’s systems by deriving actionable
insights from the performance and utilization data these systems generate. To realize this vision of
model-based resource management, we need to deal with the key challenges data-driven models
raise: uncertainty in predictions, cost of training, generalizability from benchmark datasets to
real-world systems datasets, and interpretability of the models.

In this dissertation, to demonstrate how to handle these challenges, we chose two main problem
domains: (I) Scheduling in parallel data intensive computational frameworks for improved tail
latencies, and (II) Performance-aware resource allocation in the public cloud environments for
meeting user-specified performance and cost goals.

We begin by presenting Wrangler, a system that predicts when stragglers (slow-running tasks)
are going to occur based on cluster resource utilization counters and makes scheduling decisions to
avoid such situations. Wrangler introduces a notion of a confidence measure with these predictions
to overcome modeling uncertainty. We then describe our Multi-Task Learning formulations that
share information between the various models, allowing us to significantly reduce the cost of
training. To capture the challenges of resource allocation in the public cloud environments, we
present key observations from our empirical analysis based on performance profiles of workloads
executing across different public cloud environments. Finally, we describe PARIS, a Performance-
Aware Resource Inference System, that we built to enable cloud users to select the best VM (virtual
machine) for their applications in the public cloud environments so as to satisfy any performance
and cost constraints.

i

To my husband, Vivek Chawda.
To my family, especially my parents, Vasudha Yadwadkar and Jayant Yadwadkar.

To all my teachers, especially Prof. Chiranjib Bhattacharyya.
To everyone who has believed in me.

ii

Contents

Contents ii

List of Figures v

List of Tables viii

1 Introduction 1
1.1 Contemporary computing systems and challenges to resource management 2
1.2 Vision: Data-Driven Models for resource management 3
1.3 Overview of the dissertation . 4

1.3.1 Predictive Scheduling for parallel data intensive computational frameworks 4
1.3.2 Resource allocation in the public cloud environments 4
1.3.3 Evaluation Methodology . 5

1.4 Organization . 6

2 Background 7
2.1 Architecture of computational frameworks . 7
2.2 Job scheduling in computational frameworks . 8
2.3 Relevant machine learning preliminaries . 8

2.3.1 Supervised learning . 8
2.3.2 Support Vector Machines . 9

3 Predictive Scheduling: Predictable and Faster Jobs using Fewer Resources 11
3.1 Introduction . 11
3.2 Prior Work and Motivation . 12
3.3 Our Proposal: Wrangler . 14

3.3.1 Architecture of Wrangler . 14
3.3.2 Novelty of our Approach . 15

3.4 Building Straggler Prediction Models . 16
3.4.1 Linear Modeling for Predicting Stragglers 16
3.4.2 Model-Builder Evaluation . 21

3.5 Model-informed Scheduling . 24

iii

3.5.1 Wrangler’s Scheduling Algorithm . 25
3.5.2 Learning the Parameters: p and ∆ . 26
3.5.3 Bound on Delays Introduced by Wrangler 27

3.6 Implementation of Wrangler . 28
3.7 Evaluation of Wrangler . 29

3.7.1 Setup . 29
3.7.2 Does Wrangler improve job completion times? 31
3.7.3 Does Wrangler reduce resource consumption? 31
3.7.4 Is Wrangler reliable in presence of modeling errors? 32
3.7.5 How sensitive is Wrangler with respect to p? 32
3.7.6 How does Wrangler improve job completion times? 34
3.7.7 What if Wrangler mis-predicts? . 34
3.7.8 Does Wrangler scale well? . 36

3.8 Conclusion . 37

4 Fast Training: Building Data-Driven Models using Multi-Task Learning 38
4.1 Shortcomings of prior work and avenues for improvements 38
4.2 Multi-task learning for straggler avoidance . 39

4.2.1 Partitioning tasks into groups . 40
4.2.2 Reduction to a standard SVM . 41
4.2.3 Automatically selecting groups or partitions 42
4.2.4 Automatically selecting features . 43
4.2.5 Kernelizing the formulation . 44
4.2.6 Application to straggler avoidance . 45
4.2.7 Exploring the relationships between the weight vectors 48
4.2.8 Generalizing to unseen nodes and workloads 49

4.3 Empirical Evaluation . 49
4.3.1 Datasets . 49
4.3.2 Variants of proposed formulation . 51
4.3.3 Prediction accuracy . 52
4.3.4 Prediction accuracy for a {node, workload} tuple with insufficient data . . . 56
4.3.5 Improvement in overall job completion time 57
4.3.6 Reduction in resources consumed . 58

4.4 Related Work on Multi-task Learning . 58
4.5 Conclusion . 59
4.6 Additional Details: Cross-validating hyperparameter settings 60

5 Performance-Aware Resource Allocation in the Public Cloud 65
5.1 Insights from Empirical Analysis of Workloads executing across different Public

Clouds . 67
5.2 PARIS: System Overview . 70
5.3 Offline VM-benchmarking phase . 71

iv

5.4 Online performance prediction . 73
5.4.1 Training the Random Forest Model . 74
5.4.2 Interpreting the Learned Models . 75

5.5 Evaluation . 76
5.5.1 Baselines . 76
5.5.2 Experimental Set-up . 77
5.5.3 Prediction accuracy of PARIS . 79
5.5.4 Robustness . 81
5.5.5 From Estimated Performance to Action 84
5.5.6 Quantifying cost savings . 86

5.6 Limitations and Next Steps . 88
5.7 Conclusion . 89

6 Related Work 90
6.1 Cluster Schedulers . 90
6.2 Tackling Stragglers . 91

6.2.1 Task Replication for Straggler Mitigation 91
6.2.2 Early Detection of Stragglers . 91
6.2.3 Learning-based Approaches for Straggler avoidance 91

6.3 Resource Allocation . 92
6.3.1 Interference Prediction . 92
6.3.2 Performance prediction based on system modeling 92
6.3.3 Adaptive control systems . 93
6.3.4 Workload Forecasting . 93

7 Conclusions and Future Directions 94
7.1 Avenues for future directions in systems research 94
7.2 Avenues for future directions in ML research . 95
7.3 Concluding Remarks . 96

Bibliography 97

v

List of Figures

3.1 Architecture of Wrangler. 14
3.2 Lifetime of an example job observed with and without Wrangler. Note: there are other

jobs (not shown here) executing simultaneously on the cluster. The careful assignment
of Map2 to a node, that is likely to finish it in a timely manner, accelerates the job
completion despite the delay introduced in its launching. 15

3.3 Linear modeling techniques for predicting stragglers: node’s resource usage counters
form the features. The Learning phase (a) learns the weights on features using the
ground truth, i.e., a labeled dataset that consists of (1) features of a task and (2) whether
it was an straggler or not. A linear model then predicts based on a score obtained by
taking a linear combination of features with corresponding weights (b). 17

3.4 Classification accuracy of SVM for all workloads. 22
3.5 Sensitivity of classification using SVM with respect to values of β for workload CC b.

The error bars show the standard deviation across the percentage accuracy of models
built for the 50 nodes in the cluster. Note: The valid range for β shown is β > 1
(β = 1 is simply the median) to β < 1.7 (lower enough to ensure minimum number of
stragglers for oversampling and training). 23

3.6 Causes behind stragglers . 24
3.7 A simplified State-Machine that captures the behavior of a cluster executing parallel

data intensive workloads. 28
3.8 Summary of Wrangler’s improvements in job completion times for all the workloads

with the tuned vale of p (see Sections 3.5.2.1 and 3.7.5): This plot shows that Wrangler
successfully reduces the completion time by carefully scheduling potential stragglers. . 30

3.9 Confidence measures attached with the predictions are crucial. This plot compares the
reduction in overall job completion time achieved by Wrangler with and without using
the confidence measure attached with its predictions for CC b workload. 32

3.10 Reduction in job completion times achieved by Wrangler with various values of p for
all the workloads. Data labels are shown for the p value that achieves the highest gain
in completion times for each of the four workloads. 33

3.11 Load/resource utilization without and with Wrangler (p=0.7) for FB2010 workload:
Even with highly intensive FB2010 workload, Wrangler speeds up the 99th percentile
of job completions by 47% by avoiding overloading of a few nodes and distributing the
load more evenly (see Section 3.7.6). 34

vi

3.12 Empirical analysis of the amount of delay introduced by Wrangler and the speed up
achieved in task completions: With marginal delays, Wrangler achieves significant
reduction in task durations. FB2010 being a resource intensive workload [43], Wrangler
induces slightly higher delays seeking for nodes that are not over-committed. This
results in reduced improvements since the cluster is mostly loaded. Since CC e con-
tains lesser number of stragglers, Wrangler has limited opportunity to improve task
completions (see Section 3.7.7). 35

3.13 Scalability of Wrangler’s centralized prototype: The prediction accuracies shown in (a)
and percentage reduction in job completion times shown in (b) for a larger (100 nodes)
cluster are significant and comparable with those for a 50 nodes cluster. 36

4.1 In our context of straggler avoidance, the learning-tasks naturally cluster into various
groups in multiple partitions. When a particular learning- task, for example, node 1 and
workload FB2009 (v1), has limited training data available, we learn its weight vector,
w1, by adding the weight vectors of groups it belongs to from different partitions. . . . 46

4.2 Classification accuracy of various MTL formulations as compared to Wrangler using
50% of the total data. This plot shows the percentage of true positives and the percentage
of false positives in each of the cases. These quantities are computed as: % True Positive
= (fraction of stragglers predicted correctly as stragglers) × 100, and % False Positive
= (fraction of non-stragglers predicted incorrectly to be stragglers) × 100. 54

4.3 Improvement in the overall job completion times achieved by f0,n,l and Wrangler over
speculative execution. 57

5.1 Execution time and total cost of a video encoding task on AWS, across various VM types. 66
5.2 (a) Runtime for building Apache Giraph (lower the better) and (b) Throughput for a

50/50 R/W serving workload on the Redis in-memory datastore using YCSB (higher
the better) across different VM types offered by AWS and Azure. 68

5.3 Runtimes for a compression workload across VM types from different families offered
by AWS and Azure. In plot (c), note the different scale on y-axis. 69

5.4 Architecture of PARIS (Sec. 5.2). 72
5.5 Benchmark workloads chosen from a diverse set of cloud use-cases [18]. 72
5.6 A possible decision tree for predicting performance from the task fingerprint and VM

type configuration. 74
5.7 Importance of the various features for AWS (left) and Azure (right). The random forests

were trained to predict runtime using a compression benchmark workload suite (See
Section 5.5.2). Reference VMs used: c3.large and r3.2xlarge for AWS and F2
and D13v2 for Azure. 76

5.8 Prediction Error for Runtime, Latency, and Throughput (expected and p90) for AWS
and Azure. a, b: Runtime prediction for video encoding workload tasks, c-f: Latency
and throughput prediction for Serving-style latency and throughput sensitive OLTP
workloads. The error bars show the standard deviation across different combinations of
reference VMs used. 80

vii

5.9 Errors per target VM type for predicting mean latency, on AWS (top) and Azure
(bottom). Reference VMs used on AWS: m3.large and c4.2xlarge, and on
Azure: A2 and F8. Error bars show the standard deviation in % Relative RMSE across
the set of over 62K latency-sensitive YCSB queries run on Aerospike, Cassandra,
MongoDb, and Redis data-stores. 81

5.10 Sensitivity of PARIS to the choice of Reference VMs. Errors in predicting mean runtime
and 90th percentile runtime for video encoding tasks using different reference VM types
on AWS (a and b) and Azure (c and d) (Sec. 5.5.4.1). 82

5.11 Prediction errors for different regressors using different choices of reference VM types
on AWS (Sec. 5.5.4.3) . 84

5.12 Error of PARIS’ latency and throughput predictors for different random forest hyperpa-
rameters, for test YCSB workloads on Aerospike, MongoDB, Redis, and Cassandra
datastores, on AWS. Reference VMs: c3.large & i2.2xlarge. (Sec. 5.5.4.4) 85

5.13 Error of PARIS’ latency and throughput predictors by removing one benchmark work-
load at a time, averaged across reference VM types combinations on AWS (Sec. 5.5.4.5). 85

5.14 Performance-cost trade-off Map generated by PARIS using user-specified representative
task that consisted of a set of 225K YCSB queries with a mix of 10/90 Reads/Writes,
on a Redis data-store with 225K records. X-axis: AWS and Azure VM types ordered
by increasing cost per hour. Reference VMs: A2, F8 for Azure and c4.2xlarge,
m3.large for AWS. Top: Predicted mean and p90 latencies (shown by whiskers).
Middle: Estimated cost in cents for the representative task. Bottom: Distribution of
actual observed latencies across different AWS and Azure VM types, for a set of 2.5K
query user-tasks on Redis. (Sec. 5.5.5). 86

5.15 Percentage reduction in user costs enabled by PARIS’ predictors over the baseline
predictors on AWS for a number of policies. Policy I chooses the VM type with least
predicted cost provided mean runtime ≤ β times the mean across VMs. Policy II is
similar but thresholds p90 values instead. (Sec. 5.5.6.1). 87

5.16 Cost overheads of PARIS compared to brute-force profiling on all VM types (e.g., in
Ernest [152]). 88

viii

List of Tables

3.1 Dataset. FB: Facebook, CC: Cloudera Customer. 22
3.2 Resource utilization with and without Wrangler in terms of total task execution times

(in seconds) across all the jobs during our replay. Being proactive, Wrangler achieves
the improved completion times while consuming lesser resources compared to the
wait-and-speculate re-execution mechanisms. 31

4.1 Dataset. FB: Facebook, CC: Cloudera Customer. 50
4.2 Number of tasks we use for each workload in the train+val and test sets. 50
4.3 Brief description of all our formulations. 53
4.4 Prediction accuracies (in %) of various MTL formulations for straggler prediction with

varying amount of training data. See Section 4.3.3.1 for details. 54
4.5 Straggler prediction accuracies (in %) using the four mixed-norm formulations fps

and fgs compared with formulations that use l2 regularizers. Note that fps and fgs
perform with comparable accuracy with f0,n,l, however, use lesser number of groups
and parameters, resulting in simpler models. 55

4.6 Straggler prediction accuracies (in %) using ffs1 and ffs2 that encourage sparsity across
bocks of features. 55

4.7 Straggler Prediction accuracies (in %) of f0,n,l and f0,t on test data from an unseen
node-workload pair. See Section 4.3.4 for details. 56

4.8 Resource utilization with f0,n,l and with Wrangler over speculative execution, in terms
of total task execution times (in seconds) across all the jobs. f0,n,l reduces resources
consumed over Wrangler for FB2009, CC b and CC e. 58

4.9 Tuning the hyperparameters λ0, ν, ω and τ using grid search. 61
4.10 Tuning the hyperparameters λ0, ν, ω and τ using grid search. 62
4.11 Tuning the hyperparameters λ0, ν, ω and τ using grid search. 63
4.12 Tuning the hyperparameters λ0, ν, ω and τ using grid search. 64

5.1 Details of the workloads used and Dataset collected for PARIS’ offline (benchmark)
and online (query) phases. 78

5.2 Serving benchmark workloads we used from YCSB. We did not use the Read-Only
Workload C, as our benchmark set covers read-mostly and read-latest workloads. . . . 78

ix

Acknowledgments

I want to express my deepest gratitude to my advisor, Randy Katz, for teaching me how to do
good research, for always believing in me, and for encouraging me throughout my grad life. Randy
has been a role model for me in many ways and has taught me how to be calm in stressful situations,
how to care for and cater to the needs of students, and most importantly, how to be disciplined. I
am grateful to his relentless efforts in helping me improve my writing skills by marking my paper
drafts thoroughly multiple times. I will always value his guidance, and gracious efforts to provide
all the tools, technical and financial, that allowed me to focus on research better. Thanks also to my
co-advisor, Joseph Gonzalez, for mentoring me. His push for thorough empirical analysis coupled
with theoretical soundness has helped my research tremendously. I also want to thank him for
helping me develop my presentation skills to give effective technical talks.

I would also like to thank my dissertation committee members, Vern Paxson, Ken Goldberg, and
Burton Smith, for their valuable feedback all through my qualification exam and dissertation. Vern’s
thorough comments and hard questions have shaped the writing and empirical data analysis in this
dissertation greatly. I am thankful to Vern for inspiring me to be curious and skeptical about what
the representation chosen for data might be hiding from us. Thanks to Ken for always encouraging
me, and for showing confidence in me. I would also like to thank Burton who I had an opportunity
to work closely with while interning at Microsoft Research. Burton, unfortunately, passed away
recently. I am grateful to him for showing me how to focus on the fundamentals, and how to design
systems from the first principles. Thanks also to my prelim committee members, David Culler
and John Kubiatowicz, for providing me with a great exam that helped me feel ready for systems
research.

I feel very fortunate to have Bharath Hariharan as a close friend as well as a mentor. He has
always been ready to help with many questions I have related to research and life in general. I
also want to thank Ganesh Ananthanarayanan, who I worked with on my very first project as a
grad student. From Bharath and Ganesh, I learned how to write from the reader’s perspective, how
to explain complex things well, and how to persist through hard research times. I am extremely
thankful to have found a great academic elder brother in Yanpei Chen. His perpetual readiness for
helping me and advising me continues to amaze me. John Wilkes has played the role of a critical
mentor whose inputs have shaped this work tremendously. His feedback on my posters and talks
has helped me improve my presentation skills. Marvin Theimer’s industrial perspective on my work
has guided my work to be more relevant and applicable in real world.

I had the fortune to work with Anthony Joseph and Ion Stoica as a graduate student instructor
(GSI) for the undergrad operating systems class for two semesters at Berkeley. I learned a lot from
both of them. Ion gave me the opportunity to teach a couple of lectures which further reinforced my
passion for teaching.

I also want to thank all the teachers with whom I have taken classes at Berkeley: Martin
Wainwright, John Kubiatowicz, Anthony Joseph, Sylvia Ratnasamy, Ion Stoica, Vern Paxson,
Laurent El Ghaoui, Raluca Popa, Joe Hellerstein, and Zachary Pardos.

I want to thank all my friends and colleagues in the AMPLab, RISELab, NetSys, and ParLab,
who were always available for long brainstorming sessions or quick questions: Sarah Chasins,

x

Mangpo, Sarah Bird, Xinghao, Prashant, David, Sara Alspaugh, Yanpei, Wontae, Daniel Haas,
Purnamrita, Sameer, Colin, Panda, Shivaram, TD, Charles, Virginia, Evan, Andre, Anurag, Anand,
Xin, Wenting, Gulio, Eugene, Alyssa, Rashmi, Elaine, Kaifei, Gautam, Aishwarya, Orianna, Qifan,
Vikram, Rolando, Moustafa, Jack, and Dan Crankshaw. Many thanks to each one of you for helping
me in many ways.

I would like to express my heartfelt gratitude to the incredible people who worked hard in
many different ways to enrich my grad school experience - Shirley Salanio, Kattt Atchley, Boban
Zarkovich, Carlyn Chinen, Jon Kuroda, Shane Knapp, Albert Goto, Matt Massie, and Audrey
Sillers.

I am truly thankful to the energy and support I have received over the last 5 years from my dance
teacher, Seibi Lee, and my dance sisters, Aradhana Vaidya, and Ria DasGupta.

I am extremely thankful for the fun and support I found through the close circle of friends
at Berkeley: Bharath, Shubham, Yanpei, Gireeja, Purnamrita, Rashmi, Nihar, Archana, Anand,
Lakshmi, Nikunj, Sreeta, Nitika, Arnav, Gautam, Anurag, Shromona, Divya, Xin, Wenting, Radhika,
Saurabh, TD, Nitesh, and Aishwarya. Thanks to everyone for always being ready to help out.

I feel fortunate to have studied with Chiranjib Bhattacharyya, my master’s advisor, who intro-
duced me to research. I am extremely grateful to him for preparing me for this wonderful journey
and for continuously nourishing me technically and emotionally throughout these years.

Finally, I feel fortunate to have the most loving and supportive family who always encouraged
me and were always there when I needed them the most. My parents, Vasudha Yadwadkar and
Jayant Yadwadkar, have given their lives to ensure I have the most comfortable life. They instilled
in me the value of being a good person. I also learned the importance of hard work, persistence and
positivity by observing them over the years. I also thank my parents-in law for supporting me over
the years. I am grateful to have found a close friend in my brother-in-law, Vaibhav Chawda, who is
always ready to give a listening and thoughtful ear to everything I have to say. Finally, and most
importantly, I think the person who made this dissertation feasible, is my best friend and husband,
Vivek Chawda. I am eternally thankful to Vivek for his firm belief in me even in the moments I
doubted myself. Thanks to Vivek for giving countless days and nights to support my grad life,
and for commuting over 100 miles every single day over 5 years just to ensure I have the most
comfortable stay and commute to focus on my work.

1

Chapter 1

Introduction

In the past couple of decades, we have seen data getting generated at an unprecedented rate.
This growth can be attributed mainly to ubiquitous devices and applications. Ubiquitous devices,
such as security cameras, handheld scanners, tablets, wireless sensors give rise to enormous amount
of data. Applications, including social media such as Facebook, Twitter, and the aggregations of
such data with third party information, generate and send significant amount of data across the globe
over the Internet. We also see emerging new applications enabled by such huge amount of data, for
example, Siri or Cortana using audio data or home security applications using live feed of video
data. These emerging applications have dictated the need for processing this data in realtime for
unraveling important insights from them. For instance, analyzing a stream of live video data for any
suspicious activity with an intention of generating an alarm and taking appropriate safety measures.

In 1965, Gordon Moore (co-founder of Intel) predicted that the transistor density of semicon-
ductor chips would double roughly every eighteen months, called Moore’s law [110, 133]. This has
enabled the processing speed of a single core to scale rapidly. Storage and network capacity also
increased exponentially over years. This allowed us to store enormous amount of data generated by
the devices and applications. The increasing resource efficiency enabled personal computers and
even small handheld devices to process large amounts of data. System designers and application
developers have benefitted from this advancement in hardware resources resulting in performance
improvement of applications without having to rewrite the software. However, Moore’s law has
ended [137]. This emphasizes the need for smarter resource management techniques that enable
systems to deal with the fast growing data using the existing resources more efficiently. This
dissertation aims at developing automatic resource management mechanisms for the datacenter
and the cloud that enable distributed systems to achieve faster and predictable performance while
reducing the cost.

2

1.1 Contemporary computing systems and challenges to
resource management

With the decline of Moore’s law and continuous growth in data, traditional algorithms are now
largely distributed. These algorithms and applications that process huge volume of this data have
caused two major changes in computing: (a) parallel execution of data intensive computations
and (b) use of shared commodity hardware. Frameworks such as MapReduce [56], Spark [171],
Naiad [113], and various distributed graph processing systems [74, 105] demonstrate the benefits of
such distributed data processing mechanisms. These frameworks primarily run on economically
available commodity hardware to offer various services such as elasticity, and scalability, to users at
reduced cost. The advent of cloud computing, where instead of buying physical servers users can
easily receive an on-demand delivery of compute, storage, and other resources for a short duration,
has played a key role in the wide adoption of such distributed systems. Cloud computing providers
such as AWS [8], Microsoft Azure [102], and Google Cloud Engine [97] allow users to benefit from
economy of scale in terms of pay-as-you-go pricing model resulting in low overall costs for users.

Contemporary systems that support these changes in computing paradigms have started spanning
physical servers, virtual servers, private and/or public clouds or a combination of these different
resources. Evolution in computing has taken us from physical servers in datacenters to virtual
servers in datacenters, to virtual servers in the cloud, to containers, and now functions run as a
service in the cloud. With this trend we see increasing automation in provisioning for resources,
making it feasible for programmers to focus more on application development without needing to
think about provisioning and scaling of resources.

However, contemporary systems that span such a wide range of resource infrastructure present
unique challenges to resource management especially when there is a pressing need for faster
and predictable computation while optimizing the utilization of resources. To reduce the cost of
applications running at a large scale, systems use inexpensive commodity hardware and share
it across different users and different workloads. However, use of commodity hardware makes
these systems failure-prone and sharing of resources gives rise to highly variable environments.
This makes reasoning about performance challenging, which in turn makes resource management
decisions such as where to assign or execute a job unclear. The virtualized public cloud environments
present the challenge of lack of complete control of underlying hardware resources to their users.
The complexity of these systems is further emphasized due to heterogeneity across nodes and user
workloads running on them that adds to the problem of reasoning about performance and taking
suitable resource management decisions. Thus, estimating resource requirements of workloads
and the impact of selected resources on performance and mainly on variability in performance has
become more challenging.

Traditional approaches to designing resource management solutions have been primarily driven
by simple heuristics that capture static relationships between performance and resources. However,
due to the challenges described earlier, including use of heterogeneous, shared commodity hardware,
these relationships are likely to change dynamically. Heuristics that do not utilize the rich context
available in the form of performance counters are unable to react to changing environments, causing

3

either poor and unpredictable performance or poorly utilized resources.
In this dissertation, rather than relying on traditional heuristic-based or statically defined ap-

proaches, we propose to inform resource management decisions, such as scheduling or resource
allocation, using data-driven models: models that leverage dynamically collected performance data.
We note that such data is easily available today with systems capturing it regularly [86, 171, 155,
107] using various performance monitoring tools [122, 60, 107, 78]. Given that the large-scale
distributed computing systems today show stochasticity in behavior [55], a better approach could be
to leverage such data to get informed about the system state. In particular, we show that data-driven
learning techniques enable more efficient and cost-effective solutions to optimizing performance
and cost of computations in the datacenters and the public cloud environments than state-of-the-art
mechanisms.

1.2 Vision: Data-Driven Models for resource management
We focus on the opportunity presented by the data collected regularly by contemporary systems.
This data contains performance and utilization indicators; the insights derived from this data have
the potential to impact various aspects of distributed systems, including resource management.

We exploit the opportunity presented by such data and propose an alternative approach to
resource management for datacenters and other cloud-hosted systems. The key idea is to let the
data itself drive resource management decisions augmenting existing approaches [86, 151, 134]
based on expert knowledge, heuristics and simple modeling mechanisms. However, data is only as
important as the actions it enables. To enable important decisions, we need to extract actionable
insights from this data. We leverage the advances in the field of statistical learning and machine
learning (ML) to build data-driven models. Such data-driven models can enable distributed systems
to make decisions by automatically learning and adapting to dynamically changing state of the
underlying system components.

However, we realize that off-the-shelf learning techniques may not be directly applicable to
enable data-driven actions. As opposed to improving accuracy of predictions on test data, we desire
to use the predictions from our models to influence resource management decisions taken. That
raises certain challenges:

1. Prediction error or model’s uncertainty: The impact of wrong predictions could be high.
For instance, a wrong scheduling decision might cause violation of Service Level Objective
(SLO) and may incur monetary penalties.

2. Cost of training: To train these data-driven models, we need to collect sufficient amount of
training data. The cost in terms of time and/or money spent on collecting such data could be
non-trivial.

3. Generalization: To enable adoption of the models in real system deployments, we need
to ensure that we build models that can generalize from benchmark workloads to real user
workloads.

4

4. Interpretability: When applying ML models for deriving important decisions in the domain
of distributed systems, in addition to accurate predictions, it is helpful for domain experts to
gain insights into the decision making process of the models.

To demonstrate how to handle these challenges, we chose two main problem domains: (I)
Scheduling in parallel data intensive computational frameworks for improved tail latencies with
reduced resource consumption (Chapters 3 and 4), and (II) Performance-aware resource allocation
in the public cloud environments for meeting user-specified performance and cost goals (Chapter 5).

1.3 Overview of the dissertation
This dissertation aims at developing automatic resource management mechanisms that enable
distributed systems to achieve faster and predictable performance while reducing cost. To achieve
this goal, we develop practical model-based solutions guided by insights drawn from data generated
by existing deployments. In the context of the two problem domains described in the previous
section, below we outline the systems we designed, implemented, and evaluated.

1.3.1 Predictive Scheduling for parallel data intensive computational
frameworks

Parallel processing frameworks [56] accelerate jobs by breaking them into tasks that execute in
parallel. However, slow running or straggler tasks can run up to 8 times slower than the median
task on a production cluster [11], leading to delayed job completion and inefficient use of resources.
Existing straggler mitigation techniques wait to detect stragglers and then relaunch them, delaying
straggler detection and wasting resources. We built Wrangler [160], a system that predicts when
stragglers are going to occur and makes scheduling decisions to avoid such situations.

Building data-driven models requires collection of substantial training data. This data-collection
phase could be time-consuming. To this end, we propose multi-task learning formulations that share
information between the various models, allowing us to use less training data and bring training
time down significantly. Unlike naive multi-task learning formulations, our formulations capture
the shared structure in our data, improving generalization performance on limited data. Finally, we
extend these formulations using group sparsity inducing norms [21] to automatically discover the
similarities between models and improve interpretability.

1.3.2 Resource allocation in the public cloud environments
As companies of all sizes migrate to cloud environments, increasingly diverse workloads are
being run in the Cloud — each with different performance requirements and cost trade-offs [129].
Recognizing this diversity, cloud providers offer a wide range of Virtual Machine (VM) types. For
instance, at the time of writing, Amazon [6], Google [76], and Azure [102] offered a combined total
of over 100 instance types with varying system and network configurations.

5

In this work, we address the fundamental problem of accurately and economically choosing
the best VM for a given workload and user goals. This choice is critical because of its impact on
performance metrics such as runtime, latency, throughput, cost, and availability. Yet determining
or even defining the “best” VM depends heavily on the users’ goals which may involve diverse,
application-specific performance metrics, and span tradeoffs between price and performance
objectives. We built PARIS, a data-driven system that uses a novel hybrid offline and online data
collection and modeling framework to provide accurate performance estimates with minimal
data collection. PARIS is able to predict workload performance for different user-specified met-
rics, and resulting costs for a wide range of VM types and workloads across multiple cloud providers.

1.3.3 Evaluation Methodology
The results and insights presented in this dissertation are derived from synthetic as well as real-world
production-level workloads.

Production-level real-world workloads: We use job execution traces of data intensive compu-
tational frameworks from production clusters at Facebook and customers of Cloudera. All these
production clusters support business critical applications. The traces describe a multi-job execution
on underlying resources. These traces contain job-level statistics, such as time of submission,
input/shuffle/output data sizes (bytes), duration, number of constituent tasks, and task-level dura-
tions. More details of these traces, and other workloads used in this dissertation are provided in
corresponding Chapters 3 and 4.

Trace-driven Replay To evaluate using the production-level real-world traces on AWS, we use
a trace-driven replay mechanism, called SWIM [44]. SWIM is a statistical workload replay tool
that performs a detailed and faithful replay of the workload traces from Facebook and customers
of Cloudera. SWIM synthesizes a workload with representative job submission rate and patterns,
shuffle/input data size and output/shuffle data ratios (see [44] for details of replay methodology).
SWIM scales the workload to the number of nodes in an experimental cluster. More details on the
datasets collected through this trace-driven replay are provided in Chapters 3 and 4 along with their
analysis and results obtained.

Benchmark Workloads: The ability to generalize from benchmark workloads to real-user
workloads is crucial to the adaptation of our models to real-world deployments. To evaluate
generalizability of our models, in PARIS, we trained our models using commonly deployed cloud-
hosted applications, such as video encoding, compression and serving-style workloads running
on common cloud serving datastores such as Aerospike, MongoDB, Redis, and Cassandra. More
details on the benchmark workloads suite used and datasets collected are provided in Chapter 5.

6

1.4 Organization
This dissertation incorporates our previously published work [160, 92, 161, 162] and is organized
as follows.

Chapter 2 describes relevant details of current data analytics frameworks and provide background
on relevant machine learning terminologies used in this dissertation.

Chapter 3 describes Wrangler [160], a predictive scheduler that allows data intensive computa-
tional jobs to be predictable and faster while using fewer resources compared to existing reactive
mechanisms. We describe how we deal with the challenge of model uncertainty and achieve
significant improvements in job completion times.

Chapter 4 describes our multi-task learning formulations that share information between the
various models that are similar, allowing us to use less training data and bring training time
down significantly. We then extend these formulations using group sparsity inducing norms to
automatically discover the similarities between models and improve interpretability.

Chapter 5 describes PARIS [162], a data-driven system address the fundamental problem of
accurately and economically choosing the best VM for a given workload and user goals.

Chapter 6 surveys existing resource management mechanisms.

Chapter 7 concludes with some future directions for research.

7

Chapter 2

Background

In this chapter we describe the architecture of parallel data analytics frameworks and provide
background on the ML terminologies used in this dissertation.

2.1 Architecture of computational frameworks
Analytics on huge datasets available today has become a driving factor for businesses. Parallel
processing on commodity clusters has emerged as the de-facto way of dealing with the scale and
complexity of such data-intensive applications. To accelerate applications using multiple machines,
a bulk-synchronous-parallel model of distributed computation is used. In a bulk-synchronous-
parallel model, a computational job submitted to a cluster of computers is first broken into stages
and then each stage is split into multiple tasks. Tasks in a stage are assigned the same computation
but different blocks of input data. Tasks belonging to each stage can run in parallel. A cluster
scheduler assigns these tasks to machines (nodes), where they are executed in parallel. A job’s
computation synchronizes along the boundaries of different stages: output of previous stage is used
as input by the next stage. This shuffle of intermediate data is generally executed by tasks from
a previous stage writing the data to the local disk and tasks from the next stage reading it. A job
finishes when all its tasks have finished execution.

A key feature of such frameworks is that they automatically handle failures (which are more
likely to occur on a cluster of failure-prone commodity computers) without needing extra efforts
from the programmer. If a node crashes, a parallel data-analytics framework re-runs all the tasks it
was executing on a different node.

