Inductive Program Synthesis in BLOG

Jared Rulison

sl

iifﬁ*;uTag_,”Tu
i |
Al

11
.‘
;. ; :

]

Electrical Engineering and Computer Sciences
University of California at Berkeley

18

#
{¥:Y

Technical Report No. UCB/EECS-2018-107
http://www?2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-107.html

August 9, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Acknowledgement

I'd like to thank my advisor Stuart Russell and Yi Wu, Yusuf Erol, and Karthika
Mohan for their patience and guidance.

I'd like to thank Prof. Laura Waller for providing me my first research ex-
perience and Zack Phillips for acting as a mentor.

| want to thank the UC Berkeley chapter of IEEE and all its members, past
and present. I'd like to thank Joel, Ben, Bobby, Willem, Chase, and Huu for
sticking around so long.

Lastly, I'd like to thank Mom, Daddy, and Noah for their support in every-
thing I've ever done.

Inductive Program Synthesis in BLOG

Jared Rulison
rulison@berkeley.edu

August 10, 2018

Abstract

I seek to discover relationships within data via synthesizing BLOG
models to describe them. BLOG (Bayesian LOGic) is a first-order proba-
bilistic programming language that details probability distributions over
worlds containing sets of objects. This sort of learning has previously been
done with Probabilistic Relational Models, which are a highly restricted
special case of BLOG models. I synthesize programs using a local search
algorithm that maximizes over the likelihood of a model with the given
data while penalizing complexity. I apply the algorithm to learning the
generative model describing how parts of citations are written and show
that it is capable of learning accurate and useful relationships.

Acknowledgements

I’d like to thank my advisor Stuart Russell and Yi Wu, Yusuf Erol, and Karthika
Mohan for their patience and guidance.

I’d like to thank Prof. Laura Waller for providing me my first research ex-
perience and Zack Phillips for acting as a mentor.

I want to thank the UC Berkeley chapter of IEEE and all its members, past
and present. I'd like to thank Joel, Ben, Bobby, Willem, Chase, and Huu for
sticking around so long.

Lastly, I'd like to thank Mom, Daddy, and Noah for their support in every-
thing I’ve ever done.

1 Introduction

With the continuing explosion in the amount of data available for analysis comes
the desire to find structure and relationships within it. Early and effective ways
of modeling these relationships include Bayesian networks (BNs), which codify
discrete or continuous random variables and their dependencies. Bayesian net-
works relate propositions, which are either true or false and are not predicated
on any sort of object. There are also Probabilistic Relational Models (PRMs),
which are capable of modeling relational data between object instances. PRMs
are a restricted form of first-order languages, in which predicates can be quanti-
fied by variables (but not predicates). See the next section for a more in-depth
examination of these models.

In this report I will use BLOG (Bayesian LOGic) [15], a first-order probabilistic
programming language that describes probability distributions over worlds con-
taining sets of objects of possibly unknown quantity. Probabilistic programming
languages (PPLs) describe probabilistic models and perform inference over these
models. BLOG is first-order in the same sense that PRMs are, where predicates
can be quantified by objects. My goal is to produce a generative BLOG model
that describes a given dataset while minimizing model complexity. BLOG can
represent any PRM, as well as introduce built-in and user-defined conditional
distributions that allow for a much wider space of probabilistic models. In addi-
tion, BLOG allows for an unknown number of objects and uncertainty regarding
what observations correspond to which object.

The problem of probabilistically modeling datasets can also be tackled as filling
in “holes” in a provided program template while maximizing likelihood over a
dataset [17]. Here I instead allow for any part of a provided program to be
altered rather than restricted sections. This expands the allowed search space
while still taking advantage of provided human knowledge.

The standard method of learning a PRM to describe a dataset is local search
maximizing likelihood of a candidate model with the given data [9]. No changes
that decrease likelihood are allowed. Beginning with no relationships between
objects, each possible addition, removal, or reversal of a dependency is at-
tempted until the score no longer improves. While this is prone to getting
stuck in local maxima, compared to MCMC methods, this allows the ultimate
model to be formed via discrete and easy understood steps. I adapt this algo-
rithm to BLOG to create Algorithm 1.

BLOG’s sampling algorithms allow us to approximate the likelihood of a model
given data without having to explicitly compute it. In PRM search, when a
dependency is added between two variables, the conditional probability distri-
bution (CPD) is assumed to take the form of a table where each value the parent
variable can assume corresponds to a distribution over the possible values of the
child variable. When searching over BLOG models, in addition to introducing

PR=T) PR=F) |PT=T) |PT=F)

Sprinkler Rain 0.2 0.8 0.14 0.86

R P(S=T|R) | P(S=F|R)
T 0.01 0.99
F 0.4 0.6

S R P(G=T|S,R) | P(G=F|S,R)

Grass wet
T T 1 0
T F 0.9 0.1
Tuesday F T 0.8 0.2
F F 0 1

Figure 1: A Bayesian network modeling the wetness of grass. In the CPTs, the
random variables are abbreviated to their first letters.

possible dependencies, Algorithm 1 also considers a larger space of distributions.
Also, when the algorithm find multiple models that are effective at modeling
some parts of the data but not others, it combine these models to produce one
that is able to harness the expressive power of each of the constituent models.

An often used domain for demonstrating the capabilities of BLOG is citation
matching, where given a set of citation strings the goal is to reconstruct the
original set of papers and authors being cited [11]. I evaluate Algorithm 1
by having it model the sub-tasks of how author’s names and journal names are
cited in paper citations and show that is indeed able to capture common citation
methods.

2 Technical Preliminaries

2.1 Bayesian Networks

Bayesian networks are a family of graphical models used to quantify uncertainty
among random variables and their dependencies [1]. Specifically, a Bayesian
network B is defined by a directed acyclic graph G over continuous or discrete
random variables X, X5, ...X,,, and parameters 6 which describe the CPD pa-
rameters 0, ., = Pp(z;|m;) [21]. Here x; refers to an assignment of some value
for X;, and ; refers to some assignment to the parents II; of X;. A variable X
is a parent of X; if G specifies an edge from X; to X.

Figure 1 is an example of a Bayesian network along with the associated CPTs.
This model represents the knowledge that if it is raining, R = T, then the sprin-

klers are likely not to activate. Also, if it is raining or the sprinklers are on,
S =T, then the grass is likely to be wet. Notice the variable Rain has no incom-
ing edges, meaning it has no parents. As a result, its probability distribution
is not conditioned on the other variables. The variable Tuesday is disconnected
from the other variables, meaning its assignment has no correlation with the
other variable assignments.

In general, the probability of a given assignment to the variables of a Bayesian
network is calculated as

Pp(X1 =x1,Xo = 29,.., Xpp = 2) = HPB(Xi =x|ll; = m;) = H9xi|m-
i=1 i1

In the case of Figure 1, this is

Pg(R=r,S=s,G=g)=PR=r)P(S=s|R=7r)P(G=g|S=s,R=r).

2.2 Probabilistic Relational Models

PRMs are designed with relational databases in mind. Their purpose is to be
able to learn from the relationships between object instances. In the context of
a bayes net, each individual object instance would an individual rule to describe
its probabilistic relationships to other objects. A PRM, being first-order, can
instead use a predicate quantified by any object in an object class, resulting in a
much more concise representation [9]. A PRM is composed of two components:
a description of the domain over which it operates and a graphical model de-
scribing probabilistic relationships. See Figure 2 for an example domain and a
high-level overview of the relationships.

