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Abstract
Hierarchical Deep Reinforcement Learning for Robotics and Data Science

by Sanjay Krishnan
Doctor of Philosophy in Electrical Engineering and Computer Sciences

Ken Goldberg, Chair

This dissertation explores learning important structural features of a Markov Decision
Process from offline data to significantly improve the sample-efficiency, stability, and ro-
bustness of solutions even with high dimensional action spaces and long time horizons. It
presents applications to surgical robot control, data cleaning, and generating efficient exe-
cution plans for relational queries. The dissertation contributes: (1) Sequential Windowed
Reinforcement Learning: a framework that approximates a long-horizon MDP with a se-
quence of shorter term MDPs with smooth quadratic cost functions from a small number
of expert demonstrations, (2) Deep Discovery of Options: an algorithm that discovers hi-
erarchical structure in the action space from observed demonstrations, (3) AlphaClean: a
system that decomposes a data cleaning task into a set of independent search problems
and uses deep q-learning to share structure across the problems, and (4) Learning Query
Optimizer: a system that observes executions of a dynamic program for SQL query opti-
mization and learns a model to predict cost-to-go values to greatly speed up future search
problems.
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Chapter 1

Introduction

Bellman’s “Principle of Optimality” and the characterization of dynamic programming is
one of the most important results in computing [11]. Its importance stems from the ubiquity
of Markovian decision processes (MDPs), which formalize a wide range of problems from
path planning to scheduling [49]. In the most abstract form, there is an agent who makes
a sequence of decisions to effect change on a system that processes these decisions and
updates its internal state possibly non-deterministically. The process is “Markovian” in the
sense that the system’s current state completely determines its future progression. As an
example of an MDP, one might have to plan a sequence of motor commands to a robot
to control it to a target position. Or, one might have to schedule a sequence of cluster
computing tasks while avoiding double scheduling on a node. The solution to a MDP is a
decision making policy: the optimal decision to make given any current state of the system.

Since the MDP framework is extremely general—it encompasses shortest-path graph
search, supervised machine learning, and optimal control—the difficulty in solving a partic-
ular MDP relates to what assumptions can be made about the system. A setting of interest is
when one only assumes black-box access to the system, where no parametric model of the
system is readily available and the agent must iteratively query the system to optimize its
decision policy. This setting, also called reinforcement learning [121], has been the subject
of significant recent research interest. First, there are many dynamical problems for which
a closed-form analytical description of a system’s behavior is not available but one has a
programatic approximation of how the system transitions (i.e., simulation). Reinforcement
Learning (RL) allows for direct optimization of decision policies over such simulated sys-
tems. Next, by virtue of the minimal assumptions, RL algorithms are extremely general
and widely applicable across many different problem settings. From a software engineer-
ing perspective, this unification allows the research community to develop a small number
of optimized libraries for RL rather each domain designing/maintaining problem-specific
algorithms. Over the last few years, the combination deep neural networks and reinforce-
ment learning, or Deep RL, have emerged as in robotics, AI, and machine learning as an
important area of research [85, 110, 115, 119]. Deep RL correlates features of states to
successful decisions using neural networks.
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CHAPTER 1. INTRODUCTION 5

Since RL relies on black-box queries to optimize the policy, it can be very inefficient in
problems where the decision space is high-dimensional and when the decision horizon (the
length of the sequence of decisions the agent needs to make) is very long. The algorithm has
to simultaneously correlate features that are valuable for making a decision in a state while
also searching through the space of decisions to figure out which sequence of decisions are
valuable. A failure to learn means that the algorithm cannot intelligently search the space
of decisions, and a failure to find promising sequences early means that the algorithm
cannot learn. This creates a fundementally unstable algorithm setting, where the hope is
the algorithm discovers good decision sequences by chance and can bootstrap from these
relatively rare examples. The higher the dimensionality of the problem, the less likely
purely random search will be successful.

Fortunately, in many domains of interest, a limited amount of expert knowledge is
available, e.g., a human teleoperator can guide the motion of a robot to show an example
solution of one problem instance or a slow classical algorithm can be used to generate
samples for limited problem instances. Collecting such “demonstrations” to exhaustively
learn a solution for possible progressions on MDP (called Imitation Learning [91]) can be
expensive, but we might have sufficient data to find important structural features of a search
problem including task decomposition, subspaces of actions that are irrelevant to the task,
and the structure of the cost function. One such structure is hierarchy, where primitive
actions are hierarchically composed into higher level behaviors.

The main contribution of this dissertation is the thesis that learning action hierarchies
from data can significantly improve the sample-efficiency, stability, and robustness of Deep
RL in high-dimensional and long-horizon problems. With this additional structure, the
RL process can be restricted to those sequences that are grounded in action sequences
seen in the expert data. My work over the last 6 years explores this approach in several
contexts for control of imprecise cable-driven surgical robots, automatically synthesizing
data-cleaning programs to meet quality specifications, and generating efficient execution
plans for relational queries. I describe algorithmic contributions, theoretical analysis about
the implementations themselves, the architecture of the RL systems, and data analysis from
physical systems and simulations.

Contributions: This dissertation contributes:

1. Deep Discovery of Options (DDO): A new bayesian learning framework for learn-
ing parametrized control hierarchies from expert data (Chapter 2). DDO infers the
parameters of an Abstract HMM model to decomposes the action space into a hierar-
chy of discrete skills relevant to a task. I show that the hierarchical model represents
policies more efficiently (requires less data to learn) than a flat model on real and
simulated robot control tasks. I also show that this hierarchy can be used to guide
exploration in search problems through compositions of the discrete skills seen in
the data rather than arbitrary sequences of actions. I apply this model to significantly
accelerate learning in self-play of Atari games. Results suggest that DDO can take 3x
fewer demonstrations to achieve the same reward compared to a baseline imitation
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learning approach, and cut the sample-complexity of the RL phase by up-to an order
of magnitude.

Krishnan, Sanjay, Roy Fox, Ion Stoica, and Ken Goldberg. DDDO: Discovery of
Deep Continuous Options for Robot Learning from Demonstrations. Proceeding of
Machine Learning Research: Conference on Robot Learning. 2017.

Code for DDO is available at: https://bitbucket.org/sjyk/segment-centroid/

2. Sequential Windowed Inverse Reinforcement Learning (SWIRL): A learning frame-
work for approximating an MDP with a sequence of shorter horizon MDPs with
quadratic cost functions (Chapter 3). SWIRL can be thought of as a special paramet-
ric case of DDO where skills terminate at goal states. I show on two surgical robot
control tasks, cutting along a line and tensioning fabric, SWIRL significantly reduces
the policy search time of a Q-Learning algorithm. In simulation, SWIRL achieves
the maximum reward on the task with 85% fewer rollouts than Q-Learning, and 8x
fewer demonstrations than behavioral cloning. In physical trials, it achieves a 36%
relative improvement in reward compared to baselines.

Krishnan, Sanjay, Animesh Garg, Richard Liaw, Brijen Thananjeyan, Lauren Miller,
Florian T. Pokorny, and Ken Goldberg. SWIRL: A Sequential Windowed Inverse
Reinforcement Learning Algorithm for Robot Tasks with Delayed Rewards. Interna-
tional Journal of Robotics Research. 2018.

3. Transition State Clustering (TSC): The underlying task decomposition algorithm in
SWIRL is a Bayesian clustering framework called TSC (Chapter 3). This model cor-
relates spatial and temporal features with changes in motion of the demonstrator. The
crucial advantage of this framework is that it can exploit “third person” demonstra-
tions data where only the states of the MDP are visible but not the decisions the expert
took. The motivating application is learning from expert surgeons by analyzing data
from a surgical robot. I show that TSC is more robust to spatial and temporal vari-
ation compared to other segmentation methods and can apply to both kinematic and
visual demonstration data. In these settings, TSC runs 100x faster than the next most
accurate alternative Auto-regressive Models, which require expensive MCMC-based
inference, and has fewer parameters to tune.

Krishnan, Sanjay, Animesh Garg, Sachin Patil, Colin Lea, Gregory Hager, Pieter
Abbeel, and Ken Goldberg. Transition State Clustering: Unsupervised surgical tra-
jectory segmentation for robot learning. International Journal of Robotics Research.
2018.

Code for TSC and SWIRL is available at: http://berkeleyautomation.github.io/tsc-dl/

4. Alpha Clean: A system for synthesizing data cleaning programs to enforce database
integrity constraints (Chapter 4). The main algorithm in the system decomposes
the integrity constraints on a table into a collection of independent search problems
called blocks. The algorithm starts by exhaustively searching the initial blocks and
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then incrementally learns a Q-function to make the search on future increasingly pre-
cise. This process leverages the fact that data cleaning is not an arbitrary constraint
satisfaction problem and most database corruption is systematic, i.e., correlated with
features of the data.

Krishnan, Sanjay, Eugene Wu, Michael Franklin, and Ken Goldberg. Alpha Clean:
Data Cleaning with Distributed Tree Search and Learning. 2018.

Code for AlphaClean is available at: https://github.com/sjyk/alphaclean

5. A new approximate dynamic programming framework for SQL query optimization.
Classical query optimizers leverage dynamic programs for optimally nesting join
queries. This process creates a table that memoizes cost-to-go estimates of interme-
diate subplans. By representing the memoization table with a neural network, the
optimizer can estimate the cost-to-go of even previously unseen plans allowing for
a vast expansion of the search space. I show that this process is a form of Deep
Q-Learning where the state is a query graph and the actions are contractions on the
query graph. The approach achieves plan costs within a factor of 2 of the optimal
solution on all cost models and improves on the next best heuristic by up to 3ˆ.
Furthermore, it can execute up to 10,000ˆ faster than exhaustive enumeration and
more than 10ˆ faster than left/right-deep enumeration on the largest queries in the
benchmark.

Krishnan, Sanjay, Zongheng Yang, Ion Stoica, Joseph Hellerstein, and Ken Goldberg.
Learning to Efficiently Enumerate Joins with Deep Reinforcement Learning. 2018.

Code for this project is available at: https://github.com/sjyk/rlqopt

6. An application of deep reinforcement learning to synthesizing surgical thin tissue
tensioning policies. To improve the search time, the algorithm initializes its search
with an analytical approximation of the equilibrium state of a FEM simulator. The
result is a search algorithm that searches for a policy over several hundred timesteps
in less than a minute of latency (Chapter 6).

Krishnan, Sanjay and Ken Goldberg. Sanjay Krishnan and Ken Goldberg. Boot-
strapping Deep Reinforcement Learning of Surgical Tensioning with An Analytic
Model. C4 Surgical Workshop 2017.

Code for this project is available at: https://github.com/BerkeleyAutomation/clothsimulation

Background and Related Work
A discrete-time discounted Markov Decision Process (MDP) is described by a 6-tuple
xS,A, p0, p, R, γy, where S denotes the state space, A the action space, p0 the initial state
distribution, ppst`1 | st, atq the state transition distribution, Rpst, atq P R is the reward
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function, and γ P r0, 1q the discount factor. The objective of an MDP is to find a decision
policy, a probability distribution over actions π : S ÞÑ ∆pAq. A policy π induces the
distribution over trajectories ξ “ rps0, a0q, ps1, a1q, ..., psN , aNqs:

Pπpξq “ p0px0q

T´1
ź

t“0

πpat | stqppst`1 | st, atq.

The value of a policy is its expected total discounted reward over trajectories

Vπ “ Eξ„Pπ

«

T´1
ÿ

t“0

γtRpst, atq

ff

.

The objective is to find a policy in a class of allowed policies π˚ P Π to maximize the
return:

π˚ “ arg max
πPΠ

Vπ (1)

The Ubiquity of Markov Decision Processes
While it is true that many systems of interest are not Markov and do not offer direct ob-
servation of their internal states, the MDP actually covers a substantial number of classical
problems in Computer Science. Consider the following reductions:

Shortest Path Graph Search: A graph search problem instance is defined as follows.
Let G “ pV,Eq be a graph with vertices V and edges E, and let q P V denote a starting
vertex and t P V denote a target vertex. Find a path connected by edges from q to t. In
MDP notation, we can consider a hypothetical agent whose state is a pointer to a vertex, its
actions are moving to an adjacent vertex, the transition executes this move, and its reward
function is an indicator of whether the state is t. More formally, S “ V , A “ S ˆ S,
R “ 1pst “ tq, and p0 “ q. A discount factor of γ “ 1 specifies that any path is optimal,
and γ ă 1 specifies that shorter paths are preferred.

Supervised Learning: In empirical risk minimization for supervised learning, one is
given a set of tuples pX, Y q “ px0, y0q, ..., pxN , yNq and the objective is to find a function
that minimizes f : X ÞÑ Y that minimizes some point-wise measure of disagreement
called a loss function

řN
i“0 `pfpxiq, yiq. In MDP notation, this is a “stateless” problem.

The agent’s state is a randomly chose example S “ X , its action space is Y , and the
reward function is the loss function.

Optimal Control: Optimal control problems also constitute Markov Decision Process
problems:

min
a1,...,aT

T
ÿ

i“1

γi ¨ Jpsi, aiq

subject to: si`1 “ fpsi, aiq
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ai P A si P S s1 “ c

The problem is to select T decisions where each decision ai resides in an action space A.
The decision making problem is stateful where the world has an initial state s1 and this
state is affected by every decision the decision-making agent selects through the transition
model fpsi, aiq which transitions the state to another state in the set S. The objective
is to optimize the cumulative cost of these decisions Jpsi, aiq potentially subject to an
exponential discount γ that controls a bias towards short term or long term costs.

Reinforcement Learning (RL)
The reinforcement learning setting further assumes “black box” (also called oracular) ac-
cess to the state transition distribution p and the reward function R. This means the opti-
mization algorithm is only allowed queries of the following form:

qt : st, at Ñ system() Ñ st`1, rt

This dissertation terms any algorithm that satisfies this query model as RL. The number
of such queries issued by an RL algorithm is called its sample-complexity. This relaxes
the restriction of any analytic knowledge about the structure of R or p, and only requires a
system model that can be queried (e.g., written in code, implemented as physical system).
The focus of this dissertation is on cases where ab initio RL has a prohibitive sample
complexity due to high-dimensional action spaces or long time horizons. With no prior
knowledge of which actions lead to rewards any RL algorithm has to essentially start with
random decisions, and even when the algorithm observes a positive signal it has no notion
of directionality.

Imitation Learning
A contrasting approach to RL is imitation learning [91], where one assume access to an
supervisor who samples from an unknown policy π̂ « π˚ the optimal policy; these samples
are called demonstrations. Rather than querying the system to optimize the policy, the
problem is to imitate the supervisor as best as possible. Consider a worker in a factory
moving a robot with a joystick. Here the objective of the worker is unknown but simply a
trajectory of states and action. Similarly, in programming-by-examples, one only observes
input and output data and not a complete specification of the program. In the most basic
form, such a problem reduces to Maximum Likelihood Estimation.

A policy πθpat|stq defines the distribution over controls given the state, parametrized
by θ P Θ. In Behavior Cloning (BC), one trains the parameter θ so that the policy fits
the dataset of observed demonstrations and imitates the supervisor. For example, we can
maximize the log-likelihood Lrθ; ξs that the stochastic process induced by the policy πθ
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assigns to each demonstration trajectory ξ:

Lrθ; ξs “ log p0ps0q `

T´1
ÿ

t“0

logpπθpat|stqppst`1|st, atqq.

When log πθ is parametrized by a deep neural network, we can perform stochastic gradient
descent by sampling a batch of transitions, e.g. one complete trajectory, and computing the
gradient

∇θLrθ; ξs “
T´1
ÿ

t“0

∇θ log πθpat|stq.

Note that this method can be applied model-free, without any knowledge of the system
dynamics p.

Another approach to the imitation setting is Inverse Reinforcement Learning [3, 88,
137]. This approach infers a reward function from the observed data (and possibly the
system dynamics)–thus, reducing the problem to the original RL problem setting. [2] argue
that the reward function is often a more concise representation of task than a policy. As
such, a concise reward function is more likely to be robust to small perturbations in the
task description. The downside is that the reward function is not useful on its own, and
ultimately a policy must be retrieved. In the most general case, an RL algorithm must be
used to optimize for that reward function [2].

Reinforcement Learning with Demonstrations
However, imitation learning places a significant burden on a supervisor to exhaustively
cover the scenarios the robot may encounter during execution [74]. To address the limita-
tions on either extreme of imitation and reinforcement, this dissertation proposes a hybrid
of the exploration and demonstration learning paradigms.

Problem 1 (Reinforcement Learning with Demonstrations) Given an MDP and a set of
demonstration trajectories D “ tξ1, ..., ξNu from a supervisor, return a policy π˚ that
maximizes the cumulative reward of the MDP with a reinforcement learning algorithm.

This is a problem setting that has been studied by a few recent works. In Deeply Ag-
gravated [118], the expert must provide a value function in addition to actions, which ulti-
mately creates an algorithm similar to Reinforcement Learning. This basic setting is also
similar to the problem setting consider in [96]. [117] consider a model where the random
search policy of the algorithm is guided by expert demonstrations. Rather than manipulat-
ing the search strategy, [19] modify the “shape” the reward function to match trajectories
seen in demonstration. This is an idea that has gotten recent traction in the robot learning
community [31, 48, 51].
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This recent work raises a central question: what should be learned from demonstrations
to effectively bootstrap reinforcement learning? One approach is using imitation learning
to learn a policy which initializes the search in RL. While this can be a very effective
strategy, it neglects other structure that is latent in the demonstrations like are there common
sequences of actions that tend to occur or do parts of the task decompose into simpler units.
In the high-dimensional setting, it is crucial to exploit such structure and this dissertation
shows that different aspects of the structure such as task decomposition, action hierarchy,
and action relevancy can be cast as Bayesian latent variable problems. I explore learning
this structure in detail and the impact of learning this structure on several RL problems.



Chapter 2

Deep Discovery of Deep Options:
Learning Hierarchies From Data

In high-dimensional or combinatorial action spaces, the vast majority of action sequences
are irrelevant to the task at hand. Therefore, purely random exploration is likely to be
prohibitively wasteful. What makes many sequential problems particularly challenging for
is that all of these random action sequences are, in a sense, equally irrelevant. This means
that there might not be any signal in the sampled data that the Q-learning algorithm can
exploit. Until the agent serendipitously discovers such a sequence, no learning can occur.

In the first section of this dissertation, I explore this problem in the context of robotics,
self-play in atari games, and program imitation. The basic insight is that while the space of
all action sequences AT is very large, there is often a much smaller subset of those that are
potentially relevant to typical problem instances Arelevant Ă AT . Given a small amount of
expert information, I describe techniques for learning Arelevant from data.

How do we parametrize Arelevant? One approach is to describe the agent’s actions as a
composition higher-level behaviors called [122], each consisting of a control policy for one
region of the state space, and a termination condition recognizing leaving that region. This
augmentation naturally defines a hierarchical structure of high-level meta-control policies
that invoke lower-level options to solve sub-tasks. This leads to a “divide and conquer”
relationship between the levels, where each option can specialize in short-term planning
over local state features, and the meta-control policy can specialize in long-term planning
over slowly changing state features. This means that any search can be restricted to the
action sequences that can be formed as a composition of skills.

Abstractions for decomposing an MDP into subtasks have been studied in the area of
hierarchical reinforcement learning (HRL) [9, 95, 122]. Early work in hierarchical con-
trol demonstrated the advantages of hierarchical structures by handcrafting hierarchical
policies [18] and by learning them given various manual specifications: state abstrac-
tions [28,47,60,61], a set of waypoints [53], low-level skills [6,50,78], a set of finite-state
meta-controllers [94], or a set of subgoals [29,122]. The key abstraction in HRL is the “op-

12



CHAPTER 2. DEEP DISCOVERY OF DEEP OPTIONS 13

tions framework” [122], which defines a hierarchy of increasingly complex meta-actions.
An option represent a lower-level control primitive that can be invoked by the meta-control
policy at a higher-level of the hierarchy, in order to perform a certain subroutine (a useful
sequence of actions). The meta-actions invoke specialized policies rather than just taking
primitive actions.

Formally, an option h is described by a triplet

xIh, πh, ψhy,

where Ih Ă X denotes the initiation set, πhput | xtq the control policy, and ψhpstq P r0, 1s
the termination policy. When the process reaches a state s P Ih, the option h can be invoked
to run the policy πh. After each action is taken and the next state s1 is reached, the option h
terminates with probability ψhps1q and returns control up the hierarchy to its invoking level.
The options framework enables multi-level hierarchies to be formed by allowing options
to invoke other options. A higher-level meta-control policy is defined by augmenting its
action space A with the setH of all lower-level options.

The options framework has been applied in robotics [63, 65, 106] and in the analysis
of biological systems [15, 16, 113, 131, 135].Since then, the focus of research has shifted
towards discovery of the hierarchical structure itself, by: trading off value with description
length [125], identifying transitional states [73, 80, 82, 112, 116], inference from demon-
strations [20, 27, 65, 66], iteratively expanding the set of solvable initial states [62, 63],
policy gradient [77], trading off value with informational constraints [34,36,41,52], active
learning [44], or recently value-function approximation [5, 45, 107].

2.1 Overview
First, I describe a new learning framework for discovering a parametrized option struc-
ture from a small amount of expert demonstrations. I assume that these demonstrations
are state-action demonstrations. Despite recent results in option discovery, some proposed
techniques do not generalize well to multi-level hierarchies [5, 45, 72], while others are in-
efficient for learning expressive representations (e.g., options parametrized by neural net-
works) [20, 27, 44, 73].

I introduce the Discovery of Deep Options (DDO), an algorithm for efficiently discov-
ering deep hierarchies of deep options. DDO is a policy-gradient algorithm that discovers
parametrized options from a set of demonstration trajectories (sequences of states and ac-
tions) provided either by a supervisor or by roll-outs of previously learned policies. These
demonstrations need not be given by an optimal agent, but it is assumed that they are infor-
mative of the preferred actions to take in each visited state, and are not just random walks.
DDO is an inference algorithm that applies to the supervised demonstration setting.

Given a set of trajectories, the algorithm discovers a fixed, predetermined number of
options that are most likely to generate the observed trajectories. Since an option is repre-
sented by both a control policy and a termination condition, my algorithm simultaneously
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(1) infers option boundaries in demonstrations which segment trajectories into different
control regimes, (2) infers the meta-control policy for selecting options as a mapping of
segments to the option that likely generated them, and (3) learns a control policy for each
option, which can be interpreted as a soft clustering where the centroids correspond to
prototypical behaviors of the agent.

2.2 Generative Model
First, we describe a generative model for expert demonstrations. This can be thought of
as a generalization of standard imitation learning to hierarchical control. In this generative
model, the meta-control signals that form the hierarchy are unobservable, latent variables
of the generative model, that must be inferred.

Consider a trajectory ξ “ ps0, a0, s1, . . . , sT q that is generated by a two-level hierarchy.
The low level implements a set H of options xπh, ψhyhPH. The high level implements
a meta-control policy ηpht|stq that repeatedly chooses an option ht „ ηp¨|stq given the
current state, and runs it until termination. Our hierarchical generative model is:

Initialize tÐ 0, s0 „ p0, b0 Ð 1
for tÐ 0, . . . , T ´ 1 do

if bt “ 1 then
Draw ht „ ηp¨|stq

else
Set ht Ð ht´1

end if
Draw at „ πhtp¨|stq
Draw st`1 „ pp¨|st, atq
Draw bt`1 „ Berpψhtpst`1qq

end for

2.3 Expectation-Gradient Inference Algorithm
We denote by θ the vector of parameters for πh, ψh and η. For example, θ can be the weights
and biases of a feed-forward network that computes these probabilities. This generic nota-
tion allows us the flexibility of a completely separate network for the meta-control policy
and for each option, θ “ pθη, pθhqhPHq, or the efficiency of sharing some of the parameters
between options, similarly to a Universal Value Function Approximator [101].