Google originally proposed the MapReduce [56] framework that divides each job in exactly
two stages: a map stage and a reduce stage. MapReduce is highly scalable to large clusters of
inexpensive commodity computers. Hadoop [155], an open source implementation of MapReduce,
has been widely adopted by industry over the last decade. Later, Spark [171], Dryad [90], and
Naiad [113] were designed to support more ad-hoc parallel processing computational jobs that are
represented by a more general DAG (directed acyclic graph) of one of more stages.

8

2.2 Job scheduling in computational frameworks
We now describe job scheduling in parallel data intensive computational frameworks. In the interest
of simplicity of explanation, we assume a cluster with single master and multiple worker machines.
The results and discussion in this dissertation apply to other more sophisticated architectures such
as clusters with multiple master and multiple worker nodes.

In the most simple form, job scheduling mechanism in parallel data analytics frameworks is
orchestrated by a central scheduler. Jobs are submitted to this central scheduler that divides each
job in stages and represents them with a directed acyclic graph of computations. Each stage is
divided into multiple tasks. The central scheduler then assigns these tasks to worker machines.
This assignment of tasks to worker nodes is done based on availability of ‘slots’ on them. More
complex mechanisms use fairness, bin-packing for scheduling that aim for improved performance
and resource usage of tasks (see Chapter 6 for a survey on cluster schedulers).

2.3 Relevant machine learning preliminaries
In this section, we present background on relevant machine learning terminologies used in this
dissertation.

2.3.1 Supervised learning
Supervised learning is a branch of machine learning algorithms where predictive models are built
from known input and target data pairs, called the labeled dataset. Generally, a given labeled dataset
is split into training set, validation set, and a test set. Supervised learning algorithms aim at learning
a function, also called a model, that can map the input data to the corresponding target values in the
training dataset. The learned models are validated on the validation set that the model has not seen
during its training phase. A model that performs the best according a metric of success, such as
prediction accuracy, on the validation set is selected as an output of the training phase. In the test
phase, the selected model is then used to predict the target values, called labels, of input data in the
test set. The labels in the test set, called ground truth, are used to evaluate the performance of the
learned model.

Supervised learning includes two categories of algorithms: (a) Classification: for categorical
label values, and (b) Regression: for real-valued labels.

More formally, the supervised learning setup used in this dissertation can be presented as follows:
Let D be a labeled dataset with n datapoints,

D = {(xi, yi) : 1 ≤ i ≤ n}

where, xi ∈ Rd, and yi ∈ {0, 1} for binary classification. In the regression setting, yi ∈ R.
Let Dtrain, Dval, and Dtest be the train, validation and test splits of dataset D.

Dtrain = {(xtraini , ytraini) : 1 ≤ i ≤ ntrain}.

9

Dval = {(xvali , yvali : 1 ≤ i ≤ nval}.
Dtest = {(xtesti , ytesti : 1 ≤ i ≤ ntest}.

where, n = ntrain + nval + ntest.
The goal is to learn a function, f : xi −→ yi,∀(xi, yi) ∈ Dtrain, using the validation set, Dval,

and evaluate it on the test set, Dtest.

2.3.2 Support Vector Machines
Support vector machines (SVMs) have become a popular off-the-shelf supervised learning algorithm
over last couple of decades, especially due to its better empirical performance compared to other
algorithms. SVM uses machine learning theory to maximize predictive accuracy while automatically
avoiding over-fit to the training data.

Vapnik [148] developed the foundations of SVM using the Structural Risk Minimization (SRM)
or the regularized Empirical Risk Minimization (ERM) principle [36] that allows SVM to generalize
well to unseen datasets. To find the decision function that can predict the labels for an unseen
dataset, an SVM solver minimizes a general objective provided by the framework of regularized
empirical risk minimization.

Loss functions. A loss function measures the quality of a model’s prediction. More concretely, it
measures how far away the predicted output is from the true label. For a given datapoint, (x, y), let
the model’s prediction be f(x). The loss can be denoted by L(x, y, f(x)). Examples of commonly
used loss functions include, L1 loss, L2 loss (see [26] for more details).

Empirical risk. To build a model that is capable of making accurate predictions on a test dataset,
we must minimize the training set error of our predictions. The training dataset is assumed to be
drawn from the same distribution.

The empirical risk of a given prediction function is defined as the expected value of the loss of
our function on a given dataset. We can write empirical risk, R̂(f) as,

R̂(f) =
1

n

n∑
i=1

L(xi, yi, f(xi)).

To build an accurate model, we minimize the empirical risk.

Regularized empirical risk minimization. SVM solvers minimize regularized empirical risk
or structural risk that avoids overfitting and enables generalizable models that produce accurate
predictions for previously unseen data.

SVM solvers typically find a decision function represented by a hyperplane, {x ∈ Rd : f(x) =
wTx− b} by minimizing regularized ERM over (w, b).

The regularized ERM specifies a bi-objective:

R̂(f) + γ(w).

10

Regularized ERM is the sum of empirical risk, R̂(f) and a regularizer, γ(w). See a tutorial on
Support Vector Machines [36] by Burges, et al., for further details.

11

Chapter 3

Predictive Scheduling: Predictable and
Faster Jobs using Fewer Resources

In the previous chapter, we described the architecture of today’s analytics frameworks. Reducing
the job completion time for data intensive applications running atop such distributed processing
frameworks [56, 90] has attracted significant attention recently [14, 170, 12, 11]. In this chapter, we
focus on achieving predictable and faster job completion times while using fewer resources. Slow
running tasks, called stragglers, impede job completions. Prior works assume stragglers are hard to
predict in advance. We show that performance and utilization indicators can be leveraged to predict
stragglers. We describe how we posed straggler prediction as an instance of binary classification
where we classify the state of underlying machines as healthy or straggler-prone. We then feed
these predictions to the scheduler as hints to build a predictive scheduler, Wrangler, that proactively
avoids straggler-causing situations. Prediction errors of data-driven models pose a key challenge to
their robustness. We demonstrate how we deal with this challenge to enable significant gains in job
completions times.

3.1 Introduction
A major challenge to achieving near-ideal job completion time is the slow running or straggler tasks
– a recent study [11] shows that despite existing mitigation techniques, straggler tasks can be 6-8×
slower than the median task in a job on a production cluster. This leads to high job completion times,
over-utilization of resources and increased user costs. Mitigating or even eliminating stragglers thus
remains an important problem.

Existing approaches aren’t enough to solve this problem. Speculative execution [56] is a
replication-based reactive straggler mitigation technique that spawns redundant copies of the slow-
running tasks, hoping a copy will reach completion before the original. This is the most prominently
used technique today, including production clusters at Facebook and Microsoft Bing [12]. However,
without any additional information, such reactive techniques cannot differentiate between nodes

12

that are inherently slow and nodes that are temporarily overloaded [55]. In the latter case, such
techniques lead to unnecessary over-utilization of resources without necessarily improving the job
completion times. Though proactive, Dolly [11] is still a replication-based approach that focusses
only on interactive jobs and incurs extra resources. Being agnostic to the correlations between
stragglers and nodes’ status, replication-based approaches are wasteful.

Another proactive alternative is to model running tasks statistically to predict stragglers. How-
ever, realistic modeling of tasks in cluster environments is difficult due to complex and unpredictable
interactions of various modules [12, 54, 15, 69, 47, 11, 55]. Black box approaches can learn these
interactions automatically [32, 79]; however, these techniques are opaque and prone to errors that
could lead to inefficient utilization and longer completion times [11].

To avoid such problems, a straggler mitigation approach should meet the following requirements:

• It should not wait until the tasks are already straggling.

• It should not waste resources for mitigating stragglers.

To this end, we introduce Wrangler, a system that predicts stragglers using an interpretable linear
modeling technique based on cluster resource usage counters and uses these predictions to inform
scheduling decisions. This allows it to avoid waiting until tasks are already running slow. Wrangler
prevents wastage of resources by removing the need for replicating tasks. Furthermore, Wrangler
introduces a notion of confidence measure with these predictions to overcome the modeling error
problems; this confidence measure is then exploited to achieve a reliable task scheduling. In
particular, by using these predictions to balance delay in task scheduling against the potential for
idling of resources, Wrangler achieves a speed up in the overall job completion time. A threshold
on confidence measures can be tuned to suit different workloads to avoid costly incorrect scheduling
decisions. A prototype implementation of Wrangler demonstrates up to 61% improvement in overall
job completion times while reducing the resource consumption by up to 55% for production-level
workloads using a 50 node EC2 cluster.

3.2 Prior Work and Motivation
Existing approaches to straggler mitigation fall short in multiple ways: reactive approaches act after
tasks have already slowed down. Replication-based approaches, whether proactive or reactive, use
extra resources. White or gray box approaches depend on causes that keep changing dynamically
and hence are difficult to enumerate a priori. Finally, black box approaches are prone to modeling
errors. We discuss each of these in detail below.

Reactive techniques rely on a wait-and-speculate re-execute mechanism. Speculative execution,
a widely used approach for straggler mitigation, marks slow running tasks as stragglers and reacts
by relaunching multiple copies of them. This is inefficient because a task is allowed to run for a
significant amount of time before it can be identified as a straggler. By this time, other tasks of
that job have made considerable progress already, increasing the possibility of extending the job’s
finishing time. SkewTune [98] avoids replicating tasks but is still a wait-and-speculate mechanism.

13

Replication-based approaches incur extra resources. For instance, speculative execution launches
multiple redundant copies of the same task. As soon as one of these copies finishes execution, the rest
are killed. This amounts to wastage of resources. LATE [170] improves over speculative execution
using a notion of progress scores, but still results in resource waste. Cloning mechanisms [11],
being replication-based, also incur extra resources.

Though there are no existing mechanisms that proactively avoid stragglers without replication,
scheduling or load-balancing approaches [166, 168, 80, 3, 91, 13] indirectly attempt to do so by
reducing resource contention on a cluster. The delay scheduler [168], for example, focuses on
reducing network bottlenecks. However, we show in Section 3.4.2.2 that despite these efforts,
stragglers still occur. Being focused on load balancing in heterogeneous clusters, Tarazu [3] ignores
temporary overloading that occurs even in homogeneous clusters.

White or gray box approaches, whether reactive [14] or scheduling-based [80, 166, 168], attempt
to identify stragglers based on whether local conditions exceed fixed thresholds defined over a
set of resource usage statistics. However, in many cases, given resource usage statistic values
sometimes result in a straggler, and other times do not. Further, in Section 3.4.2.2, we illustrate
how the contributors of straggler behavior vary across nodes and over time in the Facebook and
Cloudera real-world production traces. For example, we observed that two disk-intensive tasks
scheduled on a node with slow disk were found to be straggling. The same tasks co-located on
another node, however executed normally, as the other node had enough disk bandwidth. But when
we avoided scheduling such tasks simultaneously on the node with slow disk, the tasks straggled
due to other resource contention patterns, including network and memory. Even if we could easily
distinguish conditions that always result in stragglers, it is infeasible to exhaust the space of all
possible resource usage statistic settings to classify them as such. This limits the usefulness of white
or gray box approaches.

An alternative is to use black box approaches to automatically learn a node’s behavior. Bortnikov,
et al., [32] have shown that high-quality predictions of stragglers can be made, although they did
not attempt to incorporate such predictions into a scheduler. Incorporating such techniques into a
scheduler could backfire during real-life deployment on production clusters [11]. To make these
black box techniques more transparent, it is critical to be able to assess what the technique is
learning from the data. Further, modeling errors might render the system’s performance unstable. It
is crucial to be robust against such errors for achieving predictable performance. Since off-the-shelf
learning techniques do not include mechanisms for evaluating the quality of their output, these are
not sufficient to tackle this problem. Despite these challenges, there is evidence to believe that
machine learning techniques can be successfully incorporated into production systems: previous
works [79, 58] have demonstrated the use of machine learning for selecting what resources to assign
to a task. However, they did not perform straggler mitigation.

To address each of the issues identified above, Wrangler provides:

1. Interpretable models that can predict what conditions will lead to stragglers using readily
available performance counters. These models automatically adapt to the dynamically chang-
ing resource usage patterns across nodes and across time. This capability of predicting if a
node could cause a straggler opens up various avenues for avoiding stragglers.

14

Figure 3.1: Architecture of Wrangler.

2. Confidence measures that guard against modeling errors by telling us when the models
are sure of their predictions. Modeling errors fundamentally limit real life applicability of
previously proposed approaches [32, 79]. Wrangler addresses this by providing configurable
confidence measures. We show in Section 3.7.4 that the use of confidence measures is crucial.

3. A task scheduling mechanism that incorporates these predictions to improve overall job fin-
ishing times. This reduces resource consumption compared to replication-based mechanisms.

Although it serves as a straggler avoidance approach on its own, Wrangler can also be used in
conjunction with existing mitigation approaches.

3.3 Our Proposal: Wrangler
Given resource utilization metrics of a node, Wrangler predicts if a newly assigned task on that
node will turn out to be a straggler. It then uses these predictions to make scheduling decisions that
proactively avoid straggler formation.

3.3.1 Architecture of Wrangler
Figure 3.1 shows Wrangler’s system architecture that extends the architecture of Hadoop. Job
scheduling in Hadoop is handled by a master that controls the workers. The master assigns tasks to
worker nodes in response to the heartbeat message sent by them every few seconds. The assignments
depend upon the number of available slots as well as locality. Wrangler has two basic components.

1. Model Builder: Using the job logs and snapshot of resource usage counters collected regularly
from the worker nodes using a Ganglia [107]-based node-monitor, we build a model per node.

15

Figure 3.2: Lifetime of an example job observed with and without Wrangler. Note: there are other jobs (not shown
here) executing simultaneously on the cluster. The careful assignment of Map2 to a node, that is likely to finish it in a
timely manner, accelerates the job completion despite the delay introduced in its launching.

These models predict if a task will straggle given its execution environment; they also attach
confidence measures to their predictions. Section 3.4 describes the Model builder in detail.

2. Model-informed Scheduler: Using the predictions from the models built earlier, a model-
informed scheduler then selectively delays the start of task execution if that node is predicted
to create a straggler. A task is delayed only if the confidence in the corresponding prediction
exceeds the minimum required confidence. This avoids overloading of nodes, thus reducing their
chances of creating stragglers. Section 3.5 details the Model-informed scheduler.

Our main tool is to defer a task’s assignment until a node, that is likely to finish it in a timely
manner, is found. Figure 3.2 shows an example job with three mappers and a reducer. Without
Wrangler, Map2 was a straggler, as its normalized duration, the ratio of its duration to the size of
its input data, was much larger than the other mappers. When Wrangler predicted it to be a straggler
on this node, this assignment was avoided. This decision introduced a delay in the task’s start until
the same node is no longer overcommitted or a different non-overcommitted node is found. Due to
this assignment, Map2 finished faster than it did without Wrangler. The reducer then started earlier
and we achieved a net improvement in the job duration.

3.3.2 Novelty of our Approach
Wrangler takes a radically different approach compared to previous straggler mitigation strategies
by predicting straggler tasks before they are even launched and scheduling them well to avoid their
occurrence in the first place. Wrangler achieves its goal by collecting extensive information and
deriving useful correlations automatically. According to our observations, what causes stragglers
varies across nodes and time. Being a learning-based approach, Wrangler is capable of adapting to

16

various situations that cause stragglers. It can figure out for itself what factors are causing tasks to run
slower than usual. Importantly, the straggler prediction models we build are interpretable; meaning
that we can gain insights from what these models learn using the data (Section 3.4.2.2). This relieves
us from having to explicitly diagnose each case manually, which as we argued earlier is infeasible.
Note that even in presence of more sophisticated schedulers, Wrangler’s ability of adapting to
dynamically changing cluster execution environments and changing resource patterns justifies its
applicability. Additionally, the role of confidence measure is crucial for handling modeling errors.
This allows our probabilistic learning-based approach to be robust. Learning techniques do not
compute confidence measure. Our work is the first to introduce the use of confidence measures
to ensure stability of straggler prediction models. Further, Wrangler’s model-informed scheduler
induces delays in launching tasks on nodes that are predicted to create stragglers. In the worst case,
due to possible prediction errors, our approach could lead to bounded suboptimal performance. Our
approach however, does not lead to incorrect execution, termination or replacement of tasks; thus
maintaining liveness and correctness guarantees.

3.4 Building Straggler Prediction Models
The aim of Wrangler’s model builder component is to build accurate straggler prediction models
such that they are robust with respect to possible modeling errors and are interpretable with respect
to what they learn.

3.4.1 Linear Modeling for Predicting Stragglers
As we mentioned earlier, finding what actually causes stragglers is challenging due to complex task-
to-node and task-to-task interactions. To capture these complex interactions, we collected numerous
resource usage counters from the cluster using Ganglia [107]. Linear modeling techniques [52]
from the machine learning domain are appropriate for probabilistic modeling of a node’s behavior,
which can be represented through the various resource usage counters. These techniques adapt
to dynamically changing resource usage patterns on a node. This alleviates the pains of manual
diagnosis of the source of individual straggler appearance. We learn the behavior of each node
individually to be robust to heterogeneity in today’s clusters.

As shown in Figure 3.3a, during the learning phase, these techniques learn weights on the features
using labeled data that represents the ground truth. In our context this data is the node’s resource
usage counters at the time of submission of a task and a label (isStraggler), indicating whether it was
a straggler. Using these weights and the node’s resource usage counters the model calculates a score
for predicting if it will turn out to be a straggler. This prediction phase is depicted in Figure 3.3b.
Next, we provide a high-level intuitive understanding of one such linear modeling technique that
we use, Support Vector Machines (SVM) with linear kernels. For mathematical details, see [26, 36].1

1Other interpretable classification techniques, such as decision trees could also be used, as used in [32]. We found
their performance to be similar.

17

Learning	

Linear Function/
Feature-Weights

<Features, isStraggler>

(a) Learning phase

feature1
feature2
feature3

featureN

.

.

.

w1
w2
w3

wN

.

.

.
Σ

Straggler

Non
Straggler

(b) Prediction phase

Figure 3.3: Linear modeling techniques for predicting stragglers: node’s resource usage counters form the features.
The Learning phase (a) learns the weights on features using the ground truth, i.e., a labeled dataset that consists of (1)
features of a task and (2) whether it was an straggler or not. A linear model then predicts based on a score obtained by
taking a linear combination of features with corresponding weights (b).

3.4.1.1 Support Vector Machines for Predicting Stragglers

SVM is a statistical tool that learns a linear function separating a given set of vectors (e.g., node’s
resource usage counters) into two classes (e.g., straggler class and non-straggler class). This linear
function is called the separating hyperplane; each of the two half spaces defined by this hyperplane
represents a class. In the model building phase, this hyperplane is computed such that it separates
the vectors of node’s resource usage counters belonging to one class (stragglers) from those of
the other class (non-stragglers) with maximum distance (called margin) between them. Later, a
new observed resource usage vector (i.e., a test vector) can be evaluated to see which side of the
separating hyperplane it lies, along with a score to quantify the confidence in classification based on
the distance from the hyperplane.

3.4.1.2 Features and labels

To predict whether scheduling a task at a particular node will lead to straggler behavior, we use
the resource usage counters at the node. The MapReduce paper [56] mentioned that stragglers
could arise due to various reasons such as competition for CPU, memory, local disk, network
bandwidth. LATE [170] further suggests that stragglers could be caused due to faulty hardware and
misconfiguration. Mantri [14] reports that the dynamically changing resource contention patterns
on an underlying node could give rise to stragglers. Based on these findings, we collected the
performance counters for CPU, memory, disk, network, and other operating system level counters
describing the degree of concurrency before launching a task on a node. The counters we collected
span multiple broad categories as follows:

1. CPU utilization: CPU idle time, system and user time and speed of the CPU, etc.

2. Network utilization: Number of bytes sent and received, statistics of remote read and write,
statistics of RPCs, etc.

18

3. Disk utilization: The local read and write statistics from the datanodes, amount of free space,
etc.

4. Memory utilization: Amount of virtual, physical memory available, amount of buffer space,
cache space, shared memory space available, etc.

5. System-level features: Number of threads in different states (waiting, running, terminated,
blocked, etc.), memory statistics at the system level.

In total, we collect 107 distinct features characterizing the state of the machine. We refer the reader
to Ganglia [107, 68] for detailed explanation of the performance metrics. See Section 3.4.2 for other
details of our dataset.

Features: Multiple tasks from jobs of each workload may be run on each node. Therefore to
simplify notation, we index the execution of a particular task by i and define Sn,l as the set of tasks
corresponding to workload l executed on node n. Before executing task i ∈ Sn,l corresponding to
workload l on node n we collect the resource usage counters described above on node n to form
the feature vector xi ∈ R107. For each feature described above we subtract the minimum across the
entire dataset and rescale so that it lies between 0 and 1 for the entire dataset.

Labels: After running task i we measure the normalized task duration nd(i) which is the ratio of
task execution time to the amount of work done (bytes read/written) by task i. From the normalized
duration, we determine whether a task has straggled using the following definition:

Definition A task i of a job J is called a straggler if

nd(i) > β ×median
∀j∈J

{nd(j)} (3.1)

where nd(i) is the normalized duration of task i computed as the ratio of task execution time to the
amount of work done (bytes read/written) by task i.

We use a value of 1.3 for β in most of our experiments. In Section 3.4.2.2, we show that our
models are agnostic to the value of β. Given the definition of a straggler, for task i we define
yi ∈ {0, 1} as a binary label indicating whether the corresponding task i ended up being a straggler
relative to other tasks in the same job.

3.4.1.3 Prediction Task

While the resource usage counters do track the time-varying state of the node, they do not model
the variability across nodes, or the properties of the particular task we are executing. To deal with
the variability of nodes, Wrangler builds a separate predictor for each node.

Modeling the variability across tasks is hard since it would require understanding the code that
the task is executing. Instead, Wrangler uses the notion of “workloads”, which we define next.
Companies such as Facebook, Google, use compute clusters for various computational purposes.
We call the specific pattern of execution of jobs on these clusters a workload. These workloads
are specified using various statistics, such as submission times of multiple jobs, number of their

19

constituent tasks along with their input data sizes, shuffle sizes, and output sizes. In this work,
we assume that all tasks in a particular workload have similar properties in terms of resource
requirements, and capture the variability across workloads by building separate predictors for each
workload. Thus Wrangler builds separate predictors for each node and for every workload.

Putting it all together, we can state the binary classification problem for predicting straggler
tasks more formally as follows. A datapoint in our setting corresponds to a task i of job J from a
particular workload l that is executed on a node n in our cluster. Before running task i we collect
the features xi which characterize the state of node n. After running task i we then measure the
normalized duration and determine whether the task straggled with respect to other tasks of job J
(see Definition 3.1). Our goal is to learn a function:

fn,l : x −→ y,

for each node n and workload l that maps the current characteristics x ∈ Rd of that node (e.g.,
current CPU utilization) to the binary variable y ∈ {0, 1} indicating whether that task will straggle
(i.e., run longer than β times the median runtime).

3.4.1.4 Training

For any workload l, Wrangler first collects data and ground truth labels for training and validation.
In particular, for every task i launched on node n, Wrangler records both the resource usage counters
xi and the label yi which indicates if the task straggles or not. Since there is a separate predictor for
each node and workload, Wrangler produces separate datasets for each node and workload. Let Sn,l
be the set of tasks of jobs corresponding to workload l, executed on node n. Thus, we record the
dataset for node n, workload l as:

Dn,l = {(xi, yi) : i ∈ Sn,l}.

Then Wrangler divides each dataset into a training set and test set temporally, i.e, tasks belonging
to the first few jobs constitute the train set and the rest form the validation. The predictors are then
trained on these datasets.

3.4.1.5 Imbalance in the dataset

Various modeling techniques are sensitive to imbalanced datasets. Non-straggler tasks outnumber the
stragglers causing an imbalance in the dataset used for building models. Due to the way underlying
optimization problems are formulated, the predictions favor the class with a majority of instances.
In this context, every task is predicted to be a non-straggler. Ideally, the best results are obtained
when each class is represented equally in the learning dataset. We statistically oversample [41, 40,
141, 174] the instances from the minority class (i.e. straggler class) which is a common technique
for dealing with imbalanced datasets.

20

3.4.1.6 Test Phase

After this initial training phase, the classifiers are frozen, and the trained classifiers are incorporated
into the job scheduler as described above. They are then tested on the next Ttest = 10 hours by
measuring the impact of these classifiers on job completion times.

3.4.1.7 Confidence Measure

Simply predicting a task to be a ‘straggler’ or a ‘non-straggler’ is not robust to modeling errors. To
ensure reliable predictions, we introduce the notion of confidence measure along with the prediction
of these linear models. We need a confidence measure to help decide if our predictions are accurate
enough for preventing stragglers by influencing the scheduling decisions. Wrangler uses SVMs
with scaling by Platt [123] to produce a confidence: we next explain this computation intuitively
and then mathematically. The farther a node-counter vector is from the separating hyperplane,
higher are the chances of it belonging to the the predicted class. To obtain a probability estimate
of the prediction being correct, we can convert the distance from the separating hyperplane to a
number in the range [0, 1]. We obtain these probabilities by fitting logistic regression models to this
distance [123]. Next, we explain how to compute a confidence measure.

A snapshot of a node’s resource usage counters represents the node at a given time instant.
We denote this set of features as a vector x. The SVM outputs a linear hyperplane of the form
wTx+ b, where w is a vector of weights learned by SVM corresponding to the features. Data points
which have a positive score, i.e., wTx+ b > 0 are classified as stragglers and points which have a
negative score are classified as non-stragglers. The SVM doesn’t itself output probabilities, but the
score (wTx+ b), which is also the distance of a point to the hyperplane, serves as a measure of the
classifier’s confidence. Points far away from the hyperplane (i.e., with high positive scores or highly
negative scores) are those which the classifier is very confident about. We train a logistic regression
classifier to convert this score into probabilities. The logistic regressor outputs a probability of the
form 1

1+exp(−αs−β) where s is the score and α and β are parameters that are estimated using logistic
regression [26].

3.4.1.8 Interpretability

Our straggler prediction models are interpretable in that they allow us to gain insights from what
they learned using the data. These models automatically learn the contribution of a feature towards
creation of a straggler, called weight of that feature. We bring out the causes behind stragglers using
these weights assigned to the features.

For a given task, our models (SVM with linear kernel [26, 36]) predict based on a linear
combination of features with their corresponding weights. In other words, their predictions are
based on a score obtained by multiplying feature-values with their respective weights and adding
these products. We then analyze the resource usage counters of actual straggler tasks. Given the
node’s resource usage counters at the launch time of such an actually observed straggler task, we
want to find out the set of features that primarily caused it to be a straggler using the weights learned

21

by our models. Since it is tedious to capture a holistic picture with over 100 feasible node resource
utilization counters involved, we grouped them into five feature categories; CPU utilization, network
utilization, disk utilization, memory utilization and other system-level features. We then selected a
subset of these features that makes up at least 75% of the models’ score for the given task. Since
this subset of features has driven the model’s decision to predict it to be a straggler, we deem this as
the cause behind this straggler. We then find out the fraction of straggler tasks on that node that
have the same cause. In Section 3.4.2.2, we present this analysis.

Next, we evaluate prediction accuracy of SVM on production traces from Facebook and Cloudera.
Section 3.5 describes how we used these predictions with associated confidence for affecting
scheduling decisions to avoid stragglers.

3.4.2 Model-Builder Evaluation
We evaluate the straggler prediction models on real world production-level workloads from Facebook
and Cloudera by replaying them on a 50 node EC2 cluster as explained below. A prediction is
correct if it matches with the actual label. We evaluate the models based on (1) how many times
they predicted straggler tasks correctly: percentage true positives and (2) how many times they
mis-predicted a non-straggler task to be a straggler: percentage false positives. High true positive
and low false positive values indicate a good quality model.

3.4.2.1 Experimental set-up

Production-level Workloads: We learn to predict stragglers based on production level workload
traces from multiple Hadoop deployments including those at Facebook and Cloudera’s customers.
Our dataset covers a wide set of workloads allowing for a better evaluation. Table 3.1 provides
details about these workloads in terms of the number of machines, the length and date of data
capture, total number of jobs in those workloads. Chen, et al., explain the data in further details
in [43]. Together, the dataset consists of traces from over about 4600 machines captured over almost
a year.

For faithfully replaying these real-world production traces on our 50 node EC2 cluster, we
used a statistical workload replay tool, SWIM [44] that synthesizes a workload with representative
job submission rate and patterns, shuffle/input data size and output/shuffle data ratios (see [44]
for details of replay methodology). SWIM scales the workload to the number of nodes in the
experimental cluster. As our testbed, we used a cluster of 50 nodes on Amazon EC2. SWIM submits
the jobs and its constituent tasks to this cluster according to the workload it synthesized based on
the production trace. Next we describe how we collect our dataset capturing the resources utilized
on the nodes in our cluster when SWIM replays these workloads.

Dataset: For building straggler prediction models, we need a labeled dataset that consists of a
number of {features, label} pairs. In this context, features are the resource usage counters of a
node at the time of submission of a task; and label is whether it was a straggler or not. To generate
this dataset, we replayed the production-level traces (see Table 3.1), using SWIM [44] on Amazon

22

Trace #Machines Length Date #Jobs
FB2009 600 6 month 2009 11,29,193
FB2010 3,000 1.5 months 2010 11,69,184

CC a 100 1 month 2011 5,759
CC b 300 9 days 2011 22,974
CC d 400-500 2+ months 2011 13,283
CC e 100 9 days 2011 10,790
Total ≈ 4,600 ≈ 11.5 months - 23,51,183

Table 3.1: Dataset. FB: Facebook, CC: Cloudera Customer.

0	

20	

40	

60	

80	

100	

120	

FB2009	 FB2010	 CC_a	 CC_b	 CC_d	 CC_e	

Pr
ed

ic
5o

n	
Ac

cu
ra
cy
	 (%

)	 %	 True	 Posi5ve	 %	 False	 Posi5ve	

Figure 3.4: Classification accuracy of SVM for all workloads.

EC2 cluster of 50 m1.xlarge instances. Using Ganglia [107] we captured the node’s resource usage
counters at regular intervals of 15 seconds; this forms the features in the dataset (see Section 3.4.1.2).
We label the dataset by marking straggler tasks based on definition 3.1. In Section 3.4.2.2, we show
that our models are agnostic to the value of β used in defining stragglers.

3.4.2.2 Results of Model-evaluation

Figure 3.4 shows the straggler prediction accuracy on all the workloads using SVM. We use the
tasks executed over initial 2 hours to build models and test their accuracy on the tasks submitted over
the next ten hours. Overall, using a linear kernel SVM with Sequential Minimal Optimization [124],
we obtain about 80% true positive and about 30% false positive percentages. This means that we
predicted 80% of total stragglers tasks as stragglers and mis-predicted 30% of non-stragglers to
be stragglers. This completes the model building phase and then we deploy the models so that
they provide hints to Wrangler’s scheduler. In Section 3.7, for example, we show that we achieve
61% and 43% improvement in 99th percentile of overall completion times for FB2009 and CC b
workloads respectively. This confirms that about 80% true positive percentage is good enough.

Sensitivity of the models to the definition of stragglers: Based on the value chosen for β,
number of stragglers vary (see Definition 3.1). Intuitively, β indicates the extent to which a task is

23

0	

20	

40	

60	

80	

100	

120	

β	 =	 1.1	 β	 =	 1.2	 β	 =	 1.3	 β	 =	 1.4	 β	 =	 1.5	 β	 =	 1.6	

Pr
ed

ic
3o

n	
Ac

cu
ra
cy
	 (%

)	 %	 True	 Posi3ve	 %	 False	 Posi3ve	

Figure 3.5: Sensitivity of classification using SVM with respect to values of β for workload CC b. The error bars show
the standard deviation across the percentage accuracy of models built for the 50 nodes in the cluster. Note: The valid
range for β shown is β > 1 (β = 1 is simply the median) to β < 1.7 (lower enough to ensure minimum number of
stragglers for oversampling and training).

allowed to slow down before it is called a straggler. Our mechanism is agnostic to the value of β
chosen for all the workloads. We show a representative sensitivity analysis with respect to β for the
CC b workload in Figure 3.5. We chose β from the range (1, 1.7). β = 1 is simply the median and
we did not see enough stragglers for β greater than 1.6 for CC b to be able to oversample and build
a model. In our experiments, we set β = 1.3.

Insights Provided by the Models: We briefly describe the insights we obtained from the straggler
prediction models about the causes behind them. However, we leave the detailed explanation of
the causes for future work. In Section 3.7, we show that Wrangler’s model-informed scheduler
accelerates job completion by making careful task-to-node assignments; this avoids such straggler-
causing situations.

Figure 3.6 presents the percentage of stragglers created due to different causes. Figure 3.6a shows
that for FB2010, disk utilization (I/O) was the primary bottleneck creating temporary hotspots along
with interference with simultaneously executing tasks’ memory, CPU usage patterns. Figure 3.6b
shows the causes behind stragglers on another node in the cluster executing the same workload
(FB2010). Although the disk (I/O) usage still dominates, other features also contribute considerably
to the creation of stragglers on this node. On a node executing CC b, as shown in Figure 3.6c,
memory contention contributed the most in creating stragglers.

From our analysis of causes behind stragglers indicated by the models, we note the following:

• Causes behind stragglers vary across nodes – this is true even for the clusters of the same
instance types on Amazon EC2. This justifies our approach of building a straggler prediction
model per node. This decision also makes our approach robust to heterogeneity.

• Causes vary across workloads – we see that for FB2010, dominating contributor was disk
usage whereas the tasks of the CC b workloads contend over memory. In [43], Chen et al.,
explain that FB2010 is I/O intensive, supporting this insight obtained from our models.

24

(a) FB2010, Node1 (b) FB2010, Node2

(c) CC b, Node1

Figure 3.6: Causes behind stragglers

• Network utilization features were not seen to be the prime contributors in our experiments for
any of the workloads we evaluated on. We believe network utilization was not the bottleneck
as we had enabled the locality-aware delay scheduling mechanism [168]. This indicates that
since none of the existing schedulers are straggler-aware, they cannot eliminate stragglers.