A PRM is defined over a schema describing a domain with classes X = {X1, X, ...

In Figure 2, these classes are Movie, Actor, and Appears. Additionally, each
class X has a set of attributes A(X), with a specific attribute denoted as X.A.
The space of values of X.A is denoted as V(X.A). For example, the Movie class
has attributes Title, Process, Decade, and Genre, each with a fixed domain.

As in relational databases, objects can refer to other objects with what is known
as a reference slot. The set of reference slots for a class X is called R(X), and
x.p refers to a specific reference slot. Fach slot p has a domain and range,
Dom|p] and Range[p]. The domain is the class which holds the reference to
another object, and the range is the class it can reference. For example, the
Appears class has one reference slot with domain Appears and range Movie,
and another with domain Appears and range Actor. A slot chain is the chain-
ing together of multiple reference slots.

The other portion of a PRM is a probability distribution over instances of a
schema fitting the above description. A PRM defines a set of parents for each at-
tribute X.A as Pa(X.A). One possible type of parent is simply another attribute

Xt

Movie Appears Actor

e Appears-id _e..--Actor-id
o Movie-id -——-----{-----1--- e--- Movie |.--="1 e_-Gender
e Title e Actor -7 /-’/
e Proces: +— Roletype «|
. tDecad%
e 'Genre

Figure 2: An example PRM describing actors, movies and roles played by actors
in movies. An arrow denotes a probabilistic dependency and a dotted line
denotes an equivalency.

of X, X.B. An example of this is Movie.Genre depending on Movie.Decade.
The parent can also be reached via a reference slot, as Appears.Roletype de-
pends on Appears.Actor.Gender.

The other kind of parent involves an aggregation. It is sometimes the case
that a reference slot will refer to a set of instances of a class. For example, an
Actor might appear in many movies, and therefore the database may contain
many Appears instances whose Actor reference slots point to the same actor.
In these cases, some form of aggregation is used over the relevant attribute of the
set of instances, such as an average or minimum (in the case of a sorted domain).

The assignment of parents to attributes forms a structure S. A PRM defines
CPTs over each X.A given assignments to Pa(X.A). These are similar to the
tables shown in Figure 1, but each CPT is universally quantified, meaning it
applies to each instance of an object class rather than having a separate CPT
for each instance. The parameters of the CPTs forming S are called 5.

A relational skeleton o, defines a set of objects fitting some schema, but does
not specify the values of the attributes. An instantiation Z of a relational skele-
ton o, is the same set of objects as o, but with the values for the attributes set.
See Figure 3 for an example skeleton in the movie domain. An instantiation
differs by having defined values for each object’s attribute.

The joint distribution for the assignment to the variables of a PRM is very simi-
lar to that of a Bayesian network, but instead of multiplying over every variable
one multiplies over every attribute of every instance of every class. See Figure
4 for an illustration of how some object instances in a PRM instantiation can
be expanded as a BN.

PIlo,S0s) =] [I Il P@alZrae.a)

Xi AcA(X1) z€0,(X;)

Movie Appears Actor
Appears-id: e Actor-id: 0
o Movie-id: 0 0 e Gender: ??
* Movie Appears Actor
. e Appears-id: e Actor-id: 1
®*| e Movie-id: 1 1 e Gender: ??
. itle: 77
e Title: . A " Actor
o Process: 77 . Appears _C_El_
X e Appears-id: e Actor-id: 2
o Decade: 77 . o e Gender: 77
L— e Genre: ?? . ender. 7
e Movie: 1
e Actor: 2
e Roletype:
L 7 L

Figure 3: An example PRM skeleton in the movies domain. In this skele-
ton there are two Movie distances, two Actor instances, and three Appears
instances. The references between each object instance is defined, but the at-
tributes of each object instance are not.

2.3 BLOG Models

BLOG is a typed first-order probabilistic programming language that defines
probability distributions over varying numbers of objects and varying relations
among them [15]. A BLOG model defines a generative process for constructing
worlds, which are instantiations of declared random variables.

2.3.1 Syntax

Figure 5 is an example BLOG model. Three types of objects are declared: Ball,
Draw, and Color. Each name is an identifier that acts as the symbol represent-
ing each type. Lines 5 and 6 then introduce objects guaranteed to exist, namely
two Colors and ten Draws. The two declared Colors are given specific names
Blue and Green, while the ten declared Draws are distinct but unnamed.

Line 8 is a number statement that adds some number of Balls, drawn from
a Poisson distribution, to the world. Note that this implies the potential num-
ber of Balls in unbounded.

Lines 10 through 19 are random variable dependency definitions that provide the
conditional probability distribution (CPD) for a random variable conditioned
on a tuple of arguments. Line 10 defines the variable TrueColor, which for each

e Movie-id: 0 e Actor-id: 0 Movie-id: 0 Title
e Process: ¢ Gender: Male . . . :
Live-action P(FulluMelal P(“2001: A P(E‘):res Wide
l Jacket”) Space Shut”)
Oddyssey”)
e Appears-id: 0
e Movie: 0 0.01 0.01 0.01
e Actor: 0
o Movie-id: 0 Roletype: Male || Movie-id: 0 Decade
e Decade: 1980s lead
Movie-id: 0 P(1930s) P(2010s)
l ————————— Process
*+ Movie-id: 0 s Moviedd: 0 imat
e Genre: War e Title: “Full 2D Animation | 0.5 0.05
’ Metal Jacket”
Movie-id: 0 Process Live-action 0.6 0.2
P(Live-actio | P(2D .. | P(3D
n) Animation) Animation)
0.2 0.1 .. 01

Figure 4: An example of how a set of Movie, Actor, and Appears instances
can be expanded into BN form, where each object attribute is its own variable.
Each CPT in the PRM has to be replicated to individually describe each created
variable. Each shown CPT, and those omitted, would be copied for each object
instance in the PRM skeleton.

Ball has value Blue with 50% probability and value Green with 50% probability.
Lines 14 through 19 specify exactly how the observed color for a draw depends
on the true color of the ball drawn.

Not shown are fixed functions. BLOG allows the user to define determinis-
tic fixed functions which act on the built-in or declared types. These can be
used to define mathematical functions not included in BLOG or to represent
known information about declared objects.

Lines 21 through 32 specify observe and query statements. These are not part
of the model but rather indicate how the user would like to interact with the
model. Observe statements specify given variable assignments, called evidence,
and query statements specify which variables’ posterior probabilities the user
would like to infer. Notice that the example query statement does not specify
a value, as BLOG will return the posterior probability of all or many possible
values of the queried variable. BLOG’s inference algorithms are based on ran-
dom sampling, so if a possible value is not assigned a posterior, its posterior is
assumed to be zero.

