

Learning to Learn with Gradients

Chelsea Finn

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2018-105
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2018/EECS-2018-105.html

August 8, 2018

Copyright © 2018, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

Learning to Learn with Gradients

by

Chelsea B. Finn

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

in the

Graduate Division

of the

University of California, Berkeley

Committee in charge:

Assistant Professor Sergey Levine, Chair
Professor Pieter Abbeel, Chair

Professor Trevor Darrell
Professor Thomas Griffiths

Summer 2018

Learning to Learn with Gradients

Copyright 2018
by

Chelsea B. Finn

Abstract

Learning to Learn with Gradients

by

Chelsea B. Finn

Doctor of Philosophy in Computer Science

University of California, Berkeley

Assistant Professor Sergey Levine, Chair
Professor Pieter Abbeel, Chair

Humans have a remarkable ability to learn new concepts from only a few examples and
quickly adapt to unforeseen circumstances. To do so, they build upon their prior experience
and prepare for the ability to adapt, allowing the combination of previous observations with
small amounts of new evidence for fast learning. In most machine learning systems, however,
there are distinct train and test phases: training consists of updating the model using data,
and at test time, the model is deployed as a rigid decision-making engine. In this thesis,
we discuss algorithms for learning to learn, or meta-learning, which aim to endow machines
with flexibility akin to that of humans. Instead of deploying a fixed, non-adaptable system,
these meta-learning techniques explicitly train for the ability to quickly adapt so that, at
test time, they can learn quickly when faced with new scenarios.

To study the problem of learning to learn, we first develop a clear and formal definition of
the meta-learning problem, its terminology, and desirable properties of meta-learning algo-
rithms. Building upon these foundations, we present a class of model-agnostic meta-learning
methods that embed gradient-based optimization into the learner. Unlike prior approaches
to learning to learn, this class of methods focus on acquiring a transferable representation
rather than a good learning rule. As a result, these methods inherit a number of desirable
properties from using a fixed optimization as the learning rule, while still maintaining full
expressivity, since the learned representations can control the update rule.

We show how these methods can be extended for applications in motor control by combin-
ing elements of meta-learning with techniques for deep model-based reinforcement learning,
imitation learning, and inverse reinforcement learning. By doing so, we build simulated
agents that can adapt in dynamic environments, enable real robots to learn to manipulate
new objects by watching a video of a human, and allow humans to convey goals to robots
with only a few images. Finally, we conclude by discussing open questions and future direc-
tions in meta-learning, aiming to identify the key shortcomings and limiting assumptions of
our existing approaches.

1

A C K N O W L E D G M E N T S

First and foremost, I am tremendously grateful for my advisers Sergey Levine and Pieter
Abbeel for their continuous support and guidance throughout my PhD, and for provid-
ing me the freedom to work on a variety of problems. Thank you to my committee
members Trevor Darrell and Tom Griffiths for their support, guidance, and fruitful con-
versations. I am also grateful for my undergraduate adviser, Seth Teller, for inspiring me
to pursue a career in research.

I’m very happy to have had the opportunity to collaborate with an amazing set of stu-
dents, faculty, and researchers throughout my PhD. For the work in this thesis, I enjoyed
working with Kelvin Xu, Tianhe Yu, Ellis Ratner, Ignasi Clavera, Anusha Nagabandi,
Anca Dragan, Annie Xie, Avi Singh, Sudeep Dasari, and Tianhao Zhang. I would espe-
cially like to thank all of the undergraduate and masters students that I worked with
during my PhD, including Tianhe Yu, Frederik Ebert, Annie Xie, Sudeep Dasari, Anurag
Ajay, and Xin Yu Tan, for your enthusiasm and hard work in the projects we undertook
and your patience as I learned how to best advise you. Beyond the work in this thesis,
I had the pleasure of working with a number of other students and faculty, including
Trevor Darrell, Justin Fu, Alex Lee, Aravind Srinivas, Coline Devin, Erin Grant, and Eric
Tzeng. Thank you to all of the talented researchers in Berkeley AI Research for foster-
ing a collaborative and friendly environment, particularly to my nearby labmates, Sandy
Huang, Alex Lee, Greg Kahn, Coline Devin, Abhishek Gupta, and Marvin Zhang.

I’m grateful to have had the opportunity to do an internship at Google Brain under
Vincent Vanhoucke, collaborating with Sergey Levine and Ian Goodfellow and working
with the original Arm Farm. I was fortunate enough to have tremendous freedom from
Vincent during my internship, as well as support from and thoughtful conversations
with many, including Peter Pastor, Mrinal Kalakrishnan, George Dahl, and Jon Barron.

My time at Berkeley would not have been the same without the produce of Berkeley
Bowl, the beautiful Berkeley hills, and the camaraderie of Team Fuego, including Johan,
Suzanne, Maggie, Rosalie, Avi, Nat, Lydia, Jon, Eric, Chris, Chris, Evan, Jessica, Rob, Joe,
Neil, Spencer, Michel, Vince, Lance, and many others. I would also like to thank Neil for
deadline gnocchi blobs, infinite water refills, and of course, your love and support.

Finally, this thesis is dedicated to my parents, Leslie Garrison and Jeff Finn, for all the
years of your love and support.

i

C O N T E N T S

1 introduction 1

i foundations 5

2 problem statement 6

2.1 Meta-Learning Problem and Terminology 6

2.2 Design Space of Meta-Learning Problems 8

3 desirable properties of meta-learning algorithms 9

3.1 Expressive Power of Meta-Learning Algorithms 9

3.2 Consistent Learning Algorithms 11

3.3 Handling Ambiguity in Learning 13

ii meta-learning with gradients 14

4 a model-agnostic meta-learning algorithm 15

4.1 General Algorithm 16

4.2 Species of MAML 18

4.2.1 Supervised Regression and Classification 19

4.2.2 Reinforcement Learning 20

4.3 Implementation and First-Order Approximation 21

4.4 Expressive Power of Model-Agnostic Meta-Learning 23

4.4.1 Universality of the One-Shot Gradient-Based Learner 24

4.4.2 General Universality of the Gradient-Based Learner 29

4.4.3 Loss Functions 30

4.5 Related Work 31

4.6 Experimental Evaluation 32

4.6.1 Regression 33

4.6.2 Classification 35

4.6.3 Reinforcement Learning 37

4.6.4 Empirical Study of Inductive Bias 39

4.6.5 Effect of Depth 42

4.7 Discussion 43

5 a probabilistic model-agnostic meta-learning algorithm 45

5.1 Overview and Preliminaries 45

ii

5.2 Gradient-Based Meta-Learning with Variational Inference 46

5.3 Probabilistic Model-Agnostic Meta-Learning with Hybrid Inference 48

5.4 Adding Additional Dependencies 50

5.5 Related Work 51

5.6 Experiments 52

5.6.1 Discussion and Future Work 56

iii extensions and applications 58

6 online adaptive control 59

6.1 Meta-Learning for Adaptive Control 59

6.1.1 Preliminaries: Model-Based RL 61

6.1.2 Overview 61

6.1.3 Online Model Adaptive Control 62

6.1.4 General Algorithm of Meta-Learning for Adaptive Control 64

6.1.5 Recurrence-Based Adaptive Control (RBAC) 65

6.1.6 Gradient-Based Adaptive Control (GBAC) 65

6.1.7 Related Work 66

6.1.8 Experiments 67

6.1.9 Discussion 71

7 few-shot imitation learning 73

7.1 Meta-Imitation Learning 73

7.1.1 Overview 74

7.1.2 Two-Head Architecture: Learning a Loss for Fast Adaptation 75

7.1.3 Learning to Imitate without Expert Actions 76

7.1.4 Model Architectures for Meta-Imitation Learning 77

7.1.5 Related Work 79

7.1.6 Experiments 80

7.1.7 Discussion and Future Work 85

7.2 One-Shot Imitation from Humans 86

7.2.1 Problem Overview 87

7.2.2 Domain-Adaptive Meta-Learning 88

7.2.3 Learned Temporal Adaptation Objectives 89

7.2.4 Probabilistic Interpretation 91

7.2.5 Model Architectures 93

7.2.6 Related Work 95

7.2.7 Experiments 97

7.2.8 Discussion 102

iii

8 few-shot intent inference 104

8.1 Learning a Prior over Intent via Meta Inverse Reinforcement Learning 105

8.1.1 Preliminaries and Overview 107

8.1.2 Learning to Learn Rewards 108

8.1.3 Related Work 112

8.1.4 Experiments 113

8.1.5 Discussion 117

8.2 Few-Shot Goal Inference for Visuomotor Learning and Planning 117

8.2.1 Overview 119

8.2.2 Problem Set-up 119

8.2.3 Meta-learning for Few-Shot Goal Inference 120

8.2.4 Few-Shot Goal Inference for Learning and Planning 121

8.2.5 Related Work 123

8.2.6 Experiments 124

8.2.7 Discussion 130

9 conclusion 131

iv appendices 134

a model-agnostic meta-learning methods 135

a.1 Supplementary Proofs for 1-Shot Universality 135

a.1.1 Proof of Lemma 4.4.1 135

a.1.2 Proof of Lemma A.1.1 137

a.1.3 Form of linear weight matrices 138

a.1.4 Output function 139

a.2 Full K-Shot Proof of Universality 140

a.3 Supplementary Proof for K-Shot Universality 144

a.4 Universality with Deep ReLU Networks 145

a.5 Proof of Theorem 4.4.1 146

a.6 Proof of Theorem 4.4.2 146

a.7 MAML Experimental Details 147

a.7.1 Classification 147

a.7.2 Reinforcement Learning 147

a.7.3 Inductive Bias Experiments 147

a.7.4 Depth Experiments 148

a.8 MAML Additional Sinusoid Results 149

a.9 MAML Additional Comparisons 149

a.9.1 Multi-task baselines 149

iv

a.9.2 Context vector adaptation 152

a.10 Ambiguous CelebA Details 153

a.11 PLATIPUS Experimental Details 153

a.12 PLATIPUS MiniImagenet Comparison 154

b extensions to control 155

b.1 Online Adaptation: Additional Experiments and Experimental Details 155

b.1.1 Model Prediction Errors: Pre-update vs. Post-update 155

b.1.2 Effect of Meta-Training Distribution 157

b.1.3 Learning Curves 158

b.1.4 Reward functions 158

b.1.5 Hyperparameters 159

b.2 MIL Experimental Details 160

b.2.1 Simulated Reaching 160

b.2.2 Simulated Pushing 161

b.2.3 Real-World Placing 161

b.3 DAML Hyperparameter and Experimental Details 163

b.3.1 Data collection 163

b.3.2 Architecture Choices 163

b.3.3 Placing, Pushing, and Pick-and-Place Experiments 163

b.3.4 Diverse Human Demonstration Experiments 165

b.3.5 Sawyer Robot Experiments 165

b.3.6 Simulated Pushing Experiment 166

b.4 MandRIL Experimental Details 166

b.4.1 Hyperparameters 166

b.4.2 Environment Details 167

b.5 MandRIL Detailed Meta-Objective Derivation 168

b.6 FLO Experimental Details 170

b.6.1 Model Architecture 170

b.6.2 Autoencoder Comparison Details 170

v

1
I N T R O D U C T I O N

A tree that is unbending, is easily broken.

— Lao Tzu

Humans have a remarkable ability to learn new concepts from only a few examples
and quickly adapt to unforeseen circumstances. To do so, they build upon their prior
experience, reusing concepts and abstractions that they have built up over time to effi-
ciently adapt from only small amounts of new evidence. How can we build intelligent
systems with the same versatility and flexibility?

One critical piece of the puzzle, we argue, is the form of the data. To see this, consider
the standard paradigm in machine learning (ML) of focusing on one particular task —
e.g. recognizing speech (Hannun et al., 2014), translating text (Wu et al., 2016), classify-
ing objects in images (Krizhevsky et al., 2012), playing Atari breakout (Mnih et al., 2013),
or screwing on a bottle cap (Levine et al., 2016a) — and then training a model or pol-
icy, end-to-end, to solve that task from scratch, i.e. from a random initialization. Within
the ML community, end-to-end learning from scratch has often been viewed as the gold
standard, since it doesn’t require substantial domain-specific human knowledge or ex-
pertise to “solve” the task. See, for example, Collobert et al. (2011), Yi et al. (2014), and
Levine et al. (2016a). Yet, from the perspective of how humans learn, it makes absolutely
no sense to have a system learn a single, individual task from scratch. This is like asking
a human baby to become an expert in chess before knowing how to pick up a chess
piece; or asking an infant to learn to translate English sentences into French before devel-
oping an understanding of basic vocabulary in either language. These existing systems
are siloed within very narrow environments, often for the sake of practicality but at the
expense of narrow experiences that are insufficient for developing common sense. If we
want systems that exhibit the generality of human intelligence, they must not require
millions of datapoints for each and every new task, concept, or environment.

1

How can we instead build systems that can quickly and efficiently learn a broad range
of new concepts and skills? Perhaps to do so, we can look at the data on which ex-
isting systems are trained. For example, the MNIST (LeCun et al., 1998) and CIFAR-
10 (Krizhevsky and G. Hinton, 2009) datasets both have 60,000 images, split up evenly
within 10 classes. These datasets are relatively small but have arguably driven progress
in machine learning research. Notably, these datasets are distinctly different from the ex-
periences of a human. Instead of seeing 6,000 instances of 10 different objects (e.g. 6,000

forks, 6,000 bottles, etc), humans experience data that is much closer to the transpose
of that: 10 instances of 6,000 different objects. With this level of diversity, it is not very
surprising that humans can generalize so effectively.

While there is no doubt that the distribution and nature of the data play a large role
in generalization, training a system on diverse datasets does not, in and of itself, lead
to adaptability. We instead need to transfer knowledge from diverse prior experiences
when trying to learn new tasks. Transfer learning is a long-standing subfield within ma-
chine learning (Caruana, 1993), studying the ability to leverage prior sets of data when
learning from new data. Arguably, one of the biggest modern success stories of trans-
fer learning is the technique of pre-training on large amounts of previously available
data and then fine-tuning the pre-trained model on data from new tasks. This technique
has been wildly successful for training convolutional networks initialized with super-
vised pretraining on ImageNet (Deng et al., 2009; Donahue et al., 2014; Sharif Razavian
et al., 2014; Yosinski et al., 2014; Russakovsky et al., 2015), and more recently, for pre-
training language models on large corpora (Dai and Le, 2015; P. Ramachandran et al.,
2016; Howard and Ruder, 2018; Radford et al., 2018). Yet, pre-training techniques will
only go so far; their performance is limited when fine-tuning with only a handful of
examples (Vinyals et al., 2016; Ravi and Larochelle, 2017). This few-shot learning setting
is much more challenging, but certainly possible to solve, given the ability of humans to
handle such small amounts of data.

In this thesis, we’ll be considering an approach to transfer learning that optimizes for
transferability and fast learning. This class of methods explicitly trains for the ability
to learn new concepts, or learns how to learn. While the concept of learning-to-learn, or
meta-learning, is not new (Schmidhuber, 1987; Naik and Mammone, 1992; S. Bengio et
al., 1992; Thrun and Pratt, 1998), modern techniques in deep learning and gradient-based
optimization, along with increased computational power and large datasets, motivate us
to revisit this approach in a new light.

Meta-learning can also be viewed as learning the structure among previously seen
tasks or concepts such that this learned prior can be combined with small amounts of

2

new data to make generalizable inferences. From this perspective, there is a close relation
between meta-learning and hierarchical Bayesian modeling (Tenenbaum, 1999; Fei-Fei et
al., 2003; Lawrence and Platt, 2004; K. Yu et al., 2005; J. Gao et al., 2008; Daumé III, 2009;
Lake et al., 2011; Wan et al., 2012; H. Edwards and Storkey, 2017), an approach which has
successfully been applied to few-shot learning problems. This concept of meta-learning
as learning a prior in hierarchical Bayesian models will be useful when aiming to reason
about uncertainty in learning and for developing intuitions about different approaches.

Prior approaches to meta-learning have largely fell into one of two categories – meth-
ods that train large black-box neural network models to learn from data that is passed in,
and those that incorporate structure of known optimization procedures into the learner.
In the former, a deep neural network model, such as an LSTM (Hochreiter et al., 2001;
Andrychowicz et al., 2016; Z. Li et al., 2017; Ravi and Larochelle, 2017), a Neural Turing
Machine (Santoro et al., 2016), or a model with another form of memory or recurrence (J.
Ba et al., 2016; Munkhdalai and H. Yu, 2017), is trained to “learn” from datapoints that
are provided as input. The model either also takes as input a new, unlabeled datapoint
and must predict its label (Hochreiter et al., 2001; Santoro et al., 2016), or predicts the
weights of another neural network model that can solve the task (Andrychowicz et al.,
2016; Z. Li et al., 2017; Ravi and Larochelle, 2017; Ha et al., 2017). This approach has
been extended to the reinforcement learning setting by Wang and Hebert (2016) and
Duan et al. (2016b), learning a recurrent neural network policy that does not reset its
hidden state across episodes so that it can “learn” from previous episodes. These ap-
proaches are expressive and can be applied to a wide range of problems. Yet, without
any structure, learning these black-box learning procedures from scratch can be difficult
and inefficient.

A number of prior works have aimed to incorporate structure into the meta-learning
process. In particular, one approach for few-shot classification is to learn to compare
examples in a learned metric space using, e.g., Siamese networks (Koch et al., 2015) or
recurrent models (Vinyals et al., 2016; Shyam et al., 2017; Snell et al., 2017). These ap-
proaches have generated some of the most successful results, but are more difficult to
directly extend to other problems, such as reinforcement learning. This prior literature
motivates the development of a method with the generality of black-box approaches
while incorporating structure, like the latter. Further, these works have been developed
largely independently without common terminology or even a common problem state-
ment. If we hope to push research and understanding of these methods forward, it would
be helpful to have a set of guiding principles and concrete, yet sufficiently-general prob-
lem statement. We hope to work towards such guidelines in this thesis.

3

The contributions of this thesis are as follows:
• In Chapter 2, we consider the meta-learning problem statement and give exam-

ples of different instantiations of this problem statement. Our problem definition
and notation encapsulates both meta-supervised and meta-reinforcement learning
settings.

• In Chapter 3, we develop a set of measurable properties of desirable meta-learning
algorithms, aiming to suggest a set of guiding principles for those developing new
meta-learning algorithms.

• In Chapter 4, we present our core contribution, a simple, yet general approach to
meta-learning that builds upon the success of fine-tuning from pre-trained initial-
izations. We analyze the theoretical properties of this model-agnostic meta-learning
algorithm, and empirically compare it to prior approaches in both few-shot super-
vised learning problems and fast reinforcement learning. A subset of this work was
published previously as Finn et al. (2017a) and Finn and Levine (2018).

• In Chapter 5, we propose a probabilistic version of the algorithm presented in
Chapter 4. This method was previously published as Finn et al. (2018).

• Unlike the standard leraning-to-learn setting, we can consider a temporal window
as a task. We develop this idea further in Chapter 6 and evaluate our approach for
online adaptation to varying simulated environments. This work appeared previ-
ously as Clavera et al. (2018)

• In Chapter 7, we develop the notion that the inner optimization can use a learned
loss function, and show how we can use meta-learning to have a robot learn from
a single demonstration, including a demonstration that consists of a raw video of
a human performing the task. This work was published previously as Finn et al.
(2017b) and T. Yu et al. (2018).

• In Chapter 8, we consider the problem of inferring the intention of a human from
the person’s behavior by building upon prior experience. We show how this idea
can be used for learning rewards and objectives in navigation and robotic manipu-
lation. This work appeared previously as Xu et al. (2018) and Xie et al. (2018).

• Finally, we conclude by discussing open challenges in learning to learn in Chap-
ter 9.

4

Part I

F O U N D AT I O N S

2
P R O B L E M S TAT E M E N T

2.1 meta-learning problem and terminology

The goal of few-shot meta-learning is to train a model that can quickly adapt to a new
task using only a few datapoints and training iterations. To accomplish this, the model
or learner is trained during a meta-learning phase on a set of tasks, such that the trained
model can quickly adapt to new tasks using only a small number of examples or trials. In
effect, the meta-learning problem treats entire tasks as training examples. In this section,
we formalize this meta-learning problem setting in a general manner, including brief
examples of different learning domains.

We consider a model, denoted f, that maps observations x to outputs y. During meta-
learning, the model is trained to be able to adapt to a large or infinite number of tasks.
Since we would like to apply our framework to a variety of learning problems, from
classification to reinforcement learning, we introduce a generic notion of a learning task
below. Formally, each task T = {L(θ,D), ρ(x1), ρ(xt+1|xt, yt),H} consists of a loss function
L that takes as input the model’s parameters θ and a dataset D, a distribution over initial
observations ρ(x1), a transition distribution ρ(xt+1|xt, yt), and an episode length H. In
i.i.d. supervised learning problems, the length H=1 and a dataset D consists of labeled
input, output pairs, D = {(x1, y1)(k)}. Whereas, in reinforcement learning problems, the
model fmay generate samples of lengthH by choosing an output ŷt at each time t; hence,
the dataset passed to the loss function consists of trajectories rolled-out by the model:
D = {(x1, ŷ1, . . . , xH, ŷH)(k)}. The loss L(θ,D) → R, provides task-specific feedback for
the model fθ, which might be in the form of a misclassification loss or a cost function in
a Markov decision process.

In our meta-learning scenario, we consider a distribution over tasks p(T) that we want
our model to be able to adapt to. In the K-shot learning setting, the model is trained to
learn a new task Ti drawn from p(T) from only K samples drawn from qi, denoted as Dtr

i ,

6

symbol terminology examples or more details

T task
entity being learned or adapted to, corre-
sponds to an objective, domain, environment,
or combinations thereof

p(T) task distribution
distribution of tasks from which the meta-
training and meta-testing tasks are drawn.

{Ti} ∼ p(T) meta-training tasks set of tasks used for meta-learning

{DTi} meta-training set
set of datasets corresponding to the meta-
training tasks; the algorithm will learn to learn
from data in these datasets

{Tj} ∼ p(T) meta-test tasks
set of tasks used for evaluation; the learned
learning procedure will be evaluated on its
ability to learn these tasks

{DTj} meta-test set set of datasets corresponding to meta-test tasks

Dtr
T training set (support set)

training data for task T, usually K datapoints
sampled from DT

Dtest
T test set (query set) test data for task T, sampled from DT

Table 1: Summary of meta-learning terminology used in this paper. Terms sometimes used in
other literature is shown in parentheses.

and feedback LTi generated by Ti. During meta-training, a task Ti is sampled from p(T),
the model is trained with K samples using feedback from the corresponding loss LTi

from Ti, and then tested on new samples from Ti, denoted as Dtest
i . The model f is then

improved by considering how the test error on new data Dtest
i changes with respect to the

parameters. In effect, the test error on sampled tasks Ti serves as the training error of the
meta-learning process. At the end of meta-training, new tasks are sampled from p(T),
and meta-performance is measured by the model’s performance after learning from K

samples. Generally, tasks used for meta-testing are held out during meta-training.
In Table 1, we overview meta-learning terminology and notation used in this docu-

ment. In essence, a meta-learning algorithm learns to learn tasks using data from tasks
in the meta-training set. After meta-learning, the learned learning algorithm is evaluated

7

in its ability to learn new tasks in the meta-test set. We will use the term ‘task’ broadly to
encapsulate a concept to be learned, a domain to be adapted to, or combinations thereof.

2.2 design space of meta-learning problems

As we discussed previously, in meta-supervised learning settings, the training dataset
Dtrain

T and test dataset Dtest
T for each task T are fully supervised; whereas, in meta-

reinforcement learning, each dataset consists of roll-outs from the policy. In Section 8.1.2,
we will also explore how the training and test data and their objective can correspond to
demonstrations used for inverse reinforcement learning. While in each of these examples,
the training and test data (and the objectives on them) are the same, notice that this does
not need to be true. The only constraints for proper meta-learning are that (a) the train-
ing set is informative for solving the test set, and (b) the test set and its corresponding
objective allow for optimization of the desired learning outcome.

We take advantage of this observation in a simple way in Section 4.2.2 by using differ-
ent policy gradient estimators for the train and test data. But, this observation is most
interesting because it opens up a wide design space of possible meta-learning instan-
tiations and algorithms: learning to learn in some manner via some supervision. The
training data need not even be supervised in a standard way. As we will show in Sec-
tions 7.2 and 8.2, we can learn to learn from weak supervision via strong supervision. In
this case, the training data for each task is weakly supervised while the test data contains
full supervision. With this insight, we can develop meta-imitation learning algorithms
that allow a robot learn how to learn from videos of humans using fully-supervised
robot demonstrations (see Section 7.2); and we can learn to learn a reward function from
only positive examples of success (see Section 8.2). One can also take this one step fur-
ther and use unsupervised training data with supervised test data to learn unsupervised
learning algorithms using supervised data, as proposed by Metz et al. (2018).

8

3
D E S I R A B L E P R O P E RT I E S O F M E TA - L E A R N I N G A L G O R I T H M S

In this chapter, we present three concrete and measurable properties of meta-learning al-
gorithms and in particular, the class of learning procedures that they acquire. The prop-
erties that we consider relate to the expressive power of the meta-learning algorithm,
the consistency of the acquired learning procedures, and the ability to handle ambigu-
ity. This list of properties is by no means complete: there are other properties that are
also desirable, such as optimizability and simplicity. But, we will start with these three
because we have concrete means to measure them. Further, the proposed metrics are not
necessarily the ideal way to measure the overarching properties; but, we hope that they
can serve as a starting point for thinking about how different meta-learning algorithms
compare.

3.1 expressive power of meta-learning algorithms

An important property of meta-learning algorithms is their expressive power, namely
the ability to represent a large number of learning algorithms. More expressive power
means that the method can represent more sophisticated learning procedures, which is
relevant for scalability. For example, we may want to recover a learning procedure that
can learn a new concept when only provided with positive examples of that concept (e.g.
see Section 8.2). Or, we may want to recover a reinforcement learning procedure that
learns safely and avoid risky states. To recover such learning procedures through meta-
learning, we need a sufficiently expressive meta-learning algorithm. Note that measures
of expressive power only indicate the ability to represent different functions, which is a
prerequisite — but not a guarantee — for the ability to actually recover or learn those
functions. To study this property, we need a way to measure such expressive power – we
need to formally define a learning procedure and measure the size of the set of learning
procedures that can be encoded by a particular algorithm.

9

One intuitive way to define a learning procedure would be a something that takes
as input a dataset D and outputs a vector of parameters that are used to make predic-
tions about new datapoints. While it is natural to think of learning procedures as such,
this definition has a number of downsides. First, it only allows for learning parametric
models, while a number of meta-learning algorithms have taken more non-parametric
approaches (Vinyals et al., 2016; Snell et al., 2017). Second, it is overcomplete. There is
often more than one parameter vectors that can lead to the same underlying function; for
example, in a ReLU neural network, a weight matrix of all zeros with any non-positive
bias value encodes the same function. We can more specifically define the function that
is learned by considering the input/output pairs of that function. We thus choose to
characterize a learning algorithm as something that takes as input both a dataset D and
a test observation x? and outputs a prediction y?, as defined below.

Definition 3.1.1. A learning algorithm is a procedure or function that processes data in D

to make predictions ŷ? from new inputs x?.

This definition encapsulates the notion of learning a particular function that maps
from x? to ŷ? from data D. Note that this definition is general to any learning prob-
lem where your goal is to recover a function from data, including learning classifiers,
regressors, and policies.

Now that we have defined a learning procedure, we would like to measure the set of
learning procedures that a particular meta-learning algorithm can represent. If we view
a learning procedure as a function defined above, ŷ? = f(D, x?), we can develop a simple
binary indication for maximal expressive power or not by building upon the notion of a
universal function approximator. Concretely, we will define a universal learning procedure
approximator as a universal function approximator for the function mapping from D and
x? to ŷ?. If a meta-learning algorithm can represent such a learning procedure, then it has
maximal expressive power. While this measure is simple, it’s binary nature is a certainly
a limitation as it does not allow us to characterize the degree to which a meta-learning
algorithm approaches universality. A more continuous measure would be desirable in
cases where, for example, we want to study expressive power under constraints like
the size of the learner model. We leave the possibility of developing such as measure
as a question for future work. In the rest of this section, we will study the expressive
power of a few previous black-box meta-learning approaches, focusing on the problem
of meta-supervised learning.

We can broadly classify black-box meta-learning methods into two categories. In the
first approach (Santoro et al., 2016; Duan et al., 2016b; Wang and Hebert, 2016; Mishra
et al., 2018), there is a meta-learner model g with parameters φ which takes as input the

10

dataset DT for a particular task T and a new test input x?, and outputs the estimated
output ŷ? for that input:

ŷ? = g(DT, x?;φ) = g((x, y)1, ..., (x, y)K, x?;φ)

The meta-learner g is typically a recurrent model that iterates over the dataset D and
the new input x?. For a recurrent neural network model that satisfies the UFA theorem,
this approach is maximally expressive, as it can represent any function on the dataset
DT and test input x?.

In the second approach (Hochreiter et al., 2001; S. Bengio et al., 1992; K. Li and Malik,
2017b; Andrychowicz et al., 2016; Ravi and Larochelle, 2017; Ha et al., 2017), there is a
meta-learner g that takes as input the dataset for a particular task DT and the current
weights θ of a learner model f, and outputs new parameters φT for the learner model.
Then, the test input x? is fed into the learner model to produce the predicted output ŷ?.
The process can be written as follows:

ŷ? = f(x?;φT) = f(x?;g(DT;φ)) = f(x?;g((x, y)1:K;φ))

Note that, in the form written above, this approach can be as expressive as the previ-
ous approach, since the meta-learner could simply copy the dataset into some of the
predicted weights, reducing to a model that takes as input the dataset and the test ex-
ample.1 Several versions of this approach, i.e. Ravi and Larochelle (2017) and K. Li and
Malik (2017b), have the recurrent meta-learner operate on order-invariant features such
as the gradient and objective value averaged over the datapoints in the dataset, rather
than operating on the individual datapoints themselves. This induces a potentially help-
ful inductive bias that disallows coupling between datapoints, ignoring the ordering
within the dataset. As a result, the meta-learning process can only produce permutation-
invariant functions of the dataset.

We will come back to this property in Section 4.4, when we discuss the expressive
power of model-agnostic meta-learning algorithms.

3.2 consistent learning algorithms

Beyond expressive power and scalability, another important aspect of meta-learning is
the ability to recover reasonable solutions even when faced with data from tasks that

1 For this to be possible, the model f must be a neural network with at least two hidden layers, since the
dataset can be copied into the first layer of weights and the predicted output must be a universal function
approximator of both the dataset and the test input.

11

are slightly outside of the distribution of training tasks. This ability to generalize well
is critical for real world applications where the number of training tasks may not ade-
quately cover the full distribution of training tasks, and lifelong learning settings where
the distribution of tasks is continuously shifting. Unfortunately, this notion of general-
ization is extremely difficult to measure, particularly for non-convex learning problems
with limited data. We will relax our assumptions and define a basic property that is
more straight-forward to measure, but still relates to finding good solutions to out-of-
distribution tasks. In particular, we consider a learning algorithm to be consistent if it
finds the true function when provided infinite data:

Definition 3.2.1. A learning algorithm f is consistent if it satisfies the following property:

lim
|D|→∞ f(D, x?i)→ y?

i ∀(x?i , y?
i)

This property can only be achieved by meta-learning algorithms for which the true
function from to y? can actually be represented, which is, e.g., satisfied by universal
meta-learners2. For convex supervised learning problems with separable data, hand-
designed learning algorithms such as gradient descent are consistent, modulo numerical
issues. While we cannot prove that gradient descent algorithms are consistent in the gen-
eral case, there is significant empirical evidence that, given enough data and sufficiently
large neural networks, stochastic gradient descent can find solutions with good training
error (C. Zhang et al., 2017). Therefore, it is not unreasonable to ask that our learned
learning procedures are also consistent insofar as gradient descent is consistent.

This property has interesting implications. It means that even if a meta-test task is com-
pletely distinct from the distribution tasks in the meta-training set, the learned learning
algorithm will do well on the task given enough data: the learned learning procedure
can overcome the prior if needed. Theoretically, ‘enough’ data might be infinite data. But,
in practice, it is reasonable to expect that consistent learning algorithms will not do sub-
stantially worse than learning from scratch in cases where the prior is not completely
incorrect, and likely still better than learning from scratch when the prior at least points
in the right direction. Hence, we would expect consistent learning algorithms to gen-
eralize reasonably well when the tasks are outside of but near the meta-training task
distribution. Whereas, with learning procedures that are not consistent, e.g. black-box
learning algorithms, one can only hope for good extrapolation performance, even when
provided extremely an large dataset on the extrapolated task.

2 It is likely possible to define a notion of consistency for learning algorithms with non-universal function
approximators by, for example, considering local optimum, but we leave this for future work.

12

3.3 handling ambiguity in learning

The final property we consider relates to ambiguity. Even when utilizing prior experience
when learning from a few datapoints, there might not be simply enough information in
the examples for a new task to resolve the task or concept with high certainty. Therefore,
it is desirable to develop few-shot meta-learning methods that can propose multiple
potential solutions to an ambiguous few-shot learning problem. Such a method could be
used to evaluate uncertainty (by measuring agreement between the samples), perform
active learning, or elicit direct human supervision about which sample is preferable. For
example, in safety-critical applications, such as few-shot medical image classification,
uncertainty is crucial for determining if the learned classifier should be trusted. When
learning from such small amounts of data, uncertainty estimation can also help predict
if additional data would be beneficial for learning and improving the estimate of the
rewards. Finally, while we do not experiment with this in this work, we expect that
modeling this ambiguity will be helpful for reinforcement learning problems, where it
can be used to aid in exploration.

To model ambiguity, systems should be capable of sampling different possible func-
tions underlying the data. With this ability, the learning procedure can generate different
hypotheses about the underlying function, which can be used to better seek out new
data to reduce uncertainty. Interestingly, standard learning procedures like gradient de-
scent, linear regression, and nearest neighbors do not satisfy this property, nor does a
recurrent neural network, as each of these learning algorithms are deterministic. Instead,
we need to build probabilistic meta-learning algorithms that can reason, in some way,
over the distribution of functions. Representing distributions over functions is relatively
straightforward when using simple function approximators, such as linear functions,
and has been done extensively in early few-shot learning approaches using Bayesian
models (Tenenbaum, 1999; Fei-Fei et al., 2003). But this problem becomes substantially
more challenging when reasoning over high-dimensional function approximators such
as deep neural networks, since explicitly representing expressive distributions over thou-
sands or millions of parameters if often intractable. In Chapter 5, we will discuss how we
can overcome this challenge to develop meta-learning algorithms that are both scalable
and probabilistic.

13

Part II

M E TA - L E A R N I N G W I T H G R A D I E N T S

4
A M O D E L - A G N O S T I C M E TA - L E A R N I N G A L G O R I T H M

In this chapter, we propose a meta-learning algorithm that is general and model-agnostic,
in the sense that it can be directly applied to any learning problem and model that is
trained with a gradient descent procedure. Our focus is on deep neural network models,
but we illustrate how our approach can easily handle different architectures and different
problem settings, including classification, regression, and policy gradient reinforcement
learning, with minimal modification. The key idea underlying our method is to train the
model’s initial parameters such that the model has maximal performance on a new task
after the parameters have been updated through one or more gradient steps computed
with a small amount of data from that new task. Unlike prior meta-learning methods
that learn an update function or learning rule (Schmidhuber, 1987; S. Bengio et al., 1992;
Andrychowicz et al., 2016; Ravi and Larochelle, 2017), our algorithm does not expand the
number of learned parameters nor place constraints on the model architecture (e.g. by re-
quiring a recurrent model (Santoro et al., 2016) or a Siamese network (Koch et al., 2015)),
and it can be readily combined with fully connected, convolutional, or recurrent neural
networks. It can also be used with a variety of loss functions, including differentiable
supervised losses and non-differentiable reinforcement learning objectives.

The process of training a model’s parameters such that a few gradient steps, or even
a single gradient step, can produce good results on a new task can be viewed from a
feature learning standpoint as building an internal representation that is broadly suitable
for many tasks. If the internal representation is suitable to many tasks, simply fine-
tuning the parameters slightly (e.g. by primarily modifying the top layer weights in
a feedforward model) can produce good results. In effect, our procedure optimizes for
models that are easy and fast to fine-tune, allowing the adaptation to happen in the right
space for fast learning. From a dynamical systems standpoint, our learning process can
be viewed as maximizing the sensitivity of the loss functions of new tasks with respect
to the parameters: when the sensitivity is high, small local changes to the parameters

15

meta-learning
learning/adaptation

θ

∇L1
∇L2

∇L3

φ∗1 φ∗2

φ∗3

Figure 1: Illustrative diagram of our model-agnostic meta-learning algorithm (MAML), which
optimizes for a representation θ that can quickly adapt to new tasks.

can lead to large improvements in the task loss.
The primary contribution in this chapter is a simple model- and task-agnostic algo-

rithm for meta-learning that trains a model’s parameters such that a small number of
gradient updates will lead to fast learning on a new task. We demonstrate the algorithm
on different model types, including fully connected and convolutional networks, and in
several distinct domains, including few-shot regression, image classification, and rein-
forcement learning. Our evaluation shows that our meta-learning algorithm compares
favorably to state-of-the-art one-shot learning methods designed specifically for super-
vised classification, while using fewer parameters, but that it can also be readily applied
to regression and can accelerate reinforcement learning in the presence of task variability,
substantially outperforming direct pretraining as initialization.

4.1 general algorithm

In contrast to prior work, which has sought to train recurrent neural networks that ingest
entire datasets (Santoro et al., 2016; Duan et al., 2016b) or feature embeddings that can be
combined with nonparametric methods at test time (Vinyals et al., 2016; Koch et al., 2015),
we propose a method that can learn the parameters of any standard model via meta-

16

learning in such a way as to prepare that model for fast adaptation. The intuition behind
this approach is that some internal representations are more transferrable than others.
For example, a neural network might learn internal features that are broadly applicable
to all tasks in p(T), rather than a single individual task. How can we encourage the
emergence of such general-purpose representations? We take an explicit approach to
this problem: since the model will be fine-tuned using a gradient-based learning rule on
a new task, we will aim to learn a model in such a way that this gradient-based learning
rule can make rapid progress on new tasks drawn from p(T), without overfitting. In
effect, we will aim to find model parameters that are sensitive to changes in the task,
such that small changes in the parameters will produce large improvements on the loss
function of any task drawn from p(T), when altered in the direction of the gradient of
that loss (see Figure 1). We make no assumption on the form of the model, other than to
assume that it is parametrized by some parameter vector θ, and that the loss function is
smooth enough in θ that we can use gradient-based learning techniques.

Formally, we consider a model represented by a parametrized function fθ with pa-
rameters θ. When adapting to a new task Ti, the model’s parameters θ become φi. In
our method, the updated parameter vector φi is computed using one or more gradient
descent updates on the training data for task Ti. For example, when using one gradient
update,

φi = θ−α∇θL(θ,Dtr
Ti
).

The step size α may be fixed as a hyperparameter or meta-learned. For simplicity of
notation, we will consider one gradient update for the rest of this section, but using
multiple gradient updates is a straightforward extension.

The model parameters are trained by optimizing for the performance of fφi with re-
spect to θ across tasks sampled from p(T). More concretely, the meta-objective is as
follows:

min
θ

∑
Ti∼p(T)

L(φi,Dtest
Ti

) = min
θ

∑
Ti∼p(T)

L(θ−α∇θL(θ,Dtr
Ti
),Dtest

Ti
) (1)

Note that the meta-optimization is performed over the model parameters θ, whereas the
objective is computed using the updated model parameters φ. In effect, our proposed
method aims to optimize the model parameters such that one or a small number of
gradient steps on a new task will produce maximally effective behavior on that task.

The meta-optimization across tasks is performed via stochastic gradient descent (SGD),

17

Algorithm 1 Model-Agnostic Meta-Learning

Require: p(T): distribution over tasks
Require: α, β: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T)

4: for each Ti do
5: Sample Dtr

Ti
∼ DTi

6: Sample Dtest
Ti

∼ DTi D
tr
Ti

7: Evaluate ∇θL(θ,Dtr
Ti
) with respect to K examples

8: Compute adapted parameters with gradient descent: φi = θ−α∇θL(θ,Dtr
Ti
)

9: Update θ← θ−β∇θ
∑

Ti∼p(T)
L(φi,Dtest

Ti
)

such that the model parameters θ are updated as follows:

θ← θ−β∇θ
∑

Ti∼p(T)

L(φi,Dtest
Ti

) (2)

where β is the meta step size. The full algorithm, in the general case, is outlined in
Algorithm 1.

The gradient of the MAML objective update involves a gradient through a gradi-
ent. Computationally, this requires an additional backward pass through f to compute
Hessian-vector products, which is supported by standard deep learning libraries such
as TensorFlow (Abadi et al., 2016). We discuss this further in Section 4.3. In our ex-
periments, we also include a comparison to dropping this backward pass and using a
first-order approximation, which we discuss in Section 4.6.2.

4.2 species of maml

In this section, we discuss specific instantiations of our meta-learning algorithm for su-
pervised learning and reinforcement learning. The domains differ in the form of loss
function and in how data is generated by the task and presented to the model, but the
same basic adaptation mechanism can be applied in both cases.

18

4.2.1 Supervised Regression and Classification

Few-shot learning is well-studied in the domain of supervised tasks, where the goal is to
learn a new function from only a few input/output pairs for that task, using prior data
from similar tasks for meta-learning. For example, the goal might be to classify images
of a Segway after seeing only one or a few examples of a Segway, with a model that has
previously seen many other types of objects. Likewise, in few-shot regression, the goal
is to predict the outputs of a continuous-valued function from only a few datapoints
sampled from that function, after training on many functions with similar statistical
properties.

To formalize the supervised regression and classification problems in the context of
the meta-learning definitions in Section 2.1, we can define the horizon H = 1 and drop
the timestep subscript on xt, since the model accepts a single input and produces a
single output, rather than a sequence of inputs and outputs. The task Ti generates K i.i.d.
observations x from ρi, and the task loss is represented by the error between the model’s
output for x and the corresponding target values y for that observation and task.

Two common loss functions used for supervised classification and regression are cross-
entropy and mean-squared error (MSE), which we will describe below; though, other
supervised loss functions may be used as well. For regression tasks using mean-squared
error, the loss takes the form:

L(ψ,DTi) =
∑

x(j),y(j)∼DTi

‖fψ(x(j)) − y(j)‖22, (3)

where x(j), y(j) are an input/output pair sampled from task Ti. In K-shot regression tasks,
K input/output pairs are provided for learning for each task.

Similarly, for discrete classification tasks with a cross-entropy loss, the loss takes the
form:

L(ψ,DTi) =
∑

x(j),y(j)∼DTi

y(j) log fψ(x(j))

+ (1− y(j)) log(1− fψ(x(j)))

(4)

According to the conventional terminology, K-shot classification tasks use K input/out-
put pairs from each class, for a total of NK data points for N-way classification. Given a
distribution over tasks p(Ti), these loss functions can be directly inserted into the equa-
tions in Section 4.1 to perform meta-learning, as detailed in Algorithm 2.

19

Algorithm 2 MAML for Few-Shot Supervised Learning

Require: p(T): distribution over tasks
Require: α, β: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T)

4: for each Ti do
5: Sample K datapoints Dtr

Ti
= {x(j), y(j)} from DTi

6: Evaluate ∇θL(θ,Dtr
Ti
) using L in Equation (3) or (4)

7: Compute adapted parameters with gradient descent: φi = θ−α∇θL(θ,Dtr
Ti
)

8: Sample datapoints Dtest
Ti

= {x(j), y(j)} from DTi D
tr
Ti

for the meta-update

9: Update θ ← θ− β∇θ
∑

Ti∼p(T)
L(φi,Dtest

Ti
) using each Dtest

Ti
and L in Equation 3

or 4

4.2.2 Reinforcement Learning

In reinforcement learning (RL), the goal of few-shot meta-learning is to enable an agent
to quickly acquire a policy for a new test task using only a small amount of experience
in the test setting. A new task might involve achieving a new goal or succeeding on a
previously trained goal in a new environment. For example, an agent might learn to
quickly figure out how to navigate mazes so that, when faced with a new maze, it can
determine how to reliably reach the exit with only a few samples. In this section, we will
discuss how MAML can be applied to meta-learning for RL, learning to learn a policy f
that maps from states s to actions a.

Each RL task Ti contains an initial state distribution ρi(s1) and a transition distribution
ρi(st+1|st, at), and the loss L corresponds to the (negative) reward function R. The entire
task is therefore a Markov decision process (MDP) with horizon H, where the learner
is allowed to query a limited number of sample trajectories for few-shot learning. Any
aspect of the MDP may change across tasks in p(T). The model being learned, fθ, is a
policy that maps from states st to a distribution over actions at at each timestep t ∈
{1, ...,H}. The loss for task Ti and model fψ takes the form

L(ψ,DTi) = −Est,at∼fψ,ρTi

[
H∑
t=1

Ri(st, at)

]
. (5)

In K-shot reinforcement learning, K rollouts from fθ and task Ti, (s1, a1, ...sH), and the

20

Algorithm 3 MAML for Reinforcement Learning

Require: p(T): distribution over tasks
Require: α, β: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T)

4: for each Ti do
5: Sample K trajectories Dtr

Ti
= {(s1, a1, ...xH)} using fθ in Ti

6: Evaluate ∇θL(θ,Dtr
Ti
) using L in Equation 5

7: Compute adapted parameters with gradient descent: φi = θ−α∇θL(θ,Dtr
Ti
)

8: Sample trajectories Dtest
Ti

= {(x1, a1, ...xH)} using fφi in Ti

9: Update θ← θ−β∇θ
∑

Ti∼p(T)
L(φi,Dtest

Ti
) using L in Equation 5

corresponding rewards R(st, at), may be used for adaptation on a new task Ti. Since the
expected reward is generally not differentiable due to unknown dynamics, we use policy
gradient methods to estimate the gradient both for the model gradient update(s) and the
meta-optimization. Since policy gradients are an on-policy algorithm, each additional
gradient step during the adaptation of fθ requires new samples from the current policy
fφi . We detail the algorithm in Algorithm 3. This algorithm has the same structure as Al-
gorithm 2, with the principal difference being that steps 5 and 8 require sampling trajec-
tories from the environment corresponding to task Ti. Practical implementations of this
method may also use a variety of improvements recently proposed for policy gradient
algorithms, including state or action-dependent baselines and trust regions (Schulman
et al., 2015).

4.3 implementation and first-order approximation

Performing the MAML optimization in Equation 1 via gradient descent involves comput-
ing second-derivatives, since the outer optimization is over θ and the objective includes
a gradient with respect to θ. If more than one gradient step is computed in the inner
optimization, the optimization does not involve higher-order derivatives because the
additional gradient steps are not computed with respect to θ, but with respect to the up-
dated parameters. Computing the gradients for the MAML objective in meta-supervised
learning problems is straightforward when using standard deep learning libraries such
as TensorFlow (Abadi et al., 2016) and PyTorch (Paszke et al., 2017), since these libraries

21

can automatically differentiate through the inner gradient through an extra backward
pass. However, it is trickier to implement the gradient of the meta-RL objective: the inner
gradient estimate involves an expectation over samples from fθ and auto-differentiation
methods are ignorant of the dependency of the samples on θ. While it is possible to
compute a correction term for the MAML gradient for simple policy gradient estimators
such as REINFORCE (Williams, 1992), it is much more difficult to compute for optimiz-
ers such as trust-region policy optimization (TRPO) (Schulman et al., 2015), which we
use in our experiments. We find that, for the illustrative examples in our experiments,
it is okay to ignore this dependency. However, we expect it to be much more important
in settings where the data distribution under the initial policy is crucial for good perfor-
mance, namely task distributions where nontrivial exploration strategies are important
for good performance.