• Complex task-to-task interactions on an underlying node tend to create temporary hotspots.
Lack of this information can cause scheduling decisions to go wrong.

Note that it is hard to know the contributors to the straggling behavior of tasks a priori without
the help from the models. This justifies our use of learning-based models that automatically adapt to
various causes behind stragglers. Using the straggler prediction models, we can proactively inform
the schedulers of such straggler causing situations. In Section 3.5, we propose such a scheduler that
exploits these predictions to avoid creating stragglers in the first place.

3.5 Model-informed Scheduling
In this section, we describe our scheduling algorithm that uses the straggler predictions to selectively
delay task assignment to nodes. We then explain the significance of tuning parameters of this

25

algorithm and describe how we learn their values. Finally, we conclude with a theoretical analysis
that bounds the delays our algorithm can introduce.

Algorithm 1 Model-informed scheduling algorithm
Let N={ni : i=1, . . . , # workers} be the set of worker nodes
Let willStragglei ∈ {yes, no} be the prediction using a snapshot of resource usage counters of ith worker node
using its model
Let p ∈ [0, 1] be the minimum acceptable confidence of predictions.

1: /* PREDICT runs every ∆ interval in the background */
2: procedure PREDICT
3: for all the workers in N
4: collect a snapshot of node’s resource usage counters
5: willStragglei = prediction if worker ni will create a straggler
6: confidencei = confidence in the above prediction

7: procedure SCHEDULE
8: for a task chosen as per the preferred scheduling policy
9: when heartbeat is received from a worker indicating free slot(s)

10: if willStragglei == yes with confidencei > p
11: reject the task from being assigned to ni
12: else
13: proceed as per the configured scheduling policy

3.5.1 Wrangler’s Scheduling Algorithm
In Hadoop, the master manages job scheduling by assigning tasks to workers in response to
heartbeats sent by them every few seconds. When the scheduler receives a heartbeat indicating that
a map or reduce slot is free, the configured scheduling policy, such as Fair-scheduling, selects tasks
to be assigned.

Wrangler’s scheduling algorithm proposes to extend any of the existing schedulers. Before
launching a task, our model-informed scheduler predicts if a worker will finish it in a timely manner.
If the worker is predicted to create a straggler at that time, the task is not assigned to it. When we
find a worker that is not predicted to create a straggler, the task is then assigned to it.

Algorithm 1 details this scheduling policy. The predict procedure (lines 2-6) is executed in
background every ∆ time interval to predict if the workers will create stragglers. All the predictions
also have a confidence measure (line 6) attached to them. The schedule procedure (lines 7-13) is
the hook we embed in the default scheduler code. We modified the Fair-scheduler code for our
prototype (see Section 3.6). When a heartbeat is received, our scheduler delays a tasks’s assignment
to a worker if it is predicted to create a straggler with confidence higher than a configured threshold
p in Algorithm 1. Otherwise, we let the default scheduling policy make the assignment decision
(lines 12-13). Note that Wrangler processes the predictions in background and keeps them ready
for the scheduler to use (see Section 3.6). This allows us to be off the critical path that makes
scheduling decisions.

26

Note that Wrangler acts as a system that provides hints to the default/configured scheduler. This
means that the decision of which task to launch next is left to the underlying scheduler. Wrangler
only informs the scheduler whether or not a newly available node is likely to finish a task in timely
manner. Also, this is an initial step; we left inclusion of task-level features for future work which
could enable further improvements in overall job completion times.

3.5.2 Learning the Parameters: p and ∆

Algorithm 1 has two tunable parameters: p is the minimum acceptable confidence in predictions
needed for them to influence the scheduling decisions and ∆, that decides how frequently a snapshot
of node’s resource usage counters is collected and predictions are computed using it. Next we
explain how we tune these parameters.

3.5.2.1 Learning p: Threshold on Confidence Measure
Parameter p is the minimum acceptable confidence of predictions. p takes a value in range [0,1]. If
p is too low, many tasks will get delayed, adversely affecting job completion and underutilizing
resources. On the other hand, if p is too high, many long running tasks will get scheduled. We must
set it to balance good resource utilization without increasing the chances of tasks straggling. We
observed that the value of p needed for maximum improvement in overall job completion times
varies from one workload to another.

Our approach is to learn p automatically during the model building phase so as to avoid the need
for manual tuning. As we explained in Section 3.4.2.2, we use the data generated by tasks executed
over initial 2 hours to build models and test their accuracy on the tasks submitted over the next hour.
The set of tasks submitted in this one hour are unseen by the learning algorithm, referred to as a
validation set. To decide the value of p, we use the confidence (see Section 3.4.1) on predictions on
tasks in the validation set. For every node, we extracted a range of confidence values producing the
most accurate predictions. We set p equal to the median of a range that is agreed upon by a majority
of the nodes (forming a quorum). In Section 3.7.5, we show the sensitivity of Wrangler with respect
to multiple values of p. In that section, we present the experimental validatation over the next 10
hours that the chosen values for p achieve maximum gain in job completion times for the workloads
listed in Table 3.1. A different p value per node could also be used if desired.

3.5.2.2 Learning ∆: Interval between Predictions

Recall that to be off the critical path of making scheduling decisions, Wrangler keeps the predictions
ready for the scheduler to use (Section 3.6 provides implementation details). To ensure that the
predictions reflect current state of a node, Wrangler regularly collects nodes’ resource usage counters
and predicts using their respective models if a node can create a straggler at the time. Parameter
∆ determines how frequently this background process should be invoked. If ∆ is too high, the
predictions may not be fresh enough to reflect dynamic changes in the node’s status. Extracting
predictions out of already built models is of the order of sub-milliseconds [31]; thus, it is not

27

too expensive. Thus, small ∆ is a safe choice. We suggest setting ∆ to a smaller value than the
minimum inter-task submission times.

The value we chose for our experimental setup was decided based on the time spent collecting
the node resource usage counters and predicting based on them. With our current centralized
implementation of Wrangler’s prototype, where the resource usage counters from all the nodes are
collected at the master using Ganglia, ∆ is set to 15 seconds. On a distributed implementation of
Wrangler (see Section 3.7.8), it is feasible to have every node collect its resource usage counters,
predict using it and send this prediction to the master along with the heartbeat. This implementation
makes ∆ independent of the number of nodes in a cluster.

3.5.3 Bound on Delays Introduced by Wrangler
Since Wrangler delays tasks that may straggle, it is important to bound such a delay. Wrangler
drives the cluster through the following three states (see Figure 3.7), with respect to the predictions
on the constituent nodes:

• N : No node is predicted to create a straggler

• S: Some nodes are predicted to create stragglers and

• A: All the nodes are predicted to create stragglers.

For this analysis to be tractable, we make a simplifying assumption that the cluster behavior could
be modeled as an irreducible ergodic Markov chain [87, 131] in which the cluster’s future state
depends on the currently observed state.

Let P be a 3× 3 matrix describing the transition probabilities for the states in Figure 3.7. Let
π be a 3 × 1 vector, [πN , πS, πA]T comprising the steady state distributions of the 3 states. To
ensure that Wrangler does not delay tasks indefinitely, we do not want the cluster to end up in
state A at steady state. For this, we need to show that πA is very close to 0. We do this analysis as
follows. When the system attains steady state, the transition matrix P has no effect on the vector
π. Using the elementary properties of stationary distributions, we have that πP = π (for details,
see [87]). This equation can be solved through eigen-analysis to find the eigenvector (π) of the
transition matrix P corresponding to the eigenvalue of 1. Using the log of the state transitions
of the cluster executing various workloads, we estimated π and found that πA was indeed 0 as
desired. In Section 3.7.7 we describe an empirical analysis of the delays induced by Wrangler. Here,
we provided a theoretical guarantee that a task, as seen in real workloads, will never be delayed
indefinitely. One way of bounding delays in case of under-provisioned systems or workloads with a
high rate of job submission could be to provide a tunable parameter that limits the number of times
a task’s assignment gets rejected. We leave this for future work.

28

Figure 3.7: A simplified State-Machine that captures the behavior of a cluster executing parallel data intensive
workloads.

3.6 Implementation of Wrangler
We implemented Wrangler (see Figure 3.1) by embedding it in the Fair scheduler’s code. It consists
of about 200 lines of code: about 10 lines embedded in Fair scheduler, and the rest for building
models using SVM, capturing nodes’ resource usage counters and extracting predictions from the
models. We use Weka [83] for building SVM and logistic regression models. In our prototype,
the Hadoop logs, node’s resource usage counters are collected centrally at the master node for
further processing and building models. However, Wrangler could be implemented in a distributed
manner where all the worker nodes collect and process their statistics, build and use their models
independently (see Section 3.7.8).

Wrangler’s Training and Usage Workflow: When a workload starts executing on the cluster,
Wrangler collects the job logs and node-level statistics from all the nodes and processes them to
generate the dataset to build models. It builds one straggler prediction model for each node in
the cluster taking less then a second per node using Weka [83]. In our experiments, we captured
training data for about 2 hours2. The jobs do not need to wait until the training period is over as
the default scheduling policy will be in effect during this time. Once training data was collected, it
took an order of a few seconds to build a model per node. Once the models are built, Wrangler’s
background process frequently captures the resource usage counters from all worker nodes. It
predicts if a new task might run slower if assigned to a particular node using that node’s model.
Wrangler also reports the confidence it has in its prediction. Time taken by each prediction was the
order of sub-milliseconds. This prediction for every worker node happens at a regular interval of
∆ and is read by the scheduler for making assignment decisions. This way, the prediction process
does not come in the critical path of making scheduling decisions.

Models could be updated or re-built regularly once enough jobs have finished execution and
new data has been collected. This data collection and model building phase could overlap with job
executions. We show the improvements achieved on the workloads from Facebook and Cloudera’s
customers, by building models only once and testing for the next 10 hours. We leave analyzing the

2We divided the data collected in these 2 hours in 3 parts; we used 2 of them for training and the remaining part for
testing model’s correctness.

29

usefulness of the training for continuously changing workloads as well as across different workloads
for future work.

3.7 Evaluation of Wrangler
We demonstrate Wrangler’s effectiveness by answering the following questions through experimen-
tal evaluation:

1. Does Wrangler improve job completion times?

2. Does Wrangler reduce resource consumption?

3. Is Wrangler reliable in the presence of modeling errors?

4. How sensitive is Wrangler with respect to parameters?

5. How does Wrangler improve job completion times?

6. What if Wrangler mis-predicts?

7. Does Wrangler scale well?

3.7.1 Setup
Real world production workloads: We evaluate using two workloads from Facebook (FB2009
and FB2010) and two from Cloudera (CC b and CC e). We replay the production logs to synthesize
representative workloads using SWIM [44] that faithfully reproduces the job submission patterns,
data sizes, and data ratios on our 50-node cluster of m1.xlarge instances on Amazon EC2.

Baseline: Although Wrangler serves as a straggler avoidance approach on its own, it can also
be used in conjunction with existing mitigation approaches to accrue further reduction in job
completion times and resources consumed. To show its effectiveness, we compare Wrangler against
speculative execution, a widely used straggler mitigation technique in Hadoop production clusters.

Metrics: We look at the % reduction in job completion times as our primary metric. Let Tw be the
job execution time with Wrangler and T be without Wrangler, then

%Reduction =
T − Tw
T

∗ 100 (3.2)

A positive value indicates reduction in job completion times whereas negative values indicate
increase.

30

-‐10	
0	

10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

av
g	

75
p	

80
p	

85
p	

90
p	

95
p	

96
p	

97
p	

98
p	

99
p	

99
.9
p	

10
0p

	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	 T
im

e	

FB2009	 (p=0.7)	

-‐10	
0	

10	
20	
30	
40	
50	
60	
70	
80	
90	
100	

av
g	

75
p	

80
p	

85
p	

90
p	

95
p	

96
p	

97
p	

98
p	

99
p	

99
.9
p	

10
0p

	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	 T
im

e	

FB2010	 (p=0.7)	

-‐10	
0	

10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

av
g	

75
p	

80
p	

85
p	

90
p	

95
p	

96
p	

97
p	

98
p	

99
p	

99
.9
p	

10
0p

	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	 T
im

e	

CC_b	 (p=0.8)	

-‐10	
0	

10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

av
g	

75
p	

80
p	

85
p	

90
p	

95
p	

96
p	

97
p	

98
p	

99
p	

99
.9
p	

10
0p

	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	 T
im

e	

CC_e	 (p=0.7)	

Figure 3.8: Summary of Wrangler’s improvements in job completion times for all the workloads with the tuned vale of
p (see Sections 3.5.2.1 and 3.7.5): This plot shows that Wrangler successfully reduces the completion time by carefully
scheduling potential stragglers.

Highlights of our results are:

• For Facebook 2009 production Hadoop trace, Wrangler improves the overall job completion
times by 61% at the 99th percentile and by 20% at the 99.9th percentile over Hadoop’s speculative
execution.

• For Cloudera customer’s production Hadoop trace, CC b, Wrangler improves the overall job com-
pletion times by 43% at the 99th percentile and by 22% at the 99.9th percentile over speculative
execution.

• Being proactive, Wrangler consumed 55% and 40% lesser resources for Facebook 2009 and
CC b respectively compared to the reactive speculative execution mechanism.

31

Workload Total Task-Seconds % Reduction in
w/o Wrangler With Wrangler total task-seconds

FB-2009 9,03,980 4,05,953 55.09
FB-2010 2,96,893 2,23,339 24.77

CC b 2,01,444 1,20,559 40.15
CC e 6,94,564 6,37,319 8.24

Table 3.2: Resource utilization with and without Wrangler in terms of total task execution times (in seconds) across all
the jobs during our replay. Being proactive, Wrangler achieves the improved completion times while consuming lesser
resources compared to the wait-and-speculate re-execution mechanisms.

3.7.2 Does Wrangler improve job completion times?
We evaluated the gains on the tasks of previously unseen jobs arriving after the models are built.
Figure 3.8 shows improvement in average, 75th and higher percentile job completion time statistics
for the same set of jobs executed with Wrangler and without Wrangler (i.e., with speculative
execution). For FB2009, Wrangler achieves an improvement of 61% at the 99th percentile and
57% in the average job completion times. For CCb, we see the improvements of 43% at the 99th

percentile and 44% in the average job completion times. Note that, for CC e, Wrangler slowed
down the jobs between 75th and 90th percentile. As per our analysis of this, we found that CC e
has a bursty job-submission pattern. This means that, in a time period shorter that ∆, many tasks
were submitted. However, the resource usage counters from all the nodes were collected only once
in this ∆ time interval. The predictions were based on these resource usage counters and hence
most likely were not timely representative of the load on the nodes. This could be avoided by setting
∆ to a value smaller than the minimum inter-task submission times. Figure 3.8 summarizes the
maximum gains achieved for each workload after tuning for the right value of p (Section 3.7.5).

For FB2010 workload, we achieved lower gains compared to those achieved for FB2009
workload. The number of stragglers found per hour in FB2010 is comparable to those in FB2009
workload. However, [43] notes that Facebook’s workload has changed significantly from 2009
to 2010. FB2010 has higher job submission rate, higher I/O rate and is more compute intensive.
This does not affect the prediction accuracy, but the model-informed scheduling mechanism needs
comparatively less-occupied nodes to achieve faster job completions. Wrangler’s key idea is to avoid
overloading a few nodes and instead distribute that load evenly. However, if load is consistently
high on the cluster, Wrangler’s gains are limited.

3.7.3 Does Wrangler reduce resource consumption?
We showed that Wrangler significantly improves the job completion time when used in conjunction
with speculative execution. The reactive relaunch-based mechanism of speculative execution con-
sumes extra resources for the redundantly launched copies of straggler tasks. On the contrary, being
proactive Wrangler achieves overall faster job completions by smarter task to node assignments.
Table 3.2 shows that Wrangler consumes lesser resources as compared to speculative execution
resulting in reduced costs by freeing up the resources sooner. As we noted earlier, CC e has a

32

-‐4.22	 -‐5.53	 -‐5.39	

11.34	

-‐5.51	

43.59	

58.87	 62.10	

43.13	

22.46	

-‐10	
0	
10	
20	
30	
40	
50	
60	
70	
80	
90	

100	

avg	 95p	 97p	 99p	 99.9p	

Pe
rc
en

ta
ge
	 R
ed

uc
;o

n	

Predic;on	 without	 confidence	 measure	
Predic;on	 with	 confidence	 measure	 (p=0.8)	

Figure 3.9: Confidence measures attached with the predictions are crucial. This plot compares the reduction in overall
job completion time achieved by Wrangler with and without using the confidence measure attached with its predictions
for CC b workload.

bursty job submission pattern and even in this case, the delay based mechanism of Wrangler speeds
up the jobs while using lesser total resources.

3.7.4 Is Wrangler reliable in presence of modeling errors?
Wrangler’s achieves reliability in presence of prediction errors by attaching confidence with the
straggler predictions. We have observed that this confidence measure plays a crucial role in
improving the completion times for all the workloads by allowing only confident predictions to
influence scheduling decisions. Figure 3.9 shows the percentage reduction in job completion times
achieved by Wrangler with and without confidence measures for the CC b workload as an example.
In the absence of confidence measures, the modeling errors drive the scheduling decisions to change
too frequently. This makes the costs incurred by delaying the tasks to weigh more than the reduction
achieved in job completion times. Thus, Wrangler achieves its goal of being robust to modeling
errors by the novel use of confidence measures.

3.7.5 How sensitive is Wrangler with respect to p?
We described how to learn a value of p during training in Section 3.5.2.1. In this section, we
evaluate the sensitivity of Wrangler with respect to p. We calculated the percentage reduction in job
completion times Wrangler achieves with different values of p in a range of [0, 1]. In Figure 3.10, we
present a subset of them. Our experimental validation shows that for both the Facebook workloads
(FB2009 and FB2010 in Figure 3.10 (a) and (b)) a value of 0.7 attains the maximum gains in terms
of improved job completion times and resource utilization. The right value of p turned out to be 0.8
for CC b and 0.7 for CC e (see Figure 3.10 (c) and (d) respectively.

From this analysis, we note that choosing the right value for p is important for improving
job completion times. We also note that this value is workload dependent. Small changes in its
value could change the improvements drastically for some workloads (for example, see CC b in
Figure 3.10 (c)). However, in Section 3.5.2.1 we described an automatic way to choose a starting

33

57.37	

72.49	

84.16	 86.39	 83.67	 80.51	

61.09	

20.23	

-‐40	

-‐20	

0	

20	

40	

60	

80	

100	

avg	 75p	 85p	 90p	 95p	 97p	 99p	 99.9p	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	

Ti
m
es
	

p=0.1	 p=0.3	 p=0.5	 p=0.7	 p=0.8	 p=0.9	

(a) FB2009

10.60	

2.21	
5.60	

9.62	

27.51	

39.66	

47.06	

27.78	

-‐30	

-‐20	

-‐10	

0	

10	

20	

30	

40	

50	

avg	 75p	 85p	 90p	 95p	 97p	 99p	 99.9p	

%
	 R
ed

uc
8o

n	
in
	 Jo

b	
Co

m
pl
e8

on
	

Ti
m
e	

p=0.2	 p=0.4	 p=0.6	 p=0.7	 p=0.8	 p=0.9	

(b) FB2010

43.59	 45.22	 50.41	
56.80	 56.05	 58.87	 61.75	 62.10	

72.99	

43.13	

22.46	

-‐80	

-‐60	

-‐40	

-‐20	

0	

20	

40	

60	

80	

100	

avg	 75p	 80p	 85p	 90p	 95p	 96p	 97p	 98p	 99p	 99.9p	

%
	 R
ed

uc
ito

n	
in
	 Jo

b	
Co

m
pl
eA

on
	

Ti
m
e	

p=0.7	 p=0.8	 p=0.9	

(c) CC b

17.72	

-‐2.49	 0.84	 2.17	

15.79	

20.65	

33.42	

-‐10	

-‐5	

0	

5	

10	

15	

20	

25	

30	

35	

40	

avg	 75p	 85p	 95p	 97p	 99p	 99.9p	

	 %
	 R
ed

uc
8o

n	
in
	

Jo
bC

om
pl
e8

on
	 T
im

e	

p=0.3	 p=0.4	 p=0.5	 p=0.6	 p=0.7	 p=0.8	 p=0.9	

(d) CC e

Figure 3.10: Reduction in job completion times achieved by Wrangler with various values of p for all the workloads.
Data labels are shown for the p value that achieves the highest gain in completion times for each of the four workloads.

34

Figure 3.11: Load/resource utilization without and with Wrangler (p=0.7) for FB2010 workload: Even with highly
intensive FB2010 workload, Wrangler speeds up the 99th percentile of job completions by 47% by avoiding overloading
of a few nodes and distributing the load more evenly (see Section 3.7.6).

value for p during the model building phase itself without waiting for jobs to execute. Additionally,
to tune to its right value, we need to observe the performance of the jobs for relatively small amount
of time (we verified on a window of 30 minutes). Wrangler’s architecture is flexible and allows
changes in value of p on the fly until it converges to a right value.

3.7.6 How does Wrangler improve job completion times?
Wrangler avoids stragglers by implicitly doing a better job of load balancing than the scheduling
approaches that use only statically available information. Figure 3.11 shows the load on the cluster
executing the FB2010 workload without Wrangler and with Wrangler (p=0.7). Without Wrangler,
a few nodes enter a heavily loaded state and tend to remain loaded as new tasks are then assigned to
them in addition. For a right value of p, with Wrangler, we observed that the load is now distributed
evenly and most of the nodes are almost equally utilized. So even in this limiting case of FB2010,
where the cluster is heavily loaded, Wrangler improves job completions significantly (47.06% at
the 99th percentile, see Figure 3.10 (b)).

3.7.7 What if Wrangler mis-predicts?
The main impact of wrong predictions is on the delay experienced by tasks. In Section 3.5.3, we
statistically proved that Wrangler will not delay tasks indefinitely. Also, since our method only

35

0.22	 2.03	 3.31	 5.99	
11.21	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 D
el
ay
	

1.69	 3.68	 4.57	
8.12	

21.84	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 D
el
ay
	

8.37	

65.25	

82.09	
90.53	 94.91	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 R
ed

uc
4o

n	
in
	 T
as
k	

Du
ra
4o

ns
	

(a) FB2009

1.02	
15.30	 19.57	

24.85	
31.39	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	
%
	 R
ed

uc
4o

n	
in
	 T
as
k	

Du
ra
4o

ns
	

(b) FB2010

1.21	 2.90	 3.87	
7.16	

16.04	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 D
el
ay
	

0.98	 4.42	 6.72	
12.84	

19.97	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 D
el
ay
	

16.52	

46.75	 50.58	
55.50	

61.22	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 R
ed

uc
3o

n	
in
	 T
as
k	

Du
ra
3o

ns
	

(c) CC b

2.13	
15.25	 19.40	

26.66	
36.62	

0	

20	

40	

60	

80	

100	

50p	 75p	 80p	 85p	 90p	

%
	 R
ed

uc
4o

n	
in
	 T
as
k	

Du
ra
4o

ns
	

(d) CC e

Figure 3.12: Empirical analysis of the amount of delay introduced by Wrangler and the speed up achieved in task
completions: With marginal delays, Wrangler achieves significant reduction in task durations. FB2010 being a resource
intensive workload [43], Wrangler induces slightly higher delays seeking for nodes that are not over-committed. This
results in reduced improvements since the cluster is mostly loaded. Since CC e contains lesser number of stragglers,
Wrangler has limited opportunity to improve task completions (see Section 3.7.7).

36

0	

20	

40	

60	

80	

100	

120	

True	 Posi0ve	 False	 Posi0ve	

Pe
rc
en

ta
ge
	

Pr
ed

ic
0o

n	
Ac

cu
ra
cy
	 50	 Nodes	 100	 Nodes	

(a) Prediction Accuracy

0	
10	
20	
30	
40	
50	
60	
70	
80	

avg	 80p	 90p	 95p	 97p	 99p	

Pe
rc
en

ta
ge
	 R
ed

uc
9o

n	
in
	

Jo
b	
Co

m
pl
e9

on
	 T
im

e	

50	 Nodes	 100	 Nodes	

(b) Improved Job Completion

Figure 3.13: Scalability of Wrangler’s centralized prototype: The prediction accuracies shown in (a) and percentage
reduction in job completion times shown in (b) for a larger (100 nodes) cluster are significant and comparable with
those for a 50 nodes cluster.

delays potential stragglers, there is no risk of terminating or replacing them. Thus, Wrangler does
not impact the correctness or liveness properties of the system.

In this section, we analyze empirically observed delays for the Facebook and Cloudera workloads
in our dataset. Figure 3.12 shows the percentage delay with respect to the task’s original execution
time (i.e., without Wrangler) and the percentage reduction in task completion times achieved by
Wrangler for these workloads. Note that Figure 3.12 presents speed-up at task-level whereas all
the other results presented earlier are the job-level speed-ups. We see that for FB2009, the delay
introduced by Wrangler is less than 2% for 75% of the tasks and less than 11% for 90% of the
tasks. Notice that the delays introduced for FB2010 workload are higher than FB2009 and the
corresponding improvements in task completion times are also lower. This is due to the high load
on all the nodes of the cluster executing FB2010 as we described in Section 3.7.2. This explains
Wrangler’s decision to delay the tasks more while seeking for situations where the nodes are not
over committed.

3.7.8 Does Wrangler scale well?
Our current prototype of Wrangler is centralized: the resource usage counters from all the nodes are
collected, processed, node-wise models are built and used centrally from a location accessible to the
scheduler. Most actual users use a cluster size of about 100 nodes [101, 111, 7]. We executed the
FB2009 workload on a larger cluster with 100 nodes. Note that in our experiments, we maintain
fixed amount of work per node by re-scaling the real-life workload appropriately.

Figure 3.13 (a) shows that we get comparable prediction accuracies of the models for the small
and larger clusters. Moreover, Figure 3.13 (b) shows that the percentage reduction in job completion
time achieved by Wrangler’s centrally implemented prototype is comparable across cluster sizes.

Results from Figures 3.13 (a) and (b) show that Wrangler scales well to larger cluster sizes. The
central implementation might stress the master with increase in the size of a cluster further. We
believe that Wrangler could be extended for even larger clusters by distributing these responsibilities

37

to individual nodes. This allows for most of the computations to take place locally, thereby reducing
the network traffic. In this scenario, each node would build its own model using locally collected
resource usage counters. At a regular time interval ∆ (see Section 3.5.2.2), the straggler predictions
would be computed using locally available recent resource usage counters and model at each node.
These model predictions would then be piggybacked with the heartbeat messages sent to the master
by each node. Finally, the master would use these predictions to influence scheduling decisions as
described in our current workflow. We leave this as an avenue for future research.

3.8 Conclusion
Wrangler proactively avoids stragglers to achieve faster job completions while using fewer resources.
Rather than allowing tasks to execute and detecting them as stragglers when they run slow, Wrangler
predicts stragglers before they are launched. Wrangler’s notion of confidence measures allows it to
overcome modeling errors. Further, Wrangler leverages these confidence measures to achieve a
reliable task scheduling; thus eliminating the need for replicating them. Prototype on Hadoop using
an EC2 cluster of 50 nodes showed that Wrangler speeds up the 99th percentile job execution times
by up to 61% and consumes up to 55% fewer resources as compared to the speculative execution
for production workloads at Facebook and Cloudera’s customers. Although it serves as a straggler
avoidance approach on its own, Wrangler can also be used in conjunction with existing mitigation
approaches. As a next step, we aim at speeding up the training process by (i) reducing the time
spent for capturing training data per node in a cluster and (ii) by training straggler prediction models
across workloads.

38

Chapter 4

Fast Training: Building Data-Driven
Models using Multi-Task Learning

In the previous chapter, we demonstrated how we built data-driven models leveraging perfor-
mance and utilization data that enable significant improvement in job tail latencies. Several other
relevant works have applied machine learning techniques to different systems problems [79, 57, 58,
32, 25]. Availability of large and representative training data is the fundamental requirement for
building accurate models. Collecting such a training dataset can be time-consuming. In some cases
to ensure representative training data is collected, we may have to let systems run into undesirable
states, such as degraded performance or poor utilization. Thus, adoption of data-driven models in
real-world systems faces the challenge of cost for training data collection.

To address this challenge, in this chapter, we propose multi-task learning formulations that share
information between the various models, allowing us to use less training data and bring training
time significantly down. We use our predictive scheduler, Wrangler, as an example and build on it
to formulate, implement, and evaluate our multi-task learning formulations that capture the shared
structure in our data, improving generalization performance on limited data.

4.1 Shortcomings of prior work and avenues for
improvements

As we described in the previous chapter, due to the heterogeneity of nodes in a cluster, Wrangler’s
model builder trains a separate classifier for each node. Note that to build a training set per
node, every node should have executed a sufficient number of tasks. Wrangler takes a few hours
(approximately 2-4 hours, depending on the workload) for this process. Additionally, because each
workload might be different, these models are retrained for every new workload. Thus, for every
new workload that is executed on the cluster, there is a 2-4 hour model building period. In typical
large production clusters with tens of thousands of nodes, it might be a long time before a node
collects enough data to train a classifier. Later in Table 4.4 we show that the prediction accuracy of

39

Wrangler rapidly degrades as the amount of training data is reduced. In some cases, workloads may
only be run a few times in total, limiting the ability of systems like Wrangler to make meaningful
predictions.

Alternatively, large clusters with locality aware scheduling can lead to poor sample coverage.
Recall that, in our case, each task of a workload executed on a node amounts to a training data
point. The placement of input data on nodes in a cluster is managed by the underlying distributed
file system [70]. To achieve locality for faster reading of input data, sophisticated locality-aware
schedulers [170, 168] try to assign tasks to nodes already having the appropriate data. Based on
the popularity of the data, number of tasks assigned to a node could vary. Hence, we may not get
uniform number of training data points, i.e., tasks executed, across all the nodes in a cluster. There
could be other reasons behind skewed assignment of tasks to nodes [99]: even when every map task
has the same amount of data, a task may take longer depending on the code path it takes based on
the data it processes. Hence, the node slots will be busy due to such long running tasks. This could
lead to some nodes executing fewer tasks than others.

These shortcomings can be addressed if each classifier is able to leverage information gleaned at
other nodes and from other workloads. For instance, when there is not enough data at a node for a
workload, we can gain from the data collected at that node while it was executing other workloads,
or from other nodes running the same workload. Such information sharing falls in the ambit of
multi-task learning (MTL), where the learner is embedded in an environment of related tasks, and
the learner’s aim is to leverage similarities between the tasks to improve performance of all tasks.

In applications such as ours, high accuracy is not the only objective: we also want to be able
to gain some insight into what is causing these stragglers. Such insight can aid in debugging root
causes of stragglers and system performance degradation. Automatically learned classifiers can be
opaque and hard to interpret.

These observations suggest that our modeling framework needs to be robust to limited and
potentially skewed data. Thus, there is a need for straggler prediction models (1) that can be trained
using minimum available data, (2) that generalize to unseen nodes or workloads, and (3) that allow
us to gain insights into what is causing these stragglers.

In the following section, we describe our multi-task learning based approach with these goals for
avoiding stragglers. To enable us to gain insights into models’ learning, we propose group sparsity
inducing mixed-norm regularization on top of our basic MTL formulation to automatically reveal
the group structure that exists in the data, and hopefully provide insights into how straggler behavior
is related across nodes and workloads. We also explore sparsity-inducing formulations based on
feature selection that attempt to reveal the characteristics of straggler behavior. We evaluate it using
real world production level traces from Facebook and Cloudera’s customers, and compare the gains
with Wrangler.

4.2 Multi-task learning for straggler avoidance
As described in the previous section, Wrangler builds separate models for each workload and for
every node. Thus, every {node, workload} tuple is a separate learning problem. However, learning

40

problems corresponding to different workloads executed on the same node clearly have something
in common, as do learning tasks corresponding to different nodes executing the same workload. We
want to use this shared structure between the learning problems to reduce data collection time.

Concretely, a task executing on a node will be a straggler because of a combination of factors.
Some of these factors involve the properties of the node where the task is executing (for instance,
the node may be memory-constrained) and some others involve particular requirements that the
tasks might have in terms of resources (for instance, the task may require a lot of memory). These
are workload-related factors. When collecting data for a new workload executing on a given node,
one must be able to use information about the workload collected while it executed on other nodes,
and information collected about the node collected while it executed other workloads.

We turn to multi-task learning to leverage this shared structure. In the terminology of multi-task
learning, each {node, workload} pair forms a separate learning-task1 and these learning problems
have a shared structure between them. However, unlike typical MTL formulations, our learning-
tasks are not simply correlated with each other; they share a specific structure, clustering along
node- or workload-dependent axes. In what follows, we first describe a general MTL formulation
that can capture such learning-task grouping. We then detail how we apply this formulation to our
application of straggler avoidance.

4.2.1 Partitioning tasks into groups
Suppose there are T learning tasks, with the training set for the t-th learning-task denoted by
Dt = {(xit, yit) : i = 1, . . . , kt}, with xit ∈ Rd. We begin with the formulation proposed by [61].
Evgeniou, et al. proposed a basic hierarchical regression formulation with the linear model, wt, for
learning-task t as:

wt = w0 + vt (4.1)

The intuition here is that w0 captures properties common to all learning-tasks, while vt captures
how the individual learning-tasks deviate from w0.