BLOG’s built-in types include String, Integer, Boolean, Real, Character,
Timestep, and RealMatrix [12]. BLOG has built-in syntax for performing ba-
sic functions such as 3+4. See Figure 6 for an abbreviated example of how a

0 O Ui Wi

W WERN NNDNDNDDNDDNDNDNDLN F === = =
N O OWOOJDDU R WNORFRE O OO Uk WwNh— OO

type Ball;
type Draw;
type Color;

distinct Color Blue, Green;
distinct Draw Draw[10];

#Ball = Poisson (6);
random Color TrueColor(Ball b) ~ Categorical ({Blue —> 0.5, Green —> 0.5});
random Ball BallDrawn(Draw d) ~ UniformChoice({b for Ball b});

random Color ObsColor (Draw d)
if (BallDrawn(d) != null) then
case TrueColor(BallDrawn(d)) in {
Blue —> Categorical ({ Blue —> 0.8, Green —> 0.2}),
Green —> Categorical ({Blue — 0.2, Green —> 0.8})

b

obs ObsColor (Draw[0]) = Blue;
obs ObsColor (Draw[1]) = Green;
obs ObsColor (Draw[2]) = Blue;
obs ObsColor (Draw[3]) = Green;
obs ObsColor (Draw [4]) = Blue;
obs ObsColor (Draw[5]) = Green;
obs ObsColor (Draw[6]) = Blue;
obs ObsColor (Draw [7]) = Green;
obs ObsColor (Draw[8]) = Blue;
obs ObsColor (Draw[9]) = Green;

query size ({b for Ball b});

Figure 5: An example BLOG model describing drawing a ball from an urn ten
times with replacement. The number of balls in the urn is unknown and drawn
from a Poisson distribution. Each Ball is Blue or Green with equal probability,
and has an equal chance of being drawn. The color of each drawn ball is misread
with known probability.

PRM could be represented as a BLOG model.

2.3.2 Semantics

Let M refer to a BLOG model. I call the outcome space, that is all possible
worlds, . Call the set of objects, of possibly unknown size, in a BLOG model
Oy = {01,034,...}. Each object has a type a, e.g. String or Integer. The
model M also contains a set of variables V), defined by random variable de-
pendency definitions, akin to attributes of classes in PRMs. Each dependency
definition has a signature (r, a1, ..., ax) where r is the return type and a; is the
type of the ith argument.

A BLOG model’s random variables are: (i) a number variable for each number
statement as well as (ii) a random variable for each possible assignment of ar-
guments to each function random variable dependency definition.

A model M can be said to contain a skeleton o, which describes the domain-
specific language. This includes declared types, as well as the return types and
names of declared variable definitions, but not the definition bodies. See Figure
7 for an example.

I also define a structure &, which fills in the bodies of the random variable
dependency definitions, and therefore describes the relationships between the
variables. This would be like Figure 5 with the question marks filled in. The
body of a variable dependency definition can reference other random variables,
as in Figure 5, in which BallDrawn(d) is referenced within ObsColor (Draw d).
I define the set of random variables {vy, ...v; } called in the body of variable v’s
dependency definition template to be its parents, or Pa(v).

While BLOG is capable of representing some cyclic models, here I will only
consider models whose underlying structure S is acyclic with regard to the
graph created by adding an edge from v; to v; if v; € Pa(v;).

Let an instantiation Z be a set of object instances as well as a set of data
containing the values of each random variable conditioned on each set of object
instances. The first part of an instantiation Z is

Z.O = {017027 "'70n}7
where 0; is a vector of objects in O;. The second part is
Ty = {v(01, e, 01)Vv € Vi1, {01, ... 01} € [04]" s.t. v(01, ..., 01) is valid,

where by “valid” I mean the types of the passed-in objects match the types in
the dependency definition signature. Let Z,(,, .. o,) be the value of a random
variable conditioned on inputs {01, ...,0r} given by the instantiation Z.

10

0O Ui Wi+

LW W W WWWWWWwWwWhhNoNoDNDNDNDDNDNDNDN === =
O OO DU WNFEF OO UUE WNNFE O OO Utk W~ OO

type Movie;
type Appears;
type Actor;

type Gender;
distinct Gender Male, Female, Other;

type Roletype;
distinct Roletype Lead, ComedicRelief, Lovelnterest, ...;

distinct Movie movies[30];
distinct Appears appears[50];
distinct Actor actors[40];

random String Title (Movie m)
Categorical ({
”Moana” —> 0.0333,
”Pulp Fiction” —> 0.0333,

.

Y

random Actor Actor(Appears ap)
Uniform ({ac for ac in actors})

random Roletype Roletype(Appears ap)

if Process(Movie(ap)) == 3DAnimation & Gender(Actor(ap)) = Male then

Categorical ({
Lead — 0.6,
ComedicRelief —> 0.2,
Lovelnterest — 0.05,

1)
obs Title (Movie(appears[0])) = "Full Metal Jacket”;

query Genre(movies[0]);

Figure 6: A PRM represented as a BLOG model. Each class is defined as a
type, as well as attributes that exist in a discrete domain. Domains are defined
in lines 6 and 9. Class attributes are defined as dependency statements that
take a class instance as an argument, as in lines 16 and 27. Assignments from a
dataset are incorporated in the form of obs statements as in line 37, and specific
variables can be queried as in line 39.

11

0O Ui Wi+

— =
N~ OO

type Ball;

type Draw;

type Color;

distinct Color, Blue, Green;

distinct Draw Draw[10];

#Ball =~ 777

random Color TrueColor(Ball b) ~ 777,
random Ball BallDrawn (Draw d) =~ 777;
random Color ObsColor (Draw d) ~ 777;

Figure 7: An example skeleton for the urn-ball program listed in Figure 5.

2.3.3 Performing Inference in BLOG

There currently exist two compilers for BLOG, one that is Java-based, and one
called Swift [23] which compiles BLOG code into a C++ executable. BLOG can
perform inference via three algorithms: rejection sampling, likelihood weighting,
and Metropolis-Hastings. Here I will not alter any of these methods and but
instead treat them as block-box algorithms to evaluate candidate BLOG models.

3 Related Work

3.1 Learning Bayesian Networks

Learning Bayesian networks is the task of estimating a network structure and
parameters given a dataset while minimizing complexity. Bayesian network
learning tasks can be partitioned into four categories [1]. The first case is when
the graph structure G is known and the dataset is complete and fully observ-
able, meaning the values of every variable in the graph are known, so only the
parameters 6 need be learned. Define the dataset as ¥ = {x1, X2, ..., Xm }, where
a vector x; is one of m assignments to every variable in G, x; = {%;1, Zi2, ..., Tin }-

First the log of the likelihood function is taken resulting in

m n

log L(6|%) = > > " log P(wji|ms, 0s).

j=1i=1

Now the scoring function is decomposed such that each term can be maximized
individually by simply counting the instances of z;; in ¥ and normalizing.

The second case is where the graph structure G is known, but the dataset

12

> is missing values or is not fully observed. One technique to tackle this is the
expectation—maximization [5] algorithm which alternately optimizes the param-
eters 0 and estimates of the missing data.

In the third case, there is a complete and fully observable dataset but an un-
determined graph. The problem of finding the best graph G is NP-hard, as
the number of possible DAGs is superexponential in the number of variables [1].
Here we need to introduce a prior probability over the model space to the scoring
function to avoid simply connecting every variable. One such prior scales lin-
early with the number of connections in the model, thereby preferring simpler,
less connected. One approach to learning in this case is to begin with a graph
with no edges, such that every variable is absolutely independent of others, then
do a local search by adding or removing edges until a local optimum is found
[8]. One convenience in this approach is that, as the score is decomposable as
above, if an arc is added from X; to X, only log P(X,|r;,0;) and 6, need be
recomputed. To avoid getting stuck in local maxima, one can augment this
algorithm with random restarts or simulated annealing.