We want to find the θ P Θ that maximizes the log-likelihood assigned to a given
dataset of trajectories. The likelihood of a trajectory depends on the latent sequence ζ “
pb0, h0, b1, h1, . . . , hT´1q of meta-actions and termination indicators, and in order to use a
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gradient-based optimization method we rewrite the gradient using the following EG-trick:

∇θLrθ; ξs “ ∇θ logPθpξq “
1

Pθpξq

ÿ

ζPpt0,1uˆHqT
∇θ Pθpζ, ξq

“
ÿ

ζ

Pθpζ, ξq

Pθpξq
∇θ logPθpζ, ξq “ Eζ|ξ;θr∇θ logPθpζ, ξqs,

which is the so-called Expectation-Gradient method [81, 100]. θ´ denotes the current pa-
rameter taken as fixed outside the gradient.

The generative model in the previous section implies the likelihood

Pθpζ, ξq “ p0ps0qδb0“1ηph0|s0q

T´1
ź

t“1

Pθpbt, ht|ht´1, stq
T´1
ź

t“0

πhtpat|stqppst`1|st, atq,

with

Pθpbt“1, ht|ht´1, stq “ ψht´1pstqηpht|stq

Pθpbt“0, ht|ht´1, stq “ p1´ ψht´1pstqqδht“ht´1 .

δht“ht`1 denotes the indicator that ht “ ht`1.
Applying the EG-trick and ignoring the terms that do not depend on θ, we can simplify

the gradient to:

∇θLrθ; ξs “ Eζ|ξ;θ

«

∇θ log ηph0|s0q `

T´1
ÿ

t“1

∇θ logPθpbt, ht|ht´1, stq `
T´1
ÿ

t“0

∇θ log πhtpat|stq

ff

.

The log-likelihood gradient can therefore be computed as the sum of the log-probability
gradients of the various parameterized networks, weighed by the marginal posteriors

utphq “ Pθpht“h|ξq

vtphq “ Pθpbt“1, ht“h|ξq

wtphq “ Pθpht“h, bt`1“0|ξq.

In the Expectation-Gradient algorithm, the E-step computes u, v and w, and the G-step
updates the parameter with a gradient step, namely

∇θLrθ; ξs “
ÿ

hPH

˜

T´1
ÿ

t“0

˜

vtphq∇θ log ηph|stq ` utphq∇θ log πhpat|stq

¸

`

T´2
ÿ

t“0

˜

putphq ´ wtphqq∇θ logψhpst`1q ` wtphq∇θ logp1´ ψhpst`1qq

¸¸

.
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These equations lead to the natural iterative algorithm. In each iteration, the marginal
posteriors u, v and w can be computed with a forward-backward message-passing algo-
rithm similar to Baum-Welch, with time complexity Op|H|2T q. Importantly, this algorithm
can be performed without any knowledge of the state dynamics. Then, the computed pos-
teriors can be used in a gradient descent algorithm to update the parameters:

θ Ð θ ` α
ÿ

i

∇θLrθ; ξis.

This update can be made stochastic using a single trajectory, uniformly chosen from the
demonstration dataset, to perform each update.

Intuitively, the algorithm attempts to jointly optimize three objectives:

• Infer the option boundaries in which b “ 1 appears likely relative to b “ 0, as given
by pu ´ wq and w respectively — this segments the trajectory into regimes where
we expect h to persist and employ the same control law; in the G-step we reduce
the cross-entropy loss between the unnormalized distribution pw, u ´ wq and the
termination indicator ψh;

• Infer the option selection after a switch, given by v; in the G-step we reduce the
cross-entropy loss between that distribution, weighted by the probability of a switch,
and the meta-control policy η; and

• Reduce the cross-entropy loss between the empirical action distribution, weighted by
the probability for h, and the control policy πh.

This can be interpreted as a form of soft clustering. The data points are one-hot represen-
tations of each at in the space of distributions over actions. Each time-step t is assigned
to option h with probability utphq, forming a soft clustering of data points. The G-step
directly minimizes the KL-divergence of the control policy πh from the weighted centroid
of the corresponding cluster.

Let δatpa|stq “ δa“at be the degenerate “empirical” action distribution of step t. The
KL divergence of πh from the weighted centroid of the cluster corresponding to option h.

Forward-Backward Algorithm
Despite the exponential domain size of the latent variable ζ , Expectation-Gradient for tra-
jectories allows us to decompose the posterior Pθpζ|ξq and only concern ourselves with
each marginal posterior separately. These marginal posteriors can be computed by a forward-
backward dynamic programming algorithm, similar to Baum-Welch [?].

Omitting the current parameter θ and trajectory ξ from out notation, we start by com-
puting the likelihood of a trajectory prefix

φtphq “ Pps0, a0, . . . , st, ht “ hq,
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using the forward recursion

φ0phq “ p0ps0qηph|s0q

φt`1ph
1
q “

ÿ

hPH
νtphqπhpat|stqppst`1|st, atqPph

1
|h, st`1q,

with

Pph1|h, st`1q “ ψhpst`1qηph
1
|st`1q ` p1´ ψhpst`1qqδh,h1 .

We similarly compute the likelihood of a trajectory suffix

ωtphq “ Ppat, st`1, . . . , sT |st, ht “ hq,

using the backward recursion

ωT phq “ 1

ωtphq “ πhpat|stqppst`1|st, atq
ÿ

h1PH
Pph1|h, st`1qωt`1ph

1
q.

We can now compute our target likelihood using any 0 ď t ď T

Ppξq “
ÿ

hPH
Ppξ, ht “ hq “

ÿ

hPH
φtphqωtphq.

The marginal posteriors are

utphq “
φtphqωtphq

Ppξq

vtphq “
φtphqπhpat|stqppst`1|st, atqψhpst`1q

ř

h1PH ηph
1|st`1qωt`1ph

1q

Ppξq

wtph
1
q “

ř

hPH φtphqπhpat|stqppst`1|st, atqψhpst`1qηph
1|st`1qωt`1ph

1q

Ppξq
.

Note that the constant p0ps0q
śT´1

t“0 ppst`1|st, atq is cancelled out in these normalizations.
This allows us to omit these terms during the forward-backward algorithm, which can thus
be applied without any knowledge of the dynamics.

Stochastic Variant
We may collect a large number of trajectories making it difficult to scale the EG algorithm.
The expensive step in this algorithm is usually the forward-backward calculation, which is
an Oph2T q operation. To address this problem, we can apply a stochastic variant of the EG
algorithm, which optimizes a single trajectory for each iterate:
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• E-Step: Draw a trajectory i at random, calculate qipt, hq, and bipt, hq with the
forward-backward algorithm.

• G-Step: Update the parameters of the policies and the termination conditions:

θ
pj`1q
h Ð θ

pjq
i ´ α

T
ÿ

t“1

wiph, tq∇θ log πθpat|stq.

µ
pj`1q
h Ð µ

pjq
i ´ α

T
ÿ

t“1

qiph, tq∇µ log ρµpK |stq.

Deeper Hierarchies
Our ultimate goal is to use the algorithm presented here to discover a multi-level hierar-
chical structure — the key insight being that the problem is recursive in nature. A D-level
hierarchy can be viewed as a 2-level hierarchy, in which the “high level” has a pD´1q-level
hierarchical structure. The challenge is the coupling between the levels; namely, the value
of a set of options is determined by its usefulness for meta-control [36], while the value of
a meta-control policy depends on which options are available. This potentially leads to an
exponential growth in the size of the latent variables required for inference. The available
data may be insufficient to learn a policy so expressive.

We can avoid this problem by using a simplified parametrization for the intermediate
meta-control policy ηd used when discovering level-d options. In the extreme, we can fix
a uniform meta-control policy that chooses each option with probability 1{|Hd|. Discovery
of the entire hierarchy can now proceed recursively from the lowest level upward: level-d
options can invoke already-discovered lower-level options; and are discovered in the con-
text of a simplified level-d meta-control policy, decoupled from higher-level complexity.
One of the contributions of this work is to demonstrate that, perhaps counter-intuitively,
this assumption does not sacrifice too much during option discovery. An informative meta-
control policy would serve as a prior on the assignment of demonstration segments to the
options that generated them, but with sufficient data this assignment can also be inferred
from the low-level model, purely based on the likelihood of each segment to be generated
by each option.

We use the following algorithm to iteratively discover a hierarchy of D levels, each
level d consisting of kd options:

for d “ 1, . . . , D ´ 1 do
Initialize a set of optionsHd “ thd,1, . . . , hd,kdu
DDO: train options xπh, ψhyhPHd

with ηd fixed
Augment action space AÐ AYHd

end for
Use RL algorithm to train high-level policy
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First, we approximate the high-level policy ψ, which selects policies based on the cur-
rent state, with a i.i.d selection of policies based on only the previous primitive:

ψ „ Pph1|hq

This approximation is so that we do not have to simultaneously learn parameters for the
high-level policy, while trying to optimize for the parameters of the policies and termination
conditions. Next, if we collect trajectories from multiple high-level policies, there may not
exist a single high-level policy that can capture all of the trajectories. The approximation
allows us to make the fewest assumptions about the structure of this policy.

Using an approximation that ψ˚ is a state-independent uniform distribution and sam-
pled i.i.d, I will show the we can apply an algorithm similar to typical imitation learning
approaches that recovers the most likely parameters to estimate π˚1 , ..., π

˚
k and tρ˚1 , ..., ρ

˚
ku.

The basic idea is to define a probability that the current pst, atq tuple is generated by the
particular primitive h:

wph, tq “ Prh|pst, atq, τ0ăts,

and given that the current selected primitive is h probability that the current time-step is
termination:

qph, tq “ PrK |pst, atq, τ0ăt, hs.

Given these probabilities, we can define an Expectation-Gradient descent over the parame-
ter vector θ

θ Ð θ ` α∇θLrθ; ξs.

Cross-Validation For Parameter Tuning
The number of options k is a crucial hyper-parameter of the algorithm. In simulation exper-
iments, one can roll out the learned hierarchy online and tune the hierarchy based on task
success. Such tuning is infeasible on a real robot as it would require many executions of
the learned policy. We explored whether it is possible to tune the number of options offline.
DDO is based on a maximum-likelihood formulation, which describes the likelihood that
the observed demonstrations are generated by a hierarchy parametrized by θ. However, the
model expressiveness is strictly increasing in k, causing the optimal training likelihood to
increase even beyond the point where the model overfits to the demonstrations and fails to
generalize to unseen states.

This likelihood is a proxy for task success. Therefore, we tune k in a way that maxi-
mizes the likelihood. However, we sometimes encounter a problem similar to over-fitting.
Increasing k actually changes expressiveness the hierarchy, as with more options it can fit
to more complicated behaviors. This means that the tuned parameters may not generalize.

We therefore adopt a cross-validation technique that holds out 10% of the demonstra-
tion trajectories for each of 10 folds, trains on the remaining data, and validates the trained
model on the held out data. We select the value of k that achieves the highest average log-
likelihood over the 10 folds, suggesting that training such a hierarchical model generalizes
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well. We train the final policy over the entire data. This means the tuned parameter must
work well on a hold out set. We find empirically that the cross-validated log-likelihood
serves as a good proxy to actual task performance.

Vector Quantization For Initialization
One challenge with DDO is initialization. When real perceptual data is used, if all of
the low-level policies initialize randomly the forward-backward estimates needed for the
Expectation-Gradient will be poorly conditioned where there is an extremely low likelihood
assigned to any particular observation. The EG algorithm relies on a segment-cluster-
imitate loop, where initial policy guesses are used to segment the data based on which
policy best explains the given time-step, then the segments are clustered, and the policies
are updated. In a continuous control space, a randomly initialized policy may not explain
any of the observed data well. This means the small differences in initialization can lead to
large changes in the learned hierarchy.

We found that a necessary pre-processing step was a variant of vector quantization,
originally proposed for problems in speech recognition. We first cluster the state observa-
tions using a k-means clustering and train k behavioral cloning policies for each of the
clusters. We use these k policies as the initialization for the EG iterations. Unlike the
random initialization, this means that the initial low level policies will demonstrate some
preference for actions in different parts of the state-space. We set k to be the same as the k
set for the number of options, and use the same optimization parameters.

2.4 Experiments: Imitation
In the first set of experiments, we evaluate DDO in its ability to represent hierarchical
control policies.

Box2D Simulation: 2D Surface Pushing with Friction and Gravity
In the first experiment, we simulate a 3-link robot arm in Box2D (Figure 2.1). This arm
consists of three links of lengths 5 units, 5 units, and 3 units, connected by ideal revolute
joints. The arm is controlled by setting the values of the joint angular velocities 9φ1, 9φ2, 9φ3.
In the environment, there is a box that lies on a flat surface with uniform friction. The
objective is to push this box without toppling it until it rests in a randomly chosen goal
position. After this goal state is reached, the goal position is regenerated randomly. The
task is for the robot to push the box to as many goals as possible in 2000 time-steps. Our
algorithmic supervisor runs the RRT Connect motion planner of the Open Motion Planning
Library, ompl, at each time-step planning to reach the goal. Due to the geometry of the
configuration space and the task, there are two classes of trajectories that are generated,
when the goal is to the left or right of the arm.
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We designed this experiment to illustrate how options can lead to more concise rep-
resentations since they can specialize in different regions of the state-spaces. Due to the
geometry of the configuration space and the task, there are two classes of trajectories that
are generated, when the goal is to the left or right of the arm. The 50 sampled trajecto-
ries plotted in joint angle space in Figure 2.1 are clearly separated into two distinct skills,
backhand and forehand. Furthermore, these skills can be implemented by a locally affine
policies in the joint angle space.

Figure 2.1: A 3-link robot arm has to push a box along a surface with friction to a randomly
chosen goal state to the box’s left or right without toppling it. Due to the collision and
contact constraints of the 2D Surface Pushing task, it leads to two geometrically distinct
pushing skills, backhand and forehand, for goals on the left and on the right. Right: 50
sampled trajectories from a motion-planning supervisor.

Our algorithmic supervisor runs an RRT Connect motion planner (from the Open Mo-
tion Planning Library ompl) at each time-step planning till the goal. The motion planning
algorithm contains a single important hyper-parameter which is the maximum length of
branches to add to the tree. We set this at 0.1 units (for a 20 x 20 unit space). First, we
consider the case where we observe the full low-dimensional state of the system: three
joint angles, the box’s position and orientation, and the position of the goal state. We com-
pare our hierarchical policies with two flat, non-hierarchical policies. One baseline policy
we consider is an under-parametrized linear policy which is not expressive enough to ap-
proximate the supervisor policy well. The other baseline policy is a multi-layer perceptron
(MLP) policy. We train each of these policies via Behavior Cloning (BC), i.e. by maximiz-
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ing the likelihood each gives to the set of demonstrations. As expected, the flat linear policy
is unsuccessful at the task for any number of observed demonstrations (Figure 2.2 Top-A).
The MLP policy, on the other hand, can achieve the maximum reward when trained on 60
demonstrations or more.

We apply DDO and learn two 2-level hierarchical policies, one with linear low-level
options, and the other with MLP low-level options of the same architecture used for the flat
policy.
Multi-Layer Perceptron Flat Policy: One of the baseline policies is a multi-layer per-
ceptron (MLP) policy which has a single Rectified Linear Unit (ReLU) hidden layer of 64
nodes. This policy is implemented in Tensorflow and is trained with a stochastic gradient
descent optimizer with learning rate 10´5.
DDO Policy 1: In the first policy trained by DDO, we have a logistic regression meta-
policy that selects from one of k linear sub-policies. The linear sub-policies execute until
a termination condition determined again by a logistic regression. This policy is imple-
mented in Tensorflow and is trained with an ADAM optimizer with learning rate 10´5. For
the linear hierarchy, we set DDO to discover 5 options, which is tuned using the cross-
validation method described before.
DDO Policy 2: In the second policy trained by DDO, we have a logistic regression meta-
policy that selects from one of k multi-layer perceptron sub-policies. As with the flat
policy, it has a single ReLU hidden layer of 64 nodes. The MLP sub-policies execute
until a termination condition determined again by a logistic regression. This policy is
implemented in Tensorflow and is trained with an ADAM optimizer with learning rate
10´5. For the MLP hierarchy, we set DDO to discover 2 options, which is tuned using the
cross-validation method described before.

In both cases, the termination conditions are parametrized by a logistic regression from
the state to the termination probability, and the high-level policy is a logistic regression
from the state to an option selection. The MLP hierarchical policy can achieve the maxi-
mum reward with 30 demonstrations, and is therefore 2x more sample-efficient than its flat
counterpart (Figure 2.2 Top A). We also vary the number of options discovered by DDO,
and plot the reward obtained by the resulting policy (Figure 2.2 Top-B). While the perfor-
mance is certainly sensitive to the number of options, we find that the benefit of having
sufficiently many options is only diminished gradually with each additional option beyond
the optimum. Importantly, the peak in the cross-validated log-likelihood corresponds to the
number of options that achieves the maximum reward (Figure 2.2 Top-C). This allows us to
use cross-validation to select the number of options without having to evaluate the policy
by rolling it out in the environment.
Observing Images: Next, we consider the case where the sensor inputs are 640ˆ480
images of the scene. The low-dimensional state is still fully observable in these images,
however these features are not observed explicitly, and must be extracted by the control
policy. We consider two neural network architectures to represent the policy: a convolu-
tional layer followed by either a fully connected layer or an LSTM, respectively forming
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Figure 2.2: 2D Surface Pushing from low-dimensional observations and image observa-
tions. (A) The sample complexity of different policy representations, (B) The success rate
for different numbers of discovered options, (C) The peak in the reward correlates over the
number of options with the 10-fold cross-validated log-likelihood.

a feed-forward (FF) network and a recurrent network (RNN). We use these architectures
both for flat policies and for low-level options in hierarchical policies. For the hierarchical
policies, as in the previous experiment, we consider a high-level policy that only selects
options. For the FF policy we discover 4 options, and for the RNN policy we discover 2
options.
DDO FF Policy: First, we consider a neural network with a convolutional layer with 64
5ˆ5 filters followed by a fully connected layer forming a feed-forward (FF) network. The
high-level model only selects options and is parametrized by the same general architecture
with an additional softmax layer after the fully connected layer. This means that the meta-
control policy is a two-layer convolutional network whose output is a softmax categorical
distribution over options. This policy is implemented in Tensorflow and is trained with an
ADAM optimizer with learning rate 10´5. We used k “ 2 options for the FF policy.
DDO RNN Policy: Next, we consider a neural network with a convolutional layer with
64 5ˆ5 filters followed by an LSTM layer forming a recurrent network (RNN). The high-
level model only selects options and is parametrized by the same general architecture with
an additional softmax layer after the LSTM. This policy is implemented in Tensorflow and
is trained with a Momentum optimizer with learning rate 10´4 and momentum 10´3. We
used k “ 4 options for the RNN policy.

The hierarchical policies require 30% fewer demonstrations than the flat policies to
achieve the maximum reward (Figure 2.2 Bottom-A). Figure 2.2 Bottom-B and C show
how the success rate and cross-validated log-likelihood vary with the number of options. As
for the low-dimensional inputs, the success rate curve is correlated with the cross-validated
log-likelihood. We can rely on this to select the number of options offline without rolling
out the learned hierarchical policy.
Control Space Augmentation (Kinematic): We test two different architectures for the
output layer of the high-level policy: either a softmax categorical distribution selecting an
option, or the hybrid categorial–continuous distribution output described in. The low-level
policies are linear.

Figure 2.4 describes the empirical estimation, through policy rollouts, of the success
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Figure 2.3: 2D Surface Pushing from image observations and image observations. (A) The
sample complexity of different policy representations, (B) The success rate for different
numbers of discovered options, (C) The peak in the reward correlates over the number of
options with the 10-fold cross-validated log-likelihood.

rate as a function of the number of options, and of the fraction of time that the high-level
policy applies physical control. When the options are too few to provide skills that are
useful throughout the state space, physical controls can be selected instead to compensate
in states where no option would perform well. This is indicated by physical control being
selected with greater frequency. As more options allow a better coverage of the state space,
the high-level policy selects physical controls less often, allowing it to generalize better
by focusing on correct option selection. With too many discovered options, each option is
trained from less data on average, making some options overfit and become less useful to
the high-level policy.

Figure 2.4: (A) The sample complexity of augmented v.s. option-only high-level control
spaces. (B) The fraction of high-level selections that are of physical control. The frequency
of selecting a physical control first decreases with the number of options, then increases as
options overfit.

Control Space Augmentation (Images): We ran the same experiment but on the image
state-space instead of the low dimensional state. The sensor inputs are 640ˆ480 images
of the scene and the task is the Box2D pushing task. Figure 2.5 describes the empirical
estimation, through policy rollouts, of the success rate as a function of the number of op-
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tions, and of the fraction of time that the high-level policy applies physical control. When
the options are too few to provide skills that are useful throughout the state space, physical
controls can be selected instead to compensate in states where no option would perform
well.

Figure 2.5: Augmenting the action space instead of selecting only options with the meta-
policy leads attenuates the losses when selecting too few or too many options.

Box2D Simulation: Discussion
These results should be counterintuitive. While it is easy to reason about the low-dimensional
kinematic case (where motions are essentially piecewise affine in the state), the results for
image observations are less clear–why does hierarchy appear to help? To understand why,
we ran a a follow up experiment. Figure 3.20 illustrates two plots color coded by kine-
matic class (forehand and backhand pushes). The flat plot takes a TSNE visualizatio of the
output first convolutional layer of the “flat” network and illustrates how the policy is struc-
tured. While there is clear structure, the same neuron are active for forehand motions and
backhands. On the other hand, when we visualize how the hierarchical policy partitions
the trajectory space. It gives a cleaner seperation between the forehand and the backhand
motions. We speculate that while the action space is continuous there is a discontinuity in
the set of actions relevant to the task due to the geometry and kinematic constraints. The
inherently discrete hierarchical representation captures this dicontinuity more accurately
without a lot of data.

Physical Experiment 1: Needle Insertion
We constructed a physical environment to replicate the simulation results on a real robotic
platform. We consider a needle orientation and insertion task on the da Vinci Research Kit
(DVRK) surgical robot (Figure 2.7). In this task, the robot must grasp a surgical needle,
reorient it in parallel to a tissue phantom, and insert the needle into the tissue phantom.
The task is successful if the needle is inserted into a 1cm diameter target region on the
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Figure 2.6: A visualization of how the flat and hierarchical policy seperate the space of
observations. The flat policy is visualized with a tsne plot of its first

phantom. Small changes in the needle’s initial orientation can lead to large changes in the
in-gripper pose of the needle due to deflection. The state is the current 6-DoF pose of the
robot gripper, and algorithmically extracted visual features that describe the estimated pose
of the needle. These features are derived from an image segmentation that masks the needle
from the background and fits an ellipsoid to the resulting pixels. The principal axis of this
2D ellipsoid is a proxy for the pose of the needle. The task runs for a fixed 15 time-steps,
and the policy must set the joint angles of the robot at each time-step.

Figure 2.7: A needle orienting and insertion task. The robot must grasp a surgical needle,
reorient it in parallel to a tissue phantom, and insert the needle.

The needle’s deflection coupled with the inaccurate kinematics of the DVRK make it
challenging to plan trajectories to insert the needle properly. A visual servoing policy needs
to be trained that can both grasp the needle in the correct position, as well as reorient the
gripper in the correct direction after grasping. To collect demonstrations, we programmed
an initial open-loop control policy, interrupted the robot via keyboard input when adjust-
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ment was needed, and kinesthetically adjusted the pose of the gripper. We collected 100
such demonstrations.