We then frame learning in the context of empirical loss minimization. Given the variability in
node behavior and the need for robust predictions we adopt the hinge-loss and apply l2 regularization
to both the base w0 and learning-task specific weights vt:

min
w0,vt,b

λ0‖w0‖2 +
λ1
T

T∑
t=1

‖vt‖2 +
T∑
t=1

kt∑
i=1

LHinge

(
yit, (w0 + vt)

T xit + b
)

(4.2)

where LHinge(yit, sit) = max(0, 1− yitsit) is the hinge loss.
In the above formulation, all learning-tasks are treated equivalently. However, as discussed

above, in our application some learning-tasks naturally cluster together. Suppose that the learning-
tasks cluster into G non-overlapping groups, with the t-th learning-task belonging to the g(t)-th
group. Note that while we derive our formulations for non-overlapping groups, which is true in

1The machine learning notion of a “task” as a learning problem differs from the cloud computing notion of a “task”
as a part of a job that is run in parallel. The intended meaning should be clear from the context.

41

our application, the modification for overlapping groups is trivial. Using the same intuition as
Equation 4.1, we can write the classifier wt as:

wt = w0 + vt + wg(t) (4.3)

In general, there may be more than one way of dividing our learning-tasks into groups. In our
application, one may split learning-tasks into groups based on workload or based on nodes. We
call one particular way of dividing learning-tasks into groups a partition. The p-th partition has Gp

groups, and the learning-task t belongs to the gp(t) group under this partition. Now, we also have a
separate set of weight vectors for each partition p, and the weight vector of the g-th group of the
p-th partition is denoted by wp,g. Then, we can write the classifier wt as:

wt = w0 + vt +
P∑
p=1

wp,gp(t) (4.4)

Finally, note that w0 and vt can also be seen as weight vectors corresponding to trivial partitions:
w0 corresponds to the partition where all learning-tasks belong to a single group, and vt corresponds
to the partition where each learning-task is its own group. Thus, we can include w0 and vt in our
partitions and write Equation 4.4 as:

wt =
P∑
p=1

wp,gp(t) (4.5)

Intuitively, at test time, we get the classifier for the t-th learning-task by summing weight vectors
corresponding to each group to which t belongs.
As in Equation 4.2, the learning problem involves minimizing the sum of l2 regularizers on each of
the weight vectors and the hinge loss:

min
wp,g ,b

P∑
p=1

Gp∑
g=1

λp,g‖wp,g‖2 +
T∑
t=1

kt∑
i=1

LHinge

yit,(P∑
p=1

wp,gp(t)

)T

xit + b

 (4.6)

Here, the regularizer coefficient λp,g = λp#(p,g)

T
, where #(p, g) denotes the number of learning-

tasks assigned to the g-th group of the p-th partitioning. The scaling factor λp#(p,g)

T
interpolates

smoothly between λ0, when all learning-tasks belong to a single group, and λ1
T

, when each learning-
task is its own group. Lowering λp for a particular partition will reduce the penalty on the weights
of the p-th partition and thus cause the model to rely more on the p-th partitioning. For the base
partition p = 0, setting λp = 0 would thus favor as much parameter sharing as feasible.

4.2.2 Reduction to a standard SVM
One advantage of the formulation we use is that it can be reduced to a standard SVM [51], allowing
the usage of off-the-shelf SVM solvers. Below, we show how this reduction can be achieved. Given

42

λ, for every group g of every partition p, define:

w̃p,g =

√
λp,g
λ

wp,g (4.7)

Now concatenate these vectors into one large weight vector w̃ :

w̃ = [w̃T
1,1, . . . , w̃

T
p,g, . . . , w̃

T
P,GP

]T (4.8)

Then, it can be seen that λ‖w̃‖2 =
∑P

p=1

∑Gp

g=1 λp,g‖wp,g‖2. Thus, with this change of variables,
the regularizer in our optimization problem resembles a standard SVM. Next, we transform the
data points xit into φ(xit) such that we can replace the scoring function with w̃Tφ(xit). This
transformation is as follows. Again, define:

φp,g(xit) = δgp(t),g

√
λ

λp,g
xit (4.9)

Here, δgp(t),g is a Kronecker delta, which is 1 if gp(t) = g (i.e. , if the learning-task t belongs to group
g in the p-th partitioning) and 0 otherwise. Our feature transformation is then the concatenation of
all these vectors:

φ(x) = [φ1,1(x)T , . . . , φp,g(x)T , . . . , φP,GP
(x)T]T (4.10)

It is easy to see that:

w̃Tφ(xit) =

(
P∑
p=1

wp,gp(t)

)T

xit (4.11)

Intuitively, w̃ concatenates all our parameters with their appropriate scalings into one long weight
vector, with one block for every group of every partitioning. φ(xit) transforms a data point into
an equally long feature vector, by placing scaled copies of xit in the appropriate blocks and zeros
everywhere else.

With these transformations, we can now write our learning problem as :

min
w̃,b

λ‖w̃‖2 +
T∑
t=1

kt∑
i=1

LHinge(yit, w̃
Tφ(xit) + b) (4.12)

which corresponds to a standard SVM. In practice, we use this transformation and change of
variables, both at train time and at test time.

4.2.3 Automatically selecting groups or partitions
In many real world applications including our own, good classification accuracy is not an end in
itself. Model interpretability is of critical importance. A large powerful classifier working on tons

43

of features may do a very good job of classification, but will not provide any insight to an engineer
trying to identify the root causes of a problem. It will also be difficult to debug such a classifier if
and when it fails. In the absence of sufficient training data, large models may also overfit. Thus,
interpretability and simplicity of the model are important goals. In the context of the formulation
above, this means that we want to keep only a minimal set of groups/partitions while maintaining
high classification accuracy.

We can use mixed l1 and l2 norms to induce a sparse selection of groups or partitions [21].
Briefly, suppose we are given a long weight vector w divided into M blocks, with the m-th block
denoted by wm. Then the squared mixed l1 and l2 norm is:

Ω(w) =

(
M∑
m=1

‖wm‖2

)2

(4.13)

This can be considered as an l1 norm on a vector with elements ‖wm‖2. When Ω(·) is used as a
regularizer, the l1 norm will force some elements of this vector to be set to 0, which in turn would
force the corresponding block of weights wm to be set to 0. It thus encourages entire blocks of the
weight vector to be set to 0, a sparsity pattern that is often called “group sparsity”.

In our context, our weight vector w̃ is made up of w̃p,g. We consider two alternatives:

1. We can put all the weight vectors corresponding to a single partition in the same block. Then,
the regularizer becomes:

Ωps(w̃) =

(
P∑
p=1

‖w̃p‖2

)2

(4.14)

where w̃p = [w̃T
p,1, . . . , w̃

T
p,Gp

]T concatenates all weight vectors corresponding to the p-th
partition. This regularizer will thus tend to kill entire partitions. In other words, it will uncover
notions of grouping, or learning-task similarity, that are the most important.

2. We can put the weight vector of each group of each partition in separate blocks. Then the
regularizer becomes:

Ωgs(w̃) =

(
P∑
p=1

G∑
g=1

‖w̃p,g‖2

)2

(4.15)

This regularizer will tend to select a small set of groups which are needed to get a good
performance.

4.2.4 Automatically selecting features
Mixed norms can also be used to select a sparse set of feature blocks that are most useful for
classification. This is again useful for interpretability. In our application, features are resource

44

counters at a node. Some of these features are related to memory, others to cpu usage, etc. If
our model is able to predict straggler behavior solely on the basis of memory usage counters, for
instance, then it might indicate that the cluster or the workload is memory constrained.

In our multi-task setting, such feature selection can also interact with the different groups and
partitions of learning-tasks. Suppose each feature vector x is made up of blocks corresponding
to different kinds of features, denoted by x(1),x(2), . . .x(B). We can similarly divide each weight
vector w̃p,g into blocks denoted by w̃

(1)
p,g, w̃

(2)
p,g and so on. Then we have two alternatives.

1. One can concatenate corresponding feature blocks from all the weight vectors to get
w̃(1), . . . , w̃(B). Then a mixed l1 and l2 regularizer using these weight blocks can be written
as:

Ωfs1(w̃) =

(
B∑
b=1

‖w̃(b)‖2

)2

(4.16)

Such a regularizer will encourage the model to select a sparse set of feature blocks on which
to base its decision, setting all weights corresponding to all the other feature blocks to 0.

2. An alternative would be to let each group vector choose its own sparse set of feature blocks.
This can be achieved with the following regularizer:

Ωfs2(w̃) =

(∑
p,g

B∑
b=1

‖w̃(b)
p,g‖2

)2

(4.17)

4.2.5 Kernelizing the formulation
We have till now described our formulation in primal space. However, kernelizing this formulation
is simple. First, note that if we use a simple squared l2 regularizer, then our formulation is equivalent
to a standard SVM in a transformed feature space. This transformed feature space corresponds to a
new kernel:

Knew(xit,xju) = 〈φ(xit), φ(xju)〉
=

∑
p,g

〈φp,g(xit), φp,g(xju)〉

=
∑
p,g

δgp(t),gδgp(u),g
λ

λp,g
K(xit,xjt) (4.18)

Thus, the transformed kernel corresponds to the linear combination of a set of kernels, one for
each group. Each group kernel is zero unless both data points belong to the group, in which case it
equals a scaled version of the kernel in the original feature space.

45

When using the mixed-norm regularizers, the derivation is a bit more involved. We first note
that [2]: (

M∑
m=1

‖wm‖2

)2

= min
0≤η≤1,‖η‖1≤1

M∑
m=1

‖wm‖22
ηm

(4.19)

Using this transformation leads to the following primal objective:

min
w,b,0≤η≤1,‖η‖1≤1

M∑
m=1

‖wm‖22
ηm

+
∑
i,t

L(xit, yit,w) (4.20)

where L(xit, yit,w) is the hinge loss. This corresponds to a 1-norm multiple kernel learning
formulation [95] where each block of feature weights corresponds to a separate kernel. We refer the
reader to [95] for a description of the dual of this formulation.

We note that these kernelized versions are very similar to the ones derived in [156, 27]. However,
the group and partition structure and the application domain are unique to ours.

4.2.6 Application to straggler avoidance
We apply this formulation to straggler avoidance as follows. Suppose there are N nodes and L
workloads. Then there are N × L learning-tasks, and Wrangler trains as many models, one for each
{node, workload} tuple. For our proposal, we consider four different partitions:

1. A single group consisting of all nodes and workloads. This gives us the single weight vector
w0.

2. One group for each node, consisting of all L learning-tasks belonging to that node. This
gives us one weight vector for each node wn, n = 1, . . . , N , that captures the heterogeneity
of nodes.

3. One group for each workload, consisting of all N learning-tasks belonging to that workload.
This gives us one weight vector for each workload wl, l = 1, . . . , L, that captures peculiarities
of a particular workload.

4. Each {node, workload} tuple as its own group. Since there are N × L such pairs, we get
N × L weight vectors, which we denote as vt, following the notation considered in [61].

Thus, if we use all four partitions, the weight vector wt for a given workload lt and a given node
nt is:

wt = w0 + wnt + wlt + vt (4.21)

Figure 4.1 shows an example. The learning problem for the FB20092 workload running on node
1 belongs to one group from each of the four partitions mentioned above: (1) the global partition,

2See Section 4.3.1 for details about the workloads we use.

46

FB2009	

Node 1	
 Node 2	
 Node 3	

FB2010	

CC_e	

v1 ⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

⌃

v2 v3

v4 v5 v6

v7 v8 v9

w0

wfb09

wnode1

w1 = w0 + wnode1
+ wfb09 + v1

Figure 4.1: In our context of straggler avoidance, the learning-tasks naturally cluster into various groups in multiple
partitions. When a particular learning- task, for example, node 1 and workload FB2009 (v1), has limited training data
available, we learn its weight vector, w1, by adding the weight vectors of groups it belongs to from different partitions.

denoted by the weight vector, w0, (2) the group corresponding to node 1 from the node-wise
partition, denoted by the weight vector wnode1 , (3) the group corresponding to the FB2009 workload
from the workload-wise partition, denoted by the weight vector wfb09, and (4) the group containing
just this individual learning problem, denoted by the weight vector v1. Thus, we can learn the
weight vector w1 as:

w1 = w0 + wnode1 + wfb09 + v1 (4.22)

The corresponding training problem is then:

min
w,b

λ0‖w0‖2 +
ν

N

N∑
n=1

‖wn‖2 +
ω

L

L∑
l=1

‖wl‖2 +
τ

T

T∑
t=1

‖vt‖2

+
T∑
t=1

kt∑
i=1

LHinge

(
yit, (w0 + wnt + wlt + vt)

T xit + b
)

(4.23)

where λ0, ν, ω, τ are hyperparameters. We ran an initial grid search on a validation set to fix these
hyperparameters and found that prediction accuracy was not very sensitive to these settings: several
settings gave very close to optimal results. We used λ0 = ν = ω = τ = 1, which was one of
the highest performing settings, for all our experiments. Appendix 4.6 provides the details of this
grid search experiment along with the sensitivity of these hyperparameters to a set of values. As
described in Section 4.2.2, we work in a transformed space in which the above problem reduces to a
standard SVM. In this space the weight vector is

w̃ = [w̃T
0 , w̃

T
n1
, . . . , w̃T

nN
, w̃T

l1
, . . . , w̃T

lL
, ṽTt1 , . . . , ṽ

T
tT

]T (4.24)

This decomposition will change depending on which partitions we use.
As described in the previous section, we can also use mixed l1 and l2 norms to automati-

cally select groups or partitions. To select partitions, we combine all the node-related weight

47

vectors w̃n1 , . . . , w̃nN
into one long vector w̃N , all workload vectors w̃l1 , . . . , w̃lL into w̃L and all

ṽ1, . . . , ṽT into ṽT . We then solve the following optimization:

min
w̃,b

(‖w̃0‖2 + ‖w̃N‖2 + ‖w̃L‖2 + ‖ṽT‖2)2

+C
∑
i,t

LHinge
(
yit, w̃

Tφ (xit) + b
)

(4.25)

This model will learn which notion of grouping is most important. For instance if w̃L is set
to 0, then we might conclude that straggler behaviour doesn’t depend that much on the particular
workload being executed.

To select individual groups, we solve the optimization problem:

min
w̃,b,ξ≥0

(
‖w̃0‖2 +

N∑
n=1

‖w̃n‖2 +
L∑
l=1

‖w̃l‖2 +
T∑
t=1

‖ṽt‖2

)2

+C
∑
i,t

LHinge
(
yit, w̃

Tφ (xit) + b
)

(4.26)

This formulation can set some individual node or workload models to 0. This would mean that
straggler behavior on some nodes or workloads can be predicted by generic models, but others
require more node-specific or workload-specific reasoning.

We can also use mixed norms for feature selection. The features in our feature vector correspond
to resource usage counters, and we divide them into 5 categories, as explained in Section 3.4.1.2:
counters based on cpu, those based on network, those based on disk, those based on memory, and
other system-level counters. Then each w̃n, w̃l and ṽt gets similarly split up. As described before,
we can either let each model choose its own set of features using this regularizer:

Ω(w̃) = (‖w̃mem
0 ‖2 + ‖w̃disk

0 ‖2 + ‖w̃cpu
0 ‖2 + ‖w̃network

0 ‖2 + ‖w̃system
0 ‖2 +

+
∑N

n=1[‖w̃mem
n ‖2 + ‖w̃disk

n ‖2 + ‖w̃cpu
n ‖2 + ‖w̃network

n ‖2 + ‖w̃system
n ‖2]

+
∑L

l=1[‖w̃mem
l ‖2 + ‖w̃disk

l ‖2 + ‖w̃cpu
l ‖2 + ‖w̃network

l ‖2 + ‖w̃system
l ‖2]

+
∑T

t=1[‖ṽmemt ‖2 + ‖ṽdiskt ‖2 + ‖ṽcput ‖2 + ‖ṽnetworkt ‖2 + ‖ṽsystemt ‖2])2 (4.27)

or choose a single set of features globally using this regularizer:

Ω(w̃) =
(
‖w̃mem‖2 + ‖w̃cpu‖2 + ‖w̃disk‖2 + ‖w̃network‖2 + ‖w̃system‖2

)2
(4.28)

where w̃mem concatenates all memory related weights from all models,

w̃mem = [w̃memT
0 , w̃memT

n1
, . . . , w̃memT

nN
, w̃memT

l1
, . . . , w̃memT

lL
]T (4.29)

48

w̃cpu, w̃disk etc. are defined similarly.

4.2.7 Exploring the relationships between the weight vectors
Before getting into the experiments, we can get some insights on what our formulation will learn by
looking at the Karush-Kuhn-Tucker (KKT) [34] conditions.

Equation 4.23 can equivalently be written as:

min
w,b,ξ

λ0‖w0‖2 +
ν

N

N∑
n=1

‖wn‖2 +
ω

L

L∑
l=1

‖wl‖2

+
τ

T

T∑
t=1

‖vt‖2 +
T∑
t=1

kt∑
i=1

ξit (4.30)

s.t. yit
(

(w0 + wnt + wlt + vt)
T xit + b

)
≥ 1− ξit ∀i, t
ξit ≥ 0 ∀i, t

The Lagrangian of the formulation in Equation 4.30 is:

L(w, b,α,γ) = λ0‖w0‖2 +
ν

N

N∑
n=1

‖wn‖2 +
ω

L

L∑
l=1

‖wl‖2

+
τ

T

T∑
t=1

‖vt‖2 +
T∑
t=1

kt∑
i=1

ξit −
T∑
t=1

kt∑
i=1

γitξit (4.31)

+
T∑
t=1

kt∑
i=1

αit
(
1− ξit − yit

(
wT
t xit + b

))
Taking derivatives w.r.t. the primal variables and setting to 0 gives us relationships between
w0,vt,wn and wl:

λ0w
∗
0 =

τ

T

∑
t

v∗t (4.32)

νw∗n =
τ

T/N

∑
t:nt=n

v∗t (4.33)

ωw∗l =
τ

T/L

∑
t:lt=l

v∗t (4.34)

λ0w
∗
0 =

ν

N

∑
n

w∗n (4.35)

λ0w
∗
0 =

ω

L

∑
l

w∗l (4.36)

49

[61] also obtain Equation 4.32 in their formulation, but the other relationships are specific to ours.
These relationships imply that these variables shouldn’t be considered independent. wn, wl and w0

are scaled means of the vt’s of the group they capture.

4.2.8 Generalizing to unseen nodes and workloads
Consider what happens when we remove the partition corresponding to individual {node, workload}
tuples, i.e., vt, from our formulations. We now do not have any parameters specific to a node-
workload combination, but can still capture both node- and workload-dependent properties of the
learning problem. Such formulations are thus similar to factorized models where the node and
workload dependent factors are grouped into separate blocks. We end up with only (N + L)d
parameters, whereas a formulation like that of [61, 62, 93] will still have NLd parameters (here d is
the input dimensionality). Thus, we can reduce the number of parameters while still capturing the
essential properties of the learning problems.

In addition, since we no longer have a separate weight vector for each {node, workload} tuple,
we can generalize to node-workload pairs that are completely unseen at train time: the classifier for
such an unseen combination t will simply be w0 + wnt + wlt . We thus explicitly use knowledge
gleaned from prior workloads run on this node (through wnt) and other nodes running this workload
(through wlt). This is especially useful in our application where there may be a large number of
nodes and workloads. In such cases, collecting data for each node-workload pair will be time
consuming, and generalizing to unseen combinations will be a significant advantage.

In most of our experiments, therefore, we remove the partition corresponding to individual {node,
workload} tuples. We explicitly evaluate how well we generalize by doing so in Section 4.3.4.

4.3 Empirical Evaluation
In this section, we describe our dataset (Section 4.3.1), provide variants to our proposed formulation
that capture node and workload properties (Section 4.3.2). These formulations allow us to gain
insight into which subsets of features matter the most in predicting straggler behavior on under-
lying nodes. We then thoroughly evaluate them using the following metrics: first, classification
accuracy when there is sufficient data (Section 4.3.3), and also when sufficient data is not available
(Section 4.3.4), and second, improvement in overall job completion times (Section 4.3.5), and third,
reduction in resources consumed (Section 4.3.6).

4.3.1 Datasets
The set of real-world workloads considered for evaluating our multi-task learning formulations are
the same as those used for Wrangler’s evaluation. We repeat the dataset details here for readability.
These are collected from the production compute clusters at Facebook and Cloudera’s customers,
which we denote as FB2009, FB2010, CC b and CC e. Table 4.1 provides details about these
workloads in terms of the number of machines in the actual clusters, the length and date of data

50

Trace #Machines Length Date #Jobs
FB2009 600 6 month 2009 11,29,193
FB2010 3,000 1.5 months 2010 11,69,184

CC b 300 9 days 2011 22,974
CC e 100 9 days 2011 10,790
Total ≈ 4,000 ≈ 8.5 months - 23,32,141

Table 4.1: Dataset. FB: Facebook, CC: Cloudera Customer.

Workload No of tasks No of tasks
(Training+Validation) Test

FB2009 4,885 13,632
FB2010 3,843 38,158
CC b 5,991 30,203
CC e 39,014 94,550

Table 4.2: Number of tasks we use for each workload in the train+val and test sets.

capture, total number of jobs in those workloads. Chen, et al., explain the data in further details
in [43]. Together, the dataset consists of traces from over about 4000 machines captured over
almost eight months. For faithfully replaying these real-world production traces on our 20 node
EC2 cluster, we used a statistical workload replay tool, SWIM [44] that synthesizes a workload
with representative job submission rates and patterns, shuffle/input data size and output/shuffle data
ratios (see [44] for details of replay methodology). SWIM scales the workload to the number of
nodes in the experimental cluster.

For each workload, we need data with ground-truth labels for training and validating our models.
We collect this data by running tasks from the workload as described above and recording the
resource usage counters xi at a node at the time a task i is launched, and the ground truth label yi by
checking if it ends up becoming a straggler. Then we divide this dataset temporally into a training
set and a validation set. In other words, the first few tasks that were executed form the train set and
the rest of the tasks form the validation set. In the experiments below, we vary the percentage of
data that is used for training, and compute the prediction accuracy on the validation set. We train
our final model using two-thirds of this dataset and proceed to evaluate it on our ultimate metric,
i.e., job completion times.

To measure job completion times, we then incorporate the trained models into the job scheduler
(as in Wrangler). We then run the replay for the workload again, but with a fresh set of tasks. These
fresh set of tasks form our test set, and this test set is only used to measure job completion times.
Table 4.2 shows the sizes of the datasets.

Each data point is represented by a 107 dimensional feature vector comprising the node’s
resource usage counters at the time of launching a task on it. We optimize all our formulations using
Liblinear [63] for the l2 regularized variants and using the algorithm proposed by [2] (modified to
work in the primal) for the mixed norm variants.

51

Below, we describe (1) how we use different MTL formulations and prediction accuracy achieved
by these formulations, (2) how we learn a classifier for previously unseen node and/or workload and
the prediction accuracy it achieves, (3) the improvement in overall job completion times achieved by
our formulation and Wrangler over speculative execution, and (4) reduction in resources consumed
using our formulation compared to Wrangler.

4.3.2 Variants of proposed formulation
We consider several variants of the general formulation described in Section 4.2. Using a simple
squared l2 regularizer, we first consider w0, wn and wl, individually:

• f0: In this formulation, we consider only the global partition in which all learning problems
belong to a single group. This corresponds to removing vt, wn and wl. This formulation thus
learns a single global weight vector, w0, for all the nodes and all the workloads.

• fn: Here we consider only the partition based on nodes. This corresponds to only learning a
wn, that is, one model for each node. This model learns to predict stragglers based on a node’s
resource usage counters across different workloads, but it cannot capture any properties that
are specific to a particular workload.

• fl: Here we consider only the partition based on workloads. This means we only learn wl,
i.e., a workload dependent model across nodes executing a particular workload. This model
learns to predict stragglers based on the resource usage pattern caused due to a workload
across nodes, but ignores the characteristics of a specific node.

The above three formulations either discard the node information, the workload information, or
both. We now consider multi-task variants that capture both, node and workload properties:

• f0,t: This is the formulation proposed by [61], and corresponds to using the global partition
where all learning-tasks belong to one group, and the partition where each learning-task is its
own group. This learns w0 and vt. Note that this formulation still has to learn on the order of
NLd different parameters, and has to collect enough data to learn a separate weight vector
for each {node, workload} combination.

• f0,t,l: This formulation extends the formulation in f0,t by additionally adding the partition
based on workloads. It learns w0,wl and vt.

• f0,n,l: We remove the partition corresponding to individual {node, workload} tuples, removing
vt entirely and only learning w0, wl and wn. As described in Section 4.2.8, this formulation
reduces the total number of parameters to (N + L)d and can also generalize to unseen {node,
workload} tuples.

For all these formulations, the hyperparameters λ0, ν, ω and τ were set to 1 wherever applicable. We
found this setting to be close to optimal in our initial cross-validation experiments (see Section 4.6
for additional details).

52

In addition to these, we also consider sparsity-inducing formulations for automatically selecting
partitions or groups or blocks of features, as explained in Sections 4.2.3, 4.2.4, and 4.2.6.

• fps : We use the global, node-based and workload-based formulations thus removing vt
entirely as in f0,n,l and use mixed l1 and l2 norms to automatically select the useful partitions
from among these. This model will learn the notion of grouping that is most important. To
select partitions, we combine all the node-related weight vectors w̃n1 , . . . , w̃nN

into one long
vector w̃N and all workload vectors into w̃L as shown below:

w̃ = [w̃T
0 , w̃

T
n1
, . . . , w̃T

nN︸ ︷︷ ︸
w̃T

N

, w̃T
l1
, . . . , w̃T

lL︸ ︷︷ ︸
w̃T

L

]T (4.37)

Thus our weight vector w̃ is split up into blocks corresponding to node, workload and global
models.

• fgs : This is the formulation where we use mixed l1 and l2 norms to automatically select
groups within a partition. Again, we only consider the global, node-based and workload-based
formulations. This formulation can set individual node or workload models to zero, unlike
fps, that can set a complete partition, i.e. in our case, a combined model of all the nodes or all
the workloads to zero. This would mean that predicting straggler behavior on some nodes
or workloads does not need reasoning that is specific to those nodes or workloads; instead a
generic model would work.

Finally, we also try the following two mixed norms formulations for feature selection. As before,
both these formulations remove the partition corresponding to individual {node, workload} tuples,
i.e., remove vt.

• ffs1 : As explained in Equation 4.27, we divide our features into five categories corresponding
to cpu, memory, disk, network and other system-level counters. Then each weight vector gets
similarly split up into these categories. This formulation learns which categories of features
are more important for some nodes or workloads than others.

• ffs2 : This formulation, as given in Equation 4.28, selects a category of features across all the
weight vectors of nodes and workloads. This formulation can learn if stragglers in a cluster
are caused due to contention for a specific resource.

4.3.3 Prediction accuracy
In this section, we evaluate the formulations described in the previous section for their straggler
prediction accuracy. In the following subsection 4.3.3.1, we evaluate formulations that use l2
regularizers, viz., f0, fn, fl, f0,n,l, f0,t, and f0,t,l. Then, in Section 4.3.3.2, we evaluate the mixed
norm formulations (a) that automatically selects partitions, fps, (b) that automatically selects groups,
fgs, and then the formulations (c) ffs1, and (d) ffs2 that can automatically select features. We list
our formulations with a brief description in Table 4.3.

53

Formulation Description
f0 uses a single, global weight vector
fn uses only node-specific weights
fl uses only workload-specific weights
f0,n,l uses global, node- and workload-specific weights
f0,t uses global weights and weights specific to {node, workload} tuples
f0,t,l uses global and workload-specific weights and weights specific to {node, workload} tuples
fps selects partitions automatically
fgs selects groups automatically
ffs1 selects feature-blocks automatically for individual groups
ffs2 selects feature-blocks automatically across all the groups

Table 4.3: Brief description of all our formulations.

4.3.3.1 Formulations with l2 regularizers

We aim at learning to predict stragglers using as small of an amount of data as feasible, as this means
shorter data capture time. Note that stragglers are fewer than non-stragglers, so we oversample from
the stragglers’ class to represent the two classes equally in both, the training and validation sets3.
Table 4.4 shows the percentage accuracy of predicting stragglers with varying amount of training
data. We observe that:

• With very small amounts of data, all MTL variants outperform Wrangler. In fact, all of f0 to
f0,t,l need only one sixth of the training data to achieve the same or better accuracy.

• It is important to capture both node- and workload-dependent aspects of the problem:
f0,n,l, f0,t and f0,t,l consistently outperform f0, fn and fl.

• f0,t and f0,t,l perform up to 7 percentage points better than Wrangler with the same amount of
training data, with f0,n,l not far behind.

For a better visualization, Figure 4.2 shows the comparison of prediction accuracy of these
formulations, in terms of percentage true positives and percentage false positives when 50% of total
data is available.

Next, we evaluate and discuss the sparsity-inducing formulations, fps (Equation 4.25), fgs
(Equation 4.26), ffs1 (Equation 4.27), and ffs2 (Equation 4.28).

4.3.3.2 Formulations with mixed l1 and l2 norms

Automatically selecting partitions or groups: In this Section, we evaluate fps and fgs. Table 4.5
shows the prediction accuracy of these formulations compared to f0, fn, fl and f0,n,l. fps and fgs
show comparable prediction accuracy to f0,n,l. We also found interesting sparsity patterns in the
learnt weight vectors.

3An alternative to statistical oversampling would be to use class-sensitive mis-classification penalties.

54

%Training Wrangler
f0 fn fl f0,n,l f0,t f0,t,lData [160]

1 Insufficient data 66.9 63.5 66.5 65.5 63.7 66.2
2 Insufficient Data 67.1 63.3 67.7 67.5 64.3 67.7
5 Insufficient Data 67.5 68.1 69.1 69.8 69.6 69.1

10 63.9 67.8 70.9 69.4 72.3 73.1 72.9
20 67.2 68.0 72.6 70.1 72.9 74.7 74.8
30 68.5 68.5 73.2 70.3 74.1 75.9 75.8
40 69.7 68.2 73.9 70.5 74.3 76.4 76.4
50 70.1 68.5 74.1 70.4 75.3 77.1 77.2

Table 4.4: Prediction accuracies (in %) of various MTL formulations for straggler prediction with varying amount of
training data. See Section 4.3.3.1 for details.

Figure 4.2: Classification accuracy of various MTL formulations as compared to Wrangler using 50% of the total
data. This plot shows the percentage of true positives and the percentage of false positives in each of the cases. These
quantities are computed as: % True Positive = (fraction of stragglers predicted correctly as stragglers) × 100, and %
False Positive = (fraction of non-stragglers predicted incorrectly to be stragglers) × 100.

• fps : Recall that fps attempts to set the weights of entire partitions to 0. In our case we
have a global partition, a node-based partition and a workload-based partition. We observed
that only w̃0 is zero in the resulting weight vector learned. This means that given node-
specific and workload-specific factors, the global factors that are common across all the nodes
and workloads do not contribute to the prediction. In other words, similar accuracy could
be achieved without using w̃0. However, both node- and workload-dependent weights are

55

Formulation Straggler Prediction Accuracy
f0 68.5
fn 74.1
fl 70.4

f0,n,l 75.3
fps 74.4
fgs 73.8

Table 4.5: Straggler prediction accuracies (in %) using the four mixed-norm formulations fps and fgs compared with
formulations that use l2 regularizers. Note that fps and fgs perform with comparable accuracy with f0,n,l, however, use
lesser number of groups and parameters, resulting in simpler models.

Formulation Straggler Prediction Accuracy (in %)
ffs1 74.9
ffs2 74.9

Table 4.6: Straggler prediction accuracies (in %) using ffs1 and ffs2 that encourage sparsity across bocks of features.

necessary.

• fgs : In fgs, we encourage individual nodes-specific or individual workloads-specific weight
vectors separately to be set to zero. We observed that some of the nodes’ weight vectors and
some of the workload-specific weight vectors were zero, indicating that in some cases we do
not need node or workload specific reasoning. (One can use the learnt sparsity pattern and
attempt to correlate it with some node and workload characteristics; however we have not
explored this in this work.)

We also note that our mixed-norm formulations automatically learn a grouping that achieves
comparable accuracy with lesser total number of groups, and thus fewer parameters.

Automatically selecting features: In this section, we evaluate the remaining formulations ffs1
and ffs2. These two formulations group sets of features based on resources. We divide the features
in five different categories viz., features measuring (1) CPU utilization, (2) memory utilization, (3)
network usage, (5) disk utilization, (6) other system level performance counters. We evaluate their
straggler prediction accuracy and then discuss their interpretability in terms of understanding the
causes behind stragglers.

Table 4.6 shows the percentage prediction accuracies of these formulations on our test set. Note
that these formulations show comparable prediction accuracy. Next, we discuss the impact of ffs1
and ffs2 on understanding the straggler behavior.

• ffs1: Because this formulation divides each group weight vector further into blocks based on
the kind of features, it can potentially provide fine-grained insight into what kinds of features
are most important for each group weight vector. Indeed, we found that some node models
assign zero weight to features from the network category, while others assign a zero weight to

56

FB2009 FB2010 CC b CC e
f0,n,l f0,t f0,n,l f0,t f0,n,l f0,t f0,n,l f0,t

73.1 45.3 46.7 48.3 50.2 49.4 52.8 68.2
56.2 57.5 57.3 58.7 61.0 53.5 64.4 48.9
63.9 55.5 50.0 48.8 59.4 53.4 48.9 65.1
63.2 47.7 60.6 57.4 55.7 49.5 47.3 73.9
50.7 42.4 51.4 56.2 50.8 44.6 71.2 59.9

Table 4.7: Straggler Prediction accuracies (in %) of f0,n,l and f0,t on test data from an unseen node-workload pair. See
Section 4.3.4 for details.

the disk category. However, no global patterns emerge. This reinforces our belief that the
causes of stragglers vary quite a bit from node to node or workload to workload.