Now, one might ask – do we need the second order information at all? Prior work (Ravi
and Larochelle, 2017) has found that second-order information with LSTM-based meta-
optimizers can achieve good results with these second derivatives omitted. In our ex-
periments, we find that the additional backward pass contributes to around 33% of the
computation, and this expense will increase substantially when using more gradient
steps within the MAML objective. If we can avoid differentiating through learning, then
we can achieve better scaling to long inner optimizations involving many gradient steps.
We develop a first-order approximation to the MAML algorithm that simply involves
stopping the gradient from back-propagating through the inner gradient:

min
θ

∑
Ti∼p(T)

L
(
θ−α sg

(
∇θL(θ,Dtr

Ti
)
)

,Dtest
Ti

)
where we use sg to denote a stop gradient operation. Note that this approximation still
computes the meta-gradient at the post-update parameter values φi, which provides for
effective meta-learning. This approximation effectively treats the parameter update as a
constant. To implement this approximation, one simply needs to run gradient descent
on a sampled task starting from θ to get to φ = θ+ c, and then backpropagate the test
task performance evaluated at θ+ c, treating c as a constant that does not depend on θ.

As we discuss in our experiments, we surprisingly find that this first-order approxi-
mation works well on few-shot image recognition benchmarks, achieving similar perfor-
mance to including full second-order information. However, in more complex domains,
such as few-shot imitation learning (see Chapter 7), we found the first-order approxima-
tion to not work at all.

22

4.4 expressive power of model-agnostic meta-learning

Because MAML is simply running gradient descent at test time starting from a meta-
learning initialization, MAML is guaranteed to acquire consistent learning algorithms
with enough gradient descent steps, insofar as gradient descent is consistent1. But does
this consistency come at a cost? A natural question that arises is whether MAML loses
representational power by incorporating the structure of gradient descent. Intuitively, we
might surmise that learning an update rule is more expressive than simply learning an
initialization for gradient descent. In this section, we seek to answer the following ques-
tion: does simply learning the initial parameters of a deep neural network have the same
representational power as arbitrarily expressive meta-learners that directly ingest the
training data at meta-test time? Or, more concisely, does representation combined with
standard gradient descent have sufficient capacity to constitute any learning algorithm?

We analyze this question from the standpoint of universal learning procedure approx-
imators, defined in Section 3.1, focusing on the setting of meta-supervised learning (as
opposed to meta-RL). Recall that we previously defined a universal learning procedure
approximator to be a learner that can approximate any function of the set of training
datapoints DT and the test point x?. Unlike black-box meta-learning algorithms, it is
not obvious whether or not the MAML update imposes any constraints on the learn-
ing procedures that can be acquired. In this section, we will find that, for a sufficiently
deep learner model, MAML has the same theoretical representational power as recur-
rent meta-learners. We therefore conclude that, when using deep, expressive function
approximators, there is no theoretical disadvantage in terms of representational power
to using MAML over a black-box meta-learner represented, for example, by a recurrent
network.

Formally, in model-agnostic meta-learning (MAML), standard gradient descent is used
to update the weights of the learner f. Following the notation introduced in Section 3.1,
the prediction ŷ? for a test input x? is:

ŷ? = fMAML(DT, x?; θ)

= f(x?;φT) = f(x?; θ−α∇θL(θ,DT)) = f

(
x?; θ−α∇θ

1

K

K∑
k=1

`(yk, f(xk; θ))

)
,

where θ denotes the initial parameters of the model f and also corresponds to the pa-
rameters that are meta-learned, and ` corresponds to a loss function with respect to the

1 Recall Section 3.2 for a discussion of consistency.

23

label and prediction. It is clear how fMAML can approximate any function on x?, as per
the universal function approximation (UFA) theorem; however, it is not obvious if fMAML
can represent any function of the set of input, output pairs in DT, since the UFA theorem
does not consider the gradient operator.

The first goal of this section is to show that fMAML(DT, x?; θ) is a universal function
approximator of (DT, x?) in the one-shot setting, where the dataset DT consists of a
single datapoint (x, y). Then, we will consider the case of K-shot learning, showing that
fMAML(DT, x?; θ) is universal in the set of functions that are invariant to the permutation
of datapoints. In both cases, we will discuss meta supervised learning problems with
both discrete and continuous labels and the loss functions under which universality
does or does not hold.

4.4.1 Universality of the One-Shot Gradient-Based Learner

We first introduce a proof of the universality of gradient-based meta-learning for the
special case with only one training point, corresponding to one-shot learning. We de-
note the training datapoint as (x, y), and the test input as x?. A universal learning algo-
rithm approximator corresponds to the ability of a meta-learner to represent any function
ftarget(x, y, x?) up to arbitrary precision.

We will proceed by construction, showing that there exists a neural network func-
tion f̂(·; θ) such that f̂(x?;φ) approximates ftarget(x, y, x?) up to arbitrary precision, where
φ = θ−α∇θ`(y, f(x)) and α is the non-zero learning rate. The proof holds for a stan-
dard multi-layer ReLU network, provided that it has sufficient depth. As we discuss in
Section 4.4.3, the loss function ` cannot be any loss function, but the standard cross-
entropy and mean-squared error objectives are both suitable. In this proof, we will start
by presenting the form of f̂ and deriving its value after one gradient step. Then, to show
universality, we will construct a setting of the weight matrices that enables independent
control of the information flow coming forward from x and x?, and backward from y.

We will start by constructing f̂, which, as shown in Figure 2 is a generic deep network
with N + 2 layers and ReLU nonlinearities. Note that, for a particular weight matrix
Wi at layer i, a single gradient step Wi − α∇Wi` can only represent a rank-1 update to
the matrix Wi. That is because the gradient of Wi is the outer product of two vectors,
∇Wi` = aibTi−1, where ai is the error gradient with respect to the pre-synaptic activations
at layer i, and bi−1 is the forward post-synaptic activations at layer i− 1. The expressive
power of a single gradient update to a single weight matrix is therefore quite limited.
However, if we sequenceNweight matrices as

∏N
i=1Wi, corresponding to multiple linear

24

Figure 2: A deep fully-connected neural network with N+2 layers and ReLU nonlinearities. With
this generic fully connected network, we prove that, with a single step of gradient
descent, the model can approximate any function of the dataset and test input.

layers, it is possible to acquire a rank-N update to the linear function represented by
W =

∏N
i=1Wi. Note that deep ReLU networks act like deep linear networks when the

input and pre-synaptic activations are non-negative. Motivated by this reasoning, we will
construct f̂(·; θ) as a deep ReLU network where a number of the intermediate layers act
as linear layers, which we ensure by showing that the input and pre-synaptic activations
of these layers are non-negative. This allows us to simplify the analysis. The simplified
form of the model is as follows:

f̂(·; θ) = fout

((
N∏
i=1

Wi

)
φ(·; θft, θb); θout

)
,

where φ(·; θft, θb) represents an input feature extractor with parameters θft and a scalar
bias transformation variable θb,

∏N
i=1Wi is a product of square linear weight matrices,

fout(·, θout) is a function at the output, and θ := {θft, θb, {Wi}, θout} are the learned pa-
rameters. The input feature extractor and output function can be represented with fully
connected neural networks with one or more hidden layers, which we know are uni-
versal function approximators, while

∏N
i=1Wi corresponds to a set of linear layers with

non-negative input and activations.
Next, we derive the form of the model’s prediction after one gradient update, f̂(x?;φ).

Let z =
(∏N

i=1Wi

)
φ(x; θft, θb), and the error gradient ∇z` = e(x, y). Then, the gradient

with respect to each weight matrix Wi is:

∇Wi`(y, f̂(x, θ)) =

 i−1∏
j=1

Wj

T e(x, y)φ(x; θft, θb)T

 N∏
j=i+1

Wj

T .

25

Therefore, the post-update value of
∏N
i=1W

′
i =

∏N
i=1(Wi −α∇Wi`) is given by

N∏
i=1

Wi−α

N∑
i=1

 i−1∏
j=1

Wj

 i−1∏
j=1

Wj

Te(x, y)φ(x; θft, θb)T

 N∏
j=i+1

Wj

T N∏
j=i+1

Wj

−O(α2),

where we will disregard the last term, assuming that α is comparatively small such that
α2 and all higher order terms vanish. In general, these terms do not necessarily need to
vanish, and likely would further improve the expressiveness of the gradient update, but
we disregard them here for the sake of the simplicity of the derivation. Ignoring these
terms, we now note that the post-update value of z? when x? is provided as input into
f̂(·;φ) is given by

z? =
N∏
i=1

Wiφ(x?;φft,φb) (6)

−α

N∑
i=1

 i−1∏
j=1

Wj

 i−1∏
j=1

Wj

Te(x, y)φ(x; θft, θb)T

 N∏
j=i+1

Wj

T N∏
j=i+1

Wj

φ(x?;φft,φb),

and f̂(x?;φ) = fout(z?;φout).
Our goal is to show that that there exists a setting of Wi, fout, and φ for which the

above function, f̂(x?,φ), can approximate any function of (x, y, x?). To show universality,
we will aim to independently control information flow from x, from y, and from x? by
multiplexing forward information from x and backward information from y. We will
achieve this by decomposing Wi, φ, and the error gradient into three parts, as follows:

Wi :=

 W̃i 0 0

0 Wi 0

0 0 w̌i

 φ(·; θft, θb) :=

φ̃(·; θft, θb)
0
θb

 ∇z`(y, f̂(x; θ)) :=

 0
e(y)
ě(y)

 (7)

where the initial value of θb will be 0. The top components all have equal numbers of
rows, as do the middle components. As a result, we can see that z will likewise be made
up of three components, which we will denote as z̃, z, and ž. Lastly, we construct the top
component of the error gradient to be 0, whereas the middle and bottom components,
e(y) and ě(y), can be set to be any linear (but not affine) function of y. We will discuss
how to achieve this gradient in the latter part of this section when we define fout and in
Section 4.4.3.

26

In Appendix A.1.3, we show that we can choose a particular form of W̃i, Wi, and
w̌i that will simplify the products of Wj matrices in Equation 6, such that we get the
following form for z?:

z? = −α

N∑
i=1

Aie(y)φ̃(x; θft, θb)TBTi Biφ̃(x
?; θft,φb), (8)

where A1 = I, BN = I, Ai can be chosen to be any symmetric positive-definite matrix, and
Bi can be chosen to be any positive definite matrix. In Appendix A.4, we further show
that these definitions of the weight matrices satisfy the condition that the activations are
non-negative, meaning that the model f̂ can be represented by a generic deep network
with ReLU nonlinearities.

Finally, we need to define the function fout at the output. When the training input
x is passed in, we need fout to propagate information about the label y as defined in
Equation 7. And, when the test input x? is passed in, we need a different function defined
only on z?. Thus, we will define fout as a neural network that approximates the following
multiplexer function and its derivatives (as shown possible by Hornik et al., 1990):

fout

 z̃

z
ž

 ; θout

 = 1(z = 0)gpre

 z̃

z
ž

 ; θg

+ 1(z 6= 0)hpost(z; θh), (9)

where gpre is a linear function with parameters θg such that ∇z` = e(y) satisfies Equa-
tion 7 (see Section 4.4.3) and hpost(·; θh) is a neural network with one or more hidden
layers. As shown in Appendix A.1.4, the post-update value of fout is

fout

 z̃?

z?

ž?

 ;φout

 = hpost(z?; θh). (10)

Now, combining Equations 8 and 10, we can see that the post-update value is the follow-
ing:

f̂(x?;φ) = hpost

(
−α

N∑
i=1

Aie(y)φ̃(x; θft, θb)TBTi Biφ̃(x
?; θft,φb); θh

)
(11)

In summary, so far, we have chosen a particular form of weight matrices, feature ex-
tractor, and output function to decouple forward and backward information flow and

27

recover the post-update function above. Now, our goal is to show that the above function
f̂(x?;φ) is a universal learning algorithm approximator, as a function of (x, y, x?). For no-
tational clarity, we will use ki(x, x?) := φ̃(x; θft, θb)TBTi Biφ̃(x

?; θft,φb) to denote the inner
product in the above equation, noting that it can be viewed as a type of kernel with
the RKHS defined by Biφ̃(x; θft, θb).2 The connection to kernels is not in fact needed for
the proof, but provides for convenient notation and an interesting observation. We then
define the following lemma:

Lemma 4.4.1. Let us assume that e(y) can be chosen to be any linear (but not affine) function
of y. Then, we can choose θft, θh, {Ai; i > 1}, {Bi; i < N} such that the function

f̂(x?;φ) = hpost

(
−α

N∑
i=1

Aie(y)ki(x, x?); θh

)
(12)

can approximate any continuous function of (x, y, x?) on compact subsets of Rdim(y).3

Intuitively, Equation 12 can be viewed as a sum of basis vectors Aie(y) weighted by
ki(x, x?), which is passed into hpost to produce the output. There are likely a number of
ways to prove Lemma 4.4.1. In Appendix A.1.1, we provide a simple though inefficient
proof, which we will briefly summarize here. We can define ki to be a indicator function,
indicating when (x, x?) takes on a particular value indexed by i. Then, we can define
Aie(y) to be a vector containing the information of y and i. Then, the result of the
summation will be a vector containing information about the label y and the value of
(x, x?) which is indexed by i. Finally, hpost defines the output for each value of (x, y, x?).
The bias transformation variable θb plays a vital role in our construction, as it breaks
the symmetry within ki(x, x?). Without such asymmetry, it would not be possible for our
constructed function to represent any function of x and x? after one gradient step.

In conclusion, we have shown that there exists a neural network structure for which
f̂(x?;φ) is a universal approximator of ftarget(x, y, x?). We chose a particular form of f̂(·; θ)
that decouples forward and backward information flow. With this choice, it is possible
to impose any desired post-update function, even in the face of adversarial training
datasets and loss functions, e.g. when the gradient points in the wrong direction. If we
make the assumption that the inner loss function and training dataset are not chosen
adversarially and the error gradient points in the direction of improvement, it is likely

2 Due to the symmetry of kernels, this requires interpreting θb as part of the input, rather than a kernel
hyperparameter, so that the left input is (x, θb) and the right one is (x?,φb).

3 The assumption with regard to compact subsets of the output space is inherited from the UFA theorem.

28

that a much simpler architecture will suffice that does not require multiplexing of for-
ward and backward information in separate channels. Informative loss functions and
training data allowing for simpler functions is indicative of the inductive bias built into
gradient-based meta-learners, which is not present in recurrent meta-learners.

Our result in this section implies that a sufficiently deep representation combined with
just a single gradient step can approximate any one-shot learning algorithm. In the next
section, we will show the universality of MAML for K-shot learning algorithms.

4.4.2 General Universality of the Gradient-Based Learner

Now, we consider the more general K-shot setting, aiming to show that MAML can ap-
proximate any permutation invariant function of a dataset and test datapoint ({(x, y)i; i ∈
1...K}, x?) for K > 1. Note that K does not need to be small. To reduce redundancy, we
will only overview the differences from the 1-shot setting in this section. We include a
full proof in Appendix A.2.

In the K-shot setting, the parameters of f̂(·, θ) are updated according to the following
rule:

φ = θ−α
1

K

K∑
k=1

∇θ`(yk, f(xk; θ))).

Defining the form of f̂ to be the same as in Section 4.4.1, the post-update function is the
following:

f̂(x?;φ) = hpost

(
−α

1

K

N∑
i=1

K∑
k=1

Aie(yk)ki(xk, x?); θh

)
In Appendix A.3, we show one way in which this function can approximate any func-
tion of ({(x, y)k;k ∈ 1...K}, x?) that is invariant to the ordering of the training datapoints
{(x, y)k;k ∈ 1...K}. We do so by showing that we can select a setting of φ̃ and of each Ai
and Bi such that z? is a vector containing a discretization of x? and frequency counts of
the discretized datapoints4. If z? is a vector that completely describes ({(x, y)i}, x?) with-
out loss of information and because hpost is a universal function approximator, f̂(x?;φ)
can approximate any continuous function of ({(x, y)i}, x?) on compact subsets of Rdim(y).
It’s also worth noting that the form of the above equation greatly resembles a kernel-
based function approximator around the training points, and a substantially more effi-
cient universality proof can likely be obtained starting from this premise.

4 With continuous labels y and mean-squared error `, we require the mild assumption that no two datapoints
may share the same input value x: the input datapoints must be unique.

29

4.4.3 Loss Functions

In the previous sections, we showed that a deep representation combined with gradient
descent can approximate any learning algorithm. In this section, we will discuss the
requirements that the loss function must satisfy in order for the results in Sections 4.4.1
and 4.4.2 to hold. As one might expect, the main requirement will be for the label to be
recoverable from the gradient of the loss.

As seen in the definition of fout in Equation 9, the pre-update function f̂(x, θ) is given
by gpre(z; θg), where gpre is used for back-propagating information about the label(s) to
the learner. As stated in Equation 7, we require that the error gradient with respect to z
to be:

∇z`(y, f̂(x; θ)) =

 0
e(y)
ě(y)

 , where z =

 z̃
z
θb

 =

φ̃(x; θft, θb)
0
0

 ,

and where e(y) and ě(y) must be able to represent [at least] any linear function of the
label y.

We define gpre as follows: gpre(z) :=
[
W̃g Wg w̌g

]
z = W̃gz̃ +Wgz + θbw̌g.

To make the top term of the gradient equal to 0, we can set W̃g to be 0, which causes
the pre-update prediction ŷ = f̂(x, θ) to be 0. Next, note that e(y) = W

T
g∇ŷ`(y, ŷ) and

ě(y) = w̌T
g∇ŷ`(y, ŷ). Thus, for e(y) to be any linear function of y, we require a loss

function for which ∇ŷ`(y, 0) is a linear function Ay, where A is invertible. Essentially, y
needs to be recoverable from the loss function’s gradient. In Appendix A.5 and A.6, we
prove the following two theorems, thus showing that the standard `2 and cross-entropy
losses allow for the universality of gradient-based meta-learning.

Theorem 4.4.1. The gradient of the standard mean-squared error objective evaluated at ŷ = 0 is
a linear, invertible function of y.

Theorem 4.4.2. The gradient of the softmax cross entropy loss with respect to the pre-softmax
logits is a linear, invertible function of y, when evaluated at 0.

Now consider other popular loss functions whose gradients do not satisfy the label-
linearity property. The gradients of the `1 and hinge losses are piecewise constant, and
thus do not allow for universality. The Huber loss is also piecewise constant in some
areas its domain. These error functions effectively lose information because simply look-
ing at their gradient is insufficient to determine the label. Recurrent meta-learners that

30

take the gradient as input, rather than the label, e.g. Andrychowicz et al. (2016), will also
suffer from this loss of information when using these error functions.

4.5 related work

The method that we propose in this chapter addresses the general problem of meta-
learning (Thrun and Pratt, 1998; Schmidhuber, 1987; Naik and Mammone, 1992), which
includes few-shot learning. A popular approach for meta-learning is to train a meta-
learner that learns how to update the parameters of the learner’s model (S. Bengio et
al., 1992; Schmidhuber, 1992; Y. Bengio et al., 1990). This approach has been applied
to learning to optimize deep networks (Hochreiter et al., 2001; Andrychowicz et al.,
2016; K. Li and Malik, 2017a), as well as for learning dynamically changing recurrent
networks (Ha et al., 2017). One recent approach learns both the weight initialization and
the optimizer, for few-shot image recognition (Ravi and Larochelle, 2017). Unlike these
methods, the MAML learner’s weights are updated using the gradient, rather than a
learned update; our method does not introduce additional parameters for meta-learning
nor require a particular learner architecture.

Few-shot learning methods have also been developed for specific tasks such as gener-
ative modeling (H. Edwards and Storkey, 2017; Rezende et al., 2016) and image recogni-
tion (Vinyals et al., 2016). One successful approach for few-shot classification is to learn
to compare new examples in a learned metric space using e.g. Siamese networks (Koch
et al., 2015) or recurrence with attention mechanisms (Vinyals et al., 2016; Shyam et al.,
2017; Snell et al., 2017). These approaches have generated some of the most successful
results, but are difficult to directly extend to other problems, such as reinforcement learn-
ing. Our method, in contrast, is agnostic to the form of the model and to the particular
learning task.

Another approach to meta-learning is to train memory-augmented models on many
tasks, where the recurrent learner is trained to adapt to new tasks as it is rolled out.
Such networks have been applied to few-shot image recognition (Santoro et al., 2016;
Munkhdalai and H. Yu, 2017) and learning “fast” reinforcement learning agents (Duan
et al., 2016b; Wang and Hebert, 2016). Memory augmentation can also take the form of
a recurrent network with fast Hebbian learning updates (J. Ba et al., 2016). Our experi-
ments show that our method outperforms the recurrent approach on few-shot classifica-
tion. Furthermore, unlike these methods, our approach simply provides a good weight
initialization and uses the same gradient descent update for both the learner and meta-
update. As a result, it is straightforward to finetune the learner for additional gradient

31

steps.
Our approach is also related to methods for initialization of deep networks. In com-

puter vision, models pretrained on large-scale image classification have been shown to
learn effective features for a range of problems (Donahue et al., 2014). In contrast, our
method explicitly optimizes the model for fast adaptability, allowing it to adapt to new
tasks with only a few examples. Our method can also be viewed as explicitly maximiz-
ing sensitivity of new task losses to the model parameters. A number of prior works
have explored sensitivity in deep networks, often in the context of initialization (Saxe
et al., 2014; Kirkpatrick et al., 2016). Most of these works have considered good ran-
dom initializations, though a number of papers have addressed data-dependent initial-
izers (Krähenbühl et al., 2016; Salimans and D. Kingma, 2016), including learned ini-
tializations (Husken and Goerick, 2000; Maclaurin et al., 2015). In contrast, our method
explicitly trains the parameters for sensitivity on a given task distribution, allowing for
extremely efficient adaptation for problems such as K-shot learning and rapid reinforce-
ment learning in only one or a few gradient steps.

4.6 experimental evaluation

The goal of our experimental evaluation is to answer the following questions: (1) Can
MAML enable fast learning of new tasks? (2) Can MAML be used for meta-learning
in multiple different domains, including supervised regression, classification, and rein-
forcement learning? (3) Can a model learned with MAML continue to improve with
additional gradient updates and/or examples? (4) Is there empirical benefit to incorpo-
rating the inductive bias of gradient descent into the meta-learning process?

To answer the first two questions, we will first study MAML in three different domains,
a toy regression problem, two few-shot image classification problems, and four simple
reinforcement learning problems involved continuous control of simulated robots. Then,
in Section 4.6.4, we will consider the latter two questions, aiming to empirically study
the inductive bias of gradient-based and recurrent meta-learners. Finally, in Section 4.6.5,
we will investigate the role of model depth in gradient-based meta-learning, as the the-
ory suggests that deeper networks lead to increased expressive power for representing
different learning procedures.

All of the meta-learning problems that we consider require some amount of adap-
tation to new tasks at test-time. When possible, we compare our results to an oracle
that receives the identity of the task (which is a problem-dependent representation) as
an additional input, as an upper bound on the performance of the model. All of the

32

Figure 3: Few-shot adaptation for the simple regression task. Left: Note that MAML is able to
estimate parts of the curve where there are no datapoints, indicating that the model
has learned about the periodic structure of sine waves. Right: Fine-tuning of a model
pretrained on the same distribution of tasks without MAML, with a tuned step size.
Due to the often contradictory outputs on the pre-training tasks, this model is unable
to recover a suitable representation and fails to extrapolate from the small number of
test-time samples.

experiments were performed using TensorFlow (Abadi et al., 2016), which allows for au-
tomatic differentiation through the gradient update(s) during meta-learning. The code is
available online5.

4.6.1 Regression

We start with a simple regression problem that illustrates the basic principles of MAML.
Each task involves regressing from the input to the output of a sine wave, where the
amplitude and phase of the sinusoid are varied between tasks. Thus, p(T) is continuous,
where the amplitude varies within [0.1, 5.0] and the phase varies within [0,π], and the in-
put and output both have a dimensionality of 1. During training and testing, datapoints
x are sampled uniformly from [−5.0, 5.0]. The loss is the mean-squared error between the
prediction f(x) and true value. The regressor is a neural network model with 2 hidden
layers of size 40 with ReLU nonlinearities. When training with MAML, we use one gra-
dient update with K = 10 examples with a fixed step size α = 0.01, and use Adam as
the meta-optimizer (D. Kingma and J. Ba, 2015). The baselines are likewise trained with
Adam. To evaluate performance, we fine-tune a single meta-learned model on varying
numbers of K examples, and compare performance to two baselines: (a) pretraining on
all of the tasks, which entails training a network to regress to random sinusoid functions

5 Code for the regression and supervised experiments is at github.com/cbfinn/maml and code for the RL
experiments is at github.com/cbfinn/maml_rl

33

github.com/cbfinn/maml

github.com/cbfinn/maml_rl

Figure 4: Quantitative sinusoid regression results showing the learning curve at meta test-time.
Note that MAML continues to improve with additional gradient steps without overfit-
ting to the extremely small dataset during meta-testing, achieving a loss that is substan-
tially lower than the baseline fine-tuning approach.

and then, at test-time, fine-tuning with gradient descent on the K provided points, using
an automatically tuned step size, and (b) an oracle which receives the true amplitude
and phase as input. In Appendix A.9, we show comparisons to additional multi-task
and adaptation methods.

We evaluate performance by fine-tuning the model learned by MAML and the pre-
trained model on K = {5, 10, 20} datapoints. During fine-tuning, each gradient step is
computed using the same K datapoints. The qualitative results, shown in Figure 3 and
further expanded on in Appendix A.8 show that the learned model is able to quickly
adapt with only 5 datapoints, shown as purple triangles, whereas the model that is pre-
trained using standard supervised learning on all tasks is unable to adequately adapt
with so few datapoints without catastrophic overfitting. Crucially, when the K datapoints
are all in one half of the input range, the model trained with MAML can still infer the am-
plitude and phase in the other half of the range, demonstrating that the MAML trained
model f has learned to model the periodic nature of the sine wave. Furthermore, we
observe both in the qualitative and quantitative results (Figure 4 and Appendix A.8) that
the model learned with MAML continues to improve with additional gradient steps,
despite being trained for maximal performance after one gradient step. This improve-
ment suggests that MAML optimizes the parameters such that they lie in a region that
is amenable to fast adaptation and is sensitive to loss functions from p(T), as discussed
in Section 4.1, rather than overfitting to parameters θ that only improve after one step.

34

4.6.2 Classification

To evaluate MAML in comparison to prior meta-learning and few-shot learning algo-
rithms, we applied our method to few-shot image recognition on the Omniglot (Lake
et al., 2011) and MiniImagenet datasets. The Omniglot dataset consists of 20 instances of
1623 characters from 50 different alphabets. Each instance was drawn by a different per-
son. The MiniImagenet dataset was proposed by Ravi and Larochelle (2017), and involves
64 training classes, 12 validation classes, and 24 test classes. The Omniglot and MiniIm-
agenet image recognition tasks are the most common recently used few-shot learning
benchmarks (Vinyals et al., 2016; Santoro et al., 2016; Ravi and Larochelle, 2017). We
follow the experimental protocol proposed by Vinyals et al. (2016), which involves fast
learning of N-way classification with 1 or 5 shots. The problem of N-way classification is
set up as follows: select N unseen classes, provide the model with K different instances
of each of the N classes, and evaluate the model’s ability to classify new instances within
theN classes. For Omniglot, we randomly select 1200 characters for training, irrespective
of alphabet, and use the remaining for testing. The Omniglot dataset is augmented with
rotations by multiples of 90 degrees, as proposed by Santoro et al. (2016).

Our model follows the same architecture as the embedding function used by Vinyals et
al. (2016), which has 4 modules with a 3×3 convolutions and 64 filters, followed by batch
normalization (Ioffe and Szegedy, 2015), a ReLU nonlinearity, and 2× 2 max-pooling.
The Omniglot images are downsampled to 28 × 28, so the dimensionality of the last
hidden layer is 64. As in the baseline classifier used by Vinyals et al. (2016), the last layer
is fed into a softmax. For Omniglot, we used strided convolutions instead of max-pooling.
For MiniImagenet, we used 32 filters per layer to reduce overfitting, as done by (Ravi and
Larochelle, 2017). In order to also provide a fair comparison against memory-augmented
neural networks (Santoro et al., 2016) and to test the flexibility of MAML, we also provide
results for a non-convolutional network. For this, we use a network with 4 hidden layers
with sizes 256, 128, 64, 64, each including batch normalization and ReLU nonlinearities,
followed by a linear layer and softmax. For all models, the loss function is the cross-
entropy error between the predicted and true class. Additional hyperparameter details
are included in Appendix A.7.1.

We present the results in Table 2. The convolutional model learned by MAML com-
pares well to the state-of-the-art results on this task, narrowly outperforming the prior
methods. Some of these existing methods, such as matching networks, Siamese networks,
and memory models are designed with few-shot classification in mind, and are not
readily applicable to domains such as reinforcement learning. Additionally, the model

35

5-way Accuracy 20-way Accuracy

Omniglot (Lake et al., 2011) 1-shot 5-shot 1-shot 5-shot

MANN, no conv (Santoro et al., 2016) 82.8% 94.9% – –

MAML, no conv (ours) 89.7± 1.1% 97.5± 0.6% – –

Siamese nets (Koch et al., 2015) 97.3% 98.4% 88.2% 97.0%

matching nets (Vinyals et al., 2016) 98.1% 98.9% 93.8% 98.5%

neural statistician (H. Edwards and Storkey, 2017) 98.1% 99.5% 93.2% 98.1%

memory mod. (Kaiser et al., 2017) 98.4% 99.6% 95.0% 98.6%

MAML (ours) 98.7± 0.4% 99.9± 0.1% 95.8± 0.3% 98.9± 0.2%

5-way Accuracy

MiniImagenet (Ravi and Larochelle, 2017) 1-shot 5-shot

fine-tuning baseline 28.86± 0.54% 49.79± 0.79%
nearest neighbor baseline 41.08± 0.70% 51.04± 0.65%
matching nets (Vinyals et al., 2016) 43.56± 0.84% 55.31± 0.73%
meta-learner LSTM (Ravi and Larochelle, 2017) 43.44± 0.77% 60.60± 0.71%
MAML, first order approx. (ours) 48.07± 1.75% 63.15± 0.91%

MAML (ours) 48.70± 1.84% 63.11± 0.92%

Table 2: Few-shot classification on held-out Omniglot characters (top) and the MiniImagenet test
set (bottom). MAML achieves results that are comparable to or outperform state-of-the-
art convolutional and recurrent models. Siamese nets, matching nets, and the memory
module approaches are all specific to classification, and are not directly applicable to
regression or RL scenarios. The ± shows 95% confidence intervals over tasks. Note that
the Omniglot results may not be strictly comparable since the train/test splits used in
the prior work were not available. The MiniImagenet evaluation of baseline methods and
matching networks is from Ravi and Larochelle (2017).

learned with MAML uses fewer overall parameters compared to matching networks
and the meta-learner LSTM, since the algorithm does not introduce any additional pa-
rameters beyond the weights of the classifier itself. Compared to these prior methods,
memory-augmented neural networks (Santoro et al., 2016) specifically, and recurrent
meta-learning models in general, represent a more broadly applicable class of methods
that, like MAML, can be used for other tasks such as reinforcement learning (Duan et al.,
2016b; Wang and Hebert, 2016). However, as shown in the comparison, MAML signifi-

36

Figure 5: Left: quantitative results from 2D navigation task, Middle & Right: qualitative com-
parison between model learned with MAML and with fine-tuning from a pretrained
network.

cantly outperforms memory-augmented networks and the meta-learner LSTM on 5-way
Omniglot and MiniImagenet classification, both in the 1-shot and 5-shot case.

A significant computational expense in MAML comes from the use of second deriva-
tives when backpropagating the meta-gradient through the gradient operator in the
meta-objective (see Equation (2)). On MiniImagenet, we show a comparison to a first-
order approximation of MAML, where these second derivatives are omitted. Note that
the resulting method still computes the meta-gradient at the post-update parameter val-
ues φi, which provides for effective meta-learning. Surprisingly however, the perfor-
mance of this method is nearly the same as that obtained with full second derivatives,
suggesting that most of the improvement in MAML comes from the gradients of the ob-
jective at the post-update parameter values, rather than the second order updates from
differentiating through the gradient update. Past work has observed that ReLU neural
networks are locally almost linear (Goodfellow et al., 2015), which suggests that second
derivatives may be close to zero in most cases, partially explaining the good performance
of the first-order approximation. This approximation removes the need for computing
Hessian-vector products in an additional backward pass, which we found led to roughly
33% speed-up in network computation.

4.6.3 Reinforcement Learning

To evaluate MAML on reinforcement learning problems, we constructed several sets of
tasks based off of the simulated continuous control environments in the rllab benchmark
suite (Duan et al., 2016a). We discuss the individual domains below. In all of the domains,
the model trained by MAML is a neural network policy with two hidden layers of size
100, with ReLU nonlinearities. The gradient updates are computed using vanilla policy
gradient (REINFORCE) (Williams, 1992), and we use trust-region policy optimization

37

Figure 6: Reinforcement learning results for the half-cheetah (top) and ant (bottom) locomotion
tasks, with the environments shown on the right. Each gradient step requires additional
samples from the environment, unlike the supervised learning tasks. The results show
that MAML can adapt to new goal velocities and directions substantially faster than
conventional pretraining or random initialization, achieving good performs in just two
or three gradient steps. We exclude the goal velocity, random baseline curves, since the
returns are much worse (< −200 for cheetah and < −25 for ant).

(TRPO) as the meta-optimizer (Schulman et al., 2015). In order to avoid computing third
derivatives, we use finite differences to compute the Hessian-vector products for TRPO.
For both learning and meta-learning updates, we use the standard linear feature baseline
proposed by Duan et al. (2016a), which is fitted separately at each iteration for each
sampled task in the batch. We compare to three baseline models: (a) pretraining one
policy on all of the tasks and then fine-tuning, (b) training a policy from randomly
initialized weights, and (c) an oracle policy which receives the parameters of the task as
input, which for the tasks below corresponds to a goal position, goal direction, or goal
velocity for the agent. The baseline models of (a) and (b) are fine-tuned with gradient
descent with a manually tuned step size. Videos of the learned policies can be viewed at
sites.google.com/view/maml

2D Navigation. In our first meta-RL experiment, we study a set of tasks where a point
agent must move to different goal positions in 2D, randomly chosen for each task within
a unit square. The observation is the current 2D position, and actions correspond to veloc-
ity commands clipped to be in the range [−0.1, 0.1]. The reward is the negative squared
distance to the goal, and episodes terminate when the agent is within 0.01 of the goal
or at the horizon of H = 100. The policy was trained with MAML to maximize perfor-
mance after 1 policy gradient update using 20 trajectories. Additional hyperparameter

38

sites.google.com/view/maml

settings for this problem and the following RL problems are in Appendix A.7.2. In our
evaluation, we compare adaptation to a new task with up to 4 gradient updates, each
with 40 samples. The results in Figure 5 show the adaptation performance of models that
are initialized with MAML, conventional pretraining on the same set of tasks, random
initialization, and an oracle policy that receives the goal position as input. The results
show that MAML can learn a model that adapts much more quickly in a single gradient
update, and furthermore continues to improve with additional updates.
Locomotion. To study how well MAML can scale to more complex deep RL problems,
we also study adaptation on high-dimensional locomotion tasks with the MuJoCo simu-
lator (Todorov et al., 2012). The tasks require two simulated robots – a planar cheetah
and a 3D quadruped (the “ant”) – to run in a particular direction or at a particular
velocity. In the goal velocity experiments, the reward is the negative absolute value be-
tween the current velocity of the agent and a goal, which is chosen uniformly at random
between 0.0 and 2.0 for the cheetah and between 0.0 and 3.0 for the ant. In the goal
direction experiments, the reward is the magnitude of the velocity in either the forward
or backward direction, chosen at random for each task in p(T). The horizon is H = 200,
with 20 rollouts per gradient step for all problems except the ant forward/backward
task, which used 40 rollouts per step. The results in Figure 6 show that MAML learns a
model that can quickly adapt its velocity and direction with even just a single gradient
update, and continues to improve with more gradient steps. The results also show that,
on these challenging tasks, the MAML initialization substantially outperforms random
initialization and pretraining. In fact, pretraining is in some cases worse than random
initialization, a fact observed in prior RL work (Parisotto et al., 2016).

4.6.4 Empirical Study of Inductive Bias

In this section, we aim to empirically explore the differences between gradient-based
and recurrent meta-learners. In particular, we aim to answer the following questions: (1)
can a learner trained with MAML further improve from additional gradient steps when
learning new tasks at test time, or does it start to overfit? and (2) does the inductive
bias of gradient descent enable better few-shot learning performance on tasks outside
of the training distribution, compared to learning algorithms represented as recurrent
networks?

To study both questions, we will consider two simple few-shot learning domains. The
first is 5-shot regression on a family of sine curves with varying amplitude and phase.
We trained all models on a uniform distribution of tasks with amplitudes A ∈ [0.1, 5.0],

39

Figure 7: The effect of additional gradient steps at test time when attempting to solve new tasks.
The MAML model, trained with 5 inner gradient steps, can further improve with more
steps. All methods are provided with the same data – 5 examples – where each gradient
step is computed using the same 5 datapoints.

Figure 8: Learning performance on out-of-distribution tasks as a function of the task variability.
There is a clear trend that recurrent meta-learners such as SNAIL and MetaNet acquire
learning strategies that are less generalizable than those learned with gradient-based
meta-learning.

and phases γ ∈ [0,π]. The second domain is 1-shot character classification using the Om-
niglot dataset (Lake et al., 2011), following the training protocol introduced by Santoro et
al. (2016). In our comparisons to recurrent meta-learners, we will use two state-of-the-art

40

Figure 9: Comparison of finetuning from a MAML-initialized network and a network initialized
randomly, trained from scratch. Both methods achieve about the same training accuracy.
But, MAML also attains good test accuracy, while the network trained from scratch over-
fits catastrophically to the 5 or 20 examples. Interestingly, the MAML-initialized model
does not begin to overfit, even though meta-training used 1 and 5 steps respectively
while the graph shows up to 100 gradient steps.

meta-learning models: SNAIL (Mishra et al., 2018) and meta-networks (Munkhdalai and
H. Yu, 2017). In some experiments, we will also compare to a task-conditioned model,
which is trained to map from both the input and the task description to the label. Like
MAML, the task-conditioned model can be fine-tuned on new data using gradient de-
scent, but is not trained for few-shot adaptation. We include more experimental details
in Appendix A.7.3.

To answer the first question, we fine-tuned a model trained using MAML with many
more gradient steps than used during meta-training. The results on the sinusoid domain,
shown in Figure 7, show that a MAML-learned initialization trained for fast adaption
in 5 steps can further improve beyond 5 gradient steps, especially on out-of-distribution
tasks. In contrast, a task-conditioned model trained without MAML can easily overfit to
out-of-distribution tasks. With the Omniglot dataset, as seen in Figure 9, a MAML model
that was trained with 5 inner gradient steps can be fine-tuned for 100 gradient steps
without leading to any drop in test accuracy. As expected, a model initialized randomly
and trained from scratch quickly reaches perfect training accuracy, but overfits massively
to the 20 examples.

Next, we investigate the second question, aiming to compare MAML with state-of-the-
art recurrent meta-learners on tasks that are related to, but outside of the distribution
of the training tasks. All three methods achieved similar performance within the dis-
tribution of training tasks for 5-way 1-shot Omniglot classification and 5-shot sinusoid

41

Figure 10: Comparison of depth while keeping the number of parameters constant. Task-
conditioned models do not need more than one hidden layer, whereas meta-learning
with MAML clearly benefits from additional depth. Error bars show standard devia-
tion over three training runs.

regression. In the Omniglot setting, we compare each method’s ability to distinguish
digits that have been sheared or scaled by varying amounts. In the sinusoid regression
setting, we compare on sinusoids with extrapolated amplitudes within [5.0, 10.0] and
phases within [π, 2π]. The results in Figure 8 show a clear trend that MAML recovers
more generalizable learning strategies. Combined with the theoretical universality re-
sults, these experiments indicate that deep gradient-based meta-learners are not only
equivalent in representational power to recurrent meta-learners, but should also be a
considered as a strong contender in settings that contain domain shift between meta-
training and meta-testing tasks, where their strong inductive bias for reasonable learning
strategies provides substantially improved performance.

4.6.5 Effect of Depth

The proofs in Sections 4.4.1 and 4.4.2 suggest that gradient descent with deeper represen-
tations results in more expressive learning procedures. In contrast, the universal function
approximation theorem only requires a single hidden layer to approximate any function.
Now, we seek to empirically explore this theoretical finding, aiming to answer the ques-
tion: is there a scenario for which model-agnostic meta-learning requires a deeper rep-
resentation to achieve good performance, compared to the depth of the representation
needed to solve the underlying tasks being learned?

To answer this question, we will study a simple regression problem, where the meta-

42

learning goal is to infer a polynomial function from 40 input/output datapoints. We use
polynomials of degree 3 where the coefficients and bias are sampled uniformly at ran-
dom within [−1, 1] and the input values range within [−3, 3]. Similar to the conditions
in the proof, we meta-train and meta-test with one gradient step, use a mean-squared
error objective, use ReLU nonlinearities, and use a bias transformation variable of di-
mension 10. To compare the relationship between depth and expressive power, we will
compare models with a fixed number of parameters, approximately 40, 000, and vary
the network depth from 1 to 5 hidden layers. As a point of comparison to the mod-
els trained for meta-learning using MAML, we trained standard feedforward models to
regress from the input and the 4-dimensional task description (the 3 coefficients of the
polynomial and the scalar bias) to the output. These task-conditioned models act as an
oracle and are meant to empirically determine the depth needed to represent these poly-
nomials, independent of the meta-learning process. Theoretically, we would expect the
task-conditioned models to require only one hidden layer, as per the universal function
approximation theorem. In contrast, we would expect the MAML model to require more
depth. The results, shown in Figure 10, demonstrate that the task-conditioned model
does indeed not benefit from having more than one hidden layer, whereas the MAML
clearly achieves better performance with more depth even though the model capacity, in
terms of the number of parameters, is fixed. This empirical effect supports the theoretical
finding that depth is important for effective meta-learning using MAML.

4.7 discussion

In this chapter, we introduced a meta-learning method based on learning easily adapt-
able model parameters through gradient descent. Our approach has a number of benefits.
It is simple and does not introduce any learned parameters for meta-learning. It can be
combined with any model representation that is amenable to gradient-based training,
and any differentiable objective, including classification, regression, and reinforcement
learning. Since our method merely produces a weight initialization, adaptation can be
performed with any amount of data and any number of gradient steps, allowing for
consistent learning algorithms. We further theoretically show that, for a sufficiently deep
neural network, the initial representation combined with only a single gradient step can
approximate any learning algorithm, achieving the property of universality discussed in
Section 3.1. Our findings suggest that, from the standpoint of expressivity, there is no
theoretical disadvantage to embedding gradient descent into the meta-learning process.

Empirically, we demonstrated state-of-the-art results on classification with only a few

43

gradient steps and one or five examples per class, and showed that our method can
adapt an RL agent using policy gradients and a very modest amount of experience.
In all of our experimental settings, we found that the learning strategies acquired with
MAML are more successful when faced with out-of-domain tasks compared to recurrent
learners. Furthermore, we show that the representations acquired with MAML are highly
resilient to overfitting. These results suggest that, in addition to the desirable theoretical
properties, model-agnostic meta-learning also has a number of practical benefits.

44

5
A P R O B A B I L I S T I C M O D E L - A G N O S T I C M E TA - L E A R N I N G
A L G O R I T H M

While the MAML algorithm exhibits two desirable properties previously discussed, con-
sistency and universality, it cannot effectively reason about ambiguity. The goal of this
chapter is to consider the question – can we build a model-agnostic meta-learning algo-
rithm that is both scalable and consistent, like the original MAML method, yet also has
the ability to reason about uncertainty, akin to few-shot learning approaches that use
Bayesian models? To do so, we build upon tools in amortized variational inference. Our
approach extends MAML to model a distribution over prior model parameters, which
leads to an appealing simple stochastic adaptation procedure that simply injects noise
into gradient descent at meta-test time. The meta-training procedure then optimizes for
this simple inference process to produce samples from an approximate model posterior.

Hence, the main contribution of this chapter is a reframing of MAML as a graphical
model inference problem, where variational inference can provide us with a principled
and natural mechanism for modeling uncertainty and ambiguity. Our approach enables
sampling multiple potential solutions to a few-shot learning problem at meta-test time,
and our experiments show that this ability can be utilized to sample multiple possible
regressors for an ambiguous regression problem, as well as multiple possible classifiers
for ambiguous few-shot attribute classification tasks.

5.1 overview and preliminaries

We set up a graphical model for the few-shot learning problem. In particular, we want
a hierarchical Bayesian model that includes random variables for the prior distribution
over function parameters, θ, the distribution over parameters for a particular task, φi,
and the task training and test datapoints. This graphical model is illustrated in Figure 11

(left), where tasks are indexed over i and datapoints are indexed over j. We will use the

45

Figure 11: Graphical models corresponding to our approach. The original graphical model (left)
is transformed into the center model after performing inference over φi. We find it
beneficial to introduce additional dependencies of the prior on the training data to
compensate for using the MAP estimate to approximate p(φi), as shown on the right.

shorthand xtr
i , ytr

i , xtest
i , ytest

i to denote the sets of datapoints {xtr
i,j| ∀ j}, {ytr

i,j| ∀ j}, {xtest
i,j | ∀ j},

{ytest
i,j | ∀ j} and Dtr

i , Dtest
i to denote {xtr

i , ytr
i } and {xtest

i , ytest
i }.

We will study few-shot supervised learning problems where the loss function used
corresponds to the negative log likelihood of the data under the classifier or regressor:
L(θ,D) = −

∑
(xj,yj)∈D logp(yj|xj, θ).

5.2 gradient-based meta-learning with variational inference

In the graphical model in Figure 11, the predictions for each task are determined by the
task-specific model parameters φi. At meta-test time, these parameters are influenced
by the prior p(φi|θ), as well as by the observed training data xtr, ytr. The test inputs
xtest are also observed, but the test outputs ytest, which need to be predicted, are not
observed. Note that φi is thus independent of xtest, but not of xtr, ytr. Therefore, posterior
inference over φi must take into account both the evidence (training set) and the prior
imposed by p(θ) and p(φi|θ). Conventional MAML can be interpreted as approximating
maximum a posteriori inference under a simplified model where p(θ) is a delta function,
and inference is performed by running gradient descent on logp(ytr|xtr,φi) for a fixed
number of iterations starting from φ0i = E[θ] (Grant et al., 2018). The corresponding
distribution p(φi|θ) is approximately Gaussian, with a mean that depends on the step

46

size and number of gradient steps. When p(θ) is not deterministic, we must make a
further approximation to account for the random variable θ.