In the fourth and final case, there is both an incomplete dataset and an un-
determined graph. The standard approch is to substitute the Bayesian score
used above with an approximation to the posterior known as the Bayesian in-
formation criterion (BIC). Similar to the Bayesian score, the BIC trades off
between maximizing likelihood and minimizing model complexity. Another ap-
proach is to apply EM, but in the Maximization step, perform a local search
step across graph structures. This is known as Structural EM [10].

None of the presented algorithms are able to introduce hidden variables, which
could reduce model complexity by reducing the number of dependencies with-
out affecting likelihood. These learning algorithms therefore do not search the
complete space of BNs able to generatively produce a given dataset.

3.2 Learning PRMs

The goal of learning PRMs is to find a structure that best describes the data in
an instantiation, given the instantiation and a skeleton. The local search algo-
rithm in PRM space, similar to learning Bayesian networks, uses the posterior
probability of a model given the data as the score, and iteratively improves each
model using small local changes [4]. Namely, this score is

P(8,0,1) o P(Z|o,,S)P(Slo).

The prior probability P(S|o,) is a prior probability over structures. It is of-
ten assumed the structure is independent of the skeleton, so P(S|o,) = P(S).
The term log P(S) is then typically made to be proportional to the sum of the
lengths of slot chains contained in S. This punishes relationships between ob-
jects that are only very indirectly related, as well as dense networks making use

13

of short chains of length one or two.
The other term is the marginal likelihood
P(Z|o,,S) = /P(I|O’T7S, 0s)P(0s|S)dbs.

Here the parameters 6s are typically drawn from a parameter-independent
Dirichlet prior. See [4] for details.

The local search algorithm for PRMs is similar to local search over Bayesian
networks. The null model starts with every class attribute being independent,
which is the first candidate model. Small local changes are then applied to the
candidate model, maximizing the score until a local optimum is reached. These
local changes are adding an edge, deleting an edge, or changing the direction
of an edge. As with search over Bayesian networks, this can be augmented
with random restarts or simulated annealing to overcome local maxima, or with
Structural EM when the data are not fully observed. The log-likelihood is de-
composable into a sum of terms, such that each local change only necessitates
the recomputing of terms corresponding attributes who lost or gained a parent.

3.3 Learning Probabilistic Programs

In general, deterministic program synthesis is the task of creating a program
that satisfies user intent [6]. The standard way of expressing this intent is
through logical specifications. Other ways this intent can be expressed are in
the form of input-output examples or natural language. This intent can be
paired with a template program to restrict the search algorithm’s search space.
As with PRM search, search over the space of programs in some language, even
with a provided template, still is searching over a number of programs expo-
nential in the allowed program size. Recent advancements in program synthesis
usually involve exploiting domain-specific knowledge to reduce the search space.

Learning probabilistic programs differs from learning deterministic programs
in that probabilistic programs specify distributions over values, rather than de-
terministic outputs. One approach to synthesizing probabilistic programs is
detailed in [17]. Nori et al. use Metropolis—Hastings to fill in holes in a pro-
vided program skeleton S with code H with the aim of generatively modeling
a dataset D. Let S[H| refer to the program skeleton S with holes completed
by code blocks H. A state used in in this MCMC algorithm is a tuple H of
possible hole completions. The next proposed tuple of hole completions H’ is
obtained by applying random changes to H, such as swapping out one variable
for another or replacing a constant ¢ with the result of sampling from a normal
distribution centered around c. Instead of directly computing P(D|S[H]), which
is computationally expensive, they approximate difficult to integrate CPDs with
mixtures of Gaussians (MoGs). MoGs have a universal approximation property
[13], which makes them suitable for this kind of substitution. This substitution

14

allows for computation of P(D|S[H]) in linear time.

Another approach is given in [18]. Similar to the previous approach, Perov
et al. use a MCMC algorithm to create a program that generates a given set of
data. Let T refer to some program text, X refer to the given data, and X refer
to samples of data generated by running 7 some number of times. Let 7(X |)€)
be a distance metric between summary statistics of X and X. Their goal is to
optimize

(X |X)p(X|T)p(T).

The first term measures similarity between given and generated data, the sec-
ond term measures the probability of model T generating the data it did, and
the third term is a prior over program texts.

4 Learning BLOG Models

Learning BLOG models is the task of synthesizing a BLOG model on some
domain that generates a dataset with high probability while minimizing model
complexity. To learn BLOG models, I adapt the local search algorithm used to
learn PRMs.

4.1 Scoring

The score of a BLOG model, as when evaluating PRMs, is the posterior prob-
ability of the model given the data P(M|Z) = P(S,o|Z). By Bayes rule, this
score can be written as the probability of the data given the model and the prior
probability of the model as

P(S,0|T) x P(Z|S,0)P(S|o).

The first term is the probability of a model generating the data given by instan-
tiation Z, which I can approximate using BLOG’s inference algorithms. The
second term is the probability of some structure given the skeleton. As with
PRMs, I will assume these are independent, so P(S|o) = P(S). I would like
this prior to punish complexity to avoid overfitting, so I set it to be proportional
to the sum over all random variables of the number of random variables each
depends on.

The term P(Z|S, o) regarding a model M can be decomposed as

I‘S U H H P(U<017~--a0k) :Iv(ol ok)‘{Iv/(ol ok)}Vv/GPa(v))~

vEVM {01,...,0k

15

Algorithm 1: BLOG model search
input : Instantiation Z, Structure S, Model M
output : A locally optimal BLOG model
training set Zr, validation set Zy < split(Z);
current model My + M;
best score < score(My, Ly);
best new model M < Mjy;
while score is improving do
training subset Zps < random subset of Zp;
for each variable v € Vs do
for each node n € G, do
for each type of local change ¢ do

candidate model M’ < incorporate ¢ into My via node n;
if ¢ has a parameter then
‘ optimize ¢’s parameter in M’ on Zr/;
end
if score(M’, Iy) > best score then
M+ < M/,
best score + score(M’, Iy);
end
end
end
end
My M+
end
return Mo;

This is the probability of model M = (S, o) generating each piece of data in Z.
As in Bayesian networks and PRMs, the log of the score is a decomposable sum.

It is not guaranteed that a valid assignment to a variable is assigned a non-
zero probability by a BLOG model. As a result, if a single variable assignment
in Z cannot be generated by a BLOG model, the entire score becomes 0, or —oo
under the log-likelihood. This is not ideal, since I would prefer a model that as-
signs non-zero probability to fewer answers to a model that is zero everywhere.
To deal with this, I soften the zeros by replacing them in the probability calcu-
lations with a small e. In this way, models for which 0 probabilities occur less
often, all else being equal, score over models in which they occur more often.

4.2 The Search Algorithm

See Algorithm 1. Tt takes as input (i) an instantiation I, (ii) a skeleton, or
program template, S, and (iii) a base model M. The algorithm’s search begins
at the provided model M. For dependency definitions with no provided bodies,

16

random String Process(String input)
Categorical ({
Capitalize (input) — 0.5,
Reverse (input) —> 0.5

)

/ Capitalize()
String input \ Categorical(,) — String example

Reverse()

S UL W N

Figure 8: A dependency definition and its corresponding graph.

the initial null model assumes no dependencies on any other variables. For de-
pendency definitions with a return type that is a user-defined discrete and finite
domain, it uses a Categorical distribution which is uniform over the domain. For
Integers, it uses a UniformInt distribution with the lower end being the smallest
value in I and the upper end being the largest in I. For Strings, it models them
as being generated from unigram model LetterUnigram where each character
is equally likely to be appended to the returned string until stopping.