• ffs2: This formulation considers these feature categories across the various nodes and work-
loads and provides a way of knowing if there are certain dominating factors causing stragglers
in a cluster. However, we observed that none of the feature categories had zero weights in
the weight vector learned for our dataset. Again, this means that there is no single, easily
discoverable reason for straggler behavior, and provides evidence to the claim made by [11,
12] that the causes behind stragglers are hard to figure out.

4.3.4 Prediction accuracy for a {node, workload} tuple with insufficient
data

One of our goals in this work is to reduce the amount of training data required to get a straggler
prediction model up and running. When a new workload begins to execute on a node, we want to
learn a model as quickly as possible. Recall that (Section 4.3.3) with enough training data available
we found that f0,n,l, f0,t and f0,t,l seem to perform similarly, with f0,n,l performing slightly worse.
However, as mentioned in Section 4.2.8, formulation f0,n,l has fewer parameters and, because it
has no weight vector specific to a particular {node, workload} tuple, can generalize to new {node,
workload} tuples unseen at train time. This is in contrast to f0,t which has to fall back on w0 in
such a situation, and thus may not generalize as well. In this section, we see if this is indeed true.

We trained classifiers based on f0,n,l and f0,t leaving out 95% of the data of one node-workload
pair every time. We then test the models on the left-out data. Table 4.7 shows the percentage
classification accuracy from 20 such runs. We note the following:

• For 13 out of 20 classification experiments, f0,n,l performs better than f0,t. For 10 out of these
13 cases, the difference in performance is more than 5 percentage points.

• For workloads FB2009 and CC b, we see f0,n,l performs better consistently.

• f0,n,l sometimes performs worse, but in only 3 of these cases is it significantly worse (worse
by more than 5 percentage points). All 3 of these instances are in case of the CC e workload.

57

Figure 4.3: Improvement in the overall job completion times achieved by f0,n,l and Wrangler over speculative execution.

In general, for this workload, we also notice a huge variance in the numbers obtained across
multiple nodes. See [160], for a discussion of some of the issues in this workload.

This shows that f0,n,l works better in real-world settings where one cannot expect enough data
for all node-workload pairs. Therefore, we evaluate f0,n,l in our next experiment (Section 4.3.5) to
see if it improves job completion times.

4.3.5 Improvement in overall job completion time
We now evaluate our formulation, f0,n,l, using the second metric, improvement in the overall job
completion times over speculative execution. We compare these improvements to that achieved by
Wrangler (Figure 4.3). Improvement at the 99th percentile is a strong indicator of the effectiveness
of straggler mitigation techniques. We see that f0,n,l significantly improves over Wrangler, reflecting
the improvements in prediction accuracy. At the 99th percentile, we improve Wrangler’s job comple-
tion times by 57.8%, 35.8%, 58.9% and 5.7% for FB2009, FB2010, CC b and CC e respectively.

58

Workload % Reduction in total task-seconds
(MTL with f0,n,l) (Wrangler)

FB-2009 73.33 55.09
FB-2010 8.9 24.77

CC b 64.12 40.15
CC e 13.04 8.24

Table 4.8: Resource utilization with f0,n,l and with Wrangler over speculative execution, in terms of total task execution
times (in seconds) across all the jobs. f0,n,l reduces resources consumed over Wrangler for FB2009, CC b and CC e.

Note that Wrangler is already a strong baseline. Hence, the improvement in job completion times
on top of the improvement achieved by Wrangler is significant.

4.3.6 Reduction in resources consumed
When a job is launched on a cluster, it will be broken into small tasks and these tasks will be run in
a distributed fashion. Thus, to calculate the resources used, we can sum the resources used by all the
tasks. As in [160], we use the time taken by each task as a measure of the resources used by the task.
Note that, because these tasks will likely be executing in parallel, the total time taken by the tasks
will be much larger than the time taken for the whole job to finish, which is what job completion
time measures (shown in Figure 4.3). Ideally, straggler prediction will prevent tasks from becoming
stragglers. Fewer stragglers means fewer tasks that need to be replicated by straggler mitigation
mechanisms (like speculative execution) and thus lower resource consumption. Thus, improved
straggler prediction should also reduce the total task-seconds i.e., resources consumed.

Table 4.8 compares the percentage reduction in resources consumed in terms of total task-
seconds achieved by f0,n,l and Wrangler over speculative execution. We see that the improved
predictions of f0,n,l reduce resource consumption significantly more than Wrangler for 3 out of
4 workloads, thus supporting our intuitions. In particular, for FB2009 and CC b, f0,n,l reduces
Wrangler’s resource consumption by about 40%, while for CC e the reduction is about 5%.

4.4 Related Work on Multi-task Learning
The idea that multiple learning problems might be related and can gain from each other dates
back to [145] and [38]. They pointed out that humans do not learn a new task from scratch but
instead reuse knowledge gleaned from other learning tasks. This notion was formalized by, among
others, [24] and [16], who quantified this gain. Much of this early work relied on neural networks
as a means of learning these shared representations. However, contemporary work has also focused
on SVMs and kernel machines.

Our work is an extension of the work of [61], who proposed an additive model for MTL that
decomposes classifiers into a shared component and a task-specific component. In later work, [62]
propose an MTL framework that uses a general quadratic form as a regularizer. They show that
if the tasks can be grouped into clusters, they can use a regularizer that encourages all the weight

59

vectors of the group to be closer to each other. [93] extend this formulation when the group structure
is not known a priori. [159] infer the group structure using a Bayesian approach. The approach of
[156] is similar to ours and groups tasks into “meta-tasks”, and tries to automatically figure out
the meta-tasks required to get good performance. The formulation we propose is also designed to
handle group structure, but allows us to dispense with task-specific classifiers entirely, reducing
the number of parameters drastically. This allows us to handle tasks that have very little training
data by transferring parameters learnt on other tasks. Our formulation shares this property with
that of [27], and indeed our basic formulation can be written down in the kernel-based framework
they describe for learning to generalize onto a completely unseen task. Other ways of controlling
parameters include learning a distance metric [120], and using low rank regularizers [125].

Our setting is an example of multilinear multitask learning where each learning problem is
indexed by two indices: the node and the workload. Previous work on this subfield of multitask
learning has typically used low-rank regularizers on the weight matrix represented as tensors [130,
158]. It is also possible to define a similarity between tasks based on how many indices they
share [136]. Our formulation captures some of the same intuitions, but has the added advantage of
simplicity and ease of implementation.

Using mixed norms for inducing sparsity has a rich history. [59] showed that minimizing the
l1 norm recovers sparse solutions when solving linear systems. When used as a regularizer, the
l1 norm learns sparse models, where most weights are 0. The most well known of such sparse
formulations is the lasso [147], which uses the l1 norm to select features in regression. [165] extend
the lasso to group lasso, where they use a mixed l1 and l2 norm to select a sparse set of groups
of features. [22] study the theoretical properties of group lasso. Since these initial papers, mixed
norms have found use in a variety of applications. For instance , [126] use a mixed l∞ and l1 norm
for feature selection. Such mixed norms also show up in the literature on kernel learning, where
they are used to select a sparse set of kernels [149, 95] or a sparse set of groups of kernels [2]. [21]
provides an accessible review of mixed norms and their optimization, and we direct the interested
reader to that article for more details.

4.5 Conclusion
Through this work, we have shown the utility of multitask learning in solving the real-world problem
of avoiding stragglers in distributed data processing. We have presented a novel MTL formulation
that captures the structure of our learning-tasks and reduces job completion times by up to 59% over
prior work [160]. This reduction comes from a 7 percentage point increase in prediction accuracy.
Our formulation can achieve better accuracy with only a sixth of the training data and can generalize
better than other MTL approaches for learning-tasks with little or no data. We have also presented
extensions to our formulation using group sparsity inducing mixed norms that automatically discover
the structure of our learning tasks and make the final model more interpretable. Finally, we note that,
although we use straggler avoidance as the motivation, our formulation is more generally applicable,
especially for other prediction problems in distributed computing frameworks, such as resource
allocation [79, 58].

60

4.6 Additional Details: Cross-validating hyperparameter
settings

Our formulation reduces the number of hyperparameters to just one per partitioning, which makes
it much easier to cross-validate to set their values. In particular, our formulation in the context
of straggler avoidance, Equation (4.23), has four hyperparameters: λ0, ν, ω, τ . To tune these
parameters we used a simple grid search with cross-validation (results are shown in Tables 4.9,
4.10, 4.11, and 4.12). In general we found that the model formulation is relatively robust to the
choice of hyperparameters so long as they are within the correct order of magnitude.

61

λ0 ν ω τ Accuracy (%)
1 1 1 1 75.38
1 1 1 10 75.57
1 1 1 100 75.24
1 1 1 1000 74.39
1 1 10 1 74.93
1 1 10 10 75.51
1 1 10 100 75.05
1 1 10 1000 74.38
1 1 100 1 74.84
1 1 100 10 74.84
1 1 100 100 73.95
1 1 100 1000 73.04
1 1 1000 1 73.03
1 1 1000 10 72.60
1 1 1000 100 72.11
1 1 1000 1000 71.17
1 10 1 1 74.95
1 10 1 10 75.17
1 10 1 100 74.34
1 10 1 1000 74.05
1 10 10 1 75.42
1 10 10 10 75.05
1 10 10 100 74.69
1 10 10 1000 75.00
1 10 100 1 74.84
1 10 100 10 74.77
1 10 100 100 74.42
1 10 100 1000 73.53
1 10 1000 1 72.88
1 10 1000 10 72.23
1 10 1000 100 72.07
1 10 1000 1000 71.16

λ0 ν ω τ Accuracy (%)
1 100 1 1 75.39
1 100 1 10 74.95
1 100 1 100 74.42
1 100 1 1000 74.00
1 100 10 1 75.58
1 100 10 10 75.14
1 100 10 100 74.92
1 100 10 1000 73.90
1 100 100 1 74.87
1 100 100 10 74.72
1 100 100 100 74.09
1 100 100 1000 72.95
1 100 1000 1 73.08
1 100 1000 10 72.15
1 100 1000 100 72.47
1 100 1000 1000 70.72
1 1000 1 1 75.47
1 1000 1 10 75.37
1 1000 1 100 74.73
1 1000 1 1000 74.49
1 1000 10 1 75.78
1 1000 10 10 74.73
1 1000 10 100 74.87
1 1000 10 1000 74.40
1 1000 100 1 74.97
1 1000 100 10 75.06
1 1000 100 100 73.68
1 1000 100 1000 72.51
1 1000 1000 1 72.29
1 1000 1000 10 72.02
1 1000 1000 100 71.94
1 1000 1000 1000 70.34

Table 4.9: Tuning the hyperparameters λ0, ν, ω and τ using grid search.

62

λ0 ν ω τ Accuracy (%)
10 1 1 1 65.93
10 1 1 10 67.67
10 1 1 100 63.99
10 1 1 1000 64.67
10 1 10 1 69.97
10 1 10 10 74.92
10 1 10 100 75.13
10 1 10 1000 74.52
10 1 100 1 61.19
10 1 100 10 75.85
10 1 100 100 75.44
10 1 100 1000 75.30
10 1 1000 1 68.35
10 1 1000 10 74.20
10 1 1000 100 74.45
10 1 1000 1000 73.90
10 10 1 1 64.50
10 10 1 10 66.59
10 10 1 100 64.90
10 10 1 1000 61.98
10 10 10 1 69.95
10 10 10 10 75.61
10 10 10 100 75.02
10 10 10 1000 74.63
10 10 100 1 73.26
10 10 100 10 75.19
10 10 100 100 74.77
10 10 100 1000 74.68
10 10 1000 1 58.03
10 10 1000 10 74.83
10 10 1000 100 74.95
10 10 1000 1000 73.83

λ0 ν ω τ Accuracy (%)
10 100 1 1 66.44
10 100 1 10 64.54
10 100 1 100 64.98
10 100 1 1000 62.97
10 100 10 1 68.87
10 100 10 10 75.84
10 100 10 100 75.09
10 100 10 1000 75.41
10 100 100 1 69.45
10 100 100 10 75.41
10 100 100 100 75.74
10 100 100 1000 75.30
10 100 1000 1 72.66
10 100 1000 10 75.19
10 100 1000 100 74.30
10 100 1000 1000 74.03
10 1000 1 1 67.33
10 1000 1 10 63.73
10 1000 1 100 61.84
10 1000 1 1000 60.44
10 1000 10 1 67.40
10 1000 10 10 75.60
10 1000 10 100 75.26
10 1000 10 1000 75.30
10 1000 100 1 72.45
10 1000 100 10 75.44
10 1000 100 100 75.30
10 1000 100 1000 75.03
10 1000 1000 1 66.71
10 1000 1000 10 75.00
10 1000 1000 100 75.07
10 1000 1000 1000 74.42

Table 4.10: Tuning the hyperparameters λ0, ν, ω and τ using grid search.

63

λ0 ν ω τ Accuracy (%)
100 1 1 1 67.36
100 1 1 10 66.39
100 1 1 100 63.79
100 1 1 1000 65.24
100 1 10 1 65.46
100 1 10 10 67.84
100 1 10 100 64.63
100 1 10 1000 60.97
100 1 100 1 72.27
100 1 100 10 56.05
100 1 100 100 66.44
100 1 100 1000 70.18
100 1 1000 1 52.14
100 1 1000 10 71.03
100 1 1000 100 65.30
100 1 1000 1000 73.16
100 10 1 1 65.87
100 10 1 10 65.94
100 10 1 100 67.53
100 10 1 1000 64.05
100 10 10 1 69.18
100 10 10 10 62.42
100 10 10 100 62.87
100 10 10 1000 63.63
100 10 100 1 56.48
100 10 100 10 66.43
100 10 100 100 75.18
100 10 100 1000 75.57
100 10 1000 1 53.74
100 10 1000 10 69.14
100 10 1000 100 75.5
100 10 1000 1000 75.24

λ0 ν ω τ Accuracy (%)
100 100 1 1 64.43
100 100 1 10 65.58
100 100 1 100 65.06
100 100 1 1000 63.42
100 100 10 1 57.59
100 100 10 10 65.14
100 100 10 100 67.08
100 100 10 1000 68.03
100 100 100 1 72.68
100 100 100 10 65.14
100 100 100 100 75.01
100 100 100 1000 75.26
100 100 1000 1 64.70
100 100 1000 10 55.27
100 100 1000 100 75.24
100 100 1000 1000 74.79
100 1000 1 1 65.79
100 1000 1 10 65.15
100 1000 1 100 60.47
100 1000 1 1000 61.25
100 1000 10 1 67.20
100 1000 10 10 63.50
100 1000 10 100 66.72
100 1000 10 1000 61.48
100 1000 100 1 67.65
100 1000 100 10 66.88
100 1000 100 100 75.71
100 1000 100 1000 75.40
100 1000 1000 1 57.90
100 1000 1000 10 69.47
100 1000 1000 100 75.91
100 1000 1000 1000 75.49

Table 4.11: Tuning the hyperparameters λ0, ν, ω and τ using grid search.

64

λ0 ν ω τ Accuracy (%)
1000 1 1 1 64.42
1000 1 1 10 62.57
1000 1 1 100 65.63
1000 1 1 1000 62.00
1000 1 10 1 64.62
1000 1 10 10 65.87
1000 1 10 100 65.36
1000 1 10 1000 65.51
1000 1 100 1 71.64
1000 1 100 10 65.88
1000 1 100 100 61.27
1000 1 100 1000 71.41
1000 1 1000 1 66.75
1000 1 1000 10 74.07
1000 1 1000 100 54.60
1000 1 1000 1000 71.88
1000 10 1 1 63.93
1000 10 1 10 63.35
1000 10 1 100 63.68
1000 10 1 1000 64.02
1000 10 10 1 71.02
1000 10 10 10 65.37
1000 10 10 100 66.78
1000 10 10 1000 64.47
1000 10 100 1 56.41
1000 10 100 10 60.10
1000 10 100 100 68.24
1000 10 100 1000 61.10
1000 10 1000 1 55.50
1000 10 1000 10 66.23
1000 10 1000 100 65.71
1000 10 1000 1000 72.19

λ0 ν ω τ Accuracy (%)
1000 100 1 1 63.52
1000 100 1 10 66.93
1000 100 1 100 65.36
1000 100 1 1000 64.37
1000 100 10 1 55.54
1000 100 10 10 62.08
1000 100 10 100 64.24
1000 100 10 1000 62.66
1000 100 100 1 63.72
1000 100 100 10 69.01
1000 100 100 100 61.42
1000 100 100 1000 64.31
1000 100 1000 1 60.21
1000 100 1000 10 71.92
1000 100 1000 100 67.46
1000 100 1000 1000 75.28
1000 1000 1 1 63.09
1000 1000 1 10 68.08
1000 1000 1 100 63.58
1000 1000 1 1000 59.18
1000 1000 10 1 69.81
1000 1000 10 10 68.01
1000 1000 10 100 67.49
1000 1000 10 1000 66.57
1000 1000 100 1 59.24
1000 1000 100 10 61.69
1000 1000 100 100 66.04
1000 1000 100 1000 61.54
1000 1000 1000 1 71.65
1000 1000 1000 10 58.39
1000 1000 1000 100 71.65
1000 1000 1000 1000 75.59

Table 4.12: Tuning the hyperparameters λ0, ν, ω and τ using grid search.

65

Chapter 5

Performance-Aware Resource Allocation in
the Public Cloud

In the last two chapters, we discussed predictive scheduling to enable improved performance
while optimizing utilization of resources that are already provisioned. In this chapter, we focus our
attention on the problem of provisioning the right amount of resources in the first place.

As companies of all sizes migrate to cloud environments, increasingly diverse workloads are
being run in the Cloud — each with different performance requirements and cost trade-offs [129].
Recognizing this diversity, cloud providers offer a wide range of Virtual Machine (VM) types. For
instance, at the time of writing, Amazon [6], Google [76], and Azure [102] offered a combined total
of over 100 instance types with varying system and network configurations.

In this chapter, we address the fundamental problem of accurately and economically choosing
the best VM for a given workload and user goals. This choice is critical because of its impact
on performance metrics such as runtime, latency, throughput, cost, and availability. Yet deter-
mining or even defining the “best” VM depends heavily on the users’ goals which may involve
diverse, application-specific performance metrics, and span tradeoffs between price and performance
objectives.

For example, Figure 5.1 plots the runtimes and resulting costs of running a video encoding
task on several AWS VM types. A typical user wanting to deploy a workload might choose the
cheapest VM type (m1.large) and paradoxically end up not just with poor performance but
also high total costs. Alternatively, overprovisioning by picking the most expensive VM type
(m2.4xlarge) might only offer marginally better runtimes than much cheaper alternatives like
c3.2xlarge. Thus, to choose the right VM for her performance goals and budget, the user needs
accurate performance estimates.

Recent attempts to help users select VM types have either focused on optimization techniques
to efficiently search for the best performing VM type [4], or extensive experimental evaluation to
model the performance cost trade-off [152]. Simply optimizing for the best VM type for a particular
goal (as in CherryPick [4]) assumes that this goal is fixed; however, different users might prefer
different points along the performance-cost trade-off curve. For example, a user might be willing to

66

0 20 40 60 80 100 120

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

m1.large
c3.xlarge

m3.xlarge
c3.2xlarge

m2.2xlarge
m2.4xlarge

Runtime (seconds)

Total cost (cents)

Total Cost (cents)
Runtime (seconds)

Figure 5.1: Execution time and total cost of a video encoding task on AWS, across various VM types.

tolerate mild reductions in performance for substantial cost savings. In such cases, the user might
want to know precisely how switching to another VM type affects performance and cost.

The alternative, directly modeling the performance-cost trade-off, can be challenging. The
published VM characteristics (e.g., memory and virtual cores) have hard-to-predict performance
implications for any given workload [157, 94, 49]. Furthermore, the performance often depends on
workload characteristics that are difficult to specify [58, 25, 94]. Finally, variability in the choice
of host hardware, placement policies, and resource contention [129] can result in performance
variability [117, 64, 82] that is not captured in the published VM configurations. Recent data
driven approaches like Ernest [152] overcome these limitations through extensive performance
measurement and modeling. However these techniques introduce an O(n2) data collection process
as each workload is evaluated on each VM type.

The movement towards server-less compute frameworks such as AWS Lambda [19], Azure
Functions [20], or Google Cloud Functions [75] may appear to eliminate the challenges of VM
selection, but in fact simply shift the challenges to the cloud provider. While cloud providers may
have detailed information about their resources, they have limited visibility into the requirements of
each workload.

In this chapter, we present PARIS, a Performance-Aware Resource Inference System, which
estimates the performance-cost trade-off for all VM types, allowing users to balance performance
gains with cost reductions. PARIS is applicable to a broad range of workloads and performance
metrics and works across cloud providers. PARIS introduces a novel hybrid offline and online data
collection and modeling framework which provides accurate performance estimates with minimal
data collection, eliminating the O(n2) data collection complexity.

The key insight in PARIS is to decouple VM performance characterization from the characteri-
zation of workload-specific resource requirements. By leveraging a shared profiling framework and
established machine learning techniques PARIS is able to combine these separate stages to achieve
accurate performance predictions for all combinations of workload and VM type.

In the offline stage, PARIS runs a broad set of benchmarks with diverse resource requirements
and collects extensive profiling information for each VM type. Intuitively, the diversity of the
resource requirements in the benchmarks ensures that we observe how each VM type responds to

67

demands on its resources. Because these benchmarks are independent of the query workloads, the
benchmarks only need to be run once for each new VM type.

In the online stage, PARIS characterizes each new query workload by executing a user-specified
task that is representative of her workload on a pair of reference VMs and collecting the same
profiling statistics as in the offline stage. These profiling statistics form a fingerprint characterizing
the workload in the same dimensions as the offline benchmarking process. PARIS then combines
this fingerprint with the offline VM benchmarking data to build an accurate model of workload
performance across all VM types spanning multiple cloud providers.

We demonstrate that PARIS is sufficiently general to accurately predict a range of performance
metrics and their variability for widely deployed batch processing and serving-style workloads
across VMs from multiple public cloud providers. For instance, it reduces the prediction error for
the runtime performance metric by a factor of 4 for some workloads on both AWS and Azure. The
increased accuracy translates into a 45% reduction in user cost while maintaining performance
(runtime).

The key contributions of this work are:

• an experimental characterization of performance trade-off of various VM types for realistic
workloads across Amazon AWS and Microsoft Azure (Sec. 5.1). We believe to be the first to
present this kind of empirical analysis across multiple cloud providers.

• a novel hybrid offline (Sec. 5.3) and online (Sec. 5.4) data collection and modeling framework
which eliminates the O(n2) data collection overhead while providing accurate performance
predictions across cloud providers.

• a detailed experimental evaluation demonstrating that PARIS accurately estimates multiple
performance metrics and their variabilities (P90 values), for several real-world workloads
across two major public cloud providers, thereby reducing user cost by up to 45% relative to
strong baseline techniques (Sec. 5.5.3).

5.1 Insights from Empirical Analysis of Workloads executing
across different Public Clouds

To illustrate the challenges involved in selecting VM types, we evaluated three different workloads
on a range of VM types spanning two cloud providers: Amazon AWS and Microsoft Azure. Below,
we present the complex and often counterintuitive trade-offs between performance and cost that
arise when users attempt to understand performance using only the publicly available details of
cloud environments. Our observations complement other counterintuitive results observed in the
literature [82, 55, 64, 85].

As an example of a software-build system, we studied the compilation of Apache Giraph (see
Figure 5.2a) on a range of compute-optimized instances. As an example serving application, we
ran a YCSB query processing benchmark on the Redis in-memory data-store (Figure 5.2b) on a

68

(a) Building Apache Giraph (b) YCSB-benchmarks Workload A

Figure 5.2: (a) Runtime for building Apache Giraph (lower the better) and (b) Throughput for a 50/50 R/W serving
workload on the Redis in-memory datastore using YCSB (higher the better) across different VM types offered by AWS
and Azure.

range of memory-optimized instances. Finally, as an example of a more complex task that utilizes
multiple resources, we experimented with a compression workload that downloads, decompresses,
and then re-compresses a remote file (Figure 5.3). This task emulates many standard cloud-hosted
applications, such as video transcoding, that utilize network, compute, disk, and memory at different
stages in the computation. We ran the compression workload on specialized as well as general-
purpose cloud VMs.

Bigger is not always better. Often users choose to defensively provision the most expensive
or the “largest” VM type under the assumption that larger or more expensive instances provide
improved performance. This is not always true: for building Giraph, the Azure F8 VM type
performs worse than the F4 VM type in spite of being larger. Similarly, for the YCSB serving
benchmark, the throughput does not improve much when going from r4.xlarge to the more
expensive r4.2xlarge, making r4.xlarge a more cost-efficient choice. This suggests that
provisioning more resources than the workload needs might be unnecessary for good performance.

Similar configurations can provide different performance. For the YCSB workload (Fig-
ure 5.2b), the AWS R4 family performs worse than Azure Dv2 in spite of having a very similar
configuration. By contrast, the R3 and R4 families perform similarly despite the latter using a newer
generation processor. These observations indicate other factors at play: differences in the execution
environment, and hardware or software differences that are not reflected in the configuration. Thus,
VM type configuration alone does not predict performance.

69

(a) Compute-optimized VMs

(b) Memory-optimized VMs

(c) General-purpose VMs

Figure 5.3: Runtimes for a compression workload across VM types from different families offered by AWS and Azure.
In plot (c), note the different scale on y-axis.

70

Optimizing for mean performance may not optimize for the tail. For the YCSB workload
(Figure 5.2b), Azure VMs provide improved throughput while AWS VMs provide more consistent
performance. A developer of a cloud-hosted service might prefer a guaranteed throughput to
improved but less predictable throughput. For the compression workload (Figure 5.3), some of the
Azure VMs showed reduced variability, even when they lead to a longer expected runtime. Thus,
the best VM type may differ depending on whether we are interested in the mean or the tail.

Workload resource requirements are opaque. For workloads that use different resources at
different points during their execution, it can be hard to figure out which resources are the most
crucial for performance [118]. This is especially challenging for hosted compute services such as
AWS-Lambda where the workload is treated as a black-box function. For the compression workload
(Figure 5.3), memory- and compute-optimized VM types offered lower runtimes compared to
general purpose VM types, indicating that memory or compute, or both, might be the bottleneck. Yet,
counterintuitively, going from r4.l to r4.xl, or c4.xl to c4.2xl actually hurts performance.
The processor generation remains the same across the considered VM types. We believe that the
counterintuitive performance observed might be because of the underlying execution environment,
placement policies, issues of performance isolation, or the non-linear dependence of performance
on resource availability. None of these factors is captured in the resource configuration alone.

Monitoring resources consumed while a task is running might help identify resources utilized
for that run, but will not tell us how performance is impacted in constrained settings or on different
hardware / software. Profiling the workload on each VM across all cloud providers will be
informative but prohibitively expensive. Thus, we need a cheaper solution that can nevertheless
predict the performance of arbitrary workloads on all VM types accurately.

5.2 PARIS: System Overview
PARIS enables cloud users to make better VM type choices by providing performance and cost
estimates on different VM types tailored to their workload.

PARIS runs as a light weight service that presents a simple API to the cloud user. The cloud
user (or simply “user”) interacts with PARIS by providing a representative task of her workload,
the desired performance metric, and a set of candidate VM types. A representative task is user’s
code with a sample input data. The performance metric is either one of a few pre-defined metrics
implemented in PARIS, or a snippet of code that implements a function of these metrics. PARIS
then predicts the performance and cost for all of the provided candidate VM types. The user can
then use this information to choose the best VM type for any performance and cost goals. For the
user, the interaction looks like this:

Get performance and cost est. for targetVMs
perfCostMap = predictPerfCost(userWorkloadDocker, perfMetric,

candidateVMs)
Choose VM with min cost subj. to a perf. req.
chosenVMType = minCost(perfCostMap, perfReq)

71

To make accurate performance prediction, PARIS needs to model two things: a) the resource
requirements of the workload, and b) the impact of different VM types on workloads with similar
resource requirements. However, exhaustively profiling the user’s workload on all VM types is
prohibitively expensive. To avoid the cost overhead, PARIS divides the modeling task into two
phases (Figure 5.4): a one-time, offline, extensive VM type benchmarking phase (Section 5.3) and
an online, inexpensive workload profiling phase (Section 5.4). We provide a high-level overview of
each phase below and then elaborate on each phase in the subsequent sections.

In the offline VM-benchmarking phase, PARIS uses a Profiler to run a suite of benchmarks
for each VM type and collect detailed system performance metrics. The benchmark suite is
chosen to span a range of realistic workload patterns with a variety of resource requirements. This
benchmarking can be run by the cloud providers or published1 by a third party. As new VM types
are introduced, the benchmark only needs to be rerun on those new VM types. The offline phase
has a fixed one-time cost and removes the extensive profiling and data collection from the critical
path of predicting performance characteristics of new user workloads.

In the online phase, users provide a representative task and performance metric as described
above. PARIS first invokes a Fingerprint-Generator that runs the representative task on a small
(typically, 2) set of reference VM types and collects runtime measurements. These measurements
capture the resource usage patterns of the task and form the workload fingerprint. We choose
reference VM types that are farthest apart in terms of their configurations, to capture workload
performance in both resource-abundant and resource-constrained settings. Note that while the
fingerprinting process incurs additional cost, this cost is small and independent of the number of
candidate VM types.

PARIS then combines the fingerprint with the offline benchmarking data to construct a machine
learning model that accurately estimates the desired performance metrics as well as the 90th

percentile values for corresponding performance metrics for the user workload2. Finally, PARIS
assembles these estimates into a performance-cost trade-off map across all VM types.

5.3 Offline VM-benchmarking phase
In the offline benchmarking phase, the profiler uses a set of benchmark workloads to characterize
VM types. These benchmark workloads are chosen to be diverse in terms of their type, the
performance metrics they use, and their resource requirements (Figure 5.5). This allows PARIS to
characterize how the different VM types respond to different patterns of resource usage. The set of
benchmark workloads is not exhaustive but is intended to span the space of workload requirements.
Below we describe the benchmark workloads in more detail.

We used the join and aggregation queries of Hive [146] as representative examples of OLAP-
style analytical queries. These model complex analytical queries over structured relational tables
and exercise CPU, disk (read), and network. As a representation of latency-sensitive serving
workloads in the cloud, we added YCSB core benchmark workloads [50] with Aerospike [1],

1We plan to publish our benchmark data across VM types.
2PARIS can predict higher percentiles too, but these require more samples during fingerprinting, raising user costs.

72

Profiler
Model
builder

Benchmark
Workloads

Offline Phase

Performance &
Variance
Predictor

Online Phase

VM1

VM11

Fingerprint
Generator

VM types
(increasing cost per hour)

Pe
rf

or
m

an
ce

m
et

ri
c

C
os

t

Performance-Cost
Trade-off Map

Predicted performance
metric and variance

Representative user workload task
Desired performance metric

Candidate VMs
Input :

Figure 5.4: Architecture of PARIS (Sec. 5.2).

Common cloud-hosted
Resource-intensive applications
(compression)

OLAP-style
Queries

(join, aggregation
Hive queries) OLTP-style latency-sensitive queries

(YCSB benchmark with MongoDB,
Redis, Cassandra, and Aerospike)

Figure 5.5: Benchmark workloads chosen from a diverse set of cloud use-cases [18].

MongoDB [46], Redis [37], and Cassandra [100] datastores. Finally, as an example of a multi-stage
workload, we constructed a benchmark that simulates a hosted compression service, using the
squash compression benchmark [139]. This benchmark downloads a compressed file over the
network and then decompresses and re-compresses the file thereby exercising compute, memory
and disk resources.

The Profiler: The profiler records the performance of each benchmark task for a range of metrics.
To estimate performance variability and p90 values, each task is run 10 times on each VM type
and the empirical 90th percentile performance is computed over all 10 trials. We later explain this
in detail in Section 5.5.2. Ten trials is the minimum needed to compute the 90th percentile. This
number can be trivially increased, but note that while more trials will improve accuracy, they will
also proportionally increase cost.

73

During each run, the profiler also records aggregated measurements that represent the task’s
resource usage and performance statistics. This leverages instrumentation mechanisms that are in
place in most of today’s infrastructure [129]. Concretely, we used Ganglia [107] to instrument the
VMs to capture performance and resource counters at a regular 15 second intervals, and record the
average (or sum, depending on the counter) of these counters over the task’s run. We collected
about 20 resource utilization counters spanning the following broad categories:

(a) CPU utilization: CPU idle, system, user time, and CPU utilization in the last 1, 5, and 15
minutes.

(b) Network utilization: Bytes sent and received.

(c) Disk utilization: Ratio of free to total disk space, I/O utilization in the last 1, 5, and 15
minutes

(d) Memory utilization: Available virtual, physical, and shared memory, and the cache and
buffer space.

(e) System-level features: Number of waiting, running, terminated, and blocked threads and the
host load in the last 1, 5, and 15 minutes.

5.4 Online performance prediction
As described earlier (Sec. 5.2), in the online phase, users provide PARIS with a representative task
from their workload, a performance metric, and a set of candidate VM types.

PARIS first invokes the Fingerprint-Generator, which runs the user-specified task on the pre-
defined set of reference VM types3, and in the process uses the profiler described above to collect
resource usage and performance statistics. The user-defined performance metric is used to measure
performance. Because we want to predict the 90th percentile performance, we run the task 10 times
on each reference VM type and record the 90th percentile performance on these reference VMs. The
resource usage measurements, and the mean and 90th percentile performance on the two reference
VM types, are put together into a vector F called the workload fingerprint. Intuitively, because
the fingerprint records resource usage information and not just performance, this fingerprint can
help us understand the resource requirements of the task. This can help us predict the workload’s
performance on other VM types.