One way we can do this is by using structured variational inference. In structured
variational inference, we approximate the distribution over the hidden variables θ and
φi for each task with some approximate distribution qi(θ,φi). There are two reasonable
choices we can make for qi(θ,φi). First, we can approximate it as a product of inde-
pendent marginals, according to qi(θ,φi) = qi(θ)qi(φi). However, this approximation
does not permit uncertainty to propagate effectively from θ to φi. A more expressive
approximation is the structured variational approximation qi(θ,φi) = qi(θ)qi(φi|θ). We
can further avoid storing a separate variational distribution qi(φi|θ) and qi(θ) for each
task Ti by employing an amortized variational inference technique (D. P. Kingma and
Welling, 2013; Johnson et al., 2016; Shu et al., 2018), where we instead set qi(φi|θ) =

qψ(φi|θ, xtr
i , ytr

i , xtest
i , ytest

i), where qψ is defined by some function approximator with pa-
rameters ψ that takes xtr

i , ytr
i as input, and the same qψ is used for all tasks. Similarly, we

can define qi(θ) as qψ(θ|xtr
i , ytr

i , xtest
i , ytest

i). We can now write down the variational lower
bound on the log-likelihood as

logp(ytest
i |xtest

i , xtr
i, ytr

i) > E
θ,φi∼qψ

[
logp(ytr

i |x
tr
i ,φi)+logp(ytest

i |xtest
i ,φi)+logp(φi|θ)+logp(θ)

]
+H(qψ(φi|θ, xtr

i , ytr
i , xtest

i , ytest
i)) +H(qψ(θ|xtr

i , ytr
i , xtest

i , ytest
i)).

The likelihood terms on the first line can be evaluated efficiently: given a sample
θ,φi ∼ q(θ,φi|xtr

i , ytr
i , xtest

i , ytest
i), the training and test likelihoods simply correspond to

the loss of the network with parameters φi. The prior p(θ) can be chosen to be Gaus-
sian, with a learned mean and (diagonal) covariance to provide for flexibility to choose
the prior parameters. This corresponds to a Bayesian version of the MAML algorithm.
We will define these parameters as µθ and σ2θ. Lastly, p(φi|θ) must be chosen. This
choice is more delicate. One way to ensure a tractable likelihood is to use a Gaussian
with mean θ. This choice is reasonable, because it encourages φi to stay close to the
prior parameters φi, but we will see in the next section how a more expressive implicit
conditional can be obtained using gradient descent, resulting in a procedure that more
closely resembles the original MAML algorithm while still modeling the uncertainty.
Lastly, we must choose a form for the inference networks qψ(φi|θ, xtr

i , ytr
i , xtest

i , ytest
i) and

qψ(θ|xtr
i , ytr

i , xtest
i , ytest

i). They must be chosen so that their entropies on the second line
of the above equation are tractable. Furthermore, note that both of these distributions
model very high-dimensional random variables: a deep neural network can have hun-
dreds of thousands or millions of parameters. So while we can use an arbitrary function
approximator, we would like to find a scalable solution.

47

One convenient solution is to allow qψ to reuse the learned mean of the prior µθ. We
observe that adapting the parameters with gradient descent is a good way to update
them to a given training set xtr

i , ytr
i and test set xtest

i , ytest
i , an design decision similar to

one made by Fortunato et al. (2017). We propose an inference network of the form

qψ(θ|xtr
i , ytr

i , xtest
i , ytest

i) = N(µθ + γq∇µθ logp(ytr
i |x

tr
i ,µθ) + γq∇µθ logp(ytest

i |xtest
i ,µθ); vq),

where vq is a learned (diagonal) covariance, and the mean has an additional parame-
ter beyond µθ, which is a “learning rate” vector γq that is pointwise multiplied with
the gradient. While this choice may at first seem arbitrary, there is a simple intuition:
the inference network should produce a sample of θ that is close to the posterior
p(θ|xtr

i , ytr
i , xtest

i , ytest
i). A reasonable way to arrive at a value of θ close to this posterior is

to adapt it to both the training set and test set.1 Note that this is only done during meta-
training. It remains to choose qψ(φi|θ, xtr

i , ytr
i , xtest

i , ytest
i), which can also be formulated as

a conditional Gaussian with mean given by applying gradient descent.
Although this variational distribution is substantially more compact in terms of pa-

rameters than a separate neural network, it only provides estimates of the posterior
during meta-training. At meta-test time, we must obtain the posterior p(φi|xtr

i , ytr
i , xtest

i),
without access to ytest

i . We can train a separate set of inference networks to perform this
operation, potentially also using gradient descent within the inference network. How-
ever, these networks do not receive any gradient information during meta-training, and
may not work well in practice. In the next section we propose an even simpler and more
practical approach that uses only a single inference network during meta-training, and
none during meta-testing.

5.3 probabilistic model-agnostic meta-learning with hybrid inference

To formulate a simpler variational meta-learning procedure, we recall the probabilistic
interpretation of MAML: as discussed by Grant et al. (2018), MAML can be interpreted
as approximate inference for the posterior p(ytest

i |xtr
i , ytr

i , xtest
i) according to

p(ytest
i |xtr

i , ytr
i , xtest

i) =

∫
p(ytest

i |xtest
i ,φi)p(φi|xtr

i , ytr
i , θ)dφi ≈ p(ytest

i |xtest
i ,φ?

i), (13)

where we use the maximum a posteriori (MAP) value φ?
i . It can be shown that, for like-

lihoods that are Gaussian in φi, gradient descent for a fixed number of iterations using

1 In practice, we can use multiple gradient steps for the mean, but we omit this for notational simplicity.

48

Algorithm 4 Meta-training, differences from MAML
in red
Require: p(T): distribution over tasks

1: initialize Θ := {µθ,σ2θ, vq,γp,γq}
2: while not done do
3: Sample batch of tasks Ti ∼ p(T)

4: for all Ti do
5: Dtr,Dtest = Ti
6: Evaluate ∇µθL(µθ,Dtest)

7: Sample θ ∼ q = N(µθ − γq∇µθL(µθ,Dtest), vq)
8: Evaluate ∇θL(θ,Dtr)

9: Compute adapted parameters using gradient
descent: φi = θ−α∇θL(θ,Dtr)

10: Let p(θ|Dtr) = N(µθ − γp∇µθL(µθ,Dtr),σ2θ))
11: Compute ∇Θ

(∑
Ti

L(φi,Dtest)

+DKL(q(θ|D
test) || p(θ|Dtr))

)
12: Update Θ using Adam

Algorithm 5 Meta-testing

Require: training data Dtr
T for new

task T

Require: learned Θ
1: Sample θ from the prior p(θ|Dtr)

2: Evaluate ∇θL(θ,Dtr)

3: Compute adapted parameters
with gradient descent:
φi = θ−α∇θL(θ,Dtr)

xtr
i , ytr

i corresponds exactly to maximum a posteriori inference under a Gaussian prior
p(φi|θ) (Santos, 1996). In the case of non-Gaussian likelihoods, the equivalence is only
locally approximate, and the exact form of the prior p(φi|θ) is intractable. However, in
practice this implicit prior can actually be preferable to an explicit (and simple) Gaussian
prior, since it incorporates the rich nonlinear structure of the neural network parameter
manifold, and produces good performance in practice (Finn et al., 2017a; Grant et al.,
2018). We can interpret this MAP approximation as inferring an approximate poste-
rior on φi of the form , where φ?

i is obtained via gradient descent on the training set
xtr
i , ytr

i starting from θ. Incorporating this approximate inference procedure transforms
the graphical model in Figure 11 (a) into the one in Figure 11 (b), where there is now
a factor over p(φi|xtr

i , ytr
i , θ). While this is a crude approximation to the likelihood, it

provides us with an empirically effective and simple tool that greatly simplifies the vari-
ational inference procedure described in the previous section, in the case where we aim
to model a distribution over the global parameters p(θ). After using gradient descent to
estimate p(φi | xtr

i , ytr
i , θ), the graphical model is transformed into the model shown in

the center of Figure 11. Note that, in this new graphical model, the global parameters
θ are independent of xtr and ytr and are independent of xtest when ytest is not observed.
Thus, we can now write down a variational lower bound for the logarithm of the approx-

49

imate likelihood on the second line, which is given by

logp(ytest
i |xtest

i , xtr
i , ytr

i) > Eθ∼qψ
[
logp(ytest

i |xtest
i ,φ?

i) + logp(θ)
]
+H(qψ(θ|xtest

i , ytest
i)).

In this bound, we essentially perform approximate inference via MAP on φi to obtain
p(φi|xtr

i , ytr
i , θ), and use the variational distribution for θ only. Note that qψ(θ|xtest

i , ytest
i) is

not conditioned on the training set xtr
i , ytr

i since θ is independent of it in the transformed
graphical model. Analogously to the previous section, the inference network is given by

qψ(θ|xtest
i , ytest

i) = N(µθ + γq∇ logp(ytest
i |xtest

i ,µθ); vq).

To evaluate the variational lower bound during training, we can use the following proce-
dure: first, we evaluate the mean by starting from µθ and taking one (or more) gradient
steps on logp(ytest

i |xtest
i , θcurrent), where θcurrent starts at µθ. We then add noise with vari-

ance vq, which is made differentiable via the reparameterization trick (D. P. Kingma
and Welling, 2013). We then take additional gradient steps on the training likelihood
logp(ytr

i |x
tr
i , θcurrent). This accounts for the MAP inference procedure on φi. Training of

µθ, σ2θ, and vq is performed by backpropagating gradients through this entire procedure
with respect to the variational lower bound, which includes a term for the likelihood
logp(ytest

i |xtest
i , xtr, ytr,φ?

i) and the KL-divergence between the sample θ ∼ qψ and the
prior p(θ). This meta-training procedure is detailed in Algorithm 4.

At meta-test time, the inference procedure is much simpler. The test labels are not
available, so we simply sample θ ∼ p(θ) and perform MAP inference on φi using the
training set, which corresponds to gradient steps on logp(ytr

i |x
tr
i , θcurrent), where θcurrent

starts at the sampled θ. This meta-testing procedure is detailed in Algorithm 5.

5.4 adding additional dependencies

In the transformed graphical model, the training data xtr
i , ytr

i and the prior θ are con-
ditionally independent. However, since we have only a crude approximation to p(φi |
xtr
i , ytr

i , θ), this independence often doesn’t actually hold. We can allow the model to
compensate for this approximation by additionally conditioning the learned prior p(θ)
on the training data. In this case, the learned “prior” has the form p(θi|xtr

i , ytr
i), where θi

is now task-specific, but with global parameters µθ and σ2θ. We thus obtain the modified
graphical model in Figure 11 (c). Similarly to the inference network qψ, we parameterize
the learned prior as follows:

p(θi|xtr
i , ytr

i) = N(µθ + γp∇ logp(ytr
i |x

tr
i ,µθ);σ2θ).

50

With this new form for distribution over θ, the variational training objective uses
the likelihood term logp(θi|xtr

i , ytr
i) in place of logp(θ), but otherwise is left un-

changed. At test time, we sample from θ ∼ p(θ|xtr
i , ytr

i) by first taking gradient steps
on logp(ytr

i |x
tr
i , θcurrent), where θcurrent is initialized at µθ, and then adding noise with

variance σ2θ. Then, we proceed as before, performing MAP inference on φi by taking
additional gradient steps on logp(ytr

i |x
tr
i , θcurrent) initialized at the sample θ. In our exper-

iments, we find that this more expressive distribution often leads to better performance.

5.5 related work

Hierarchical Bayesian models are a long-standing approach for few-shot learning that
naturally allow for the ability to reason about uncertainty over functions (Tenenbaum,
1999; Fei-Fei et al., 2003; Lawrence and Platt, 2004; K. Yu et al., 2005; J. Gao et al., 2008;
Daumé III, 2009; Wan et al., 2012). While these approaches have been demonstrated on
simple few-shot image classification datasets (Lake et al., 2015), they have yet to scale
to the more complex problems, such as the experiments in this chapter. A number of
works have approached the problem of few-shot learning from a meta-learning perspec-
tive (Schmidhuber, 1987; Hochreiter et al., 2001), including black-box (Santoro et al., 2016;
Duan et al., 2016b; Wang and Hebert, 2016) and optimization-based approaches (Ravi
and Larochelle, 2017; Finn et al., 2017a). While these approaches scale to large-scale im-
age datasets (Vinyals et al., 2016) and visual reinforcement learning problems (Mishra
et al., 2018), they typically lack the ability to reason about uncertainty.

This work is most related to methods that combine deep networks and probabilis-
tic methods for few-shot learning (H. Edwards and Storkey, 2017; Grant et al., 2018;
Lacoste et al., 2017). One approach that considers hierarchical Bayesian models for few-
shot learning is the neural statistician (H. Edwards and Storkey, 2017), which uses an
explicit task variable to model task distributions. Our method is fully model agnostic,
and directly samples model weights for each task for any network architecture. Our ex-
periments show that our approach improves on MAML (Chapter 4), which outperforms
the model by H. Edwards and Storkey (2017). Other work that considers model uncer-
tainty in the few-shot learning setting is the LLAMA method (Grant et al., 2018), which
also builds on the MAML algorithm. LLAMA makes use of a local Laplace approxi-
mation for modeling the task parameters (post-update parameters), which introduces
the need to approximate a high dimensional covariance matrix. We instead propose a
method that approximately infers the pre-update parameters, which we make tractable
through a choice of approximate posterior parameterized by gradient operations.

51

Bayesian neural networks (MacKay, 1992; G. E. Hinton and Van Camp, 1993; Neal, 1995;
Barber and Bishop, 1998) have been studied extensively as a way to incorporate un-
certainty into deep networks. Although exact inference in Bayesian neural networks
is impractical, approximations based on backpropagation and sampling (Graves, 2011;
Rezende et al., 2014; Hoffman et al., 2013; Blundell et al., 2015) have been effective in in-
corporating uncertainty into the weights of generic networks. Our approach differs from
these methods in that we explicitly train a hierarchical Bayesian model over weights,
where a posterior task-specific parameter distribution is inferred at meta-test time con-
ditioned on a learned weight prior and a (few-shot) training set, while conventional
Bayesian neural networks directly learn only the posterior weight distribution for a sin-
gle task. Our method draws on amortized variational inference methods (D. P. Kingma
and Welling, 2013; Johnson et al., 2016; Shu et al., 2018) to make this possible, but the
key modification is that the model and inference networks share the same parameters.
The resulting method corresponds structurally to a Bayesian version of model-agnostic
meta-learning.

5.6 experiments

The goal of our experimental evaluation is to answer the following questions: (1) can our
approach enable sampling from the distribution over potential functions underlying the
training data?, (2) does our approach improve upon the MAML algorithm when there
is ambiguity over the class of functions?, and (3) can our approach scale to deep con-
volutional networks? We study two illustrative toy examples and a realistic ambiguous
few-shot image classification problem. For the both experimental domains, we compare
MAML to our probabilistic approach. We will refer to our version of MAML as a PLATI-
PUS (Probabilistic LATent model for Incorporating Priors and Uncertainty in few-Shot
learning), due to its unusual combination of two approximate inference methods: amor-
tized inference and MAP. Both PLATIPUS and MAML use the same neural network
architecture and the same number of inner gradient steps. We additionally provide a
comparison on the MiniImagenet benchmark and specify the hyperparameters in the
supplementary appendix.

illustrative 5-shot regression. In this 1D regression problem, different tasks
correspond to different underlying functions. Half of the functions are sinusoids, and
half are lines, such that the task distribution is clearly multimodal. The sinusoids have
amplitude and phase uniformly sampled from the range [0.1, 5] and [0,π], and the lines

52

Figure 12: Samples from PLATIPUS trained for 5-shot regression, shown as colored dotted lines.
The tasks consist of regressing to sinusoid and linear functions, shown in gray. MAML,
shown in black, is a deterministic procedure and hence learns a single function, rather
than reasoning about the distribution over potential functions. As seen on the bottom
row, even though PLATIPUS is trained for 5-shot regression, it can effectively reason
over its uncertainty when provided variable numbers of datapoints at test time (left vs.
right).

have the slope and intercept sampled in the range [−3, 3]. The input domain is uniform
on [−5, 5], and Gaussian noise with a standard deviation of 0.3 is added to the labels.
We trained both MAML and PLATIPUS for 5-shot regression. In Figure 12, we show the
qualitative performance of both methods, where the ground truth underlying function
is shown in gray and the datapoints in Dtr are shown as purple triangles. We show the
function fφi learned by MAML in black. For PLATIPUS, we sample 10 sets of parameters
from p(φi|θ) and plot the resulting functions in different colors. In the top row, we
can see that PLATIPUS allows the model to effectively reason over the set of functions
underlying the provided datapoints, with increased variance in parts of the function
where there is more uncertainty. Further, we see that PLATIPUS is able to capture the
multimodal structure, as the curves are all linear or sinusoidal.

A particularly useful application of uncertainty estimates in few-shot learning is es-
timating when more data would be helpful. In particular, seeing a large variance in a
particular part of the input space suggests that more data would be helpful for learning
the function in that part of the input space. On the bottom of Figure 12, we show the
results for a single task at meta-test time with increasing numbers of training datapoints.
Even though the model was only trained on training set sizes of 5 datapoints, we observe

53

Figure 13: Samples from PLATIPUS for 1-shot classification, shown as colored dotted lines. The
2D classification tasks all involve circular decision boundaries of varying size and
center, shown in gray. MAML, shown in black, is a deterministic procedure and hence
learns a single function, rather than reasoning about the distribution over potential
functions.

that PLATIPUS is able to effectively reduce its uncertainty as more and more datapoints
are available. This suggests that the uncertainty provided by PLATIPUS can be used for
approximately gauging when more data would be helpful for learning a new task.

illustrative 1-shot 2d classification. Next, we study a simple binary classi-
fication task, where there is a particularly large amount of ambiguity surrounding the
underlying function: learning to learn from a single positive example. Here, the tasks
consist of classifying datapoints in 2D within the range [0, 5] with a circular decision
boundary, where points inside the decision boundary are positive and points outside
are negative. Different tasks correspond to different locations and radii of the decision
boundary, sampled at uniformly at random from the ranges [1.0, 4.0] and [0.1, 2.0] re-
spectively. Following Grant et al. (2017), we train both MAML and PLATIPUS with Dtr

consisting of a single positive example and Dtest consisting of both positive and negative
examples. We plot the results using the same scheme as before, except that we plot the
decision boundary (rather than the regression function) and visualize the single positive
datapoint with a green plus. As seen in Figure 13, we see that PLATIPUS captures a
broad distribution over possible decision boundaries, all of which are roughly circular.
MAML provides a single decision boundary of average size.

ambiguous image classification. The ambiguity illustrated in the previous set-
tings is common in real world tasks where images can share multiple attributes. We
study an ambiguous extension to the celebA attribute classification task. Our meta-
training dataset is formed by sampling two attributes at random to form a positive class
and taking the same number of random examples without either attribute to from the

54

Ambiguous celebA (5-shot)

Accuracy Coverage (max=3)

MAML 69.26 ± 2.18% 1.00 ± 0.0

MAML + noise 54.73 ± 0.8 % 2.60 ± 0.12

PLATIPUS (ours) 69.97± 1.32 % 2.62± 0.11

Table 3: Our method covers significantly more tasks than MAML, with comparable accuracy.
MAML + noise is a method that simply adds noise to the gradient, but does not ex-
plicitly perform variational inference. This still improves coverage, but results in a large
drop in accuracy.

negative classes. To evaluate the ability to capture multiple decision boundaries while
simultaneously obtaining good performance, we evaluate our method as follows: We
sample from a test set of three attributes and a corresponding set of images with those
attributes. Since the tasks involve classifying images that have two attributes, this task
is ambiguous, and there are three possible combinations of two attributes that explain
the training set. We sample models from our prior as described in Section 5.4 and assign
each of the sampled models to one of the three possible tasks based on its log-likelihood.
If each of the three possible tasks is assigned a nonzero number of samples, this means
that the model effectively covers all three possible modes that explain the ambiguous
training set. We can measure coverage and accuracy from this protocol. The coverage
score indicates the average number of tasks (between 1 and 3) that receive at least one
sample for each ambiguous training set, and the accuracy score is the average number
of correct classifications on these tasks (according to the sampled models assigned to
them). A highly random method will achieve good coverage but poor accuracy, while a
deterministic method will have a coverage of 1.

Our results are summarized in Table 3 and Fig. 14. The accuracy of our method is
comparable to standard, deterministic MAML. However, the deterministic algorithm
only ever captures one mode for each ambiguous task, where the maximum is three.
Our method on average captures between two and three modes. The qualitative analy-
sis in Figure 14 illustrates2 an example ambiguous training set, example images for the
three possible two-attribute pairs that can correspond to this training set, and the clas-
sifications made by different sampled classifiers trained on the ambiguous training set.

2 Additional qualitative results can be found at https://sites.google.com/view/probabilistic-maml/

55

Smiling, 
Wearing Hat, 

Necktie

Smiling, 
Wearing Hat

Smiling
Necktie

Wearing Hat, 
Necktie

+ - + - + - + -

Figure 14: Sampled classifiers for an ambiguous meta-test task. In the meta-test training set (left),
PLATIPUS observes five positives that share three attributes, and five negatives. A
classifier that uses any two attributes can correctly classify the training set. On the right,
we show each of the possible two-attribute tasks that this training set can correspond
to, and illustrate the labels (positive indicated by red border) assigned by the best
sample for that task. We see that the different samples are able to make reasonable
predictions with no hats (2nd column) or pay attention to them (1st and 3rd column),
and can effectively capture the three possible explanations.

Note that the different samples each pay attention to different attributes, indicating that
PLATIPUS is effective at capturing the different modes of the task.

5.6.1 Discussion and Future Work

We introduced an algorithm for few-shot meta-learning that enables simple and effective
sampling of models for new tasks at meta-test time. Our algorithm, PLATIPUS, adapts
to new tasks by running gradient descent with injected noise. During meta-training, the
model parameters are optimized with respect to a variational lower bound on the like-
lihood for the meta-training tasks, so as to enable this simple adaptation procedure to
produce approximate samples from the model posterior when conditioned on a few-
shot training set. This approach has a number of benefits. The adaptation procedure
is exceedingly simple, and the method can be applied to any standard model architec-

56

ture. The algorithm introduces a modest number of additional parameters: besides the
initial model weights, we must learn a variance on each parameter for the inference net-
work and prior, and the number of parameters scales only linearly with the number of
model weights. Our experimental results show that our method can be used to effec-
tively sample diverse solutions to both regression and classification tasks at meta-test
time, including for task families that have multi-modal task distributions.

Although our approach is simple and broadly applicable, it has a number of potential
limitations that could be addressed in future work. First, the current form of the method
provides a relatively impoverished estimator of posterior variance, which might be less
effective at gauging uncertainty in settings where different tasks have very different
degrees of ambiguity. In these cases, finding a way to make the variance dependent
on the few-shot training set might produce better results, and investigating how to do
this without adding a large number of additional parameters would be an interesting
direction for future work. Another exciting direction for future research would be to
study how our approach could be applied in settings where ambiguity and uncertainty
can directly guide data acquisition, so as to devise better few-shot active learning and
reinforcement learning algorithms.

57

Part III

E X T E N S I O N S A N D A P P L I C AT I O N S

6
O N L I N E A D A P T I V E C O N T R O L

6.1 meta-learning for adaptive control

Figure 15: A meta-trained cheetah agent, using
recent experience to adapt its model
online to succeed in a new setting.

Both model-based and model-free rein-
forcement learning methods generally op-
erate in one of two regimes: all training is
performed in advance, producing a model
or policy that can be used at test-time to
make decisions in settings that approxi-
mately match those seen during training;
or, training is performed online (e.g., as
in the case of online temporal-difference
learning), in which case the agent can
slowly modify its behavior as the environ-
ment changes around it. However, in both
of these cases, sudden changes in the envi-
ronment such as failure of a robot’s com-
ponents, shifts in the terrain or lighting,
or unexpected perturbations, can cause
the agent to fail. In contrast, humans can
rapidly adapt their behavior to unseen
physical perturbations and changes in their dynamics (Braun et al., 2009): adults can
learn to walk on crutches in just a few seconds, people can adapt almost instantaneously
to picking up an object of unknown weight, and children that can walk on carpet and
grass can quickly figure out how to walk on ice without having to relearn how to walk.
How is this possible? If an agent has encountered a large number of perturbations in
the past, it can in principle use that experience to learn how to adapt. In this chapter, we

59

propose a meta-learning approach for learning online adaption.
To enable efficient learning for real-world applications, we specifically study the on-

line adaptation problem in the context of model-based reinforcement learning (M. P.
Deisenroth et al., 2013). In this setting, data for updating the model is readily available.
But more crucially, the meta-training process is much more sample efficient than meta-
training an adaptive policy with model-free RL (Duan et al., 2016b; Wang and Hebert,
2016).

Learning to adapt a model online alleviates a central challenge of model-based rein-
forcement learning: acquiring a global model that is accurate throughout the entire state
space. If the model can adapt online, it need not be perfect everywhere a priori. This
property has previously been exploited by adaptive control methods (Åström and Wit-
tenmark, 2013; Sastry and Isidori, 1989), but scaling such methods to complex tasks and
nonlinear models such as deep neural networks is exceptionally difficult, since such mod-
els typically require large amounts of data and many gradient steps to learn effectively.
By training a neural network model to require only a small amount of experience to
adapt, we can enable effective online adaptation in complex environments while putting
less pressure on needing a perfect global model.

The primary contribution of this chapter is an approach that combines meta-learning
with model-based RL to achieve fast online adaptation. As shown in Figure 15, our
approach efficiently trains a global model that can use its most recent experiences to
quickly adapt. We introduce two instantiations of this approach: recurrence based adap-
tive control (RBAC), where a recurrent model is trained to learn its own update rule
(i.e., through its internal gating structure), and gradient based adaptive control (GBAC),
which extends the model-agnostic meta-learning algorithm (MAML) and optimizes for
initial model parameters such that a gradient descent update-rule on recent data leads
to fast and effective adaptation. We evaluate our approach on stochastic and simulated
continuous control tasks with complex contact dynamics. In our experiments, we show
a half-cheetah robot adapting after the failure of different joints, navigating terrains with
different slopes, and walking on floating platforms with varying buoyancy. We also show
a quadrupedal “ant” adapting to failure of different legs, and a 7-DoF arm adapting on-
line to random force perturbations. Our method can adapt rapidly on these tasks, and it
attains substantial improvement over prior approaches, including standard model-based
methods, online model-adaptive methods, and model-free methods trained with similar
amounts of data. In all experiments, meta-training across multiple tasks is efficient, us-
ing only the equivalent of 1.5− 3 hours of real-world experience, roughly 10× less than
what model-free methods require to learn even a single task.

60

6.1.1 Preliminaries: Model-Based RL

We consider a Markov Decision Process (MDP) defined by the tuple (S,A,p, r,γ, ρ0, T).
Here, S is the set of states, A is the set of actions, p(s ′|s, a) is the state transition distri-
bution, r : S×A → R is a bounded reward function, ρ0 : S → R+ is the initial state
distribution, γ is the discount factor, and T is the horizon. A trajectory is denoted by
τ(i, j) := (si, ai, ..., sj, aj, sj+1), and the sum of expected rewards from a trajectory is the
return. RL aims to find a policy π : S→ A that prescribes the optimal action to take from
each state in order to maximize the expected return.

Model-based RL tries to solve this problem by learning the transition distribution
p(s ′|s, a), otherwise referred to as the dynamics model. This can be done using a func-
tion approximator p̂θ(s ′|s, a) to approximate the dynamics, where the weights θ are op-
timized to maximize the log-likelihood of the distribution:

max
θ∈Rw

1

|D|

∑
(st,at,st+1)∈D

log p̂θ(st+1|st, at) (14)

Here, D is a training dataset containing state transitions that the agent has experi-
enced. The choice of model, its training procedure, and the method of using this model
to perform action selection can all be done in many ways; we detail our approach in
Sec. 6.1.2.

Learning a model in this supervised learning setup makes more efficient use of the
data than the counterpart model-free methods, since we get dense training signals and
we are able to use all data (even off-policy data) to make forward progress in training. A
standard practice for addressing the data distribution mismatch between train time and
test time is to aggregate the trajectories resulting from executing the policy, and retrain
the dynamics model with the updated dataset.

6.1.2 Overview

In our approach, we first have a meta-training phase (Algorithm 6), during which we
learn parameters θ∗ of a model that is specifically optimized for the ability to adapt
online. We refer to the mechanism that performs this model adaptation as the update
rule uψ parameterized by ψ. It is some function that takes in an agent’s recent experi-
ence τ(t−M, t− 1) and parameters θ as inputs, and outputs new adapted parameters
φ. This rule can be prescribed or learned, as discussed in Sections 6.1.5 and 6.1.6. Unlike
standard learning approaches that seek optimal parameters θ∗ to achieve high task per-

61

formance, we optimize for θ∗ such that application of recent experience and the update
rule uψ on this θ∗ leads to high performance across various tasks.

Standard meta-learning formulations require the learned model to adapt after seeing
K data points from some new “task.” However, our notion of task is slightly more fluid;
every time step of the trajectory can be considered a different “task.” Since changes in
system dynamics, terrain details, or other environmental changes can occur at any time,
we consider (at each time step) the task of adapting to the M past time steps. Allowing
the pastM observations to guide action selection enables us to extend MDP’s to partially
observable MDP’s (POMDP’s). This is particularly important because we can consider all
real-world tasks as POMDP’s, since it is impossible to have state information for every
environmental change that could possibly happen.

The goal in meta-learning is to learn a θE and update rule uψ such that p̂φ∗ , where
φE = uψ(τ(t−M, t− 1), θE), is a more accurate predictor for the current dynamics in
environment E. We assume a distribution of environments ρ(E) share some common
structure, such as the same observation and action space, but display different dynamics.
We denote trajectories from each environment E by τE(i, j) , (sEi , aEi , ..., sEj , aEj , sEj+1), and
we formalize the meta-learning problem as:

min
θ,ψ

EE∼ρ(E)
t∼U([T−K−1])

[
L(τE(t, t+K),φE)

]
s.t.: φE = uψ(τE(t−M, t− 1), θ) (15)

In the optimization outlined above, note that past data is used to adapt θ into φ, but since
we want to know how good these new parameters are at adapting, the loss is evaluated
on the future transitions. To optimize our model p̂θ(s ′|s, a) of the dynamics p(s ′|s, a), we
can consider, without loss of generality, optimizing a loss corresponding to the negative
log likelihood across tasks, given by

L(τE(t, t+K),φE) , −
1

K

t+K∑
k=t

log p̂φE
(sEk+1|s

E
k , aEk). (16)

6.1.3 Online Model Adaptive Control

We now discuss how to perform adaptive control at test time (Algorithm 7), given a
meta-learned model θ∗ . At every time step t, we consult an update rule uψ that uses
the agent’s recent experience τE(t−M, t− 1) to adapt θ∗ into φE. The adapted dynamics
model p̂φE

can be viewed as a local model, since it is adapted to recently observed data
and trained to perform well in this region.

62

Algorithm 6 Learning a prior for online
adaptation
Require: ρE distribution over tasks
Require: learning rate β ∈ R+,
Require: sampling frequency nS ∈ Z+

Require: dataset D
1: Randomly initialize θ
2: for i = 1, ... do
3: if i mod nS = 0 then
4: Sample E ∼ ρ(E)

5: Collect τE
6: D← D∪ {τE}
7: for j = 1 . . .N do
8: τE(t−M, t− 1), τE(t, t+K) ∼ D

9: φE ← u(τE(t−M, t− 1), θ)
10: Lj ← L(τE(t, t+K),φE)

11: θ← θ−β∇θ 1N
N∑
j=1

Lj

12: ψ← ψ− η∇ψ 1N
N∑
j=1

Lj

13: Return θ∗ and uψ

Algorithm 7 Online adaptive control at
each time step
Require: Parameters θ of a prior
Require: update rule u
Require: experience τ(t−M, t− 1)
Require: number of samples nA
Require: horizon H

1: φ← uψ(τ(t−M, t− 1), θ)
2: A← ∅
3: for i = 1, . . . ,nA do
4: Sample sequence of actions Ai
5: A← A∪ {Ai}
6: ŝi ← si

7: Ri ← 0

8: for Ai in A do
9: for ai in Ai do

10: Ri ← Ri + r(ŝi, ai)
11: ŝi ∼ p̂φ(·|ŝi, ai)

12: i∗ ← arg maxi Ri

13: Return Ai
∗

63

We then employ a computationally tractable model-based controller to perform action
selection. We generate nA random candidate action sequences {A1, ...,AnA}, where each
sequence Ai = (ai0, ..., aiH−1) is of length H. Then, we use the updated model p̂θ∗ and the
specified reward function r(s, a) to perform action selection as follows:

Ai
∗
= arg max

Ai

H∑
h=0

r(ŝit+h, aih) s.t.: ŝit = st ; ŝit+h+1 ∼ p̂φE
(·|ŝit+h, aih) (17)

Algorithm 8 Meta-Learning for Adaptive
Control
Require: ρ(·) distribution over tasks, uψ, H,

r, nA, metaTrain(), actionSelection()
1: θ∗ ← metaTrain(ρ)
2: for each rollout do
3: experience← ∅
4: for each step in rollout do
5: φ∗ ← uψ(θ∗, experience)
6: a← actionSelection(φ∗, r,H,nA)
7: Execute a, add to experience

This zeroth-order optimization proce-
dure is simple and has been shown to be
effective for even non-linear and highly
non-convex dynamics models (Nagabandi
et al., 2017a). However, a variety of alterna-
tives such as iterative gradient-free algo-
rithms (Blossom, 2006) or gradient-based
methods (W. Li and Todorov, 2004) can
also be used. Finally, rather than executing
the entire sequence of actions, we execute
only the first action from the selected se-
quence and then repeat this planning pro-
cess at the next time step. This use of MPC
allows us to better deal with the imperfections of our adapted dynamics model, since
we replan at each time step using updated state information. It also provides us further
benefits in the setting of online adaptation, because the model p̂φE

will also improve at
the next time step.

6.1.4 General Algorithm of Meta-Learning for Adaptive Control

Figure 16: A meta-trained ant agent, adapting
online to the unexpected crippling
of its leg.

We now combine the meta-trained prior
and continuous adaptation into one cohe-
sive framework (Algorithm 8). We first per-
form meta-training (Section 6.1.2) to opti-
mize the prior model parameters θ∗ and
update rule uψ. Next, we perform the fol-
lowing operations at each time step: we use
the update rule uψ and recent experience to
adapt model parameters, we select (and exe-

64

cute) actions using MPC with the updated model (Section 6.1.3), we append the observed
transition to our dataset, and repeat. In the next two sections, we discuss two possible
instantiations of the update rule and model prior.

6.1.5 Recurrence-Based Adaptive Control (RBAC)

One instantiation of our proposed approach of meta-learning adaptive control is to train
a recurrent model to learn its own update rule for deciding how to use recent data to
adapt online. This approach is an extension to previously proposed recurrence-based
meta-learning methods (Santoro et al., 2016; Duan et al., 2016b). In the recurrent meta-
learning scheme, an RNN ingests a dataset as well as a query point, and outputs a
prediction for that query point. Following the notation in the previous section, the vec-
tors θ and φ correspond to the hidden state of the RNN at the beginning and end of the
forward pass, respectively, and the update rule uψ is determined by the RNN weights,
which determine how recent experience τ(t −M, t − 1) influences the hidden state at
time t. Typically, the prior hidden state θ is set to a constant (e.g., zero), so RBAC learns
only the update rule uψ. For the dynamics model in our RBAC experiments, we use
a Long Short-Term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) model with 2

hidden layers of 256 units each and tanh activations, and we setM to be the total number
of time steps in the episode so far (M = t).

6.1.6 Gradient-Based Adaptive Control (GBAC)

While RBAC can learn complex update rules through its recurrent weights (and is good
for tasks of a sequential nature), it has limited capacity to handle out-of-distribution
tasks and perturbations that differ from those seen during meta-training, as we will show
in Section 6.1.8. To address this shortcoming, we also propose gradient-based adaptive
control (GBAC), which builds on model-agnostic meta-learning (MAML) (Finn et al.,
2017a). Unlike MAML, our method considers learning to adapt online. The update rule
is explicitly prescribed to be gradient ascent on the likelihood of past experiences:

uψ(τ(t−M, t− 1), θ) = θ+α∇θ
(
1

M

t−M∑
m=t−1

log p̂θ(sm+1|sm, am)
)

(18)

The only parameter of this learning rule is the rate α, which may either be learned or
selected. In our experiments, we choose α manually, which means that u is fixed in

65

advance and not learned, and only the prior parameters θ are meta-learned to ensure
fast adaptation. Thus, GBAC learns an initialization, θ∗. Prior work has shown that this is
sufficient to encode arbitrary adaptation procedures from a single gradient update if the
dynamics model is sufficiently deep (Finn and Levine, 2018). Furthermore, the update
rule in Eq. 18 is shown as a single update for simplicity, multiple gradient updates can
be performed, which usually works better in practice. The dynamics model used in our
GBAC experiments is a feedforward deep neural network with 3 hidden layers of 512

units each and ReLU activations.
The inductive bias provided by gradient descent in this update allows GBAC to ex-

trapolate better to out-of-distribution dynamics, as we show in our results. Note that, in
principle, we could combine both RBAC and GBAC using a recurrent dynamics model
with a gradient-based update rule. Such a method would likely inherit the benefits of
both approaches. However, in the interest of a more systematic evaluation, we study the
methods separately and leave their combination for future work.

6.1.7 Related Work

Advances in learning control policies have shown success on numerous complex and
high dimensional tasks (Schulman et al., 2015; T. P. Lillicrap et al., 2015; Mnih et al.,
2015; Levine et al., 2016a; Silver et al., 2016). While reinforcement learning algorithms
provide a framework for learning new tasks, they primarily focus on mastery of individ-
ual skills, rather than generalizing and quickly adapting to new scenarios. Furthermore,
model-free approaches (Peters and Schaal, 2008) require large amounts of system in-
teraction to learn successful control policies, which often makes them impractical for
real-world systems. In contrast, model-based methods attain superior sample efficiency
by first learning a model of system dynamics, and then using that model to optimize a
policy (M. P. Deisenroth et al., 2013; Levine et al., 2016a; Nagabandi et al., 2017b).

Model Learning: Many model-based approaches aim to learn a single global model,
using function approximators such as Gaussian processes (Ko and Fox, 2009; M. Deisen-
roth and Rasmussen, 2011) and neural networks (Lenz et al., 2015; Schaefer et al., 2007;
Finn and Levine, 2017). A key challenge with these approaches is the difficulty of learn-
ing a global model that is accurate for the entire state space. Our approach alleviates the
need to learn a single global model by allowing the model to be adapted automatically
to different scenarios based on recent observations.

Addressing Model Inaccuracies: Although this use of replanning allows for compen-
sation for slight model inaccuracies, these methods cannot generalize to parts of the

66

state space outside of the training distribution. In addition to continuously updating
the planned actions via MPC, our approach also updates the model parameters online,
enabling compensation for much more substantial changes in the dynamics. Another
approach to addressing the problem of learning a good global model is to instead learn
more accurate local models (Buchan et al., 2013; Levine and Abbeel, 2014). These meth-
ods result in good local performance and allow for iterative local improvements of a
policy. Our approach can be viewed as learning local models online with a very small
amount of recent data combined with a learned global prior.

Online Adaptation: An alternative approach, often referred to as online adapta-
tion (Tanaskovic et al., 2013; Aswani et al., 2012), is to learn an approximate global model
and then adapt it at test time. Dynamic evaluation algorithms (Rei, 2015; B. Krause et
al., 2017; B. Krause et al., 2016; Fortunato et al., 2017), for example, learn an approxi-
mate global distribution at training time and adapt those model parameters at test time
to fit the current local distribution via gradient descent. Such work in model adapta-
tion (Levine and Koltun, 2013; Gu et al., 2016; Fu et al., 2016) has shown that a perfect
global model is not necessary, and prior knowledge can be used to handle small changes.
These methods, however, face a mismatch between what the model is trained for and
how it is used at test time. In this work, we bridge this gap by explicitly training a
model for fast and effective adaptation. As a result, our model achieves more effective
adaptation compared to these prior works, as validated in our experiments.

6.1.8 Experiments

The aim of the experimental evaluation is to answer the following research questions:
(1) Does our approach enable fast adaptation to varied environments and dynamics?
(2) In which situations does adaptive control with GBAC or RBAC produce quantifiable
improvements in performance, and in which situations is one or the other more effective?
(3) How does our method perform when it encounters situations that are outside of the
distribution of training environments? See the appendix for further analysis and details
of our method, including learning curves, hyperparameters, and the effect of the meta-
training task distribution on performance. Videos are available online1.

67

Figure 17: Simulated environments in our experiments. From left to right: half-cheetah (HC) with
disabled joints, HC on terrain of varying slopes, ant with crippled legs, HC running
across a pier with floating blocks of varying buoyancy, and 7-DoF arm moving an ob-
ject subjected to force perturbations (cyan arrow) to a specified goal (red). Adaptation
is needed in these stochastic and partially observable environments.

6.1.8.1 Environments

To answer these questions, we conducted a comparative evaluation of our online adap-
tation algorithm, as well as several alternative prior methods, on a variety of simulated
robots using the MuJoCo physics engine (Todorov et al., 2012). Each of our environments
(Fig. 17) requires different types of adaptation:

half-cheetah (hc): disabled joint. For each meta-training rollout, we randomly
sample a joint to be disabled (i.e., the agent cannot apply torques to that joint). At test
time, we evaluate performance in three different situations: (a) disabling a joint seen
at train time, (b) disabling an unseen joint, and (c) switching between disabled joints
during a rollout.

hc : sloped terrain. During meta-training, we choose terrain of varying gentle
upward and downward slopes. In this task, it is especially important to incorporate past
experience into the model, since the cheetah has no means of directly observing the
incline. At test time, we evaluate performance on (d) a gentle upward slope, (e) a steep
hill that goes up and down, and (f) a steep upward slope.

hc : pier . In this task, the cheetah runs over a series of blocks that are floating on
water. Each block moves up and down when stepped on, and the changes in the dy-
namics are drastic and rapid, due to each block having different damping and friction
properties. The HC is meta-trained on varying these block properties, and tested on (g)
a specific configuration of block properties.

1 Videos available at: https://sites.google.com/berkeley.edu/metaadaptivecontrol

68

https://sites.google.com/berkeley.edu/metaadaptivecontrol

ant : crippled leg . For each meta-training rollout, we randomly sample a leg on
a quadrupedal robot and disable it. Disabling a leg unexpected drastically changes the
dynamics. We evaluate on (h) crippling a leg from the training distribution, (i) crippling
a leg from outside the training distribution, and (j) crippling a leg in the middle of a
rollout.

7-dof arm : force perturbations . We train a 7-DoF robot arm to carry an object
to a goal position while applying random perturbation forces to the object. At test time,
we evaluate with (k) a constant low force to the object, (l) a force 3× stronger than during
training, and (m) a force that randomly changes every 50 time-steps. This allow us to
evaluate the ability of our method to adapt online to perturbations that clearly lie outside
the training distribution.

In all of these environments, we model the transitions probabilities as Gaussian ran-
dom variables with mean parametrized by the neural network model, and fixed variance.
In that case, the maximum likelihood estimation corresponds to minimizing the mean
squared error.

6.1.8.2 Comparisons

We compare both our GBAC and RBAC methods to a non-adaptive model-based method
(“MB”), which employs a feedforward neural network as the dynamics model and se-
lects actions using MPC, but does not perform adaptation (Nagabandi et al., 2017a), an
adaptive control method (“MB + DE") based on dynamic-evaluation, where gradient
steps are taken to adapt a model at run time (B. Krause et al., 2017), and model-free (MF)
learning with TRPO (Schulman et al., 2015).

In the interest of developing efficient algorithms for potential real-world applications,
we compare these methods in a low data regime, using data that translates to 1.5-3 hours
of real-world experience. We hold the amount of data used constant across all methods,
within an environment. We also provide the performance of a MB oracle (no adaptation)
and a MF oracle (no adaptation) that are trained with unlimited data until convergence.
These oracles are trained separately for each test task (rather than being required to
generalize to new tasks), which drastically simplifies the problem, and the MF oracle
receives the equivalent of about one day of real-world experience.

The following plots are best viewed in color, and the return is normalized such that
the MB oracle achieves a return of 1, and the worst performance algorithm (TRPO with
this low data) achieves 0.

69

Figure 18: Results in novel static environ-
ments that require adaptation not
seen during training. MF oracle
policies for each task achieved 2.9,
3.4, 1.3, 3.8, respectively.

Figure 19: Results in environments where
fast adaptation is crucial due to
changes occuring throughout the
execution of a rollout. MF oracle
policies for each task achieved 5.2,
0.8, 1.4, 1.2, respectively.

6.1.8.3 Novel Environments

We test the ability of each approach to effectively incorporate past experience to adapt
in environments that were not explicitly seen during training, but that are also static
throughout the duration of the test rollout. We evaluate the different approaches on the
tasks a,d, e,h in Fig. 18. Across these tasks, MF TRPO fails due to low quantity of train-
ing data, and MB+DE is equivalent to or slightly better than a model without dynamic
evaluation (MB). Task d requires minimal adaptation, so all methods achieve high re-
wards, except TRPO. However, when we test the performance on a more challenging
steep hill (e), we see that RBAC outperforms the other approaches.

The strength of RBAC is in tasks where temporal progression is important (i.e., to
determine terrain slope); the update rule of GBAC might not have some of this temporal
insight, since it is invariant to the order in which the previous states were visited. On the
other hand, GBAC attains better results on the more challenging, higher-dimensional,
and less structured task of crippled ant (h).

6.1.8.4 Stochastic Environments

We also compared the methods on tasks c,g, j,m, where stochastic and sudden changes
in dynamics happen throughout the execution of a rollout (Fig. 19). GBAC outperforms
the other approaches; the continuous application of the gradient-based update rule al-
lows fast adaptation to changing dynamics. RBAC is also superior to the other compar-

70

isons, but it is not as good as GBAC at modeling sudden and ongoing changes in the
dynamics, like in the HC pier task c. The high performance of RBAC in the HC dis-
abled joint task is perhaps because there is not a drastic change: the disabled joint is
still present, and able to be used for generating forward movement. We also see that dy-
namic evaluation can decrease performance when fast-adaptation is needed. Finally, the
MB oracle is matched or out-performed by our approach in all tasks. This illustrates the
challenge of learning a global model in stochastic environments; meta-trained models
can adapt to these changes.

6.1.8.5 Extrapolation Environments

Figure 20: Comparison on tasks outside the
training distribution. Our adaptive
methods outperform prior work. MF
oracle policies for each task achieved
2.8, 4.3, 1.1, 1.5, respectively.

We characterize the capacity to extrapolate
to environments that are further outside of
the training distribution, on tasks b, f, i, l in
Fig. 20. The meta-trained dynamics model,
combined with the strong signal from the
gradient-based update rule, allows GBAC
to perform well for big dynamics changes
(i.e., ant’s leg becomes both immobilized
and shrunk). RBAC performs well when
the underlying dynamics are smoother and
temporal pattern information is very help-
ful for adaptation (e.g., HC walks on steep
terrain).

6.1.8.6 Effect of Adaptation with GBAC

Figure 21 shows the pre-update and post-update model errors, as seen during three
different tasks on the 7-DoF arm with GBAC. The clear shift in distribution shows that
using the past M time steps to update θ∗ (pre) into φ∗ (post) does indeed reduce model
error when predicting the following K time steps. See appendix for further analysis on
the model errors on all tasks.