The space of conditional distributions used to construct each dependency defi-
nition includes those pre-defined in BLOG, such as Uni formInt(int a, int b), as
well as user-defined Java distributions and functions, such as RemoveLetter (String
s) and Abbreviate(String s, Integer i). Note that user-defined functions,
unlike distributions, are entirely deterministic. These conditional distributions
and functions are categorized by their type signature, or the input types of
the variables they are conditioned upon and their output type. For example,
UniformlInt is categorized as having two integer dependencies and one integer
output, and RemoveLetter is categorized as having one String dependency and
one String output.

4.2.1 Dependency Definition Body Representation

The conditional distribution that makes up a random variable v’s dependency
definition is stored in a directed graph where the random variables upon which
v is conditioned are source nodes, and the value of the v is the only sink node.
Each node is either a variable conditioned upon, v itself, a deterministic function,

17

1 random String NoisyCite(Listing 1)

2 DeleteFirstLetter (LastName(1))
3 ;
(a) Before
1 random String NoisyCite(Listing 1)
2 DeleteLastLetter (DeleteFirstLetter (LastName(1)))
3 ;

(b) After

Figure 9: A demonstration of the second type of local change. In part (a),
the path of functions connecting LastName (1) to NoisyCite(1) is solely the
DeleteFirstLetter function. In part (b), the DeleteFirstLetter function is
composed with the DeleteLastLetter function.

or some conditional distribution. There is an arc (¢,) from one node to another
if node j depends on node i. See Figure 8 for a sample dependency definition
and its function graph. I refer to this graph for some variable v as G,,.

4.2.2 Local Changes

The search space is the subset of BLOG models that can be constructed starting
from the starting model with any number of the following changes applied.

Change 1: Replace a fixed function or distribution with a different fixed
function or distribution. For this type of change, only functions and distri-
butions with the same type signature as the original function/distribution are
considered. See Figure 9 for an example.

Change 2: Insert a fixed function or distribution. Similarly, for the sec-
ond type of change, only functions and distribution whose input(s) match the
outputs of its proposed parents, if any, and whose output match the inputs of
the proposed children are considered. See Figure 10.

Change 3: Introduce a dependency on another variable. For the third type
of change, the new variable is introduced by replacing a distribution or function
with a new distribution or function that takes exactly one more input. This
additional input slot is taken by the new variable. See Figure 11.

Change 4: Remove a dependency on another variable. For the fourth type
of change, the variable is removed if and only if one of its descendants is a func-
tion or distribution that takes more than one input. The nodes between the

18

1 random String NoisyCite(Listing 1)

2 DeleteFirstLetter (LastName(1))
3 ;
(a) Before
1 random String NoisyCite(Listing 1)
2 DeleteLastLetter (LastName (1))
3 ;

(b) After

Figure 10: A demonstration of the first type of local change. In part (a),
the path of functions connecting LastName(1l) to NoisyCite(1l) is solely
the DeleteFirstLetter function. In part (b), the path is replaced by the
DeletelLastLetter function.

1 random String NoisyCite(Listing 1) ~
2 LastName (1)
3 ;

(a) Before
1 random String NoisyCite(Listing 1)
2 Concat (FirstName (1), LastName(1))
3 ;

(b) After

Figure 11: A demonstration of adding the random variable FirstName (1) as a
parent to variable NoisyCite(1).

1 random String NoisyCite(Listing 1)
2 Concat (FirstName (1), LastName(1))
3 ;

(a) Before
1 random String NoisyCite(Listing 1)
2 StringIdentity (FirstName (1))
3 ;

(b) After

Figure 12: A demonstration removing the random variable LastName (1) as
input to the CPD for NoisyCite(1). Here the Concat function is replaced by

the StringIdentity function.

19

1 random String NoisyCite(Listing 1)

2 LastName (1)
3 ;
(a) Before
1 random String NoisyCite(Listing 1)
2 Categorical ({
3 LastName (1) — 0.2,
4 Concat (FirstName (1), LastName(1l)) —> 0.8
5)
6 ;

(b) After

Figure 13: Suppose our current model is simply the CPD described in part (a).
Suppose also Concat (FirstName(1l), LastName(1l) perfectly describes 80% of
our training batch and LastName(1l) the other 20%. The algorithm will then
consider this new CPD and combine it as in part (b) to describe the entire
training batch.

removed variable and this descendant are removed and the multi-input node is
replaced with a function or distribution that takes one fewer input. See Figure
12.

When a change has been incorporated, it is possible that the altered CPD
explains some data instances better than the original CPD for some training
examples, but not others. To handle this, the algorithm uses a Categorical dis-
tribution that selects between the new and old CPDs. The weights of the CPDs
in this Categorical distribution are determined by the proportion of training
examples a CPD gives a better score. See Figure 13 for an example.

4.2.3 Parameter Optimization

Some distributions and functions have parameters that can be optimized. For
example, a class of Abbreviate functions can be defined as all functions f(s; k) =
s[: k] in which a string s is abbreviated to its first k characters. In general, such
a k is optimized over the training subset. In the case of distributions, the k is
chosen to maximize the likelihood over the training subset. In the case of fixed
functions, two models are scored on the validation set. See Figure 14 for an
example of these two cases.

The first case is where the k is simply selected from a Categorical distribu-

tion over the values of k maximizing over each example in the training subset.
In the Abbreviate example, how each word is abbreviated does not depend on

20

1 random String Abbreviate(String s)
2 Categorical ({
3 Abbreviate(s, 1) —> 0.4,
4 Abbreviate(s, 4) — 0.2,
5 Abbreviate(s, 6) — 0.1,
6 s — 0.3
7 }
8 ;

(a) Without value-specific distributions.
1 random String Abbreviate(String s)
2 if s = ”Journal” then
3 Categorical ({
4 Abbreviate(s, 1) —> 1.0
5 1)
6 else if s = 7 Applied” then
7 Categorical ({
8 Abbreviate(s, 4) — 0.7.
9 s —> 0.3
10 h
11
12 Categorical ({
13 Abbreviate(s, 1) — 0.4,
14 Abbreviate(s, 4) — 0.2,
15 Abbreviate(s, 6) — 0.1,
16 s —> 0.3
17 b
18 ;

(b) With value-specific distributions

Figure 14: Two models that are tested with the introduction of Abbreviate,
an optimizable function.

21

the word itself, only the distribution of words seen in the training subset. The
second case is where the Categorical distribution associates input values with a
distribution of values for k. If the word “Journal” is seen as always abbreviated
to “J” in the training subset, this model will only consider abbreviating to the
first letter when “Journal” is seen. In this case each unique input value in the
training set has its own Categorical distribution. For unseen input values, the
function is drawn from a Categorical distribution which is an average over the
observed input value’s distributions, similar to the first case.

4.2.4 Model Space

Having examined the possible local changes, we can define the model space
being explored. This space is all BLOG models whose variable dependency def-
initions can be represented as dependency graphs (i) composed of functions and
distributions built into BLOG or included by the user and where (ii) each node
has in-degree at most two.

I prove by induction Algorithm 1 can fully explore this space. For the base
case, the algorithm begins with either a user-provided model or a null model
with a simple dependency definition for each random variable template.