We evaluated the following alternatives: (1) a single flat MLP policy with continuous
output, (2) a flat policy consisting of 15 distinct MLP networks, one for each time-step, (3)
a hierarchical policy with 5 options trained with DDO. We considered a hierarchy where
the high-level policy is a MLP with a softmax output that selects the appropriate option,
and each option is parametrized by a distinct MLP with continuous outputs. DDO learns
5 options, two of which roughly correspond to the visual servoing for grasping and lift-
ing the needle, and the other three handle three different types of reorientation. For 100
demonstrations, the hierarchical policy learned with DDO has a 45% higher log-likelihood
measured in cross-validation than the flat policy, and a 24% higher log-likelihood than the
per-timestep policy.

Task Description: The robot must grasp a 1mm diameter surgical needle, re-orient it par-
allel to a tissue phantom, and insert the needle into a tissue phantom. The task is successful
if the needle is inserted into a 1 cm diameter target region on the phantom. In this task, the
state-space is the current 6-DoF pose of the robot gripper and visual features that describe
the estimated pose of the needle. These features are derived from an image segmentation
that masks the needle from the background and fits an ellipsoid to the resulting pixels. The
principal axis of this 2D ellipsoid is a proxy for the pose of the needle. The task runs for a
fixed 15 time-steps and the policy must set the joint angles of the robot at each time-step.

Robot Parameters: The challenge is that the curved needle is sensitive to the way that it
is grasped. Small changes in the needle’s initial orientation can lead to large changes to the
in-gripper pose of the needle due to deflection. This deflection coupled with the inaccurate
kinematics of the DVRK leads to very different trajectories to insert the needle properly.

The robotic setup includes a stereo endoscope camera located 650 mm above the 10cm
x 10 cm workspace. After registration, the dvrk has an RMSE kinematic error of 3.3 mm,
and for reference, a gripper width of 1 cm. In some regions of the state-space this error
is even higher, with a 75% percentile error of 4.7 mm. The learning in this task couples a
visual servoing policy to grasp the needle with the decision of which direction to orient the
gripper after grasping.

Demonstration Protocol: To collect demonstrations, we programmed an initial open-loop
control policy. This policy traced out the basic desired robot motion avoiding collisions and
respecting joint limits, and grasping at where it believed the needle was and an open-loop
strategy to pin the needle in the phantom. This was implemented by 15 joint angle way
points which were interpolated by a motion planner. We observed the policy execute and
interrupted the robot via keyboard input when adjustment was needed. This interruption
triggered a clutching mechanism and we could kinesthetically adjusted the joints of the
robot and pose of the gripper (but not the open-close state). The adjustment was recorded
as a delta in joint angle space which was propagated through the rest of the trajectory. We
collected 100 such demonstrations and images of these adjustments are visualized in image
(Figure 2.8).
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Figure 2.8: To collect demonstrations, we programmed an initial open-loop control pol-
icy. We observed the policy execute and interrupted the robot via keyboard input when
adjustment was needed.

Learning the Parameters: Figure 2.9A plots the cross-validation log-likelihood as a
function of the number of demonstrations. We find that the hierarchical model has a higher
likelihood than the alternatives—meaning that it more accurately explains the observed
data and generalizes better to held out data. At some points, the relative difference is over
30%. It, additionally, provides some interpretability to the learned policy. Figure 2.9B
visualizes two representative trajectories. We color code the trajectory based on the option
active at each state (estimated by DDO). The algorithm separates each trajectory into 3
segments: needle grasping, needle lifting, and needle orienting. The two trajectories have
the same first two options but differ in the orientation step. One of the trajectories has to
rotate in a different direction to orient the needle before insertion.
Flat Policy: One of the baseline policies is a multi-layer perceptron (MLP) policy which
has a single ReLU hidden layer of 64 nodes. This policy is implemented in Tensorflow and
is trained with an ADAM optimizer with learning rate 10´5.
Per-Timestep Policy: Next, we consider a degenerate case of options where each policy
executes for a single-timestep. We train 15 distinct multi-layer perceptron (MLP) policies
each of which has a single ReLU hidden layer of 64 nodes. Thes policies are implemented
in Tensorflow and are trained with an ADAM optimizer with learning rate 10´5.
DDO Policy: DDO trains a hierarchical policy with 5 options. We considered a hierarchy
where the meta policy is a multilayer perceptron with a softmax output that selects the
appropriate option, and the options are parametrized by another multilayer perceptron with
continuous outputs. Each of the MLP policies has a single ReLU hidden layer of 64 nodes.
Thes policies are implemented in Tensorflow and are trained with an ADAM optimizer
with learning rate 10´5.
Execution: For each of the methods, we execute ten trials and report the success rate
(successfully grasped and inserted the needle in the target region), and the accuracy. The
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Figure 2.9: (A) We plot the cross validation likelihood of the different methods as a function
of the number of demonstrations. (B) We visualize two representative trajectories (position
and gripper orientation) color coded by the most likely option applied at that timestep. We
find that the two trajectories have the same first two options but then differ in the final step
due to the re-orientation of the gripper before insertion.

results are described in aggregate in the table below:

Overall Success Grasp Success Insertion Success Insertion Accuracy
Open Loop 2/10 2/10 0/0 7˘ 1 mm
Behavioral Cloning 3/10 6/10 3/6 6˘ 2 mm
Per Timestep 6/10 7/10 6/7 5˘ 1 mm
DDO 8/10 10/10 8/10 5˘ 2 mm

We ran preliminary trials to confirm that the trained options can be executed on the
robot. For each of the methods, we report the success rate in 10 trials, i.e. the fraction
of trials in which the needle was successfully grasped and inserted in the target region.
All of the techniques had comparable accuracy in trials where they successfully grasped
and inserted the needle into the 1cm diameter target region. The algorithmic open-loop
policy only succeeded 2/10 times. Surprisingly, Behavior Cloning (BC) did not do much
better than the open-loop policy, succeeding only 3/10 times. Per-timestep BC was far
more successful (6/10). Finally, the hierarchical policy learned with DDO succeeded 8/10
times. On 10 trials it was successful 5 times more than the direct BC approach and 2
times more than the per-timestep BC approach. While not statistically significant, our
preliminary results suggest that hierarchical imitation learning is also beneficial in terms of
task success, in addition to improving model generalization and interpretability.
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Figure 2.10: Illustration of the needle orientation and insertion task. Above are images
illustrating the variance in the initial state, below are corresponding final states after exe-
cuting DDO.

Figure 2.11: The endoscope image and a corresponding binary mask with a selected grasp.
The arrow corresponds to the orientation of the gripper along the grasp axis.

Physical Experiment 2: Surgical Bin Picking
In this task, the robot is given a foam bin with a pile of 5–8 needles of three different types,
each 1–3mm in diameter. The robot must extract needles of a specified type and place them
in an “accept” cup, while placing all other needles in a “reject” cup. The task is successful
if the entire foam bin is cleared into the correct cups.

In initial trials, the kinematics of the DVRK were not precise enough for grasping
needles. We then realized that visual servoing is needed, which requires learning. However,
even with visual servoing, failures are common, and we would like to also learn automatic
recovery behaviors. To define the state space for this task, we first generate binary images
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from overhead stereo images, and apply a color-based segmentation to identify the needles
(the image input). Then, we use a classifier trained in advance on 40 hand-labeled images
to identify and provide a candidate grasp point, specified by position and direction in image
space (the grasp input). Additionally, the 6 DoF robot gripper pose and the open-closed
state of the gripper are observed (the kin input). The state space of the robot is (image,
grasp, kin), and the control space is the 6 joint angles and the gripper angle.

Each sequence of grasp, lift, move, and drop operations is implemented in 10 control
steps of joint angle positions. As in the previous task, we programmed an initial open-loop
control policy, interrupted the robot via keyboard input when adjustment was needed, and
kinesthetically adjusted the pose of the gripper. We collected 60 such demonstrations, in
each fully clearing a pile of 3–8 needles from the bin, for a total of 450 individual grasps.

Figure 2.12: (Left) Surgical Bin Picking: the robot is given a foam bin with a pile of 5–8
needles of three different types, each 1–3mm in diameter. The robot must extract needles
of a specified type and place them in an “accept” cup, while placing all other needles in a
“reject” cup. (Right) For each of the 4 options, we plot how heavily the different inputs are
weighted (image, grasp, or kin) in computing the option’s action. Nonzero values of the
ReLU units are marked in white and indicate input relevance.

We apply DDO to the collected demonstrations with the policy architecture described
in SM 1.4. In this network, there are three inputs: a binary image, a candidate grasp, and
kinematics (kin). These inputs are processed by distinct branches of the network before
being aggregated into a single feature layer. Using the cross-validation technique described
before, we selected the number of options to be k “ 4.

We plot the average activations of the feature layer for each low-level option (Figure
2.12). While this is only a coarse analysis, it gives some indication of which inputs (image,
grasp, or kin) are relevant to the policy and termination. We see that the options are clearly
specialized. The first option has a strong dependence only on the grasp candidate, the
second option attends almost exclusively to the image, while the last two options rely
mostly on kin. The experimental details are described below:

Task Description: We consider a task with a more complicated high-level structure. In
this task, the robot is given a foam bin with 3 different types of needles (1mm-3mm in
diameter) lying in a pile (5-8 needles in experiments). The robot must extract a particular
type of needle and place it in the accept cup and place all others in a reject cup. The task is
successful if the entire foam bin is cleared.

Figure 2.13 shows representive objects for this task. We consider three types of “nee-
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dles”: dissection pins, suturing needles, and wires. Dissection pins are placed in the accept
cup and the other two are placed in the reject cup.

Robot and State-Space Parameters: As in the previous task, the task requires learning
because the kinematics of the dvrk are such that the precision needed for grasping needles
requires visual servoing. However, even with visual servoing, failures are common due to
the pile (grasps of 2, 3, 4 objects). We would like to automatically learn recovery behaviors.
In our robotic setup, there is an overhead endoscopic stereo camera, and it is located 650mm
above the workspace.

To define the state-space for this task, we first generate binary images from the stereo
images and apply a color-based segmentation to identify the needles (we call this feature
image). Then, we use a classifier derived from 40 hand-labeled images to identify possible
grasp points to sample a candidate grasp ( left pixel value, right pixel value, and direction)
(we call this feature grasp). These features are visualized in Figure 2.11. Additionally,
there is the 6 DoF robot gripper pose and the open-close state of the gripper (we call this
feature kin). The state-space of the robot is (kin, image, grasp), and the action space for
the robot is 6 joint angles and the gripper angle. Each grasp, lift, move, and drop operation
consists of 10 time steps of joint angle positions. The motion between the joint angles is
performed using a SLURP-based motion planner.

Figure 2.13: There are two bins, one accept and one reject bin. In the accept bin, we place
dissection pins and place the suturing needles and the wires in the other.

Demonstration Protocol: As in the previous task, to collect demonstrations, we start with
a hard-coded open-loop policy. We roll this policy out and interrupt the policy when we an-
ticipate a failure. Then, we kinesthetically adjust the pose of the dvrk and it continues. We
collected 60 such demonstrations of fully clearing the bin filled with 3 to 8 needles each–
corresponding to 450 individual grasps. We also introduced a key that allows the robot to
stop in place and drop it current grasped needle. Recovery behaviors were triggered when
the robot grasps no objects or more than one object. Due to the kinesthetic corrections, a
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very high percentage of the attempted grasps (94%) grasped at least one object. Of the suc-
cessful grasps, when 5 objects are in the pile 32% grasps picked up 2 objects, 14% picked
up 3 objects, and 0.5% picked up 4. In recovery, the gripper is opened and the epsiode ends
leaving the arm in place. The next grasping trial starts from this point.

Figure 2.14: We use the above neural network to parametrize each of the four options
learned by DDO. In this network, there are three inputs the a binary image, a candidate
grasp, and kinematics. These inputs are processed through individual neural net branches
and aggregated into a single output layer. This output layer sets the joint angles of the
robot and the gripper state (open or closed). Option termination is also determined from
this output.

Policy Parametrization: We apply DDO to the collected demonstrations with the policy
parametrization described in Figure 2.14. In this network, there are three inputs the a binary
image, a candidate grasp, and kinematics. These inputs are processed through individual
neural net branches and aggregated into a single output layer. This output layer sets the
joint angles of the robot and the gripper state (open or closed). Option termination is also
determined from this output. Using the cross-validation technique described in before, we
identify 4 options (Figure 2.14). The high-level policy has the same parametrization but
after the output layer there is a softmax operation that selects a lower-level option.
Coordinate Systems: We also experimented with different action space representations to
see if that had an effect on single object grasps and categorizations. We trained alternative
policies with the collected dataset where instead of predicting joint angles, we alternatively
predicted 6 DoF end-effector poses with a binary gripper open-close state , and end-effector
poses represented a rotation/translation matrix with a binary gripper open-close state. We
found that the joint angle representation was the most effective. In particular, we found that



CHAPTER 2. DEEP DISCOVERY OF DEEP OPTIONS 34

Figure 2.15: We evaluated the generalization of the learned policy on a small set of unseen
objects. This was to understand what features of the object binary mask is used to determine
behaviors.

for the grasping part of the task, a policy that controlled the robot in terms of tooltip poses
was unreliable.

Items Successful Grasp Successful Recovery Successful Categorizations
Joint Angle 8 7/8 2/2 7/7
Tooltip Pose 8 3/8 5/5 3/3
Rotation 8 2/8 0/8 0

Figure 2.16: We plot the time distribution of the options selected by the high-level policy.
The x-axis represents time, and the bars represent the probability mass assigned to each
option. We find that the structure of the option aligns with key phases in the task such as
servoing to the needle, grasping it, and categorizing.

Interpreting Learned Options: We additionally analyzed the learned options to see if
there was an interpretable structure. We examined the collected demonstrations and looked
at the segmentation structure. We average over the 60 trials the probability for the high-
level policy to choose each option in each of first 10 time-steps during training (Figure
2.16). We find that the options indeed cluster visited states and segment them in alignment
with key phases in the task, such as servoing to the needle, grasping it, dropping it if
necessary, and categorizing it into the accept cup.
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Full Break Down of Experimental Results: In 10 trials, 7 out of 10 were successful
(Table 2.4). The main failure mode was unsuccessful grasping (defined as either no needles
or multiple needles). As the piles were cleared and became sparser, the robot’s grasping
policy became somewhat brittle. The grasp success rate was 66% on 99 attempted grasps.
In contrast, we rarely observed failures at the other aspects of the task. Of the grasps that
failed, nearly 34% were due to grasping multiple objects.

Trial # # of Needles # Needles Cleared Grasping Recovery Categorization
1 6 6 6/9 3/3 6/6
2 8 6 7/12 5/6 6/7
3 7 7 7/8 1/1 7/7
4 6 6 6/10 4/4 6/6
5 7 6 6/11 5/5 6/6
6 8 8 8/13 5/5 8/8
7 6 5 5/9 4/4 5/5
8 7 7 7/10 3/3 7/7
9 8 8 8/10 2/2 8/8
10 6 6 6/7 1/1 6/6
Totals 69 Success: 70% Success: 66% Success: 97% Success: 98%

Generalization to unseen objects: We also evaluated the learned policy on a few unseen
objects (but similarly sized and colored) to show that there is some level of generalization
in the learning. We tried out four novel objects and evaluated what the learned policy did
for each (Figure 2.15). For each of the novel objects we tried out 10 grasps in random
locations and orientations in the bin (without any others). We evaluated the grasp success
and whether it was categorized consistently (i.e., does the learned policy consistently think
it is a pin or a needle).

We found that the diode was consistently grasped and categorized as a dissection pin.
We conjecture this is because of its head and thin metallic wires. On the other hand, the
screw and the thread were categorized in the reject cup. For 8/10 of the successful grasps,
the nail was categorized as a failure mode. We conjucuture that since it is the large object
it looks similar to the two object grasps seen in the demonstrations.

Grasps Successful Drop Categorize Accept Categorize Reject
Thread 10 10 1 0 9
Diode 10 10 0 10 0
Nail 10 8 8 0 0
Screw 10 4 0 0 4

Finally, we evaluate the success of the learned hierarchical policy in 10 full trials, ac-
cording to 4 different success criteria. First, the overall task success is measured by the
success rate of fully clearing the bin without failing 4 consecutive grasping attempts. Sec-
ond, we measure the success rate of picking exactly one needle in individual grasp attempts.
Third, we measure the success rate of appropriately reacting to grasps, by dropping the load
and retrying unsuccessful grasps, and not dropping successful grasps. Fourth, we measured
the success rate of needle categorization.
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In 10 trials, 7/10 were successful. The main failure mode was unsuccessful grasping
due to picking either no needles or multiple needles. As the piles were cleared and became
sparser, the robot’s grasping policy became somewhat brittle. The grasp success rate was
66% on 99 attempted grasps. In contrast, we rarely observed failures at the other aspects
of the task, reaching 97% successful recovery on 34 failed grasps.

Vector Quantization For Initialization
One challenge with DDO is initialization. When real perceptual data is used, if all of
the low-level policies initialize randomly the forward-backward estimates needed for the
Expectation-Gradient will be poorly conditioned where there is an extremely low likelihood
assigned to any particular observation. The EG algorithm relies on a segment-cluster-
imitate loop, where initial policy guesses are used to segment the data based on which
policy best explains the given time-step, then the segments are clustered, and the policies
are updated. In a continuous control space, a randomly initialized policy may not explain
any of the observed data well. This means the small differences in initialization can lead to
large changes in the learned hierarchy.

We found that a necessary pre-processing step was a variant of vector quantization,
originally proposed for problems in speech recognition. We first cluster the state observa-
tions using a k-means clustering and train k behavioral cloning policies for each of the
clusters. We use these k policies as the initialization for the EG iterations. Unlike the
random initialization, this means that the initial low level policies will demonstrate some
preference for actions in different parts of the state-space. We set k to be the same as the k
set for the number of options, and use the same optimization parameters.

Layer-wise Hierarchy Training
We also found that layer-wise training of the hierarchy greatly reduced the likelihood of
a degenerate solution. While, at least in principle, one can train When the meta-policy is
very expressive and the options are initialized poorly, sometimes the learned solution can
degenerate to excessively using the meta-policy (high-fitting). We can avoid this problem
by using a simplified parametrization for the meta-control policy ηd used when discovering
the low-level options. For example, we can fix a uniform meta-control policy that chooses
each option with probability 1{k. Now, once these low-level options are discovered, then we
can augment the action space with the options and train the meta-policy.

This same algorithm can recursively proceed to deep hierarchies from the lowest level
upward: level-d options can invoke already-discovered lower-level options; and are discov-
ered in the context of a simplified level-d meta-control policy, decoupled from higher-level
complexity. Perhaps counter-intuitively, this layer-wise training does not sacrifice too much
during option discovery, and in fact, initial results seem to indicate that it improves the sta-
bility of the algorithm. An informative meta-control policy would serve as a prior on the
assignment of demonstration segments to the options that generated them, but with suffi-
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cient data this assignment can also be inferred from the low-level model, purely based on
the likelihood of each segment to be generated by each option.

Figure 2.17: This experiment measures the variance in log likelihood over 10 different runs
of DDO with different training and initialization strategies. Vector Quantization (VQ) and
Layer-Wise training (LW) help stabilize the solution.

Results: Stability of DDO
In the first experiment, we measure the variance in log likelihood over 10 different runs of
DDO with different training and initialization strategies (Figure 2.17). We use the entire
datasets presented before and use the FF architecture for the Box2D experiments. Vector
Quantization (VQ) and Layer-Wise training (LW) help stabilize the solution and greatly
reduce the variance of the algorithm. This reduction in variance is over 50% in the Box2D
experiments, and a little more modest for the real data.

In the next experiment, we measure the consistency of the solutions found by DDO
(Figure 2.18). For each of the demonstration trajectories, we annotate the time-step by the
most likely option. One can view this annotation as a hard clustering of the state-action
tuples. Then, we measure the average normalized mutual information (NMI) between all
pairs of the 10 different runs of DDO. NMI is a measure of how aligned two clusterings
are between 0 and 1, where 1 indicates perfect alignment. As with the likelihood, Vector
Quantization (VQ) and Layer-Wise training (LW) significantly improve the consistency of
the algorithm.

In the last experiment, we measure the symptoms of the “high-fitting” problem (Figure
2.19). We plot the probability that the high-level policy selects an option. In some sense,
this measures how much control the high-level policy delegates to the options. Surprisingly,
VQ and LW have an impact on this. Hierarchies trained with VQ and LW have a greater
reliance on the options.

The Effects of Dropout
For the real datasets, we leverage a technique called dropout, which has been widely used
in neural network training to prevent overfitting. Dropout is a technique that randomly re-
moves a unit from the network along with all its connections. We found that this technique
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Figure 2.18: We measure the average normalized mutual information between multiple
runs of DDO. This measures the consistency of the solutions across intializations.

Figure 2.19: We measure probability that an option is selected by the high-level policy.

improved performance when the datasets were small. We set the dropout parameter to 0.5
and measured the performance on a hold out set. We ran an experiment on the needle inser-
tion task dataset, where we measured the cross-validation accuracy on held out data with
and without dropout (Figure 2.20). Dropout seems to have a substantial effect on improving
cross-validation accuracy on a hold out set.

2.5 Segmentation of Robotic-Assisted Surgery
In this section, we illustrate the wide applicability of the DDO framework by applying it to
human demonstrations in a robotic domain. We apply DDO to long robotic trajectories (e.g.
3 minutes) demonstrating an intricate task, and discover options for useful subtasks, as well
as segmentation of the demonstrations into semantic units. The JIGSAWS dataset consists
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Figure 2.20: Dropout seems to have a substantial effect on improving cross-validation
accuracy on a hold out set.

of surgical robot trajectories of human surgeons performing training procedures [39]. The
dataset was captured using the da Vinci Surgical System from eight surgeons with different
skill levels, performing five repetitions each of needle passing, suturing, and knot tying.
This dataset consists of videos and kinematic data of the robot arms, and is annotated by
experts identifying the activity occurring in each frame.

Each policy network takes as input a three-channel RGB 200ˆ 200 image, downscaled
from 640 ˆ 480 in the dataset, applies three convolutional layers with ReLU activations
followed by two fully-connected dense layers reducing to 64 and then eight real-valued
components. An action is represented by 3D translations and the opening angles of the left
and right arm grippers.

We investigate how well the segmentation provided by DDO corresponds to expert
annotations, when applied to demonstrations of the three surgical tasks. Figure 2.21 shows
a representative sample of 10 trajectories from each task, with each time step colored by
the most likely option to be active at that time. Human boundary annotations are marked
in ˆ. We quantify the match between the manual and automatic annotation by the fraction
of option boundaries that have exactly one human annotation in a 300 ms window around
them. By this metric, DDO obtains 72% accuracy, while random guessing gets only 14%.
These results suggest that DDO succeeds in learning some latent structure of the task.

2.6 Experiments: Reinforcement
We present an empirical study of DDO in the Reinforcement Learning setting. Our results
suggest that DDO can discover options that accelerates reinforcement learning.

Four Rooms GridWorld
We study a simple four-room domain (Figure 2.22). On a 15ˆ 11 grid, the agent can move
in four directions; moving into a wall has no effect. To simulate environment noise, we
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Figure 2.21: Segmentation of human demonstrations in three surgical tasks. Each line
represents a trajectory, with segment color indicating the option inferred by DDO as most
likely to be active at that time. Human annotations are marked as ˆ above the segments.
Automated segmentation achieves a good alignment with human annotation — 72% of
option boundaries have exactly one annotation in a 300 ms window around them.

replace the agent’s action with a random one with probability 0.3. An observable apple is
spawned in a random location in one of the rooms. Upon taking the apple, the agent gets a
unit reward and the apple is re-spawned.
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We use the following notation to describe the different ways we can parametrize option
discovery: A a baseline of only using atomic actions; H1u discovering a single level of
options where the higher-level is parametrized by a uniform distribution; H1s discovering
a single level of options where the higher-level is parametrized by an multi-layer perceptron
(MLP); H2u and H2s are the two-level counterparts of H1u and H1s, respectively. All of
these discovered options are used in an RL phase to augment the action space of a high-
level global policy.