6.1.9 Discussion

In this section, we presented an approach for adaptive control that combines meta-
learning and model-based reinforcement. We showed that meta-learning a model for

71

Figure 21: Histogram of normalized K-step model prediction errors (for GBAC model) in the
tasks k, l,m, showing the post-update model outperforming the pre-update one.

online adaptation results in a method that is able to adapt to unseen situations or sud-
den and drastic changes in the environment, and is also sample efficient to train. We
provided two instantiations of our approach (RBAC and GBAC), and we provided a
comparison with other prior methods on a range of continuous control tasks. One ques-
tion that merits future investigation is how to best combine GBAC and RBAC to reap
the benefits of both of these methods without losing sample efficiency. Finally, an ex-
citing direction for future work includes extending meta-learning for adaptive control
to real-world systems. Through a combination of sample-efficient model-based learning
and integration of off-policy data, our approach should be substantially more practical
for real-world use than less efficient model-free meta-reinforcement learning approaches,
and the capability to adapt quickly will be particularly important under complex real-
world dynamics.

72

7
F E W- S H O T I M I TAT I O N L E A R N I N G

Demonstrations provide a descriptive medium for specifying robotic tasks. Prior work
has shown that robots can acquire a range of complex skills through demonstration,
such as table tennis (Mülling et al., 2013), lane following (Pomerleau, 1989), pouring wa-
ter (Pastor et al., 2009), drawer opening (Rana et al., 2017), and multi-stage manipulation
tasks (T. Zhang et al., 2017). However, the most effective methods for robot imitation
differ significantly from how humans and animals might imitate behaviors: while robots
typically need to receive demonstrations in the form of kinesthetic teaching (Pastor et al.,
2011; Akgun et al., 2012) or teleoperation (Calinon et al., 2009; Rahmatizadeh et al., 2017;
T. Zhang et al., 2017), humans and animals can acquire the gist of a behavior simply
by watching someone else. In fact, we can adapt to variations in morphology, context,
and task details effortlessly, compensating for whatever domain shift may be present and
recovering a skill that we can use in new situations (Brass and Heyes, 2005). Addition-
ally, we can do this from a very small number of demonstrations, often only one. How
can we endow robots with the same ability to learn behaviors from a single human
demonstration?

In this chapter, we first study the problem of one-shot imitation, where we aim to
leverage data across many different skills in order to learn a new skill with minimal su-
pervision – just a single teleoperated demonstration. Then, in Section 7.2, we aim further,
learning to learn behaviors from raw third person observations of human demonstrators.

7.1 meta-imitation learning

We propose to combine meta-learning with imitation, enabling a robot to reuse past
experience and, as a result, learn new skills from a single demonstration. Unlike prior
methods that take the task identity (M. P. Deisenroth et al., 2014; Kupcsik et al., 2013;
Schaul et al., 2015; Stulp et al., 2013) or a demonstration (Duan et al., 2017) as the in-

73

put into a contextual policy, our approach learns a parameterized policy that can be
adapted to different tasks through gradient updates, effectively learning to imitation
learn. As a result, the set of skills that can be learned is more flexible while using fewer

Figure 22: The robot learns to
place a new object
into a new container
from a single demon-
stration.

overall parameters. For the first time, we demonstrate
that vision-based policies can be fine-tuned end-to-end
from one demonstration, using meta-learning as a pre-
training procedure that uses demonstrations on a diverse
range of other environments.

The primary contribution of this section is to demon-
strate an approach for one-shot imitation learning from
raw pixels. We evaluate our approach on two simulated
planar reaching domains, on simulated pushing tasks,
and on visual placing tasks on a real robot (See Figure 22).
Our approach is able to learn visuomotor policies that can
adapt to new task variants using only one visual demon-
stration, including settings where only a raw video of the
demonstration is available without access to the controls
applied by the demonstrator. By employing a parameter-
efficient meta-learning method, our approach requires a
relatively modest number of demonstrations for meta-
learning and scales to raw pixel inputs. As a result, our
method can successfully be applied to real robotic systems.

7.1.1 Overview

Here, we describe how we can extend the model-agnostic meta-learning algorithm (MAML)
to the imitation learning setting. The model’s input, ot, is the agent’s observation at time
t, e.g. an image, whereas the output at is the action taken at time t, e.g. torques applied
to the robot’s joints. We will denote a demonstration trajectory as τ := {o1, a1, ...oT , aT }
and use a mean squared error loss as a function of policy parameters φ as follows:

L(ψ,DTi) =
∑

τ(j)∼DTi

∑
t

‖fψ(o(j)
t) − a(j)t ‖22. (19)

We will primarily consider the one-shot case, where only a single demonstration τ(j)

is used for the gradient update. However, we can also use multiple demonstrations to
resolve ambiguity.

74

Algorithm 9 Meta-Imitation Learning with MAML

Require: p(T): distribution over tasks
Require: α, β: step size hyperparameters

1: randomly initialize θ
2: while not done do
3: Sample batch of tasks Ti ∼ p(T)

4: for each Ti do
5: Sample demonstration τi = {o1, a1, ...oT , aT } from DTi

6: Evaluate ∇θL(θ, {τi}) using L in Equation (19)
7: Compute adapted parameters with gradient descent: φi = θ−α∇θL(θ, τi)
8: Sample demonstration τ ′i = {o ′1, a ′1, ...o ′T , a ′T } from DTi \ {τi} for the meta-update

9: Update θ← θ−β∇θ
∑

Ti∼p(T)
L(φi, {τ ′i}) using each L in Equation 19

10: return parameters θ that can be quickly adapted to new tasks through imitation.

For meta-learning, we assume a dataset of demonstrations with at least two demonstra-
tions per task. This data is only used during meta-training; meta-test time assumes only
one demonstration for each new task. During meta-training, each meta-optimization step
entails the following: A batch of tasks is sampled and two demonstrations are sampled
per task. Using one of the demonstrations, φi is computed for each task Ti using gradi-
ent descent with Equation 19. Then, the second demonstration of each task, τ ′i, is used
to compute the gradient of the meta-objective L(φi, τ ′i) using the loss in Equation 19.
Finally, θ is updated according to the gradient of the meta-objective. In effect, the pair
of demonstrations serves as a training-validation pair. The algorithm is summarized in
Algorithm 9.

The result of meta-training is a policy that can be adapted to new tasks using a single
demonstration. Thus, at meta-test time, a new task T is sampled, one demonstration for
that task is provided, and the model is updated to acquire a policy for that task. During
meta-test time, a new task might involve new goals or manipulating new, previously
unseen objects.

7.1.2 Two-Head Architecture: Learning a Loss for Fast Adaptation

In the standard MAML setup, outlined previously, the policy is consistent across the
pre- and post-gradient update stages. However, we can make a modification such that
the parameters of the final layers of the network are not shared, forming two “heads,”

75

as shown in Figure 23. The parameters of the pre-update head are not used for the fi-
nal, post-update policy, and the parameters of the post-update head are not updated
using the demonstration. But, both sets of parameters are meta-learned for effective per-
formance after adaptation. Interestingly, this two head architecture amounts to using a
different inner objective in the meta-optimization, while keeping the same outer objec-
tive. To see this, let us denote y(j)

t as the set of post-synamptic activations of the last
hidden layer, and W and b as the weight matrix and bias of the final layer. The inner loss
function is then given by:

L∗(θ,DTi) =
∑

τ(j)∼DTi

∑
t

‖Wy(j)
t + b− a(j)t ‖22, (20)

where W and b, the weights and bias of the last layer, effectively form the parameters
of the meta-learned loss function. We use the meta-learned loss function L∗ to compute
the adapted parameter φi of each task Ti, via gradient descent. Then, the meta-objective
becomes:

min
θ,W,b

∑
Ti∼p(T)

L(φi,Dtest
Ti

) =
∑

Ti∼p(T)

L(θ−α∇θL∗(θ,Dtr
Ti
),Dtest

Ti
). (21)

This provides the algorithm more flexibility in how it adapts the policy parameters to
the expert demonstration, which we found to increase performance in a few experiments
(see Appendix B.2.3). However, the more interesting implication of using a learned loss
is that we can omit the actions during 1-shot adaptation, as we discuss next.

7.1.3 Learning to Imitate without Expert Actions

Conventionally, a demonstration trajectory consists of pairs of observations and actions,
as we discussed in Section 7.1. However, in many scenarios, it is more practical to simply
provide a video of the task being performed, e.g. by a human or another robot. One step
towards this goal, which we consider in this section, is to remove the need for the robot
arm trajectory and actions at test time.1 Though, to be clear, we will assume access to
expert actions during meta-training. Without access to expert actions at test time, it is
unclear what the loss function for 1-shot adaptation should be. Thus, we will meta-learn

1 We leave the problem of domain shift, i.e. between a video of a human and the robot’s view, to the next
section.

76

3 channels
conv

ReLU

conv1 conv2

conv

ReLU

conv3
spatial
softmax,
expected
2D position

feature
points

robot
configuration

fully
connected
ReLU

fully
connected
ReLU

RGB image

conv

ReLU
stride 2

bias transformation

 concatenate

fully
connected
ReLU

network activations

input observations

policy parameters

stride 2 stride 2

robot
action

fully
connected
linear

3 channels
conv

ReLU

conv1 conv2

conv

ReLU

conv3
spatial
softmax,
expected
2D position

feature
points

robot
configuration

fully
connected
ReLU

fully
connected
ReLU

robot
action

(pre-update)

RGB image

conv

ReLU
stride 2

bias transformation

 concatenate

fully
connected
ReLU

network activations

input observations

policy parameters

stride 2 stride 2 fully
connected
linear

fully
connected
linear

robot
action

(post-update)

Figure 23: Diagrams of the policy architecture with a bias transformation (top and bottom) and
two heads (bottom). The green arrows and boxes indicate weights that are part of the
meta-learned policy parameters θ.

a loss function, as discussed in the previous section. We can simply modify the loss in
Equation 20 by removing the expert actions:

L∗Ti(θ) =
∑

τ(j)∼DTi

∑
t

‖Wy(j)
t + b‖22,

This corresponds to a learned quadratic loss function on the final layer of activations,
with parameters W and b. Though, in practice, the loss function could be more complex.
With this loss function, we can learn to learn from the raw observations of a demonstra-
tion using the meta-optimization objective in Equation 21, as shown in our experiments
in Sections 7.1.6.2 and 7.1.6.3.

7.1.4 Model Architectures for Meta-Imitation Learning

We use a convolutional neural network (CNN) to represent the policy, similar to prior
vision-based imitation and meta-learning methods (Bojarski et al., 2016; Finn et al.,
2017a). The policy observation includes both the camera image and the robot’s configu-
ration, e.g. the joint angles and end-effector pose. In this section, we overview the policy

77

architecture, but leave the details to be discussed in Section 5.6. The policy consists of
several strided convolutions, followed by ReLU nonlinearities. The final convolutional
layer is transformed into spatial feature points using a spatial soft-argmax (Levine et al.,
2016a; Finn et al., 2016b) and concatenated with the robot’s configuration. The result
is passed through a set of fully-connected layers with ReLU nonlinearities. Because the
data within a demonstration trajectory is highly correlated across time, batch normal-
ization was not effective. Instead, we used layer normalization after each layer (J. L. Ba
et al., 2016).

Although meta-imitation learning can work well with standard policy architectures
such as the one described above, the optimal architecture for meta-learning does not nec-
essarily correspond to the optimal architecture for standard supervised imitation learn-
ing. One particular modification that we found improves meta-learning performance
is to concatenate a vector of parameters to a hidden layer of post-synaptic activations,
which leads to what we will refer to as a bias transformation. This parameter vector is
treated the same as other parameters in the policy during both meta-learning and test-
time adaptation. Formally, let us denote the parameter vector as z, the post-synaptic
activations as x, and the pre-synaptic activations at the next layer as y. A standard neu-
ral network architecture sets y = Wx + b, for bias b and weight matrix W. The error
gradient with respect to the standard bias dL

db equals the error gradient with respect to
y, dL

dy . Thus, a gradient update of the standard bias is directly coupled with the up-
date to the weight matrix W and parameters in earlier layers of the network. The bias
transformation, which we describe next, provides more control over the updated bias
by eliminating this decoupling. With a bias transformation, we set y = W1x +W2z + b,
where W = [W1,W2] and b are the weight matrix and bias. First, note that including
z and W2 simply corresponds to a reparameterization of the bias, b̃ = W2z + b, since
neither W2z nor b depend on the input. The error gradient with respect to z and W2 are:
dL
dW2

= dL
dyzT and dL

dz = WT
2
dL
dy . After one gradient step, the updated transformed bias is:

b̃ ′ = (W2 − α
dL
dyzT)(z − αWT

2
dL
dy) + b− α

dL
dy . Thus, a gradient update to the transformed

bias can be controlled more directly by the values of W2 and z, whose values do not
directly affect the gradients of other parameters in the network. To see one way in which
the network might choose to control the bias, consider the setting where z and b are zero.
Then, the updated bias is: b̃ ′ = −αW2W

T
2
dL
dy −αdLdy . In summary, the bias transformation

increases the representational power of the gradient, without affecting the representation
power of the network itself. In our experiments, we found this simple addition to the
network made gradient-based meta-learning significantly more stable and effective. We
include a diagram of the policy architecture with the bias transformation in Figure 23.

78

7.1.5 Related Work

We present a method that combines imitation learning (Schaal et al., 2003) with meta-
learning (Thrun and Pratt, 1998) for one-shot learning from visual demonstrations. Effi-
cient imitation from a small number of demonstrations has been successful in scenarios
where the state of the environment, such as the poses of objects, is known (Billard et al.,
2004; Schaal et al., 2005; Pastor et al., 2009; N. Ratliff et al., 2007). In this work, we fo-
cus on settings where the state of the environment is unknown, where we must instead
learn from raw sensory inputs. This removes the need for pre-defined vision systems
while also making the method applicable to vision-based non-prehensile manipulation
in unknown, dynamic environments. Imitation learning from raw pixels has been widely
studied in the context of mobile robotics (Pomerleau, 1989; Bojarski et al., 2016; Giusti
et al., 2016; J. Zhang and Cho, 2017). However, learning from demonstrations has two
primary challenges when applied to real-world settings. The first is the widely-studied is-
sue of compounding errors (Ross et al., 2011; Laskey et al., 2016; J. Zhang and Cho, 2017),
which we do not address in this chapter. The second is the need for a large number of
demonstrations for each task. This latter limitation is a major roadblock for developing
generalist robots that can learn a wide variety of tasks through imitation. Inverse rein-
forcement learning (Ng and Russell, 2000) can reduce the number of demonstrations
needed by inferring the reward function underlying a set of demonstrations. However,
this requires additional robot experience to optimize the reward (Finn et al., 2016a; Nair
et al., 2017; Sermanet et al., 2017b). This experience typically comes in the form of trial-
and-error learning or data for learning a model.

In this work, we drastically reduce the number of demonstrations needed for an indi-
vidual task by sharing data across tasks. In particular, our goal is to learn a new task from
a single demonstration of that task by using a dataset of demonstrations of many other
tasks for meta-learning. Sharing information across tasks is by no means a new idea, e.g.
by using task-to-task mappings (Barrett et al., 2010), gating (Mülling et al., 2013), and
shared features (Gupta et al., 2017). These multi-task robotic learning methods consider
the problem of generalization to new tasks from some specification of that task. A com-
mon approach, often referred to as contextual policies, is to provide the task as an input
to the policy or value function, where the task is represented as a goal or demonstra-
tion (M. P. Deisenroth et al., 2014; Kupcsik et al., 2013; Stulp et al., 2013; Schaul et al.,
2015; Duan et al., 2017). Another approach is to train controllers for a variety of tasks
and learn a mapping from task representations to controller parameters (Pastor et al.,
2009; Kober et al., 2012; Da Silva et al., 2012). In this work, we instead use meta-learning

79

to enable the robot to quickly learn new tasks with gradient-based policy updates. In
essence, we learn policy parameters that, when finetuned on just one demonstration of
a new task, can immediately learn to perform that task. This enables the robot to learn
new tasks end-to-end with extreme efficiency, using only one demonstration, without
requiring any additional mechanisms such as contexts or learned update functions.

7.1.6 Experiments

The goals of our experimental evaluation are to answer the following questions: (1) can
our method learn to learn a policy that maps from image pixels to actions using a single
demonstration of a task? (2) how does our meta-imitation learning method compare to
prior one-shot imitation learning methods with varying dataset sizes? (3) can we learn to
learn without expert actions? (4) how well does our approach scale to real-world robotic
tasks with real images?

We evaluate our method on one-shot imitation in three experimental domains. In each
setting, we compare our proposed method to a subset of the following methods:
• random policy: A policy that outputs random actions from a standard Normal distri-

bution.
• contextual policy: A feedforward policy, which takes as input the final image of the

demonstration, to indicate the goal of the task, and the current image, and outputs
the current action.

• LSTM: A recurrent neural network which ingests the provided demonstration and
the current observation, and outputs the current action, as proposed by Duan et al.
(2017).

• LSTM+attention: A recurrent neural network using the attention architecture pro-
posed by Duan et al. (2017). This method is only applicable to non-vision tasks.

The contextual policy, the LSTM policies, and the proposed approach are all trained us-
ing the same datasets, with the same supervision. All policies, including the proposed
approach, were meta-trained via a behavioral cloning objective (mean squared error)
with supervision from the expert actions, using the Adam optimizer with default hyper-
parameters (D. Kingma and J. Ba, 2015).

7.1.6.1 Simulated Reaching

The first experimental domain is a family of planar reaching tasks, as illustrated in
Figure 24, where the goal of a particular task is to reach a target of a particular color,
amid two distractors with different colors. This simulated domain allows us to rigorously

80

Figure 24: Example tasks from the policy’s perspective. In the top row, each pair of images shows
the start and final scenes of the demonstration. The bottom row shows the correspond-
ing scenes of the learned policy roll-out. Left: Given one demonstration of reaching a
target of a particular color, the policy must learn to reach for the same color in a new
setting. Center: The robot pushes the target object to the goal after seeing a demonstra-
tion of pushing the same object toward the goal in a different scene. Right: We provide
a demonstration of placing an object on the target, then the robot must place the object
on the same target in a new setting.

evaluate our method and compare with prior approaches and baselines. We consider
both vision and non-vision variants of this task, so that we can directly compare to prior
methods that are not applicable to vision-based policies. See Appendix B.2.1 for more
details about the experimental setup and choices of hyperparameters.

We evaluate each method on a range of meta-training dataset sizes and show the
one-shot imitation success rate in Figure 25. Using vision, we find that meta-imitation
learning is able to handle raw pixel inputs, while the LSTM and contextual policies strug-
gle to learn new tasks using modestly-sized meta-learning datasets. In the non-vision
case, which involves far fewer parameters, the LSTM policies fare much better, particu-
larly when using attention, but still perform worse than MIL. Prior work demonstrated
these approaches using 10,000 or more demonstrations (Duan et al., 2017). Therefore,
the mediocre performance of these methods on much smaller datasets is not surprising.
We also provide a comparison with and without the bias transformation discussed in
Section 7.1.4. The results demonstrate that MIL with the bias transformation (bt) can
perform more consistently across dataset sizes.

81

total number of demonstrations in the meta-training set

su
cc

es
s

ra
te

(%
)

Figure 25: One-shot success rate on test tasks as a function of the meta-learning dataset size
in the simulated domains. Our meta-imitation learning approach (MIL) can perform
well across a range of dataset sizes, and can more effectively learn new tasks than
prior approaches that feed in the goal image (contextual) or demonstration (LSTM) as
input. A random policy achieves 25.7% reaching success and 0.45% pushing success.
For videos of the policies, see the supplementary video2.

7.1.6.2 Simulated Pushing

The goal of our second set of experiments is to evaluate our approach on a challeng-
ing domain, involving 7-DoF torque control, a 3D environment, and substantially more
physical and visual diversity across tasks. The experiment consists of a family of sim-
ulated table-top pushing tasks, illustrated in Figure 24, where the goal is to push a
particular object with random starting position to the red target amid one distractor. We
designed the pushing environment starting from the OpenAI Gym PusherEnv, using the
MuJoCo physics engine (Brockman et al., 2016; Todorov et al., 2012). We modified the
environment to include two objects, vision policy input, and, across tasks, a wide range
of object shapes, sizes, textures, frictions, and masses. We selected 116 mesh shapes from
thingiverse.com, 105 meshes for meta-training and 11 for evaluation. The meshes in-
clude models of chess pieces, models of animals like teddy bears and pufferfish, and
other miscellaneous shapes. We randomly sampled textures from a set of over 5,000 im-
ages and used held-out textures for meta-testing. A selection of the objects and textures
are shown in Figure 26. For more experimental details, hyperparameters, and ablations,
see Appendix B.2.2.

The performance of one-shot pushing with held-out objects, shown in Figure 25, in-
dicates that MIL effectively learned to learn to push new objects, with 85.8% one-shot
learning success using the largest dataset size. Furthermore, MIL achieves, on average,

2 For video results and code, see https://sites.google.com/view/one-shot-imitation

82

thingiverse.com

https://sites.google.com/view/one-shot-imitation

method
video+state

+action
video
+state

video

LSTM

1
-s

ho
t 78.38% 37.61% 34.23%

contextual n/a 58.11% 56.98%
MIL (ours) 85.81% 72.52% 66.44%

LSTM

5
-s

ho
t 83.11% 39.64% 31.98%

contextual n/a 64.64% 59.01%
MIL (ours) 88.75% 78.15% 70.50%

Table 4: One-shot and 5-shot simulating pushing success rate with varying demonstration infor-
mation provided at test-time. MIL can more successfully learn from a demonstration
without actions and without robot state and actions than LSTM and contextual policies.

6.5% higher success than the LSTM-based approach across dataset sizes. The contextual
policy struggles, likely because the full demonstration trajectory information is informa-
tive for inferring the friction and mass of the target object.

In Table 4, we provide two additional evaluations, using the largest dataset size. The
first evaluates how each approach handles input demonstrations with less information,
e.g. without actions and/or the robot arm state. For this, we trained each method to be
able to handle such demonstrations, as discussed in Section 7.1.3. We see that the LSTM
approach has difficulty learning without the expert actions. MIL also sees a drop in per-
formance, but one that is less dramatic. The second evaluation shows that all approaches
can improve performance if five demonstrations are available, rather than one, despite all
policies being trained for 1-shot learning. In this case, we averaged the predicted action
over the 5 input demonstrations for the contextual and LSTM approaches, and averaged
the gradient for MIL.

7.1.6.3 Real-World Placing

The goal of our final experiment is to evaluate how well a real robot can learn to learn
to interact with new, unknown objects from a single visual demonstration. Handling
unseen objects is a challenge for both learning-based and non-learning-based manipula-
tion methods, but is a necessity for robots to be capable of performing diverse tasks in
unstructured real-world environments. In practice, most robot learning approaches have

83

subset of training objects test objects subset of training objects test objects

Figure 26: Training and test objects used in our simulated pushing (left) and real-world placing
(right) experiments. Note that we only show a subset of the ∼100 training objects used
for the pushing and placing experiments, and a subset of the textures and object scales
used for training and testing robot pushing.

focused on much more narrow notions of generalization, such as a varied target object
location (Levine et al., 2016a) or block stacking order (Duan et al., 2017). With this goal
in mind, we designed a robotic placing experiment using a 7-DoF PR2 robot arm and
RGB camera, where the goal is to place a held item into a target container, such as a cup,
plate, or bowl, while ignoring two distractors. We collected roughly 1300 demonstrations
for meta-training using a diverse range of objects, and evaluated one-shot learning using
held-out, unseen objects (see Figure 26). The policy is provided a single visual demonstra-
tion of placing the held item onto the target, but with varied positions of the target and
distractors, as illustrated in Figure 24. Demonstrations were collected using human tele-
operation through a motion controller and virtual reality headset (T. Zhang et al., 2017),
and each demo included the camera video, the sequence of end-effector poses, and the
sequence of actions – the end-effector linear and angular velocities. See Appendix B.2.3
for more explanation of data collection, evaluation, and hyperparameters.

The results, in Table 5, show that the MIL policy can learn to localize the previously-
unseen target object and successfully place the held item onto the target with 90% suc-
cess, using only a single visual demonstration with those objects. We found that the
LSTM and contextual policies were unable to localize the correct target object, likely
due to the modestly-sized meta-training dataset, and instead placed onto an arbitrary
object, achieving 25% success. Using the two-head approach described in 7.1.3, we also
experimented with only providing the video of the demonstration, omitting the robot
end-effector trajectory and controls. MIL can also learn to handle this setting, although
with less success, suggesting the need for more data and/or further research. We include

84

method test performance

LSTM 25%

contextual 25%

MIL 90%

MIL, video only 68.33%

Table 5: One-shot success rate of placing a held item into the correct container, with a real PR2

robot, using 29 held-out test objects. Meta-training used a dataset with around 100 ob-
jects. MIL, using video only receives only the demonstration video and not the arm
trajectory or actions.

videos of all placing policies in the supplementary video3.

7.1.7 Discussion and Future Work

We proposed a method for one-shot visual imitation learning that can learn to per-
form tasks using visual inputs from just a single demonstration. Our approach extends
gradient-based meta-learning to the imitation learning setting, and our experimental
evaluation demonstrates that it substantially outperforms a prior one-shot imitation
learning method based on recurrent neural networks. The use of gradient-based meta-
learning makes our approach more efficient in terms of the number of demonstrations
needed during meta-training, and this efficiency makes it possible for us to also evaluate
the method using raw pixel inputs and on a real robotic system.

The use of meta-imitation learning can substantially improve the efficiency of robotic
learning methods without sacrificing the flexibility and generality of end-to-end training,
which is especially valuable for learning skills with complex sensory inputs such as
images. While our experimental evaluation uses tasks with limited diversity (other than
object diversity), we expect the capabilities of our method to increase substantially as
it is provided with increasingly more diverse demonstrations for meta-training. Since
meta-learning algorithms can incorporate demonstration data from all available tasks,
they provide a natural avenue for utilizing large datasets in a robotic learning context,
making it possible for robots to not only learn more skills as they are acquire more
demonstrations, but to actually become faster and more effective at learning new skills

3 For video results and code, see https://sites.google.com/view/one-shot-imitation

85

https://sites.google.com/view/one-shot-imitation

through the process.

7.2 one-shot imitation from humans

In the previous section, we discussed how we can apply the MAML algorithm to one-
shot imitation learning problem, using robot demonstrations collected via teleoperation
and a mean-squared error behavioral cloning objective for the loss L. While this enables
learning from one robot demonstration at meta-test time, it does not allow the robot to
learn from a raw video of a human or handle domain shift between the demonstration
medium and the robot. In this section, we aim to extend the previous approach to be
able to learn from raw video demonstrations of humans.

Acquiring skills from raw camera observations presents two major challenges. First,
the difference in appearance and morphology of the human demonstrator from the robot
introduces a systematic domain shift, namely the correspondence problem (Nehaniv,
Dautenhahn, et al., 2002; Brass and Heyes, 2005). Second, learning from raw visual in-
puts typically requires a substantial amount of data, with modern deep learning vision
systems using hundreds of thousands to millions of images (Xiang et al., 2018; D.-K. Kim
and Walter, 2017). In this section, we demonstrate that we can begin to address both of
these challenges through a single approach based on meta-learning. Instead of manu-
ally specifying the correspondence between human and robot, which can be particularly
complex for skills where different morphologies require different strategies, we propose
a data-driven approach. Our approach can acquire new skills from only one video of
a human. To enable this, it builds a rich prior over tasks during a meta-training phase,
where both human demonstrations and teleoperated demonstrations are available for a
variety of other, structurally similar tasks. In essence, the robot learns how to learn from
humans using this data. After the meta-training phase, the robot can acquire new skills
by combining its learned prior knowledge with one video of a human performing the
new skill.

The main contribution of this section is a system for learning robotic manipulation
skills from a single video of a human by leveraging large amounts of prior meta-training
data, collected for different tasks. When deployed, the robot can adapt to a particular
task with novel objects using just a single video of a human performing the task with
those objects (e.g., see Figure 27). The video of the human need not be from the same
perspective as the robot, or even be in the same room. The robot is trained using videos
of humans performing tasks with various objects along with demonstrations of the robot
performing the same task. Our experiments on two real robotic platforms demonstrate

86

Figure 27: After meta-learning with human and robot demonstration data, the robot learns to
recognize and push a new object from one video of a human.

the ability to learn directly from RGB videos of humans, and to handle novel objects,
novel humans, and videos of humans in novel scenes. Videos of the results can be found
on the supplementary website.4

7.2.1 Problem Overview

The problem of learning from human video can be viewed as an inference problem,
where the goal is to infer the robot policy parameters φTi that will accomplish the task
Ti by incorporating prior knowledge with a small amount of evidence, in the form of
one human demonstration. In order to effectively learn from just one video of a human,
we need a rich prior that encapsulates a visual and physical understanding of the world,
what kinds of outcomes the human might want to accomplish, and which actions might
allow a robot to bring about that outcome. We could choose to encode prior knowledge
manually, for example by using a pre-defined vision system, a pre-determined set of
human objectives, or a known dynamics model. However, this type of manual knowl-
edge encoding is task-specific and time-consuming, and does not benefit from data. We

4 The video is available at https://sites.google.com/view/daml

87

https://sites.google.com/view/daml

will instead study how we can learn this prior automatically, using human and robot
demonstration data from a variety of tasks.

Formally, we will define a demonstration from a human τh to be a sequence of image
observations o1, ..., oT , and a robot demonstration τr to be a sequence of image observa-
tions, robot states, and robot actions: o1, s1, a1, ..., oT , sT , aT . The robot state includes the
robot’s body configuration, such as joint angles, but does not include object informa-
tion, which must be inferred from the image. We do not make any assumptions about
the similarities or differences between the human and robot observations; they may con-
tain substantial domain shift, e.g. differences in the appearance of the arms, background
clutter, and camera viewpoint.

Our approach consists of two phases. First, in the meta-training phase, the goal will
be to acquire a prior over policies using both human and robot demonstration data, that
can then be used to quickly learn to imitate new tasks with only human demonstra-
tions. For meta-training, we will assume a distribution over tasks p(T), a set of tasks
{Ti} drawn from p(T) and, for each task, two small datasets containing several human
and robot demonstrations, respectively: (DhTi ,D

r
Ti
). After the meta-training phase, the

learned prior can be used in the second phase, when the method is provided with a
human demonstration of a new task T drawn from p(T). The robot must combine its
prior with the new human demonstration to infer policy parameters φT that solve the
new task. We will next discuss our approach in detail.

7.2.2 Domain-Adaptive Meta-Learning

We develop a domain-adaptive meta-learning method, which will allow us to handle
the setting of learning from video demonstrations of humans. While we will extend
the MAML algorithm for this purpose, the key idea of our approach is applicable to
other meta-learning algorithms. Like the MAML algorithm, we will learn a set of initial
parameters, such that after one or a few steps of gradient descent on just one human
demonstration, the model can effectively perform the new task. Thus, the data Dtr

T will
contain one human demonstration of task T, and the data Dval

T will contain one or more
robot demonstrations of the same task.

Unfortunately, we cannot use a standard imitation learning loss for the inner adapta-
tion objective computed using Dtr

T , since we do not have access to the human’s actions.
Even if we knew the human’s actions, they will typically not correspond directly to the
robot’s actions. Instead, we propose to meta-learn an adaptation objective that does not
require actions, and instead operates only on the policy activations. The intuition behind

88

meta-learning a loss function is that we can acquire a function that only needs to look at
the available inputs (which do not include the actions), and still produce gradients that
are suitable for updating the policy parameters so that it can produce effective actions
after the gradient update. While this might seem like an impossible task, it is important
to remember that the meta-training process still supervises the policy with true robot ac-
tions during meta-training. The role of the adaptation loss therefore may be interpreted
as simply directing the policy parameter update to modify the policy to pick up on the
right visual cues in the scene, so that the meta-trained action output will produce the
right actions. We will discuss the particular form of Lψ in the following section.

During the meta-training phase, we will learn both an initialization θ and the parame-
ters ψ of the adaptation objective Lψ. The parameters θ and ψ are optimized for choosing
actions that match the robot demonstrations in Dval

T . After meta-training, the parameters
θ and ψ are retained, while the data is discarded. A human demonstration τh is pro-
vided for a new task T (but not a robot demonstration). To infer the policy parameters
for the new task, we use gradient descent starting from θ using the learned loss Lψ and
one human demonstration τh: φT = θ−α∇θLψ(θ, τh).

We optimize for task performance during meta-training using a behavioral cloning
objective that maximizes the probability of the expert actions in Dval. In particular, for a
policy parameterized by φ that outputs a distribution over actions πφ(·|o, s), the behav-
ioral cloning objective is

LBC(φ, τr)=LBC(φ,{o1:T , s1:T , a1:T })=
∑
t

logπφ(at|ot, st)

Putting this together with the inner gradient descent adaptation, the meta-training ob-
jective is the following:

min
θ,ψ

∑
T∼p(T)

∑
τh∈DhT

∑
τr∈DrT

LBC(θ−α∇θLψ(θ, τh), τr).

The algorithm for optimizing this meta-objective is summarized in Algorithm 10, whereas
the procedure for learning from humans at meta-test time is shown in Algorithm 11. We
will next discuss the form of the learned loss function, Lψ, which is critical for effective
learning.

7.2.3 Learned Temporal Adaptation Objectives

To learn from a video of a human, we need an adaptation objective that can effectively
capture relevant information in the video, such as the intention of the human and the

89

Algorithm 10 Meta-imitation learning from humans

Require: {(DhTi ,D
r
Ti
)}: human and robot demonstration data for a set of tasks {Ti} drawn

from p(T)

Require: α, β: inner and outer step size hyperparameters
1: while training do
2: Sample task T ∼ p(T) . or minibatch of tasks
3: Sample video of human τh ∼ DhT
4: Compute policy parameters φT = θ−α∇θLψ(θ, τh)
5: Sample robot demo τr ∼ DrT
6: Update (θ,ψ)← (θ,ψ) −β∇θ,ψLBC(φT, τr)

7: return θ,ψ

Algorithm 11 Learning from human video after meta-learning

Require: meta-learned initial policy parameters θ
Require: learned adaptation objective Lψ
Require: one video of human demo τh for new task T

1: Compute policy parameters φT = θ−α∇θLψ(θ, τh)
2: return πφ

task-relevant objects. While a standard behavior cloning loss is applied to each time step
independently, the learned adaptation objective must solve a harder task, since it must
provide the policy with suitable gradient information without access to the true actions.
As discussed previously, this is still possible, since the policy is trained to output good
actions during meta-training. The learned loss must simply supply the gradients that
are needed to modify the perceptual components of the policy to attend to the right
objects in the scene, so that the action output actually performs the right task. How-
ever, determining which behavior is being demonstrated and which objects are relevant
will often require examining multiple frames at the same time to determine the human’s
motion. To incorporate this temporal information, our learned adaptation objective there-
fore couples multiple time steps together, operating on policy activations from multiple
time steps.

Since temporal convolutions have been shown to be effective at processing temporal
and sequential data (Van Den Oord et al., 2016), we choose to adopt a convolutional net-
work to represent the adaptation objective Lψ, using multiple layers of 1D convolutions
over time. We choose to use temporal convolutions over a more traditional recurrent

90

∇Lψ

Lψ

∇Lψ

∇Lψ

10x1 conv +
layer norm +
ReLU

10x1 conv +
layer norm +
ReLU

1x1 conv

70

10 10 6
T

t =T

T T

1
1

Learned Adaptation Objective

t = 1

tim
e

policy
activations

|| · ||2

o
1

oT
πθ

πθ

ot
πθ

Figure 28: Visualization of the learned adaptation objective, which uses temporal convolutions
to integrate temporal information in the video demonstration.

neural network like an LSTM, since they are simpler and usually more parameter effi-
cient (Van Den Oord et al., 2016). See Figure 28 for a visualization.

Prior work introduced a two-head architecture for one-shot imitation, with one head
used for the pre-update demonstration and one head used for the post-update pol-
icy (Finn et al., 2017b). The two-head architecture can be interpreted as a learned linear
loss function operating on the last hidden layer of the policy network for a particular
timestep. The loss and the gradient are then computed by averaging over all timesteps
in the demonstration. As discussed previously, a single timestep of an observed video is
often not sufficient for learning from video demonstrations without actions. Thus, this
simple averaging scheme is not effective at integrating temporal information. In Sec-
tion 7.2.7, we show that our learned temporal loss can enable effective learning from
demonstrations without actions, substantially outperforming this single-timestep linear
loss.

7.2.4 Probabilistic Interpretation

One way to interpret meta-learning with learned adaptation objectives is by casting it
into the framework of probabilistic graphical models. We can accomplish this by building
on a derivation proposed in prior work (Grant et al., 2018), which frames MAML as
approximately inferring a posterior over policy parameters φ given the evidence Dtr

T =

91

Figure 29: Graphical model underlying our approach. During meta-training, both the observa-
tions ot and the actions at are observed, and our method learns θ and Ψ. During
meta-testing, only the observations are available, from which our method combines
with the learned prior θ and factor Ψ to infer the task-specific policy parameters φ.

τhT (the data for a new task T) and a prior over the parameters, given by θ. This prior
work shows that a few steps of gradient descent on the likelihood logp(Dtr

T |φ) starting
from φ = θ are approximately equivalent to maximum a posteriori (MAP) inference
on logp(φ|Dtr

T , θ), where θ induces a Gaussian prior on the weights with mean θ and a
covariance that depends on the step size and number of gradient steps.5 The derivation is
outside of the scope of this work, and we refer the reader to prior work for details (Grant
et al., 2018; Santos, 1996).

In our approach, adaptation involves gradient descent on the learned loss Lψ(φ,Dtr
T),

rather than the likelihood logp(Dtr
T |φ). Since we still take a fixed number of steps of

gradient descent starting from θ, the result in prior work still implies that we are ap-
proximately imposing the Gaussian prior logp(φ|θ) (Grant et al., 2018; Santos, 1996),
and therefore are performing approximate MAP inference on the following joint distri-
bution:

p(φ|Dtr
T , θ) ∝ p(φ,Dtr

T |θ) ∝ p(φ|θ)︸ ︷︷ ︸
from GD

Ψ(φ,Dtr
T)︸ ︷︷ ︸

exp(−Lψ(φ,Dtr
T))

.

This is a partially directed factor graph with a learned factor Ψ over φ and Dtr
T that has the

log-energy Lψ(φ,Dtr
T). Bayesian inference would require integrating out φ, but MAP in-

ference provides a tractable alternative that still produces good results in practice (Grant

5 This result is exact in the case of linear functions, and a local approximation in the case of nonlinear neural
networks.

92

spatial
softmax,
expected
2D position

robot
configuration

fc ReLU + fc ReLU
Predicted

Action

Robot Demo 1D temporal conv

Learned Adaptation
 Objective

Human Demo

bias
network activations

input observations

policy parameters (after update)

policy parameters (before update)

gradient (for parameter update)

co
n

cat

concat

Robot Demo
Action

Predicted
gripper pose

Robot Demo
gripper pose

 Squared

φ = θ − α∇θLψ(θ,d
h)

Lψ

 MDN Loss
 LBC

fc ReLU

s

h

a

f

transform

parameter adaptation

Error conv

ReLU
stride 2

conv

ReLU
stride 1

conv

ReLU
stride 1

conv

ReLU
stride 2

conv

ReLU
stride 2

Figure 30: Illustration of the policy architecture. The policy consists of a sequence of five convo-
lutional (conv) layers, followed by a spatial soft-argmax and fully-connected (fc) layers.
The learned adaptation objective Lψ is further illustrated in Figure 28. Best viewed in
color.

et al., 2018). Training is performed by directly maximizing LBC(φT,Dtr
T), where φT is the

MAP estimate of φ. Since the behavior cloning loss corresponds to the log likelihood
of the actions under a Gaussian mixture policy, we directly train both the prior θ and
the log-energy Lψ such that MAP inference maximizes the log probability of the actions.
Note that, since we use MAP inference during training, the model does not necessarily
provide well-calibrated probabilities. However, the probabilistic interpretation still helps
to shed light on the role of the learned adaptation objective Lψ, which is to induce a
joint factor on the observations in DT and the policy parameters φ. A visual illustration
of the corresponding graphical model is shown in Figure 29.

7.2.5 Model Architectures

Now that we have presented our approach, we describe the form of the policy π and the
learned adaptation objective Lψ.

7.2.5.1 Policy Architecture

As illustrated in Figure 30, the policy architecture is a convolutional neural network that
maps from RGB images to a distribution over actions. The convolutional network begins
with a few convolutional layers, which are fed into a channel-wise spatial soft-argmax
that extracts 2D feature points f for each channel of the last convolution layer (Levine

93

et al., 2016a). Prior work has shown that the spatial soft-argmax is particularly effective
and parameter-efficient for learning to represent the positions of objects in robotics do-
mains (Levine et al., 2016a; Finn et al., 2016b). Following prior work (Levine et al., 2016a),
we concatenate these feature points with the robot configuration, which consists of the
pose of the end-effector represented by the 3D position of 3 non-axis-aligned points on
the gripper. Then, we pass the concatenated feature points and robot pose into multiple
fully connected layers. The distribution over actions is predicted linearly from the last
hidden layer h. We initialize the first convolutional layer from that of a network trained
on ImageNet.

In our experiments, we will be using a continuous action space over the linear and an-
gular velocity of the robot’s gripper and a discrete action space over the gripper open/-
close action following the setup of T. Zhang et al. (2017). Gaussian mixtures can better
model multi-modal action distributions compared to Gaussian distributions and has
been used in previous imitation learning works (Rahmatizadeh et al., 2018). Thus, for
the continuous actions, we use a mixture density network (Bishop, 1994) to represent the
output distribution over actions. For the discrete action of opening or closing the gripper,
we use a sigmoid output with a cross-entropy loss.

Following prior work (T. Zhang et al., 2017), we additionally have the model predict
the pose of the gripper when it contacts the target object and/or container. This is part of
the outer meta-objective, and we can easily provide supervision using the robot demon-
stration. Note that this supervision is not needed at meta-test time when the robot is
learning from a video of a human. For placing and pick-and-place tasks, the target con-
tainer is located at the final end-effector pose. Thus, we use the last end-effector pose as
supervision. For pushing and pick-and-place, the demonstrator manually specifies the
time at which the gripper initially contacts the object and the end-effector pose at that
time step is used. The model predicts this intermediate gripper pose linearly from the
feature points f, and the predicted pose is fed back into the policy. Further architecture
details are included in Section 7.2.7.

7.2.5.2 Learned Adaptation Objective Architecture

Because we may need to update both the policy’s perception and control, the adaptation
objective will operate on a concatenation of the predicted feature points, f (at the end of
the perception layers), and the final hidden layer of the policy, h (at the end of the control
layers). This allows the learned loss to more directly adapt the weights in the convolu-
tional layers, bypassing the control layers. The updated task parameters are computed

94

using our temporal adaptation objective,

φ = θ−α∇θLψ(θ, τh),

where we will decompose the objective into two parts: Lψ = Lψ1(f1:T) +Lψ2(h1:T) We
use the same architecture for Lψ1 and Lψ2 , which is illustrated in Figure 28. The learned
objective consists of three layers of temporal convolutions, the first two with 10× 1 filters
and the third with 1×1 filters. The `2 norm of the output of the convolutions is computed
to produce the scalar objective value.

7.2.6 Related Work

Most imitation learning and learning from demonstration methods operate at the level
of configuration-space trajectories (Schaal et al., 2003; Argall et al., 2009), which are
typically collected using kinesthetic teaching (Pastor et al., 2011; Akgun et al., 2012), tele-
operation (Calinon et al., 2009; Rahmatizadeh et al., 2017; T. Zhang et al., 2017), or sen-
sors on the demonstrator (Ekvall and Kragic, 2004; Dillmann, 2004; Calinon and Billard,
2006; Kruger et al., 2010). Instead, can we allow robots to imitate just by watching the
demonstrator perform the task? We focus on this problem of learning from one video
demonstration of a human performing a task, in combination with human and robot
demonstration data collected on other tasks. Prior work has proposed to resolve the cor-
respondence problem by hand, for example, by manually specifying how human grasp
poses correspond to robot grasps (Kjellstrom et al., 2008) or by manually defining how
human activities or commands translate into robot actions (Yang et al., 2015; K. Lee et al.,
2013; Nguyen et al., 2017; Ramirez-Amaro et al., 2015; Rothfuss et al., 2018). By utilizing
demonstration data of how humans and robots perform each task, our approach learns
the correspondence between the human and robot implicitly. Several prior approaches
also explicitly represent the positions of the human’s hands (J. Lee and Ryoo, 2017) or
use carefully engineered pipelines for visual activity recognition (Ramirez-Amaro et al.,
2015). In contrast to such approaches, which rely on precise hand detection or a pre-
built vision system, our approach is trained end-to-end, seeking to extract the aspects
of the human’s activity that are the most relevant for choosing actions. This places less
demand on the vision system, requiring it only to implicitly deduce the task and how to
accomplish it, rather than precisely tracking the human’s body and nearby objects.

Other prior approaches have sought to solve the problem of learning from human
demonstrations by explicitly determining the goal or reward underlying the human be-
havior (e.g. through inverse reinforcement learning), and then optimizing the reward

95

through reinforcement learning (RL). For example, Rhinehart and Kitani (2017) and Tow
et al. (2017) learn a model that predicts the outcome of the human’s demonstration
from a particular scene. Similarly, other works have learned a reward function based
on human demonstrations (Sermanet et al., 2017b; Stadie et al., 2017; Y. Liu et al., 2018;
Sermanet et al., 2017a; Tai et al., 2018). Once the system has learned about the reward
function or desired outcome underlying the given task, the robot runs some form of
reinforcement learning to maximize the reward or to reach the desired outcome. This
optimization typically requires substantial experience to be collected using the robot for
each individual task. Other approaches assume a known model and perform trajectory
optimization to reach the inferred goal (Muelling et al., 2017). Because all of these meth-
ods consider single tasks in isolation, they often require multiple human demonstrations
of the new task (though not all, e.g. (Sermanet et al., 2017a; Muelling et al., 2017)). Our
method only requires one demonstration of the new task setting and, at test time, does
not require additional experience on the robot nor a known model. And, crucially, all
of the data used in our approach is amortized across tasks, such that the amount of
data needed for any given individual task is quite small. In contrast, these prior reward-
learning methods only handle the single-task setting, where a considerable amount of
data must be collected for an individual task.

Handling domain shift is a key aspect of this problem, with a shift in both the vi-
sual scene and the embodiment of the human/robot, including the degrees of freedom
and the physics. Domain adaptation has received significant interest within the machine
learning community, especially for varying visual domains (Aytar and Zisserman, 2011;
Patel et al., 2015) and visual shift between simulation and reality (Viereck et al., 2017;
Sadeghi and Levine, 2016). Many of these techniques aim to find a representation that
is invariant to the domain (Fernando et al., 2013; Gong et al., 2013; Tzeng et al., 2014;
Sadeghi and Levine, 2016; D. Li et al., 2018). Other approaches have sought to map dat-
apoints from one domain to another (Shrivastava et al., 2017; Yoo et al., 2016; Bousmalis
et al., 2017; You et al., 2017). The human imitation problem may involve developing
invariances, for example, to the background or lighting conditions of the human and
robot’s environments. However, the physical correspondence between human and robot
does not call for an invariant representation, nor a direct mapping between the domains.
In many scenarios, a direct physical correspondence between robot and human poses
might not exist. Instead, the system must implicitly recognize the goal of the human
from the video and determine the appropriate action.