For the inductive step, consider any model satisfying the conditions above. We
can consider models with the same general graph structure but different nodes
as the same model because Change 1 guarantees we will be able to explore any
of these models from an equivalent model. Then consider some model with
any node in any variable template’s dependency graph removed. It suffices to
show that one of the considered local changes undoes this removal. If a node is
removed from a composition of functions or distributions, this can be undone
with Change 2. If a dependency on another variable is removed, this can be
undone with Change 3.

4.2.5 Model Evaluation

The algorithm chooses between two methods for evaluating models, depending
on the model to be evaluted. The first method is BLOG’s built-in Metropolis—
Hastings algorithm. I use this over likelihood weighting as MH is more efficient
for models with large numbers of variables. I use the Java BLOG backend over
Swift since Swift takes more time just to compile than it takes Java BLOG to
compile and run once. Although the runtime of Swift’s compiled executable
is very fast, because the algorithm only evaluates each BLOG model once, it
makes more sense to use Java.

To evaluate the probability of each instance of a variable in an instantiation Z be-
ing assigned its value in Z, P(v(01,...,0k) = Ly(oy,....00) v/ (0r,....00) YV € Pa(v)),
the algorithm must set values for each of the variable parents using obs state-
ments. A result of this is that, in the same BLOG run, it cannot evaluate

22

probabilities of any variable in Pa(v), as BLOG cannot provide a probability
distribution for an evidence variable set to be a constant value in all generated
worlds.

As T am limiting the search space to acyclic BLOG models, there must exist at
least one topological sorting of variables. Each model is therefore evaluated in
stages, beginning by evaluating variables with no parents, and continuing with
variables whose parents have already been evaluated. This goes on until all
variables have been evaluated.

The second method is exactly calculating the score without using any kind
of sampling. This is specific to string domains and is used when the model
contains at least one LetterUnigram distribution. Suppose I am calculating
the probability of a variable of type String taking on the value “schapire” and
this variable’s CPD is defined as a LetterUnigram distribution. There is only
one value among all the strings that can be sampled from this distribution that
matches the given value, so any kind of sampling algorithm will require very
many samples to be able to approximate the desired probability.

This exact calculation is done by processing each node in the graph in a topolog-
ically sorted order and enumerating each’s possible values and their respective
probabilities. In the case of a string domain, this is done for all nodes except-
ing any LetterUnigrams, as they have infinite possible outputs. In such cases
the CPD is evaluated as a list of regular expressions where LetterUnigrams
are represented as (.*). If the expression matches the variable’s given value,
then there is some string that can have been sampled from LetterUnigram that
produces the desired value.

5 Experimental Evaluation: Citations

Table 1: Example citations. The first example is a standard citation pattern,
having the first two names abbreviated followed by the last name. Notice there
is no space between the initials. The hyphen in the second example could be due
to the last name being split across lines. The third example shows an author
likely accidentally switching the first and last names before abbreviating.

FirstName MiddleInit LastName CitedName FirstWord SecondWord ... FifthWord CitedJournal
robert e schapire r.e. schapire International Journal ... Engineering Int. J. Electr. Eng.
david haussler d. haus-sler Irrigation And Irrig. Drain.
harris drucker harris, d. F1000Research F1000Research

Citation matching is a commonly used problem that demonstrates BLOG’s ca-
pabilities. The specific task is to reconstruct the original set of publications
being cited and identity the referenced authors given a set of citations[11].

23

To test Algorithm 1, I used two subtasks of generatively modeling both how
authors and journals are cited in papers, which can be part of a larger model
that solves the full citation problem. I used the cited authors in the CORA
dataset [14], a set of 1295 citation instances with common fields such as au-
thors, journal, year, etc. labeled. These citations contain the original mistakes
they were printed with, such as misspellings. They are also all entirely lower-
case. I augmented CORA with each author’s true first names, middle initials,
and last names. These were programmatically extracted and manually adjusted
from the dataset. The result is a complete dataset containing 4940 tuples of the
form (FirstName, MiddleInitial, LastName, CitedName). For authors with no
middle name, I set MiddleInitial to be the empty string.

For journals, I used the listed journals and abbreviations provided by [22]. Un-
like CORA, this list is regularly updated with new journal names. Also, each
journal is associated with exactly one abbreviation and is unlikely to contain
a misspelling. The dataset contains some journal names in English and some
in German. Lastly, likely because this list is curated by a single organization,
each word for the most part is abbreviated the same way across different journal
abbreviations. Typically, a journal in this dataset is cited as taking an abbrevi-
ation of each word and concatenating with a space. In a few cases, the journal
is abbreviated as an acronym. Here I only considered journal names with five
or fewer words to reduce the complexity of the problem and limit time needed
to search. For journals with fewer than five words, unused slots are set as the
empty string.

These journal names were combined with the CORA dataset by replacing the
journal each citation was actually published in with an abbreviation from the
abridged journals dataset. Each citation was also edited to list exactly one au-
thor. See Table 1 for some example entries and how these citations were fed as
input. Other citation attributes not shown are the title and date.

The input provided to the algorithm took the form of a template BLOG model,
a dataset, and a set of descriptors of the columns of data in the dataset. My tem-
plate BLOG model uses a basic letter unigram model for each variable except
for CitedJournal, where we start with a CPD that concatenates the First Word
with a space and a letter unigram distribution. The dataset resembled Table
1 but with 2000 generated entries. The descriptors file was a csv file that lists
each kind of declared type in our domain and which types each dependency
definition template takes as arguments. See Table 2 for the descriptors file I
used for this domain. The information in these auxiliary files also could have
been included as parts of the original BLOG model input.

In addition, I also defined some user-defined String manipulation conditional
distributions and functions detailed in Table 3 in the Appendix.

24

Validation scores with training sample size.

-40
—-- 10
—-- 25
-504 —-- 50
100 oo b i
g . t
v —60 + I./'/ - emf—-
S L
bl | .7}~
s -70- | A7
s 2
g &
—80 ‘[
’,I
—-90 4
-100 ; : . . . | |
0 2 - 6 8 10 12 14 16

Iteration number

Figure 15: Model scores with size of data. These are the averaged results of
five runs. Each line is labeled with the size of the training data subset used to
optimize models. The score is the average log-likelihood of each data point in the
subset. When exposed to more examples, the system is more likely to encounter
a wider variety of author citation methods and word-specific abbreviations.

25

Table 2: The descriptors file for our citations application. Here I inform the
learner of the existence of FirstName, MiddleInitial, and LastName but I
do not ask it to fill in the dependency definition bodies beyond the default
implementations, nor do I ask it to score their posterior probabilities. I do,
however, ask it to fill in the dependency definition body for CitedName and ask
its posterior to be included in the score.

Variable Type Should Fill Scored

FirstName String False False
MiddleInitial ~ String False False
LastName String False False
CitedName String True True
FirstWord String False False
FifthWord String False False
CitedJournal String True True
Date String False False
Title String False False

5.1 Results

I evaluated the algorithm using four different training batch sizes and a valida-
tion set size of 400. See Figure 15 for the system’s performance. As expected,
the scores were best when the model was allowed to evaluate candidate models
on the largest amounts of data. When exposed to more entries, the system can
learn more citation formats for names and journals as well as how more words
are abbreviated in the journals case. The general shape of the curves shows
that initially the system is able to make relatively large gains in probability.
This is a result of being able to explain large parts of the citation string, such
as each author’s LastName. In later iterations, only one or two character gains
are made, such as initials and punctuation, resulting in smaller score increases.
See Table 5 in the Appendix to see how the system progressively increases its
understanding of a given citation example.