Figure 2.22: Trajectories generated by options in a hierarchy discovered by DDO. Each
level has 4 options, where level 2 builds on the level 1, which in turn uses atomic actions.
In the lower level, two of the options move the agent between the upper and lower rooms,
while the other two options move it from one side to the other. In the higher level, each
option takes the agent to a specific room. The lower-level options are color-coded to show
how they are composed into the higher-level options.

Baseline. We use Value Iteration to compute the optimal policy, and then use this policy
as a supervisor to generate 50 trajectories of length 1000. All policies, whether for control,
meta-control or termination, are parametrized by a MLP, with a single two-node hidden
layer, and tanh activation functions. The MLP’s input consists of the full state (agent and
apple locations), and the output is computed by a softmax function over the MLP output
vector, which has length |A| for control policies and two for termination.

The options corresponding to H2u are visualized in Figure 2.22 by trajectories gen-
erated using each option from a random initial state until termination. At the first level,
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Figure 2.23: 15-trial mean reward for the Supervised and Exploration problem settings
when running DQN with no options (A), low-level options (H1u) and lower- and higher-
level options (H2u) augmenting the action space. The options discovered by DDO can
accelerate learning, since they benefit from not being interrupted by random exploration.

two of the discovered options move the agent between the upper and lower rooms, and two
move it from one side to the other. At the second level, the discovered options aggregate
these primitives into higher-level behaviors that move the agent from any initial location to
a specific room.

Impact of options and hierarchy depth. To evaluate the quality of the discovered
options, we train a Deep Q-Network (DQN) with the same MLP architecture, and action
space augmented by the options. The exploration is ε-greedy with ε “ 0.2 and the discount
factor is γ “ 0.9. Figure 2.23 shows the average reward in 15 of the algorithm’s runs
in the Supervised and Exploration experimental settings. The results illustrate that aug-
menting the action space with options can significantly accelerate learning. Note that the
options learned with a two-level hierarchy (H2u) provide significant benefits over the op-
tions learned only with a single-level hierarchy H1u. The hierarchical approaches achieve
roughly the same average reward after 1000 episodes as A does after 5000 episodes.

Impact of policy parametrization. To evaluate the effect of meta-control policy
parametrization, we also compare the rewards during DQN reinforcement learning with
options discovered with MLP meta-control policies (H1s and H2s). Our empirical results
suggest that less expressive parametrization of the meta-control policy does not signifi-
cantly hurt the performance, and in some cases can even provide a benefit (Figure 2.23).
This is highly important, because the high sample complexity of jointly training all levels
of a deep hierarchy necessitates simplifying the meta-control policy — which would oth-
erwise be represented by a one level shallower hierarchy. We conjecture that the reason for
the improved performance of the less expressive model is that more complex parametriza-
tion of the meta-control policy increases the prevalence of local optima in the inference
problem, which may lead to worse options.
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Exploration Setting. Finally, we demonstrate that options can also be useful when
discovered from self-demonstrations by a partially trained agent, rather than by an expert
supervisor. We run the same DQN as above, with only atomic actions, for 2000 episodes.
We then use the greedy policy for the learned Q-function to generate 100 trajectories. We
reset the Q-function (except for the baseline A), and run DQN again with the augmented
action space. Figure 2.23 illustrates that even when these options are not discovered from
demonstrations of optimal behavior, they are useful in accelerating reinforcement learn-
ing. The reason is that options are policy fragments that have been discovered to lead to
interesting states, and therefore benefit from not being interrupted by random exploration.

Atari RAM Games
The RAM variant of the popular Atari Deep Reinforcement Learning domains considers a
game-playing agent which is given not the screen, but rather the RAM state of the Atari
machine. This RAM state is a 128-byte vector that completely determines the state of the
game, and can be encoded in one-hot representation as s P R128ˆ256. The RAM state-
space illustrates the power of an automated option discovery framework, as it would be
infeasible to manually code options without carefully understanding the game’s memory
structure. With a discovery algorithm, we have a general-purpose approach to learn in this
environment.

All policies are parametrized with a deep network. There are three dense layers, each
with tanh activations, and the output distribution is a softmax of the last layer, which has
length |A| for control policies and two for termination. We use a single level of options,
with the number of options tuned to optimize performance, and given in Figure 2.25.

For each game, we first run the DQN for 1000 episodes, and then generate 100 tra-
jectories from the greedy policy, and use them to discover options with DDO. The DQN
has the same architecture, using ε-greedy exploration for 1000 episodes with ε “ 0.05 and
discount factor γ “ 0.85 (similar to the parameters used in sygnowski2016learning). Fi-
nally, we augment the action space with the discovered options and rerun DQN for 4000
episodes. We compare this to the baseline of running DQN for 5000 episodes with actions
only.

Figure 2.25 plots the estimate value, averaged over 50 trials, of the learned policies for
five Atari games: Atlantis, Pooyan, Gopher, Space Invaders, and Sea Quest. In four out of
five games, we see a significant acceleration learning. The relative improvements are the
largest for the three hardest domains: Gopher, Sea Quest, and Space Invaders. It is promis-
ing that DDO offers such an advantage where other methods struggle. Figure 2.24 shows
four frames from one of the options discovered by DDO for the Atlantis game. The option
appears to identify an incoming alien and determine when to fire the gun, terminating when
the alien is destroyed. As in the GridWorld experiments, the options are policy fragments
that have been discovered to lead to high-value states, and therefore benefit from not being
interrupted by random exploration.
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Figure 2.24: Frames sampled from a demonstration trajectory assigned to one of the prim-
itives learned from DDO.

Figure 2.25: Atari RAM Games: Average reward computed from 50 rollouts when run-
ning DQN with atomic actions for 1000 episodes, then generating 100 trajectories from
greedy policy, from which DDO discovers options in a 2-level hierarchy. DQN is restarted
with action space augmented by these options, which accelerates learning in comparison to
running DQN with atomic actions for 5000 episodes. Results suggest significant improve-
ments in 4 out of 5 domains.



Chapter 3

Sequential Windowed Inverse
Reinforcement Learning:
Learning Reward Decomposition
From Data

In the previous chapter, I considered a model where sequences of state-action tuples from
an expert demonstrator were available. Next, we consider a setting where only the state
sequence is observed. This can happen when the demonstration modality differs from the
execution setting, e.g., learning from third person videos, motion capture of a human doing
a task, or kinesthetic demonstrations. Thus, the data cannot be directly used to derive a
controller since the actions are not visible. So, we approach this problem with a simple
premise; change in reward function implies change in behavior. Like DDO, we apply
unsupervised learning to a small number of initial expert demonstrations to learn a latent
reward structure. This requires two pieces: robustly detecting consistent changes in state
trajectories and constructing reward functions around those change points.

As a motivating example from the problem setting consider the widespread adoption
of robot-assisted minimally invasive surgery (RMIS), which is generating datasets of kine-
matic and video recordings of surgical procedures [39]. Explicitly modeling the system
dynamics can require learning a large number of parameters. This makes a direct system
identification approach somewhat sensitive to any noise in the dataset, especially when the
datasets are small. Furthermore, the states are often high-dimensional with combinations
of kinematic and visual features.

Suppose, one could decompose a surgical task into a consistent sequence of sub-tasks.
While each demonstration motion may vary and be noisy, each demonstration also con-
tains roughly the same order of true segments. This consistent, repeated structure can be
exploited to infer global segmentation criteria. By assuming known sequential segment-to-

45
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segment ordering, the problem reduces to identifying a common set of segment-to-segment
transition events–not corresponding entire the trajectory segments across the whole dataset.
This allows us to apply coarser, imperfect motion-based segmentation algorithms first that
create a large set of candidate transitions. Then, we can filter this set by identifying tran-
sition events that occurred at similar times and states. Our experiments suggest that this
approach has improved robustness and sample-efficiency, while approximating the behav-
ior of more complicated dynamical systems-based approaches in many real problems.

I formalize this intuition into a new hierarchical clustering algorithm for unsupervised
segmentation called Transition State Clustering. The proposed approach is also relevant to
problems in other domains, but I will focus on results from surgical applications. TSC first
applies a motion-based segmentation model over the noisy trajectories and identifies a set of
candidate segment transitions in each. TSC then clusters the transition states (states at times
transitions occur) in terms of kinematic, sensory, and temporal similarity. The clustering
process is hierarchical where the transition states are first assigned to Gaussian Mixture
clusters according to kinematic state, then these clusters are sub-divided using the sensory
features, and finally by time. We present experiments where these sensory features are
constructed from video. The learned clustering model can be applied to segment previously
unseen trajectories by the same global criteria. To avoid setting the number of clusters at
each level of the hierarchy in advance, the number of regions are determined by a Dirichlet
Process prior. A series of merging and pruning steps remove sparse clusters and repetitive
loops.

3.1 Transition State Clustering

This section describes the problem setting, assumptions, and notation. Let D “ tdiu be a
set of demonstrations of a robotic task. Each demonstration of a task d is a discrete-time
sequence of T state vectors in a feature-space X . The feature space is a concatenation
of kinematic features X (e.g., robot position) and sensory features V (e.g., visual features
from the environment).

Definition 1 (Segmentation) A segmentation of a task is defined as a function S that as-
signs each state in every demonstration trajectory to an integer 1, 2, ..., k:

S : d ÞÑ panq1,...,|d|, an P 1, ..., k.

and S is a non-decreasing function in time (no repetitions).

Suppose we are given a function that just identifies candidate segment endpoints based
on the kinematic features. Such a function is weaker than a segmentation function since it
does not globally label the detected segments. This leads to the following definition:

Definition 2 (Transition Indicator Function) A transition indicator function T is a func-
tion that maps each kinematic state in a demonstration d to t0, 1u:

T : d ÞÑ panq1,...,|d|, an P 0, 1.
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The above definition naturally leads to a notion of transition states, the states and times
at which transitions occur.

Definition 3 (Transition States) For a demonstration di, let oi,t denote the kinematic state,
visual state, and time px, v, tq at time t. Transition States are the set of state-time tuples
where the indicator is 1:

Γ “
N
ď

i

toi,t P di : Tpdiqt “ 1u.

The goal of TSC is to take the transition states Γ and recover a segmentation function S.
This segmentation function is stronger than the provided T since it not only indicates that a
transition has occurred but labels the segment transition consistently across demonstrations.

Assumptions
We assume that all possible true segments are represented in each demonstration by at least
one transition (some might be false positives). Given the segmentation function Spdiq, one
can define a set of true transition states:

Γ˚ “ toi,t P di : Spdiqt´1 ‰ Spdiqt, t ą 0u.

These satisfy the following property:

Γ˚ Ď Γ.

In other words, we assume that a subset of transition states discovered by the indicator
function correspond with the true segment transitions. There can be false positives but
no false negatives (a demonstration where a segment transition is missed by the transition
indicator function). Since the segmentation function is sequential and in a fixed order, this
leads to a model where we are trying to find the k ´ 1 true segment-segment transition
points in Γ.

Problem Statement and Method Overview
These definitions allow us to formalize the transition state clustering problem.

Problem 2 (Transition State Clustering) Given a set of regular demonstrations D and
transition identification function T, find a segmentation S.

Candidate Transitions: To implement T, TSC fits a Gaussian mixture model to sliding
windows over each of the demonstration trajectories and identifies consecutive times with
different most-likely mixture components.



CHAPTER 3. SWIRL 48

Algorithm 1 Transition Identification
1: Input: D demonstrations, ` a window size, and α a Dirichlet Process prior.
2: For each demonstration, generate a set of sliding windows of wp`q

t “ rxt´`, ...,xts
ᵀ.

Let W be the set of all sliding windows across all demonstrations.
3: Fit a mixture model to W assigning each state to its most likely component.
4: Identify times t in each demonstration when wt has a different most likely mixture

component than wt`1, start and finish times (t “ 0, t “ Ti) are automatically transi-
tions.

5: Return: A set of transition states Γ, the px, v, tq tuples at which transitions occur.

Transition State Clusters: The states at which those transitions occur are called transition
states. TSC uses a GMM to cluster the transition states in terms of spatial and temporal
similarity to find S.
Optimizations: To avoid setting the number of clusters at each level of the hierarchy in
advance, the number of regions are determined by a Dirichlet Process prior. A series of
merging and pruning steps remove sparse clusters and repetitive loops.

Gaussian Mixture Transition Identification
While we can use any transition identification function to get Γ (as long as it satisfies the
assumptions), we present one implementation based of Gaussian Mixtures that we used in
a number of our experiments. We found that this GMM approach was scalable (in terms
of data and dimensionality) and had fewer hyper-parameters to tune than more complex
models. Combined with the subsequent hierarchical clustering, this approach proved to be
robust in all of our experiments.

Each demonstration trajectory di is a trajectory of Ti state-vectors rx1, ..., xTis. For a
given time t, we can define a window of length ` as:

w
p`q
t “ rst´`, ..., sts

ᵀ

We can further normalize this window relative to its first state:

n
p`q
t “ rst´` ´ st´`, ..., st ´ st´`s

ᵀ

This represents the “delta” in movement over the time span of a window. Then, for each
demonstration trajectory we can also generate a trajectory of T ´ ` windowed states:

dp`q “ rn
p`q
` , ...,n

p`q
T s

Over the entire set of windowed demonstrations, we collect a dataset of all of the n
p`q
t

vectors. We fit a GMM model to these vectors. The GMM model defines m multivariate
Gaussian distributions and a probability that each observation n

p`q
t is sampled from each
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Algorithm 2 Transition State Clustering
Input: Γ Transition States, ρ pruning parameter
Fit a mixture model to the set of transition states Γ in the kinematic states.
Fit a mixture model to the sensory features for transitions within every kinematic cluster
i.
Fit a mixture model to the times from every kinematic and sensory cluster pair pi, jq.
Remove clusters that contain fewer than transition states from fewer than ρ ¨ N distinct
demonstrations.
Output: A set of transitions, which are regions of the state-space and temporal intervals
defined by Gaussian confidence intervals.

of the m distributions. We annotate each observation with the most likely mixture com-
ponent. Times such that np`qt and n

p`q
t`1 have different most likely components are marked

as transitions. This model captures some dynamical behaviors while not requiring explicit
modeling of the state-to-state transition function.

Sometimes the MDP’s states are more abstract and do not map to space where the nor-
malized windows make sense. We can still apply the same method when we only have a
positive definite kernel function over all pairs of states κpsi, sjq. We can construct this ker-
nel function for all of the states observed in the demonstrations and apply Kernelized PCA
to the features before learning the transitions–a technique used in Computer Vision [84].
The top p1 eigenvalues define a new embedded feature vector for each ω in Rp1 . We can
now apply the algorithm above in this embedded feature space.

TSC Inference Algorithm
We present the clustering algorithm which is summarized in Algorithm 2. In a first pass,
the transition states are clustered with respect to the kinematic states, then sub-clustered
with respect to the sensory states, and then, we temporally sub-cluster. The sub-clusters
can be used to formulate the segmentation criteria.

Kinematic Step: We want our model to capture that transitions that occur in similar
positions in the state-space across all demonstrations are actual transitions, and we would
like to aggregate these transitions into logical events. Hypothetically, if we had infinite
demonstrations Γ would define a density of transition events throughout the state-space.
The modes of the density, which intuitively represent a propensity of a state x to trigger a
segment change, are of key interest to us.

We can think of the set of identified transition states Γ as a sample of this density. We
fit a DP-GMM to kinematic features of the transition states. Each transition state will have
an assignment probability to one of the mixture components. We convert this to a hard
assignment by assigning the transition state to the most likely component.

Sensory Step: Then, we apply the second level of DP-GMM fitting over the sensory fea-
tures (if available). Within each kinematic cluster, we fit a DP-GMM to find sub-clusters in
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the sensory features. Note that the transitions were only identified with kinematic features.
This step grounds the detected transitions in sensory clusters.

Temporal Step: Finally, we apply the last level of DP-GMM fitting over the time axis.
Without temporal localization, the transitions may be ambiguous. For example, in a figure
8 motion, the robot may pass over a point twice in the same task. Conditioned on the
particular state-space cluster assignment, we can fit a DP-GMM each to each subset of
times. The final result contains sub-clusters that are indexed both in the state-space and in
time.

Enforcing Consistency: The learned clusters will vary in size as some may consist of
transitions that appear only in a few demonstrations. The goal of TSC is to identify those
clusters that correspond to state and time transition conditions common to all demonstra-
tions of a task. We frame this as a pruning problem, where we want to enforce that all
learned clusters contain transitions from a fraction of ρ distinct demonstrations. Clusters
whose constituent transition states come from fewer than a fraction ρ demonstrations are
pruned. ρ should be set based on the expected rarity of outliers. For example, if ρ is 100%
then the only mixture components that are found are those with at least one transition state
from every demonstration (i.e., the regularity assumption). If ρ is less than 100%, then it
means that every mixture component must cover some subset of the demonstrations. In our
experiments, we set the parameter ρ to 80% and show the results with and without this step.

Segmentation Criteria: Finally, if there are k remaining clusters tC1, ..., Cku, we can
use these clusters to form a criteria for segmentation. Each cluster is formed using a GMM
triplet in the kinematic state, visual state, and time. The quantiles of the three GMMs will
define an ordered sequence of regions rρ1, ..., ρks over the state-space and each of these
regions has an associated time interval defined by the Gaussian confidence interval for
some confidence level zα.

TSC Simulated Experimental Evaluation
We evaluate TSC’s robustness in the following way:

1. Precision. Results suggest TSC significantly reduces the number of false positive
segments in simulated examples with noise.

2. Recall. Among algorithms that use piecewise linear segment models, results suggest
TSC recovers segments of a generated piecewise linear trajectory more consistently
in the presence of process and observation noise.

3. Applicability to Real-World Data. Result suggest that TSC recovers qualitatively
relevant segments in real surgical trajectory data.
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Precision in Synthetic Examples

Our first experiment evaluates the following hypothesis: TSC significantly reduces the
number of false positive segments in a simple simulated example with noise. These exper-
iments evaluate TSC against algorithms with a single level of clustering.

Comparison of 7 alternative segmentation criteria:

1. Zero-Velocity Crossing (VEL): This algorithm detects a change in the sign of the
velocity.

2. Smoothed Zero-Velocity Crossing (VELS): This algorithm applies a low-pass filter
(exponentially weighted moving average) to the trajectory, and then detects a change
in the sign of the velocity.

3. Acceleration (ACC): This algorithm detects any change in the velocity by looking
for non-zero acceleration.

4. Gaussian Mixture Model (GMM): This algorithm applies a GMM model to the ob-
served states and detects changes in most likely assignment. The number of clusters
were set to 2.

5. Windowed Gaussian Mixture Model (GMMW): This algorithm is the first phase of
TSC. It applies a GMM to windows of size 2, and detects changes in most likely
assignment. The number of clusters was set to 2, unlike in TSC where we use the DP
to set the number of clusters.

6. Auto-Regressive Mixture (AR): This model fits a piecewise linear transition law to
the observed data.

7. Coresets (CORE): We evaluate against a standard coreset model [120, 130], and the
particular variant is implemented with weighted k-means. We applied this to the
same augmented state-vector as in the previously mentioned GMM.

8. TSC: Our proposed approach with a pruning threshold of 0.8 and no loop com-
paction.

Bouncing Ball: We first revisit the example in the introduction of the bouncing ball,
which can be modeled as the following 1D double-integrator system:

:x “ r´9.8s22

This system is observed with additive Gaussian white noise with std. 10 (Moderate Noise):

y “ x`Np0, 10q

and std. 20 (High Noise):
y “ x`Np0, 20q
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Figure 3.1: (Above) The position and velocity of the bouncing ball without noise. (Below)
5 trajectories of the ball with different realizations of the noise.

The system is initialized at x0 “ 122.5 and bounces when x “ 20, at which point the
velocity is negated. Figure 3.1 illustrates the ideal trajectory and noisy realizations of these
trajectories.

We apply the segmentation algorithms to the trajectories and plot the results in Figure
3.2. When there is no noise, all of the algorithms are equally precise, and there is no trou-
ble corresponding segments across demonstrations. All of the “rate-of-change” methods
(VEL, VELS, ACC) reliably identify the point where the ball bounces. The GMM and the
Coreset methods do not segment the trajectory at the bounce point. On the other hand, the
windowed GMM takes two consecutive positions and velocities into account during the
clustering. Similarly, the autoregressive model can accurately identify the bounce point.
With no noise, TSC has little difference with the windowed GMM.

Differences arise when we observe the trajectory with additive Gaussian noise. The
“rate-of-change” methods have some spurious segmentation points due to noise. The GMM
based methods are more robust to this noise, and they retain similar precision. This moti-
vates our choice of the first phase of the TSC algorithm using a windowed GMM approach.
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Figure 3.2: Plots the identified transitions with each segmentation algorithm with and with-
out noise. While all techniques are precise when there is no noise, TSC is the most robust
in the presence of noise.

However, the GMM approaches still have some spurious transitions. With these spuri-
ous points, it becomes challenging to reliably correspond trajectories across segments. So,
TSC applies a second phase of clustering to correspond the transitions and prune the sparse
clusters. This results in accurate segmentation even in the presence of noise.

As the noise increases, TSC is still able to find accurate segments. In the high noise
case, the bounce point is still identified in 4 out of 5 trajectories. It is important to note
that we do not claim that one segmentation algorithm is more accurate than another, or
that TSC more accurately reflects “real” segments. These results only suggest that TSC
is more precise than alternatives; that is, given the assumptions in TSC it consistently
recovers segments according to those assumptions. The next experiments will study the
recall characteristics.

Bouncing Ball with Air Resistance: In the first set of experiments, we illustrate TSC’s
robustness to variance in the state-space. Next, we illustrate how TSC can still correspond
segments with temporal variation. Consider the dynamics of the bouncing ball with an term
to account for air resistance:

:x “ r´9.8s22
`Kv 9x

We draw the air-resistance constant Kv uniformly from Kv „ U r1, 5s. The consequence is
that that the ball will bounce at different times in different trajectories.

Figure 3.3 illustrates the results. In the 5 trajectories, the ball bounces between time-
step 5 and 7. With no noise VEL, VELS, ACC, GMMW, and TSC can identify the bounce
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Figure 3.3: Plots the identified transitions with each segmentation algorithm with and with-
out noise. In this example, temporal variation is added by incorporating a random “air
resistance” factor. TSC is consistent even in the presence of this temporal variation.

point. Then, the system is observed with additive Gaussian white noise with std. 10:

y “ x`Np0, 10q

We find that TSC recovers a consistent set of segments even with the temporal variation.
Hybrid Approaches: In the previous experiments, we presented TSC using a win-

dowed GMM approach to identify transitions. Next, we consider TSC with alternative
transition identification functions. Consider a “Figure 8” trajectory defined parametrically
as:

x “ cosptq

y “ 0.5sinp2tq

The trajectory is visualized in Figure 3.4. The trajectory starts at the far right and progresses
until it returns to the same spot. Velocity based segmentation finds one transition point
where there is a change in direction (far left of the trajectory) (Figure 3.5). A windowed
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Figure 3.4: A “figure 8” trajectory in the plane, and 5 noisy demonstrations. The trajectory
starts at the far right and progresses until it returns to the same spot.

Figure 3.5: Plots the identified transitions with each segmentation algorithm with and with-
out noise. Velocity based segmentation finds one transition point where there is a change
in direction. A windowed GMM where the number of clusters is set by a DP finds three
transition points. TSC can improve the precision of both techniques.
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GMM where the number of clusters is set by a DP finds three transition points. These three
points correspond to the far left point as well as the crossing point in the figure 8 (happens
twice). These are two different segmentation criteria, and both are reasonable with respect
to their respective assumptions.