96

7.2.7 Experiments

Through our experiments, we aim to address three main questions: (1) Can our approach
effectively learn a prior that enables the robot to learn to manipulate new objects after
seeing just one video of a human? (2) Can our approach generalize to human demon-
strations from a different perspective than the robot, on novel backgrounds, and with
new human demonstrators? (3) How does the proposed approach compare to alterna-
tive approaches to meta-learning? In order to further understand our method and its
applicability, we additionally evaluate it understand: (a) How important is the temporal
adaptation objective? (b) Can our approach be used on more than one robot platform,
and with either kinesthetic or teleoperated demonstrations for meta-training?

To answer these questions, we run our experiments primarily with a 7-DoF PR2 arm,
with robot demonstrations collected via teleoperation, and RGB images collected from
a consumer-grade camera (unless noted otherwise), and use a Sawyer robot with kines-
thetic demonstrations to study (b). We compare the following meta-learning approaches:
• contextual policy: a feedforward network that takes as input the robot’s observation

and the final image of the human demo (to indicate the task), and outputs the pre-
dicted action.

• DA-LSTM policy: a recurrent network that directly ingests the human demonstration
video and the current robot observation, and outputs the predicted robot action. This
is a domain-adaptive version of the meta-learning algorithm proposed by Duan et al.
(2017).

• DAML, linear loss: our approach with a linear per-timestep adaptation objective.
• DAML, temporal loss: our approach with the temporal adaptation objective described

in Section 7.2.2.
All methods use a mixture density network (Bishop, 1994) to represent the action space,
where the actions correspond to the linear and rotational velocity of the robot gripper,
a 6-dimensional continuous action space. As discussed in Section 7.2.5, each network
is also trained to predict the final end-effector pose using a mean-squared error objec-
tive. We train each policy using the Adam optimizer with default hyperparameters (D.
Kingma and J. Ba, 2015). All methods use the same data and receive the same supervi-
sion. For measuring generalization from meta-training to meta-testing, we use held-out
objects in all of our evaluations that were not seeing during meta-training, as illustrated
in Figure 32, and new human demonstrators. We provide full experimental details, hy-
perparameters, architecture information, code for our method, and the supplementary

97

Figure 31: Example placing (left), pushing (middle), and pick-and-place (right) tasks, from the
robot’s perspective. The top row shows the human demonstrations used in Sec-
tion 7.2.7.1, while the bottom shows the robot demonstration.

Figure 32: Left: The PR2 experimental set-up, from left to right showing the human demonstra-
tion set-up from Sections 7.2.7.1 and 7.2.7.2 respectively and the test-time set-up. Right:
Subset of the objects used for training and evaluation. The robot must learn to recog-
nize and maneuver the novel test objects using just one video of a human.

video on the project website6.

7.2.7.1 PR2 Placing, Pushing, and Pick & Place

We first consider three different task settings: placing a held object into a container while
avoiding two distractor containers, pushing an object amid one distractor, and picking
an object and placing it into a target container amid two distractor containers. The tasks
are illustrated in Figure 31. In this initial experiment, we collect human demonstrations
from the perspective of the robot’s camera. For placing and pushing, we only use RGB
images, whereas for pick-and-place, RGB-D is used. For meta-training, we collected a
dataset with hundreds of objects, consisting of 1293, 640, and 1008 robot demonstrations
for placing, pushing, and pick-and-place respectively, and an equal number of human
demonstrations. The human and robot demonstrations for a given task need to have the

6 The project website is at sites.google.com/view/daml

98

sites.google.com/view/daml

same target object, but do not need to be synchronized, do not need the initial positions
of objects match, and do not even need to have the same video length. We use the
following metrics to define success for each task: for placing and pick & place, success
if the object landed in or on any part of the correct container; for pushing, success if the
correct item was pushed past or within ∼5 cm of the robot’s left gripper.

During evaluation, we used 15, 12, and 15 novel target objects for placing, pushing,
and pick-and-place respectively, collected one human demonstration per object, and eval-
uated three trials of the policy inferred from the human demonstration. We report the
results in Table 6. Our results show that, across the board, the robot is able to learn to in-
teract with the novel objects using just one video of a human demo with that object, with
pick-and-place being the most difficult task. We find that the DA-LSTM and contextual
policies struggle, likely because they require more data to effectively infer the task. This
finding is consistent with our previous findings (Section 7.1). Our results also indicate
the importance of integrating temporal information when observing the human demon-
stration, as the linear loss performs poorly compared to using a temporal adaptation
objective.

placing pushing pick and place

DA-LSTM 33.3% 33.3% 5.6%

contextual 36.1% 16.7% 16.7%

DAML, linear loss 76.7% 27.8% 11.1%

DAML, temporal loss (ours) 93.8% 88.9% 80.0%

Table 6: One-shot success rate of PR2 robot placing, pushing, and pick-and-place, using human demon-
strations from the perspective of the robot. Evaluated using held-out objects and a novel human
demonstrator.

7.2.7.2 Demonstrations with Large Domain Shift

Now, we consider a challenging setting, where human demonstrations are collected in
a different room with a different camera and camera perspective from that of the robot.
As a result, the background and lighting vary substantially from the robot’s environ-
ment. We use a mounted cell-phone camera to record sequences of RGB images on ten
different table textures, as illustrated in the left of Figure 32. The corresponding view of
the demonstrations is shown in Figure 33. We consider the pushing task, as described

99

Figure 33: Left: Human and robot demonstrations used for meta-training for the experiments in
Section 7.2.7.2 with large domain shift. We used ten different diverse backgrounds for
collecting human demonstrations. Right: Frames from the human demos used for eval-
uation in Section 7.2.7.2, illustrating the background scenes. The leftmost background
was in the meta-training set (seen bg), whereas the right two backgrounds are novel
(novel bg1 and novel bg2). The objects and human demonstrator are novel.

in Section 7.2.7.1, reusing the same robot demonstrations and collecting an equal num-
ber of new demonstrations. We evaluate performance on novel objects, a new human
demonstrator, and with one seen and two novel backgrounds, as shown in the right of
Figure 33.

Like the previous experiment, we evaluated with 12 novel objects and 3 trials per ob-
ject. Because we used different object pairs from the previous pushing experiment, the
performance is not directly comparable to the results in Table 6. The results for this ex-
periment are summarized in Table 7. As seen in the supplementary video, we find that
the robot is able to successfully learn from the demonstrations with a different viewpoint
and background. Performance degrades when using a novel background, which causes
a varied shift in domain, but the robot is still able to perform the task about 70% of
the time. In Table 7, we also include an analysis of the failure modes of our approach,
including the number of failures caused by incorrect task identification – misidentifying
the object – versus control failures – when the object was clearly correctly identified, but
the robot failed to effectively push it. We see that, when the human demonstrations are
on a previously seen background, the robot only fails to identify the object once out
of 33 trials, whereas failures of this kind are more frequent on the novel backgrounds.
Collecting data on a more diverse array of backgrounds, or using some form of back-
ground augmentation would likely reduce these types of failures. The number of control
failures is similar for all backgrounds, likely indicative of the challenge of physically
maneuvering a variety of previously unseen objects.

100

pushing seen bg novel bg 1 novel bg 2

DAML, temporal loss (ours) 81.8% 66.7% 72.7%

Failure analysis of DAML seen bg novel bg 1 novel bg 2

successes 27 22 24

failures from task identification 1 5 4

failures from control 5 6 5

Table 7: Top: One-shot success rate of PR2 robot pushing, using videos of human demonstrations
in a different scene and camera, with seen and novel backgrounds. Evaluated using
held-out objects and a novel human. Bottom: Breakdown of the failure modes of our
approach.

7.2.7.3 Sawyer Experiments

The goal of this experiment is to evaluate the generality of our method on a different
robot and a different form of robot demonstration collection. We will use a 7-DoF Sawyer
robot (see Figure 34), and use kinesthetic teaching to record the robot demonstrations,
which introduces additional challenges due to the presence of the human demonstrator
in the recorded images. The human demonstrations are collected from the perspective
of the robot. We consider the placing task described in Section 7.2.7.1. Unlike the PR2

experiments, the action space will be a single commanded pose of the end-effector and
we will use mean-squared error for the outer meta-objective. Since we have thoroughly
compared our method on the PR2 benchmarks, we only evaluate our proposed method
in this experiment. We evaluated our method using 18 held-out objects and 3 trials
per object. The result was a 77.8% placing success rate, indicating that our method can
successfully be applied to the Sawyer robot and can handle kinesthetic demonstrations
during meta-training.

7.2.7.4 Learned Adaptation Objective Ablation

Finally, we study the importance of our proposed temporal adaptation objective. In order
to isolate just the temporal adaptation loss, we perform this experiment in simulation,
in a setting without domain shift. We use the simulated pushing task proposed by Finn
et al. (2017b) in the MuJoCo physics engine (Todorov et al., 2012). To briefly summarize
the experimental set-up, the imitation problem involves controlling a 7-DoF robot arm

101

Figure 34: Sawyer robot set-up. From left the right: a human demo from the robot’s perspec-
tive, the policy execution from the robot’s perspective, and an photo illustrating the
experimental set-up.

via torque-control to push one object to a fixed target position amid one distractor, using
RGB images as input. The initial positions of the objects are randomized, as is the texture,
shape, size, mass, and friction. Meta-training uses 105 object meshes, while 11 held-out
meshes and multiple held-out textures are used for meta-testing. A push is considered
successful if the target object lands on the target position for at least 10 timesteps within
the 100-timestep episode. The results in Table 8 demonstrate a 14% absolute improve-
ment in success by using a temporal adaptation objective, indicating the importance of
integrating temporal information when learning from raw video.

7.2.8 Discussion

We presented an approach that enables a robot learning to visually recognize and manip-
ulate a new object after observing just one video demonstration from a human user. To
enable this, our method uses a meta-training phase where it acquires a rich prior over hu-
man imitation, using both human and robot demonstrations involving other objects. Our
method extends a prior meta-learning approach to allow for learning cross-domain corre-
spondences and includes a temporal adaptation loss function. Our experiments demon-
strate that, after meta-learning, robots can acquire vision-based manipulation skills for
a new object using from video of a human demonstrator in a substantially different

102

simulated pushing
no domain shift

LSTM (Duan et al., 2017) 34.23%

contextual 56.98%

MIL, linear loss (Finn et al., 2017b) 66.44%

MIL, temporal loss (ours) 80.63%

Table 8: One-shot success rate of simulated 7-DoF pushing using video demonstrations with no
domain shift

setting.
Limitations: While our method enables one-shot learning for manipulating new objects
from one video of a human, our current experiments do not yet demonstrate the ability
to learn entirely new motions in one shot. The behaviors at meta-test time are structurally
similar to those observed at meta-training time, though they may involve previously un-
seen objects and demonstrators. We expect that more data and a higher-capacity model
would likely help enable such an extension. However, we leave this to future work.

An additional challenge with our approach is the amount of demonstration data that
is needed for meta-training. In our experiments, we used a few thousand demonstra-
tions from robots and humans. However, the total amount of data per-object is quite low
(around 10 trials), which is one or two orders of magnitude less than the number of
demonstrations per-object used in recent single-task imitation learning works (Rahma-
tizadeh et al., 2018; T. Zhang et al., 2017). Thus, in settings where we need robots that
can adapt to a diverse range of objects, our approach is substantially more practical than
prior work.
Beyond Human Imitation: While our experiments focus on imitating humans, the pro-
posed method is not specific to perceiving humans, and could also be used, for example,
for imitating animals or a simulated robot, for simulation to real world transfer. Beyond
imitation, we believe our approach is likely more broadly applicable to problems that
involve inferring information from out-of-domain data, such as one-shot object recog-
nition from product images, a problem faced by teams in the Amazon Robotics Chal-
lenge (Zeng et al., 2018).

103

8
F E W- S H O T I N T E N T I N F E R E N C E

In the previous chapter, we discussed how we can combine meta-learning with imitation
for learning a policy from a few demonstrations. These methods couple the process
of inferring the intent of the demonstrator with learning to perform the task. While
this approach has a number of advantages, i.e. that it does not require trial-and-error
experience and it yields results on challenging problems, there are a few disadvantages
to the approach. First, there are settings where it is possible to infer the task from one
demonstration, but where it is not possible to learn how to perform the task without any
trial-and-error. In these settings, one-shot imitation would not be effective. Second, if the
robot fails at imitating, it is difficult for a human to judge if the failure was caused by
intent inference (where more human demonstrations should help), or if the intent was
clear but the execution was lacking (where more robot experience should help).

Beyond practicalities, humans very clearly have an ability to mentally represent an
objective and what it means to accomplish a task. This ability is a critical aspect of
autonomously learning complex skills, as it is the driver of learning progress. If we
aim to build agents that can autonomously learn new skills in real-world environments,
where external feedback comes rarely, then we must develop agents that can build an
internal understanding of its goals and a general mechanism for humans to convey these
goals.

In this chapter, we present approaches for inferring intent from a few demonstrations
(Section 8.1) and a few observations of success (Section 8.2), and show how we can
use reinforcement learning or planning to optimize for accomplishing inferred reward
function or goal. These approaches are motivated by the difficulty of conveying goals to
artificial agents, as we discuss next.

104

Figure 35: Diagram of our meta-inverse RL approach. Our approach attempts to remedy overfit-
ting in few-shot IRL by learning a “prior” that constraints the set of possible reward
functions to lie within a few steps of gradient descent. Standard IRL attempts to re-
cover the reward function directly from demonstrations. In settings with only small
numbers of demonstration, there is little reason to expect generalization from standard
IRL, as it is analogous to training a density model with only a few examples.

8.1 learning a prior over intent via meta inverse reinforcement learn-
ing

A key assumption of the reinforcement learning problem statement is the availability of
a reward function that accurately describes the desired tasks. For many real world tasks,
reward functions can be challenging to hand specify (e.g. encouraging a robot to be
polite), while being crucial to good performance. Part of the challenge stems from the fact
that most real world tasks are multifaceted and require reasoning over multiple factors
in a task, while simultaneously providing appropriate reward shaping to make the task
feasible with tractable exploration (Ng et al., 1999). These challenges are compounded by
the inherent difficulty of specifying rewards for tasks with high-dimensional observation
spaces such as images. Even for relatively simple skills such as pouring or opening a
door, prior works have hand-designed mechanisms to measure a proxy for the objective.

Inverse reinforcement learning (IRL) is an approach that aims to address this problem
by instead inferring the reward function from demonstrations of the task (Ng and Rus-
sell, 2000). This has the appealing benefit of taking a data-driven approach to reward

105

specification in place of cumbersome hand engineering. In practice, however, it can be
prohibitively expensive to provide demonstrations that cover the variability common in
real world tasks (e.g., collecting a dataset of demonstrations of opening every type of
door). In addition, while learning a complex (reward) function from high dimensional
observations might make an expressive function approximator seem like a reasonable
modelling assumption, it can be difficult to unambiguously recover a good reward func-
tion with expressive function approximators from a limited set of demonstrations. Prior
solutions to this problem have instead relied on low-dimensional linear models with
handcrafted features that effectively encode a strong prior on the relevant features of a
task. Yet, this requires engineering a set of features by hand that work well for a spe-
cific problem. In this work, we instead propose a method that explicitly optimizes for
expressive features that are robust even when learning with limited demonstrations.

Our approach relies on the key observation that related tasks share common structure
that we can encode by learning a “prior”. To illustrate, considering a robot navigating
through a home. While the exact reward function we provide to the robot may differ
depending on the task, there is a structure amid the space of useful behaviours, such
as navigating to a series of landmarks, and there are certain behaviors we always want
to encourage or discourage, such as avoiding obstacles or staying a reasonable distance
from humans. This notion agrees with our understanding of why humans can easily
infer the intents and goals (i.e., reward functions) of even abstract agents from just one
or a few demonstrations (Baker et al., 2007), as humans have access to strong priors
about how other humans accomplish similar tasks accrued over many years. Hence, our
objective is to learn a “prior over intent” by discovering and encoding this common
structure in the reward function parameters.

More specifically, in this work we assume access to a set of tasks, along with demon-
strations of the desired behaviors for those tasks, which we refer to as the meta-training
set. From these tasks, we then learn a reward function parameterization that enables
effective few-shot learning when used to initialize IRL in a novel task. Our method is
summarized in Fig. 35. Our key contribution is an algorithm that enables efficient learn-
ing of new reward functions by using meta-training to build a rich “prior” for goal
inference. From an empirical perspective, we present experiments that show that our
method is able to recover a reward function from raw pixels that better generalizes to
new environments, as well as substantially improves data efficiency when faced with a
new task, in comparison to existing methods and standard baselines.

106

8.1.1 Preliminaries and Overview

In this section, we introduce our notation and describe the IRL and meta-learning prob-
lems.

8.1.1.1 Learning Rewards via Inverse Reinforcement Learning

The standard Markov decision process (MDP) is defined by the tuple (S,A,ps,R,γ)
where S and A denote the set of possible states and actions respectively, R is the scalar
reward, γ ∈ [0, 1] is the discount factor and ps : S× S×A → [0, 1] denotes the tran-
sition distribution over the next state st+1, given the current state st and current action
at. Typically, the goal of “forward” RL is to maximize the expected discounted return
R(τ) =

∑T
t=1 γ

t−1r(st, at).
In IRL, we instead assume that the reward function is unknown but that we instead

have access to a set of expert demonstrations D = {τ1, . . . , τK}, where τk = {s1, a1, . . . , sT , aT }.
The goal of IRL is to recover the unknown reward function R from the set of demon-

strations. We build on the maximum entropy (MaxEnt) IRL framework by Ziebart et al.
(2008), which models the probability of the trajectories as being distributed proportional
to their exponentiated return

p(τ) =
1

Z
exp (R(τ)) , (22)

where Z is the partition function, Z =
∫
τ exp(R(τ))dτ. This distribution can be shown to

be induced by the optimal policy in entropy regularized forward RL problem:

π∗ = argmax
π

Eτ∼π [R(τ) − logπ(τ)] . (23)

This formulation allows us to pose the reward learning problem as a maximum likeli-
hood estimation (MLE) problem in an energy-based model Rφ:

min
φ

Eτ∼D [LIRL(τ)]=min
φ

Eτ∼D
[
− logpφ(τ)

]
. (24)

Learning in general energy-based models of this form is common in many applications
such as structured prediction. However, in contrast to applications where learning can
be supervised by millions of labels (e.g. semantic segmentation), the learning problem
in Equation 24 must typically be performed with a relatively small number of example
demonstrations. In this work, we seek to address this issue in IRL by providing a way
to integrate information from prior tasks to constrain the optimization in Equation 24 in
the regime of limited demonstrations.

107

8.1.2 Learning to Learn Rewards

Our goal in meta-IRL is to learn how to learn reward functions across many tasks such
that the model can infer the reward function for a new task using only one or a few
expert demonstrations. Intuitively, we can view this problem as aiming to learn a prior
over the intentions of human demonstrators, such that when given just one or a few
demonstrations of a new task, we can combine the learned prior with the new data to
effectively determine the human’s reward function. Such a prior is helpful in inverse
reinforcement learning settings, since the space of relevant reward functions is much
smaller than the space of all possible rewards definable on the raw observations.

During meta-training, we have a set of tasks {Ti ; i = 1..N}. Each task Ti has a set of
demonstrations DT = {τ1, . . . , τK} from an expert policy which we partition into disjoint
Dtr

T and Dtest
T sets. The demonstrations for each meta-training task are assumed to be

produced by the expert according to the maximum entropy model in Section 8.1.1.1.
During meta-training, these tasks will be used to encodes common structure so that our
model can quickly acquire rewards for new tasks from just a few demonstrations. After
meta-training, our method is presented with a new task. During this meta-test phase,
the algorithm must infer the parameters of the reward function rφ(st, at) for the new
task from a few demonstrations. As is standard in meta-learning, we assume that the
test task is from the same distribution of tasks seen during meta-training, a distribution
that we denote as p(T).

8.1.2.1 Meta Reward and Intention Learning (MandRIL)

In order to meta-learn a reward function that can act as a prior for new tasks and new
environments, we first formalize the notion of a good reward by defining a loss L(θ,DT)

on the reward function rθ for a particular task T. We use the MaxEnt IRL loss LIRL
discussed in Section 8.1.1, which, for a given DT, leads to the following gradient (Ziebart
et al., 2008):

∇θLIRL(θ,DT) =
∂rθ
∂θ

[
Eτ[µτ] − µDT

]
. (25)

where µτ are the state visitations under the optimal maximum entropy policy under rθ,
and µD are the mean state visitations under the demonstrated trajectories.

If our end goal were to achieve a single reward function that works as well as possible
across all tasks in {Ti ; i = 1..N}, then we could simply follow the mean gradient across
all tasks. However, our objective is subtly different: instead of optimizing performance

108

Algorithm 12 Meta Reward and Intention Learning (MandRIL)

1: Input: Set of meta-training tasks {T}meta-train

2: Input: learning hyper-parameters α,β
3: function MaxEntIRL-Grad(rθ, T, D)(.)Single task update
4: µD = State-Visitations-Traj(T, D)
5: Eτ[µτ] = State-Visitations-Policy(rθ, T)
6: ∂LIRL

∂rθ
= Eτ[µτ] − µD . MaxEntIRL gradient (Ziebart et al., 2008)

7: Return ∂LIRL
∂rθ

8:
9: Randomly initialize θ

10: while not done do
11: Sample batch of tasks Ti ∼ {T}meta-train

12: for all Ti do
13: Sample demos Dtr

Ti
= {τ1, . . . , τK} ∼ DTi . Inner loss computation

14:
∂LIRL(θ,Dtr

Ti
)

∂rθ
= MaxEntIRL-Grad(rθ, Ti, Dtr

Ti
)

15: Compute ∇θLIRL(θ,Dtr
Ti
) from

∂LIRL(θ,Dtr
Ti

)

∂rθ
via chain rule

16: Compute updated parameters φTi = θ−α∇φLIRL(θ,Dtr
Ti
) . Fast update

17: Sample demos Dtest
Ti

= {τ ′1, . . . , τ
′
K ′} ∼ DTi . Outer loss computation

18:
∂LIRL(φ,Dtest

Ti
)

∂rθ
= MaxEntIRL-Grad(rφTi

, Ti, Dtest
Ti

))
19: Compute ∇θLIRL(φ,Dtest

Ti
) via Eq 28 . Compute meta-gradient

20: Compute update to θ← θ−β
∑
i∇θLtest

Ti
. Update initial parameters

on the meta-training tasks, we aim to learn a reward function that can be quickly and
efficiently adapted to new tasks at meta-test time. In doing so, we aim to encode prior
information over the task distribution in this learned reward prior.

Following MAML, we propose to implement such a learning algorithm by finding the
parameters θ, such that starting from θ and taking a small number of gradient steps
on a few demonstrations from given task leads to a reward function for which a set
of test demonstrations have high likelihood, with respect to the MaxEnt IRL model. In
particular, we would like to find a θ such that the parameters

φTi = θ−α∇θLIRL(θ,Dtr
Ti
) (26)

lead to a reward function rφT
for task T, such that the IRL loss (corresponding to negative

109

log-likelihood) for a disjoint set of test demonstrations is minimized. The corresponding
optimization problem for θ can therefore be written as follows:

min
θ

N∑
i=1

LIRL(φTi ,D
test
Ti

) =

N∑
i=1

LIRL

(
θ−α∇θLIRL(θ,Dtr

Ti
),Dtest

Ti

)
. (27)

Our method acquires this prior θ over rewards in the task distribution p(T) by optimiz-
ing this loss. This amounts to an extension of the MAML algorithm in Section 4.1 to the
inverse reinforcement learning setting. This extension is quite challenging, because com-
puting the MaxEnt IRL gradient requires repeatedly solving for the current maximum
entropy policy and visitation frequencies, and the MAML objective requires computing
derivatives through this gradient step. Next, we describe in detail how this is done. An
overview of our method is also outlined in Algorithm 12.
Meta-Training. The computation of the meta-gradient for the objective in Equation 27

can be conceptually separated into two parts. First, we perform the update in Equation 26

by computing the expected state visitations µ, which is the expected number of times an
agent will visit each state. We denote this overall procedure as State-Visitations-Policy,
and follow Ziebart et al. (2008) by first computing the maximum entropy optimal policy
in Equation 23 under the current rθ, and then approximating µ using dynamic program-
ming. Next, we compute the state visitation distribution of the expert using a procedure
which we denote as State-Visitations-Traj. This can be done either empirically, by aver-
aging the state visitation of the experts demonstrations, or by using State-Visitations-
Policy if the true reward is available at meta-training time. This allows us to recover
the IRL gradient according to Equation 25, which we can then apply to compute φT

according to Equation 26.
Second, we need to differentiate through this update to compute the gradient of the

meta-loss in Equation 27. Note that the meta-loss itself is the IRL loss evaluated with a
different set of test demonstrations. We follow the same procedure as above to evaluate
the gradient of LIRL(·,Dtest

T) with respect to the post-update parameters φT, and then
apply the chain rule to compute the meta-gradient:

∇θLIRL(φT,Dtest
T) =

∂L(φT,Dtest
T)

∂rφT

∂rφT

∂φT

∂

∂θ
(θ−α∇θL(θ,Dtr

T))

=
∂L(φT,Dtest

T)

∂rφT

∂rφT

∂φT

(
I −α

∂2LIRL(θ,Dtr
T)

∂θ2
−α

∂L(θ,Dtr
T)

∂θ

∂L(θ,Dtr
T)

∂θ

T
)

,

(28)

110

a1 a2

s1 s2 . . .

. . .

sT

aT

Φr

Φdyn

Φr

Φdyn

Φr

Φdyn

φT

Figure 36: Our approach can be understood as approximately learning a distribution over the
demonstrations τ, in the factor graph p(τ) = 1

Z

∏T
t=1Φr(φT , st, at)Φdyn(st+1, st, at)

(above) where we learn a prior over φT , which during meta-test is used for MAP
inference over new expert demonstrations.

where on the second line we differentiate through the MaxEnt-IRL update (and we drop
the IRL subscript on L for brevity). The derivation of this expression is somewhat more
involved and provided in the supplementary Appendix B.5.
Meta-Testing. Once we have acquired the meta-trained parameters θ that encode a
prior over p(T), we can leverage this prior to enable fast, few-shot IRL of novel tasks in
{Tj ; j = 1..M}. For each task, we first compute the state visitations from the available
set of demonstrations for that task. Next, we use these state visitations to compute the
gradient, which is the same as the inner loss gradient computation of the meta-training
loop in Algorithm 12. We apply this gradient to adapt the parameters θ to the new task.
Even if the model was trained with only one to three inner gradient steps, we found
in practice that it was beneficial to take substantially more gradient steps during meta-
testing; performance continued to improve with up to 20 steps.

8.1.2.2 Interpretation as Learning a Prior over Intent

The objective in Equation 26 optimizes for parameters that enable that reward function
to adapt and generalize efficiently on a wide range of tasks. Intuitively, constraining the
space of reward functions to lie within a few steps of gradient descent can be interpreted
as expressing a “locality” prior over reward function parameters. This intuition can be
made more concrete with the following analysis.

By viewing IRL as maximum likelihood estimation, we can take the perspective of
Grant et al. (Grant et al., 2018) who showed that for a linear model, fast adaptation

111

via a few steps of gradient descent in MAML is performing MAP inference over φ,
under a Gaussian prior with the mean θ and a covariance that depends on the step size,
number of steps and curvature of the loss. This is based on the connection between early
stopping and regularization previously discussed by Santos (1996), which we refer the
readers to for a more detailed discussion. The interpretation of MAML as imposing a
Gaussian prior on the parameters is exact in the case of a likelihood that is quadratic in
the parameters (such as the log-likelihood of a Gaussian in terms of its mean). For any
non-quadratic likelihood, this is an approximation in a local neighborhood around θ (i.e.
up to convex quadratic approximation). In the case of very complex parameterizations,
such as deep function approximators, this is a coarse approximation and unlikely to be
the mode of a posterior. However, we can still frame the effect of early stopping and
initialization as serving as a prior in a similar way as prior work (Sjöberg and Ljung,
1995; Duvenaud et al., 2016; Grant et al., 2018). More importantly, this interpretation
hints at future extensions to our approach that could benefit from employing more fully
Bayesian approaches to reward and goal inference.

8.1.3 Related Work

Inverse reinforcement learning (IRL) (Ng and Russell, 2000) is the problem of inferring
an expert’s reward function directly from demonstrations. Prior methods for performing
IRL range from margin based approaches (Abbeel and Ng, 2004; N. D. Ratliff et al.,
2006) to probabilistic approaches (D. Ramachandran and Amir, 2007; Ziebart et al., 2008).
Although it is possible to extend our approach to any other IRL method, in this work
we base on work on the maximum entropy (MaxEnt) framework (Ziebart et al., 2008). In
addition to allowing for sub-optimality in the expert demonstrations, MaxEnt-IRL can
be re-framed as a familiar maximum likelihood problem in a particular factor graph (see
Sec. 8.1.1.1).

In part to combat the under-specified nature of IRL, prior work has often used low-
dimensional linear parameterizations with handcrafted features (Abbeel and Ng, 2004;
Ziebart et al., 2008). In order to learn from high dimensional input, Wulfmeier et al. (2015)
proposed applying fully convolutional networks (Shelhamer et al., 2017) to the MaxEnt
IRL framework (Ziebart et al., 2008) for several navigation tasks (Wulfmeier et al., 2016a;
Wulfmeier et al., 2016b). Other methods that have incorporated neural network rewards
include guided cost learning (GCL) (Finn et al., 2016a), which uses importance sampling
and regularization for scalability to high-dimensional spaces, and adversarial IRL (Fu
et al., 2018). Several other methods have also proposed imitation learning approaches

112

based on adversarial frameworks that resemble IRL, but do not aim to directly recover
a reward function (Ho and Ermon, 2016; Y. Li et al., 2017; Hausman et al., 2017; Kuefler
and Kochenderfer, 2018). In this work, instead of improving the ability to learn reward
functions on a single task, we focus on the problem of effectively learning to use prior
demonstration data from other IRL tasks, allowing us to learn new tasks from a limited
number demonstrations even with expressive non-linear reward functions.

Prior work has explored the problem of multi-task IRL, where the demonstrated be-
havior is assumed to have originated from multiple experts achieving different goals.
Some of these approaches include those that aim to incorporate a shared prior over re-
ward functions through extending the Bayesian IRL (D. Ramachandran and Amir, 2007)
framework to the multi-task setting (Dimitrakakis and Rothkopf, 2012; Choi and K.-E.
Kim, 2012). Other approaches have clustered demonstrations while simultaneously in-
ferring reward functions for each cluster (Babeş-Vroman et al., 2011) or introduced reg-
ularization between rewards to a common “shared reward” (K. Li and Burdick, 2017).
Our work is similar in that we also seek to encode prior information common to the
tasks. However, a critical difference is that our method specifically aims to distill the
meta-training tasks into a prior that can then be used to learn rewards for new tasks
efficiently. The goal therefore is not to acquire good reward functions that explain the
meta-training tasks, but rather to use them to learn efficiently on new tasks.

8.1.4 Experiments

We have two complementary goals in our evaluation. We wish to test our core hypothesis
that leveraging prior task information improves performance. In addition, from a practi-
cal perspective, we wish to test whether this improvement enables learning rewards for
new tasks with just a few demonstrations, and to compare our approach with alternative
meta-learning methods.

To test our core hypothesis, we implement the naïve approach of running MaxEnt IRL
for each new task, i.e. where the reward function parameters are initialized randomly.
While we expect this method to overfit, particularly when only a few demonstrations are
available, it is an important baseline as it is the most straight-forward application of stan-
dard IRL to a multi-task setting. Most importantly, this comparison provides valuable
insight into the benefits of incorporating prior information at all.

Regarding comparisons with alternative meta-learning approaches, there is no prior
work that addresses the meta-inverse reinforcement learning problem introduced in this
section. To provide a point of comparison and illustrate the difficulty of the tasks, we

113

Figure 37: An example task: When learning a task, the agent has access to the image (left) and
demonstrations (red arrows). To evaluate the agent’s learning (right), the agent is
tested for its ability to recover the reward for the task when the objects have been
rearranged. The reward structure we wish to capture can be illustrated by considering
the initial state in blue. An policy acting optimally under a correctly inferred reward
should interpret the other objects as obstacles, and prefer a path on the dirt in between
them.

design two approaches based on alternative meta-learning methods, and adapt them to
the IRL setting:
• Demo Conditional Model: Our method implicitly conditions on the demonstrations

through the gradient descent update. In theory, a conditional deep model with suffi-
cient capacity could implicitly implement a similar learning rule. Thus, we consider
a conditional model (often referred to as a “contextual model”), which receives the
demonstration as an additional input. This tests the generalization benefit of using
gradient descent as an inductive bias versus explicit conditioning.

• Recurrent Meta-Learner: We additionally compare to an RNN-based meta-learner (San-
toro et al., 2016; Duan et al., 2017). Specifically, we implement a conditional model
by feeding both images and sequences of states visited by the demonstrations to an
LSTM. The comparison between this approach and ours evaluates the importance of
incorporating the IRL gradient into the meta-learning process, rather than learning
the adaptation process entirely from scratch.

spriteworld navigation domain In our experimental evaluation, we consider
a navigation domain where we aim to recover a reward function that describes trajec-
tories from an agent moving through the environment. Specifically, we seek to learn
a convolutional neural network that directly maps image pixels to rewards. To do so,
we introduce “SpriteWorld,” which is a synthetically generated task, some examples of
which are shown in Fig. 37. The task visuals are inspired by Starcraft and work applying
learning algorithms to perform micro-management (e.g. Synnaeve et al. (2016)) although

114

Figure 38: Meta-test performance with varying numbers of demonstrations (lower is better): held-
out tasks training (left), test performance (middle), and test performance on held-out
tasks with novel sprites (right). All methods are capable are overfitting to the training
environment (top). However, in both test settings, MandRIL achieves comparable per-
formance to the training environment, while the other methods overfit considerably
until they receive at least 10 demonstrations. The recurrent meta-learner has a value
difference larger than 60 in both test settings.

we do not use the game engine.
All tasks require learning directly from raw image inputs, and involve navigating to

goal objects while exhibiting preference over terrain types (e.g. the agent prefers to tra-
verse dirt tiles over traversing grass tiles). The goal of IRL in this setting amounts to
learning the correct visual cues that indicate regions of high and low reward. There-
fore, we evaluate the learned reward functions by using them in new environments that
contain the same objects as the demonstration environment. In the training environment,
the reward function can memorize the training demonstration without learning the right
visual cues, but such a reward function will perform poorly in a test environment where
object positions have changed. If the reward function picks up on the right visual cues,
its performance on the training and test environments will be similar.

The underlying MDP structure of SpriteWorld is a grid, where the states are each of
the grid cells, and the actions enable the agent to move to any one of its 8-connected
neighbors. We generate unique tasks from this domain as follows. First, we randomly
choose a set of 3 sprites from a total of 100 sprites from the original game (creating a
total of 161,700 unique tasks). We randomly place these three sprites within a randomly
generated terrain tiling; we designate one of the sprites to be the goal of the navigation
task, i.e. the object to which the agent must navigate. The other two objects are treated
as obstacles for which the agent incurs a large negative reward for not avoiding. In
each task, we optimize our model on a meta-training set and evaluate the ability of the
reward function to the generalize to a rearrangement of the same objects. For example,

115

suppose the goal of the task is to navigate to sprite A, while avoiding sprites B and C.
Then, to generate an environment for evaluation, we simply resample the positions of
the sprites, while the underlying task remains the same (i.e., navigate to A). This requires
the model to make use of the visual patterns in the scene to generalize effectively, rather
than simply memorizing positions of sprites. We evaluate on novel combinations of units
seen in meta-training, as well as the ability to generalize to new unseen units. We provide
further details on our setup in Appendices B.4.1 and B.4.2.

We measure performance using the expected value difference metric, which measures
the sub-optimality of a policy learned under the approximate reward; this is a standard
performance metric used in prior IRL work (Levine et al., 2011; Wulfmeier et al., 2015).
The metric is computed by taking the difference between the value function of the opti-
mal policy under the learned reward and the value function of the optimal policy under
the true reward.

evaluation protocol In our evaluation, we sample new tasks from the task dis-
tribution that were unseen during meta-training. We consider two possible settings: we
either sample new sprite positions and tasks, but use sprites that were present during
meta-training, or we sample entirely new sprites that were unseen, which we refer to
as “out of domain objects.” For each task, we sample one environment (set of sprite
positions) along with demonstrations for adapting the reward, and a second environ-
ment for the same task where we test the adapted reward, to ensure that it picks up on
the right visual cues. We refer to the performance on the first environment as “training
performance” (not to be confused with meta-training – the evaluation considers meta-
testing) and to performance on the second as “testing performance”. As the number of
demonstrations increases, we expect all methods to perform well in terms of training
performance as they can simply overfit to the training environment without acquiring
the right visual cues that allow them to generalize.

evaluation results The results for are shown in Fig. 38, which illustrates training
and test performance with in-distribution sprites, and testing performance with out-of-
distribution sprites. Our approach, MandRIL, achieves roughly the same value difference
on the training environment as on the test environment, and has only slightly worse
error with out-of-distribution sprites. Most significantly, the method performs well even
with single-digit numbers of demonstrations. By comparison, alternative meta-learning
methods generally overfit considerably, attaining good training performance but very
poor test performance in both conditions. Learning the reward function from scratch is in

116

fact the most competitive baseline – as the number of demonstrations increases, simply
training the fully convolutional reward function from scratch on the new task is the
only method that matches the performance of MandRIL; but with few demonstrations,
MandRIL has substantially lower value difference. It is worth noting the performance of
MandRIL on the out of distribution test setting: although the model is evaluated on new
sprites, the method is still able to adapt via gradient descent and exceed the performance
of learning from scratch and all other methods.

8.1.5 Discussion

In this section, we presented an approach that enables few-shot learning for reward func-
tions of new tasks. We achieved this through a novel formulation of inverse reinforce-
ment learning that learns to encode common structure across tasks. Using our approach,
we showed that we can use meta-training tasks to effectively learn deep neural network
reward functions from raw pixel observations for new tasks, using using a handful of
demonstrations. This work paves the way for exciting future work that considers un-
known dynamics, or more fully probabilistic approaches to reward and goal inference.

8.2 few-shot goal inference for visuomotor learning and planning

We previously showed how meta-learning can be used to infer reward functions from a
few demonstrations. Note, however, that a demonstration communicates both what the
task is and how to perform it. For many tasks, it is possible to convey a task with much
less effort by only the communicating the what, i.e., only communicating the goal of
the task. For example, one simple approach for specifying tasks is to provide an image
of the goal (Jagersand and Nelson, 1995; Deguchi and Takahashi, 1999; Watter et al.,
2015; Finn et al., 2016b; Zhu et al., 2017; Srinivas et al., 2018), or more generally, provide
an observation of one instance of success. There are a number of challenges with this
approach, e.g. measuring the distance between the current and goal observation; but
perhaps most saliently, we would like to not only encode a single instance of success,
but reason about the entire space of successful behavior and generalize the high-level
goal to new scenarios. To encode such goals, we can learn a reward function (Abbeel
and Ng, 2004; Ziebart et al., 2008; Finn et al., 2016a; Sermanet et al., 2017b; Tung et
al., 2018) or success classifier (Pinto and Gupta, 2016; Ho and Ermon, 2016; Levine et
al., 2016b) that operates on the robot’s observations. Unlike reward functions, which
are typically learned from demonstrations (via inverse RL, as discussed previously), we

117

can learn success classifiers from only positive and negative examples via supervised
learning. Yet, training classifiers from scratch does not solve the entire problem, as they
require a considerable amount of data for acquiring an objective for a single task. If we
reuse data from a range of other tasks that we might want a robot to learn, then our
agents can learn goal metrics for new tasks much more efficiently.

The main contribution of this section is a framework for specifying goals to robots
with minimal human supervision for each individual task. Our approach, illustrated in
Figure 39, leverages our previously-discussed work in meta-learning to enable few-shot
acquisition of goal classifiers, and can provide an objective for various control optimiza-
tions, including visual model-based planning and model-free reinforcement learning. In
our evaluation, we find that our approach provides a means to quickly learn objectives
for learning manipulation skills with deformable objects in simulation, and for perform-
ing multi-stage vision-based manipulation tasks on a real robot.

Figure 39: We propose a framework for making it practical to quickly convey the goal of a new
task. To do so, we collect a small amount of positive and negative examples for a large
number of other tasks (left) and use meta-learning to learn the structure within the
space of these relevant tasks. We then use this learned structure to infer an objective
for a new task from only a few examples of success (right). The reward or cost can
be derived from the learned goal classifier for use with planning or reinforcement
learning.

118

8.2.1 Overview

We aim to develop a framework that makes it easy to specify objectives for new tasks
in a way that (1) reduces the manual engineering efforts for specifying a new task to a
robot, making is fast and easy to convey goals to robots and (2) is generally-applicable
to a wide range of problems and robot learning methods. Assuming that we ultimately
want to convey many different tasks to a robot, we consider a multi-task problem setting
where we have available a modest number of success/failure examples for a large num-
ber of tasks. We will use this data for meta-training a classifier such that, at test time, we
can learn a goal classifier for a new task from only a few examples of success. By doing
this, we minimize the amount of data needed for any particular task and make it possible
to easily and quickly convey the goal of any new task. For full generality and minimal
task-specific engineering, we need to be able to evaluate the objective using the same ob-
servation that the robot uses to solve the task, rather than external sensors or privileged
information that is not available during deployment. To satisfy this requirement, we will
learn success classifiers that operate directly on the robot’s observation space. With these
two design decisions in mind, we will next formalize the general learning problem and
discuss our high-level solution that uses meta-learning.

8.2.2 Problem Set-up

Formally, we consider a goal classifier ŷ = f(o), where o denotes the robot’s observation,
such as a camera image, and ŷ ∈ [0, 1] indicates the predicted probability of the observa-
tion being of a successful outcome of the task. Such a classifier can be used for specifying
the goal to reinforcement learning or planning algorithms, by deriving a reward function
from the classifier’s predictions; we discuss this in more detail in Section 8.2.4.2. Our aim
is to learn a goal classifier from a few positive examples of success for a new task Tj, as
positive examples of success are intuitive for a human to provide and, in a sense, are the
minimal piece of information needed to convey a task goal. Hence, we will be given a
dataset D+

j of K positive examples of success for a task Tj: Dj := {(ok, 1)|k = 1...K}j, and
our goal is to infer a classifier for the conveyed task. How might we go about learning
to infer goal classifiers for new tasks from only K positive examples? To do this, we will
explicitly train a model for the ability to infer goal classifiers for a wide range of previ-
ous tasks, {Ti}. In particular, we assume a small dataset Di for each task Ti, where each
dataset consists of both examples of success and not success: Di := {(on,yn)|n = 1...N}i.

One natural question at this point is: what can the model learn from the meta-training

119

set that allows it to infer goals for new tasks more effectively than learning each task
from scratch? If each task involves a completely distinct visual concept, without any
shared structure across tasks, then it seems unlikely that the model will acquire useful
knowledge from meta-training. However, practical real-world goals often share many
patterns: object rearrangement tasks depend strongly on relative positioning of objects
to each other, and are agnostic to the pose of the robot. Tasks that involve placing objects
in containers depend on whether or not an object is inside the container, but not the
container’s position. By extracting such patterns from meta-training tasks, our method
should be able to acquire structurally related meta-test tasks efficiently.

8.2.3 Meta-learning for Few-Shot Goal Inference

To solve the above learning problem, we propose to learn how to learn classifiers for a
task from a few positive examples of that task, by using full supervision at the meta-level
from both positive and negative examples. Then, at test time, we can effectively learn a
classifier from only positive examples. Across all of the tasks in the set of training tasks
{Ti}, we will train a learner f to learn a goal classifier gi from a dataset of positive
examples D+

i and make predictions about new observations o:

gi(o) = f(D+
i , o; θ)

where we use D+
i to denote a dataset of K examples sampled uniformly from the positive

examples in Di. To train the meta-learner parameters θ, we will optimize the learned
classifier for its ability to accurately classify new examples in Di, both positive and
negative. In particular, we will optimize the following objective:

min
θ

∑
i

∑
(on,yn)∈Dtest

i

`(yn,gi(on)) = min
θ

∑
i

∑
(on,yn)∈Dtest

i

`(yn, f(D+
i , on; θ)) (29)

where D+
i is defined as above, Dtest

i is sampled uniformly from Di\D
+
i , and the loss

function ` is the standard cross entropy loss that compares the classifier’s predictions to
the labels. The datapoints Dtest are distinct from D+ so that we train for good general-
ization. At test time, after learning f, we are presented with examples of success D+

j for
a new task Tj. We can use this data infer a task-specific goal classifier gj(·) = f(D+

j , ·; θ).
This classifier provides an objective, or part of an objective (as we discuss in the next
section), for reinforcement learning or planning. We refer to this approach as few-shot
learning of objectives (FLO). The algorithms underlying the meta-training optimization
and test-time procedure are outlined in Algorithms 13 and 14.

120

Algorithm 13 Few-Shot Learning of Objectives (FLO)

Require: for each task Ti, a dataset of example suc-
cesses and failures: Di := {(on,yn)}i ∀ i

1: randomly initialize learner parameters θ
2: while not done do
3: Sample training task Ti (or minibatch)
4: Sample examples of success D+

i ∼ Di
5: Sample test examples Dtest

i ∼ Di\D
+
i

6: Learn goal classifier from positive examples gi(·) =
f(D+

i , ·; θ)
7: Update learner parameters θ according to Eq. 29

using Dtest
i

Algorithm 14 FLO test-time

Require: examples of success
D+
j for new task Tj

Require: learned θ
1: Infer goal classifier:
gj(·) = f(D+

j , ·; θ)
2: Run RL or planning, using

reward/cost derived from gj

As discussed in Section 4.4, the view of meta-learning as learning the mapping
f(D, o; θ) → ŷ is general to a number of different meta-learning algorithms, including
recurrent models (Santoro et al., 2016), learned optimizers (Ravi and Larochelle, 2017),
and gradient-based methods (Finn et al., 2017a). Hence, this framework can be com-
bined with combined with any of such meta-learning algorithms for few-shot classifier
learning.

8.2.4 Few-Shot Goal Inference for Learning and Planning

Having presented the general framework of few-shot goal inference, we will discuss our
particular meta-learning implementation, mechanisms needed to mitigate exploitation of
the learned objective by the controller, and mechanisms for specifying compound tasks
by joining classifiers.