The fingerprint tells us the resources used by the task, and the VM type configuration tells
us the available resources. For a single task in isolated environments, if the relationship between
its performance and the available resources is known, then this information is enough to predict
performance. For example, if, when run on a large machine, the profile indicates that the task used
2 GB of memory, and it performs poorly on a reference VM type with 1 GB of memory, then it
might perform poorly on other VM types with less than 2 GB of memory. Otherwise, if the task

3The reference VM types can also be chosen by the user.

74

Slow Fast

Slow Fast

Y

YY

Y

N

N

N

N

Does task require > m GB memory?

Does task do > n disk reads per sec? Does target VM have > m GB memory?

Does target VM have SSD?

Figure 5.6: A possible decision tree for predicting performance from the task fingerprint and VM type configuration.

is performing significant disk I/O and spends considerable time blocked on I/O-related system
calls, then I/O might be the bottleneck. This kind of non-linear reasoning can be represented as a
decision tree comprising of a sequence of if-then-else statements (Figure 5.6). Given the workload
fingerprint and the candidate (or target) VM configuration, we follow the appropriate path down the
tree, finally leading to a performance prediction. Note that a decision tree can make fairly complex,
non-linear decisions.

Manually specifying a decision tree for each workload would be prohibitively challenging. We
therefore leverage the data collected from the extensive offline benchmarking phase in conjunction
with established random forest algorithms to automatically train a collection of decision trees for
each workload. Random forests extend the reasoning behind decision trees to a collection of trees
to provide more robust predictions [35].

5.4.1 Training the Random Forest Model
To accurately predict the average and tail workload performance using the offline benchmark data
we train a random forest model which approximates the function:

g(fingerprint, target vm)→ (perf, p90)

To learn this function we transform the offline benchmarking dataset into a training dataset where
each benchmark has a corresponding fingerprint and known mean and tail performance for all target
VM types.

The fingerprint for each benchmark task is easily obtained by putting together the resource
utilization counters collected while running the task on the reference VMs. Because we profile each
benchmark on each VM type in the offline phase, these resource utilization counters are available
irrespective of the choice of reference VM types. The target VM in our model is characterized
by the VM configuration consisting of the number of cores (Azure) or vcpus (AWS), amount of
memory, disk size, and network performance and bandwidth.

Similarly, using the performance statistics collected during the offline benchmarking phase in
conjunction with the user-specified performance metric, we compute both mean and tail performance

75

for each benchmark which we use as the targets when training our model. We feed this training
dataset to an off-the-shelf random forest training algorithm [121]. In our experiments, training a
random forest predictor took less than 2 seconds in most cases. As an implementation detail, instead
of predicting absolute performance, we predict the performance scaling relative to the first reference
VM type. We found that this led to a simpler learning problem.

5.4.1.1 Invoking the performance predictors

Once the model builder has trained random forests for the performance metric of interest, for each
candidate VM type j, we feed the user task fingerprint F and the VM configuration cj as inputs
to the two random forests. The random forests output the mean and 90th percentile performance
relative to the first reference VM. We get absolute performance by multiplying these predictions
with the corresponding mean and 90th percentile performance on the first VM type.

5.4.1.2 Performance-Cost Map

Finally, PARIS uses the performance predictions to also estimate the cost for each VM type. For
this we assume that the cost is a function of the performance metric and the published cost per hour
of the VM, that is either known (for standard performance metrics such as throughput or latency) or
specified by the user as an additional argument in the call to PARIS. For example, for a serving-style
workload where performance is measured by latency, then the total cost per request would be the
latency times the published cost per hour.

PARIS’ estimated performance-cost trade-off enables users to implement a high-level policy to
pick a VM type for a given workload. For example, a policy could be to choose a VM type for a
workload that has: (a) an estimated cost below a certain constraint C and (b) the best performance
in the worst case. We specify the worst case performance with a high percentile execution time,
such as 90th percentile. An alternative policy might pick an “optimal” VM type that achieves the
least cost and the highest predictable worst-case performance.

5.4.2 Interpreting the Learned Models
Figure 5.7 illustrates the top 5 features that the random forest considers important, for runtime
prediction on AWS and Azure. Here feature importance is based on the intuition that the decision
tree will make early splits based on the most informative features, and then gradually refine its
prediction using less informative features. Thus important features are those which frequently
appear near the top of the decision tree. We find that various measures of CPU usage and the
number of CPUs in the target VM figure prominently, for both AWS and Azure. This makes sense,
since in general the more CPUs, the more the compute available to the task. However, measures of
memory usage and disk utilization are also important. Note that the actual features that are used to
estimate performance will depend on the path taken down the tree, which in turn will be different
for different workloads.

76

Figure 5.7: Importance of the various features for AWS (left) and Azure (right). The random forests were trained to
predict runtime using a compression benchmark workload suite (See Section 5.5.2). Reference VMs used: c3.large
and r3.2xlarge for AWS and F2 and D13v2 for Azure.

5.5 Evaluation
In this section we answer following questions:

1. Prediction accuracy (Section 5.5.3): How accurately does PARIS predict the mean and 90th

percentile values for different performance metrics?

2. Robustness (Section 5.5.4): Is PARIS robust to changes in (a) the number and choice of
VM types (5.5.4.1, 5.5.4.2), (b) the benchmark workloads used in the offline profiling phase
(5.5.4.5), and (c) the choice of modeling technique (regressor) (5.5.4.3, and 5.5.4.4)?

3. Usefulness (Sections 5.5.5, 5.5.6): (a) Can we convert PARIS’ performance estimates into
actionable information (5.5.5) that reduces cost (5.5.6)?

5.5.1 Baselines
No off-the-shelf approach exists for predicting the performance of arbitrary workloads on all VM
types in the cloud. Often users defensively provision the most expensive VM type, but this can lead
to excessive costs without performance gains (Sec. 5.1). Alternatively, exhaustively profiling the
workload on every available VM type provides accurate performance estimates, but is prohibitively
expensive.

Instead, we chose baselines described below that are similar to PARIS in terms of user cost, use
the published VM configurations intelligently, and correspond to what users might do given the
available information and a tight budget:

(a) Collaborative Filtering: Similar to PARIS, Paragon [57] and Quasar [58] also work by
profiling key performance metrics and extrapolating performance on different VM types using matrix
completion or collaborative filtering [127]. We compare PARIS with a representative collaborative
filtering method: The initial dense matrix is generated using PARIS’ offline benchmarking data.
Benchmark workload tasks form the rows of this matrix, the VM types form the columns, and each
cell (i, j) in the matrix contains the value of the performance metric for i-th benchmark workload

77

task on the j-th VM type. When a user-workload task is profiled on two VM types, we append a
row with only two values corresponding to those two VMs to this matrix. Using matrix completion,
we get the performance prediction on rest of VM types in the matrix for the user workload task.

(b) Baseline1: To reduce the cost, a user might profile her workload on the “smallest” and “largest”
VM types according to some resource, and then take average performance to be an estimate on an
intermediate VM type. Concretely, suppose VM type 1 obtains performance, (for instance, runtime),
p1, and VM type 2 achieves performance p2. Then for a target VM type, one might simply predict
the performance to be ptarget = p1+p2

2
.

(c) Baseline2: Instead of simply averaging the performance, Baseline2 interpolates performance
based on published configurations. Concretely, suppose VM type 1 has memory m1 and gets
performance p1, and VM type 2 has memory m2 and gets performance p2. Then for a VM
type offering memory m, one might simply predict the performance to be pmemory(m) = p1 +
p2−p1
m2−m1

(m −m1). Since the user may not know which resource is important, she might do such
linear interpolation for each resource and average the predictions together.

5.5.2 Experimental Set-up
We evaluated PARIS on AWS and Azure, using two widely recognized types of cloud workloads [9]:
(a) Applications such as video encoding, and compression, and (b) Serving-style latency and
throughput sensitive OLTP workloads.

Common cloud-hosted applications: Video encoding and compression are common use-cases
of the cloud. We used the squash compression library [139], an abstraction layer for different
compression algorithms that also has a large set of datasets. For a video encoding workload, we
used libav [115], a set of open source audio and video processing tools. We set both of these
applications in the cloud, to first download the relevant input data and then process it. The video
encoding application first downloads a video using the specified URL, then converts it to a specified
format using various frame-rates, codecs, and bit-rates. The compression workload downloads
a compressed file, decompresses it, and re-compresses it using different compression algorithms.
These workloads have different resource usage patterns. To show that PARIS can generalize well
across workloads, we chose the compression application for the offline benchmarking and tested the
models using the video encoding application (Table 5.1).

Serving-style workloads: We used four common cloud serving datastores: Aerospike, MongoDB,
Redis, and Cassandra. These systems provide read and write access to the data, for tasks like serving
a web page or querying a database. For querying these systems, we used multiple workloads from
the YCSB framework [50]. We used the core workloads [163], which represent different mixes of
read/write operations, request distributions, and datasizes. Table 5.2 shows the benchmark serving
workloads we used in the offline phase of PARIS. For testing PARIS’ models, we implemented new

78

Workload Number of tasks Time (hours)

Cloud hosted compression (Benchmark set) 740 112
Cloud hosted video encoding (Query set) 12,983 433
Serving-style YCSB workloads D, B, A (Benchmark set) 1,830 2
Serving-style new YCSB workloads (Query set) 62,494 436

Table 5.1: Details of the workloads used and Dataset collected for PARIS’ offline (benchmark) and online (query)
phases.

Workload Operations Example Application

D Read latest: 95/5 reads/inserts Status updates
B Read mostly: 95/5 reads/writes Photo tagging
A Update heavy: 50/50 reads/writes Recording user-actions

Table 5.2: Serving benchmark workloads we used from YCSB. We did not use the Read-Only Workload C, as our
benchmark set covers read-mostly and read-latest workloads.

realistic serving workloads by varying the read/write/scan/insert proportions and request distribution,
for a larger number of operations than the benchmark workloads [164].

Dataset details: Table 5.1 shows the number of tasks executed in the offline phase (benchmark
set) and the corresponding amount of time spent. Also shown are the workloads and the number of
query tasks used for online evaluation (query set).

Metrics for evaluating model-predictions: We use the same error metrics for our predictions of
different performance metrics. We measured actual performance by running a task on the different
VM types as ground truth, and computed the percentage RMSE (Root Mean Squared Error), relative
to the actual performance:

%Relative RMSE =

√√√√ 1

N

N∑
i=1

(
pi − ai
ai

)2

∗ 100

where N is the number of query tasks, and pi and ai are the predicted and actual performance of the
task respectively, in terms of the user-specified metric. We want the % Relative RMSE to be as low
as possible.

RMSE is a standard metric in regression, but is scale-dependent: an RMSE of 10 ms in runtime
prediction is very bad if the true runtime is 1 ms, but might be acceptable if the true runtime is 1000
ms. Expressing the error as a percentage of the actual value mitigates this issue.

79

5.5.3 Prediction accuracy of PARIS
We first evaluate PARIS’ prediction accuracy by comparing PARIS’ predictions to the actual
performance we obtained as ground truth by exhaustively running the same user-provided task on
all VM types. We evaluated PARIS on both AWS and Azure for (a) Video encoding tasks using
runtime as the target performance metric, and (b) serving-type OLTP workloads using latency and
throughput as the performance metrics.

Overall Prediction Error: Figure 5.8 compares PARIS’ predictions to those from Baseline1 and
Baseline2 for the mean and 90th percentile runtime, latency and throughput. Results are averaged
across different choices of reference VMs, with standard deviations shown as error bars.

PARIS reduces errors by a factor of 2 compared to Baseline1, and by a factor of 4 compared
to Baseline2. Note that the cost of all three approaches is the same, corresponding to running
the user task on a few reference VMs. This large reduction is because the nonlinear effects of
resource availability on performance (such as hitting a memory wall) cannot be captured by linear
interpolation (Baseline2) or averaging (Baseline1).

To better understand why Baseline2 gets such a high error for some VM types, we looked at how
predictions by Baseline2 varied with the different resources of the target VMs (num CPUs, memory,
disk). In one case, when using m3.large and c4.2xlarge as our reference VMs, we observed
that surprisingly, Baseline2 predicted higher runtimes for VM types with higher disk capacity. Why
did the baseline latch on to this incorrect correlation? In this example, the larger reference VM
we used, c4.2xlarge, offered lower runtimes than the smaller reference VM used, m3.large;
however, the smaller reference VM had larger disk (32GB) than the larger reference VM.

This reveals a critical weakness of the baseline: from only the performance on two reference
VMs and the published configurations, the baseline cannot know which resource is important for
workload performance. PARIS, on the other hand, looks at the usage counters and might figure out
that disk is not the bottleneck for this workload.

We also note that prediction errors are in general larger for Azure for latency and throughput
prediction on the OLTP workloads. We surmise that this is probably due to the higher variability of
performance on Azure instances for these workloads, which we pointed out in Section 5.1.

Comparison with Collaborative Filtering Baseline: The prediction errors for mean runtime,
mean latency and mean throughput using the collaborative filtering baseline were higher than
Baseline1, Baseline2, and PARIS. For mean runtime prediction, the % relative RMSE obtained using
collaborative filtering was over 543.5%, and for mean latency and mean throughput, it was 80.8%
and 43.9% respectively on AWS. This low performance, even relative to the other two baselines, is
possibly because matrix completion techniques ignore both the VM configuration and the resource
utilization information used by PARIS. Given the higher error of this baseline compared to the the
other two baselines, we drop it from further evaluation results and discussion.

Prediction Error per VM-type: Figure 5.9 shows how the prediction error breaks down over
different target VMs. This is a representative result, with mean latency as the performance metric.

80

0
50
100
150
200
250
300
350

AWS Azure

%
R

el
at

iv
e

R
M

SE

Baseline1 Baseline2 PARIS

(a) Prediction target: Mean runtime

0
50

100
150
200
250
300
350

AWS Azure

%
R

el
at

iv
e

R
M

SE

Baseline1 Baseline2 PARIS

(b) Prediction target: p90 runtime

0
20
40
60
80

100
120
140
160

AWS Azure

%
R

el
at

iv
e

R
M

SE

Baseline1 Baseline2 PARIS

(c) Prediction target: Mean latency

0
20
40
60
80

100
120
140
160

AWS Azure
%

R
el

at
iv

e
R

M
SE

Baseline1 Baseline2 PARIS

(d) Prediction target: p90 latency

0
20
40
60
80

100
120
140
160

AWS Azure

%
R

el
at

iv
e

R
M

SE

Baseline1 Baseline2 PARIS

(e) Prediction Mean throughput

0
20
40
60
80

100
120
140
160

AWS Azure

%
R

el
at

iv
e

R
M

SE

Baseline1 Baseline2 PARIS

(f) Prediction target: p90 throughput

Figure 5.8: Prediction Error for Runtime, Latency, and Throughput (expected and p90) for AWS and Azure. a, b:
Runtime prediction for video encoding workload tasks, c-f: Latency and throughput prediction for Serving-style latency
and throughput sensitive OLTP workloads. The error bars show the standard deviation across different combinations of
reference VMs used.

Reference VM types are m3.large and c4.2xlarge on AWS, and A2 and F8 on Azure. PARIS’
errors are consistently low across VM types and much lower than both baselines.

As before, Baseline2 discovers spurious correlations and thus often performs worse than
Baseline1. Further, both baselines perform significantly worse than PARIS for most VM types,
perhaps because they lack access to (i) PARIS’ offline VM benchmarking data, and (ii) PARIS’
resource-utilization statistics, collected in the offline phase as well as when fingerprinting in the
online phase.

81

0

20

40

60

80

100
%

 R
el

at
iv

e
R

M
SE

Baseline1 Baseline2 PARISAWS

0

100

200

300

%
 R

el
at

iv
e

R
M

SE Baseline1 Baseline2 PARISAzure

Figure 5.9: Errors per target VM type for predicting mean latency, on AWS (top) and Azure (bottom). Reference VMs
used on AWS: m3.large and c4.2xlarge, and on Azure: A2 and F8. Error bars show the standard deviation in %
Relative RMSE across the set of over 62K latency-sensitive YCSB queries run on Aerospike, Cassandra, MongoDb,
and Redis data-stores.

5.5.4 Robustness
PARIS makes a few choices, such as the number and types of reference VMs, modeling algorithms,
values of hyperparameters for the performance predictor models, and benchmark workloads. In this
section, we evaluate PARIS’ sensitivity to these different choices.

5.5.4.1 Sensitivity to the choice of reference VM types

We experimented with several choices for the 2 reference VM types. We picked pairs of VM types
that were the farthest apart in terms of a particular resource (number of cores, amount of memory,
disk or storage bandwidth). We also experimented with randomly chosen reference VMs. In general,
we found PARIS’ predictors to be robust to the choice of reference VM types.

As a representative result, Figure 5.10 compares PARIS’ mean and p90 runtime predictions
to the baselines for several reference VM choices using the video encoding workload. PARIS

82

57.91

47.89

50.97

48.66

47.18

53.85

48.25

46.70

0 200 400

m1.l & m2.4xl

m1.l & m3.2xl

c3.l & c4.2xl

c4.l & c3.2xl

r3.l & r3.2xl

m3.l & c4.2xl

m1.l & r3.2xl

c3.l & r3.2xl

% Relative RMSE

(a) Mean Runtime prediction on AWS

57.59

48.04

51.33

48.64

46.74

51.72

48.26

46.45

0 200 400

m1.l & m2.4xl

m1.l & m3.2xl

c3.l & c4.2xl

c4.l & c3.2xl

r3.l & r3.2xl

m3.l & c4.2xl

m1.l & r3.2xl

c3.l & r3.2xl

% Relative RMSE

(b) p90 runtime prediction on AWS

47.36

55.34

56.35

54.76

55.39

0 200 400

A2 & A4v2

A2 & A7

A2 & F8

A2v2 & D13v2

F2 & D13v2

% Relative RMSE

(c) Mean Runtime prediction on Azure

45.47

54.62

55.85

53.77

55.75

0 200 400

A2 & A4v2

A2 & A7

A2 & F8

A2v2 & D13v2

F2 & D13v2

% Relative RMSE

Baseline1

Baseline2

PARIS

(d) p90 runtime prediction on Azure

Figure 5.10: Sensitivity of PARIS to the choice of Reference VMs. Errors in predicting mean runtime and 90th

percentile runtime for video encoding tasks using different reference VM types on AWS (a and b) and Azure (c and d)
(Sec. 5.5.4.1).

is both more accurate and more consistent across different reference VM choices. Thus, PARIS
maintains accuracy irrespective of the choice of reference VM types. The profiling information used
by PARIS is consistent and reliable, even when the performance on the two reference VM types is
not informative. Further, separate predictors for each selection of reference VM types allow PARIS
to learn how performance on the reference VM types extrapolates to other VM types. In contrast,
with only the runtime on the two VMs and their published configurations to rely on, the baseline
latches on to spurious correlations, and is thus inaccurate.

83

5.5.4.2 Sensitivity to number of reference VMs

We experimented with increasing the number of reference VMs from 2 (m3.large and
c4.2xlarge) to 3 (m3.large, c4.2xlarge and c3.large) and 4 (m3.large,
c4.2xlarge, c3.large, and c3.xlarge). We found that latency and throughput pre-
diction error decreased slightly or remained the same as the number of reference VM types
increased. % Relative RMSE for latency prediction remained around 9%, while for throughput
prediction, it decreased from 11.21% with 2 reference VMs to 10.38% with 3 and 10.27% with 4.

Similarly on Azure, the latency prediction error dropped slightly from 22.89% with 2 reference
VMs (A2 and A7) to 21.85% with an additional reference VM (D13v2) and to 19.69% with a 4th

additional reference VM (F2). Throughput prediction error similarly decreased from 24.69% (2
reference VMs) to 18.56% and 18.21% respectively.

This indicates that PARIS is robust to the number of reference VM types and is able to make
accurate predictions with only 2 reference VM types. This is because of the informative profiling
data used by PARIS. To capture how performance varies across VM types, we need to profile using
at least two reference VMs.

5.5.4.3 Importance of the choice of regressor

Besides random forests, we also experimented with linear regression and decision trees for through-
put and latency prediction on AWS (Figure 5.11). We note that similar patterns emerged using
Azure VMs. Linear regression performs the worst as it isn’t able to capture non-linear relationships
between resource utilization and performance, but owing to the availability of resource usage
counters still performs better than Baseline2. Regression trees and forests perform equally better,
but the forest provides better accuracy by combining complementary trees.

5.5.4.4 Sensitivity to random forest hyperparameters

Figure 5.12 shows the percentage relative RMSE of PARIS’ latency and throughput predictors for
different values of the two most important hyperparameters used by the random forest algorithm: (i)
Number of features used per tree (NF), and (ii) Maximum depth of the trees (MD). The predictors
for latency and throughput achieve comparable accuracies across the different values of NF and
MD. This suggests that the predictors are robust to hyperparameter choices.

5.5.4.5 Sensitivity to benchmark workloads

Figure 5.13 shows the percentage relative RMSE of PARIS’ latency and throughput predictors when
one of the benchmark workloads is removed from the training set at a time. This figure shows
the error averaged over different combinations of reference VM types and the error bars indicate
the standard deviation. The predictors achieve comparable accuracy on removal of a benchmark
workload. We observed a similar trend using the data on Azure for runtime, latency and throughput
predictors of PARIS. This shows that the predictors are robust to different choices of the benchmark
workloads.

84

37.4 38.2 39.7

14.0 18.0

52.6 53.1

15.4 14.7
17.4

16.3

20.1

12.5
9.3

13.1 11.1
13.2

17.6

13.1 12.5
9.0

0

20

40

60

c3.large &
i2.2xlarge

c3.large &
m2.4xlarge

c3.large &
r3.2xlarge

m1.large &
m2.4xlarge

m1.large &
r3.2xlarge

m3.large &
c3.2xlarge

m3.large &
i2.2xlarge

%
 R

el
at

iv
e

R
M

SE
Linear Regression
Regression Tree
Random Forests

AWS

(a) Latency prediction

23.6

47.6
40.4

18.6 17.4

35.1 34.3

18.9 18.3 21.6
20.9

16.2

14.4 12.116.2 14.8
18.1

27.3

11.7 10.0 8.3

0

20

40

60

c3.large &
i2.2xlarge

c3.large &
m2.4xlarge

c3.large &
r3.2xlarge

m1.large &
m2.4xlarge

m1.large &
r3.2xlarge

m3.large &
c3.2xlarge

m3.large &
i2.2xlarge

%
 R

el
at

iv
e

R
M

SE

Linear Regression
Regression Tree
Random Forests

AWS

(b) Throughput prediction

Figure 5.11: Prediction errors for different regressors using different choices of reference VM types on AWS
(Sec. 5.5.4.3)

5.5.5 From Estimated Performance to Action
PARIS presents its performance predictions as a performance-cost trade-off map that maps each
VM type to the corresponding performance-cost trade-off, for a given user workload. We first
qualitatively explain why we expect this map to be useful and then quantitatively show cost-savings
in the next section.

Why do common VM selection strategies fail? Without good estimates of performance or cost,
users wanting to deploy workloads on the cloud might:

(a) Try to minimize cost by choosing the cheapest VM.

(b) Defensively choose a large enough VM, assuming ‘the higher the cost, the better the perfor-
mance’, or

(c) Pick the largest VM cheaper than a cost constraint.

85

11.7 13.3 12.6 13.7 13.6 13.713.5
16.3 15.2 16.3 17.0 17.1

0

10

20

30

MD=10
NF=All

MD=30
NF=All

NF=10
MD=10

NF=10
MD=30

NF=20
MD=10

NF=20
MD=30

%
 R

el
at

iv
e

R
M

SE Latency ThroughputAWS

Figure 5.12: Error of PARIS’ latency and throughput predictors for different random forest hyperparameters, for test
YCSB workloads on Aerospike, MongoDB, Redis, and Cassandra datastores, on AWS. Reference VMs: c3.large &
i2.2xlarge. (Sec. 5.5.4.4)

12.4 12.4 12.112.6 12.6 12.6

0

10

20

30

Benchmark D removed Benchmark B removed Benchmark A removed

%
 R

el
at

iv
e

R
M

SE Latency ThroughputAWS

Figure 5.13: Error of PARIS’ latency and throughput predictors by removing one benchmark workload at a time,
averaged across reference VM types combinations on AWS (Sec. 5.5.4.5).

Figure 5.1 shows the actual performance and cost for a video encoding task on each VM type.
Note that this information is unavailable to users unless they are willing to incur heavy profiling-
costs. We can see that strategy a) would choose m1.large, and lead to higher costs and higher
and less predictable runtimes, possibly violating Service Level Objectives (SLOs): a bad decision.
Strategy b) would select m2.4xlarge and keep runtime low and predictable but incur higher
costs than an alternative such as c2.2xlarge, which also provides similar runtime. Strategy c),
while reasonable, might still lead to sub-optimal choices like m3.xlarge, which offers worse
performance than c3.2xlarge for higher cost. Choosing a VM from over a 100 types across
multiple cloud providers is even harder.

How does PARIS help? PARIS generates a performance-cost trade-off map with predictions
of mean and p90 values of performance according to the user-specified performance metric and
tailored to a user-specified task that represents her workload. Figure 5.14 shows such a trade-off
map with predicted latencies (top) and corresponding task completion costs for a representative
task consisting of a set of 225K YCSB queries on a Redis data-store. The p90 values are shown
as error bars. The X-axis has different AWS and Azure VM types in an increasing order of their
cost-per-hour. The reference VMs were A2 and F8 for Azure and c4.2xlarge and m3.large
for AWS.

The user can use this map to choose the best VM for any performance and cost goals, then

86

0

20

40

60

80

La
te

nc
y

in
 s

ec
on

ds Predicted Latency for user-specified representative user-workload task

0

0.2

0.4

0.6

0.8

1

To
ta

l C
os

t i
n

ce
nt

s

Estimated Cost for the corresponding user-specified representative user-workload task

0

0.2

0.4

0.6

0.8

1

To
ta

l C
os

t i
n

ce
nt

s Estimated Cost for the corresponding user-…
Groundtruth: Distribution of Actual Latencies observed for new query tasks for the same user-workload

Figure 5.14: Performance-cost trade-off Map generated by PARIS using user-specified representative task that consisted
of a set of 225K YCSB queries with a mix of 10/90 Reads/Writes, on a Redis data-store with 225K records. X-axis:
AWS and Azure VM types ordered by increasing cost per hour. Reference VMs: A2, F8 for Azure and c4.2xlarge,
m3.large for AWS. Top: Predicted mean and p90 latencies (shown by whiskers). Middle: Estimated cost in cents
for the representative task. Bottom: Distribution of actual observed latencies across different AWS and Azure VM
types, for a set of 2.5K query user-tasks on Redis. (Sec. 5.5.5).

run their entire workload on the chosen VM. The last plot in Figure 5.14 shows the true latencies
observed when all query tasks from the user workload are run on each VM. PARIS’ predictions
match these true latencies well. As before, the latencies do not directly correlate with the published
cost-per-hour of the VMs; F2, for instance, achieves lower latencies than A4v2. PARIS predicts
these counterintuitive facts correctly.

5.5.6 Quantifying cost savings
PARIS offers users considerable flexibility in choosing their own performance and cost goals. The
precise gains a user gets from PARIS will depend on these goals. Nevertheless, below we consider
two example policies that the user might follow, and quantify cost savings for each.

87

45.3

25.4 23.9 19.8 19.613.8

43.7

22.0 20.2 20.2

0

20

40

60

80

100

β=0.9 β=0.95 β=1 β=1.05 β=1.1

%
 R

ed
uc

tio
n

in
 C

os
t

Policy I Poliy II

Example policies enabled by PARIS
resulting in cost reduction

AWS

Figure 5.15: Percentage reduction in user costs enabled by PARIS’ predictors over the baseline predictors on AWS for a
number of policies. Policy I chooses the VM type with least predicted cost provided mean runtime ≤ β times the mean
across VMs. Policy II is similar but thresholds p90 values instead. (Sec. 5.5.6.1).

5.5.6.1 Reduced user costs through better decisions

We performed this experiment on AWS, using YCSB-based serving workloads on Aerospike,
MongoDB, Redis, and Cassandra data stores. We generated two performance-cost trade-off maps:
one using predictions from PARIS and the other using Baseline2 predictors. For each map, we chose
a VM type for this workload using the policies described below, executed the workload on this VM
type, and compared costs. We considered two example policies:

Policy I: Policy I picks the VM type with the least estimated cost provided the predicted runtime
is less than a user-specified threshold, which is expressed as a fraction β of the mean predicted
runtime across VM types.

Policy II: Instead of predicted runtime, Policy II uses predicted p90 to choose a VM type based
on the same criterion. This policy optimizes for worst case performance.

We varied β in [0.9, 1.1]. As shown in Figure 5.15, the user can reduce costs by up to 45% by
using performance and cost estimates from PARIS instead of the baseline.

5.5.6.2 Cost overheads of PARIS

PARIS does incur some limited overhead to produce the performance estimates. Part of this
overhead is the one-time cost of offline benchmarking of VM types (see Table 5.1), which is
amortized across all user workloads. The rest of the overhead is the cost of running a user-specified
task on the reference VMs. As shown in Section 5.5.4.2, two reference VMs are enough for accurate
predictions.

To quantify the cost overheads of PARIS empirically, we computed the cost of the offline VM
benchmarking phase and the cost for fingerprinting each user-specified representative task in the
online performance prediction phase. We compared this cost to the cost incurred by an alternative

88

0

50

100

150

200

250

1 8 15 22 29 36 43 50

C
um

ul
at

iv
e

co
st

 in
 c

en
ts

User-specified representative tasks

PARIS Ernest

Figure 5.16: Cost overheads of PARIS compared to brute-force profiling on all VM types (e.g., in Ernest [152]).

that exhaustively runs the task on each VM type to choose the right VM type. This alternative
strategy is what would be followed by systems like Ernest [152] (Ernest also performs additional
profiling to determine the number of VMs; this is not included in our comparison). Figure 5.16
shows this comparison for the mean and p90 latency prediction task using core YCSB queries A and
B as train and a set of 50 newly implemented workloads as the user-specified representative tasks.
For this experiment, we used the cost of the VMs per unit time published by the cloud providers.
We note that PARIS has a non-zero initial cost due to the offline VM benchmarking phase, but once
this phase is over, the additional cost of fingerprinting each new user-specified task is much lower
than the cost of Ernest’s exhaustive search. Ernest’s cumulative cost grows at a much higher rate
than PARIS’ and overtakes the latter after about 15 tasks. PARIS is therefore lightweight.

5.6 Limitations and Next Steps
PARIS took an initial step in helping users choose a right cloud VM type for their workloads.
Here, we describe limitations of the current system and possible future directions. PARIS assumes
the availability of a representative task from a user workload. Some tasks might be heavily input
dependent; extending PARIS’ modeling formulation to include task-specific features, such as input
size, can enable generalization across tasks. While our current version requires separate fingerprints
for each cloud provider, our modeling framework can be extended to use common fingerprints
across multiple providers. PARIS is not aimed at estimating scaling behavior, but can be combined
with approaches such as Ernest [152] that tackle the scaling problem. PARIS can also be extended
to work with customizable VM sizes in the cloud, for instance, custom images by Google Cloud
Engine [76].

89

5.7 Conclusion
In this chapter we presented PARIS, a system that allows users to choose the right VM type for
meeting their performance goals and cost constraints through accurate and economical perfor-
mance estimation. PARIS decouples the characterization of VM types from the characterization of
workloads, thus eliminating the O(n2) cost of performance estimation while delivering accurate
performance predictions across VM types from multiple cloud providers. We showed empirically
that PARIS accurately predicts mean and tail performance for many realistic workloads and perfor-
mance metrics across multiple clouds, and results in more cost effective decisions while meeting
performance goals.

90

Chapter 6

Related Work

Resource management for computer systems is a deeply studied field of research. We now describe
relevant prior work in straggler mitigation, cluster scheduling, resource allocation, and systems that
use models with various objectives.

6.1 Cluster Schedulers
Assignment of tasks to nodes in a cluster has been studied widely [84, 53]. While most of these
approaches mainly focus on improving the mean task slowdown, we aimed at improving the tail
latencies for tasks. Recently proposed scheduling mechanisms optimize fairness [71, 166], and
capacity [80], and data locality [168]. Delay-scheduling [168], which is a part of Hadoop’s Fair-
scheduler, suggests relaxing the fair queuing policy slightly to speed up the tasks by achieving data
locality. Quincy [91] computes an optimal task-level schedule that balances fairness, data locality
and freedom from starvation. Mesos [86], YARN [151], and Omega [134] propose schedulers that
allocate resources at a coarse granularity that enables scheduling of jobs from different frameworks
on a cluster. Sparrow [119], and Apollo [33] are distributed schedulers accommodating short-
running tasks. Our work in predictive scheduling can be used along with these sophisticated
schedulers to render predictable and faster jobs using fewer resources. Being learning-based,
Wrangler uses more information about the nodes’ resource usage than a conventional scheduler.
It weighs them automatically to find and avoid situations that could cause tasks to run slower on
underlying nodes.

Tarazu [3] proposes a communication-aware load-balancer for heterogeneous clusters consisting
of high and low performance servers. Though the authors have mentioned that their work does not
focus on stragglers, it may seem that as a side-effect this could benefit straggler avoidance. However,
we have observed that nodes get temporarily overloaded even when all the nodes in a cluster are of
the same type. Our predictive schedulers avoid creating stragglers by avoiding task-assignments to
such temporarily overloaded nodes. Being focused on load balancing in heterogeneous clusters,
Tarazu completely ignores this temporary overloading that occurs in the subset of similar types
of servers. Wrangler builds models for individual nodes. These models consider more complex

91

task-to-task and task-to-node interactions to avoid stragglers caused by temporary overloading of
nodes.

6.2 Tackling Stragglers
We now describe recent work that directly focuses on straggler mitigation in distributed analytical
systems.