Next, this parametric trajectory is observed with additive Gaussian noise of std. 0.1
(Figure 3.4). We see that both the GMM approach and the velocity approach have several
spurious transitions (Figure 3.5). TSC can improve the precision of both techniques by
adding a layer of clustering.

Rotations

Handling orientations is a challenging problem due to the topology of SOp3q [126]. As an
example of what can go wrong consider a 2D square rotating in the plane. We construct a
1x1 meter 2D square and track a point on the corner of the 2D square. The 2D square rotates
clockwise in π

10
radian/s for 10 time-steps, then switches, and rotates the other direction at

the same angular speed. The state of the system is the px, yq position of the corner. We add
.1 meter standard deviation Gaussian observation noise to the observed trajectories.

Figure 3.6: Plots the identified transitions with each segmentation algorithm with and with-
out noise. While all techniques are precise when there is no noise, TSC is the most robust
in the presence of noise but finds additional segments.

We apply the segmentation algorithms to 5 trajectories and plot the results in Figure 3.6.
As before, with no noise, all of the techniques are equally precise. In this example, there
is a difference between how the different techniques segment the trajectories. The rate-
of-change methods segment the trajectory at the point when the block changes rotation
direction. The GMM and the windowed GMM approaches cuts the trajectory into 3 even
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segments–missing the direction change. TSC cuts the trajectory into 4 segments including
the direction change. TSC differs from the windowed GMM because it sets the number
of clusters using the Dirichlet Process prior. With noise, the rate-of-change techniques
have a number of spurious segments. The GMM-based approaches are more robust and
TSC improves the windowed GMM even further by clustering the detected transitions.
However, if the initial transitions were found in angular space, then TSC would have found
one segment. In this sense, the definition of the state-space changes the segments found.
We hope to explore these issues in more detail in future work.

Figure 3.7: One of 20 instances with random goal points G1, G2, G3. (a) Observations
from a simulated demonstration with three regimes, (b) Observations corrupted with Gaus-
sian white sensor noise, (c) Observations corrupted with low frequency process noise, and
(d) Observations corrupted with an inserted loop. See Figure 3.11 for evaluation on loops.

Figure 3.8: (a) Nominal trajectory, (b) 1 std. of high frequency observation noise, (c) 2 std.
of high frequency observation noise, (d) 1 std. of low frequency process noise, and (e) 2
std. of low frequency process noise.

Recall in Synthetic Examples

Comparing different segmentation models can be challenging due to differing segmenta-
tion criteria. However, we identified some algorithms that identify locally linear or near
linear segments. We developed a synthetic dataset generator to generate piecewise linear
segments and compared the algorithms on the generated dataset. Note, we do not intend
this to be a comprehensive evaluation of the accuracy of the different techniques, but more
a characterization of the approaches on a locally linear example to study the key tradeoffs.
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We model the trajectory of a point robot with two-dimensional position state px, yq be-
tween k goal points tg1, ..., gku. We apply position control to guide the robot to the targets
and without disturbance, this motion is linear (Figure 3.7a). We add various types of dis-
turbances (and in varying amounts) including Gaussian observation noise, low-frequency
process noise, and repetitive loops (Figure 3.7b-d). We report noise values in terms of
standard deviations. Figure 3.8 illustrates the relative magnitudes. A demonstration di is a
sample from the following system.

Task: Every segmentation algorithm will be evaluated in its ability to identify the k ´ 1
segments (i.e., the paths between the goal points). Furthermore, we evaluate algorithms on
random instances of this task. In the beginning, we select 3 random goal points. From a
fixed initial position, we control the simulated point robot to the goal points with position
control. Without any disturbance, this follows a linear motion. For a given noise setting,
we sample demonstrations from this system and apply/evaluate each algorithm. We present
results aggregated over 20 such random instances. This is important since many of the
segmentation algorithms proposed in literature have some crucial hyper-parameters, and
we present results with a single choice of parameters averaged over multiple tasks. This
way, the hyper-parameter tuning cannot overfit to any given instance of the problem and has
to be valid for the entire class of tasks. We believe that this is important since tuning these
hyper-parameters in practice (i.e., not in simulation) is challenging since there is no ground
truth. The experimental code is available at: http://berkeleyautomation.github.io/tsc/.

5 Algorithms: We compare TSC against alternatives where the authors explicitly find (or
approximately find) locally linear segments. It is important to reiterate that different seg-
mentation techniques optimize different objectives, and this benchmark is meant to char-
acterize the performance on a common task. All of the techniques are based on Gaussian
Distributions or Linear auto-regressive models.

1. (GMM) (Same as previous experiment). In this experiment, we set the parameter to
the optimal choice of 3 without automatic tuning.

2. (GMM+HMM) A natural extension to this model is to enforce a transition structure
on the regimes with a latent Markov Chain [4, 21, 71, 127]. We use the same state
vector as above, without time augmentation as this is handled by the HMM. We fit
the model using the forward-backward algorithm.

3. Coresets (Same as previous experiment).

4. HSMM We evaluated a Gaussian Hidden Semi-Markov Model. We directly applied
this model to the demonstrations with no augmentation or normalization of features.
This was implemented with the package pyhsmm. We directly applied this model
to the demonstrations with no augmentation as in the GMM approaches. We ran
our MCMC sampler for 10000 iterations, discarding the first 2500 as burn-in and
thinning the chain by 15.
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5. AR-HMM We evaluated a Bayesian Autoregressive HMM model as used in [89].
This was implemented with the packages pybasicbayes and pyhsmm-ar. The au-
toregressive order was 10 and we ran our MCMC sampler for 10000 iterations, dis-
carding the first 2500 as burn-in and thinning the chain by 15.

Evaluation Metric: There is considerable debate on metrics to evaluate the accuracy
of unsupervised segmentation and activity recognition techniques, e.g. frame accuracy
wu2015watch, hamming distance fox2009sharing. Typically, these metrics have two steps:
(1) segments to ground truth correspondence, and (2) then measuring the similarity be-
tween corresponded segments. We have made this feature extensible and evaluated some
different accuracy metrics (Jaccard Similarity, Frame Accuracy, Segment Accuracy, Inter-
section over Union). We found that the following procedure led to the most insightful
results–differentiating the different techniques.

In the first phase, we match segments in our predicted sequence to those in the ground
truth. We do this with a procedure identical to the one proposed in [132]. We define a
bi-partite graph of predicted segments to ground truth segments, and add weighted edges
where weights represent the overlap between a predicted segment and a ground-truth seg-
ment (i.e., the recall over time-steps). Each predicted segment is matched to its highest
weighted ground truth segment. Each predicted segment is assigned to exactly one ground-
truth segment, while a ground-truth segment may have none, one, or more corresponding
predictions.

After establishing the correspondence between predictions and ground truth, we con-
sider a true positive (a ground-truth segment is correctly identified) if the overlap (intersection-
over-union) between the ground-truth segment and its corresponding predicted segments is
more than a default threshold 60%. Then, we compute Segment Accuracy as the ratio
of the ground-truth segments that are correctly detected. In [132], the authors use a 40%
threshold but apply the metric to real data. Since this is a synthetic example, we increase
this threshold to 60%, which we empirically found accounted for boundary effects espe-
cially in the Bayesian approaches (i.e., repeated transitions around segment endpoints).

Accuracy vs. Noise

In our first experiment, we measured the segment accuracy for each of the algorithms for
50 demonstrations. We also varied the amount of process and observation noise in the
system. As Figure 3.8 illustrates, this is a very significant amount of noise in the data,
and successful techniques must exploit the structure in multiple demonstrations. Figure
3.9a illustrates the performance of each of the techniques as a function of high-frequency
observation noise. Results suggest that TSC is more robust to noise than the alternatives
(nearly 20% more accurate for 2.5 std of noise). The Bayesian ARHMM approach is nearly
identical to TSC when the noise is low but quickly loses accuracy as more noise is added.
We attribute this robustness to the TSC’s pruning step which ensures that only transition
state clusters with sufficient coverage across all demonstrations are kept. These results
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are even more pronounced for low-frequency process noise (Figure 3.9b). TSC is 49%
more accurate than all competitors for 2.5 std of noise added. We find that the Bayesian
approaches are particularly susceptible to such noise. Furthermore, Figure 3.9c shows TSC
requires no more data than the alternatives to achieve such robustness. Another point to
note is that TSC is solved much more efficiently than ARHMM or HSMM which require
expensive MCMC samples. While parameter inference on these models can be solved
more efficiently (but approximately) with Mean-Field Stochastic Variational Inference, we
found that the results were not as accurate. TSC is about 6x slower than using Coresets
or the direct GMM approach, but it is over 100x faster than the MCMC for the ARHMM
model. Figure 3.10 compares the runtime of each of the algorithms as a function of the
number of demonstrations.

Figure 3.9: Each data point represents 20 random instances of a 3-segment problem with
varying levels of high-frequency noise, low-frequency noise, and demonstrations. We mea-
sure the segmentation accuracy for the compared approaches. (A) TSC finds a more a
accurate segmentation than all of the alternatives even under significant high-frequency
observation noise, (B) TSC is more robust to low-frequency process noise than the alter-
natives, (C) the Bayesian techniques solved with MCMC (ARHMM, HSMM) are more
sensitive to the number of demonstrations provided than the others.

TSC Hyper-Parameters: Next, we explored the dependence of the performance on
the hyper-parameters for TSC. We focus on the window size and the pruning parameter.
Figure 3.11a shows how varying the window size affects the performance curves. Larger
window sizes can reject more low-frequency process noise. However, larger windows are
also less efficient when the noise is low. Similarly, Figure 3.11b shows how increasing the
pruning parameter affects the robustness to high-frequency observation noise. However, a
larger pruning parameter is less efficient at low noise levels. Based on these curves, we
selected pw “ 3, ρ “ 0.3q in our synthetic experiments.

Loops: Finally, we evaluated 4 algorithms on how well they can detect and adjust
for loops. TSC compacts adjacent motions that are overly similar, while HMM-based ap-
proaches correspond similar looking motions. An HMM grammar over segments is clearly
more expressive than TSC’s, and we explore whether it is necessary to learn a full transition
structure to compensate for loops. We compare the accuracy of the different segmentation
techniques in detecting that a loop is present (Figure 3.12). Figure 3.12a shows that TSC
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Figure 3.10: TSC is about 6x slower than using Coresets or the direct GMM approach, but
it is over 100x faster than the MCMC for the ARHMM model.

Figure 3.11: (A) shows the performance curves of different choices of windows as a func-
tion of the process noise. Larger windows can reject higher amounts of process noise but
are less efficient at low noise levels. (B) the performance curves of different choices of the
pruning threshold. Larger pruning thresholds are more robust to high amounts of observa-
tion noise but less accurate in the low noise setting. We selected pw “ 3, ρ “ 0.3q in our
synthetic experiments.

is competitive with the HMM approaches as we vary the observation noise; however, the
results suggest that ARHMM provides the most accurate loop detection. On the other hand,
Figure 3.12b suggests that process noise has a very different effect.

TSC is actually more accurate than the HMM approaches when the process noise is
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Figure 3.12: (A) illustrates the accuracy of TSC’s compaction step as a function of observa-
tion noise. TSC is competitive with the HMM-based approaches without having to model
the full transition matrix. (B) TSC is actually more robust to low-frequency process noise
in the loops than the HMM-based approaches.

high–even without learning a transition structure.
Scaling with Dimensionality: We investigate how the accuracy of TSC scales with

the dimensionality of the state-space. As in the previous experiments, we measured the
segment accuracy for each of the algorithms for 50 demonstrations. This time we gener-
ated the line segments in increasingly higher dimensional spaces (from 2-D to 35-D). The
noise added to the trajectories has a std of 0.1. Figure 3.13a plots the segment accuracy
as a function of the dimensionality of the state-space. While the accuracy of TSC does
decreases as the dimensionality increases it is more robust than some of the alternatives:
ARHMM and HSMM. One possible explanation is that both of those techniques rely on
Gibbs Sampling for inference, which is a little more sensitive to dimensionality than the
expectation-maximization inference procedure used in GMM and GMM+HMM. Figure
3.13b shows one aspect of TSC that is more sensitive to the dimensionality. The loop
compaction step requires a dynamic time-warping and then a comparison to fuse repeated
segments together. This step is not as robust in higher dimensional state-spaces. This is
possibly due to the use of the L2 distance metric to compare partial trajectories to compact.
TSC runs in 4 seconds on the 2-D case, 16 seconds on the 10-D case, and in 59 seconds on
the 35-D case.

Surgical Data Experiments
We describe the three tasks used in our evaluation and the corresponding manual segmen-
tation (Figure 3.14). This will serve as ground truth when qualitatively evaluating our seg-
mentation on real data. This set of experiments primarily evaluates the utility of segments
learned by TSC. Data was collected before hand as a part of prior work. Our hypothesis
is that even though TSC is unsupervised, it identifies segments that often align with man-
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Figure 3.13: We investigate how the accuracy of TSC scales with the dimensionality of the
state-space. In (A) we consider the problem with no loops or compaction, and in (B) we
measure the accuracy of the compaction step as a function of dimensionality.

ual annotations. In all of our experiments, the pruning parameter ρ is set to 80% and the
compaction heuristic δ is to 1cm.

(a) Circle Cutting

1. Start

2. Notch

3. 1/2 cut

4. Re-enter

6. Finish

5. 1/2 Cut

(b) Needle Passing

1.Start

2.Pass 1

3. Hando!

4. Pass 2

5. Hando!

6. Pass 3

7. Hando!

8. Pass 4

1. Insert

2. Pull

3.Hando! 4. Insert

5. Pull

6.Hando! 7. Insert

10. Insert

8. Pull

9.Hando!

11. Pull

(c) Suturing

Figure 3.14: Hand annotations of the three tasks: (a) circle cutting, (b) needle passing, and
(c) suturing. Right arm actions are listed in dark blue and left arm actions are listed in
yellow.

The state-space is the 6D end-effector position. In some experiments, we augment this
state-space with the following visual features:

1. Grasp. 0 if empty, 1 otherwise.

2. Needle Penetration. We use an estimate of the penetration depth based on the robot
kinematics to encode this feature. If there is no penetration (as detected by video),
the value is 0, otherwise the value of penetration is the robot’s z position.

Our goal with these features was to illustrate that TSC applies to general state-spaces as
well as spatial ones, and not to address the perception problem. These features were con-
structed via manual annotation, where the Grasp and Needle Penetration were identified by
reviewing the videos and marking the frames at which they occurred.
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Circle Cutting: A 5 cm diameter circle drawn on a piece of gauze. The first step is to cut a
notch into the circle. The second step is to cut clockwise half-way around the circle. Next,
the robot transitions to the other side cutting counter clockwise. Finally, the robot finishes
the cut at the meeting point of the two cuts. As the left arm’s only action is to maintain
the gauze in tension, we exclude it from the analysis. In Figure 3.14a, we mark 6 manually
identified transitions points for this task from [87]: (1) start, (2) notch, (3) finish 1st cut,
(4) cross-over, (5) finish 2nd cut, and (6) connect the two cuts. For the circle cutting task,
we collected 10 demonstrations by researchers who were not surgeons but familiar with
operating the da Vinci Research Kit (dVRK).

We also perform experiments using the JIGSAWS dataset [39] consisting of surgical
activity for human motion modeling. The dataset was captured using the da Vinci Surgical
System from eight surgeons with different levels of skill performing five repetitions each
of Needle Passing and Suturing.

Needle Passing: We applied TSC to 28 demonstrations of the needle passing task. The
robot passes a needle through a hoop using its right arm, then its left arm to pull the needle
through the hoop. Then, the robot hands the needle off from the left arm to the right
arm. This procedure is repeated four times as illustrated with a manual segmentation in
Figure 3.14b.

Suturing: Next, we explored 39 examples of a 4 throw suturing task (Figure 3.14c). Using
the right arm, the first step is to penetrate one of the points on right side. The next step is to
force the needle through the phantom to the other side. Using the left arm, the robot pulls
the needle out of the phantom and then the robot hands it off to the right arm for the next
point.

Results

Circle Cutting: Figure 3.15a shows the transition states obtained from our algorithm. And
Figure 3.15b shows the TSC clusters learned (numbered by time interval midpoint). The
algorithm found 8 clusters, one of which was pruned using our ρ “ 80% threshold rule.

The remaining 7 clusters correspond well to the manually identified transition points.
It is worth noting that there is one extra cluster (marked 21), that does not correspond to a
transition in the manual segmentation. At 21, the operator finishes a notch and begins to cut.
While at a logical level notching and cutting are both penetration actions, they correspond
to two different linear transition regimes due to the positioning of the end-effector. Thus,
TSC separates them into different clusters even though the human annotators did not. This
illustrates why supervised segmentation is challenging. Human annotators segment tra-
jectories on boundaries that are hard to characterize mathematically, e.g., is frame 34 or
frame 37 the segment boundary. Supervisors may miss crucial motions that are useful for
automation or learning.
Needle Passing: In Figure 3.16a, we plot the transition states in px, y, zq end-effector
space for both arms. We find that these transition states correspond well to the logical
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Figure 3.15: (a) The transition states for the circle cutting task are marked in black. (b)
The TSC clusters, which are clusters of the transition states, are illustrated with their 75%
confidence ellipsoid.

segments of the task (Figure 3.14b). These demonstrations are noisier than the circle cutting
demonstrations, and there are more outliers. The subsequent clustering finds 9 clusters (2
pruned). Next, Figures 3.16b-c illustrate the TSC clusters. We find that again TSC learns
a small parametrization for the task structure with the clusters corresponding well to the
manual segments. However, in this case, the noise does lead to a spurious cluster (4 marked
in green). One possible explanation is that the demonstrations contain many adjustments
to avoid colliding with the needle hoop and the other arm while passing the needle through
leading to numerous transition states in that location.
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Figure 3.16: (a) The transition states for the task are marked in orange (left arm) and blue
(right arm). (b-c) The TSC clusters, which are clusters of the transition states, are illustrated
with their 75% confidence ellipsoid for both arms

Suturing: In Figure 3.17, we show the transition states and clusters for the suturing task.
As before, we mark the left arm in orange and the right arm in blue. This task was far more
challenging than the previous tasks as the demonstrations were inconsistent. These incon-
sistencies were in the way the suture is pulled after insertion (some pull to the left, some to
the right, etc.), leading to transition states all over the state space. Furthermore, there were
numerous demonstrations with looping behaviors for the left arm. In fact, the DP-GMM
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Table 3.1: This table compares transitions learned by TSC and transitions identified by
manual annotators in the JIGSAWS dataset. We found that the transitions mostly aligned.
83% and 73% of transition clusters for needle passing and suturing respectively contained
exactly one surgeme transition when both kinematics and vision were used. Results suggest
that the hierarchical clustering is more suited for mixed video and kinematic feature spaces.

No. of Surgeme Segments No. of Clusters seg-surgeme surgeme-seg
Needle Passing TSC(Kin+Video) 14.4˘ 2.57 11 83% 74%
Needle Passing TSC(Video) 14.4˘ 2.57 7 62% 69%
Needle Passing TSC(Kin) 14.4˘ 2.57 16 87% 62%
Needle Passing TSC(VELS) 14.4˘ 2.57 13 71% 70%
Needle Passing TSC(No-H) 14.4˘ 2.57 5 28% 34%
Suturing TSC(Kin+Video) 15.9˘ 3.11 13 73% 66%
Suturing TSC(Video) 15.9˘ 3.11 4 21% 39%
Suturing TSC(Kin) 15.9˘ 3.11 13 68% 61%
Suturing TSC(VELS) 15.9˘ 3.11 17 48% 57%
Suturing TSC(No-H) 15.9˘ 3.11 9 51% 52%

method gives us 23 clusters, 11 of which represent less than 80% of the demonstrations
and thus are pruned (we illustrate the effect of the pruning in the next section). In the early
stages of the task, the clusters clearly correspond to the manually segmented transitions.
As the task progresses, we see that some of the later clusters do not.
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Figure 3.17: (a) The transition states for the task are marked in orange (left arm) and blue
(right arm). (b-c) The clusters, which are clusters of the transition states, are illustrated
with their 75% confidence ellipsoid for both arms

Comparison to Surgemes

Surgical demonstrations have an established set of primitives called surgemes, and we eval-
uate if segments discovered by our approach correspond to surgemes. In Table 3.1, we
compare the number of TSC segments for needle passing and suturing to the number of
annotated surgeme segments. We apply different variants of the TSC algorithm and eval-
uate its ability to recover segments similar to surgemes. We consider: (Kin+Video) which
is the full TSC algorithm, (Kin) which only uses kinematics, (Video) which only uses the
visual annotations, (VELS) which uses the zero-crossing velocity heuristic to get the initial
transitions, and (NO-H) which treats all of the variables as one big feature space and does
not hierarchically cluster. A key difference between our segmentation and number of an-
notated surgemes is our compaction and pruning steps. To account for this, we first select
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a set of surgemes that are expressed in most demonstrations (i.e., simulating pruning), and
we also apply a compaction step to the surgeme segments. When surgemes appear consec-
utively, we only keep the one instance of each. We explore two metrics: seg-surgeme the
fraction of TSC clusters with only one surgeme switch (averaged over all demonstrations),
and surgeme-seg the fraction of surgeme switches that fall inside exactly one TSC cluster.

We found that the transitions learned by TSC with both the kinematic and video features
were the most aligned with the surgemes. 83% and 73% of transition clusters for needle
passing and suturing respectively contained exactly one surgeme transition when both were
used. For the needle passing task, we found that the video features alone could give a
reasonably accurate segmentation. However, this did not hold for the suturing dataset. The
manual video features are low dimensional and tend to under-segment. For the suturing
dataset, a combination of the visual and kinematic features was most aligned with the
surgemes. Similarly, this scaling problem affects the variant that does not hierarchically
cluster–leading to a small number of clusters–and inaccuracy.

Pruning and Compaction

In Figure 3.18, we highlight the benefit of pruning and compaction using the Suturing
task as exemplar. First, we show the transition states without applying the compaction
step to remove looping transition states (Figure 3.18a). We find that there are many more
transition states at the “insert" step of the task. Compaction removes the segments that
correspond to a loop of the insertions. Next, we show all of the clusters found by the first
step of segmentation. The centroids of these clusters are marked in Figure 3.18b. In all, 11
clusters are pruned by this rule.
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Figure 3.18: We first show the transition states without compaction (in black and green),
and then show the clusters without pruning (in red). Compaction sparsifies the transition
states and pruning significantly reduces the number of clusters.

TSC with Deep Features
Inspired by the recent success of deep neural networks in reinforcement learning [75, 76],
we then explored how visual features extracted from Convolutional Neural Networks can
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be used for transition state identification.
We use layers from a pre-trained Convolutional Neural Network (CNNs) to derive the

features frame-by-frame. In particular, we explore two architectures designed for image
classification task on natural images: (a) AlexNet: Krizhevsky et al. proposed multilayer
(5 in all) a CNN architecture [70], and (b) VGG: Simoyan et al. proposed an alternative ar-
chitecture termed VGG (acronym for Visual Geometry Group) which increased the number
of convolutional layers significantly (16 in all) [111]. In our experiments, we explore the
level of generality of features required for segmentation. We also compare these features
to other visual featurization techniques such as SIFT for the purpose of task segmentation
using TSC.

Evaluation of Visual Featurization

In our first experiment, we explore different visual featurization, encoding, and dimen-
sionality reduction techniques. We applied TSC to our suturing experimental dataset and
measured the silhouette score of the resulting transition state clusters. On this dataset, our
results suggest that features extracted from the pre-trained CNNs resulted in tighter transi-
tion state clusters compared to SIFT features with a 3% lower ss than the worst CNN result.
We found that features extracted with the VGG architecture resulted in the highest ss with
a 3% higher ss than the best AlexNet result. We also found that PCA for dimensional-
ity reduction achieved a ss performance of 7% higher than the best GRP result and 10%
higher than best CCA result. Because CCA finds projections of high correlation between
the kinematics and video, we believe that CCA discards informative features resulting in
reduced clustering performance. We note that neither of the encoding schemes, VLAD or
LCDLCDV LAD significantly improves the ss.