8.2.4.1 Concept Acquisition for Goal Classifiers

While the above framework is general to any meta-learning approach, we would use a
method that can efficiently learn to learn, to avoid collecting very large amounts data
for meta-training. As a result, we choose to build upon model-agnostic meta-learning
(MAML) (Finn et al., 2017a), which incorporates the structure of gradient descent for
efficient meta-learning. In particular, MAML learns an initial parameter setting θ of the
model fMAML such that one or a few steps of gradient descent with a few examples leads

121

to parameters φ that generalize well to new examples from that task. Grant et al. (2017)
extended MAML for learning new concepts from only positive examples, referred to
as concept acquisition through meta-learning (CAML), akin to how humans learn new
concepts. We adapt CAML to the setting of acquiring binary success classifiers from
positive examples. At test time, the learner uses gradient descent to adapt the meta-
learned parameters θ to a dataset of positive examples D+

j for task Tj:

gj(o) = f(D+
j , o; θ) = fCAML

(
o;φj

)
= fCAML

(
o; θ−α∇θ

∑
(on,yn)∈D+

j

`(yn, fCAML(on; θ)
)

where ` is the cross-entropy loss function, α is the step size, and φj denotes the pa-
rameters updated through gradient descent on task Tj. We only write out one gradient
descent step for convenience of notation; in practice, more may be used. Then, meta-
training takes into account this gradient descent adaptation procedure, training for the
initial parameters as follows:

min
θ

∑
i

∑
(on,yn)∈Dtest

i

`(yn, fCAML(on;φi))

We optimize this objective using Adam (D. Kingma and J. Ba, 2015) on the initial param-
eters θ. In our experiments, we consider vision-based tasks where o is an RGB image.
We use a learner fCAML that is represented by a convolutional neural network with RGB
image inputs. We provide details on the architecture and other implementation details
in Section 8.2.6.

8.2.4.2 Deriving Rewards from Classifier Predictions

Once we have inferred a goal classifier, we can predict the probability of an observation
o being successful. To use this prediction as an objective for planning or reinforcement
learning, we need to convert it into a reward function. One simple approach would be to
treat the probability of success as the reward for that observation. We find that this works
reasonably well, but that the predictions produced by the neural network are not always
well-calibrated. To reduce the effect of false positives and mis-calibrated predictions, we
use the classifier conservatively by thresholding the predictions so that reward is only
given for confident successes. Below this threshold, we give a reward of 0 and above this
threshold, we provide the predicted probability as the reward. To further avoid spurious
false positives from affecting learning, we additionally only provide this nonzero reward
when two consecutive frames have achieved predicted success above the threshold.

122

8.2.4.3 Cascading Classifiers for Compound Tasks

To provide objectives for more complex tasks, we can join multiple classifiers. For ex-
ample, if we train a classifier to recognize if a particular relative position of two objects
is achieved, then we can use multiple classifiers to achieve a particular configuration of
multiple objects, like a table setting. To achieve this, we provide a few positive examples
D+
j of each task Tj that we would like to achieve, and then infer the classifier for each

task. To perform the sequence of tasks, we cascade the inferred classifiers – iteratively
setting each objective one-by-one, and running the planner or policy for each one until
the classifier indicates that the subtask has been completed. In our experiments, we illus-
trate how this cascading technique can be used to maneuver three objects into a desired
configuration.

8.2.5 Related Work

Specifying goals is a challenge for many real-world robotics and reinforcement learning
tasks. Many of the most successful demonstrations of robot learning have sidestepped
this issue and instead engineered task-specific solutions for providing an objective such
as hand-shaped objectives (Levine et al., 2016a; Schulman et al., 2015) and manually
instrumented environments (e.g. a thermal camera, scale, or other sensors for measur-
ing quantity poured (Schenck and Fox, 2017; Schenck and Fox, 2016; Yamaguchi et al.,
2015), markers determining a pancake’s orientation (Kormushev et al., 2010), and an ac-
celerometer on a door handle (Yahya et al., 2017)). In this section, we aim to develop a
more general and scalable framework for specifying a goals that does not require man-
ual instrumentation or shaping, and instead learns to represent goals using the robot’s
sensors that are used to complete the task.

A number of works have proposed to specify vision-based tasks using an image or
visual representation of the goal (Jagersand and Nelson, 1995; Deguchi and Takahashi,
1999; Watter et al., 2015; Finn et al., 2016b; A. Edwards et al., 2016; Zhu et al., 2017; A. D.
Edwards et al., 2017; Srinivas et al., 2018). Unlike these works, we aim to acquire a classi-
fier that can effectively recognize successful task executions that may not directly match
an image of the goal. This enables us to recognize goals that are more abstract than an
entire goal visual scene, such as relative positions of objects, approximate shapes of de-
formable objects, or disjunctions. Other works have sought to learn objectives by training
a classifier (Pinto and Gupta, 2016; Ho and Ermon, 2016; Levine et al., 2016b) or reward
function (Sermanet et al., 2017b; Christiano et al., 2017; Tung et al., 2018), including in the
framework of inverse RL (Ng and Russell, 2000; Abbeel and Ng, 2004; Ziebart et al., 2008;

123

Boularias et al., 2011; Kalakrishnan et al., 2013; Finn et al., 2016a; Wulfmeier et al., 2016c;
Rhinehart and Kitani, 2017). However, training a classifier from scratch per task has a
number of challenges: modern vision methods require large training sets, and generally
require both positive and negative examples. Providing many examples is onerous, and
requiring users to provide negative examples is time-consuming and counter-intuitive
to the average user. We aim to address both of these issues by considering the fact that
we ultimately care about learning objectives of many different skills – we can use meta-
learning to share data across tasks, such that only a modest amount of data is needed
for any individual task, and learn how to learn a task objective from only a handful of
positive examples.

8.2.6 Experiments

To study the generality of our approach, we evaluate the effectiveness of our learned
objectives with both vision-based planning and reinforcement learning methods, with an
emphasis on tasks that have visually nuanced goals that are difficult to specify manually.
Videos of our results can be viewed on the supplementary website1.

Since our goal is to provide an easy way to compute an objective for new tasks from a
few observations of success for that task, we compare our approach to a few alternative
and prior methods for doing so under the same assumptions as our method:

Pixel distance: Given one observation of success, a naive metric for evaluating the ob-
jective is to measure the `2 distance between the current observation and the successful
observation. In some scenarios with low-dimensional observation spaces, this can per-
form reasonably well; however, this approach cannot capture the invariances that a goal
classifier can represent, nor does it scale well to visual or other high-dimensional sensory
observation spaces.

Latent space distance: An alternative approach is to measure the distance between
current and goal observations in a learned latent space (Watter et al., 2015; Finn et al.,
2016b). For learning the latent space, we train an autoencoder (Lange et al., 2012; Finn
et al., 2016b) on the meta-training data used for our approach. We expect this metric
to be better grounded than distances in pixel space, but still cannot capture invariances
across and within goals.

Oracle: In our simulated experiments, we can also derive a precise objective using the
ground truth state of the environment, which is generally not available in the physical
world. We run reinforcement learning with respect to this objective to provide an upper

1 The supplementary video is at https://sites.google.com/view/few-shot-goals

124

https://sites.google.com/view/few-shot-goals

Figure 40: Object arrangement performance of our method with and without distractor objects
and with two tasks. The left shows a subset of the 5 positive examples that are pro-
vided for inferring the goal classifier(s), while the right shows the robot executing the
specified task(s) via visual planning.

bound on performance within the simulated evaluation.
For all tasks in our evaluation, we consider the 5-shot learning setting, where 5 ex-

amples of success are provided to method for conveying the goal of the test task. For
both the pixel and latent space distance metrics above, we take the minimum distance
across these five examples, allowing the optimization to try to match the closest goal
observation. Our network architecture details can be found in Appendix B.6.1, and code
for FLO is available in the supplementary material.

8.2.6.1 Visual Planning for Object Arrangement

We study a visual object arrangement task, where different goals correspond to different
relative arrangements of a pair of objects. For this setting, we use a Sawyer robot and use
the planning method developed by Ebert et al. (2017) to optimize actions with respect
to the learned objective. This planning approach learns a video prediction model from
self-supervised data, and uses a sampling-based optimization with iterative replanning
(MPC) to select sequences of actions at each timestep that lead to desirable futures. We
evaluate our learned classifier on the predictions made by the video prediction model
and derive the cost used for planning using the approach described in Section 8.2.4.2.

To collect data for meta-training the classifier, we randomly select a pair of objects

125

Figure 41: Quantitative performance of visual planning across different goal specification meth-
ods: ours, DSAE (Finn et al., 2016b), and pixel error. We consider three experimental
settings with increasing difficulty: a single relative object positioning task, a single task
with distractor objects, and a multi-task object positioning task where the robot needs
to maneuver two objects into a line. Where possible, we include break down the cause
of failures into errors caused by inaccurate prediction or planning and those caused
by an inaccurate goal classifier.

from our set of training objects, and position them into many different relative positions,
recording the image for each configuration. One task corresponds to a particular relative
positioning of two objects, e.g. the first object to the left of the second, and we construct
positive and negative examples for this task by labeling the aforementioned images. We
randomly position the arm in each image, as it is not a determiner of task success. A good
objective should ignore the position of the arm. We also include randomly-positioned
distractor objects in about a third of the collected images. Some of the meta-training
data is illustrated in the left of Figure 39. In total, we collect data for 92 tasks, with
roughly 25 positive and 45 negative examples for each task. As some images are shared
across tasks, the total number of unique images in the dataset is 4248.

We evaluate all approaches in three different experimental settings. In the first setting,
the goal is to arrange two objects into a specified relative arrangement. The second
setting is the same, but with distractor objects present. In the final, most challenging
setting, the goal is to achieve two tasks in sequence. As described in Section 8.2.4.3, we
provide positive examples for both tasks, infer the classifier for both task, perform MPC
for the first task until completion, followed by MPC for the second task. To evaluate the
ability to generalize to new goals and settings, we use novel, held-out objects for all of
the task and distractor objects in our evaluation.

We qualitatively visualize the evaluation in Figure 40. On the left, we show a subset of

126

Figure 42: Visualization of the most common scenarios in which the inferred goal classifier fails.
Top: the robot starts to move the object and stops when the classifier believes that the
diagonal arrangement is satisfying the goal. Bottom: the classifier is thrown off by a
novel distractor object. For both cases, more data or data augmentation with a wider
range of diagonal relations and distractors could help mitigate the source of failure.

the five images provided to illustrate the task(s), and on the left, we show the motions
performed by the robot. We see that the robot is able to execute motions which lead to a
correct relative positioning of the objects. We quantitatively evaluate each method across
20 tasks, including 10 unique object pairs. The results, shown in Figure 41, indicate
that prior methods for learning distance metrics struggle to infer the goal of the task,
while our approach leads to substantially more successful behavior on average. Aiming
to understand the results further and the fidelity of the inferred goal classifiers, we
measure whether the failures are caused by the planner or the classifier. In particular, if
the classifier predicted that the final image was a success that was not, or if the classifier
classifies a correct plan as not successful, then the fault is on the classifier. Otherwise, the
fault is the planner, e.g. if the planner finds an action plan that looks successful according
to the video prediction model, but in reality is not. From this analysis, we observe that
about half of the single task failures are caused by the planner / predictive model. This
suggests at least 75% of the tasks are achievable by the planner with a suitable metric.
It is difficult to judge the cause of failure for the latent and pixel distance metrics, since
they provide soft boundaries between success and failure. However, we qualitatively
observed that most of the plans that achieved low distance according to these metrics
did not look successful, suggesting that most of the failures were caused by the metric.
We further analyze failure common failure modes in Figure 42.

127

Figure 43: Rope manipulation policy roll-outs. Left: a subset of the 5 positive examples provided
for inferring the goal classifier. Right: the robot executing the policy learned via RL
with the learned objective.

8.2.6.2 Rope Manipulation with Reinforcement Learning

We next study a setting where the goal is to learn to manipulate a rope of pearls into a
particular shape, as specified by a few images. Here, we aim to evaluate how our objec-
tive and others can be used with a model-free reinforcement learning method, proximal
policy optimization (PPO) (Schulman et al., 2017). For this setting, we use a parallel-jaw
gripper as the manipulator, and our experiments are carried out in the Mujoco simula-
tor (Todorov et al., 2012).

The tasks (i.e. goal shapes of the rope in this case) are generated through the following
automated procedure: the manipulator takes random actions, some of which cause the
rope to move. If any single pearl gets displaced by more than 10 cm from its original
position, we freeze the rope position and call it a new task. We then displace the rope
all over the table, and add small perturbations to it to generate multiple examples for
this task. This encodes the fact that we only care about the shape of the rope, and not
its position on the table, and small perturbations on the shape are acceptable. Negatives
for the tasks are sample in two ways: actions taken by the manipulator that do not cause
any of the pearls to move by more than 10 cm are labeled as negatives, and positive
examples from one task are used as negatives for all other task. The number of negatives
from these two sources is kept balanced. We use 240 tasks for training, with 30 positives
and 30 negatives per task, leading to a total of 14400 images being used for training. We

128

Figure 44: Illustration of six different
rope manipulation tasks

method median distance
full state visual features

pixel distance 0.23 (0.20, 0.35) n/a
AE distance 0.60 (0.46,0.70) 0.50 (0.42,0.60)
FLO (ours) 0.37 (0.21, 0.57) 0.38 (0.30,0.53)

oracle 0.07 (0.05, 0.11) n/a

Table 9: Median distance across rope tasks (lower is bet-
ter) comparing approaches for deriving a re-
ward from images, using RL from full state and
from visual features. Numbers in parentheses
indicate the 25th and 75th percentiles.

use 10 tasks for testing, with five success images used per task for inferring the goal.
Example tasks are illustrated in Figure 44.

When running reinforcement learning, we compare policy learning on the full, low-
level state of the system to visuomotor policy learning on features derived from an au-
toencoder (following prior work on learning policies from autoencoder features (Lange
et al., 2012; Finn et al., 2016b), see Appendix B.6.2 for details). For evaluation and the
oracle, we need to devise a distance metric. We do so by translating the current and goal
rope to have the same center of mass, and then measuring the average distance between
corresponding pearls. This metric is used only by the oracle (as reward), and to provide
a fast, automatic evaluation.

In our results, shown in Table 9, we first notice that pixel distance provides a reason-
ably good metric for the tasks. This is not all that surprising, since the simulated images
are clean, with a fixed background. As shown in the previous experiments, pixel dis-
tance does not provide a good metric when using real images with novel objects, so we
do not expect these results to transfer to real world settings. We also observe that FLO
performs substantially better than using a distance metric derived from the latent space
of an autoencoder, but does not reach the performance of the oracle distance metric. In
most tasks where the policy performed poorly using FLO, we observed that RL was able
to successfully optimize the objective, indicating that it was exploiting inaccuracies in
the classifier. Integrating frameworks for mining negatives and iteratively retraining the
objective is an interesting direction for future work. We show qualitative examples in

129

Figure 43.

8.2.7 Discussion

In this section, we proposed a framework for learning to learn task objectives from a
few examples of success, motivated by the challenge of specifying goals in real world
settings. We discussed how to derive a reward function from our inferred goal classifier,
and how our task goal classifiers can be combined for forming more complex, com-
pound goals. Finally, we showed how our framework for quickly inferring goals can
be combined with both reinforcement learning and planning for vision-based manipula-
tion skills such as maneuvering a rope into a given shape in simulation and rearranging
multiple previously-unseen objects in the real world.

130

9
C O N C L U S I O N

In this thesis, we considered the problem of learning to learn, aiming to find an effective
way to leverage prior experience for faster learning of new skills. To start, we formally
defined the meta-learning problem and outlined a few properties to consider when de-
veloping new methods and analyzing existing ones. We then proposed a model-agnostic
meta-learning algorithm, or MAML, that embeds gradient descent into the meta-learner,
aiming to find an initial representation such that one or a few gradient steps leads to
effective generalization. This meta-learner, by construction, will acquire consistent learn-
ing algorithms, and, with a sufficiently deep model, can scale to the full expressive power
of recurrent networks. We further develop PLATIPUS, a form of MAML that can reason
about ambiguity in few-shot learning.

After presenting the core MAML and PLATIPUS algorithms, we considered a number
of different extensions. First, we showed how tasks can be constructed using temporal
windows for enabling fast online adaptation in dynamic environments, using a meta-
model-based RL framework. Then, in the context of visual imitation, we presented an
approach for learning to learn from weakly-supervised and domain-shifted data, allow-
ing a robot to learn from a video of a human. Finally, we showed how we can use
meta-learning to infer goals and objectives underlying a few provided examples of be-
havior.

As is the case with many academic endeavors, the research presented here suggests
many more questions than answers. Below, we discuss some of these open questions and
future directions that we believe to be the most compelling.
Task Construction As discussed in Chapter 2, meta-learning assumes the ability to
sample from a pre-defined distribution of tasks. Such an assumption may seem innocu-
ous at first glance, but in practice, it requires for a great deal of human engineering.
Essentially, meta-learning shifts a burden from designing algorithms to designing tasks
and their corresponding objectives. Hence, a key question moving forward is, can we

131

also automate the process of task construction?
One promising direction, which is likely part of the solution, is to use the environment

to create different tasks. As explored in Chapter 6, perhaps the general notion of a task is
simply a temporal window, as the agent is naturally in different parts of the environment
at different times. With a sufficiently large and diverse environment, temporal tasks can
be constructed without much effort. Designing diverse environments in simulation, of
course, does not remove the engineering burden of task design. To get diversity truly for
free, one needs to consider the real world where such diversity already exists. The real
world is also dynamic as many agents are constantly making decisions that affect the
world and each other. Such multi-agent environments can likely also lead to interesting
tasks for meta-learning without substantial hand-engineering, as initially explored by Al-
Shedivat et al. (2018).

Beyond changes in and around the environment, a critical challenge is for agents to be
able to construct their own objectives in those environments. While changes in objective
can also be triggered by the environment or other agents, e.g. changing strategies in
response to another agent’s action in a game, our agents need to be able to create these
objectives autonomously based on their current surroundings. Initial work by Gupta et
al. (2018) suggests that meta-learning across a fixed set of random or unsupervised goals
performs surprisingly well. Though, ultimately, proposing goals needs to be a dynamic
process as new parts of the state space are discovered and as the agent becomes more
competent, likely in the form of a curricula. Interestingly, the process of constructing
such goals might look like a two-player game itself (Sukhbaatar et al., 2018), with one
player setting goals for the other.
Consistent and Universal Meta-Reinforcement Learning We showed how model-
agnostic meta-learning algorithms are both universal and consistent for few-shot super-
vised learning, unlike other meta-learning algorithms that exhibit one or the other prop-
erty. Hence, there lies an interesting open question: is it possible for a meta-reinforcement
learning algorithm to be both universal and be guaranteed to produce consistent learning
algorithms? Universality holds neither for the model-free reinforcement learning variant
of MAML presented in Section 4.2.2 nor the model-based variant presented in Chapter 6.
To see this for the model-free variant, consider a simple counterexample to universality:
if all of the K roll-outs have zero return, the policy gradient will be zero and, hence,
the updated policy will not depend on the states visited and actions taken regardless of
the initialization. A more expressive RL procedure would be able to change the policy
based on the states and actions even with zero return. In contrast, recurrent meta-RL
algorithms, e.g. those proposed by Wang and Hebert, 2016; Duan et al., 2016b, are uni-

132

versal, but do not produce consistent reinforcement learning procedures. Generally, the
space of meta-RL algorithms has been explored much less than that of meta-supervised
learning procedures, leaving significant room for future work.
Lifelong Meta-Learning Ultimately, we want systems that can build upon prior experi-
ence, not just to complete a range of new tasks, but to then incorporate those new tasks,
preparing for the next set of tasks. In such lifelong learning settings, meta-learning has
great potential for improving forward transfer to new tasks. That said, handling non-
stationary task distributions presents a major challenge, since data on previous tasks
may not be enough to prepare the model for new tasks. The results in Section 4.6.4
suggest that model-agnostic meta-learning algorithms are better equipped to address
non-stationarity that black-box meta-learners. But, how to perform continual learning to
learn remains an open question, one which we believe to be crucial for building agents
that effectively learn continually.

∗ ∗ ∗

With systems capable of building upon previous experiences rather than learning from
scratch, our agents will be more prepared to handle the diversity of the real world
and better equipped to improve themselves; we will be able to move away from end-
to-end training from scratch. Most importantly, we will be closer to developing agents
that exhibit the generality and flexibility of human intelligence, and perhaps closer to
understanding the nature of general intelligence itself.

133

Part IV

A P P E N D I C E S

A
M O D E L - A G N O S T I C M E TA - L E A R N I N G M E T H O D S

a.1 supplementary proofs for 1-shot universality

a.1.1 Proof of Lemma 4.4.1

While there are likely a number of ways to prove Lemma 4.4.1 (copied below for conve-
nience), here we provide a simple, though inefficient, proof of Lemma 4.4.1.

Lemma 4.4.1. Let us assume that e(y) can be chosen to be any linear (but not affine) function
of y. Then, we can choose θft, θh, {Ai; i > 1}, {Bi; i < N} such that the function

f̂(x?;φ) = hpost

(
−α

N∑
i=1

Aie(y)ki(x, x?); θh

)
(12)

can approximate any continuous function of (x, y, x?) on compact subsets of Rdim(y).1

To prove this lemma, we will proceed by showing that we can choose e, θft, and each
Ai and Bi such that the summation contains a complete description of the values of x,
x?, and y. Then, because hpost is a universal function approximator, f̂(x?,φ) will be able
to approximate any function of x, x?, and y.

Since A1 = I and BN = I, we will essentially ignore the first and last elements of the
sum by defining B1 := εI and AN := εI, where ε is a small positive constant to ensure
positive definiteness. Then, we can rewrite the summation, omitting the first and last
terms:

f̂(x?;φ) ≈ hpost

(
−α

N−1∑
i=2

Aie(y)ki(x, x?); θh

)

1 The assumption with regard to compact subsets of the output space is inherited from the UFA theorem.

135

Next, we will re-index using two indexing variables, j and l, where j will index over the
discretization of x and l over the discretization of x?.

f̂(x?;φ) ≈ hpost

−α

J−1∑
j=0

L−1∑
l=0

Ajle(y)kjl(x, x?); θh

Next, we will define our chosen form of kjl in Equation 30. We show how to acquire

this form in the next section.

Lemma A.1.1. We can choose θft and each Bjl such that

kjl(x, x?) :=

1 if discr(x) = ej and discr(x?) = el

0 otherwise
(30)

where discr(·) denotes a function that produces a one-hot discretization of its input and e denotes
the 0-indexed standard basis vector.

Now that we have defined the function kjl, we will next define the other terms in
the sum. Our goal is for the summation to contain complete information about (x, x?, y).
To do so, we will chose e(y) to be the linear function that outputs J ∗ L stacked copies
of y. Then, we will define Ajl to be a matrix that selects the copy of y in the position
corresponding to (j, l), i.e. in the position j+ J ∗ l. This can be achieved using a diagonal
Ajl matrix with diagonal values of 1+ ε at the positions corresponding to the kth vector,
and ε elsewhere, where k = (j+ J ∗ l) and ε is used to ensure that Ajl is positive definite.

As a result, the post-update function is as follows:

f̂(x?;φ) ≈ hpost (−αv(x, x?, y); θh) , where v(x, x?, y) ≈

0
...
0
y
0
...
0

,

where y is at the position j+ J ∗ l within the vector v(x, x?, y), where j satisfies discr(x) =
ej and where l satisfies discr(x?) = el. Note that the vector −αv(x, x?, y) is a complete

136

description of (x, x?, y) in that x, x?, and y can be decoded from it. Therefore, since hpost
is a universal function approximator and because its input contains all of the informa-
tion of (x, x?, y), the function f̂(x?;φ) ≈ hpost (−αv(x, x?, y); θh) is a universal function
approximator with respect to its inputs (x, x?, y).

a.1.2 Proof of Lemma A.1.1

In this section, we show one way of proving Lemma A.1.1:

Lemma A.1.1. We can choose θft and each Bjl such that

kjl(x, x?) :=

1 if discr(x) = ej and discr(x?) = el

0 otherwise
(30)

where discr(·) denotes a function that produces a one-hot discretization of its input and e denotes
the 0-indexed standard basis vector.

Recall that kjl(x, x?) is defined as φ̃(x; θft, θb)TBTjlBjlφ̃(x
?; θft,φb), where θb = 0. Since

the gradient with respect to θb can be chosen to be any linear function of the label y (see
Section 4.4.3), we can assume without loss of generality that φb 6= 0.

We will choose φ̃ and Bjl as follows:

φ̃(·; θft, θb) :=

 discr(·)
0

 if θb = 0 0

discr(·)

 otherwise

Bjl =

[
Ejj Ejl

Elj 0

]
+ εI

where we use Eik to denote the matrix with a 1 at (i, k) and 0 elsewhere, and εI is added
to ensure the positive definiteness of Bjl as required in the construction.

Using the above definitions, we can see that:

φ̃(x; θft, 0)TBTjl ≈

 ej

0

Tif discr(x)=ej 0

0

Totherwise

Bjlφ̃(x?; θft,φb) ≈

 ej

0

 if discr(x?)=el 0

0

 otherwise

137

Thus, we have proved the lemma, showing that we can choose a φ̃ and each Bjl such
that:

kjl(x, x?) ≈

[

ej 0
] ej

0

 = 1 if discr(x) = ej and discr(x?) = el

0 otherwise

a.1.3 Form of linear weight matrices

The goal of this section is to show that we can choose a form of W̃, W, and w̌ such that
we can simplify the form of z? in Equation 6 into the following:

z? = −α

N∑
i=1

Aie(y)φ̃(x; θft, θb)TBTi Biφ̃(x
?; θft,φb), (31)

where A1 = I, Ai =Mi−1M
T
i−1 for i > 1, Bi = M̃i+1 for i < N and BN = I.

Recall that we decomposed Wi, φ, and the error gradient into three parts, as follows:

Wi :=

 W̃i 0 0

0 Wi 0

0 0 w̌i

 φ(·; θft, θb) :=

φ̃(·; θft, θb)
0
θb

 ∇z`(y, f̂(x; θ)) :=

 0
e(y)
ě(y)

(32)

where the initial value of θb will be 0. The top components, W̃i and φ̃, have equal
dimensions, as do the middle components,Wi and 0. The bottom components are scalars.
As a result, we can see that z will likewise be made up of three components, which we
will denote as z̃, z, and ž, where, before the gradient update, z̃ =

∏N
i=1 W̃iφ̃(x; θft), z = 0,

and ž = 0. Lastly, we construct the top component of the error gradient to be 0, whereas
the middle and bottom components, e(y) and ě(y), can be set to be any linear (but not
affine) function of y.

Using the above definitions and noting that φft = θft − α∇θft` = θft, we can simplify
the form of z? in Equation 6, such that the middle component, z?, is the following:

z? = −α

N∑
i=1

 i−1∏
j=1

Wj

 i−1∏
j=1

Wj

Te(y)φ̃(x; θft, θb)T

 N∏
j=i+1

W̃j

T N∏
j=i+1

W̃j

 φ̃(x?; θft,φb)

138

We aim to independently control the backward information flow from the gradient e and
the forward information flow from φ̃. Thus, choosing all W̃i and Wi to be square and
full rank, we will set

W̃i = M̃iM̃
−1
i+1 Wi =M

−1
i−1Mi,

so that we have
N∏

j=i+1

W̃j = M̃i+1

i−1∏
j=1

Wj =Mi−1,

for i ∈ {1...N} where M̃N+1 = I and M0 = I. Then we can again simplify the form of z?:

z? = −α

N∑
i=1

Aie(y)φ̃(x; θft, θb)TBTi Biφ̃(x
?; θft,φb), (33)

where A1 = I, Ai =Mi−1M
T
i−1 for i > 1, Bi = M̃i+1 for i < N and BN = I.

a.1.4 Output function

In this section, we will derive the post-update version of the output function fout(·; θout).
Recall that fout is defined as a neural network that approximates the following multi-
plexer function and its derivatives (as shown possible by Hornik et al., 1990):

fout

 z̃

z
ž

 ; θout

 = 1(z = 0)gpre

 z̃

z
ž

 ; θg

+ 1(z 6= 0)hpost(z; θh). (34)

The parameters {θg, θh} are a part of θout, in addition to the parameters required to
estimate the indicator functions and their corresponding products. Since z = 0 and
hpost(z) = 0 when the gradient step is taken, we can see that the error gradients with
respect to the parameters in the last term in Equation 34 will be approximately zero.
Furthermore, as seen in the definition of gpre in Section 4.4.3, the value of gpre(z, θg) is
also zero, resulting in a gradient of approximately zero for the first indicator function.2

2 To guarantee that g and h are zero when evaluated at x, we make the assumption that gpre and hpost are
neural networks with no biases and nonlinearity functions that output zero when evaluated at zero.

139

The post-update value of fout is therefore:

fout

 z̃?

z?

ž?

 ;φout

 ≈ 1(z? = 0)gpre

 z̃?

z?

ž?

 ;φg

+ 1(z? 6= 0)hpost(z?; θh) (35)

= hpost(z?; θh) (36)

as long as z? 6= 0. In Appendix A.1.1, we can see that z? is indeed not equal to zero.

a.2 full k-shot proof of universality

In this appendix, we provide a full proof of the universality of gradient-based meta-
learning in the general case with K > 1 datapoints. This proof will share a lot of content
from the proof in the 1-shot setting, but we include it for completeness.

We aim to show that a deep representation combined with one step of gradient descent
can approximate any permutation invariant function of a dataset and test datapoint
({(x, y)i; i ∈ 1...K}, x?) for K > 1. Note that K does not need to be small.

We will proceed by construction, showing that there exists a neural network func-
tion f̂(·; θ) such that f̂(·;φ) approximates ftarget({(x, y)k}, x?) up to arbitrary precision,
where φ = θ−α 1K

∑K
k=1∇θ`(yk, f(xk; θ))) and α is the learning rate. As we discuss in

Section 4.4.3, the loss function ` cannot be any loss function, but the standard cross-
entropy and mean-squared error objectives are both suitable. In this proof, we will start
by presenting the form of f̂ and deriving its value after one gradient step. Then, to show
universality, we will construct a setting of the weight matrices that enables independent
control of the information flow coming forward from the inputs {xk} and x?, and back-
ward from the labels {yk}.

We will start by constructing f̂. With the same motivation as in Section 4.4.1, we will
construct f̂(·; θ) as the following:

f̂(·; θ) = fout

((
N∏
i=1

Wi

)
φ(·; θft, θb); θout

)
.

φ(·; θft, θb) represents an input feature extractor with parameters θft and a scalar
bias transformation variable θb,

∏N
i=1Wi is a product of square linear weight matri-

ces, fout(·, θout) is a readout function at the output, and the learned parameters are
θ := {θft, θb, {Wi}, θout}. The input feature extractor and readout function can be repre-
sented with fully connected neural networks with one or more hidden layers, which we

140

know are universal function approximators, while
∏N
i=1Wi corresponds to a set of linear

layers. Note that deep ReLU networks act like deep linear networks when the input and
pre-synaptic activations are non-negative. We will later show that this is indeed the case
within these linear layers, meaning that the neural network function f̂ is fully generic
and can be represented by deep ReLU networks, as visualized in Figure 2.

Next, we will derive the form of the model prediction after one gradient update
f̂(x?;φ). Let zk =

(∏N
i=1Wi

)
φ(xk) and we denote its gradient with respect to the loss as

∇zk` = e(xk, yk). The gradient with respect to any of the weight matrices Wi for a single
datapoint (x, y) is given by

∇Wi`(y, f̂(xk, θ)) =

 i−1∏
j=1

Wj

T e(x, y)φ(x; θft, θb)T

 N∏
j=i+1

Wj

T .

Therefore, the post-update value of
∏N
i=1W

′
i =

∏N
i=1(Wi −α

1
K

∑
k∇Wi) is given by

N∏
i=1

Wi−
α

K

K∑
k=1

N∑
i=1

 i−1∏
j=1

Wj

 i−1∏
j=1

Wj

Te(xk, yk)φ(xk; θft, θb)T

 N∏
j=i+1

Wj

T N∏
j=i+1

Wj

−O(α2),

where we move the summation over k to the left and where we will disregard the last
term, assuming that α is comparatively small such that α2 and all higher order terms
vanish. In general, these terms do not necessarily need to vanish, and likely would fur-
ther improve the expressiveness of the gradient update, but we disregard them here for
the sake of the simplicity of the derivation. Ignoring these terms, we now note that the
post-update value of z? when x? is provided as input into f̂(·;φ) is given by

z? =
N∏
i=1

Wiφ(x?;φft,φb) (37)

−
α

K

K∑
k=1

N∑
i=1

 i−1∏
j=1

Wj

 i−1∏
j=1

Wj

Te(xk, yk)φ(xk; θft, θb)T

 N∏
j=i+1

Wj

T N∏
j=i+1

Wj

φ(x?;φft,φb),

and f̂(x?;φ) = fout(z?;φout).
Our goal is to show that that there exists a setting ofWi, fout, and φ for which the above

function, f̂(x?,φ), can approximate any function of ({(x, y)k}, x?). To show universality,
we will aim independently control information flow from {xk}, from {yk}, and from x? by

141

multiplexing forward information from {xk} and x? and backward information from {yk}.
We will achieve this by decomposing Wi, φ, and the error gradient into three parts, as
follows:

Wi :=

 W̃i 0 0

0 Wi 0

0 0 w̌i

 φ(·; θft, θb) :=

φ̃(·; θft, θb)
0
θb

 ∇zk`(yk, f̂(xk; θ)) :=

 0
e(yk)
ě(yk)

(38)

where the initial value of θb will be 0. The top components all have equal numbers of
rows, as do the middle components. As a result, we can see that zk will likewise be made
up of three components, which we will denote as z̃k, zk, and žk. Lastly, we construct the
top component of the error gradient to be 0, whereas the middle and bottom components,
e(yk) and ě(yk), can be set to be any linear (but not affine) function of yk. We discuss
how to achieve this gradient in the latter part of this section when we define fout and in
Section 4.4.3.

In Appendix A.1.3, we show that we can choose a particular form of W̃i, Wi, and
w̌i that will simplify the products of Wj matrices in Equation 37, such that we get the
following form for z?:

z? = −α
1

K

K∑
k=1

N∑
i=1

Aie(yk)φ̃(xk; θft, θb)TBTi Biφ̃(x
?; θft,φb), (39)

where A1 = I, BN = I, Ai can be chosen to be any symmetric positive-definite matrix,
and Bi can be chosen to be any positive definite matrix. In Appendix A.4, we will further
show that these definitions of the weight matrices satisfy the condition that their activa-
tions are non-negative, meaning that the model f̂ can be represented by a generic deep
network with ReLU nonlinearities.

Finally, we need to define the function fout at the output. When a training input xk
is passed in, we need fout to propagate information about its corresponding label yk
as defined in Equation 38. And, when the test input x? is passed in, we need a func-
tion defined on z?. Thus, we will define fout as a neural network that approximates the
following multiplexer function and its derivatives (as shown possible by Hornik et al.,
1990):

fout

 z̃

z
ž

 ; θout

 = 1(z = 0)gpre

 z̃

z
ž

 ; θg

+ 1(z 6= 0)hpost(z; θh), (40)

142

where gpre is a linear function with parameters θg such that ∇z` = e(y) satisfies Equa-
tion 38 (see Section 4.4.3) and hpost(·; θh) is a neural network with one or more hidden
layers. As shown in Appendix A.1.4, the post-update value of fout is

fout

 z̃?

z?

ž?

 ;φout

 = hpost(z?; θh). (41)

Now, combining Equations 39 and 41, we can see that the post-update value is the
following:

f̂(x?;φ) = hpost

(
−α

1

K

K∑
k=1

N∑
i=1

Aie(yk)φ̃(xk; θft, θb)TBTi Biφ̃(x
?; θft,φb); θh

)
(42)

In summary, so far, we have chosen a particular form of weight matrices, feature ex-
tractor, and output function to decouple forward and backward information flow and
recover the post-update function above. Now, our goal is to show that the above function
f̂(x?;φ) is a universal learning algorithm approximator, as a function of ({(x, y)k}, x?). For
notational clarity, we will use use ki(xk, x?) := φ̃(xk; θft, θb)TBTi Biφ̃(x

?; θft,φb) to denote
the inner product in the above equation, noting that it can be viewed as a type of kernel
with the RKHS defined by Biφ̃(x; θft, θb).3 The connection to kernels is not in fact needed
for the proof, but provides for convenient notation and an interesting observation. We
can now simplify the form of f̂(x?,φ) as the following equation:

f̂(x?;φ) = hpost

(
−α

1

K

N∑
i=1

K∑
k=1

Aie(yk)ki(xk, x?); θh

)
(43)

Intuitively, Equation 43 can be viewed as a sum of basis vectors Aie(yk) weighted by
ki(xk, x?), which is passed into hpost to produce the output. In Appendix A.3, we show
that we can choose e, θft, θh, each Ai, and each Bi such that Equation 43 can approximate
any continuous function of ({(x, y)k}, x?) on compact subsets of Rdim(y). As in the one-
shot setting, the bias transformation variable θb plays a vital role in our construction,
as it breaks the symmetry within ki(x, x?). Without such asymmetry, it would not be
possible for our constructed function to represent any function of x and x? after one
gradient step.

In conclusion, we have shown that there exists a neural network structure for which
f̂(x?;φ) is a universal approximator of ftarget({(x, y)k}, x?).

3 Due to the symmetry of kernels, this requires interpreting θb as part of the input, rather than a kernel
hyperparameter, so that the left input is (xk, θb) and the right one is (x?,φb).

143

a.3 supplementary proof for k-shot universality

In Section 4.4.2 and Appendix A.2, we showed that the post-update function f̂(x?;φ)
takes the following form:

f̂(x?;φ) = hpost

(
−α

1

K

N∑
i=1

K∑
k=1

Aie(yk)ki(xk, x?); θh

)

In this section, we aim to show that the above form of f̂(x?;φ) can approximate any
function of {(x, y)k;k ∈ 1...K} and x? that is invariant to the ordering of the training
datapoints {(x, y)k;k ∈ 1...K}. The proof will be very similar to the one-shot setting proof
in Appendix A.1.1

Similar to Appendix A.1.1, we will ignore the first and last elements of the sum by
defining B1 to be εI and AN to be εI, where ε is a small positive constant to ensure
positive definiteness. We will then re-index the first summation over i = 2...N − 1 to
instead use two indexing variables j and l as follows:

f̂(x?;φ) ≈ hpost

−α
1

K

J−1∑
j=0

L−1∑
l=0

K∑
k=1

Ajle(yk)kjl(xk, x?); θh

As in Appendix A.1.1, we will define the function kjl to be an indicator function over

the values of xk and x?. In particular, we will reuse Lemma A.1.1, which was proved in
Appendix A.1.2 and is copied below:

Lemma A.1.1. We can choose θft and each Bjl such that

kjl(x, x?) :=

1 if discr(x) = ej and discr(x?) = el

0 otherwise
(30)

where discr(·) denotes a function that produces a one-hot discretization of its input and e denotes
the 0-indexed standard basis vector.

Likewise, we will chose e(yk) to be the linear function that outputs J ∗L stacked copies
of yk. Then, we will define Ajl to be a matrix that selects the copy of yk in the position
corresponding to (j, l), i.e. in the position j+ J ∗ l. This can be achieved using a diagonal
Ajl matrix with diagonal values of 1+ ε at the positions corresponding to the nth vector,
and ε elsewhere, where n = (j+ J ∗ l) and ε is used to ensure that Ajl is positive definite.

144

As a result, the post-update function is as follows:

f̂(x?;φ) ≈ hpost

(
−α

1

K

K∑
k=1

v(xk, x?, yk); θh

)
, where v(x, x?, y) ≈

0
...
0

yk
0
...
0

,

where yk is at the position j + J ∗ l within the vector v(xk, x?, yk), where j satisfies
discr(xk) = ej and where l satisfies discr(x?k) = el.

For discrete, one-shot labels yk, the summation over v amounts to frequency counts of
the triplets (xk, x?, yk). In the setting with continuous labels, we cannot attain frequency
counts, as we do not have access to a discretized version of the label. Thus, we must make
the assumption that no two datapoints share the same input value xk. With this assump-
tion, the summation over v will contain the output values yk ′ at the index corresponding
to the value of (xk ′ , x?). For both discrete and continuous labels, this representation is
redundant in x?, but nonetheless contains sufficient information to decode the test input
x? and set of datapoints {(x, y)k} (but not the order of datapoints).

Since hpost is a universal function approximator and because its input contains all of

the information of ({(x, y)k}, x?), the function f̂(x?;φ) ≈ hpost

(
−α 1K

∑K
k=1 v(xk, x?, yk); θh

)
is a universal function approximator with respect to {(x, y)k} and x?.

a.4 universality with deep relu networks

In this appendix, we show that the network architecture with linear layers analyzed in
the Sections 4.4.1 and 4.4.2 can be represented by a deep network with ReLU nonlineari-
ties. We will do so by showing that the input and activations within the linear layers are
all non-negative.

First, consider the input φ(·; θft, θb) and φ̃(·;φft,φb). The input φ̃(·; θft, θb) is defined
to consist of three terms. The top term, ˜̃φ is defined in Appendices A.1.2 and A.3 to be a
discretization (which is non-negative) both before and after the parameters are updated.
The middle term is defined to be a constant 0. The bottom term, θb, is defined to be 0
before the gradient update and is not used afterward.

145

Next, consider the weight matrices, Wi. To determine that the activations are non-
negative, it is now sufficient to show that the products WN, WN−1WN, ...,

∏N
i=1Wi are

positive semi-definite. To do so, we need to show that the products
∏N
i=j W̃i,

∏N
i=jWi,

and
∏N
i=j w̌i are PSD for j = 1, ...,N. In Appendix A.1.2, each Bi = M̃i+1 is defined to

be positive definite; and in Appendix A.1.3, we define the products
∏N
i=j+1 W̃i = M̃j + 1.

Thus, the conditions on the products of W̃i are satisfied. In Appendices A.1.1 and A.3,
each Ai are defined to be symmetric positive definite matrices. In Appendix A.1.3, we
define Wi =M

−1
i−1Mi where Ai =Mi−1M

T
i−1. Thus, we can see that each Mi is also sym-

metric positive definite, and therefore, each Wi is positive definite. Finally, the purpose
of the weights w̌i is to provide nonzero gradients to the input θb, thus a positive value
for each w̌i will suffice.

a.5 proof of theorem4 .4 .1

Here we provide a proof of Theorem 4.4.1, copied below:

Theorem 4.4.1. The gradient of the standard mean-squared error objective evaluated at ŷ = 0 is
a linear, invertible function of y.

For the standard mean-squared error objective, `(y, ŷ) = 1
2‖y − ŷ‖2, the gradient is

∇ŷ`(y, 0) = −y, which satisfies the requirement, as A = −I is invertible.

a.6 proof of theorem4 .4 .2

Here we provide a proof of Theorem 4.4.2, copied below:

Theorem 4.4.2. The gradient of the softmax cross entropy loss with respect to the pre-softmax
logits is a linear, invertible function of y, when evaluated at 0.

For the standard softmax cross-entropy loss function with discrete, one-hot labels y,
the gradient is ∇ŷ`(y, 0) = c− y where c is a constant vector of value c and where we are
denoting ŷ as the pre-softmax logits. Since y is a one-hot representation, we can rewrite
the gradient as ∇ŷ`(y, 0) = (C− I)y, where C is a constant matrix with value c. Since
A = C− I is invertible, the cross entropy loss also satisfies the above requirement. Thus,
we have shown that both of the standard supervised objectives of mean-squared error
and cross-entropy allow for the universality of gradient-based meta-learning.

146

a.7 maml experimental details

In this section, we provide additional details of the experimental set-up and hyperpa-
rameters for the experiments in Section 4.6.

a.7.1 Classification

For N-way, K-shot classification, each gradient is computed using a batch size of NK
examples. For Omniglot, the 5-way convolutional and non-convolutional MAML models
were each trained with 1 gradient step with step size α = 0.4 and a meta batch-size of 32
tasks. The network was evaluated using 3 gradient steps with the same step size α = 0.4.
The 20-way convolutional MAML model was trained and evaluated with 5 gradient
steps with step size α = 0.1. During training, the meta batch-size was set to 16 tasks. For
MiniImagenet, both models were trained using 5 gradient steps of size α = 0.01, and
evaluated using 10 gradient steps at test time. Following Ravi and Larochelle (2017), 15
examples per class were used for evaluating the post-update meta-gradient. We used a
meta batch-size of 4 and 2 tasks for 1-shot and 5-shot training respectively. All models
were trained for 60000 iterations on a single NVIDIA Pascal Titan X GPU.

a.7.2 Reinforcement Learning

In all reinforcement learning experiments, the MAML policy was trained using a single
gradient step with α = 0.1. During evaluation, we found that halving the learning rate
after the first gradient step produced superior performance. Thus, the step size during
adaptation was set to α = 0.1 for the first step, and α = 0.05 for all future steps. The
step sizes for the baseline methods were manually tuned for each domain. In the 2D
navigation, we used a meta batch size of 20; in the locomotion problems, we used a meta
batch size of 40 tasks. The MAML models were trained for up to 500 meta-iterations,
and the model with the best average return during training was used for evaluation. For
the ant goal velocity task, we added a positive reward bonus at each timestep to prevent
the ant from ending the episode.

a.7.3 Inductive Bias Experiments

For Omniglot, all meta-learning methods were trained using code provided by the au-
thors of the respective papers, using the default model architectures and hyperparame-

147

ters. The model embedding architecture was the same across all methods, using 4 convo-
lutional layers with 3× 3 kernels, 64 filters, stride 2, batch normalization, and ReLU non-
linearities. The convolutional layers were followed by a single linear layer. All methods
used the Adam optimizer with default hyperparameters. Other hyperparameter choices
were specific to the algorithm and can be found in the respective papers. For MAML in
the sinusoid domain, we used a fully-connected network with two hidden layers of size
100, ReLU nonlinearities, and a bias transformation variable of size 10 concatenated to
the input. This model was trained for 70,000 meta-iterations with 5 inner gradient steps
of size α = 0.001. For SNAIL in the sinusoid domain, the model consisted of 2 blocks
of the following: 4 dilated convolutions with 2 × 1 kernels 16 channels, and dilation
size of 1,2,4, and 8 respectively, then an attention block with key/value dimensionality
of 8. The final layer is a 1× 1 convolution to the output. Like MAML, this model was
trained to convergence for 70,000 iterations using Adam with default hyperparameters.
We evaluated the MAML and SNAIL models for 1200 trials, reporting the mean and 95%
confidence intervals. For computational reasons, we evaluated the MetaNet model using
600 trials, also reporting the mean and 95% confidence intervals.

Following prior work (Santoro et al., 2016), we downsampled the Omniglot images
to be 28× 28. When scaling or shearing the digits to produce out-of-domain data, we
transformed the original 105× 105 Omniglot images, and then downsampled to 28× 28.

a.7.4 Depth Experiments

In the depth comparison, all models were trained to convergence using 70,000 itera-
tions. Each model was defined to have a fixed number of hidden units based on the
total number of parameters (fixed at around 40,000) and the number of hidden layers.
Thus, the models with 2, 3, 4, and 5 hidden layers had 200, 141, 115, and 100 units per
layer respectively. For the model with 1 hidden layer, we found that using more than
20, 000 hidden units, corresponding to 40, 000 parameters, resulted in poor performance.
Thus, the results reported in the paper used a model with 1 hidden layer with 250 units
which performed much better. We trained each model three times and report the mean
and standard deviation of the three runs. The performance of an individual run was
computed using the average over

148

Figure 45: Quantitative sinusoid regression results showing test-time learning curves with vary-
ing numbers of K test-time samples. Each gradient step is computed using the same
K examples. Note that MAML continues to improve with additional gradient steps
without overfitting to the extremely small dataset during meta-testing, and achieves a
loss that is substantially lower than the baseline fine-tuning approach.

a.8 maml additional sinusoid results

In Figure 45, we show the full quantitative results of the MAML model trained on 10-
shot learning and evaluated on 5-shot, 10-shot, and 20-shot. In Figure 46, we show the
qualitative performance of MAML and the pretrained baseline on randomly sampled
sinusoids.

a.9 maml additional comparisons

In this section, we include more thorough evaluations of our approach, including ad-
ditional multi-task baselines and a comparison representative of the approach of Rei
(2015).

a.9.1 Multi-task baselines

The pretraining baseline in the main text trained a single network on all tasks, which
we referred to as “pretraining on all tasks”. To evaluate the model, as with MAML, we
fine-tuned this model on each test task using K examples. In the domains that we study,
different tasks involve different output values for the same input. As a result, by pre-
training on all tasks, the model would learn to output the average output for a particular
input value. In some instances, this model may learn very little about the actual domain,
and instead learn about the range of the output space.