The system is able to capture all the author citation methods described in
Mileh’s solution [15]. See Figure 16 for exactly what rules the best-scoring
model contained.

The system is also able to capture the general citation method for the given
journals, that is possibly abbreviating each word then concatenating with a
space. Milch’s solution only handles authors and citations so we cannot directly
compare these results with his solution. See Figure 17 in the Appendix for how
a CPD appears as BLOG code. The learned model contains a table of abbrevi-
ations for each word come across during training. It was able to learn that some
words, such as “and” or “of” are always omitted. As part of the dataset is in

26

German or Italian, this was also true for foreign prepositions like “di” and “fir”.

As mentioned in Figure 16, some rules still contained LetterUnigram distri-
butions. This means the system was not able to fully describe each example.
Some of the unexplained examples include those with spelling errors. While
the model space searched by Algorithm 1 includes models that can generate
text with these mistakes, such as those using a DeleteLetter, AddLetter, or
ReplaceLetter distribution, the algorithm is not able to generalize a single
spelling mistake. For example, suppose in some iteration the system has an
existing rule Abbr(FirstName)+’. ’+LastName. Say it tries to include an
AddLetter distribution applied to LastName and the training example batch
happens to include example d. haus-sler. This new rule Abbr (FirstName)+’ .
’+AddLetter (LastName) explains this example better than the old rule. How-
ever, while we would expect a last name could be misspelled regardless of the
context, the algorithm has only learned that a specific kind of error can occur
in the specific format of Abbr(FirstName)+’. ’+LastName.

Similarly, the tables of abbreviations learned for each word in the corpus is
distinct for each word slot. FirstWord has a different set of abbreviations than
SecondWord, and so on. This sort of separation of distributions makes sense in
the case of authors, where FirstName is often abbreviated but LastName never
is, but not in the domain of journals. To be able to find a model where each
word slot shares a table of abbreviations would require an additional kind of
local change that allows for shared groups of nodes within distinct CPDs.

6 Conclusion

Taking inspiration from methods of learning Bayesian networks and PRMs from
data, I have provided an algorithm for synthesizing BLOG models to fit a given
dataset using built-in and user-defined functions and conditional distributions.
I have demonstrated the use of Algorithm 1 on a simplified version of the ci-
tations problem was able to learn compositions of functions and conditional
distributions that mirror common citation methods. In doing so I have also
identified key areas for potential improvement.

6.1 Future Work

Iterating through every applicable distribution is quite naive. Ideally one could
implement a way to limit the pool of possible functions or distributions based
on the input and output for which we are trying to find a relation. For exam-
ple, if one has the input “robert” and output “r”, one would like to consider the
Abbreviate function sooner rather than later. One possible solution is to have a
set of recognizers, which are easier to compute than the functions/distributions

27

CitedName CPD Description Prob

LastName 0.34
FirstName LastName 0.1

Abbr (FirstName). LastName 0.14
FirstName MiddleInitial. LastName 0.12
Abbr (FirstName). MiddleInitial. LastName 0.08
LastName, FirstName 0.08
LastName, FirstName MiddleInitial. 0.02
LastName, Abbr(FirstName). MiddleInitial. 0.02
LastName, Abbr(FirstName).MiddleInitial. 0.04

(a) Citation formats described for CitedName.

CitedJournal CPD Description Prob
Abbr (FirstWord) . 0.14
Abbr (FirstWord) . Abbr(SecondWord) . 0.16
Abbr (FirstWord) . Abbr(SecondWord). Abbr(ThirdWord). 0.27
Abbr (FourthWord) . 0.29
Abbr (FourthWord) . Abbr(FifthWord) . 0.14

(b) Citation formats described for CitedJournal.

Figure 16: Most of the possible citation formats present in the highest-scoring
model produced. Not explicitly written is that each Abbr is a Categorical
distribution selecting to what index to abbreviate. Also, each instance of punc-
tuation or whitespace, such as “.” or “” in most cases is also a Categorical
distribution. Omitted are additional rules that contain a LetterUnigram dis-

tribution.

28

themselves, but can rule out functions as candidates before they are ever com-
puted on the input. For example, a Length recognizer could be used to partition
the function/distribution space into those that create an output shorter than
the input and those that do not. Applying this recognizer to our input/out-
put example could rule out candidates such as AddLetter and ReplaceLetter,
which do not shorten the input, before ever evaluating them.

Functions and distributions necessary for the citation problem, see Table 3,
were included as input to the system, but had any of these not been provided,
many derived citation methods could not have been found. Ideally, a system
could invent new distributions to describe relationships between data. This is
analogous to predicate invention in inductive logic programming [16].

Here we only explore a subset of the space of possible BLOG models. The next
logical extension would be to provide for the creation of hidden variables to re-
duce model complexity. For example, regarding the task of citing journal names,
a Boolean hidden variable that corresponds to whether or not the FirstWord
is abbreviated could inform the Categorical CPD that corresponds to what
punctuation follows the first word. Currently, whether or not the FirstWord is
abbreviated and the punctuation following have no connection.

Throughout this report I have assumed complete datasets, but often this is
not always a realistic assumption to make. One could adapt the Structural EM
algorithm found in [5] to make use of the best model found so far to impute the
missing data. To do this, one could at the start of the algorithm use an MCMC
algorithm where each state computed is an assignment to the missing values in
the dataset as the expectation step in EM. Then in the maximization step, one
could use these values when searching over models adjacent in the search space.

References

[1] I. Ben-Gal Bayesian Networks In Encyclopedia of Statistics in Quality and
Reliability, Wiley and Sons, 2007.

[2] D. M. Chickering. Learning Bayesian networks is NP-complete. In Learning
from Data: Artificial Intelligence and Statistics V. Springer Verlag, 1996.

[3] J. Fodor The language of thought. Cambridge, MA: Harvard University
Press, 1975.

[4] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning Probabilistic
Relational Models. In Proceedings of the Sixteenth International Joint Con-
ference on Artificial Intelligence, 1999.

[5] T. L. Griffiths and A. Yuille. A primer on probabilistic inference. In Trends
in Cognitive Sciences, 2006.

29

[6] S. Gulwani, O. Polozov, and R. Singh. Program Synthesis Foundations and
Trends in Programming Languages, vol. 4, no. 1-2, pp. 1-119, 2017.

[7] W. Hastings Monte Carlo Sampling Methods Using Markov Chains and
Their Applications In Biometrika, vol. 57, no. 1, pages 97—109, 1970.

[8] D. Heckerman. A tutorial on learning with Bayesian networks. In M. 1. Jor-
dan, editor, Learning in Graphical Models. MIT Press, Cambridge, MA,
1998.

[9] D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proceedings
of the Fifteenth Conference of the American Association for Artificial Intel-
ligence, pages 580-587, Madison, Wisconsin, 1998.

[10] D. Koller and N. Friedman. Probabilistic Graphic Models. Cambridge: The
MIT Press, 920—925, 2009.

[11] S. Lawrence, C. L. Giles, and K. D. Bollacker. Autonomous citation match-
ing. In Proc. 3rd Intl Conf. on Autonomous Agents, pages 392393, 1999.

[12] L. Lei, S. Russell. The BLOG Language Reference. BLOG Programming
Language, 2014.

[13] V. Mazya and G. Schmidt. On approzimate approximations using gaussian
kernels. IMA Journal of Numerical Analysis, 16, pages 13—29, 1996.