There are two hyper-parameters for TSC which we set empirically: sliding window
size (T = 3), and the number of PCA dimensions (k = 100). In Figure 3.19, we show a
sensitivity plot with the ss as a function of the parameter. We calculated the ss using the
same subset of the suturing dataset as above and with the VGG conv5_3 CNN. We found
that T = 3 gave the best performance. We also found that PCA with k = 1000 dimensions
was only marginally better than k = 100 yet required ą30 mins to run. For computational
reasons, we selected k = 100.

t-SNE visualization of visual features

One of the main insights of this study is that features from pre-trained CNNs exhibit locally-
linear behavior which allows application of a switching linear dynamical system model. We
experimentally tested this by applying dimensionality reduction to trajectories of features
from different video featurization techniques. Figure 3.20 shows t-SNE embeddings of
visual features extracted for a single demonstration of suturing. The deep features display
clear locally-linear properties and can be more easily clustered than SIFT features extracted
for the corresponding frames. We speculate that SIFT breaks up trajectory structure due
to its natural scale and location invariance properties. We also compared to using the raw
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Figure 3.19: We evaluate the sensitivity of two hyperparameters set in advance: number
of PCA dimensions and sliding window size. The selected value is shown in red double
circles.

RGB image pixel values and discovered that the deep features result in more well-formed
locally linear trajectories. However, it is important to note that unlike spatial trajectories
there are discrete jumps in the convolutional trajectories. We hope to explore this problem
in more detail in future work.

Figure 3.20: Each data point in the figure corresponds to a t-SNE visualization of features
of a single frame in the video. (a) RGB pixel values of original image (b) shallow SIFT
features (c) CNN features from AlexNet pool5 (d) CNN features from VGG Conv5_3.
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End-to-End Evaluation

For all subsequent experiments on real data, we used a pre-trained VGG CNN conv5_3 and
encoded with PCA with 100 dimensions.
1. Suturing: We apply our method to a subset of the JIGSAWS dataset [39] consist-
ing of surgical task demonstrations under teleoperation using the da Vinci surgical system.
The dataset was captured from eight surgeons with different levels of skill, performing
five repetitions each of suturing and needle passing. jigsaws lists quantitative results for
both needle passing and suturing with both ss and NMI agreement with the human la-
bels. Demonstrations from the JIGSAWS dataset were annotated with the skill-level of the
demonstrators (Expert (E), Intermediate (I), and Novice (I)). For the suturing dataset, we
find that using both kinematics and video gives up-to 30.1% improvement in ss and 52.3%
improvement in NMI over using kinematics alone. Not surprisingly, we also find that the
expert demonstrations, which are usually smoother and faster, lead to improved segmenta-
tion performance when using only the kinematic data. However, when we incorporate the
visual data, the trend is not as clear. We speculate this has to do with the tradeoff between
collecting more data (denser clusters and more accurate modeling) versus inconsistencies
due to novice errors, and this tradeoff is evident in higher dimensional data.

We visualize the results of the segmentation on one representative trajectory (Figure
3.21). With combined kinematics and vision, TSC learns many of the important segments
identified by annotation in [39]. Upon further investigation of the false positives, we found
that they corresponded to meaningful actions missed by human annotators. TSC discovers
that a repositioning step where many demonstrators penetrate and push-through the needle
in two different motions. While this is largely anecdotal evidence, we were able to find
some explanations for some of the false positives found by TSC.
2. Needle Passing: Next, we applied TSC to 28 demonstrations of the needle passing task.
These demonstrations were annotated in [39]. In this task, the robot passes a needle through
a loop using its right arm, then its left arm to pull the needle through the loop. Then, the
robot hands the needle off from the left arm to the right arm. This is repeated four times.
Similar to the suturing dataset, we find that the combination of the features gives the best
results. For the needle passing dataset, we find that using both kinematics and video gives
up to 22.2% improvement in ss and 49.7% improvement in NMI over using the best of
either kinematics or vision alone.

We found that the learned segments for the needle passing task were less accurate than
those learned for the suturing task. We speculate that this is due to the multilateral nature
of this task. This task uses both arms more than the suturing task, and as a result, there are
many visual occlusions for a fixed camera. Important features such as the needle pose and
the thread may be obscured at different points during the task. Furthermore, we constructed
the state-space using the states of both arms. For such a task, it may be better to segment
each of the arms independently.

3. PR2: Legos and Toy Plane Assembly: In our next experiment, we explore segment-
ing a multi-step assembly task using (1) large Lego blocks and (2) toy Plane from the YCB
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Figure 3.21: The first row shows a manual segmentation of the suturing task in 4 steps: (1)
Needle Positioning, (2) Needle Pushing, (3) Pulling Needle, (4) Hand-off. TSC extracts
many of the important transitions without labels and also discovers un-labled transition
events.

dataset [22]. We demonstrate that TSC applies generally outside of surgical robotics. We
collect eight kinesthetic demonstrations for each task through kinesthetic demonstrations
of the task on the PR2 robot. Figure 3.23 illustrates the segmentation for the plane assem-
bly task. We find the plane assembly task using kinematics or vision alone results in a
large number of segments. The combination can help remove spurious segments restrict-
ing our segments to those transitions that occur in most of the demonstrations–agreeing in
similarity both kinematically and visually.

4. Human Demonstration of Toy Plane Assembly: We extend the toy plane assembly
experiment to collect eight demonstrations each from two human users. These examples
only have videos and no kinematic information. We note that there was a difference be-
tween users in the grasping location of fuselage. We also to learn segmentation for human
demonstrations. The results of TSC performance are summarized in Table 3.2. We omit
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Figure 3.22: Comparison of TSC performance on Suturing and Needle Passing Tasks.
We compare the prediction performance by incrementally adding demonstrations from Ex-
perts (E), Intermediates (I), and Novices (N) respectively to the dataset.

K Z K+Z
Silhouette Score – Intrinsic Evaluation
Lego (Robot) 0.653˘0.003 0.644˘0.026 0.662˘0.053
Plane (Robot) 0.741˘0.011 0.649˘0.007 0.771˘0.067
Plane (Human 1) – 0.601 ˘0.010 –
Plane (Human 2) – 0.628 ˘0.015 –
NMI Score – Extrinsic evaluation against manual labels
Lego (Robot) 0.542 ˘ 0.058 0.712 ˘ 0.041 0.688 ˘ 0.037
Plane (Robot) 0.768 ˘ 0.015 0.726 ˘ 0.040 0.747 ˘ 0.016
Plane (Human 1) – 0.726 ˘ 0.071 –
Plane (Human 2) – 0.806 ˘ 0.034 –

Table 3.2: Plane and Lego Assembly Tasks. Both tasks show improvements in clustering
and prediction accuracy using multi-modal data as compared to either modality. Further,
only vision (Z) is available for human demos of the plane assembly task. Comparable seg-
mentation results are obtained using only video input for human demos. Higher Silhoutte
Scores and NMI scores are better, respectively.

a visualization of the results for the Lego assembly. However, we summarize the results
quantitatively in the table.
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Figure 3.23: We compare TSC on 12 kinesthetic demonstrations (top) and 8 human demon-
strations (bottom). No kinematics were available for the human demonstrations. We illus-
trate the segmentation for an example demonstration of each. Our manual annotation of the
task has five steps and TSC recovers this structure separately for both Kinesthetic demos
on PR2 and Human demos with the same visual features.

3.2 SWIRL: Learning With Transition States
Next, we build on TSC to construct a planner that leverages the structure learned by TSC.
Real-world tasks often naturally decompose into a sequence of simpler, locally-solvable
sub-tasks. For example, an assembly task might decompose into completing the part’s con-
stituent sub-assemblies or a surgical task might decompose into a sequence of movement
primitives. Such structure imposes a strong prior on the class of successful policies and
can focus exploration in reinforcement learning. It reduces the effective time horizon of
learning to the start of the next subtask rather than until task completion. We apply a clus-
tering algorithm to identify a latent set of state-space subgoals that sequentially compose to
form the global task. This leads to a novel policy search algorithm, called Sequential Win-
dowed Inverse Reinforcement Learning (SWIRL), where the demonstrations can bootstrap
a self-supervised Q-learning algorithm.
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Transitions are defined as significant changes in the state trajectory. These transitions
can be spatially and temporally clustered to identify if there are common conditions that
trigger a change in motion across demonstrations. SWIRL extends this basic model with an
Inverse Reinforcement Learning step that extracts subgoals and computes local cost func-
tions from the learned clusters. Learning a policy over the segmented task is nontrivial
because solving k independent problems neglects any shared structure in the value func-
tion during the policy learning phase (e.g., a common failure state). Jointly learning over
all segments introduces a dependence on history, namely, any policy must complete step
i before step i ` 1. Learning a memory-dependent policy could lead to an exponential
overhead of additional states. We show that the problem can be posed as a proper MDP in
a lifted state-space that includes an indicator variable of the highest-index t1, ..., ku transi-
tion region that has been reached so far if there are Markovian regularity assumptions on
the clustering algorithm.

Model and Notation
Directly optimizing the reward function R in the MDP from the previous section might
be very challenging. We propose to approximate R with a sequence of smoother reward
functions.

Definition 4 (Proxy Task) A proxy task is a set of k MDPs with the same state set, action
set, and dynamics. Associated with each MDP i is a reward function Ri : S ˆ A ÞÑ R.
Additionally, associated with each Ri is a transition region ρi Ď S, which is a subset of
the state-space. A robot accumulates a reward Ri until it reaches the transition ρi, then
the robot switches to the next reward and transition pair. This process continues until ρk is
reached.

A robot is deemed successful when all of the ρi are reached in sequence within a global
time-horizon T . SWIRL uses a set of initial supervisor demonstrations to construct a proxy
task that approximates the original MDP. To make this problem computationally tractable,
we make some modeling assumptions.

Modeling Assumption 1. Successful Demonstrations: We need conditions on the
demonstrations to be able to infer the sequential structure. We assume that all demon-
strations are successful, that is, they visit each ρi in the same sequence.

Modeling Assumption 2. Quadratic Rewards: We assume that each reward function
Ri can be expressed as a quadratic of the form ´ps ´ s0q

TΨps ´ s0q for some positive
semi-definite Ψ and a center point s0 with sT0 Ψs0 “ 0.

Modeling Assumption 3. Ellipsoidal Approximation: Finally, we assume that the tran-
sition regions in ρi can be approximated by a set of disjoint ellipsoids.
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Algorithm Overview

SWIRL can be described in terms of three sub-algorithms:

Inputs: Demonstrations D

1. Sequence Learning: Given D, SWIRL applies TSC to partition the task into k
sub-tasks whose start and end are defined by arrival at a sequence of transitions G “
rρ1, ..., ρks.

2. Reward Learning: GivenG andD, SWIRL associates a local reward function with
each segment resulting in a sequence of rewards Rseq “ rR1, ..., Rks.

3. Policy Learning: Given Rseq and G, SWIRL applies reinforcement learning to
optimize a policy for the task π.

Outputs: Policy π

In principle, one could couple steps 1 and 2 similar to the results in [97]. We separate
these steps since that allows us to use a different set of features for segmentation than used
for reward learning. Perceptual features can provide a valuable signal for segmentation but
quadratic reward functions may not be meaningful in all perceptual feature spaces.

Sequence Learning Algorithm

First, SWIRL applies a clustering algorithm to the initial demonstrations to learn the transi-
tion regions. The clustering model is based on our prior work on Transition State Clustering
(TSC) [67, 86]. Transitions are defined as significant changes in the state trajectory. These
transitions can be spatially and temporally clustered to identify if there are common condi-
tions that trigger a change in motion across demonstrations.

Reward Learning Algorithm
After the sequence learning phase, each demonstration is partitioned into k segments. The
reward learning phase uses the learned rρ1, ..., ρks to construct the local rewards rR1, ..., Rks

for the task. Each Ri is a quadratic cost parametrized by a positive semi-definite matrix Ψ.
The role of the reward function is to guide the robot to the next transition region ρi. A

first approach is for each segment i, we can define a reward function as follows:

Ripsq “ ´}s´ µi}
2
2,

which is just the Euclidean distance to the centroid.
A problem with using Euclidean distance directly is that it uniformly penalizes dis-

agreement with µ in all dimensions. During different stages of a task, some directions will
likely naturally vary more than others. To account for this, we can derive :

Ψrj, ls “ Σ´1,
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Algorithm 3 Reward Inference
Input: Demonstration D and sub-goals rρ1, ..., ρks
Segment each demonstration di into k sub-sequences where the jth is denoted by dirjs.
Apply Equation 2 to each set of sub-sequences 1...k.
Return: Rseq

which is the inverse of the covariance matrix of all of the state vectors in the segment:

Ψ “ p

end
ÿ

t“start

ssT q´1, (2)

which is a p ˆ p matrix defined as the covariance of all of the states in the segment i ´ 1
to i. Intuitively, if a feature has low variance during this segment, deviation in that feature
from the desired target it gets penalized. This is exactly the Mahalonabis distance to the
next transition.

For example, suppose one of the features j measures the distance to a reference trajec-
tory ut. Further, suppose in step one of the task the demonstrator’s actions are perfectly
correlated with the trajectory (Ψirj, js is low where variance is in the distance) and in step
two the actions are uncorrelated with the reference trajectory (Ψirj, js is high). Thus, Ψ
will respectively penalize deviation from µirjs more in step one than in step two.

Policy Learning
policy-learning SWIRL uses the learned transitions rρ1, ..., ρks and Rseq to construct a
proxy task to solve via Reinforcement Learning. In this section, we describe learning a pol-
icy π given rewards Rseq and an ordered sequence of transitions G. However, this problem
is not trivial since solving k independent problems neglects potential shared value structure
between the local problems (e.g., a common failure state). Furthermore, simply taking the
aggregate of the rewards can lead to inconsistencies since there is nothing enforcing the
order of operations. We show that a single policy can be learned jointly over all segments
over a modified problem where the state-space with additional variables that keep track of
the previously achieved segments. We present a Q-Learning algorithm [85, 121] that cap-
tures the coupling noted above between task segments. In principle, similar techniques can
be used for any other policy search method.

Jointly Learning Over All Segments

In our sequential task definition, we cannot transition to reward Ri`1 unless all previous
transition regions ρ1, ...ρi are reached in sequence. We can leverage the definition of the
Markov Segmentation function formalized earlier to jointly learn across all segments, while
leveraging the segmented structure. We know that the reward transitions (Ri to Ri`1) only
depend on an arrival at the transition state ρi and not any other aspect of the history. There-
fore, we can store an index v, that indicates whether a transition state i P 0, ..., k has been
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reached. This index can be efficiently incremented when the current state s P ρi`1. The
result is an augmented state-space

`

s
v

˘

to account for previous progress. In this lifted space,
the problem is a fully observed MDP. Then, the additional complexity of representing the
reward with history over S ˆ rks is only Opkq instead of exponential in the time horizon.

Segmented Q-Learning

At a high-level, the objective of standard Q-Learning is to learn the function Qps, aq of the
optimal policy, which is the expected reward the agent will receive taking action a in state
s, assuming future behavior is optimal. Q-Learning works by first initializing a random Q
function. Then, it samples rollouts from an exploration policy collecting ps, a, r, s1q tuples.
From these tuples, one can calculate the following value:

yi “ Rps, aq ` arg max
a
Qps1, aq

Each of the yi can be used to define a loss function since if Q were the true Q function,
then the following recurrence would hold:

Qps, aq “ Rps, aq ` arg max
a
Qps1, aq

So, Q-Learning defines a loss:

LpQq “
ÿ

i

}yi ´Qps, aq}
2
2

This loss can be optimized with gradient descent. When the state and action space is dis-
crete, the representation of the Q function is a table, and we get the familiar Q-Learning al-
gorithm [121]–where each gradient step updates the table with the appropriate value. When
Q function needs to be approximated, then we get the Deep Q Network algorithm [85].

SWIRL applies a variant of Q-Learning to optimize the policy over the sequential re-
wards. The basic change to the algorithm is to augment the state-space with indicator vector
that indicates the transition regions that have been reached. So each of the rollouts, now
records a tuple ps, v, a, r, s1, v’q that additionally stores this information. The Q function
is now defined over states, actions, and segment index–which also selects the appropriate
local reward function:

Qps, a, vq “ Rvps, aq ` arg max
a
Qps1, a, v1q

We also need to define an exploration policy, i.e., a stochastic policy with which we will
collect rollouts. To initialize the Q-Learning, we apply Behavioral Cloning locally for each
of the segments to get a policy πi. We apply an ε-greedy version of these policies to collect
rollouts.
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Simulated Experiments
We constructed a parallel parking scenario for a robot car with non-holonomic dynamics
and two obstacles (Figure 3.24a), and we also experimented on the standard acrobot domain
(Figure 3.24b).

Experimental Methodology

First, we overview our basic experimental methodology. We evaluate SWIRL on two sim-
ulated RL benchmarks and two deformable manipulation tasks on the da Vinci surgical
robot [57]. In all of these tasks, there is a single MDP of interest where the reward is sparse
(for a substantial amount of the state-space the reward is zero). The goal of SWIRL is to
improve convergence on this task.

Supervision

In both of the RL benchmarks, the reward function defines a target configuration of the
robot. We generated the initial demonstrations using an RRT* motion planner (assuming
deterministic dynamics) [55]. As both the RL benchmarks are stochastic in nature, we used
an MPC-style re-planning approach to control the robot to the target region. On the physical
experiments, we provided the robot with demonstrations collected in tele-operation. We
collected fully observed trajectories with both states and actions.
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Basic Baselines

Pure Exploration: The first set of baselines study a pure exploration approach to learn-
ing a policy. The baseline approach applies RL to the global task. In all of our experi-
ments, we use variants of Q-Learning with different function approximators. The Q func-
tion is randomly initialized and is updated with data collected from episodic rollouts. The
hyper-parameters for each experiment are listed in the appendix. We use approximate
Q-Learning [13, 124] in the simulated benchmarks and Deep Q-Networks in the physical
experiments [85].
Pure Demonstration: This baseline directly learns a policy from an initial set of demon-
strations using supervised learning. This approach is called Behavioral Cloning (see survey
of imitation learning in [91]), and in each of our experiments, we describe the policy mod-
els used. It is important to note that this approach requires fully observed demonstrations.
Warm Start Exploration: Next, we consider approaches that leverage both demonstra-
tions and exploration. One approach is to use demonstrations to initialize the Q-function
for RL and then perform rollouts. This approach requires fully observed demonstrations as
well.
Inverse Reinforcement Learning: Alternatively, we can also use the demonstrations
to infer a new reward function. We use IRL to infer a smoother quadratic reward func-
tion that explains the demonstrator’s behavior. We infer this quadratic reward function us-
ing MaxEnt-IRL. We consider both using estimated dynamics and ground truth dynamics
for this baseline. When the dynamics are estimated this approach requires fully observed
demonstrations. After inferring the reward, the task is solved with RL w.r.t the quadratic
reward function.

Figure 3.24: (A) Simulated control task with a car with noisy non-holonomic dynamics.
The car (A1) is controlled by accelerating and turning in discrete increments. The task is to
park the car between two obstacles.
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Tasks

For the car domain, the car can accelerate or decelerate in discrete ˘0.1 meters per second
squared increments (the car can reverse), and change its heading by 5˝ degree increments.
The car’s velocity and heading θ are inputs to a bicycle steering model which computes the
next state. The car observes its x position, y position, orientation, and speed in a global
coordinate frame. The car’s dynamics are noisy and with probability 0.1 will randomly add
or subtract 2.5˝ degrees to the steering angle. If the car parks between the obstacles, i.e., 0
speed within a 15˝ tolerance and a positional tolerance of 1 meter, the task is a success and
the car receives a reward of 1. The obstacles are 5 meters apart (2.5 car lengths). If the car
collides with one of the obstacles or does not park in 200 timesteps, the episode ends with
a reward of 0.

The acrobot domain consists of an under-actuated two-link pendulum with gravity and
with torque controls on the joint. There are 4 discrete actions that correspond to clockwise
and counter-clockwise torques on each of the links. The robot observes the angle θ1, θ2 and
angular velocity ω1, ω2 at each of the links. The dynamics are noisy where a small amount
of random noise is added to each torque applied to the pendulum. The robot has 1000
timesteps to raise the arm above horizontal (y “ 1 in the image). If the task is successful
and the robot receives a reward of 1. The expected reward is equivalent to the probability
that the current policy will successfully raise the arm above horizontal.

Pure Exploration vs. SWIRL

In the first set of experiments, we compare the learning efficiency of pure exploration to
SWIRL (Figure 3.25). The baseline line Q-Learning approach (QL) is very slow because it
relies on random exploration to achieve the goal at least once before it can start estimating
the value of states and actions. We fix the number of initial demonstrations provided to
SWIRL. We apply the segmentation and reward learning algorithms and construct a proxy
task. In both domains, SWIRL significantly accelerates learning and converges to a suc-
cessful policy with significantly fewer demonstrations. We find that in the parallel parking
domain this improvement is more substantial. This is likely because the task more naturally
partitions into discrete subtasks. In the appendix, we visualize the segments discovered by
the algorithm.

Pure Demonstration vs. SWIRL

Next, we evaluate SWIRL against a behavioral cloning approach (Figure 3.26). We collect
the initial set of demonstrations and directly learn a policy with an SVM. For the parallel
parking task, we use a linear SVM. For the acrobot task, we use a kernel SVM with an
RBF kernel. We fix the number of autonomous rollouts that SWIRL can observe (500 for
the parallel parking task and 3000 for the acrobot task). Note that the SVM technique
requires observing the actions in the demonstration trajectories, which may not be possible
in all applications. The SVM approach does have the advantage that it doesn’t require
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Figure 3.25: Learning curves for Q Learning (QL) and SWIRL on both simulated tasks.
(Parallel Parking) For a fixed number of demonstrations 5, we vary the number of rollouts
and measure the average reward at each rollout. (Acrobot) For a fixed number of demon-
strations 15, we vary the number of rollouts and measure the average reward at each rollout.

any further exploration. However, SWIRL and the pure demonstration approach are not
mutually exclusive. As we show in our physical experiments, we can initialize Q-learning
with a behavioral cloning policy. The combination of the two approaches allows us to take
advantage of a small number of demonstrations and learn to refine the initial policy through
exploration.

The SVM approach requires more than 10x the demonstrations to be competitive. In
particular, there is an issue with exhaustively demonstrating all the scenarios a robot may
encounter. Learning from autonomous trials in addition to the initial demonstrations can
augment the data without the burdening the supervisor. Perhaps surprisingly, the initial
dataset of demonstrations can be quite small. On both tasks, with only five demonstra-
tions, SWIRL is within 20% of its maximum reward. Representing a policy is often more
complex than a reward function that guides the agent to valuable states. Learning this struc-
ture requires less data than learning a full policy. This suggest that SWIRL can exploit a
very small number of expert demonstrations to dramatically reduce the number of rollouts
needed to learn a successful policy.

SWIRL vs. Other Hybrid Approaches

Finally, we compare SWIRL to two other hybrid demonstration-exploration approaches
(Figure 3.27). The goal of these experiment is to show that the sequential structure learned
in SWIRL is a strong prior. As in the previous experiment, it is important to note that
SWIRL only requires a state-trajectory as a demonstration and does not need to explicitly
observe the actions taken by the expert demonstrator.