We experimented with a multi-task method to provide a point of comparison, where

149

Figure 46: A random sample of qualitative results from the sinusoid regression task.

150

Table 10: Additional multi-task baselines on the sinusoid regression domain, showing 5-shot
mean squared error. The results suggest that MAML is learning a solution more so-
phisticated than the mean optimal parameter vector.

num. grad steps 1 5 10

multi-task, no reg 4.19 3.85 3.69

multi-task, l2 reg 7.18 5.69 5.60

multi-task, reg to mean θ 2.91 2.72 2.71

pretrain on all tasks 2.41 2.23 2.19

MAML (ours) 0.67 0.38 0.35

instead of averaging in the output space, we averaged in the parameter space. To achieve
averaging in parameter space, we sequentially trained 500 separate models on 500 tasks
drawn from p(T). Each model was initialized randomly and trained on a large amount
of data from its assigned task. We then took the average parameter vector across models
and fine-tuned on 5 datapoints with a tuned step size. All of our experiments for this
method were on the sinusoid task because of computational requirements. The error of
the individual regressors was low: less than 0.02 on their respective sine waves.

We tried three variants of this set-up. During training of the individual regressors,
we tried using one of the following: no regularization, standard `2 weight decay, and `2
weight regularization to the mean parameter vector thus far of the trained regressors.
The latter two variants encourage the individual models to find parsimonious solutions.
When using regularization, we set the magnitude of the regularization to be as high
as possible without significantly deterring performance. In our results, we refer to this
approach as “multi-task”. As seen in the results in Table 10, we find averaging in the
parameter space (multi-task) performed worse than averaging in the output space (pre-
training on all tasks). This suggests that it is difficult to find parsimonious solutions to
multiple tasks when training on tasks separately, and that MAML is learning a solution
that is more sophisticated than the mean optimal parameter vector.

151

Table 11: 5-way Omniglot Classification

1-shot 5-shot

context vector 94.9± 0.9% 97.7± 0.3%
MAML 98.7± 0.4% 99.9± 0.1%

Table 12: 2D Pointmass, average return

num. grad steps 0 1 2 3

context vector −42.42 −13.90 −5.17 −3.18

MAML (ours) −40.41 −11.68 −3.33 −3.23

a.9.2 Context vector adaptation

Rei (2015) developed a method which learns a context vector that can be adapted online,
with an application to recurrent language models. The parameters in this context vector
are learned and adapted in the same way as the parameters in the MAML model. To
provide a comparison to using such a context vector for meta-learning problems, we
concatenated a set of free parameters z to the input x, and only allowed the gradient steps
to modify z, rather than modifying the model parameters θ, as in MAML. For image
inputs, z was concatenated channel-wise with the input image. We ran this method on
Omniglot and two RL domains following the same experimental protocol. We report the
results in Tables 11, 12, and 13. Learning an adaptable context vector performed well on
the toy pointmass problem, but sub-par on more difficult problems, likely due to a less
flexible meta-optimization.

Table 13: Half-cheetah forward/backward, average return

num. grad steps 0 1 2 3

context vector −40.49 −44.08 −38.27 −42.50

MAML (ours) −50.69 293.19 313.48 315.65

152

a.10 ambiguous celeba details

To construct our ambiguous few-shot variant of CelebA, we take the entire base set
of attributes holding out 10 attributes for testing. We consider every combination of 2

attributes, discarding those with insufficient numbers of examples. This leave us with a
total of 387 training tasks and 43 testing attributes. We partition our meta-training set
and meta-validation set to 337/50 respectively.

During meta-training, we sample 2 random attributes to construct a positive class and
randomly sample examples with neither attribute as negative examples. During testing
of our approach, we sample 3 attributes from the test set, and sample the 3 corresponding
2-tuples to form the test task.

The training attributes are:
5 o’clock Shadow, Arched Eyebrows, Attractive, Bags Under Eyes, Bald, Bangs, Big Lips, Big Nose,
Black Hair, Blond Hair, Blurry, Brown Hair, Bushy Eyebrows, Chubby, Double Chin, Eyeglasses,
Goatee, Gray Hair, Heavy Makeup, High Cheekbones, Male, Mouth Slightly Open, Mustache,
Narrow Eyes, No Beard, Oval Face, Pale Skin, Pointy Nose, Receding Hairline, Rosy Cheeks

The full testing attributes are:
Sideburns, Smiling, Straight Hair, Wavy Hair, Wearing Earrings, Wearing Hat, Wearing Lipstick,
Wearing Necklace, Wearing Necktie, Young.

a.11 platipus experimental details

In the illustrative experiments, we use a fully connected network with 3 ReLU layers of
size 100. Following Finn et al. (2017b), we additionally use a bias transformation variable
(described in Section 7.1.4), concatenated to the input, with size 20. Both methods use
5 inner gradient steps on Dtr with step size α = 0.001 for regression and α = 0.01 for
classification. The inference network and prior for PLATIPUS both use one gradient step.
For PLATIPUS, we weight the KL term in the objective by 0.1 for 1D regression and 0.01
for 2D classification.

For CelebA, we adapt the base convolutional architecture described in Section 4.6. Our
approximate posterior and prior have dimensionality matching the underlying model.
We tune our approach over the inner learning rate α, a weight on the DKL, the scale of
the initialization of µθ,σ2θ, vq,γp,γq, with early stopping on the validation set.

At meta-test time, we evaluate our approach by taking 10 samples from the prior
before determining the assignments. The assignments are made based on the complete
likelihood of the testing examples (including the negatives).

153

MiniImagenet 5-way, 1-shot Accuracy

MAML (Finn et al., 2017a) 48.70± 1.84%
LLAMA (Grant et al., 2018) 49.40± 1.83%
Reptile (Nichol and Schulman, 2018) 49.97± 0.32%

PLATIPUS (ours) 50.13± 1.86%

Meta-SGD (Z. Li et al., 2017) 50.71± 1.87%

matching nets (Vinyals et al., 2016) 43.56± 0.84%
meta-learner LSTM (Ravi and Larochelle, 2017) 43.44± 0.77%
SNAIL (Mishra et al., 2018)* 45.10± 0.00%
prototypical networks (Snell et al., 2017) 46.61± 0.78%
mAP-DLM (Snell et al., 2017) 49.82± 0.78%
GNN (Garcia and Bruna, 2017) 50.33± 0.36%

Relation Net (Sung et al., 2017) 50.44± 0.82%

Table 14: Comparison between our approach and prior MAML-based methods (top), and other
prior few-shot learning techniques on the 5-way, 1-shot MiniImagenet benchmark. Our
approach gives a small boost over MAML, and is comparable to other approaches. We
bold the approaches that are above the highest confidence interval lower-bound. *Accu-
racy using comparable network architecture.

a.12 platipus miniimagenet comparison

We provide an additional comparison on the MiniImagenet dataset. Since this bench-
mark does not contain a large amount of ambiguity, we do not aim to show state-of-
the-art performance. Instead, our goal with this experiment is to compare our approach
on to MAML and prior methods that build upon MAML on this standard benchmark.
Since our goal is to compare algorithms, rather than achieving maximal performance, we
decouple the effect of the meta-learning algorithm and the architecture used by using
the standard 4-block convolutional architecture used by Vinyals et al. (2016), Ravi and
Larochelle (2017), and Finn et al. (2017a) and others. We note that better performance can
likely be achieved by tuning the architecture. The results, in Table 14 indicate that our
method slightly outperforms MAML and achieves comparable performance to a number
of other prior methods.

154

B
E X T E N S I O N S T O C O N T R O L

b.1 online adaptation : additional experiments and experimental de-
tails

b.1.1 Model Prediction Errors: Pre-update vs. Post-update

In this section, we show the effect of adaptation in the case of GBAC. In particular, we
show the histogram of the K step normalized error, as well as the per-timestep visualiza-
tion of this error during a trajectory. Across all tasks and environments, the post-updated
model p̂φ∗ achieves lower prediction error than the pre-updated model p̂θ∗ .

155

Figure 47: Histogram of the K step normalized error across different tasks. GBAC accomplishes
lower model error when using the parameters given by the update rule.

Figure 48: At each time-step we show the K step normalized error across different tasks. GBAC
accomplishes lower model error using the parameters given by the update rule.

156

Figure 49: Effect of the meta-training distribution on test performance

b.1.2 Effect of Meta-Training Distribution

To see how training distribution affects test performance, we ran an experiment that used
GBAC to train models of the 7-DOF arm, where each model was trained on the same
number of datapoints during meta-training, but those datapoints came from different
ranges of force perturbations. We observe (in the plot below) that

1. Seeing more during training is helpful during testing — a model that saw a large
range of force perturbations during training performed the best

2. A model that saw no perturbation forces during training did the worst
3. The middle 3 models show comparable performance in the "constant force = 4" case,

which is an out-of-distribution task for those models. Thus, there is not actually a strong
restriction on what needs to be seen during training in order for adaptation to occur at
train time (though there is a general trend that more is better)

157

b.1.3 Learning Curves

Figure 50: Learning curves of the different agents

b.1.4 Reward functions

For each MuJoCo agent, the same reward function is used across its various tasks. Ta-
ble 15 shows the reward functions used for each agent. We denote by xt the x-coordinate
of the agent at time t, eet refers to the position of the end-effector of the 7-DoF arm, and
g corresponds to the position of the desired goal.

Table 15: Reward functions

Reward function

Half-cheetah xt+1−xt
0.01 − 0.05‖at‖22

Ant xt+1−xt
0.0e − 0.005‖at‖22 + 0.05

7-DoF Arm −‖eet −g‖22

158

b.1.5 Hyperparameters

Below, we list the hyperparameters of our experiments. In all experiments we used a
single gradient step for the update rule of GBAC. The learning rate (LR) of TRPO cor-
responds to the Kullback–Leibler divergence constraint. # Task/itr corresponds to the
number of tasks sampled for collecting data to train the model or model, whereas #
TS/itr is the total number of times steps collected (for all tasks). Finally, T refers to the
horizon of the task.

Table 16: Hyperparameters for the half-cheetah tasks

LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T nA Train H Train nA Test H Test

GBAC 0.001 0.01 50 32 32 500 32 64000 1000 1000 10 2500 15

RBAC 0.001 - 50 32 32 500 32 64000 1000 1000 10 2500 15

MB 0.001 - 50 - - 500 64 64000 1000 1000 10 2500 15

TRPO 0.05 - - - - 50000 50 50000 1000 - - - -

Table 17: Hyperparameters for the ant tasks

LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T nA Train H Train nA Test H Test

GBAC 0.001 0.001 50 10 16 500 32 24000 500 1000 15 1000 15

RBAC 0.001 - 50 32 16 500 32 32000 500 1000 15 1000 15

MB 0.001 - 70 - - 500 10 10000 500 1000 15 1000 15

TRPO 0.05 - - - - 50000 50 50000 500 - - - -

Table 18: Hyperparameters for the 7-DoF arm tasks

LR Inner LR Epochs K M Batch Size # Tasks/itr # TS/itr T na Train H Train na Test H Test

GBAC 0.001 0.001 50 32 16 1500 32 24000 500 1000 15 1000 15

RBAC 0.001 - 50 32 16 1500 32 24000 500 1000 15 1000 15

MB 0.001 - 70 - - 10000 10 10000 500 1000 15 1000 15

TRPO 0.05 - - - - 50000 50 50000 500 - - - -

159

b.2 mil experimental details

In this section, we provide additional experimental details for all experiments, including
information regarding data collection, evaluation, and training hyperparameters.

b.2.1 Simulated Reaching

experimental setup : In both vision and no-vision cases of this experiment, the
input to the policy includes the arm joint angles and the end-effector position. In the
vision variant, the 80× 64 RGB image is also provided as input. In the non-vision version,
the 2D positions of the objects are fed into the policy, but the index of the target object
within the state vector is not known and must be inferred from the demonstration. The
policy output corresponds to torques applied to the two joints of the arm. A policy roll-
out is considered a success if it comes within 0.05 meters of the goal within the last 10
timesteps, where the size of the arena is 0.6× 0.6 meters.

To obtain the expert policies for this task, we use iLQG trajectory optimization to
generate solutions for each task (using knowledge of the goal), and then collect several
demonstrations per task from the resulting policy with injected Gaussian noise. At meta-
test time, we evaluate the policy on 150 tasks and 10 different trials per task (1500 total
trials) where each task corresponds to a held-out color. Note that the demonstration
provided at meta-test time usually involves different target and distractor positions than
its corresponding test trial. Thus, the one-shot learned policy must learn to localize the
target using the demonstration and generalize to new positions, while meta-training
must learn to handle different colors.

hyperparameters : For all vision-based policies, we use a convolutional neural net-
work policy with 3 convolution layers each with 40 3 × 3 filters, followed by 4 fully-
connected layers with hidden dimension 200. For this domain only, we simply flattened
the final convolutional map rather than transforming it into spatial feature points. The
recurrent policies additionally use an LSTM with 512 units that takes as input the fea-
tures from the final layer. For non-vision policies, we use the same architecture without
the convolutional layers, replacing the output of the convolutional layers with the state
input. All methods are trained using a meta batch-size of 5 tasks. The policy trained
with meta-imitation learning uses 1 meta-gradient update with step size 0.001 and bias
transformation with dimension 10. We also find it helpful to clip the meta-gradient to lie
in the interval [−20, 20] before applying it. We use the normal single-head architecture

160

for MIL as shown in Figure 23.

b.2.2 Simulated Pushing

experimental setup : The policy input consists of a 125× 125 RGB image and the
robot joint angles, joint velocities, and end-effector pose. A push is considered a success
if the center of the target object lands on the red target circle for at least 10 timesteps
within a 100-timestep episode. The reported pushing success rates are computed over 74

tasks with 6 trials per task (444 total trials).
We acquired a separate demonstration policy for each task using the trust-region pol-

icy optimization (TRPO) algorithm. The expert policy inputs included the target and
distractor object poses rather than vision input. To encourage the expert policies to take
similar strategies, we first trained a single policy on a single task, and then initialized
the parameters of all of the other policies with those from the first policy. When initial-
izing the policy parameters, we increased the variance of the converged policy to ensure
appropriate exploration.

hyperparameters : For all methods, we use a neural network policy with 4 strided
convolution layers with 16 5×5 filters, followed by a spatial softmax and 3 fully-connected
layers with hidden dimension 200. For optimization, each method use a meta-batch size
of 15 tasks. MIL uses 1 inner gradient descent step with step size α = 0.01, inner gradient
clipping within the range [−10, 10], and bias transformation with dimension 20. We also
use an additional bias transformation that is concatenated to the image at each time step
with the same size as the input image. The LSTM policy uses 512 hidden units.

Because this domain is significantly more challenging than the simulating reaching do-
main, we found it important to use the two-head architecture described in section 7.1.3.
We include an ablation of the two-head architecture in Table 19, demonstrating the ben-
efit of this choice.

b.2.3 Real-World Placing

experimental setup : The videos in the demo are composed of a sequence of
320 × 240 RGB images from the robot camera. We pre-process the demonstrations by
downsampling the images by a factor of 2 and cropping them to be of size 100× 90.
Since the videos we collected are of variable length, we subsample the videos such that
they all have fixed time horizon 30.

161

method 1-head 2-head

MIL with 1-shot 80.63% 85.81%

MIL with 5-shot 82.63% 88.75%

Table 19: Ablation test on 1-head and 2-head architecture for simulated pushing as shown in
Figure 23, using a dataset with 9200 demonstrations for meta-learning. Using two heads
leads to significantly better performance in this domain.

To collect demonstration data for one task, we randomly select one holding object and
three placing containers from our training set of objects (see the third image of Figure 26),
and place those three objects in front of the robot in 8 random positions. In this way, we
collect 1293 demonstrations, where we use 96 of them as validation set and the rest as
the training set.

During policy evaluation, we evaluate the policy with 18 tasks and 4 trials per task (72
total trials) where we use 1 placing target and 1 holding object from the test set for each
task. In addition, we manually code an "open gripper" action at the end of the trajectory,
which causes the robot to drop the holding object. We define success as whether or not
the held object landed in or on the target container after the gripper is opened.

hyperparameters : We use a neural network policy with 3 strided convolution lay-
ers and 2 non-strided convolutions layers with 64 3 × 3 filters, followed by a spatial
softmax and 3 fully-connected layers with hidden dimension 100. We initialize the first
convolution layer from VGG-19 and keep it fixed during meta-training. Following prior
work (T. Zhang et al., 2017), we change the objective to be a mixture of `1 and `2 loss,
where `2 loss is scaled down by 100, and add an auxiliary loss that regresses from the
learned features at the first time step to the 2D position of the target container. We de-
termine the position of the target container from the end-effector position at the final
timestep of the demonstration; this does not require additional supervision beyond the
demonstration. Additionally, we also feed the predicted 2D position of the target into
the fully-connected layers of the network. MIL uses a meta-batch size of 12 tasks, 5 in-
ner gradient descent steps with step size 0.005, inner gradient clipping within the range
[−30, 30], and bias transformation with dimension 20. We also use the single-head archi-
tecture for MIL just as what we do for simulated reaching. The LSTM policy uses 512

hidden units.

162

b.3 daml hyperparameter and experimental details

In this appendix, we include experimental details and hyperparameters for each of the
experiments.

b.3.1 Data collection

All of the human and robot demonstrations are collecting at 10 Hz, and take approxi-
mately 3-8 seconds. Then, for meta-training, we randomly sampled 40 of the frames and
corresponding actions to be used as the demonstration. The robot policy is executed at
10 Hz.

b.3.2 Architecture Choices

The most critical part in our network architecture is the learned adaptation objective
consisting of temporal convolutions, which is simple but effective. We analyzed the dif-
ference between the temporal loss and the linear loss in Section 7.2.7, which suggests a
simpler learned adaptation objective does not suffice. As for other parts of our network,
any convolutional neural network with a reasonable number of parameters would work
thanks to the model-agnostic property of our algorithm.

b.3.3 Placing, Pushing, and Pick-and-Place Experiments

We include the details of the experiments in Section 7.2.7.1 for the placing, pushing, and
pick-and-place tasks. The architecture and hyperparameters were selected by evaluating
the end-effector loss and control loss on a validation set of 12, 8, 12 objects for placing,
pushing, and pick-and-place respectively, sampled and held out from the training data.
For placing and pushing, the inputs are RGB images with size 100× 90, and for pick-
and-place, we use RGB-D images with size 110× 90. We train separate models for each
of the three settings.

For placing, the policy architecture uses 5 convolutional layers with 64 3× 3 convolu-
tional filters in each layer where the first three layers are with stride 2 and the last two
layer is with stride 1. The first convolutional layer uses pretrained weights from VGG-19.
It also uses 3 fully connected layers of size 100, and a learned adaptation objective with
two layers of 32 10× 1 convolutional filters followed by one layer of 1× 1 convolutions.
For pushing, the policy architecture, uses the same convolutional network, 4 fully con-

163

nected layers of size 50, and a learned adaptation objective with two layers of 10 and 20
10× 1 convolutional filters for action and final gripper pose prediction respectively fol-
lowed by one layer of 1× 1 convolutions. For pick-and-place, the policy architecture uses
the same convolutional network except that the first convolutional layer is not pretrained.
It also uses 16 3× 3 convolutional filters that operate on the depth input and concate-
nates the depth stream to the RGB stream after the first convolutional layer, channel-wise,
following the approach by T. Zhang et al. (2017). For pick-and-place, we use two gripper
poses – one intermediate, when the gripper contacts the item to pick, and one final pose
at the end of the trajectory. The architecture also uses 4 fully connected layers of size 50,
and a learned adaptation objective with two layers of 10, 30, and 30, 10× 1 convolutional
filters for action, final gripper pose and pickup gripper pose prediction respectively fol-
lowed by one layer of 1× 1 convolutions. All architectures use ReLU nonlinearities and
layer normalization.

All the baseline methods use the same architecture for convolutional layers as DAML
for each experiment. DAML with a linear adaptation objective also uses the same fully-
connected architecture as DAML with the temporal adaptation objective except that its
learned adaptation objective consists of one linear layer. The LSTM uses 512 LSTM hid-
den units for all experiments. The contextual model uses 3 fully connected layers with
size 100 for all experiments.

For placing, we use a behavioral cloning loss as a combination of `1 and `2 losses,
where the `2 loss is scaled down by a factor of 100, following prior work (Finn et al.,
2017b). For the pushing and pick-and-place experiments, all methods use a mixture den-
sity network as mentioned in Section 7.2.5 after the last fully-connected layer with 20
modes and the negative log likelihood of the mixture density network as the behavioral
cloning loss. At test time, at each time step, we sample 100 actions from the learned mix-
ture distribution and choose the action with highest probability. For DAML with both
a linear and temporal adaptation objective, we use a step size α = 0.01 for placing and
α = 0.005 for pushing and pick-and-place with inner gradient clipping within the range
[−30, 30]. We use 12, 10, and 4 tasks in the meta batch at each iteration for placing, push-
ing and pick-and-place respectively. For all methods, we use 1 human demonstration
and 1 robot demonstration for each sampled task. We train the model for 50k iterations
for placing and placing, and 75k iterations for pick-and-place. We use 5 inner gradient
update steps and a bias transformation with dimension 20 for all experiments. Since we
don’t have the robot state s for human demonstrations, we set the state input to be 0
when computing inner gradient update and feed the robot states into the policy when
we update the policy parameters with robot demonstrations.

164

b.3.4 Diverse Human Demonstration Experiments

We include the details of the experiments in Section 7.2.7.2 using diverse human demon-
strations. For meta-training, eight pushing demonstrations are taken for each of 80 total
objects grouped into 40 pairs. Each demo is shot in front of a randomly selected back-
ground, among 10 backgrounds. The viewpoint for the human demos is held fixed with
a phone camera mounted on a tripod. Before being fed into the model during training
images are modified with noise sampled uniformly from the range [−0.3, 0.3] to their
lighting. This color augmentation process helps the model perform more robustly in dif-
ferent light conditions. We use the same input image size and policy architecture as the
pushing experiment described in Section 7.2.7.1 and Appendix B.3.3.

b.3.5 Sawyer Robot Experiments

We include the details of the experiments in Section 7.2.7.3 on the Sawyer robot. The
primary differences between this experiment and previous placing experiments are the
robot used and how demonstrations were collected. While PR2 robot demonstrations
were taken using a teleoperation interface, the Sawyer arm was controlled kinestheti-
cally by humans: the demonstrator guided the Sawyer arm to perform the goal action.
Demonstrations were collected at 10 Hz. Saved at each timestep are a monocular RGB
image taken by a Kinect sensor, the robot’s joint angles, its joint velocities, and its gripper
pose.

The architecture and hyperparameters were tuned by evaluating the gripper pose loss
on a held out validation set of 20 objects. The policy architecture takes in RGB images
of size 100× 100. It uses the same convolutional and fully-connected layers as well as
squared error behavioral cloning loss as in the model for the PR2 placing experiment,
and a learned adaptation objective with three layers of 32 20× 1 convolutional filters
followed by one layer of 1× 1 convolutions. We use a step size α = 0.005 with inner
gradient clipping within the range [−30, 30], 8 as the meta batch size, and 1 human
demonstration as well as 1 robot demonstration for each sampled task. We train the
model for 60k iterations.

During training, we augmented the images using random color augmentation, by
adding noise uniformly sampled in [−0.3, 0.3] to their hue, saturation, and value. The
images used during evaluation were not modified. To control the robot during evalua-
tion, the first image frame is used to predict the final end-effector pose of the robot. After
the robot reaches the predicted gripper pose, the robot is controlled using the prediction

165

actions, which are continuous end-effector velocities. At this point the gripper is opened
and the robot drops the held item (hopefully) into the target container.

b.3.6 Simulated Pushing Experiment

Here, we include details on the experiments in Section 7.2.7.4. The pushing environment
was introduced and open-sourced by Finn et al. (2017b). The expert policy for collect-
ing demonstrations was computed using reinforcement learning. Following (Finn et al.,
2017b), we compute the reported success rates over 74 tasks with 6 trials per task, to-
talling to 444 trials. The time horizon is T = 100. A trial is considered successful if the
target object lands on the target position for at least 10 timesteps within the 100-timestep
episode.

The inputs are RGB images of size 125× 125. The policy architecture uses 3 convolu-
tional layers with 16 5× 5 filters and stride 2 followed by 1 convolutional layer with 32
5× 5 filters with stride 1. It also has 2 fully-connected layers of size 400, and a learned
adaptation objective with two layers of 64 10× 1 convolutional filters followed by one
layer of 1× 1 convolutions. The policy operates on a 125× 125 RGB image, along with
the robot joint angles, joint velocities, and end-effector pose. The behavioral cloning loss
is the mean squared error between the predicted actions and the ground truth robot com-
mands. We use step size α = 0.01 with inner gradient clipping within the range [−20, 20],
and one inner gradient update step. We use 15 as the meta batch size, and 2 different
robot demonstrations for each sampled task. We train our policy for 30k iterations.

b.4 mandril experimental details

b.4.1 Hyperparameters

The input to our reward function for all experiments is a resized 80× 80 RGB image,
with an output space of 20× 20 in the underlying MDP state space s. In our experiments,
we parameterize the reward function for all our reward functions starting from the same
base learner. The first layer is a 8 × 8 convolution with a stride of 2, 256 filters and
symmetric padding of 4. The second layer is a 4× 4 with a stride of 2, 128 filters and
symmetric of 1. The third and fourth layer are 3× 3 convolutions with a stride of 1, 64

filters and symmetric padding of 1. The final layer is a 1× 1 convolution.
Our LSTM (Hochreiter and Schmidhuber, 1997) implementation is based on the vari-

ant used by Zaremba et al. (2014). The input to the LSTM at each time step is the location

166

of the agent in the, we separately embed the (x,y)-coordinates. This is then used to pre-
dict a grid which is then fed as an additional channel in to the base CNN architecture
described above. We also experimented with conditioning the initial hidden state on
image features from a separate CNN, but found that this did not improve performance.

In our demo conditional model, we preserve the spatial information of the demon-
strations by feeding in the state visitation map as a image-grid, upsampled with bi-
linear interpolation, as an additional channel to the image. In our setup, both the demo-
conditional models share the same convolutional architecture, but differ only in how
they encode condition on the demonstrations.

For all our methods, we experimented with Adam (D. Kingma and J. Ba, 2015) and
RMSProp (G. Hinton et al., 2012). We turned over the learning rate, the inner learning
rate β of our approach and `2 weight decay on the initial parameters. In our LSTM
learner, we experimented with different embedding sizes, as well as the dimensionality
of the LSTM although we found that these hyperparameters did not significantly impact
performance. A negative result we found was that bias transformation (from Section 7.1)
in general did not help in our experimental setting.

b.4.2 Environment Details

The sprites in our environment are extracted directly from the StarCraft files. We used in
total 100 random units for meta-training. Evaluation on new objects was performed with
5 randomly selected sprites. For computational efficiency, we create a meta-training set
of 1000 tasks and cache the optimal policy and state visitations under the true cost. Our
set of sprites was divided into two categories: buildings and characters. Each characters
had multiple poses (taken from different frames of animation, such as walking/run-
ning/flying), whereas buildings only had a single pose. During meta-training the units
were randomly placed, but to avoid the possibility that the agent would not need to
actively avoid obstacles, the units were placed away from the boundary of the image in
both the meta-validation and meta-test set.

The terrain in each environment was randomly generated using a set of tiles, each
belonging to a specific category (e.g. grass, dirt, water). For each tile, we also specified a
set of possible tiles for each of the 4-neighbors. Using these constraints on the neighbors,
we generated random environment terrains using a graph traversal algorithm, where
successor tiles were sampled randomly from this set of possible tiles. This process re-
sulted in randomly generated, seamless environments. The names of the units used in
our experiments are as follows (names are from the original game files):

167

The list of buildings used is: academy, assim, barrack, beacon, cerebrat, chemlab,
chrysal, cocoon, comsat, control, depot, drydock, egg, extract, factory, fcolony, forge, gate-
way, genelab, geyser, hatchery, hive, infest, lair, larva, mutapit, nest, nexus, nukesilo, ny-
dustpit, overlord, physics, probe, pylon, prism, pillbox, queen, rcluster, refinery, research,
robotic, sbattery, scolony, spire, starbase, stargate, starport, temple, warm, weaponpl,
wessel.

The list of characters used is: acritter, arbiter, archives, archon, avenger, battlecr, brood,
bugguy, carrier, civilian, defiler, dragoon, drone, dropship, firebat, gencore, ghost, guardian,
hydra, intercep, jcritter, lurker, marine, missile, mutacham, mutalid, sapper, scout, scv,
shuttle, snakey, spider, stank, tank, templar, trilob, ucereb, uikerr, ultra, vulture, witness,
zealot, zergling.

b.5 mandril detailed meta-objective derivation

We define the quality of reward function rθ parameterized by θ ∈ Rk on task T with the
MaxEnt IRL loss, LT

IRL(θ), described in Section 8.1.2.1. The corresponding gradient is

∇θLIRL(θ) =
∂ rθ
∂θ

(Eτ[µτ] − µDT
). (44)

Here, µτ ∈ R|S||A| are the state visitations under the trajectory τ, and µDT
= 1

|DT |

∑
τ∈DT

µτ
is the mean state visitations over all trajectories in DT. LetφT be the updated parameters
after a single gradient step. Then

φT = θ−α∇θLtr
T (θ). (45)

Let Ltest
T be the MaxEnt IRL loss, where the expectation over trajectories is computed

with respect to a test set that is disjoint from the set of demonstrations used to compute
Ltest
T (θ) in Eq. 45. We seek to minimize∑

T∈Ttr

Ltest
T (φT) (46)

over the parameters θ. To do so, we first compute the gradient of Eq. 46, which we derive

168

here. Applying the chain rule

∇θLtest
T

=
∂Ltest

T

∂ rφT

∂ rφT

∂φT

∂φT

∂θ

=
∂Ltest

T

∂ rφT

∂ rφT

∂φT

∂

∂θ

(
θ−α∇θLtr

T (θ)
)

=
∂Ltest

T

∂ rφT

∂ rφT

∂φT

(
I −α

∂

∂θ

(
∂ rθ
∂θ

(Eτ[µτ] − µDT
)

))
where in the last line we substitute in the gradient of the MaxEnt IRL loss in Eq. 44.
Note that the gradient of the last term in parentheses is a matrix, which we will denote
D ∈ Rk×k, that is

D :=
∂

∂θ

(
∂ rθ
∂θ

(Eτ[µτ] − µDT
)

)
, (47)

with entries

Dij =
∂

∂θi

|S||A|∑
l=1

∂ rθ,l

∂θj

(
Eτ[µτ] − µDT

)
l

=

|S||A|∑
l=1

∂2 rθ,l

∂θi∂θj

(
Eτ[µτ] − µDT

)
l
+
∂ rθ,l

∂θj

∂ rθ,l

∂θi

∂

∂ rθ,l
(Eτ[µτ])l.

Therefore, we can express D as

D =

|S||A|∑
l=1

∂2 rθ,l

∂θ2

(
Eτ[µτ] − µDT

)
l
+
∂ rθ,l

∂θ

∂ rθ,l

∂θ

> ∂

∂ rθ,l
(Eτ[µτ])l. (48)

This can equivalently be expressed using tensor-vector products

D =
∂2 rθ
∂θ2

(Eτ[µτ] − µDT
) +

∂ rθ
∂θ

∂ rθ
∂θ

> ∂

∂ rθ
Eτ[µτ]. (49)

This is equivalent to Eq. 28 in Section 8.1.2.1.
In order to compute D, we must take the gradient of the term Eτ[µτ]. This can be done

169

by expanding the expectation as follows

∂

∂ rθ
Eτ[µτ] =

∂

∂ rθ

∑
τ

(
exp(µ>τ rθ)∑
τ ′ exp(µ>τ ′rθ)

)
µτ

=
∑
τ

((
exp(µ>τ rθ)∑
τ ′ exp(µ>τ ′rθ)

)
(µτµ

>
τ) −

exp(µ>τ rθ)
(
∑
τ ′ exp(µ>τ ′rθ))

2

∑
τ ′

(µτ ′µ
>
τ) exp(µ>τ ′rθ)

)
=

∑
τ

P(τ | rθ)(µτµ
>
τ) −

∑
τ

P(τ|rθ)
∑
τ ′

P(τ ′ | rθ)(µτ ′µ
>
τ)

= Eτ

[
(µτµ

>
τ) −

∑
τ ′

P(τ ′ | rθ)(µτ ′µ
>
τ)

]
= Eτ[µτµ

>
τ] − Eτ ′,τ[µτ ′µ

>
τ]

= Eτ[µτµ
>
τ] − Eτ[µτ](Eτ[µτ])

>

= Cov[µτ].

b.6 flo experimental details

b.6.1 Model Architecture

Our model fCAML is represented by a convolutional neural network with RGB image
inputs. The network consists of three convolutional layers with 32 3×3 filters and stride
2, each followed by layer normalization and a ReLU non-linearity. A spatial soft-argmax
operation extracts spatial feature points from the final convolution layer. These features
are passed through one fully-connected layers with 50 units and ReLU non-linearities,
followed by a linear layer to the two-dimensional softmax output. The architecture in our
simulated experiments is the same, except with 16 filters in each convolution layer, fea-
ture flattening instead of a spatial soft-argmax, and three fully-connected layers instead
of one. When using real images, the first convolutional layer is initialized with weights
from VGG-16.

b.6.2 Autoencoder Comparison Details

For the autoencoder, we use a convolutional neural network with three layers and 3x3

filters, where the layers have 64, 32, and 16 filters respectively. The stride is 2 for the
first layer, and 1 for subsequent layers. We follow this up with three fully connected lay-

170

ers, that have 200, 100 and 50 units respectively. We train this autoencoder on the entire
meta-training dataset, and our target reconstructions have dimension 32x32x3. We run
reinforcement learning on top of the features from the last hidden layer of this autoen-
coder, and keep the autoencoder weights fixed during the policy learning process.

171

B I B L I O G R A P H Y

Abadi, M., A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,
J. Dean, M. Devin, et al. (2016). “Tensorflow: Large-scale machine learning on hetero-
geneous distributed systems.” In: arXiv preprint arXiv:1603.04467 (cit. on pp. 18, 21,
33).

Abbeel, P. and A. Y. Ng (2004). “Apprenticeship learning via inverse reinforcement
learning.” In: International Conference on Machine Learning (ICML). ACM, p. 1 (cit. on
pp. 112, 117, 123).

Akgun, B., M. Cakmak, J. W. Yoo, and A. L. Thomaz (2012). “Trajectories and keyframes
for kinesthetic teaching: A human-robot interaction perspective.” In: International
Conference on Human-Robot Interaction (cit. on pp. 73, 95).

Andrychowicz, M., M. Denil, S. Gomez, M. W. Hoffman, D. Pfau, T. Schaul, and N. de
Freitas (2016). “Learning to learn by gradient descent by gradient descent.” In: Neural
Information Processing Systems (NIPS) (cit. on pp. 3, 11, 15, 31).

Argall, B. D., S. Chernova, M. Veloso, and B. Browning (2009). “A survey of robot learn-
ing from demonstration.” In: Robotics and Autonomous Systems (cit. on p. 95).

Åström, K. J. and B. Wittenmark (2013). Adaptive control. Courier Corporation (cit. on
p. 60).

Aswani, A., P. Bouffard, and C. Tomlin (2012). “Extensions of learning-based model
predictive control for real-time application to a quadrotor helicopter.” In: American
Control Conference (ACC), 2012 (cit. on p. 67).

Aytar, Y. and A. Zisserman (2011). “Tabula rasa: Model transfer for object category detec-
tion.” In: 2011 International Conference on Computer Vision. IEEE, pp. 2252–2259 (cit. on
p. 96).

Ba, J. L., J. R. Kiros, and G. E. Hinton (2016). “Layer normalization.” In: arXiv preprint
arXiv:1607.06450 (cit. on p. 78).

Ba, J., G. E. Hinton, V. Mnih, J. Z. Leibo, and C. Ionescu (2016). “Using Fast Weights to
Attend to the Recent Past.” In: Neural Information Processing Systems (NIPS) (cit. on
pp. 3, 31).

Babeş-Vroman, M., V. Marivate, K. Subramanian, and M. Littman (2011). “Apprentice-
ship Learning About Multiple Intentions.” In: International Conference on Machine
Learning (ICML). USA (cit. on p. 113).

172

Baker, C., J. B Tenenbaum, and R. R Saxe (2007). “Goal inference as inverse planning.”
In: (cit. on p. 106).

Barber, D. and C. M. Bishop (1998). “Ensemble learning for multi-layer networks.” In:
neural information processing systems (NIPS) (cit. on p. 52).

Barrett, S., M. E. Taylor, and P. Stone (2010). “Transfer learning for reinforcement learn-
ing on a physical robot.” In: Ninth International Conference on Autonomous Agents and
Multiagent Systems-Adaptive Learning Agents Workshop (AAMAS-ALA) (cit. on p. 79).

Bengio, S., Y. Bengio, J. Cloutier, and J. Gecsei (1992). “On the optimization of a synaptic
learning rule.” In: Optimality in Artificial and Biological Neural Networks, pp. 6–8 (cit.
on pp. 2, 11, 15, 31).

Bengio, Y., S. Bengio, and J. Cloutier (1990). Learning a synaptic learning rule. Université de
Montréal, Département d’informatique et de recherche opérationnelle (cit. on p. 31).

Billard, A., Y. Epars, S. Calinon, S. Schaal, and G. Cheng (2004). “Discovering optimal
imitation strategies.” In: Robotics and autonomous systems (cit. on p. 79).

Bishop, C. M. (1994). “Mixture density networks.” In: (cit. on pp. 94, 97).
Blossom, P. (2006). The Cross-Entropy Method: A Unified Approach to Combinatorial Optimiza-

tion, Monte-Carlo Simulation, and Machine Learning (cit. on p. 64).
Blundell, C., J. Cornebise, K. Kavukcuoglu, and D. Wierstra (2015). “Weight uncertainty

in neural networks.” In: arXiv preprint arXiv:1505.05424 (cit. on p. 52).
Bojarski, M., D. Del Testa, D. Dworakowski, B. Firner, B. Flepp, P. Goyal, L. Jackel, M.

Monfort, U. Muller, J. Zhang, X. Zhang, J. Zhao, and K. Zieba (2016). “End to end
learning for self-driving cars.” In: arXiv preprint arXiv:1604.07316 (cit. on pp. 77, 79).

Boularias, A., J. Kober, and J. Peters (2011). “Relative entropy inverse reinforcement learn-
ing.” In: Proceedings of the Fourteenth International Conference on Artificial Intelligence
and Statistics (cit. on p. 124).

Bousmalis, K., N. Silberman, D. Dohan, D. Erhan, and D. Krishnan (2017). “Unsuper-
vised pixel-level domain adaptation with generative adversarial networks.” In: Inter-
national Conference on Computer Vision and Pattern Recognition (CVPR) (cit. on p. 96).

Brass, M. and C. Heyes (2005). “Imitation: is cognitive neuroscience solving the corre-
spondence problem?” In: Trends in cognitive sciences (cit. on pp. 73, 86).

Braun, D. A., A. Aertsen, D. M. Wolpert, and C. Mehring (2009). “Learning optimal
adaptation strategies in unpredictable motor tasks.” In: Journal of Neuroscience (cit.
on p. 59).

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba
(2016). “OpenAI gym.” In: arXiv preprint arXiv:1606.01540 (cit. on p. 82).

173

Buchan, A. D., D. W. Haldane, and R. S. Fearing (2013). “Automatic identification of
dynamic piecewise affine models for a running robot.” In: International Conference on
Intelligent Robots and Systems (IROS), pp. 5600–5607 (cit. on p. 67).

Calinon, S. and A. Billard (2006). “Teaching a humanoid robot to recognize and repro-
duce social cues.” In: International Symposium on Robot and Human Interactive Commu-
nication (ROMAN) (cit. on p. 95).

Calinon, S., P. Evrard, E. Gribovskaya, A. Billard, and A. Kheddar (2009). “Learning
collaborative manipulation tasks by demonstration using a haptic interface.” In: In-
ternational Conference on Advanced Robotics (ICAR) (cit. on pp. 73, 95).

Caruana, R. (1993). “Multitask Learning: A Knowledge-Based Source of Inductive Bias.”
In: International Conference on Machine Learning (ICML) (cit. on p. 2).

Choi, J. and K.-E. Kim (2012). “Nonparametric Bayesian Inverse Reinforcement Learn-
ing for Multiple Reward Functions.” In: Neural Information Processing Systems (NIPS).
NIPS. USA (cit. on p. 113).

Christiano, P. F., J. Leike, T. Brown, M. Martic, S. Legg, and D. Amodei (2017). “Deep
reinforcement learning from human preferences.” In: Neural Information Processing
Systems (NIPS) (cit. on p. 123).

Clavera, I., A. Nagabandi, R. S. Fearing, P. Abbeel, S. Levine, and C. Finn (2018). “Learn-
ing to Adapt: Meta-Learning for Model-Based Control.” In: arXiv preprint arXiv:1803.11347
(cit. on p. 4).

Collobert, R., J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa (2011).
“Natural language processing (almost) from scratch.” In: Journal of Machine Learning
Research (cit. on p. 1).

Da Silva, B. C., G. Konidaris, and A. G. Barto (2012). “Learning parameterized skills.” In:
International Conference of Machine Learning (ICML) (cit. on p. 79).

Dai, A. M. and Q. V. Le (2015). “Semi-supervised sequence learning.” In: Neural Informa-
tion Processing Systems (NIPS) (cit. on p. 2).

Daumé III, H. (2009). “Bayesian multitask learning with latent hierarchies.” In: Conference
on Uncertainty in Artificial Intelligence (UAI) (cit. on pp. 3, 51).

Deguchi, K. and I. Takahashi (1999). “Image-based simultaneous control of robot and
target object motions by direct-image-interpretation method.” In: International Confer-
ence on Intelligent Robots and Systems (IROS) (cit. on pp. 117, 123).

Deisenroth, M. P., P. Englert, J. Peters, and D. Fox (2014). “Multi-task policy search for
robotics.” In: International Conference on Robotics and Automation (ICRA) (cit. on pp. 73,
79).

174

Deisenroth, M. P., G. Neumann, J. Peters, et al. (2013). “A survey on policy search for
robotics.” In: Foundations and Trends in Robotics (cit. on pp. 60, 66).

Deisenroth, M. and C. E. Rasmussen (2011). “PILCO: A model-based and data-efficient
approach to policy search.” In: International Conference on machine learning (ICML) (cit.
on p. 66).

Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009). “ImageNet: A Large-
Scale Hierarchical Image Database.” In: CVPR, pp. 248–255 (cit. on p. 2).

Dillmann, R. (2004). “Teaching and learning of robot tasks via observation of human
performance.” In: Robotics and Autonomous Systems (cit. on p. 95).

Dimitrakakis, C. and C. A. Rothkopf (2012). “Bayesian Multitask Inverse Reinforcement
Learning.” In: European Conference on Recent Advances in Reinforcement Learning. EWRL
(cit. on p. 113).

Donahue, J., Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell (2014).
“DeCAF: A Deep Convolutional Activation Feature for Generic Visual Recognition.”
In: International Conference on Machine Learning (ICML) (cit. on pp. 2, 32).

Duan, Y., M. Andrychowicz, B. Stadie, J. Ho, J. Schneider, I. Sutskever, P. Abbeel, and
W. Zaremba (2017). “One-shot Imitation Learning.” In: Neural Information Processing
Systems (NIPS) (cit. on pp. 73, 79–81, 84, 97, 103, 114).

Duan, Y., X. Chen, R. Houthooft, J. Schulman, and P. Abbeel (2016a). “Benchmarking
deep reinforcement learning for continuous control.” In: International Conference on
Machine Learning (ICML) (cit. on pp. 37, 38).

Duan, Y., J. Schulman, X. Chen, P. L. Bartlett, I. Sutskever, and P. Abbeel (2016b). “RL2:
Fast Reinforcement Learning via Slow Reinforcement Learning.” In: arXiv preprint
arXiv:1611.02779 (cit. on pp. 3, 10, 16, 31, 36, 51, 60, 65, 132).

Duvenaud, D., D. Maclaurin, and R. Adams (2016). “Early stopping as nonparametric
variational inference.” In: Artificial Intelligence and Statistics, pp. 1070–1077 (cit. on
p. 112).

Ebert, F., C. Finn, A. X. Lee, and S. Levine (2017). “Self-Supervised Visual Planning with
Temporal Skip Connections.” In: Conference on Robot Learning (CoRL) (cit. on p. 125).

Edwards, A. D., S. Sood, and C. L. Isbell Jr (2017). “Cross-domain perceptual reward
functions.” In: arXiv:1705.09045 (cit. on p. 123).

Edwards, A., C. Isbell, and A. Takanishi (2016). “Perceptual reward functions.” In: IJCAI
Workshop on Deep Reinforcement Learning: Frontiers and Challenges (cit. on p. 123).

Edwards, H. and A. Storkey (2017). “Towards a Neural Statistician.” In: International
Conference on Learning Representations (ICLR) (cit. on pp. 3, 31, 36, 51).

175

Ekvall, S. and D. Kragic (2004). “Interactive grasp learning based on human demonstra-
tion.” In: International Conference on Robotics and Automation (ICRA) (cit. on p. 95).

Fei-Fei, L. et al. (2003). “A Bayesian approach to unsupervised one-shot learning of object
categories.” In: Conference on Computer Vision and Pattern Recognition (CVPR) (cit. on
pp. 3, 13, 51).

Fernando, B., A. Habrard, M. Sebban, and T. Tuytelaars (2013). “Unsupervised visual do-
main adaptation using subspace alignment.” In: International Conference on Computer
Vision (ICCV) (cit. on p. 96).

Finn, C., P. Abbeel, and S. Levine (2017a). “Model-Agnostic Meta-Learning for Fast Adap-
tation of Deep Networks.” In: International Conference on Machine Learning (ICML) (cit.
on pp. 4, 49, 51, 65, 77, 121, 154).

Finn, C. and S. Levine (2017). “Deep visual foresight for planning robot motion.” In:
International Conference on Robotics and Automation (ICRA) (cit. on p. 66).

Finn, C. and S. Levine (2018). “Meta-Learning and Universality: Deep Representations
and Gradient Descent can Approximate any Learning Algorithm.” In: International
Conference on Learning Representations (ICLR) (cit. on pp. 4, 66).

Finn, C., S. Levine, and P. Abbeel (2016a). “Guided cost learning: Deep inverse opti-
mal control via policy optimization.” In: International Conference on Machine Learning
(ICML) (cit. on pp. 79, 112, 117, 124).

Finn, C., X. Y. Tan, Y. Duan, T. Darrell, S. Levine, and P. Abbeel (2016b). “Deep spatial
autoencoders for visuomotor learning.” In: International Conference on Robotics and
Automation (ICRA) (cit. on pp. 78, 94, 117, 123, 124, 126, 129).