6.2.1 Task Replication for Straggler Mitigation
Replicating work on idle resources has been shown to improve efficiency for certain workloads
in distributed systems [69, 47, 23, 10]. Speculative execution [56] reacts to a straggler task by
launching multiple copies of the task. Such reactive and replicative nature renders it wasteful in
time and resources used to mitigate stragglers. Dolly [11] is a proactive and replication-based
mechanism that improves completion time of interactive jobs. It ends up using extra resources for
the replicated copies of tasks.

6.2.2 Early Detection of Stragglers
To reduce waiting in the observe phase, many approaches attempt to detect the slow running tasks
as soon as possible and relaunch them [12, 90, 170, 14]. Most of the proposed techniques take
a reactive approach since they assume that stragglers cannot be predicted. Multiple studies [15,
11] conclude that estimating task execution times in advance is challenging. Moreover, errors of
models that predict task execution times are mostly intolerable as they could not only lengthen job
completions but also affect resource utilization. In our work on predictive scheduling [160, 92, 161],
we showed that node-level resource usage statistics can be used to predict if a task will run slow on
a node even before launching it on that node. We showed that it is feasible to reduce the effect of
straggler tasks in a proactive manner by using a predict-and-schedule mechanism.

6.2.3 Learning-based Approaches for Straggler avoidance
Recent literature has proposed learning for detecting stragglers [32] and modifying the schedulers
to mitigate them [79]. Bortnikov, et al., [32], build a decision tree based on task and node level
features to estimate slowdown of a task compared to similar tasks. These are the tasks with same
input/output sizes or similar profiles. In our work, we learn to predict if a node is too busy to finish a
task in a timely manner. We then close the loop, by modifying the scheduler to use these predictions
and avoid creating stragglers. In our attempts in closing the loop, we realized that prediction errors
can render the scheduling unreliable, resulting in long running jobs. To create a reliable scheduling
mechanism, we attached confidence measures with our predictions. However, Bortnikov, et al., [32]
did not demonstrate a scheduler that can use their predictor while being resilient to modeling errors.

92

ThroughputScheduler [79], is a scheduling mechanism for improving overall job completion
times on a clusters of heterogeneous nodes that assigns jobs to nodes by optimally matching job
requirements to node capabilities. ThroughputScheduler does not focus on mitigating stragglers.
The authors evaluated their approach using Hadoop example workloads executed for a few minutes
on a 5 node cluster. In our study, we observed that confidence measure is critical to guard the system
against modeling errors. ThroughoutScheduler misses this difficulty at scale as it is evaluated on a
small setup with example workloads.

6.3 Resource Allocation
There is a lot of prior work in resource allocation in batch and high-performance computing systems,
operating systems, real-time computing, and more recently cluster and datacenter management.
However, most of the work has focused on how to schedule tasks or jobs once their resource
requirements are known. For instance, classical batch systems [65, 66, 5], and modern cluster
management systems such as Eucalyptus [116], Condor [128], Hadoop [167, 81, 169], Quincy [91],
and Mesos [86, 71], require users to specify their resource requirements. Users most often do not
know the resource requirements, and find it hard to judge the performance and cost implication of
their choices. Our work on PARIS allows users to specify performance and cost goals and chooses
a VM type for user applications.

6.3.1 Interference Prediction
To estimate the implications of resource allocation on performance of applications, one class of
related work focuses on quantifying or predicting interference between co-scheduled applications.
Some approaches co-schedule applications with disjoint resource requirements [143, 135, 172,
175, 108, 109], while others use a trial-and-error approach [144, 106, 173]. Some approaches use
measurements or performance models to predict interference among applications [77, 154, 153, 96,
150, 140, 57, 58].

Some approaches used dynamically monitored hardware-level features, such as CPI (Cycles
Per Instruction) for interference prediction; however they aim at consolidating VMs on underlying
physical machines [42, 104, 103]. Although these approaches use dynamic resource utilization
statistics similar to PARIS, they mainly use only CPI and CMR (Cache Miss Rate), as compared
to the fingerprint PARIS collects, consisting of about 40 different resource usage values collected
from a couple of reference VMs. Moreover, CPI and CMR being hardware performance counters,
are not as easily available as the VM-level counters that PARIS uses.

6.3.2 Performance prediction based on system modeling
A lot of prior work predicts performance based on the properties of the system and patterns
of workloads. A variety of areas, such as databases [39, 112], scientific computing [48], and
programming models [28] have used this approach.

93

To choose the right VM size, Pseudoapp [142] creates a pseudo-application with the same set
of distributed components and executes the same sequence of system calls as those of the real
application. However, PseudoApp needs a complete knowledge of what a real application is doing,
which may not always be available. Ernest [152] builds a model to predict the runtime of distributed
analytics jobs as a function of cluster size. While Ernest adopts a similar model based approach,
their modeling framework is incapable of inferring the performance of new workloads on a VM type
without first running the workload on that VM type. Cherrypick [4] uses Bayesian optimization
to figure out the best resource configuration for applications. However, Cherrypick requires to
run an application on 10 to 20 configurations guided by the acquisition function before estimating
performance across the whole spectrum of cloud configurations.

6.3.3 Adaptive control systems
Another approach to predicting performance is adaptive control using feedback-driven systems such
as controllers or reinforcement learning. Sometimes this is used in combination with offline or
online performance models. The goal is usually to dynamically allocate resources. For example,
Rightscale [89] for EC2 adapts to the changing load of applications by adding VM instances. Other
systems have explicit models to better inform the control system, e.g., [29, 67, 114]. Feedback
is also used in Quasar [58] to update estimates of the sensitivity of application’s performance to
heterogeneity, interference, scale-up and scale-out of resources in the given cluster. This dissertation
demonstrates how to close the loop when using performance prediction models to derive resource
allocation decisions. By closing the loop, we allow the models to adapt to the dynamic, highly
variable execution environments.

6.3.4 Workload Forecasting
To enable proactive resource allocation, some prior work proposes mechanisms to forecast workload
changes. PRESS [73] dynamically adapts resources allocated to an application allowing cloud-
providers to meet the usual bi-objective: minimize resource provisioning costs, and satisfy SLOs.
Even though the paper focused on CPU usage, the authors claim that the proposed mechanism
can be extended to other resource types. Applications may have different resource bottlenecks.
Adding or removing memory may have different implications on performance of an application that
adding or removing CPU cores. Our work allows users to obtain performance-cost trade-off maps
tailored to their workloads, allowing them to choose the resources that suit their needs. Gmach, et
al., [72] use traces of workloads to generate synthetic workloads and predict future resource needs.
They use their system to aid capacity planning in datacenters. Soror, et al., [138] use information
about the expected workload of a database to create workload-specific VM configurations. Their
framework requires the database management system to represent the workload as a set of SQL
statements. Our work alleviates the need for significant knowledge about the application. Using
fingerprints collected by running a task from a workload on a small number of reference VMs, we
predict the performance-cost trade-off tailored to that workload across various options in the public
cloud environments.

94

Chapter 7

Conclusions and Future Directions

In this dissertation, we argued for automated resource management for datacenters and cloud-
hosted systems using Machine Learning techniques.

With Wrangler (Chapter 3), we designed, implemented and evaluated a predictive scheduler
for improved and predictable job completion times while reducing total resources used. We
formulated the problem of straggler avoidance as an instance of binary classification. Wrangler
introduced a notion of confidence measure attached to predictions that served as a key to guard the
system against wrong predictions or modeling errors.

Through our Multi-task Learning formulations (Chapter 4), we showed how to reduce the
cost of training-data capture time by sharing relevant data across similar modeling tasks. We also
showed how we can gain more insights into the models’ learning by extending our formulations
using group sparsity inducing norms.

Through PARIS (Chapter 5), we demonstrated how to learn from benchmark workloads and
estimate performance of real user workloads in the public cloud environments. PARIS’ data-driven
approach used a novel hybrid offline and online data collection and modeling framework enabling
accurate performance prediction with minimal data collection.

There is a lot left to be done to achieve the vision of automatic resource management using
statistical learning based models. Also, a lot of new avenues of research will open up as we achieve
this vision. Before concluding, we discuss upcoming and potential future directions.

7.1 Avenues for future directions in systems research
Serverless computing with performance guarantees With the evolution in computing, resource
infrastructure has evolved from physical servers, to virtual servers in datacenters, to virtual servers in
the cloud, to serverless computing frameworks. We see more and more automation in provisioning
of resources as we follow this evolution. Serverless computing has many attractive features,
including no need to manage servers, continuous scaling, and sub-second metering. However,

95

with increased automation, users have simultaneously gotten reduced control over the underlying
physical resources, rendering performance and in turn resulting cost hard to reason about.

We envision a serverless computing framework with an interface that allows users all the benefits
of automated resource provisioning while allowing them to specify their performance and cost
requirements or Service Level Objectives (SLOs). Exploring this research opportunity needs to
deal with various challenges such as deciding on the desirable granularity of computations to allow
predictability of performance, understanding performance as a function of allocated resources, and
characteristics of functions executed on different inputs.

Automatic Resource Provisioning in the cloud-middle-edge spectrum With the enormous
increase in data, and the evolution of cloud computing, code is most likely not co-located with the
source of data generation. This shift from local or on-prem datacenters to cloud-hosted distributed
systems was facilitated by many benefits such as scalability, reduced costs, and automatic fault
tolerance the core, or the cloud, has to offer. However, the data transfer latency in core computing
poses challenges to emerging new applications, such as self-driven cars, smart building, and other
applications in the field of IoT, where there is a need to make decisions by processing large amounts
of data in real time. Edge computing, where compute is close to the source of data generation,
allows latency sensitive applications to make decisions in realtime.

The core [17, 56] is rich in resources and services, but it involves data transfer latency. Whereas
by computing near the source of data, edge [45, 132] removes the hurdle of transfer latency, but
has limited resources. There are approaches that also allow compute and storage resources to be
somewhere in the middle [88, 30], away from the core and the edge. Each of these, the core, the
middle, and the edge, have advantages and disadvantages. Putting these together in such a way that
allows us to strengthen their advantages while reducing the disadvantages will benefit both existing
and emerging new applications. How to adaptively allocate resources across the core-middle-edge
spectrum to enable a transparent interface to the users, while providing performance guarantees is a
vital open research question.

7.2 Avenues for future directions in ML research
Dealing with change In addition to the field of resource management discussed in this dissertation,
Machine Learning techniques are being deployed in a wide range of applications in which new data
is continuously collected. In each application there are essential questions around when and how to
retrain models as the world changes and how to ensure that the appropriate data is collected. While
advances in change-point detection, online learning, and bandit techniques, address various aspects
of this problem, integrating all of these techniques with existing models and training algorithms can
be challenging, and needs further work.

Interpretability of models When applying ML models for deriving important decisions in the
domain of distributed systems, in addition to accurate predictions, it is helpful for domain experts
to gain insights into the decision making process of the models. The need for explainability has

96

forced many existing model-driven systems to choose simple models such as decision trees. More
powerful and popular models today, especially deep learning based models, are hard to understand.
To further our vision of model-based automatic resource management, we will need to think of
building models that achieve both, high accuracy and interpretability.

7.3 Concluding Remarks
In this dissertation, we demonstrated the impact of using ML for automatic resource management for
distributed systems, by carefully dealing with the challenges they raise, such as model uncertainty,
cost of training, generalization from benchmark workloads to real user workloads, and interpretabil-
ity of the models. We discussed challenges that are left to be answered including dealing with
change in data distributions, and building more powerful interpretable models.

Finally, it is important to understand when we should use ML models in the context of systems.
Based on our experience, learning can be employed when either the scale or the complex dynamic
nature of the problem dominates the decision-making process. Heuristics abound in computer
systems. They work well for the common cases. However, with the evolution in computing and the
growing complexity of resource infrastructure, we are faced with situations that demand custom
decisions. Heuristics need to be retuned for such environments. ML models, unlike heuristics, can
derive actions from rich runtime context information. Extensive use of learning enables systems that
are agile to dynamic changes in workloads and execution environments. We demonstrated how we
leveraged learning techniques for making scheduling and resource allocation decisions for the cloud
and the datacenters. Going forward, we envision ML models enabling better decisions anywhere we
are using heuristics in computer systems.

97

Bibliography

[1] Aerospike Datastore. https://www.aerospike.com. 2017.

[2] Jonathan Aflalo et al. “Variable Sparsity Kernel Learning.” In: Journal of Machine Learning
Research 12 (2011).

[3] Faraz Ahmad et al. “Tarazu: Optimizing MapReduce on Heterogeneous Clusters”. In:
Proceedings of the Seventeenth International Conference on Architectural Support for
Programming Languages and Operating Systems. ASPLOS XVII. London, England, UK:
ACM, 2012, pp. 61–74. ISBN: 978-1-4503-0759-8. DOI: 10.1145/2150976.2150984.
URL: http://doi.acm.org/10.1145/2150976.2150984.

[4] Omid Alipourfard et al. “CherryPick: Adaptively Unearthing the Best Cloud Configurations
for Big Data Analytics”. In: 14th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 17). Boston, MA: USENIX Association, 2017, pp. 469–482. ISBN:
978-1-931971-37-9. URL: https://www.usenix.org/conference/nsdi17/
technical-sessions/presentation/alipourfard.

[5] Gail Alverson et al. “Scheduling on the Tera MTA”. In: In Job Scheduling Strategies for
Parallel Processing. Springer-Verlag, 1995, pp. 19–44.

[6] Amazon EC2. https://aws.amazon.com/ec2. 2017.

[7] Amazon Redshift. http://aws.amazon.com/redshift/faqs/.

[8] Amazon Web Services. https://aws.amazon.com/. 2017.

[9] Amazon.com. Amazon Web Services: Case Studies. https://aws.amazon.com/
solutions/case-studies/. 2017.

[10] Cristiana Amza, Alan L. Cox, and Willy Zwaenepoel. “Conflict-aware Scheduling for
Dynamic Content Applications”. In: Proceedings of the 4th Conference on USENIX Sympo-
sium on Internet Technologies and Systems - Volume 4. USITS’03. Seattle, WA: USENIX
Association, 2003, pp. 6–6. URL: http://dl.acm.org/citation.cfm?id=
1251460.1251466.

[11] Ganesh Ananthanarayanan et al. “Effective Straggler Mitigation: Attack of the Clones”.
In: Proceedings of the 10th USENIX Conference on Networked Systems Design and Im-
plementation. NSDI’13. Lombard, IL: USENIX Association, 2013, pp. 185–198. URL:
http://dl.acm.org/citation.cfm?id=2482626.2482645.

https://www.aerospike.com
http://dx.doi.org/10.1145/2150976.2150984
http://doi.acm.org/10.1145/2150976.2150984
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/alipourfard
https://aws.amazon.com/ec2
https://aws.amazon.com/
https://aws.amazon.com/solutions/case-studies/
https://aws.amazon.com/solutions/case-studies/
http://dl.acm.org/citation.cfm?id=1251460.1251466
http://dl.acm.org/citation.cfm?id=1251460.1251466
http://dl.acm.org/citation.cfm?id=2482626.2482645

98

[12] Ganesh Ananthanarayanan et al. “GRASS: Trimming Stragglers in Approximation An-
alytics”. In: 11th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI’14). Seattle, WA: USENIX Association, Apr. 2014, pp. 289–302. ISBN:
978-1-931971-09-6. URL: https://www.usenix.org/conference/nsdi14/
technical-sessions/presentation/ananthanarayanan.

[13] Ganesh Ananthanarayanan et al. “PACMan: Coordinated Memory Caching for Parallel
Jobs”. In: Proceedings of the 9th USENIX Conference on Networked Systems Design and
Implementation. NSDI’12. San Jose, CA: USENIX Association, 2012, pp. 20–20. URL:
http://dl.acm.org/citation.cfm?id=2228298.2228326.

[14] Ganesh Ananthanarayanan et al. “Reining in the Outliers in Map-reduce Clusters Using
Mantri”. In: Proceedings of the 9th USENIX Conference on Operating Systems Design and
Implementation. OSDI’10. Vancouver, BC, Canada: USENIX Association, 2010, pp. 1–16.
URL: http://dl.acm.org/citation.cfm?id=1924943.1924962.

[15] David P. Anderson et al. “SETI@home: an experiment in public-resource computing”. In:
Commun. ACM 45.11 (Nov. 2002), pp. 56–61. ISSN: 0001-0782. DOI: 10.1145/581571.
581573. URL: http://doi.acm.org/10.1145/581571.581573.

[16] Rie Kubota Ando and Tong Zhang. “A framework for learning predictive structures from
multiple tasks and unlabeled data”. In: JMLR 6 (2005).

[17] Michael Armbrust et al. Above the Clouds: A Berkeley View of Cloud Computing. Tech. rep.
2009.

[18] AWS Customer Success. https : / / aws . amazon . com / solutions / case -
studies/. 2017.

[19] AWS Lambda. https://aws.amazon.com/lambda/. 2017.

[20] Azure Functions. https : / / azure . microsoft . com / en - us / services /
functions/. 2017.

[21] Francis Bach et al. “Convex optimization with sparsity-inducing norms”. In: Optimization
for Machine Learning (2011), pp. 19–53.

[22] Francis R Bach. “Consistency of the group lasso and multiple kernel learning”. In: The
Journal of Machine Learning Research 9 (2008), pp. 1179–1225.

[23] Henri E. Bal et al. “Replication techniques for speeding up parallel applications on dis-
tributed systems.” In: Concurrency - Practice and Experience 4.5 (Nov. 30, 2007), pp. 337–
355. URL: http://dblp.uni-trier.de/db/journals/concurrency/
concurrency4.html#BalKTJ92.

[24] Jonathan Baxter. “A model of inductive bias learning”. In: JAIR 12 (2000).

[25] Sarah Bird. “Optimizing Resource Allocations for Dynamic Interactive Applications”. PhD
thesis. EECS Department, University of California, Berkeley, 2014.

https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/ananthanarayanan
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/ananthanarayanan
http://dl.acm.org/citation.cfm?id=2228298.2228326
http://dl.acm.org/citation.cfm?id=1924943.1924962
http://dx.doi.org/10.1145/581571.581573
http://dx.doi.org/10.1145/581571.581573
http://doi.acm.org/10.1145/581571.581573
https://aws.amazon.com/solutions/case-studies/
https://aws.amazon.com/solutions/case-studies/
https://aws.amazon.com/lambda/
https://azure.microsoft.com/en-us/services/functions/
https://azure.microsoft.com/en-us/services/functions/
http://dblp.uni-trier.de/db/journals/concurrency/concurrency4.html#BalKTJ92
http://dblp.uni-trier.de/db/journals/concurrency/concurrency4.html#BalKTJ92

99

[26] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information Sci-
ence and Statistics). Secaucus, NJ, USA: Springer-Verlag New York, Inc., 2006. ISBN:
0387310738.

[27] Gilles Blanchard, Gyemin Lee, and Clayton Scott. “Generalizing from several related
classification tasks to a new unlabeled sample”. In: NIPS. 2011.

[28] Guy E. Blelloch. “Programming Parallel Algorithms”. In: Commun. ACM 39.3 (1996),
pp. 85–97. ISSN: 0001-0782.

[29] Peter Bodik et al. “Automatic Exploration of Datacenter Performance Regimes”. In: Pro-
ceedings of the 1st Workshop on Automated Control for Datacenters and Clouds. ACDC ’09.
Barcelona, Spain: ACM, 2009, pp. 1–6. ISBN: 978-1-60558-585-7. DOI: 10.1145/
1555271 . 1555273. URL: http : / / doi . acm . org / 10 . 1145 / 1555271 .
1555273.

[30] Flavio Bonomi et al. “Fog Computing and Its Role in the Internet of Things”. In: Proceedings
of the First Edition of the MCC Workshop on Mobile Cloud Computing. MCC ’12. Helsinki,
Finland: ACM, 2012, pp. 13–16. ISBN: 978-1-4503-1519-7. DOI: 10.1145/2342509.
2342513. URL: http://doi.acm.org/10.1145/2342509.2342513.

[31] Antoine Bordes et al. “Fast Kernel Classifiers with Online and Active Learning”. In: J.
Mach. Learn. Res. 6 (Dec. 2005), pp. 1579–1619. ISSN: 1532-4435. URL: http://dl.
acm.org/citation.cfm?id=1046920.1194898.

[32] Edward Bortnikov et al. “Predicting Execution Bottlenecks in Map-reduce Clusters”. In: Pro-
ceedings of the 4th USENIX Conference on Hot Topics in Cloud Computing. HotCloud’12.
Boston, MA: USENIX Association, 2012, pp. 18–18. URL: http://dl.acm.org/
citation.cfm?id=2342763.2342781.

[33] Eric Boutin et al. “Apollo: Scalable and Coordinated Scheduling for Cloud-scale Com-
puting”. In: Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation. OSDI’14. Broomfield, CO: USENIX Association, 2014, pp. 285–300.
ISBN: 978-1-931971-16-4. URL: http://dl.acm.org/citation.cfm?id=
2685048.2685071.

[34] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. New York, NY, USA:
Cambridge University Press, 2004. ISBN: 0521833787.

[35] Leo Breiman. “Random Forests”. In: Mach. Learn. (Oct. 2001). ISSN: 0885-6125. DOI:
10.1023/A:1010933404324. URL: http://dx.doi.org/10.1023/A:
1010933404324.

[36] Christopher J. C. Burges. “A Tutorial on Support Vector Machines for Pattern Recog-
nition”. In: Data Min. Knowl. Discov. 2.2 (June 1998), pp. 121–167. ISSN: 1384-5810.
DOI: 10.1023/A:1009715923555. URL: http://dx.doi.org/10.1023/A:
1009715923555.

[37] Josiah L. Carlson. Redis in Action. Greenwich, CT, USA: Manning Publications Co., 2013.
ISBN: 1617290858, 9781617290855.

http://dx.doi.org/10.1145/1555271.1555273
http://dx.doi.org/10.1145/1555271.1555273
http://doi.acm.org/10.1145/1555271.1555273
http://doi.acm.org/10.1145/1555271.1555273
http://dx.doi.org/10.1145/2342509.2342513
http://dx.doi.org/10.1145/2342509.2342513
http://doi.acm.org/10.1145/2342509.2342513
http://dl.acm.org/citation.cfm?id=1046920.1194898
http://dl.acm.org/citation.cfm?id=1046920.1194898
http://dl.acm.org/citation.cfm?id=2342763.2342781
http://dl.acm.org/citation.cfm?id=2342763.2342781
http://dl.acm.org/citation.cfm?id=2685048.2685071
http://dl.acm.org/citation.cfm?id=2685048.2685071
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1010933404324
http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1023/A:1009715923555
http://dx.doi.org/10.1023/A:1009715923555

100

[38] Rich Caruana. “Multitask Learning: A Knowledge-Based Source of Inductive Bias”. In:
ICML. 1993.

[39] Surajit Chaudhuri, Vivek Narasayya, and Ravishankar Ramamurthy. “Estimating Progress
of Execution for SQL Queries”. In: Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’04. 2004. ISBN: 1-58113-859-8.

[40] Nitesh V. Chawla, Nathalie Japkowicz, and Aleksander Kotcz. “Editorial: Special Issue on
Learning from Imbalanced Data Sets”. In: SIGKDD Explor. Newsl. 6.1 (June 2004), pp. 1–6.
ISSN: 1931-0145. DOI: 10.1145/1007730.1007733. URL: http://doi.acm.
org/10.1145/1007730.1007733.

[41] Nitesh V. Chawla et al. “SMOTE: Synthetic Minority Over-sampling Technique”. In: Journal
of Artificial Intelligence Research 16 (2002), pp. 321–357.

[42] Xi Chen et al. “CloudScope: Diagnosing Performance Interference for Resource Man-
agement in Multi-Tenant Clouds”. In: 23rd IEEE International Symposium on Modeling,
Analysis and Simulation of Computer and Telecommunications Systems (MASCOTS). At-
lanta, GA, USA, 2015.

[43] Yanpei Chen, Sara Alspaugh, and Randy H. Katz. “Interactive Analytical Processing in Big
Data Systems: A Cross-Industry Study of MapReduce Workloads.” In: PVLDB 5.12 (2012),
pp. 1802–1813. URL: http://dblp.uni-trier.de/db/journals/pvldb/
pvldb5.html#ChenAK12.

[44] Yanpei Chen et al. “The Case for Evaluating MapReduce Performance Using Work-
load Suites”. In: Proceedings of the 2011 IEEE 19th Annual International Sym-
posium on Modelling, Analysis, and Simulation of Computer and Telecommuni-
cation Systems. MASCOTS ’11. Washington, DC, USA: IEEE Computer Society,
https://github.com/SWIMProjectUCB/SWIM/wiki/., 2011. ISBN: 978-0-7695-4430-4.
DOI: 10.1109/MASCOTS.2011.12. URL: SWIMcanbedownloadedfromhttps:
//github.com/SWIMProjectUCB/SWIM/wiki/..

[45] Zhuo Chen et al. “An Empirical Study of Latency in an Emerging Class of Edge Computing
Applications for Wearable Cognitive Assistance”. In: Proceedings of the Second ACM/IEEE
Symposium on Edge Computing. SEC ’17. San Jose, California: ACM, 2017, 14:1–14:14.
ISBN: 978-1-4503-5087-7. DOI: 10.1145/3132211.3134458. URL: http://doi.
acm.org/10.1145/3132211.3134458.

[46] Kristina Chodorow and Michael Dirolf. MongoDB: The Definitive Guide. 1st. O’Reilly
Media, Inc., 2010. ISBN: 1449381561, 9781449381561.

[47] Walfredo Cirne et al. “On the efficacy, efficiency and emergent behavior of task replication
in large distributed systems”. In: Parallel Comput. 33.3 (Apr. 2007). ISSN: 0167-8191. DOI:
10.1016/j.parco.2007.01.002. URL: http://dx.doi.org/10.1016/j.
parco.2007.01.002.

http://dx.doi.org/10.1145/1007730.1007733
http://doi.acm.org/10.1145/1007730.1007733
http://doi.acm.org/10.1145/1007730.1007733
http://dblp.uni-trier.de/db/journals/pvldb/pvldb5.html#ChenAK12
http://dblp.uni-trier.de/db/journals/pvldb/pvldb5.html#ChenAK12
http://dx.doi.org/10.1109/MASCOTS.2011.12
SWIM can be downloaded from https://github.com/SWIMProjectUCB/SWIM/wiki/.
SWIM can be downloaded from https://github.com/SWIMProjectUCB/SWIM/wiki/.
http://dx.doi.org/10.1145/3132211.3134458
http://doi.acm.org/10.1145/3132211.3134458
http://doi.acm.org/10.1145/3132211.3134458
http://dx.doi.org/10.1016/j.parco.2007.01.002
http://dx.doi.org/10.1016/j.parco.2007.01.002
http://dx.doi.org/10.1016/j.parco.2007.01.002

101

[48] Rice University. Department of Computer Science et al. A Static Performance Estimator to
Guide Data Partitioning Decisions. 136. Rice University, Department of Computer Science,
1990.

[49] Michael Conley, Amin Vahdat, and George Porter. “Achieving Cost-efficient, Data-intensive
Computing in the Cloud”. In: SoCC ’15. Kohala Coast, Hawaii, 2015. ISBN: 978-1-4503-
3651-2.

[50] Brian F. Cooper et al. “Benchmarking Cloud Serving Systems with YCSB”. In: Proceed-
ings of the 1st ACM Symposium on Cloud Computing. SoCC ’10. Indianapolis, Indiana,
USA: ACM, 2010, pp. 143–154. ISBN: 978-1-4503-0036-0. DOI: 10.1145/1807128.
1807152. URL: http://doi.acm.org/10.1145/1807128.1807152.

[51] Corinna Cortes and Vladimir Vapnik. “Support-vector networks”. In: Machine learning
20.3 (1995).

[52] Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines: And
Other Kernel-based Learning Methods. New York, NY, USA: Cambridge University Press,
2000. ISBN: 0-521-78019-5.

[53] Mark Crovella, Mor Harchol-Balter, and Cristina D. Murta. “Task Assignment in a Dis-
tributed System: Improving Performance by Unbalancing Load (Extended Abstract).” In:
SIGMETRICS. Dec. 6, 2002, pp. 268–269.

[54] Barroso L. Dean Jeff. Achieving Rapid Response Times in Large Online Services.
http://research.google.com/people/jeff/latency.html, 2012.

[55] Jeffrey Dean and Luiz André Barroso. “The Tail at Scale”. In: Commun. ACM 56.2 (Feb.
2013), pp. 74–80. ISSN: 0001-0782. DOI: 10.1145/2408776.2408794. URL: http:
//doi.acm.org/10.1145/2408776.2408794.

[56] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified Data Processing on Large
Clusters”. In: Proceedings of the 6th Conference on Symposium on Opearting Systems
Design & Implementation - Volume 6. OSDI’04. San Francisco, CA: USENIX Association,
2004, pp. 10–10. URL: http://dl.acm.org/citation.cfm?id=1251254.
1251264.

[57] Christina Delimitrou and Christos Kozyrakis. “Paragon: QoS-Aware Scheduling for Hetero-
geneous Datacenters”. In: ASPLOS. Houston, TX, USA, 2013.

[58] Christina Delimitrou and Christos Kozyrakis. “Quasar: Resource-efficient and QoS-aware
Cluster Management”. In: Proceedings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operating Systems. ASPLOS ’14. Salt
Lake City, Utah, USA: ACM, 2014, pp. 127–144. ISBN: 978-1-4503-2305-5. DOI: 10.
1145/2541940.2541941. URL: http://doi.acm.org/10.1145/2541940.
2541941.

[59] David L Donoho. “For most large underdetermined systems of linear equations the minimal
l1-norm solution is also the sparsest solution”. In: Communications on pure and applied
mathematics 59.6 (2006).

http://dx.doi.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/1807128.1807152
http://doi.acm.org/10.1145/1807128.1807152
http://dx.doi.org/10.1145/2408776.2408794
http://doi.acm.org/10.1145/2408776.2408794
http://doi.acm.org/10.1145/2408776.2408794
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dx.doi.org/10.1145/2541940.2541941
http://dx.doi.org/10.1145/2541940.2541941
http://doi.acm.org/10.1145/2541940.2541941
http://doi.acm.org/10.1145/2541940.2541941

102

[60] Hikmet Dursun et al. “An MPI Performance Monitoring Interface for Cell Based Compute
Nodes”. In: Parallel Processing Letters 19.4 (2009).

[61] Theodoros Evgeniou and Massimiliano Pontil. “Regularized multi–task learning”. In: KDD.
2004.

[62] Theodoros Evgeniou et al. “Learning multiple tasks with kernel methods.” In: JMLR 6.4
(2005).

[63] Rong-En Fan et al. “LIBLINEAR: A library for large linear classification”. In: Journal of
Machine Learning Research 9 (2008).

[64] Benjamin Farley et al. “More for Your Money: Exploiting Performance Heterogeneity
in Public Clouds”. In: Proceedings of the Third ACM Symposium on Cloud Computing.
SoCC ’12. San Jose, California: ACM, 2012, 20:1–20:14. ISBN: 978-1-4503-1761-0. DOI:
10.1145/2391229.2391249. URL: http://doi.acm.org/10.1145/
2391229.2391249.

[65] Dror G. Feitelson. Job Scheduling in Multiprogrammed Parallel Systems. 1997.

[66] Dror G. Feitelson, Larry Rudolph, and Uwe Schwiegelshohn. “Parallel Job Scheduling - A
Status Report”. In: JSSPP. 2004, pp. 1–16.

[67] Andrew D. Ferguson et al. “Jockey: Guaranteed Job Latency in Data Parallel Clusters”.
In: Proceedings of the 7th ACM European Conference on Computer Systems. EuroSys
’12. Bern, Switzerland: ACM, 2012, pp. 99–112. ISBN: 978-1-4503-1223-3. DOI: 10.
1145/2168836.2168847. URL: http://doi.acm.org/10.1145/2168836.
2168847.

[68] Ganglia. https://sourceforge.net/projects/ganglia/. 2016.

[69] Gaurav D. Ghare and Scott T. Leutenegger. “Improving Speedup and Response Times
by Replicating Parallel Programs on a SNOW”. In: Proceedings of the 10th International
Conference on Job Scheduling Strategies for Parallel Processing. JSSPP’04. New York, NY:
Springer-Verlag, 2005, pp. 264–287. ISBN: 3-540-25330-0, 978-3-540-25330-3. DOI: 10.
1007/11407522_15. URL: http://dx.doi.org/10.1007/11407522_15.

[70] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The Google File System”. In:
SOSP. 2003.

[71] Ali Ghodsi et al. “Dominant resource fairness: fair allocation of multiple resource types”.
In: NSDI’11. Boston, MA, 2011.

[72] Daniel Gmach et al. “Workload Analysis and Demand Prediction of Enterprise Data Center
Applications”. In: IISWC ’07. Washington, DC, USA: IEEE Computer Society, 2007,
pp. 171–180. ISBN: 978-1-4244-1561-8. DOI: 10.1109/IISWC.2007.4362193. URL:
http://dx.doi.org/10.1109/IISWC.2007.4362193.

http://dx.doi.org/10.1145/2391229.2391249
http://doi.acm.org/10.1145/2391229.2391249
http://doi.acm.org/10.1145/2391229.2391249
http://dx.doi.org/10.1145/2168836.2168847
http://dx.doi.org/10.1145/2168836.2168847
http://doi.acm.org/10.1145/2168836.2168847
http://doi.acm.org/10.1145/2168836.2168847
https://sourceforge.net/projects/ganglia/
http://dx.doi.org/10.1007/11407522_15
http://dx.doi.org/10.1007/11407522_15
http://dx.doi.org/10.1007/11407522_15
http://dx.doi.org/10.1109/IISWC.2007.4362193
http://dx.doi.org/10.1109/IISWC.2007.4362193

103

[73] Zhenhuan Gong, Xiaohui Gu, and John Wilkes. “PRESS: PRedictive Elastic ReSource
Scaling for cloud systems.” In: CNSM. IEEE, 2010, pp. 9–16. ISBN: 978-1-4244-8908-4.
URL: http://dblp.uni-trier.de/db/conf/cnsm/cnsm2010.html#
GongGW10.