Initializing the Q-Function with the demonstrations, did not yield a significant improve-
ment over random initialization. This is because in expert demonstration one rarely ob-
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Figure 3.26: Demonstration curves for imitation learning (SVM) and SWIRL on both sim-
ulated tasks. (Parallel Parking) We fix the number of rollouts to 500 and vary the number
of demonstration trajectories each approach observes. (Acrobot) For a number of rollouts
3000, we vary the number of demonstration trajectories given to each technique.

serves failures, and if the q-learning algorithm does not observe poor decisions it will not
be able to avoid them in the future. We also applied an IRL approach using estimated
dynamics. The IRL approach is substantially better than the basic Q-Learning algorithm
in the parallel parking domain. This is likely because it smooths out the sparse reward
to fit a quadratic function. This does serve to guide the robot to the goal states to some
extent. Finally, SWIRL is the most sample-efficient algorithm. This is because the sequen-
tial quadratic rewards learned better align with the true value functions in both tasks. This
structure can be learned from a small number of demonstrations.

Figure 3.27: Comparison of hybrid approaches. (Parallel Parking) For a fixed number of
demonstrations 5, we vary the number of rollouts and measure the average reward at each
rollout. (Acrobot) For a fixed number of demonstrations 15, we vary the number of rollouts
and measure the average reward at each rollout.
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Figure 3.28: For a number of rollouts 3000 and 250 demonstrations, we measure the trans-
fer as a function of varying the link size. (QL) denotes Q-learning, (SVM) denotes a
baseline of behavioral cloning with a Kernel SVM policy representation, (IRL) denotes
MaxEnt-IRL using estimated dynamics learned from the demonstrations, (SWIRL) denotes
SWIRL. The SVM policy fails as soon the link size is changed. SWIRL is robust until the
change becomes very large.

The Benefit Of Models

Next, we consider the benefits of using Inverse Reinforcement Learning with the ground
truth dynamics models compared to the ones estimated from data (Figure 3.29). One sce-
nario where this problem setting is useful is when the demonstration dynamics (are known)
but differ from the execution dynamics. Most common IRL frameworks, like Maximum
Entropy IRL, assume access to the dynamics model. In the previous experiments, these
models were estimated from data, and here we show the benefit of providing the true mod-
els to the algorithms. Both IRL and SWIRL improve their sample efficiency significantly
when ground truth models are given. This experiment illustrates that the principles behind
SWIRL are compatible with model-based methodologies.

Different Segmentation Methods

In our general framework, SWIRL is compatible with any heuristic to segment the ini-
tial demonstration trajectories. This heuristic serves to oversegment and the unsupervised
learning model builds a model for sequential rewards from this heuristic. The previous
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Figure 3.29: (Parallel Parking) For a fixed number of demonstrations 5, we vary the number
of rollouts and measure the average reward at each rollout. (Acrobot) For a fixed number
of demonstrations 15, we vary the number of rollouts and measure the average reward at
each rollout.

experiments use a GMM-based approach as a segmentation heuristic, this experiment eval-
uates the same domains with other heuristics. In particular, we consider two other models:
segmentation based on changes in direction of velocity and segmentation based on linear
dynamical regimes. Figure 3.30 illustrates the results. While there are differences between
the performance of different heuristics, we found that the GMM-based approach was the
most reliable across domains.

Figure 3.30: We compare to different transition indicator heuristics with SWIRL. (Parallel
Parking) For a fixed number of demonstrations 5, we vary the number of rollouts and mea-
sure the average reward at each rollout. (Acrobot) For a fixed number of demonstrations
15, we vary the number of rollouts and measure the average reward at each rollout.
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Transfer

We constructed two transfer scenarios to evaluate situations whether the structure learned
overfits to the initial demonstrations. In essense, this is an evaluation of how well the
approaches handle transfer if the dynamics change between demonstration and execution.
We collect demonstrations N “ 100 on the original task, and then used the learned rewards
or policies on a perturbed task. For the parallel parking task, we modified the execution
environment such that the dynamics are coupled in a way that turning right causes the car
to accelerate forward by 0.05 meters per second. In the perturbed task, the car must learn
to adjust to this acceleration during the reversing phase. In the new domain, each approach
is allowed 500 rollouts. We report the results (Figure 3.31).

The success rate of the policy learned with Q-Learning is more or less constant between
the two domains. This is because Q-learning does not use any information from the original
domain. The SVM behavioral cloning policy has a drastic change. On the original domain
it achieves a 95% success rate (with 100 demonstrations), however, on the perturbed do-
main, it is never successful. This is because the SVM learned a policy that causes it to crash
into one of the obstacles in the perturbed environment.

The IRL techniques are more robust during the transfer. This is because the rewards
learned are quadratic functions of the state and do not encode anything specific about the
dynamics. Similarly, in SWIRL, the rewards and transition regions are invariant to the
dynamics in this transfer problem. For SWIRL-E and SWIRL-G, there is only a drop of
5% in the success rate. On the other hand, the model-free version of SWIRL reports a
larger drop of 16%. This is because the model-free version is not a true IRL algorithm and
may enocde some aspects of the dynamics in the learned reward function.

Coincidentally, this experiment also shows us how to construct a failure mode for
SWIRL. If the perturbation in the task is such that it “invalidates” a transition region, e.g.,
a new obstacle, then SWIRL may not be able to learn to complete the task. However, the
transition regions give us a formalism to detecting such problems during learning as we can
keep track of which regions are possible to reach.

As in the parallel parking scenario, we evaluate how the different approaches handle
transfer if the dynamics change between demonstration and execution. With N “ 250
demonstrations, we learn the rewards, policies, and segments on the standard pendulum,
and then during learning, we vary the size of the second link in the pendulum. We plot the
success rate (after a fixed 3000 rollouts) as a function of the increasing link size (Figure
3.28).

As the link size increases the even the baseline Q-learning becomes less successful.
This is because the system becomes more unstable and it is harder to learn a policy. The
behavioral cloning SVM policy immediately fails as the link size is increased. IRL is more
robust but does not offer much of an advantage in this problem. SWIRL is robust until
the change in the link size becomes large. This is because for the larger link size, SWIRL
might require different segments (or one of the learned segments in unreachable).
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Figure 3.31: For 500 rollouts and 100 demonstrations, we measure the robustness of the ap-
proaches to changes in the execution dynamics. (QL) denotes Q-learning, (SVM) denotes
a baseline of behavioral cloning with a SVM policy representation, (IRL) denotes MaxEnt-
IRL with estimated dynamics, and (SWIRL) denotes the model-free version of SWIRL.
While the SVM is 95% successful on the original domain, its success does not transfer to
the perturbed setting. On the other hand, SWIRL learns rewards and segments that transfer
to the new dynamics since they are state-space goals.

Sensitivity

Next, we evaluated the sensitivity of SWIRL to different initial demonstration sets (Figure
3.32). We sampled random initial demonstration sets and re-ran the algorithm on each of
the two domains 100 times. Figure 3.32 plots the mean reward as a function of the number
of rollouts and 2 standard deviations over all of the trials. We find that SWIRL is not very
sensitive to the particular initial demonstration dataset. In fact, the 2 standard deviation
error bar is less than the improvement in convergence in previous experiments.

Segmentation and Partial Observation

Next, we made the Parallel Parking domain more difficult to illustrate the connection be-
tween segmentation and memory in RL. We hid the velocity state from the robot, so the
car only sees px, y, θq. As before, if the car collides with one of the obstacle or does not
park in 200 timesteps the episode ends. We call this domain Parallel Parking with Partial
Observation (PP-PO).
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Figure 3.32: Sensitivity of SWIRL. (Parallel Parking) We generate a random set of 5
demonstration, we vary the number of rollouts and measure the average reward at each
rollout. We plot the mean and standard deviation over 100 trials. (Acrobot) We generate a
random set of 15 demonstration, we vary the number of rollouts and measure the average
reward at each rollout. We plot the mean and 2 standard deviations over 100 trials

This form of partial observation creates an interesting challenge. There is no longer
a stationary policy that can achieve the reward. During the reversing phase of parallel
parking, the car does not know that it is currently reversing. So there is ambiguity in that
state whether to pull up or reverse. We will see that segmentation can help disambiguate
the action in this state.

As before, we generated 5 demonstrations using an RRT* motion planner (assuming
deterministic dynamics) and applied each of the approaches. The techniques that model
this problem with a single MDP all fail to converge. The Q-Learning approach achieves
some non-zero rewards by chance. The learned segments in SWIRL help disambiguate
dependence on history, since the segment indicator tells the car which stage of the task is
currently active (pulling up or reversing) After 250000 time-steps, the policy learned with
model-based SWIRL has a 95% success rate in comparison to a <10% success rate for the
baseline RL, 0% for MaxEnt-IRL, and 0% for the SVM.

Physical Experiments with the da Vinci Surgical Robot
In the next set of experiments, we evaluate SWIRL on two tasks on the da Vinci Surgical
Robot. The da Vinci Research Kit is a surgical robot originally designed for tele-operation,
and we consider autonomous execution of surgical subtasks. Based on a chessboard cali-
bration, we found that the robot has an RMSE kinematic error of 3.5 mm, and thus, requires
feedback from vision for accurate manipulation. In our robotic setup, there is an overhead
endoscopic stereo camera that can be used to find visual features for learning, and it is
located 650mm above the workspace. This camera is registered to the workspace with a
RSME calibration error of 2.2 mm.
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Figure 3.33: We hid the velocity state from the robot, so the robot only sees px, y, θq. For a
fixed number of demonstrations 5, we vary the number of rollouts and measure the average
reward at each rollout. (QL) denotes Q-learning, (SVM) denotes a baseline of behavioral
cloning with a SVM policy representation, (IRL) denotes MaxEnt-IRL with estimated dy-
namics, and (SWIRL) denotes SWIRL. SWIRL converges will the other approaches fail to
reach a reliable success rate

Deformable Sheet Tensioning

In the first experiment, we consider the task of deformable sheet tensioning. A sheet of
surgical gauze is fixtured at the two far corners using a pair of clips. The unclipped part of
the gauze is allowed to rest on soft silicone padding. The robot’s task is to reach for the
unclipped part, grasp it, lift the gauze, and tension the sheet to be as planar as possible. An
open-loop policy typically fails on this task because it requires some feedback of whether
gauze is properly grasped, how the gauze has deformed after grasping, and visual feedback
of whether the gauze is planar. The task is sequential as some grasps pick up more or less
of the material and the flattening procedure has to be accordingly modified.

The state-space is the 6 DoF end-effector position of the robot, the current load on the
wrist of the robot, and a visual feature measuring the flatness of the gauze. This is done
by a set of fiducial markers on the gauze which are segmented by color using the stereo
camera. Then, we correspond the segmented contours and estimate a z position for each
marker (relative to the horizontal plane). The variance in the z position is a proxy for
flatness and we include this as a feature for learning (we call this disparity). The action
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space is discretized into an 8 dimensional vector (˘x, ˘y, ˘z, open/close gripper) where
the robot moves in 2mm increments.

We provided 15 demonstrations through a keyboard-based tele-operation interface. The
average length of the demonstrations was 48.4 actions (although we sampled observations
at a higher frequency about 10 observations for every action). From these 15 demonstra-
tions, SWIRL identifies four segments. One of the segments corresponds to moving to the
correct grasping position, one corresponds to making the grasp, one lifting the gauze up
again, and one corresponds to straightening the gauze. One of the interesting aspects of
this task is that the segmentation requires multiple features.

Then, we tried to learn a policy from the rewards constructed by SWIRL. In this ex-
periment, we initialized the policy learning phase of SWIRL with the Behavioral Cloning
policy. We define a Q-Network with a single-layer Multi-Layer Perceptron with 32 hid-
den units and sigmoid activation. For each of the segments, we apply Behavioral Cloning
locally with the same architecture as the Q-network (with an additional softmax over the
output layer) to get an initial policy. We rollout 100 trials with an ε “ 0.1 greedy version
of these segmented policies.

The learning results of this experiment are summarized below with different baselines.
The value of the policy is a measure of average disparity over the gauze accumulated over
the task (if the gauze is flatter longer, then the value is greater). As a baseline, we applied
RL for 100 rollouts with no other information. RL did not successfully grasp the gauze
even once. Next, we applied behavioral cloning (BC) directly. BC was able to reach the
gauze and but not successfully grasping it. Then, we applied the segmentation from SWIRL
and applied BC directly to each local segment (without further refinement). This was able
to complete the full task with a cumulative disparity score of ´3516. Finally, we applied
all of SWIRL and found the highest-value results (´3110). For comparison, we applied
SWIRL without the BC initialization and found that it was only successful at the first two
steps. This indicates that in real tasks the initialization is crucial.

Table 3.3: Results from the deformable sheet tensioning experiment
Technique # Demonstrations # Rollouts Value
Pure Exploration (RL) - 100 -8210
Pure Demonstration (BC) 15 - -7591
Segmented Demos. 15 - -3516
SWIRL 15 100 -3110

Surgical Line Cutting

In the next experiment, we evaluate generalization to different task instances. We apply
SWIRL to learn to cut along a marked line in gauze similar to [87]. This is a multi-
step problem where the robot starts from a random initial state, has to move to a position
that allows it to start the cut, and then cut along the marked line. We provide the robot
5 kinesthetic demonstrations by positioning the end-effector and then following various
marked straight lines. The state-space of the robot included the end-effector position px, yq



CHAPTER 3. SWIRL 90

as well as a visual feature indicating its pixel distance to the marked line ppixq. This visual
feature is constructed using OpenCV thresholding for the black line. Since the gauze is
planar, the robot’s actions are unit steps in the ˘x,˘y axes. Figure 3.34 illustrates the
training and test scenarios.

SWIRL identifies two segments corresponding to the positioning step and the termi-
nation. The learned reward function for the position step minimizes x, y, pix distance to
the starting point and for the cutting step the reward function is more heavily weighted
to minimize the pix distance. We defined task success as positioning within 1 cm of the
starting position of the line and during the following stage, missing the line by no more
than 1 cm (estimated from pixel distance). We evaluated the model-free version of SWIRL,
Q-Learning, and Behavioral Cloning with an SVM. SWIRL was the only technique able to
achieve the combined task.

We evaluated the learned tracking policy to cut gauze. We ran trials on different se-
quences of curves and straight lines. Out of the 15 trials, 11 were successful. 2 failed due
to SWIRL errors (tracking or position was imprecise) and 2 failed due to cutting errors
(gauze deformed causing the task to fail). 1 of the failures was on the 4.5 cm curvature line
and 3 were one the 3.5 cm curvature line.

Figure 3.34: We collected demonstrations on the da Vinci surgical robot kinesthetically.
The task was to cut a marked line on gauze. We demonstrated the location of the line
without actually cutting it. The goal is to infer that the demonstrator’s reward function
has two steps: position at a start position before the line, and then following the line. We
applied this same reward to curved lines that started in different positions.

Next, we characterized the repeatability of the learned policy. We applied SWIRL to
lines of various curvature spanning from straight lines to a curvature radius of 1.5 cm. Table
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Table 3.4: With 5 kinesthetic demonstrations of following marked straight lines on gauze,
we applied SWIRL to learn to follow lines of various curvature. After 25 episodes of ex-
ploration, we evaluated the policies on the ability to position in the correct cutting location
and track the line. We compare to SVM on each individual segment. SVM is comparably
accurate on the straight line (training set) but does not generalize well to the curved lines.

Curvature Radius (cm) SVM Pos. Error (cm) SVM Tracking Error (cm) SWIRL Pos. Error (cm) SWIRL Tracking Error (cm)
straight 0.46 0.23 0.42 0.21

4.0 0.43 0.59 0.45 0.33
3.5 0.51 1.21 0.56 0.38
3.0 0.86 3.03 0.66 0.57
2.5 1.43 - 0.74 0.87
2.0 - - 0.87 1.45
1.5 - - 1.12 2.44

3.4 summarizes the results on lines of various curvature. While the SVM approach did not
work on the combined task, we evaluated its accuracy on each individual step to illustrate
the benefits of SWIRL. On following straight lines, SVM was comparable to SWIRL in
terms of accuracy. However, as the lines become increasingly curved, SWIRL generalizes
more robustly than the SVM. A single SVM has to learn both the positioning and cutting
policies. The combined policy is much more complicated than the individual policies, e.g.,
go to a goal and follow a line.



Chapter 4

Alpha Clean: Reinforcement
Learning For Data Cleaning

It is widely known that data cleaning is one of the most time-consuming steps of the data
analysis process, and designing algorithms and systems to automate or partially automate
data cleaning continues to be an active area of research [24]. Automation in data cleaning
is challenging because real-world data is highly variable. A single data set can have many
different types of data corruption such as statistical outliers, constraint violations, and du-
plicates. Once an error is detected, there is a further question of how to repair this error,
which often depends on how the data will be used in the future.

This variability creates a tension between generality and efficiency. While one might
want a single cleaning framework that addresses all types of errors and repair operations, it
is far more efficient to consider more specialized frameworks. Data cleaning tools are often
highly optimized for particular problems (e.g., see statistical outliers [46], enforcing logical
constraints [24], entity resolution [64]). Consequently, a recent survey of industry suggests
that data cleaning pipelines are often a patchwork of custom scripts and multiple special-
ized systems [68]. The overhead to setup, learn, and manage multiple cleaning systems
can easily outweigh the benefits. Some data scientists eschew automated tools altogether
and simply write data cleaning programs from scratch. The customized programming ap-
proach quickly becomes difficult to mantain and interpret; especially for users without data
engineering expertise [104].

A single cleaning system that exposes a sufficiently flexible interface is clearly desir-
able; as long as the runtime and accuracy can be made comparable to existing alternatives.
To achieve this, we turn to the contemporary AI literature, which has produced exciting re-
sults such as AlphaGo [109] that were previously considered not possible. This work shows
that a combination of machine learning and massively parallelized search can effectively
optimize highly complex objective functions. Our main observation is that data cleaning
is very similar to the search problems considered in AI [99]. The classic application is a
computer chess program that must plan a sequence of chess moves that change the state of
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the board in order to maximize the likelihood of a checkmate. Likewise, in data cleaning,
one is given a dirty relation and a way to measure data quality (e.g., number of integrity
constraints violated), and the data cleaning problem is to find a sequence of modifications
to the relation that maximize the data quality metric.

Most non-trivial problems are very hard without good search heuristics. Advances in
machine learning have made it possible to replace hand-crafted heuristics with automati-
cally learned pruning functions that estimate the expected quality of candidate plans. Al-
phaGo learned pruning heuristics using a neural network trained on data generated through
self-play [109]. This insight is highly relevant to data cleaning, where datasets tend to
have structure amenable to learning heuristics adaptively. Data errors are often systematic
where they are correlated with with certain attributes and values in the dataset [69, 98].
Consequently, as more data is cleaned, we can better identify common patterns to prioritize
the search on future data. We may not necessarily need a neural network for data clean-
ing, but the overall algorithmic structure of AlphaGo, tree-search combined with a learned
heuristic, can be very useful.

AlphaClean is a new data cleaning system that is designed around a search-based
model. It takes as input a quality function that models the data quality of a relation as
a real-value between r0, 1s and a language of parameterized data cleaning operators, and
outputs a sequence of data cleaning transformations (a cleaning program) from the lan-
guage that seeks to maximize the quality function. This API imposes minimal restrictions
on the quality function, giving it tremendous flexibility in terms of the data errors that it
can express. As a comparison, a recent system called Holoclean [98] is similar in that
it provides a rich interface to specify denial constraints and lookup tables, and integrates
them within a probabilistic model to more accurately resolve constraint violations. In con-
trast, AlphaClean’s quality function is a user-defined function that can express arbitrary
combinations of denial constraints as well as statistical, quantitative, text formatting, and
other classes of data errors. For instance, Section 4.4 shows how AlphaClean can perform
cleaning for machine learning applications by embedding machine learning training and
evaluation within the quality function, while Section 4.4 combines entity resolution, outlier
cleaning, and functional dependency violations within the same function.

AlphaClean uses a best-first search that greedily appends data transformations to the set
of best candidate programs seen so far, and adopts parallelization and pruning ideas from
the search-based planning literature. In contrast to traditional search problems, where the
search state (e.g., chess board) is compact and largely trivial to parallelize in a distributed
setting, the data cleaning search state is the size of the input dataset and introduces a trade-
off between communication costs to share intermediate state and the degree of parallelism
possible. To further accelerate its runtime, AlphaClean can also encode problem-specific
optimizations as search pruning rules (e.g., disallowed transformation sequences) or mod-
ifications to the data representation (e.g., clustering similar records). We find that many
optimizations in existing cleaning systems may be cast as search pruning rules.

AlphaClean can adaptively learn pruning rules to avoid unprofitable search branches
during the search process. While AlphaGo used a deep neural network and massive amounts
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of training data to model the heurisitic, we found that a simple logistic regression classifier
and training data gathered during the search process was sufficient to reduce the runtime by
multiple orders of magnitude. It is important to acknowledge that AlphaClean loses many
of the provable guarantees provided by specialized systems based on logical constraints,
and is in some sense, best-effort. Across 8 real-world datasets used in prior data cleaning
literature, we show that AlphaClean matches or exceeds the cleaning accuracy and exhibits
competitive run-times to state-of-the-art approaches that are specialized to a specific error
domain (constraint, statistical, or quantitative errors).

• Optimization: Existing cleaning pipelines must combine disparate cleaning solu-
tions and manage glue code to transfer data between systems. However, data transfer
can be a non-trivial portion of the total cleaning cost and recent work [93] has shown
that a common runtime can avoid data movement and improve runtimes by up to
30ˆ.

• Generalization and Robustness: In contrast to existing cleaning systems, that
output a cleaning relation, AlphaClean outputs a composable cleaning program that
is both simpler to understand because it groups common fixes together, and can be
applied to new data. In addition, the cleaning program allows us to analyze cleaning
systems for overfitting. We indeed find that the complexity of the quality function
and cleaning language can lead to overfitting, and believe this is the case for any data
cleaning system. We also show that simple changes to the quality function can act as
regularization terms to control the degree of overfitting.

• Software Engineering: Users do not need to write and manage glue code; do not
need to manage ETL between systems; and do not need to learn system specific
abstractions, languages, and assumptions. All of these are arguably intangible, but
critical friction points in the highly iterative cleaning process.

• New Cleaning Applications: We envision that a single API makes it possible to
support an ecosystem of domain-specific cleaning specification libraries. For in-
stance, interactive visualization interfaces akin to [1, 54, 133, 134] can directly trans-
late user interactions into a wide range of cleaning constraints.

4.1 Problem Setup
First, we overview the basic formalism of AlphaClean and present its relationship to related
work. We focus on data transformations that concern a single relational table. Let R be a
relation over a set of attributes A,R denote the set of all possible relations over A, and r.a
be the attribute value of a P A for row r P R. A data transformation T pRq : R ÞÑ R maps
an input relation instance R P R to a new (possibly cleaner) instance R1 P R that is union
compatible with R. For instance, “replace all city attribute values equal to San Francisco
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with SF” may be one data transformation, while “delete the 10th record” may be another.
Aside from union compatibility, transformations are simply UDFs. Although it is desirable
for the transformation to be deterministic and idempotent, if they are not, it simply makes
the cleaning problem harder.

Data transformations can be composed using the binary operator ˝ as follows: pTi ˝
TjqpRq “ TipTjpRqq. The composition of one or more data transformations is called a
cleaning program p. If p “ p1 ˝ T , then p1 is the parent of p; the parent of a single
data transformation is a NOOP. In practice, users will specify transformation templates
Tpθ1, ¨ ¨ ¨ , θkq, and every assignment of the parameters represents one possible transforma-
tion. Although T can in theory be an arbitrary deterministic template function, our current
implementation makes several simplifying assumptions to bound the number of data trans-
formations that it can output. We assume that a parameter θi is typed as an attribute or
a value. The former means that θi’s domain is the set of attribute names in the relation
schema; the latter means that θi’s domain is the set of cell values found in the relation, or
otherwise provided by the user.