Finn, C., K. Xu, and S. Levine (2018). “Probabilistic Model-Agnostic Meta-Learning.” In:
arXiv preprint arXiv:1806.02817 (cit. on p. 4).

Finn, C., T. Yu, T. Zhang, P. Abbeel, and S. Levine (2017b). “One-Shot Visual Imitation
Learning via Meta-Learning.” In: Conference on Robot Learning (CoRL) (cit. on pp. 4,
91, 101, 103, 153, 164, 166).

Fortunato, M., C. Blundell, and O. Vinyals (2017). “Bayesian recurrent neural networks.”
In: arXiv preprint arXiv:1704.02798 (cit. on pp. 48, 67).

Fu, J., S. Levine, and P. Abbeel (2016). “One-shot learning of manipulation skills with
online dynamics adaptation and neural network priors.” In: International Conference
on Intelligent Robots and Systems (IROS) (cit. on p. 67).

Fu, J., K. Luo, and S. Levine (2018). “Learning Robust Rewards with Adverserial In-
verse Reinforcement Learning.” In: International Conference on Learning Representations
(ICLR) (cit. on p. 112).

176

Gao, J., W. Fan, J. Jiang, and J. Han (2008). “Knowledge transfer via multiple model local
structure mapping.” In: ACM SIGKDD Conference on Knowledge Discovery and Data
Mining (KDD). ACM (cit. on pp. 3, 51).

Garcia, V. and J. Bruna (2017). “Few-Shot Learning with Graph Neural Networks.” In:
arXiv preprint arXiv:1711.04043 (cit. on p. 154).

Giusti, A., J. Guzzi, D. C. Cireşan, F.-L. He, J. P. Rodrıguez, F. Fontana, M. Faessler, C.
Forster, J. Schmidhuber, G. Di Caro, et al. (2016). “A machine learning approach to
visual perception of forest trails for mobile robots.” In: IEEE Robotics and Automation
Letters (RA-L) (cit. on p. 79).

Gong, B., K. Grauman, and F. Sha (2013). “Connecting the dots with landmarks: Discrim-
inatively learning domain-invariant features for unsupervised domain adaptation.”
In: International Conference on Machine Learning (ICML) (cit. on p. 96).

Goodfellow, I. J., J. Shlens, and C. Szegedy (2015). “Explaining and harnessing adversar-
ial examples.” In: International Conference on Learning Representations (ICLR) (cit. on
p. 37).

Grant, E., C. Finn, S. Levine, T. Darrell, and T. Griffiths (2018). “Recasting Gradient-
Based Meta-Learning as Hierarchical Bayes.” In: International Conference on Learning
Representations (ICLR) (cit. on pp. 46, 48, 49, 51, 91, 92, 111, 112, 154).

Grant, E., C. Finn, J. Peterson, J. Abbott, S. Levine, T. Griffiths, and T. Darrell (2017).
“Concept acquisition via meta-learning: Few-shot learning from positive examples.”
In: NIPS Workshop on Cognitively-Informed Artificial Intelligence (cit. on pp. 54, 122).

Graves, A. (2011). “Practical variational inference for neural networks.” In: Neural Infor-
mation Processing Systems (NIPS) (cit. on p. 52).

Gu, S., T. Lillicrap, I. Sutskever, and S. Levine (2016). “Continuous Deep Q-Learning with
Model-based Acceleration.” In: International Conference on Machine Learning (ICML)
(cit. on p. 67).

Gupta, A., C. Devin, Y. Liu, P. Abbeel, and S. Levine (2017). “Learning invariant feature
spaces to transfer skills with reinforcement learning.” In: International Conference on
Learning Representations (ICLR) (cit. on p. 79).

Gupta, A., B. Eysenbach, C. Finn, and S. Levine (2018). “Unsupervised Meta-Learning
for Reinforcement Learning.” In: arXiv preprint arXiv:1806.04640 (cit. on p. 132).

Ha, D., A. Dai, and Q. V. Le (2017). “HyperNetworks.” In: International Conference on
Learning Representations (ICLR) (cit. on pp. 3, 11, 31).

Hannun, A., C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen, R. Prenger, S. Satheesh,
S. Sengupta, A. Coates, et al. (2014). “Deep speech: Scaling up end-to-end speech
recognition.” In: arXiv preprint arXiv:1412.5567 (cit. on p. 1).

177

Hausman, K., Y. Chebotar, S. Schaal, G. Sukhatme, and J. J. Lim (2017). “Multi-modal
imitation learning from unstructured demonstrations using generative adversarial
nets.” In: Neural Information Processing Systems (NIPS) (cit. on p. 113).

Hinton, G. E. and D. Van Camp (1993). “Keeping the neural networks simple by mini-
mizing the description length of the weights.” In: Conference on Computational learning
theory (cit. on p. 52).

Hinton, G., N. Srivastava, and K. Swersky (2012). Neural Networks for Machine Learning,
Lecture 6a: Overview of Mini-Batch Gradient Descent (cit. on p. 167).

Ho, J. and S. Ermon (2016). “Generative adversarial imitation learning.” In: Neural Infor-
mation Processing Systems (NIPS) (cit. on pp. 113, 117, 123).

Hochreiter, S. and J. Schmidhuber (1997). “Long Short-Term Memory.” In: Neural Compu-
tation (cit. on pp. 65, 166).

Hochreiter, S., A. Younger, and P. Conwell (2001). “Learning to learn using gradient
descent.” In: International Conference on Artificial Neural Networks (ICANN) (cit. on
pp. 3, 11, 31, 51).

Hoffman, M. D., D. M. Blei, C. Wang, and J. Paisley (2013). “Stochastic variational infer-
ence.” In: The Journal of Machine Learning Research (cit. on p. 52).

Hornik, K., M. Stinchcombe, and H. White (1990). “Universal approximation of an un-
known mapping and its derivatives using multilayer feedforward networks.” In: Neu-
ral networks (cit. on pp. 27, 139, 142).

Howard, J. and S. Ruder (2018). “Universal Language Model Fine-tuning for Text Classi-
fication.” In: Annual Meeting of the Association for Computational Linguistics (ACL) (cit.
on p. 2).

Husken, M. and C. Goerick (2000). “Fast learning for problem classes using knowledge
based network initialization.” In: International Joint Conference on Neural Networks
(IJCNN) (cit. on p. 32).

Ioffe, S. and C. Szegedy (2015). “Batch normalization: Accelerating deep network training
by reducing internal covariate shift.” In: International Conference on Machine Learning
(ICML) (cit. on p. 35).

Jagersand, M. and R. Nelson (1995). “Visual space task specification, planning and con-
trol.” In: International Symposium on Computer Vision (cit. on pp. 117, 123).

Johnson, M., D. K. Duvenaud, A. Wiltschko, R. P. Adams, and S. R. Datta (2016). “Com-
posing graphical models with neural networks for structured representations and
fast inference.” In: Neural Information Processing Systems (NIPS) (cit. on pp. 47, 52).

Kaiser, L., O. Nachum, A. Roy, and S. Bengio (2017). “Learning to Remember Rare
Events.” In: International Conference on Learning Representations (ICLR) (cit. on p. 36).

178

Kalakrishnan, M., P. Pastor, L. Righetti, and S. Schaal (2013). “Learning objective func-
tions for manipulation.” In: International Conference on Robotics and Automation (ICRA).
IEEE (cit. on p. 124).

Kim, D.-K. and M. R. Walter (2017). “Satellite image-based localization via learned em-
beddings.” In: International Conference on Robotics and Automation (ICRA) (cit. on p. 86).

Kingma, D. P. and M. Welling (2013). “Auto-encoding variational bayes.” In: arXiv preprint
arXiv:1312.6114 (cit. on pp. 47, 50, 52).

Kingma, D. and J. Ba (2015). “Adam: A method for stochastic optimization.” In: Interna-
tional Conference on Learning Representations (ICLR) (cit. on pp. 33, 80, 97, 122, 167).

Kirkpatrick, J., R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, et al. (2016). “Overcoming catastrophic
forgetting in neural networks.” In: arXiv preprint arXiv:1612.00796 (cit. on p. 32).

Kjellstrom, H., J. Romero, and D. Kragic (2008). “Visual recognition of grasps for human-
to-robot mapping.” In: International Conference on Intelligent Robots and Systems (IROS)
(cit. on p. 95).

Ko, J. and D. Fox (2009). “GP-BayesFilters: Bayesian filtering using Gaussian process
prediction and observation models.” In: Autonomous Robots 27.1, pp. 75–90 (cit. on
p. 66).

Kober, J., A. Wilhelm, E. Oztop, and J. Peters (2012). “Reinforcement learning to adjust
parametrized motor primitives to new situations.” In: Autonomous Robots (cit. on
p. 79).

Koch, G., R. Zemel, and R. Salakhutdinov (2015). “Siamese neural networks for one-shot
image recognition.” In: ICML Deep Learning Workshop (cit. on pp. 3, 15, 16, 31, 36).

Kormushev, P., S. Calinon, and D. G. Caldwell (2010). “Robot motor skill coordina-
tion with EM-based reinforcement learning.” In: International Conference on Intelligent
Robots and Systems (IROS) (cit. on p. 123).

Krähenbühl, P., C. Doersch, J. Donahue, and T. Darrell (2016). “Data-dependent initial-
izations of convolutional neural networks.” In: International Conference on Learning
Representations (ICLR) (cit. on p. 32).

Krause, B., E. Kahembwe, I. Murray, and S. Renals (2017). “Dynamic Evaluation of Neu-
ral Sequence Models.” In: CoRR abs/1709.07432. arXiv: 1709.07432 (cit. on pp. 67,
69).

Krause, B., L. Lu, I. Murray, and S. Renals (2016). “Multiplicative LSTM for sequence
modelling.” In: arXiv preprint arXiv:1609.07959 (cit. on p. 67).

Krizhevsky, A. and G. Hinton (2009). Learning multiple layers of features from tiny images.
Tech. rep. (cit. on p. 2).

179

http://arxiv.org/abs/1709.07432

Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012). “Imagenet classification with deep
convolutional neural networks.” In: Neural Information Processing Systems (NIPS) (cit.
on p. 1).

Kruger, V., D. L. Herzog, S. Baby, A. Ude, and D. Kragic (2010). “Learning actions from
observations.” In: IEEE Robotics & Automation Magazine (cit. on p. 95).

Kuefler, A. and M. J. Kochenderfer (2018). “Burn-In Demonstrations for Multi-Modal
Imitation Learning.” In: aamas (cit. on p. 113).

Kupcsik, A. G., M. P. Deisenroth, J. Peters, G. Neumann, et al. (2013). “Data-efficient
generalization of robot skills with contextual policy search.” In: AAAI Conference on
Artificial Intelligence (cit. on pp. 73, 79).

Lacoste, A., T. Boquet, N. Rostamzadeh, B. Oreshki, W. Chung, and D. Krueger (2017).
“Deep Prior.” In: arXiv preprint arXiv:1712.05016 (cit. on p. 51).

Lake, B. M., R. Salakhutdinov, J. Gross, and J. B. Tenenbaum (2011). “One shot learning
of simple visual concepts.” In: Conference of the Cognitive Science Society (CogSci) (cit.
on pp. 3, 35, 36, 40).

Lake, B. M., R. Salakhutdinov, and J. B. Tenenbaum (2015). “Human-level concept learn-
ing through probabilistic program induction.” In: Science (cit. on p. 51).

Lange, S., M. Riedmiller, and A. Voigtlander (2012). “Autonomous reinforcement learn-
ing on raw visual input data in a real world application.” In: International Joint Con-
ference on Neural Networks (IJCNN) (cit. on pp. 124, 129).

Laskey, M., S. Staszak, W. Y.-S. Hsieh, J. Mahler, F. T. Pokorny, A. D. Dragan, and K.
Goldberg (2016). “Shiv: Reducing supervisor burden in dagger using support vec-
tors for efficient learning from demonstrations in high dimensional state spaces.” In:
International Conference on Robotics and Automation (ICRA) (cit. on p. 79).

Lawrence, N. D. and J. C. Platt (2004). “Learning to learn with the informative vector
machine.” In: International Conference on Machine Learning (ICML), p. 65 (cit. on pp. 3,
51).

LeCun, Y., C. Cortes, and C. Burges (1998). The MNIST database of handwritten digits (cit.
on p. 2).

Lee, J. and M. S. Ryoo (2017). “Learning Robot Activities from First-Person Human
Videos Using Convolutional Future Regression.” In: arXiv:1703.01040 (cit. on p. 95).

Lee, K., Y. Su, T.-K. Kim, and Y. Demiris (2013). “A syntactic approach to robot imitation
learning using probabilistic activity grammars.” In: Robotics and Autonomous Systems
(cit. on p. 95).

Lenz, I., R. A. Knepper, and A. Saxena (2015). “DeepMPC: Learning Deep Latent Fea-
tures for Model Predictive Control.” In: Robotics: Science and Systems (cit. on p. 66).

180

Levine, S. and P. Abbeel (2014). “Learning neural network policies with guided policy
search under unknown dynamics.” In: Neural Information Processing Systems (NIPS),
pp. 1071–1079 (cit. on p. 67).

Levine, S., C. Finn, T. Darrell, and P. Abbeel (2016a). “End-to-end training of deep visuo-
motor policies.” In: Journal of Machine Learning Research (JMLR) (cit. on pp. 1, 66, 78,
84, 93, 94, 123).

Levine, S. and V. Koltun (2013). “Guided policy search.” In: International Conference on
Machine Learning (ICML) (cit. on p. 67).

Levine, S., P. Pastor, A. Krizhevsky, and D. Quillen (2016b). “Learning hand-eye coordi-
nation for robotic grasping with deep learning and large-scale data collection.” In:
arXiv preprint arXiv:1603.02199 (cit. on pp. 117, 123).

Levine, S., Z. Popovic, and V. Koltun (2011). “Nonlinear inverse reinforcement learning
with gaussian processes.” In: Neural Information Processing Systems (NIPS), pp. 19–27

(cit. on p. 116).
Li, D., Y. Yang, Y.-Z. Song, and T. M. Hospedales (2018). “Learning to Generalize: Meta-

Learning for Domain Generalization.” In: AAAI Conference on Artificial Intelligence
(AAAI) (cit. on p. 96).

Li, K. and J. Malik (2017a). “Learning to Optimize.” In: International Conference on Learn-
ing Representations (ICLR) (cit. on p. 31).

Li, K. and J. Malik (2017b). “Learning to Optimize Neural Nets.” In: arXiv preprint
arXiv:1703.00441 (cit. on p. 11).

Li, K. and J. W. Burdick (2017). “Meta Inverse Reinforcement Learning via Maximum Re-
ward Sharing for Human Motion Analysis.” In: CoRR abs/1710.03592 (cit. on p. 113).

Li, W. and E. Todorov (2004). “Iterative linear quadratic regulator design for nonlinear
biological movement systems.” In: ICINCO (1) (cit. on p. 64).

Li, Y., J. Song, and S. Ermon (2017). “Inferring the latent structure of human decision-
making from raw visual inputs.” In: arXiv preprint arXiv:1703.08840 (cit. on p. 113).

Li, Z., F. Zhou, F. Chen, and H. Li (2017). “Meta-SGD: Learning to Learn Quickly for Few
Shot Learning.” In: arXiv preprint arXiv:1707.09835 (cit. on pp. 3, 154).

Lillicrap, T. P., J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra
(2015). “Continuous control with deep reinforcement learning.” In: CoRR abs/1509.02971.
arXiv: 1509.02971 (cit. on p. 66).

Liu, Y., A. Gupta, P. Abbeel, and S. Levine (2018). “Imitation from observation: Learning
to imitate behaviors from raw video via context translation.” In: International Confer-
ence on Robotics and Automation (ICRA) (cit. on p. 96).

181

http://arxiv.org/abs/1509.02971

MacKay, D. J. (1992). “A practical Bayesian framework for backpropagation networks.”
In: Neural computation (cit. on p. 52).

Maclaurin, D., D. Duvenaud, and R. Adams (2015). “Gradient-based hyperparameter op-
timization through reversible learning.” In: International Conference on Machine Learn-
ing (ICML) (cit. on p. 32).

Metz, L., N. Maheswaranathan, B. Cheung, and J. Sohl-Dickstein (2018). “Learning Un-
supervised Learning Rules.” In: arXiv preprint arXiv:1804.00222 (cit. on p. 8).

Mishra, N., M. Rohaninejad, X. Chen, and P. Abbeel (2018). “A Simple Neural Attentive
Meta-Learner.” In: International Conference on Learning Representations (ICLR) (cit. on
pp. 10, 41, 51, 154).

Mnih, V., K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Ried-
miller (2013). “Playing atari with deep reinforcement learning.” In: arXiv preprint
arXiv:1312.5602 (cit. on p. 1).

Mnih, V., K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves, M.
Riedmiller, A. K. Fidjeland, G. Ostrovski, et al. (2015). “Human-level control through
deep reinforcement learning.” In: Nature (cit. on p. 66).

Muelling, K., A. Venkatraman, J.-S. Valois, J. Downey, J. Weiss, S. Javdani, M. Hebert, A. B.
Schwartz, J. L. Collinger, and J. A. Bagnell (2017). “Autonomy infused teleoperation
with application to BCI manipulation.” In: Autonomous Robots (cit. on p. 96).

Mülling, K., J. Kober, O. Kroemer, and J. Peters (2013). “Learning to select and generalize
striking movements in robot table tennis.” In: The International Journal of Robotics
Research (IJRR) (cit. on pp. 73, 79).

Munkhdalai, T. and H. Yu (2017). “Meta Networks.” In: International Conference on Ma-
chine Learning (ICML) (cit. on pp. 3, 31, 41).

Nagabandi, A., G. Kahn, R. S. Fearing, and S. Levine (2017a). “Neural Network Dynamics
for Model-Based Deep Reinforcement Learning with Model-Free Fine-Tuning.” In:
CoRR abs/1708.02596 (cit. on pp. 64, 69).

Nagabandi, A., G. Yang, T. Asmar, R. Pandya, G. Kahn, S. Levine, and R. S. Fear-
ing (2017b). “Learning Image-Conditioned Dynamics Models for Control of Under-
actuated Legged Millirobots.” In: arXiv preprint arXiv:1711.05253 (cit. on p. 66).

Naik, D. K. and R. Mammone (1992). “Meta-neural networks that learn by learning.” In:
International Joint Conference on Neural Netowrks (IJCNN) (cit. on pp. 2, 31).

Nair, A., P. Agarwal, D. Chen, P. Isola, P. Abbeel, and S. Levine (2017). “Combining
Self-Supervised Learning and Imitation for Vision-Based Rope Manipulation.” In:
International Conference on Robotics and Automation (ICRA) (cit. on p. 79).

182

Neal, R. M. (1995). Bayesian learning for neural networks. PhD thesis, University of Toronto
(cit. on p. 52).

Nehaniv, C. L., K. Dautenhahn, et al. (2002). “The correspondence problem.” In: Imitation
in animals and artifacts (cit. on p. 86).

Ng, A. Y., D. Harada, and S. Russell (1999). “Policy invariance under reward transfor-
mations: Theory and application to reward shaping.” In: ICML. Vol. 99, pp. 278–287

(cit. on p. 105).
Ng, A. Y. and S. J. Russell (2000). “Algorithms for inverse reinforcement learning.” In:

International Conference on Machine Leanring (ICML) (cit. on pp. 79, 105, 112, 123).
Nguyen, A., D. Kanoulas, L. Muratore, D. G. Caldwell, and N. G. Tsagarakis (2017).

“Translating Videos to Commands for Robotic Manipulation with Deep Recurrent
Neural Networks.” In: arXiv:1710.00290 (cit. on p. 95).

Nichol, A. and J. Schulman (2018). “Reptile: a Scalable Metalearning Algorithm.” In:
arXiv preprint arXiv:1803.02999 (cit. on p. 154).

Parisotto, E., J. L. Ba, and R. Salakhutdinov (2016). “Actor-mimic: Deep multitask and
transfer reinforcement learning.” In: International Conference on Learning Representa-
tions (ICLR) (cit. on p. 39).

Pastor, P., H. Hoffmann, T. Asfour, and S. Schaal (2009). “Learning and generalization of
motor skills by learning from demonstration.” In: International Conference on Robotics
and Automation (ICRA) (cit. on pp. 73, 79).

Pastor, P., L. Righetti, M. Kalakrishnan, and S. Schaal (2011). “Online movement adapta-
tion based on previous sensor experiences.” In: International Conference on Intelligent
Robots and Systems (IROS) (cit. on pp. 73, 95).

Paszke, A., S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L.
Antiga, and A. Lerer (2017). “Automatic differentiation in pytorch.” In: (cit. on p. 21).

Patel, V. M., R. Gopalan, R. Li, and R. Chellappa (2015). “Visual domain adaptation: A
survey of recent advances.” In: IEEE signal processing magazine (cit. on p. 96).

Peters, J. and S. Schaal (2008). “Reinforcement learning of motor skills with policy gradi-
ents.” In: Neural networks 21.4, pp. 682–697 (cit. on p. 66).

Pinto, L. and A. Gupta (2016). “Supersizing self-supervision: Learning to grasp from
50k tries and 700 robot hours.” In: International Conference on Robotics and Automation
(ICRA) (cit. on pp. 117, 123).

Pomerleau, D. (1989). “ALVINN: An Autonomous Land Vehicle In a Neural Network.”
In: Neural Information Processing Systems (NIPS) (cit. on pp. 73, 79).

Radford, A., K. Narasimhan, T. Salimans, and I. Sutskever (2018). “Improving Language
Understanding by Generative Pre-Training.” In: (cit. on p. 2).

183

Rahmatizadeh, R., P. Abolghasemi, A. Behal, and L. Bölöni (2018). “Learning real ma-
nipulation tasks from virtual demonstrations using LSTM.” In: AAAI Conference on
Artificial Intelligence (AAAI) (cit. on pp. 94, 103).

Rahmatizadeh, R., P. Abolghasemi, L. Bölöni, and S. Levine (2017). “Vision-Based Multi-
Task Manipulation for Inexpensive Robots Using End-To-End Learning from Demon-
stration.” In: arXiv:1707.02920 (cit. on pp. 73, 95).

Ramachandran, D. and E. Amir (2007). “Bayesian inverse reinforcement learning.” In:
Urbana 51.61801, pp. 1–4 (cit. on pp. 112, 113).

Ramachandran, P., P. J. Liu, and Q. V. Le (2016). “Unsupervised pretraining for sequence
to sequence learning.” In: arXiv preprint arXiv:1611.02683 (cit. on p. 2).

Ramirez-Amaro, K., M. Beetz, and G. Cheng (2015). “Transferring skills to humanoid
robots by extracting semantic representations from observations of human activi-
ties.” In: Artificial Intelligence (cit. on p. 95).

Rana, M. A., M. Mukadam, S. R. Ahmadzadeh, S. Chernova, and B. Boots. (2017). “To-
wards Robust Skill Generalization: Unifying Learning from Demonstration and Mo-
tion Planning.” In: Proceedings of the 2017 Conference on Robot Learning (CoRL) (cit. on
p. 73).

Ratliff, N. D., J. A. Bagnell, and M. A. Zinkevich (2006). “Maximum margin planning.”
In: International Conference on Machine Learning (ICML). ACM (cit. on p. 112).

Ratliff, N., J. A. Bagnell, and S. S. Srinivasa (2007). “Imitation learning for locomotion
and manipulation.” In: International Conference on Humanoid Robots (cit. on p. 79).

Ravi, S. and H. Larochelle (2017). “Optimization as a model for few-shot learning.” In:
International Conference on Learning Representations (ICLR) (cit. on pp. 2, 3, 11, 15, 22,
31, 35, 36, 51, 121, 147, 154).

Rei, M. (2015). “Online Representation Learning in Recurrent Neural Language Models.”
In: Conference on Empirical Methods in Natural Language Processing (EMNLP) (cit. on
pp. 67, 149, 152).

Rezende, D. J., S. Mohamed, I. Danihelka, K. Gregor, and D. Wierstra (2016). “One-Shot
Generalization in Deep Generative Models.” In: International Conference on Machine
Learning (ICML) (cit. on p. 31).

Rezende, D. J., S. Mohamed, and D. Wierstra (2014). “Stochastic backpropagation and
approximate inference in deep generative models.” In: arXiv preprint arXiv:1401.4082
(cit. on p. 52).

Rhinehart, N. and K. M. Kitani (2017). “First-Person Activity Forecasting with Online In-
verse Reinforcement Learning.” In: International Conference on Computer Vision (ICCV)
(cit. on pp. 96, 124).

184

Ross, S., G. J. Gordon, and D. Bagnell (2011). “A Reduction of Imitation Learning and
Structured Prediction to No-Regret Online Learning.” In: AISTATS (cit. on p. 79).

Rothfuss, J., F. Ferreira, E. Erdal Askoy, Y. Zhou, and T. Asfour (2018). “Deep Episodic
Memory: Encoding, Recalling, and Predicting Episodic Experiences for Robot Action
Execution.” In: arXiv:1801.04134 (cit. on p. 95).

Russakovsky, O., J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. (2015). “Imagenet large scale visual recognition chal-
lenge.” In: International Journal of Computer Vision (IJCV) (cit. on p. 2).

Sadeghi, F. and S. Levine (2016). “(CAD)ˆ2 RL: Real Single-Image Flight without a Single
Real Image.” In: Robotics: Science and Systems (R:SS) (cit. on p. 96).

Salimans, T. and D. Kingma (2016). “Weight normalization: A simple reparameteriza-
tion to accelerate training of deep neural networks.” In: Neural Information Processing
Systems (NIPS) (cit. on p. 32).

Santoro, A., S. Bartunov, M. Botvinick, D. Wierstra, and T. Lillicrap (2016). “Meta-learning
with memory-augmented neural networks.” In: International Conference on Machine
Learning (ICML) (cit. on pp. 3, 10, 15, 16, 31, 35, 36, 40, 51, 65, 114, 121, 148).

Santos, R. J. (1996). “Equivalence of regularization and truncated iteration for general
ill-posed problems.” In: Linear algebra and its applications (cit. on pp. 49, 92, 112).

Sastry, S. S. and A. Isidori (1989). “Adaptive control of linearizable systems.” In: IEEE
Transactions on Automatic Control (cit. on p. 60).

Saxe, A., J. McClelland, and S. Ganguli (2014). “Exact solutions to the nonlinear dynamics
of learning in deep linear neural networks.” In: International Conference on Learning
Representations (ICLR) (cit. on p. 32).

Schaal, S., A. Ijspeert, and A. Billard (2003). “Computational approaches to motor learn-
ing by imitation.” In: Philosophical Transactions of the Royal Society of London B: Biologi-
cal Sciences (cit. on pp. 79, 95).

Schaal, S., J. Peters, J. Nakanishi, and A. Ijspeert (2005). “Learning movement primitives.”
In: Robotics Research (cit. on p. 79).

Schaefer, A. M., S. Udluft, and H.-G. Zimmermann (2007). “A recurrent control neural
network for data efficient reinforcement learning.” In: International Symposium on
Approximate Dynamic Programming and Reinforcement Learning (cit. on p. 66).

Schaul, T., D. Horgan, K. Gregor, and D. Silver (2015). “Universal value function ap-
proximators.” In: International Conference on Machine Learning (ICML) (cit. on pp. 73,
79).

Schenck, C. and D. Fox (2016). “Guided policy search with delayed senor measure-
ments.” In: arXiv:1609.03076 (cit. on p. 123).

185

Schenck, C. and D. Fox (2017). “Visual closed-loop control for pouring liquids.” In: Inter-
national Conference on Robotics and Automation (ICRA) (cit. on p. 123).

Schmidhuber, J. (1987). “Evolutionary principles in self-referential learning.” Doctoral
dissertation. Institut für Informatik, Technische Universität München (cit. on pp. 2,
15, 31, 51).

Schmidhuber, J. (1992). “Learning to control fast-weight memories: An alternative to
dynamic recurrent networks.” In: Neural Computation (cit. on p. 31).

Schulman, J., S. Levine, P. Abbeel, M. I. Jordan, and P. Moritz (2015). “Trust Region Policy
Optimization.” In: International Conference on Machine Learning (ICML) (cit. on pp. 21,
22, 38, 66, 69, 123).

Schulman, J., F. Wolski, P. Dhariwal, A. Radford, and O. Klimov (2017). “Proximal policy
optimization algorithms.” In: arXiv:1707.06347 (cit. on p. 128).

Sermanet, P., C. Lynch, J. Hsu, and S. Levine (2017a). “Time-Contrastive Networks: Self-
Supervised Learning from Multi-View Observation.” In: arXiv:1704.06888 (cit. on
p. 96).

Sermanet, P., K. Xu, and S. Levine (2017b). “Unsupervised Perceptual Rewards for Imi-
tation Learning.” In: Robotics: Science and Systems (RSS) (cit. on pp. 79, 96, 117, 123).

Sharif Razavian, A., H. Azizpour, J. Sullivan, and S. Carlsson (2014). “CNN features
off-the-shelf: an astounding baseline for recognition.” In: IEEE conference on computer
vision and pattern recognition workshops (cit. on p. 2).

Al-Shedivat, M., T. Bansal, Y. Burda, I. Sutskever, I. Mordatch, and P. Abbeel (2018).
“Continuous adaptation via meta-learning in nonstationary and competitive environ-
ments.” In: International Conference on Learning Representations (ICLR) (cit. on p. 132).

Shelhamer, E., J. Long, and T. Darrell (2017). “Fully Convolutional Networks for Seman-
tic Segmentation.” In: IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI) (cit. on p. 112).

Shrivastava, A., T. Pfister, O. Tuzel, J. Susskind, W. Wang, and R. Webb (2017). “Learning
from simulated and unsupervised images through adversarial training.” In: Computer
Vision and Pattern Recognition (CVPR) (cit. on p. 96).

Shu, R., H. H. Bui, S. Zhao, M. J. Kochenderfer, and S. Ermon (2018). “Amortized Infer-
ence Regularization.” In: arXiv preprint arXiv:1805.08913 (cit. on pp. 47, 52).

Shyam, P., S. Gupta, and A. Dukkipati (2017). “Attentive Recurrent Comparators.” In:
International Conferecence on Machine Learning (ICML) (cit. on pp. 3, 31).

Silver, D., A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. Van Den Driessche, J. Schrit-
twieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al. (2016). “Mastering the
game of Go with deep neural networks and tree search.” In: Nature (cit. on p. 66).

186

Sjöberg, J. and L. Ljung (1995). “Overtraining, regularization and searching for a mini-
mum, with application to neural networks.” In: International Journal of Control 62.6,
pp. 1391–1407 (cit. on p. 112).

Snell, J., K. Swersky, and R. S. Zemel (2017). “Prototypical Networks for Few-shot Learn-
ing.” In: Neural Information Processing Systems (NIPS) (cit. on pp. 3, 10, 31, 154).

Srinivas, A., A. Jabri, P. Abbeel, S. Levine, and C. Finn (2018). “Universal Planning Net-
works.” In: International Conference on Machine Learning (ICML) (cit. on pp. 117, 123).

Stadie, B., P. Abbeel, and I. Sutskever (2017). “Third-person imitation learning.” In: Inter-
national Conference on Learning Representations (ICLR) (cit. on p. 96).

Stulp, F., G. Raiola, A. Hoarau, S. Ivaldi, and O. Sigaud (2013). “Learning compact pa-
rameterized skills with a single regression.” In: International Confernce on Humanoid
Robots (cit. on pp. 73, 79).

Sukhbaatar, S., Z. Lin, I. Kostrikov, G. Synnaeve, A. Szlam, and R. Fergus (2018). “Intrin-
sic motivation and automatic curricula via asymmetric self-play.” In: International
Conference on Learning Representations (ICLR) (cit. on p. 132).

Sung, F., Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hospedales (2017). “Learning
to Compare: Relation Network for Few-Shot Learning.” In: CoRR abs/1711.06025.
arXiv: 1711.06025. url: http://arxiv.org/abs/1711.06025 (cit. on p. 154).

Synnaeve, G., N. Nardelli, A. Auvolat, S. Chintala, T. Lacroix, Z. Lin, F. Richoux, and
N. Usunier (2016). “Torchcraft: a library for machine learning research on real-time
strategy games.” In: arXiv preprint arXiv:1611.00625 (cit. on p. 114).

Tai, L., J. Zhang, M. Liu, and W. Burgard (2018). “Socially-compliant Navigation through
Raw Depth Inputs with Generative Adversarial Imitation Learning.” In: International
Conference on Robotics and Automation (ICRA) (cit. on p. 96).

Tanaskovic, M., L. Fagiano, R. Smith, P. Goulart, and M. Morari (2013). “Adaptive model
predictive control for constrained linear systems.” In: Control Conference (ECC), 2013
European (cit. on p. 67).

Tenenbaum, J. B. (1999). “A Bayesian framework for concept learning.” Doctoral disser-
tation. Massachusetts Institute of Technology (cit. on pp. 3, 13, 51).

Thrun, S. and L. Pratt (1998). Learning to learn. Springer Science & Business Media (cit. on
pp. 2, 31, 79).

Todorov, E., T. Erez, and Y. Tassa (2012). “Mujoco: A physics engine for model-based
control.” In: International Conference on Intelligent Robots and Systems (IROS) (cit. on
pp. 39, 68, 82, 101, 128).

Tow, A., N. Sünderhauf, S. Shirazi, M. Milford, and J. Leitner (2017). “What Would You
Do? Acting by Learning to Predict.” In: arXiv:1703.02658 (cit. on p. 96).

187

http://arxiv.org/abs/1711.06025

http://arxiv.org/abs/1711.06025

Tung, H.-Y. F., A. W. Harley, L.-K. Huang, and K. Fragkiadaki (2018). “Reward Learning
from Narrated Demonstrations.” In: arXiv:1804.10692 (cit. on pp. 117, 123).

Tzeng, E., J. Hoffman, N. Zhang, K. Saenko, and T. Darrell (2014). “Deep domain confu-
sion: Maximizing for domain invariance.” In: arXiv preprint arXiv:1412.3474 (cit. on
p. 96).

Van Den Oord, A., S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalch-
brenner, A. Senior, and K. Kavukcuoglu (2016). “Wavenet: A generative model for
raw audio.” In: arXiv:1609.03499 (cit. on pp. 90, 91).

Viereck, U., A. Pas, K. Saenko, and R. Platt (2017). “Learning a visuomotor controller for
real world robotic grasping using simulated depth images.” In: Conference on Robot
Learning (CoRL) (cit. on p. 96).

Vinyals, O., C. Blundell, T. Lillicrap, D. Wierstra, et al. (2016). “Matching networks for
one shot learning.” In: Neural Information Processing Systems (NIPS) (cit. on pp. 2, 3,
10, 16, 31, 35, 36, 51, 154).

Wan, J., Z. Zhang, J. Yan, T. Li, B. D. Rao, S. Fang, S. Kim, S. L. Risacher, A. J. Saykin,
and L. Shen (2012). “Sparse Bayesian multi-task learning for predicting cognitive
outcomes from neuroimaging measures in Alzheimer’s disease.” In: Conference on
Computer Vision and Pattern Recognition (CVPR) (cit. on pp. 3, 51).

Wang, Y.-X. and M. Hebert (2016). “Learning to learn: Model regression networks for
easy small sample learning.” In: European Conference on Computer Vision (ECCV) (cit.
on pp. 3, 10, 31, 36, 51, 60, 132).

Watter, M., J. Springenberg, J. Boedecker, and M. Riedmiller (2015). “Embed to control:
A locally linear latent dynamics model for control from raw images.” In: Neural
Information Processing Systems (NIPS) (cit. on pp. 117, 123, 124).

Williams, R. J. (1992). “Simple statistical gradient-following algorithms for connectionist
reinforcement learning.” In: Machine learning (cit. on pp. 22, 37).

Wu, Y., M. Schuster, Z. Chen, Q. V. Le, M. Norouzi, W. Macherey, M. Krikun, Y. Cao, Q.
Gao, K. Macherey, et al. (2016). “Google’s neural machine translation system: Bridg-
ing the gap between human and machine translation.” In: arXiv preprint arXiv:1609.08144
(cit. on p. 1).

Wulfmeier, M., D. Z. Wang, and I. Posner (2016a). “Watch this: Scalable cost-function
learning for path planning in urban environments.” In: 2016 vinyals2016matching/RSJ
International Conference on Intelligent Robots and Systems (IROS), pp. 2089–2095 (cit. on
p. 112).

188

Wulfmeier, M., P. Ondruska, and I. Posner (2015). “Maximum Entropy Deep Inverse
Reinforcement Learning.” In: Neural Information Processing Systems Conference, Deep
Reinforcement Learning Workshop. Vol. abs/1507.04888 (cit. on pp. 112, 116).

Wulfmeier, M., D. Rao, and I. Posner (2016b). “Incorporating Human Domain Knowl-
edge into Large Scale Cost Function Learning.” In: CoRR abs/1612.04318 (cit. on
p. 112).

Wulfmeier, M., D. Z. Wang, and I. Posner (2016c). “Watch this: Scalable cost-function
learning for path planning in urban environments.” In: International Conference on
Intelligent Robots and Systems (IROS) (cit. on p. 124).

Xiang, Y., T. Schmidt, V. Narayanan, and D. Fox (2018). “PoseCNN: A Convolutional
Neural Network for 6D Object Pose Estimation in Cluttered Scenes.” In: Robotics
Science and Systems (R:SS) (cit. on p. 86).

Xie, A., A. Singh, S. Levine, and C. Finn (2018). “Few-Shot Goal Inference for Visuomotor
Learning and Planning.” In: Under Review (cit. on p. 4).

Xu, K., E. Ratner, A. Dragan, S. Levine, and C. Finn (2018). “Learning a Prior over Intent
via Meta-Inverse Reinforcement Learning.” In: arXiv:1805.12573 (cit. on p. 4).

Yahya, A., A. Li, M. Kalakrishnan, Y. Chebotar, and S. Levine (2017). “Collective robot
reinforcement learning with distributed asynchronous guided policy search.” In: In-
ternational Conference on Intelligent Robots and Systems (IROS) (cit. on p. 123).

Yamaguchi, A., C. G. Atkeson, and T. Ogasawara (2015). “Pouring skills with planning
and learning modeled from human demonstrations.” In: International Journal of Hu-
manoid Robotics (cit. on p. 123).

Yang, Y., Y. Li, C. Fermüller, and Y. Aloimonos (2015). “Robot Learning Manipulation
Action Plans by" Watching" Unconstrained Videos from the World Wide Web.” In:
AAAI Conference on Artificial Intelligence (AAAI) (cit. on p. 95).

Yi, D., Z. Lei, S. Liao, and S. Z. Li (2014). “Learning face representation from scratch.” In:
arXiv preprint arXiv:1411.7923 (cit. on p. 1).

Yoo, D., N. Kim, S. Park, A. S. Paek, and I. S. Kweon (2016). “Pixel-level domain transfer.”
In: European Conference on Computer Vision (ECCV). Springer (cit. on p. 96).

Yosinski, J., J. Clune, Y. Bengio, and H. Lipson (2014). “How transferable are features in
deep neural networks?” In: Neural Information Processing Systems (NIPS) (cit. on p. 2).

You, Y., X. Pan, Z. Wang, and C. Lu (2017). “Virtual to Real Reinforcement Learning for
Autonomous Driving.” In: arXiv:1704.03952 (cit. on p. 96).

Yu, K., V. Tresp, and A. Schwaighofer (2005). “Learning Gaussian processes from multi-
ple tasks.” In: International Conference on Machine Learning (ICML) (cit. on pp. 3, 51).

189

Yu, T., C. Finn, A. Xie, S. Dasari, T. Zhang, P. Abbeel, and S. Levine (2018). “One-Shot Im-
itation from Observing Humans via Domain-Adaptive Meta-Learning.” In: Robotics:
Science and Systems (RSS) (cit. on p. 4).

Zaremba, W., I. Sutskever, and O. Vinyals (2014). “Recurrent neural network regulariza-
tion.” In: arXiv preprint arXiv:1409.2329 (cit. on p. 166).

Zeng, A., S. Song, K.-T. Yu, E. Donlon, F. R. Hogan, M. Bauza, D. Ma, O. Taylor, M. Liu, E.
Romo, et al. (2018). “Robotic Pick-and-Place of Novel Objects in Clutter with Multi-
Affordance Grasping and Cross-Domain Image Matching.” In: International Confer-
ence on Robotics and Automation (ICRA) (cit. on p. 103).

Zhang, C., S. Bengio, M. Hardt, B. Recht, and O. Vinyals (2017). “Understanding deep
learning requires rethinking generalization.” In: International Conference on Learning
Representations (ICLR) (cit. on p. 12).

Zhang, J. and K. Cho (2017). “Query-Efficient Imitation Learning for End-to-End Simu-
lated Driving.” In: AAAI Conference on Artificial Intelligence (cit. on p. 79).

Zhang, T., Z. McCarthy, O. Jow, D. Lee, K. Goldberg, and P. Abbeel (2017). “Deep Imita-
tion Learning for Complex Manipulation Tasks from Virtual Reality Teleoperation.”
In: arXiv preprint arXiv:1710.04615 (cit. on pp. 73, 84, 94, 95, 103, 162, 164).

Zhu, Y., R. Mottaghi, E. Kolve, J. J. Lim, A. Gupta, L. Fei-Fei, and A. Farhadi (2017).
“Target-driven visual navigation in indoor scenes using deep reinforcement learn-
ing.” In: International Conference on Robotics and Automation (ICRA) (cit. on pp. 117,
123).

Ziebart, B. D., A. L. Maas, J. A. Bagnell, and A. K. Dey (2008). “Maximum Entropy
Inverse Reinforcement Learning.” In: AAAI (cit. on pp. 107–110, 112, 117, 123).

190

		Acknowledgements

		Contents

		1 Introduction

		Foundations

		2 Problem Statement

		2.1 Meta-Learning Problem and Terminology

		2.2 Design Space of Meta-Learning Problems

		3 Desirable Properties of Meta-Learning Algorithms

		3.1 Expressive Power of Meta-Learning Algorithms

		3.2 Consistent Learning Algorithms

		3.3 Handling Ambiguity in Learning

		Meta-Learning with Gradients

		4 A Model-Agnostic Meta-Learning Algorithm

		4.1 General Algorithm

		4.2 Species of MAML

		4.2.1 Supervised Regression and Classification

		4.2.2 Reinforcement Learning

		4.3 Implementation and First-Order Approximation

		4.4 Expressive Power of Model-Agnostic Meta-Learning

		4.4.1 Universality of the One-Shot Gradient-Based Learner

		4.4.2 General Universality of the Gradient-Based Learner

		4.4.3 Loss Functions

		4.5 Related Work

		4.6 Experimental Evaluation

		4.6.1 Regression

		4.6.2 Classification

		4.6.3 Reinforcement Learning

		4.6.4 Empirical Study of Inductive Bias

		4.6.5 Effect of Depth

		4.7 Discussion

		5 A Probabilistic Model-Agnostic Meta-Learning Algorithm

		5.1 Overview and Preliminaries

		5.2 Gradient-Based Meta-Learning with Variational Inference

		5.3 Probabilistic Model-Agnostic Meta-Learning with Hybrid Inference

		5.4 Adding Additional Dependencies

		5.5 Related Work

		5.6 Experiments

		5.6.1 Discussion and Future Work

		Extensions and Applications

		6 Online Adaptive Control

		6.1 Meta-Learning for Adaptive Control

		6.1.1 Preliminaries: Model-Based RL

		6.1.2 Overview

		6.1.3 Online Model Adaptive Control

		6.1.4 General Algorithm of Meta-Learning for Adaptive Control

		6.1.5 Recurrence-Based Adaptive Control (RBAC)

		6.1.6 Gradient-Based Adaptive Control (GBAC)

		6.1.7 Related Work

		6.1.8 Experiments

		6.1.9 Discussion

		7 Few-Shot Imitation Learning

		7.1 Meta-Imitation Learning

		7.1.1 Overview

		7.1.2 Two-Head Architecture: Learning a Loss for Fast Adaptation

		7.1.3 Learning to Imitate without Expert Actions

		7.1.4 Model Architectures for Meta-Imitation Learning

		7.1.5 Related Work

		7.1.6 Experiments

		7.1.7 Discussion and Future Work

		7.2 One-Shot Imitation from Humans

		7.2.1 Problem Overview

		7.2.2 Domain-Adaptive Meta-Learning

		7.2.3 Learned Temporal Adaptation Objectives

		7.2.4 Probabilistic Interpretation

		7.2.5 Model Architectures

		7.2.6 Related Work

		7.2.7 Experiments

		7.2.8 Discussion

		8 Few-Shot Intent Inference

		8.1 Learning a Prior over Intent via Meta Inverse Reinforcement Learning

		8.1.1 Preliminaries and Overview

		8.1.2 Learning to Learn Rewards

		8.1.3 Related Work

		8.1.4 Experiments

		8.1.5 Discussion

		8.2 Few-Shot Goal Inference for Visuomotor Learning and Planning

		8.2.1 Overview

		8.2.2 Problem Set-up

		8.2.3 Meta-learning for Few-Shot Goal Inference

		8.2.4 Few-Shot Goal Inference for Learning and Planning

		8.2.5 Related Work

		8.2.6 Experiments

		8.2.7 Discussion

		9 Conclusion

		Appendices

		A Model-Agnostic Meta-Learning Methods

		A.1 Supplementary Proofs for 1-Shot Universality

		A.1.1 Proof of Lemma 4.4.1

		A.1.2 Proof of Lemma A.1.1

		A.1.3 Form of linear weight matrices

		A.1.4 Output function

		A.2 Full K-Shot Proof of Universality

		A.3 Supplementary Proof for K-Shot Universality

		A.4 Universality with Deep ReLU Networks

		A.5 Proof of Theorem 4.4.1

		A.6 Proof of Theorem 4.4.2

		A.7 MAML Experimental Details

		A.7.1 Classification

		A.7.2 Reinforcement Learning

		A.7.3 Inductive Bias Experiments

		A.7.4 Depth Experiments

		A.8 MAML Additional Sinusoid Results

		A.9 MAML Additional Comparisons

		A.9.1 Multi-task baselines

		A.9.2 Context vector adaptation

		A.10 Ambiguous CelebA Details

		A.11 PLATIPUS Experimental Details

		A.12 PLATIPUS MiniImagenet Comparison

		B Extensions to Control

		B.1 Online Adaptation: Additional Experiments and Experimental Details

		B.1.1 Model Prediction Errors: Pre-update vs. Post-update

		B.1.2 Effect of Meta-Training Distribution

		B.1.3 Learning Curves

		B.1.4 Reward functions

		B.1.5 Hyperparameters

		B.2 MIL Experimental Details

		B.2.1 Simulated Reaching

		B.2.2 Simulated Pushing

		B.2.3 Real-World Placing

		B.3 DAML Hyperparameter and Experimental Details

		B.3.1 Data collection

		B.3.2 Architecture Choices

		B.3.3 Placing, Pushing, and Pick-and-Place Experiments

		B.3.4 Diverse Human Demonstration Experiments

		B.3.5 Sawyer Robot Experiments

		B.3.6 Simulated Pushing Experiment

		B.4 MandRIL Experimental Details

		B.4.1 Hyperparameters

		B.4.2 Environment Details

		B.5 MandRIL Detailed Meta-Objective Derivation

		B.6 FLO Experimental Details

		B.6.1 Model Architecture

		B.6.2 Autoencoder Comparison Details