[74] Joseph E. Gonzalez et al. “GraphX: Graph Processing in a Distributed Dataflow Frame-
work”. In: Proceedings of the 11th USENIX Conference on Operating Systems Design
and Implementation. OSDI’14. Broomfield, CO: USENIX Association, 2014, pp. 599–613.
ISBN: 978-1-931971-16-4. URL: http://dl.acm.org/citation.cfm?id=
2685048.2685096.

[75] Google Cloud Functions. https://cloud.google.com/functions/. 2017.

[76] Google Cloud Platform. https://cloud.google.com/compute/. 2017.

[77] Sriram Govindan et al. “Cuanta: Quantifying Effects of Shared On-chip Resource Interfer-
ence for Consolidated Virtual Machines”. In: SOCC ’11. Cascais, Portugal, 2011, 22:1–
22:14. ISBN: 978-1-4503-0976-9.

[78] Brendan Gregg and Jim Mauro. DTrace: Dynamic Tracing in Oracle Solaris, Mac OS X and
FreeBSD. 1st. Upper Saddle River, NJ, USA: Prentice Hall Press, 2011. ISBN: 0132091518,
9780132091510.

[79] Shekhar Gupta et al. “ThroughputScheduler: Learning to Schedule on Heterogeneous
Hadoop Clusters”. In: Proceedings of the 10th International Conference on Autonomic
Computing (ICAC’13). San Jose, CA: USENIX, 2013, pp. 159–165. ISBN: 978-1-931971-
02-7. URL: https://www.usenix.org/conference/icac13/technical-
sessions/presentation/gupta.

[80] Hadoop’s Capacity Scheduler. http://hadoop.apache.org/core/docs/
current/capacity_scheduler.html. 2012.

[81] Hadoop’s Capacity Scheduler. http://hadoop.apache.org/core/docs/
current/capacity_scheduler.html. 2017.

[82] Mohammad Hajjat et al. “Application-specific configuration selection in the cloud: impact
of provider policy and potential of systematic testing”. In: Computer Communications
(INFOCOM), 2015 IEEE Conference on. IEEE. 2015, pp. 873–881.

[83] Mark Hall et al. “The WEKA data mining software: an update”. In: SIGKDD Explor.
Newsl. 11.1 (Nov. 2009). ISSN: 1931-0145. DOI: 10.1145/1656274.1656278. URL:
http://doi.acm.org/10.1145/1656274.1656278.

[84] Mor Harchol-Balter. “Task assignment with unknown duration”. In: J. ACM 49.2 (2002),
pp. 260–288.

http://dblp.uni-trier.de/db/conf/cnsm/cnsm2010.html#GongGW10
http://dblp.uni-trier.de/db/conf/cnsm/cnsm2010.html#GongGW10
http://dl.acm.org/citation.cfm?id=2685048.2685096
http://dl.acm.org/citation.cfm?id=2685048.2685096
https://cloud.google.com/functions/
https://cloud.google.com/compute/
https://www.usenix.org/conference/icac13/technical-sessions/presentation/gupta
https://www.usenix.org/conference/icac13/technical-sessions/presentation/gupta
http://hadoop.apache.org/core/docs/current/capacity_scheduler.html
http://hadoop.apache.org/core/docs/current/capacity_scheduler.html
http://hadoop.apache.org/core/docs/current/capacity_scheduler.html
http://hadoop.apache.org/core/docs/current/capacity_scheduler.html
http://dx.doi.org/10.1145/1656274.1656278
http://doi.acm.org/10.1145/1656274.1656278

104

[85] Keqiang He et al. “Next Stop, the Cloud: Understanding Modern Web Service Deployment
in EC2 and Azure”. In: Proceedings of the 2013 Conference on Internet Measurement
Conference. IMC ’13. Barcelona, Spain: ACM, 2013, pp. 177–190. ISBN: 978-1-4503-1953-
9. DOI: 10.1145/2504730.2504740. URL: http://doi.acm.org/10.1145/
2504730.2504740.

[86] Benjamin Hindman et al. “Mesos: A Platform for Fine-grained Resource Sharing in the
Data Center”. In: NSDI’11. Boston, MA: USENIX Association, 2011. URL: http://dl.
acm.org/citation.cfm?id=1972457.1972488.

[87] Paul G. Hoel, Sidney C. Port, and Charles J. Stone. Introduction to Stochastic Processes.
Boston, MA: Houghton Mifflin Company, 1972.

[88] Pengfei Hu et al. “Survey on Fog Computing”. In: J. Netw. Comput. Appl. 98.C (Nov.
2017), pp. 27–42. ISSN: 1084-8045. DOI: 10.1016/j.jnca.2017.09.002. URL:
https://doi.org/10.1016/j.jnca.2017.09.002.

[89] Rightscale Inc. Amazon EC2: Rightscale. http://www.rightscale.com/. 2017.

[90] Michael Isard et al. “Dryad: Distributed Data-parallel Programs from Sequential Building
Blocks”. In: Proceedings of the 2Nd ACM SIGOPS/EuroSys European Conference on
Computer Systems 2007. EuroSys ’07. Lisbon, Portugal: ACM, 2007, pp. 59–72. ISBN:
978-1-59593-636-3. DOI: 10.1145/1272996.1273005. URL: http://doi.acm.
org/10.1145/1272996.1273005.

[91] Michael Isard et al. “Quincy: Fair Scheduling for Distributed Computing Clusters”. In:
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles.
SOSP ’09. Big Sky, Montana, USA: ACM, 2009, pp. 261–276. ISBN: 978-1-60558-752-3.
DOI: 10.1145/1629575.1629601. URL: http://doi.acm.org/10.1145/
1629575.1629601.

[92] Neeraja J. Yadwadkar et al. “Faster Jobs in Distributed Data Processing using Multi-Task
Learning”. In: June 2015, pp. 532–540. ISBN: 978-1-61197-401-0.

[93] Laurent Jacob, Jean philippe Vert, and Francis R. Bach. “Clustered Multi-Task Learning: A
Convex Formulation”. In: NIPS. 2009.

[94] Virajith Jalaparti et al. “Bridging the Tenant-provider Gap in Cloud Services”. In: SoCC
’12. San Jose, California, 2012. ISBN: 978-1-4503-1761-0.

[95] Marius Kloft et al. “lp-Norm Multiple Kernel Learning”. In: J. Mach. Learn. Res. 12 (July
2011), pp. 953–997. ISSN: 1532-4435.

[96] Younggyun Koh et al. “An analysis of performance interference effects in virtual environ-
ments”. In: ISPASS. 2007.

[97] S.P. T. Krishnan and Jose Ugia Gonzalez. Building Your Next Big Thing with Google Cloud
Platform: A Guide for Developers and Enterprise Architects. 1st. Berkely, CA, USA: Apress,
2015. ISBN: 1484210050, 9781484210055.

http://dx.doi.org/10.1145/2504730.2504740
http://doi.acm.org/10.1145/2504730.2504740
http://doi.acm.org/10.1145/2504730.2504740
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dl.acm.org/citation.cfm?id=1972457.1972488
http://dx.doi.org/10.1016/j.jnca.2017.09.002
https://doi.org/10.1016/j.jnca.2017.09.002
http://www.rightscale.com/
http://dx.doi.org/10.1145/1272996.1273005
http://doi.acm.org/10.1145/1272996.1273005
http://doi.acm.org/10.1145/1272996.1273005
http://dx.doi.org/10.1145/1629575.1629601
http://doi.acm.org/10.1145/1629575.1629601
http://doi.acm.org/10.1145/1629575.1629601

105

[98] YongChul Kwon et al. “SkewTune: Mitigating Skew in Mapreduce Applications”. In:
Proceedings of the 2012 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’12. Scottsdale, Arizona, USA: ACM, 2012, pp. 25–36. ISBN: 978-1-4503-1247-9.
DOI: 10.1145/2213836.2213840. URL: http://doi.acm.org/10.1145/
2213836.2213840.

[99] YongChul Kwon et al. “SkewTune: Mitigating Skew in Mapreduce Applications”. In:
SIGMOD. 2012.

[100] Avinash Lakshman and Prashant Malik. “Cassandra: A Decentralized Structured Storage
System”. In: SIGOPS Oper. Syst. Rev. 44.2 (Apr. 2010).

[101] Gunho Lee et al. “Topology-aware Resource Allocation for Data-intensive Workloads”.
In: SIGCOMM Comput. Commun. Rev. 41.1 (Jan. 2011), pp. 120–124. ISSN: 0146-4833.
DOI: 10.1145/1925861.1925881. URL: http://doi.acm.org/10.1145/
1925861.1925881.

[102] Henry Li. Introducing Windows Azure. Berkely, CA, USA: Apress, 2009. ISBN:
143022469X, 9781430224693.

[103] Amiya K. Maji et al. “Mitigating Interference in Cloud Services by Middleware Reconfigu-
ration”. In: Proceedings of the 15th International Middleware Conference. Middleware ’14.
2014.

[104] Amiya Kumar Maji, Subrata Mitra, and Saurabh Bagchi. “ICE: An Integrated Configuration
Engine for Interference Mitigation in Cloud Services.” In: ICAC. 2015.

[105] Grzegorz Malewicz et al. “Pregel: A System for Large-scale Graph Processing”. In: Pro-
ceedings of the 2010 ACM SIGMOD International Conference on Management of Data.
SIGMOD ’10. Indianapolis, Indiana, USA: ACM, 2010, pp. 135–146. ISBN: 978-1-4503-
0032-2. DOI: 10.1145/1807167.1807184. URL: http://doi.acm.org/10.
1145/1807167.1807184.

[106] Jason Mars et al. “Bubble-Up: Increasing Utilization in Modern Warehouse Scale Computers
via Sensible Co-locations”. In: MICRO-44. Porto Alegre, Brazil, 2011, pp. 248–259. ISBN:
978-1-4503-1053-6.

[107] Matthew L. Massie, Brent N. Chun, and David E. Culler. “The Ganglia Distributed Monitor-
ing System: Design, Implementation And Experience”. In: Parallel Computing 30 (2003),
p. 2004.

[108] Andreas Merkel and Frank Bellosa. “Balancing Power Consumption in Multiprocessor
Systems”. In: EuroSys ’06. Leuven, Belgium, 2006, pp. 403–414. ISBN: 1-59593-322-0.

[109] Andreas Merkel and Frank Bellosa. “Task activity vectors: a new metric for temperature-
aware scheduling”. In: Proc. Eurosys ’08. Glasgow, Scotland UK, 2008, pp. 1–12.

http://dx.doi.org/10.1145/2213836.2213840
http://doi.acm.org/10.1145/2213836.2213840
http://doi.acm.org/10.1145/2213836.2213840
http://dx.doi.org/10.1145/1925861.1925881
http://doi.acm.org/10.1145/1925861.1925881
http://doi.acm.org/10.1145/1925861.1925881
http://dx.doi.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184
http://doi.acm.org/10.1145/1807167.1807184

106

[110] Gordon E. Moore. “Readings in Computer Architecture”. In: ed. by Mark D. Hill, Norman P.
Jouppi, and Gurindar S. Sohi. San Francisco, CA, USA: Morgan Kaufmann Publishers
Inc., 2000. Chap. Cramming More Components Onto Integrated Circuits, pp. 56–59. ISBN:
1-55860-539-8. URL: http://dl.acm.org/citation.cfm?id=333067.
333074.

[111] Timothy Prickett Morgan. Cluster Sizes Reveal Hadoop Maturity Curve. URL: http:
//www.enterprisetech.com/2013/11/08/cluster-sizes-reveal-
hadoop-maturity-curve/.

[112] Kristi Morton, Magdalena Balazinska, and Dan Grossman. “ParaTimer: A Progress Indi-
cator for MapReduce DAGs”. In: Proceedings of the 2010 ACM SIGMOD International
Conference on Management of Data. SIGMOD ’10. Indianapolis, Indiana, USA, 2010,
pp. 507–518. ISBN: 978-1-4503-0032-2.

[113] Derek G. Murray et al. “Naiad: A Timely Dataflow System”. In: Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. SOSP ’13. Farminton, Pennsyl-
vania: ACM, 2013, pp. 439–455. ISBN: 978-1-4503-2388-8. DOI: 10.1145/2517349.
2522738. URL: http://doi.acm.org/10.1145/2517349.2522738.

[114] Ripal Nathuji, Aman Kansal, and Alireza Ghaffarkhah. “Q-clouds: Managing Performance
Interference Effects for QoS-aware Clouds”. In: Proceedings of the 5th European Confer-
ence on Computer Systems. EuroSys ’10. Paris, France, 2010, pp. 237–250. ISBN: 978-1-
60558-577-2.

[115] Jan Newmarch. “FFmpeg/Libav”. In: Linux Sound Programming. Berkeley, CA: Apress,
2017, pp. 227–234. ISBN: 978-1-4842-2496-0. DOI: 10.1007/978-1-4842-2496-
0_12. URL: http://dx.doi.org/10.1007/978-1-4842-2496-0_12.

[116] Daniel Nurmi et al. “The Eucalyptus Open-Source Cloud-Computing System”. In: CCGRID
’09. 2009, pp. 124–131. ISBN: 978-0-7695-3622-4.

[117] Zhonghong Ou et al. “Exploiting Hardware Heterogeneity Within the Same Instance Type
of Amazon EC2”. In: Proceedings of the 4th USENIX Conference on Hot Topics in Cloud
Ccomputing. HotCloud’12. Boston, MA: USENIX Association, 2012, pp. 4–4. URL: http:
//dl.acm.org/citation.cfm?id=2342763.2342767.

[118] Kay Ousterhout et al. “Performance clarity as a first-class design principle”. In: 16th
Workshop on Hot Topics in Operating Systems (HotOS’17). 2017.

[119] Kay Ousterhout et al. “Sparrow: Distributed, Low Latency Scheduling”. In: Proceed-
ings of the Twenty-Fourth ACM Symposium on Operating Systems Principles. SOSP
’13. Farminton, Pennsylvania: ACM, 2013, pp. 69–84. ISBN: 978-1-4503-2388-8. DOI:
10.1145/2517349.2522716. URL: http://doi.acm.org/10.1145/
2517349.2522716.

[120] Shibin Parameswaran and Kilian Q. Weinberger. “Large Margin Multi-Task Metric Learn-
ing”. In: NIPS. 2010.

http://dl.acm.org/citation.cfm?id=333067.333074
http://dl.acm.org/citation.cfm?id=333067.333074
http://www.enterprisetech.com/2013/11/08/cluster-sizes-reveal-hadoop-maturity-curve/
http://www.enterprisetech.com/2013/11/08/cluster-sizes-reveal-hadoop-maturity-curve/
http://www.enterprisetech.com/2013/11/08/cluster-sizes-reveal-hadoop-maturity-curve/
http://dx.doi.org/10.1145/2517349.2522738
http://dx.doi.org/10.1145/2517349.2522738
http://doi.acm.org/10.1145/2517349.2522738
http://dx.doi.org/10.1007/978-1-4842-2496-0_12
http://dx.doi.org/10.1007/978-1-4842-2496-0_12
http://dx.doi.org/10.1007/978-1-4842-2496-0_12
http://dl.acm.org/citation.cfm?id=2342763.2342767
http://dl.acm.org/citation.cfm?id=2342763.2342767
http://dx.doi.org/10.1145/2517349.2522716
http://doi.acm.org/10.1145/2517349.2522716
http://doi.acm.org/10.1145/2517349.2522716

107

[121] Fabian Pedregosa et al. “Scikit-learn: Machine Learning in Python”. In: J. Mach. Learn.
Res. 12 (Nov. 2011), pp. 2825–2830. ISSN: 1532-4435.

[122] Performance Monitor. https://technet.microsoft.com/en-us/library/
bb490957.aspx.

[123] John Platt. “Probabilistic outputs for support vector machines and comparisons to regular-
ized likelihood methods”. In: Advances in large margin classifiers 10.3 (1999).

[124] John C. Platt. “Fast Training of Support Vector Machines Using Sequential Minimal Opti-
mization”. In: Advances in Kernel Methods. Ed. by Bernhard Schölkopf, Christopher J. C.
Burges, and Alexander J. Smola. Cambridge, MA, USA: MIT Press, 1999, pp. 185–208.
ISBN: 0-262-19416-3. URL: http://dl.acm.org/citation.cfm?id=299094.
299105.

[125] Ting Kei Pong et al. “Trace norm regularization: reformulations, algorithms, and multi-task
learning”. In: SIAM Journal on Optimization 20.6 (2010).

[126] Ariadna Quattoni, Michael Collins, and Trevor Darrell. “Transfer learning for image classi-
fication with sparse prototype representations”. In: CVPR. 2008.

[127] Anand Rajaraman and Jeffrey David Ullman. Mining of Massive Datasets. New York, NY,
USA: Cambridge University Press, 2011. ISBN: 1107015359, 9781107015357.

[128] Rajesh Raman, Miron Livny, and Marv Solomon. “Matchmaking: An extensible framework
for distributed resource management”. In: Cluster Computing 2.2 (Apr. 1999). ISSN: 1386-
7857.

[129] Charles Reiss et al. “Heterogeneity and Dynamicity of Clouds at Scale: Google Trace
Analysis”. In: SoCC ’12. San Jose, California. ISBN: 978-1-4503-1761-0.

[130] Bernardino Romera-Paredes et al. “Multilinear multitask learning”. In: ICML. 2013.

[131] Sheldon M. Ross. Introduction to Probability Models, Eighth Edition. 8th ed. Academic
Press, Jan. 2003. ISBN: 0125980558. URL: http://www.amazon.com/exec/
obidos/redirect?tag=citeulike07-20\&path=ASIN/0125980558.

[132] Mahadev Satyanarayanan. “The Emergence of Edge Computing”. In: Computer 50.1 (Jan.
2017), pp. 30–39. ISSN: 0018-9162. DOI: 10.1109/MC.2017.9. URL: https:
//doi.org/10.1109/MC.2017.9.

[133] Robert R. Schaller. “Moore’s Law: Past, Present, and Future”. In: IEEE Spectr. 34.6 (June
1997), pp. 52–59. ISSN: 0018-9235. DOI: 10.1109/6.591665. URL: http://dx.
doi.org/10.1109/6.591665.

[134] Malte Schwarzkopf et al. “Omega: Flexible, Scalable Schedulers for Large Compute Clus-
ters”. In: Proceedings of the 8th ACM European Conference on Computer Systems. EuroSys
’13. Prague, Czech Republic: ACM, 2013, pp. 351–364. ISBN: 978-1-4503-1994-2. DOI:
10.1145/2465351.2465386. URL: http://doi.acm.org/10.1145/
2465351.2465386.

https://technet.microsoft.com/en-us/library/bb490957.aspx
https://technet.microsoft.com/en-us/library/bb490957.aspx
http://dl.acm.org/citation.cfm?id=299094.299105
http://dl.acm.org/citation.cfm?id=299094.299105
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0125980558
http://www.amazon.com/exec/obidos/redirect?tag=citeulike07-20\&path=ASIN/0125980558
http://dx.doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
https://doi.org/10.1109/MC.2017.9
http://dx.doi.org/10.1109/6.591665
http://dx.doi.org/10.1109/6.591665
http://dx.doi.org/10.1109/6.591665
http://dx.doi.org/10.1145/2465351.2465386
http://doi.acm.org/10.1145/2465351.2465386
http://doi.acm.org/10.1145/2465351.2465386

108

[135] Kai Shen et al. “Hardware counter driven on-the-fly request signatures”. In: SIGOPS Oper.
Syst. Rev. 42.2 (2008), pp. 189–200. ISSN: 0163-5980.

[136] M Signoretto et al. “Graph Based Regularization for Multilinear Multitask Learning”. In:
(2014).

[137] Tom Simonite. MIT Technology Review, Moore?s Law Is Dead. Now What? URL: https:
//www.technologyreview.com/s/601441/moores-law-is-dead-now-
what/.

[138] Ahmed A. Soror et al. “Automatic Virtual Machine Configuration for Database Workloads”.
In: SIGMOD ’08. Vancouver, Canada: ACM, 2008, pp. 953–966. ISBN: 978-1-60558-102-6.
DOI: 10.1145/1376616.1376711. URL: http://doi.acm.org/10.1145/
1376616.1376711.

[139] Squash Compression Benchmark. https : / / quixdb . github . io / squash -
benchmark/. 2017.

[140] Christopher Stewart, Terence Kelly, and Alex Zhang. “Exploiting Nonstationarity for
Performance Prediction”. In: EuroSys ’07. Lisbon, Portugal, 2007, pp. 31–44. ISBN: 978-1-
59593-636-3.

[141] Yanmin Sun et al. “Cost-sensitive Boosting for Classification of Imbalanced Data”. In:
Pattern Recogn. 40.12 (Dec. 2007), pp. 3358–3378. ISSN: 0031-3203. DOI: 10.1016/
j.patcog.2007.04.009. URL: http://dx.doi.org/10.1016/j.patcog.
2007.04.009.

[142] Byung-Chul Tak et al. “PseudoApp: Performance prediction for application migration to
cloud”. In: 2013 IFIP/IEEE International Symposium on Integrated Network Management
(IM 2013), Ghent, Belgium, May 27-31, 2013. 2013, pp. 303–310.

[143] David Tam, Reza Azimi, and Michael Stumm. “Thread clustering: sharing-aware scheduling
on SMP-CMP-SMT multiprocessors”. In: EuroSys ’07. Lisbon, Portugal, 2007. ISBN: 978-
1-59593-636-3.

[144] Lingjia Tang et al. “The Impact of Memory Subsystem Resource Sharing on Datacenter
Applications”. In: ISCA ’11. San Jose, California, USA, 2011, pp. 283–294. ISBN: 978-1-
4503-0472-6.

[145] Sebastian Thrun. “Is learning the n-th thing any easier than learning the first?” In: NIPS
(1996).

[146] Ashish Thusoo et al. “Hive: A Warehousing Solution over a Map-reduce Framework”. In:
Proc. VLDB Endow. 2.2 (Aug. 2009), pp. 1626–1629. ISSN: 2150-8097.

[147] Robert Tibshirani. “Regression shrinkage and selection via the lasso”. In: Journal of the
Royal Statistical Society. Series B (Methodological) (1996), pp. 267–288.

[148] Vladimir N. Vapnik. The Nature of Statistical Learning Theory. Berlin, Heidelberg: Springer-
Verlag, 1995. ISBN: 0-387-94559-8.

https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
https://www.technologyreview.com/s/601441/moores-law-is-dead-now-what/
http://dx.doi.org/10.1145/1376616.1376711
http://doi.acm.org/10.1145/1376616.1376711
http://doi.acm.org/10.1145/1376616.1376711
https://quixdb.github.io/squash-benchmark/
https://quixdb.github.io/squash-benchmark/
http://dx.doi.org/10.1016/j.patcog.2007.04.009
http://dx.doi.org/10.1016/j.patcog.2007.04.009
http://dx.doi.org/10.1016/j.patcog.2007.04.009
http://dx.doi.org/10.1016/j.patcog.2007.04.009

109

[149] M. Varma and D. Ray. “Learning The Discriminative Power-Invariance Trade-Off”. In:
ICCV. 2007.

[150] Nedeljko Vasic et al. “DejaVu: accelerating resource allocation in virtualized environments”.
In: ASPLOS. 2012, pp. 423–436.

[151] Vinod Kumar Vavilapalli et al. “Apache Hadoop YARN: Yet Another Resource Negotiator”.
In: SOCC ’13. Santa Clara, California. ISBN: 978-1-4503-2428-1.

[152] Shivaram Venkataraman et al. “Ernest: Efficient Performance Prediction for Large-Scale
Advanced Analytics”. In: 13th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 16). Santa Clara, CA: USENIX Association, Mar. 2016, pp. 363–
378. ISBN: 978-1-931971-29-4. URL: https://www.usenix.org/conference/
nsdi16/technical-sessions/presentation/venkataraman.

[153] Akshat Verma, Puneet Ahuja, and Anindya Neogi. “Power-aware Dynamic Placement of
HPC Applications”. In: ICS ’08. Island of Kos, Greece, 2008, pp. 175–184. ISBN: 978-1-
60558-158-3.

[154] Richard West et al. “Online Cache Modeling for Commodity Multicore Processors”. In:
SIGOPS Oper. Syst. Rev. 44.4 (Dec. 2010), pp. 19–29. ISSN: 0163-5980.

[155] Tom White. Hadoop: The Definitive Guide. 1st. O’Reilly Media, Inc., 2009. ISBN:
0596521979, 9780596521974.

[156] Christian Widmer, Yasemin Altun, and Nora C. Toussaint. Multitask Multiple Kernel
Learning (MT-MKL). 2010.

[157] Alexander Wieder et al. “Orchestrating the Deployment of Computations in the Cloud with
Conductor”. In: NSDI’12. San Jose, CA, 2012.

[158] Kishan Wimalawarne, Masashi Sugiyama, and Ryota Tomioka. “Multitask learning meets
tensor factorization: task imputation via convex optimization”. In: NIPS. 2014.

[159] Ya Xue et al. “Multi-task learning for classification with Dirichlet process priors”. In: JMLR
8 (2007).

[160] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz. “Wrangler: Predictable
and Faster Jobs Using Fewer Resources”. In: Proceedings of the ACM Symposium on Cloud
Computing. SOCC ’14. Seattle, WA, USA: ACM, 2014, 26:1–26:14.

[161] Neeraja J. Yadwadkar et al. “Multi-Task Learning for Straggler Avoiding Predictive Job
Scheduling”. In: Journal of Machine Learning Research 17.106 (2016), pp. 1–37. URL:
http://jmlr.org/papers/v17/15-149.html.

[162] Neeraja J. Yadwadkar et al. “Selecting the Best VM Across Multiple Public Clouds: A
Data-driven Performance Modeling Approach”. In: Proceedings of the 2017 Symposium
on Cloud Computing. SoCC ’17. Santa Clara, California: ACM, 2017, pp. 452–465. ISBN:
978-1-4503-5028-0. DOI: 10.1145/3127479.3131614. URL: http://doi.acm.
org/10.1145/3127479.3131614.

https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
https://www.usenix.org/conference/nsdi16/technical-sessions/presentation/venkataraman
http://jmlr.org/papers/v17/15-149.html
http://dx.doi.org/10.1145/3127479.3131614
http://doi.acm.org/10.1145/3127479.3131614
http://doi.acm.org/10.1145/3127479.3131614

110

[163] Yahoo! Cloud Serving Benchmark. https://github.com/brianfrankcooper/
YCSB/wiki/Core-Workloads. 2017.

[164] Yahoo! Cloud Serving Benchmark. https://github.com/brianfrankcooper/
YCSB/wiki/Implementing-New-Workloads. 2017.

[165] Ming Yuan and Yi Lin. “Model selection and estimation in regression with grouped vari-
ables”. In: Journal of the Royal Statistical Society: Series B (Statistical Methodology) 68.1
(2006), pp. 49–67.

[166] Matei Zaharia. The Hadoop Fair Scheduler. http://developer.yahoo.net/
blogs/hadoop/FairSharePres.ppt. 2012.

[167] Matei Zaharia. The Hadoop Fair Scheduler. http://developer.yahoo.net/
blogs/hadoop/FairSharePres.ppt. 2012.

[168] Matei Zaharia et al. “Delay scheduling: a simple technique for achieving locality and fairness
in cluster scheduling”. In: Proceedings of the 5th European conference on Computer systems.
EuroSys ’10. 2010. ISBN: 978-1-60558-577-2. DOI: http://doi.acm.org/10.
1145/1755913.1755940. URL: http://doi.acm.org/10.1145/1755913.
1755940.

[169] Matei Zaharia et al. “Delay scheduling: a simple technique for achieving locality and
fairness in cluster scheduling”. In: EuroSys ’10. Paris, France: ACM, 2010, pp. 265–
278. ISBN: 978-1-60558-577-2. DOI: 10.1145/1755913.1755940. URL: http:
//doi.acm.org/10.1145/1755913.1755940.

[170] Matei Zaharia et al. “Improving MapReduce Performance in Heterogeneous Environments”.
In: OSDI. 2008.

[171] Matei Zaharia et al. “Resilient Distributed Datasets: A Fault-tolerant Abstraction for In-
memory Cluster Computing”. In: Proceedings of the 9th USENIX Conference on Networked
Systems Design and Implementation. NSDI’12. San Jose, CA: USENIX Association, 2012,
pp. 2–2. URL: http://dl.acm.org/citation.cfm?id=2228298.2228301.

[172] Xiao Zhang et al. “Processor hardware counter statistics as a first-class system resource”.
In: HOTOS’07. San Diego, CA, 2007, pp. 1–6.

[173] Wei Zheng et al. “JustRunIt: Experiment-based Management of Virtualized Data Centers”.
In: USENIX’09. San Diego, California, 2009, pp. 18–18.

[174] Zhi-Hua Zhou and Xu-Ying Liu. “Training Cost-Sensitive Neural Networks with Methods
Addressing the Class Imbalance Problem”. In: IEEE Trans. on Knowl. and Data Eng.
18.1 (Jan. 2006), pp. 63–77. ISSN: 1041-4347. DOI: 10.1109/TKDE.2006.17. URL:
http://dx.doi.org/10.1109/TKDE.2006.17.

[175] Sergey Zhuravlev, Sergey Blagodurov, and Alexandra Fedorova. “Addressing Shared Re-
source Contention in Multicore Processors via Scheduling”. In: ASPLOS XV. Pittsburgh,
Pennsylvania, USA, 2010, pp. 129–142. ISBN: 978-1-60558-839-1.

https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Core-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Implementing-New-Workloads
https://github.com/brianfrankcooper/YCSB/wiki/Implementing-New-Workloads
http://developer.yahoo.net/blogs /hadoop/FairSharePres.ppt
http://developer.yahoo.net/blogs /hadoop/FairSharePres.ppt
http://developer.yahoo.net/ blogs/hadoop/FairSharePres.ppt
http://developer.yahoo.net/ blogs/hadoop/FairSharePres.ppt
http://dx.doi.org/http://doi.acm.org/10.1145/1755913.1755940
http://dx.doi.org/http://doi.acm.org/10.1145/1755913.1755940
http://doi.acm.org/10.1145/1755913.1755940
http://doi.acm.org/10.1145/1755913.1755940
http://dx.doi.org/10.1145/1755913.1755940
http://doi.acm.org/10.1145/1755913.1755940
http://doi.acm.org/10.1145/1755913.1755940
http://dl.acm.org/citation.cfm?id=2228298.2228301
http://dx.doi.org/10.1109/TKDE.2006.17
http://dx.doi.org/10.1109/TKDE.2006.17

	Contents
	List of Figures
	List of Tables
	Introduction
	Contemporary computing systems and challenges to resource management
	Vision: Data-Driven Models for resource management
	Overview of the dissertation
	Predictive Scheduling for parallel data intensive computational frameworks
	Resource allocation in the public cloud environments
	Evaluation Methodology

	Organization

	Background
	Architecture of computational frameworks
	Job scheduling in computational frameworks
	Relevant machine learning preliminaries
	Supervised learning
	Support Vector Machines

	Predictive Scheduling: Predictable and Faster Jobs using Fewer Resources
	Introduction
	Prior Work and Motivation
	Our Proposal: Wrangler
	Architecture of Wrangler
	Novelty of our Approach

	Building Straggler Prediction Models
	Linear Modeling for Predicting Stragglers
	Model-Builder Evaluation

	Model-informed Scheduling
	Wrangler's Scheduling Algorithm
	Learning the Parameters: p and
	Bound on Delays Introduced by Wrangler

	Implementation of Wrangler
	Evaluation of Wrangler
	Setup
	Does Wrangler improve job completion times?
	Does Wrangler reduce resource consumption?
	Is Wrangler reliable in presence of modeling errors?
	How sensitive is Wrangler with respect to p?
	How does Wrangler improve job completion times?
	What if Wrangler mis-predicts?
	Does Wrangler scale well?

	Conclusion

	Fast Training: Building Data-Driven Models using Multi-Task Learning
	Shortcomings of prior work and avenues for improvements
	Multi-task learning for straggler avoidance
	Partitioning tasks into groups
	Reduction to a standard SVM
	Automatically selecting groups or partitions
	Automatically selecting features
	Kernelizing the formulation
	Application to straggler avoidance
	Exploring the relationships between the weight vectors
	Generalizing to unseen nodes and workloads

	Empirical Evaluation
	Datasets
	Variants of proposed formulation
	Prediction accuracy
	Prediction accuracy for a {node, workload} tuple with insufficient data
	Improvement in overall job completion time
	Reduction in resources consumed

	Related Work on Multi-task Learning
	Conclusion
	Additional Details: Cross-validating hyperparameter settings

	Performance-Aware Resource Allocation in the Public Cloud
	Insights from Empirical Analysis of Workloads executing across different Public Clouds
	PARIS: System Overview
	Offline VM-benchmarking phase
	Online performance prediction
	Training the Random Forest Model
	Interpreting the Learned Models

	Evaluation
	Baselines
	Experimental Set-up
	Prediction accuracy of PARIS
	Robustness
	From Estimated Performance to Action
	Quantifying cost savings

	Limitations and Next Steps
	Conclusion

	Related Work
	Cluster Schedulers
	Tackling Stragglers
	Task Replication for Straggler Mitigation
	Early Detection of Stragglers
	Learning-based Approaches for Straggler avoidance

	Resource Allocation
	Interference Prediction
	Performance prediction based on system modeling
	Adaptive control systems
	Workload Forecasting

	Conclusions and Future Directions
	Avenues for future directions in systems research
	Avenues for future directions in ML research
	Concluding Remarks

	Bibliography