[14] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the con-
struction of internet portals with machine learning. Information Retrieval,
3, 127-163, 2000.

[15] B. Milch Probabilistic Models with Unknown Objects. PhD thesis, Computer
Sccience Division, University of California, Berkeley, 2006.

[16] S. Muggleton and W. Buntine. Machine invention of first-order predicates
by inverting resolution. In Proc. 5th Intl Conf. on Machine Learning, pages
339352, 1988.

[17] A. V. Nori, S. Ozair, S. K. Rajamani, and D. Vijaykeerthy. Efficient syn-
thesis of probabilistic programs. In Proceedings of the 36th ACM SIGPLAN
Conference on Programming Language Design and Implementation, Port-
land, OR, USA, June 15-17, 2015, pages 208-217, 2015.

[18] Y. Perov and F. Wood. Learning Probabilistic Programs. arXiv e-print
arXiv:1407.2646, 2014.

[19] S. Piantadosi LOTIib: Learning and Inference in the Language of Thought.
Available from https://github.com/piantado/LOTlib, 2014.

[20] S. Piantadosi, J. Tenenbaum, and N. Goodman. Bootstrapping in a lan-
guage of thought: A formal model of numerical concept learning. In Cogni-
tion 123(2), pages 199-217, 2012.

30

[21] S. Russell. Artificial Intelligence: a Modern Approach. Upper Saddle River,
N.J. :Prentice Hall, 2010.

[22] Science and Engineering Journal Abbreviations Woodward Library, The
University of British Columbia, accessed June 2018.

[23] Y. Wu, L. Li, S. Russell, and R. Bodik. Swift: Compiled Inference for
Probabilistic Programming Languages In Proceedings of IJCAI-16, 2016.

31

7 Appendix

Table 3: User-defined functions and distributions used in the citations domain.

Name Inputs Parameter Output Description

Identity String None String Returns the input String un-
changed.

Abbreviate String Integer String Returns the first [Integer| let-
ters of the input String.

Concat Strings None String Concats the input Strings.

LetterUnigramNone None String Generates a String where each
character, or the decision to
stop, is drawn uniformly at ran-
dom.

ReplaceLetter String None String Uniformly at random replaces a
character with a different char-
acter, also selected uniformly at
random.

DeleteLetter String None String Uniformly at random deletes a
character.

AddLetter String None String Uniformly at random inserts a
new character.

Constant None String String Returns the String parameter.

32

00 =1 O U = W N =

random String CitedJournalHidden0_0(Citation c¢) ~
if FirstWord(c) == ”berichte” then
Categorical ({
Abbreviate (FirstWord(c), 3) —> 1.0

else if FirstWord(c) = ”forensic” then
Categorical ({
FirstWord(c¢) —> 1.0

else if FirstWord(c) = "methods” then
Categorical ({
FirstWord(¢) —> 1.0
b

else Categorical ({
FirstWord (¢) —> 0.201183431953,
Abbreviate (FirstWord (c), 7) —> 0.0532544378698,
Abbreviate (FirstWord (c), 6) —> 0.0236686390533,
Abbreviate (FirstWord (c), 5) —> 0.0828402366864,

b

random String CitedJournalHiddenl1_0(Citation c) ~
Categorical ({
7.7 —=> 0.79881656804,
77 > 0.201183431953
b

random String CitedJournalHidden2_0(Citation c) ~
if SecondWord(c) = "and” then
Categorical ({
Abbreviate (SecondWord(c¢), 0) —> 1.0

else if SecondWord(c) == ”ions” then
Categorical ({
SecondWord(¢) —> 1.0

else if SecondWord(c) == ”biologia” then
Categorical ({
Abbreviate (SecondWord(c), 4) —> 1.0
iy

else Categorical ({
Abbreviate (SecondWord(c), 10) —> 0.0350877192982,
SecondWord (¢) —> 0.140350877193,
Abbreviate (SecondWord(c), 3) —> 0.166666666667,
Abbreviate (SecondWord(c), 0) — 0.114035087719,

iy

random String CitedJournalHidden3_0(Citation c¢) ~
Categorical ({
7 —> 0.8596491228,
77 —> 0.140350877193

b

random String CitedJournalHidden4_0(Citation c¢) ~
Concat (CitedJournalHidden2_0(c), CitedJournalHidden3_0(c))

random String CitedJournalHidden5_0(Citation c¢) ~
Concat (CitedJournalHiddenl1_0(c), CitedJournalHidden4_0(c))

random String CitedJournalHidden6_0(Citation c¢) ~
Concat (CitedJournalHidden0-0(c), CitedJournalHidden5_-0(c))

random String CitedName(Citation c)
Categorical ({
CitedJournalHidden5_0(c¢)—>0.1431255544, //Only this option shown here
CitedNameHidden0_4 (¢)—>0.1351656986,

iy 33

Figure 17: A truncated representation of a generated CPD for CitedJournal.

Aueur Jo oUO AJU() ‘UOIJRUIIRIUOD 9)0UAP SUBIS SN[J

‘MO [Oea Ul UMOUS aI8 SI[ILI PIjeaId

‘(n) Aq poeoerdar ore suorNqLIISIp weI3TuNIS11e] ‘d[duexs UOAIS o)

soyDjew Jey) TedTI0893E) [Oed Ul 921019 Y} £q pade[dol pue PajIuio aIe SUOINJLIJSIP TedsTIo8eqe) "do[eAdp TeuInorpalTy
pue sweNpeaTd 10 SqJD oy} se uoryeirn oidurexs ue jo Surpuejsiopun aarsserdord oy} sojeIjsUOWLP d[qe} SIYJ, F O[qe],

L£66T “TWOTD Tt "9o1Ape 110dxo asn 0y moy ‘wewp[o8 e s || . +(PIOppuodeg)iqqy+, 4+ (PIOMISII)Iqqy || oureNIse T+, AHRIURIPPIN -+, A+ (QUWRNISIL])qqy
«E66T “TOTD "Tet "9o1Ape 110dXo asn 0} Mot ‘uewp[oS © ‘§ (n)+(pIopy pu0o9g) 1qqy+ (1) + (PIOAN ISTLT) Iqq aureN)seT+ (1) +[RIIUSPPIN + (1) + (e NISIL]) 1qq ¥
LE66T “ToUp "Tew -0d1Ape 110dxo 9sn 03 MOy ‘uewp[oS e ‘S (n)+(paopy pu0oag) 1qqy+ (1) + (PIoN IS) Iqq aureNjseT+(N)+ (e NIsI) 1qq Y
LE66T “ToUp "Tew -9dIApe 119dXo 9sn 0} MOy ‘UeWpP[oS " 'S (n)+(paopy puooag) 1qqy+(n)+ (Prop 1s1g) 1qq aureNjse+(n)
LE66T “weyD ‘Tew ‘edIApe 119dXe 9sn 0} MOy ‘urwWpP[OS ‘e 'S (n)+(pIopN 9811)99RIARIqq Y aureN)seT+(n)
(E66T WA “Iew 9dIAPE 119dxXs SN 0} MOY ‘URWP[OS ‘e 'S (n)+propIsirg aueN)seT+(n)
LE66] WD "I "9OIAPR 1I9dX0 9ST 0} MOY "URWIP[OS "© 'S (n)+pIop sty (n)

uoryeIr) [eWIO Pt SuIe N PIj)

34