Example 1 The following City relation contains two attributes city_name and city_-
code. Suppose there is a one-to-one relationship between the two attributes. In this case,
the relation is inconsistent with respect to the relationship and contains errors highlighted
in red.

city_name city_code
1 San Francisco SF
2 New York NY
3 New York City NYC
4 San Francisc SF
5 San Jose SJ
6 San Mateo SM
7 New York City NY

The following transformation template uses three parameters: attr specifies an at-
tribute, srcstr specifies a source string, and targetstr specifies a target string.

T “ find_replacepsrcstr, targetstr, attrq

The output of the above is a transformation T that finds all attr values equal to srcstr
and replaces those cells with targetstr. For instance, find_replace(“NYC”,
“NY”, “city_code”)(City) returns a data transformation that finds records in
City whose city_code is “NYC” and replaces their value with “NY”.

Let Σ be a set of distinct data transformations tT1, ¨ ¨ ¨ , TNu, and Σ˚ be the set of all
finite compositions of Σ, i.e., Ti ˝ Tj . A formal language L over Σ is a subset of Σ˚. A
program p is valid if it is an element of L.
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Example 2 Continuing Example 1, Σ is defined as all possible parameterizations of find_-
replace. Since many possible possible parameterizations are non-sensical (e.g., the
source string does not exist in the relation), we may bound Σ to only source and target
strings present in each attribute’s instance domain (a standard assumption in other work
as well [33]). In this case, there are 61 possible data transformations, and Σ˚ defines any
finite composition of these 61 transformations. The language L can be further restricted to
compositions of up to k data transformations.

Finally, let QpRq : R ÞÑ r0, 1s be a quality function where 1 implies that the instance R
is clean, and a lower value correspond to a dirtier table. Since running a program p P L on
the initial dirty table Rdirty returns another table, QpppRdirtyqq returns a quality score for
each program in the language. Q is a UDF and we do not impose any restrictions on it. In
fact, one experiment embeds training and evaluating a machine learning model within the
quality function (Section 4.4). Another experiment shows that AlphaClean can be robust
to random noise injected in the function (Section 4.4).

Even so, we call out two special cases that provide optimization opportunities. We
define two sub-classes of quality functions: row-separable and cell-separable quality func-
tions. The former expresses the overall quality based on row-wise quality function qprq :
R ÞÑ r0, 1s where 0 implies that the record is clean:

QpRq9
ÿ

rPR
qprq

Similarly, a cell-separable quality function means that there exists a cell-wise quality func-
tion qpr, aq : pR ˆ Aq ÞÑ r0, 1s, such that the quality function is the sum of each cell’s
quality: QpRq9

ř

rPR

ř

aPA qpr, aq.
These special cases are important because they can define hints on what types of trans-

formations are irrelevant. For example, if the quality function is cell-separable, and we
have identified that a set of cells C are dirty (e.g., they violate constraints), then we can
ignore transformations that do not modify cells in C. This restricts the size the language
and makes the problem much easier to solve.
We are now ready to present data cleaning as the following optimization problem:

Problem 3 (cleanpQ,Rdirty, Lq) Given quality function Q, relation Rdirty, and language
L, find valid program p˚ P L that optimizes Q:

p˚ “ min
pPL

QpppRdirtyqq.

p˚pRdirtyq returns the cleaned table, and p˚ can be applied to any table that is union compat-
ible with Rdirty. A desirable property of this problem formulation is that it directly trades
off runtime with cleaning accuracy and can be stopped at any time (though the cleaning
program may be suboptimal). At the limit, AlphaClean simply explores L and identifies
the optimal program.



CHAPTER 4. ALPHA CLEAN 97

Example 3 Continuing Example 1, let us assume the following functional dependencies
over the example relation: city_name Ñ city_code and city_code Ñ city_name. We
can efficiently identify inconsistencies by finding the cities that map to ą 1 city code, and
vice versa. Let such city names and codes be denotedDcity_name andDcity_code, respectively.
QpRq is a cell-separable quality function where the cell-wise quality function is defined as
qpr, aq “ 1´pr.a P Daq, such that r.a is 1 if the attribute value does not violate a functional
dependency, and 0 otherwise.

By searching through all possible programs up to length 3 in L, we can find a cleaning
program based on find_replace that resolves all inconsistencies:

f i n d _ r e p l a c e ( New York , New York Ci t y , c i t y _ n a m e )
f i n d _ r e p l a c e ( San Franc i s c , San Franc i sco , c i t y _ n a m e )
f i n d _ r e p l a c e (NYC , NY , c i t y _ c o d e )

Approach Overview and Challenges
Our problem formulation is a direct instance of planning in AI [99], where an agent identi-
fies a sequence of actions to achieve a goal. In our setting, the agent (AlphaClean) explores
a state space (R) from an initial state (the input relation) by following transitions (applying
Ti P Σ) such that the sequence of actions is valid (within Σ˚) and the quality of the final
state (QpRfinalq) is maximized.

For readers familiar with stochastic processes, this search problem is equivalent to a
deterministic Markov Decision Process (MDP), where the states are R, the actions Σ, the
transition function updates the instance with the transformation, the initial state is the dirty
instance Rdirty, and the reward function is Q.

One may be hesitant in adopting our problem formulation because, although it is suffi-
ciently general to model many existing data cleaning problems, such generality often comes
at the expense of runtime performance. The planning problem is APX-Hard, meaning there
does not exist a polynomial time approximation unless P=NP. Let R be a single-attribute
relation of Booleans. Let L be the set of all assignments to a single value. Given a list of N
Boolean clauses over all the boolean variables, let Q assign to each record one minus the
fraction of clauses that evaluate to true. This formulation is equivalent to MAX-SAT and
solution to the optimization problem.

For this reason, the key technical challenge is to show that AlphaClean can solve data
cleaning problems with comparable run-time as existing specialized systems, and can be
easily extended to support new optimizations. Despite the problem’s worst-case complex-
ity, recent successes in similar planning problems—ranging from AlphaGo [109] to auto-
matically playing Atari video games [85] have shown that a prudent combination Machine
Learning and distributed search can find practical solutions by leveraging the structure of
the problem. Not every problem instance is as pathological as the worst case complexity
suggests, and there are many reasonable local optima.
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Figure 4.1: AlphaClean transforms high level cleaning goals (e.g., integrity constraints, statistical
models, cleaning operations) into a quality measure and cleaning language, and uses an optimized
tree search to find and optimize a sequence of transformations (cleaning program) to maximize the
quality measure.

4.2 Architecture and API
This section describes the three major components of the AlphaClean system architecture
(Figure 4.1), split between the user interface to specify the cleaning problem, the core
search algorithm, and optimization of the resulting cleaning program. We detail the in-
terface and program optimization in this section, and focus on the search algorithm and
optimizations in the rest of the section. Designing data cleaning interfaces [43] and query
optimization for data cleaning [38, 58] are interesting problems in their own right, and we
believe AlphaClean can enable simpler and more powerful approaches. However, these
were not a focus of the current study.

The Specification Interface contains extensible libraries of domain-specific quality func-
tions, cleaning data transformations, and pruning feature hints that the user can use to de-
fine a high level cleaning goal. Our current implementation can translate a wide range of
domain-specific goals—including type constraints, functional dependencies, denial con-
straints, lookup tables, parametric and non-parametric outlier models, and correlations
between numeric attributes—into a single quality function. Users can also constrain the
cleaning language, and we currently support any type of conditional cell and record trans-
formation that applies a black-box transformation to all cells or records satisfying a pred-
icate; both the transformation parameters and the predicate are learned by AlphaClean.
Finally, users can optionally provide features that AlphaClean uses to dynamically learn
pruning rules.

The Search component takes as input the quality function Q and language L, and per-
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forms a greedy search heuristic to find a program p˚ P L that maximizes Q. Users can
supply hints that exploit the problem structure to reduce the runtime by pruning the search
space and parallelizing the search. To bound the search space, users specify a maximum
program length k. AlphaClean also supports three classes optimizations. Static pruning
invalidates candidate programs based on the program structure (sequence of actions). For
instance, composing the same idempotent transformation (e.g., find_replace(SFO,
SF, city_name)) in succession is unnecessary. Dynamic pruning can access the result
of a candidate program (search state) when making pruning decisions, and we propose a
novel approach to learn automatic dynamic pruning rules that can reduce end-to-end run-
times by up to 75% at the expense of slightly lower recall. Finally, AlphaClean parallelizes
the search in both shared memory and distributed settings. We describe the pruning rules
and parallelization optimization in detail in the following text.

Finally, once search component outputs the cleaning program p˚, the Program Opti-
mizer performs query compilation optimizations and provides an API to add new opti-
mizations. AlphaClean currently replaces variables with literal values whenever possible,
inlines data transformations into loops that scan over the input relation, and uses loop fu-
sion [25, 93] to avoid unnecessary scans over the input and intermediate relations for each
transformation in p˚. Consider the program in Example 3. Since the find_replace
operations do not conflict, it is inefficient to loop through over the relation instance three
separate times. Since they do not conflict, it would be inefficient to execute them sequen-
tially and iterate over the data three separate times. Instead, they can be fused:

f o r r i n rows :
i f r [ c i t y_name ] == ‘New York ’ :

r [ c i t y_name ] = ‘New York Ci ty ’
e l i f r [ c i t y_name ] == ‘ San F r a n c i s c ’ :

r [ c i t y_name ] = ‘ San F r a n c i s c o ’
i f r [ c i t y _ c o d e ] == ‘NYC’

r [ c i t y _ c o d e ] = ‘NY’

These simple optimizations improve the final program runtime by up-to 20x, and we
leave further improvements to future work (e.g., could be optimized with a framework like
Weld [93]).

4.3 Search Algorithm
We now provide an overview of AlphaClean’s search algorithm and optimizations.

Naive Search Procedures
In principle, any tree search algorithm over L would be correct. However, the traversal
order and expansion policy is important in this search problem. We describe the algorithmic
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Figure 4.2: Main Algorithmic Loop

and practical reasons why two naive procedures—breadth-first search (BFS) and depth-first
search (DFS)—exhibit poor search runtimes.
BFS: This approach extends each program in the search frontier with every possible
data transformation in Σ. To extend a candidate program lc with T P Σ, it evaluates
QppT ˝ lcqpRqq. Unfortunately, the frontier grows exponentially with each iteration. Ad-
ditionally, evaluating every new candidate program T ˝ lc can be expensive if the input
relation is large. Although the cost can be reduced by materializing lcpRq, it is not possible
to materialize all candidate programs in the frontier for all but the most trivial cleaning
problems. It is desirable to use asearch procedure that bounds the size of the frontier and
the materialization costs.

The first problem with this algorithm is that since each node in this tree o represents a
sequence of transformations. Evaluating the value of o can be very expensive since it would
have to evaluate the entire path to the root. o is a composition of many transformations and
may require a number of passes over the dataset. This can be avoided if we can materialize
(either to disk or memory) the frontier,that is, for each node in the priority queue o P O, we
have a cached result of opRq. However, with BFS, the frontier is exponential in the support
of the language and the system would quickly run out of memory.
DFS: Depth-first search only needs to materialize the intermediate results for a single
program at a time, however it is highly inefficient since the vast majority of programs that
it explores will have low quality scores.
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Search Algorithm and Optimizations
Best-first search expands the most promising nodes chosen according to a specified cost
function. We consider a greedy version of this algorithm, which removes nodes on the
frontier that are more than γ times worse than the current best solution. Making γ smaller
makes the algorithm asympotically consistent but uses more memory to store the frontier,
whereas γ “ 1 is a pure greedy search with minimal memory requirements.

The frontier is modeled as a priority queue P where the priority is the quality of the can-
didate program, and is initialized with a NOOP program with quality QpRq. The algorithm
iteratively extends all programs in the queue with less than k transformations; a program p
is extended by composing it with a transformation T in Σ. If the resulting program p1 is in
the language L, then we add it to the queue. Finally, let p̄ be the highest quality program
in the queue. The algorithm removes all programs whose quality is ă γ ˆ Qpp̄pRqq from
the frontier. This process repeats until the candidate programs cannot be improved, or all
programs have k transformations.

In a naive and slow implementation, the above algorithm computes p’s quality by fully
running p on the input relation before running Q on the result, explores all possible data
transformation sequences, and runs sequentially. One of the benefits of its simple structure
is that it is amenable to a rich set of optimizations to prune the search space, incrementally
compute quality functions, and parallelize the search. In fact, we find that many optimiza-
tions in existing specialized cleaning systems can be cast in terms of the following classes.

We can materialize (either to disk or memory) the frontier,that is, for each node in the
priority queue p P P , we have a cached result of ppRq. Then, when we expand the nodes
to p1 “ p ˝ t, we only have to incrementally evaluate tpRq. After the node is expanded,
the result is added to the cache if it within γ of the best solution. The basic algorithm
described above is well-suited for this problem. Without the greediness, the frontier might
be exponentially large leading to an impractical amount of materialization. By tuning γ,
the user can essentially set how much memory is used for materialization.
Static Pruning Rules are boolean functions that take a candidate program p as input and
decides whether it should be pruned. AlphaClean currently models static rules as regular
expressions over Σ. Static rules are can be viewed as filters over L.

static_ruleppq ÞÑ t0, 1u

For example, since the find-and-replace operations are idempotent, i.e., T pT pRqq “ T pRq,
we may want to only consider the set of all sequences with no neighboring repeated trans-
formations. Similarly, we may also want to prune all search branches that make no effect
(i.e., find-and-replace New York with New York). These two regular expressions alone re-
duce the above example’s language by 48% (from 226981 to 120050). Other rules, such as
avoiding changes that undo previous changes T´1pT pRqq “ R, are similarly easy to add.
Dynamic Pruning Rules also have access to the input relation and quality function, and
can make instance-specific pruning decisions.

dyn_rulepp,Q,Rq ÞÑ t0, 1u
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For example, suppose Q is based on functional dependencies and is cell-separable, and we
want to ensure that cell-level transformations made by a candidate program p individually
improveQ. In this case, we find the cellsC that initially violate the functional dependencies
and ensure that the cells transformed by p are all in C. Applying this optimization, in
addition to the others in AlphaClean, to the example reduces the search space by 143ˆ
from 226,981 candidate programs to only 1582.

Since it can be challenging to hand-write pruning rules, there is a dynamic approach that
uses simple machine learning models to automatically identify the characteristics of candi-
date programs to decide whether a particular search brach will be promising. In essence, it
generates and refines static pruning rules during the search process.

For example, we may want to ensure that all the evaluations are “correlated” with the
cost function–that is it makes modifications that are likely to affect the costs. This is pos-
sible if the cost separable where we have a score for each cell. In this case, we can find
all the cells in violation of the functional dependencies and make sure that the “source”
field of the find-and-replace operations only match values that are in violation. These op-
timizations are called “dynamic’ because they can be determined from the active domain
(i.e., after applying a transformation, recalculate new optimization rules). Applying this
optimization (in addition to the others) to the example reduces the search space to 1582
evaluations v.s. 226981 unoptimized (143x reduction).
Block-wise Cleaning: A major cost is that independent errors in the relation must be
cleaned sequentially in the search algorithm. For instance, records 2, 3, and 4 in the exam-
ple exhibit independent errors and a fix for a given record does not affect the other records.
Thus, if each record were cleaned in isolation, the search space would be Op|Σ|q. Unfor-
tunately, the entire relation requires a program of three transformation to fix the records,
which increases the search space to Op|Σ|3q.

The main insight in block-wise cleaning is that many errors are local to a small number
of records. In these cases, it is possible to partition R into a set of blocks B1, ¨ ¨ ¨ , Bm, ex-
ecute the search algorithm over each block independently, and concatenate their programs
to generate the final cleaning program. This gather-scatter approach can exponentially re-
duce the search space for each block, and reduces the cost of evaluating super-linear quality
functions that require e.g., computing a pair-wise similarity scores for the input relation.
For example, quality functions derived from functional dependencies can define blocks by
examining the violating tuples linked through the dependency. Similarly, users can define
custom partitioning functions or learn them via e.g., clustering algorithms. In our current
implementation, we partition the input relation by cell or row if the quality function is cell
or row separable.
Parallel Program Evaluation: It is clear that the candidate programs can be evaluated
and pruning in a parallel fashion across multiple cores and multiple machines, and is one
of the major innovations in modern planning systems. However, unlike classic planning
problems where communications are small due to the compact size of each state, Alpha-
Clean’s state size is determined by the relation instance, and can lead to prohibitively high
communication costs and memory caching requirements. We describe how we manage the
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trade-offs when parallelizing AlphaClean in shared memory and distributed settings.
Materialization: Since each candidate program p1 “ p ˝ T is the composition of a pre-
vious candidate program and a transformation, an obvious optimization is to materialize
the output of ppRq and incrementally compute p1pRq as T pppRqq over the materialized in-
termediate relation. Although this works well in a single threaded setting, memory and
communication challenges arise when combining materialization with parallelization.

4.4 Experiments
Next, we present experimental results that suggest three main conclusions: (1) as a single
framework, AlphaClean can achieve parity in terms of accuracy with state-of-the-art ap-
proaches to a variety of different problems ranging from integrity constraint satisfaction,
statistical data cleaning, and also data cleaning for machine learning, (2) it is possible to
significantly reduce the runtime gap between AlphaClean and specialized frameworks us-
ing simple pruning and distributed parallelization techniques, and (3) AlphaClean enables
automatic data cleaning for datasets containing a mixture of error types in an acceptable
amount of time.

Datasets and Cleaning Tasks
We list the main characteristics of the 8 experimental datasets.
Flight: The flight dataset [30] contains arrival time, departure time, and gate information
aggregated from 3 airline websites (AA, UA, Continental), 8 airport websites (e.g., SFO,
DEN), and 27 third-party websites. There are 1200 flight departures and arrivals at airline
hubs recorded from each source. Each flight has a unique and globally consistent ID, and
the task is to reconcile data from different sources using the functional dependency IDÑ
arrival, departure, gate information.
FEC: The election contributions dataset has 6,410,678 records, and 18 numerical, dis-
crete, and text attributes. This dataset records the contribution amount and contributor
demographic information e.g., name, address, and occupation. The task is to enforce
cityÑzipcode, and match occupation to a codebook on canonical occupations. The
quality function is 1 if the occupation is in the codebook, and 0 otherwise; we penalize the
edit distance between the original and edited occupation values.
Malasakit: This dataset contains 1493 survey disaster preparedness responses from the
Philippines, with 15 numeric and discrete attributes. The task removes improper numerical
values and remove dummy test records. This consists of domain integrity constraints that
force the values to be within a certain dictionary.
Physician: This dataset from Medicare.gov contains 37k US physican records, 10 at-
tributes, with spelling errors in city names, zipcodes, and other text attributes. We use the
data cleaning rules described in [98], which consists of 9 functional dependencies.
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Figure 4.3: Comparison with denial constraint systems on the Flight dataset. (A) AlphaClean
(AC) matches or exceeds the accuracy of the specialized systems. (B) The structure of the data
errors, along the learning and parallelization (AC+L x64) lets AlphaClean scale sub-linearly and
outperform all but HoloClean’s reported runtimes.

Census: This US adult census data contains 32k records, and 15 numeric and discrete
attributes. There are many missing values coded as 999999. The task is to clean numeric
values to build a classification model that predicts whether an adult earns more than $50k
annually.
EEG: The 2406 records are each a variable-length time-series of EEG readings (16 nu-
meric attributes), and labeled as “Preictal” for pre-seizure and “Interictal” for non-seizure.
The goal is to predict seizures based on 32 features computed as the mean and variance of
the numeric EEG attributes. The task is to identify and remove outlier reading values.
Stock: There are 1000 ticker symbols from 55 sources for every trading day in a month [30].
The cleaning task involves (1) integrating the schemas by matching attributes across the
sources (e.g., ‘prev. close’ vs ‘Previous Close’), and then (2) reconciling daily ticker val-
ues values using primary-key-based functional dependencies akin to the flight dataset.
Terrorism: The Global Terrorism Database [35] is a dataset of around terrorist attacks
scraped from news sources. Each record contains the date, location, details about the attack,
and the number of fatalities and injuries. The dataset contains a mixture of data errors: (1)
there are many duplicates for the same terrorist incident, (2) many missing values in the
fatalities and injuries attributes are encoded as zeros, which overlaps with attacks that did
not have any fatalities/injuries, and (3) the location attributes are inconsistently encoded.
We used the dataset from 1970, and there are 170000 records. We downloaded this dataset
and sought to understand whether terrorist attacks have become more lethal than they were
in the 1970s. To do so, we hand cleaned the records to create a gold standard. It turns out
that, in this dataset, attacks have become more lethal, but fewer in number than 50 years
ago. This task was intentionally open-ended to represent the nature of the iterative analysis
process.
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Figure 4.4: Quantitative data cleaning on census and EEG datasets for a classification application.
AlphaClean tranformation can clip outliers or set them to a default value. (A) AlphaClean ha higher
accuracy than outlier detection algorithms (MCD, dBoost), and AlphaClean with a single transform
template (DO). (B) Optimizations improve AlphaClean runtime by over an order of magnitude.

Denial Constraints
Denial constraints express a wide range of integrity constraints and form the basis of many
data cleaning systems. Although AlphaClean may not fully enforce integrity constraints,
we can compose a quality function can quantifies the number of constraint violations and
find transformation that reduce the number of violations. We use the Flight dataset for these
experiments.
Baselines: We run against (1) Llunatic, a denial constraint-based cleaning system [26]
implemented in C++ on top of PostgreSQL1, and (2) a restricted chase algorithm [12]
implemented in Python. We compare against the chase because a large portion of denial
constraints are functional dependencies, and can be resolved using fixed-point iteration.
We report numbers from the recent Holoclean publication [98] that used the same datasets
and constraints, but did not run the experiment ourselves.
Results: Figure 4.3a shows the precision and recall of each approaches based on known
ground truth. AlphaClean matches or beats the accuracy of the baselines, however its
runtime (AC) without any learning scales poorly compared to alternatives (Figure 4.3b).
Using learning (AC+L) shows performance on par with LLunatic, and parallelization on
64 threads is comparable to Holoclean’s reported runtime. The results suggest that learning
exhibits sublinear scaling due to AlphaClean learning more effective pruning rules as it
sees more data. These performance gains are at the expense of slightly reduced accuracy.

We also evaluated AlphaClean (single threaded, without learning) on the FEC, Malasakit,
and Physician datasets. Their precision, recall, and runtimes are as follows: FEC: 94%
prec, 68% rec, 5hrs; Malasakit: 100% prec, 85% rec, 0.39hrs; Physician: 100% prec, 84%,
3.4hrs.

1Constraints are specified as Tuple-Generating Dependencies
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Quantitative Data Cleaning
This experiment performs numerical cleaning on machine learning data. In these applica-
tions, prediction labels and test records are typically clean and available (e.g., results of a
sales lead), whereas the training features are often integrated from disparate sources and
exhibit considerable noise (e.g., outliers). Our quality function is simply defined as the
model’s accuracy on a training hold-out set, and we report the test accuracy on a separate
test set.

We trained a binary classification random forest model using sklearn on the Census
and EEG datasets. We used standard featurizers (hot-one encoding for categorical data,
bag-of-words for string data, numerical data as is) similar to [42]. We split the dataset into
20% test and 80% training, and further split training into 20/80 into hold-out and training.
We run the search over the training data, and evaluate the quality function using the hold-
out. Final numbers are reported using the test data.

We defined the following three data transformation templates that sets numerical at-
tribute values in R if they satsify a predicate:

• clip_gt(attr, thresh): R.attr “ thresh if R.attr ą thresh

• clip_lt(attr, thresh): R.attr “ thresh if R.attr ă thresh

• default(attr, badval): R.attr set to mean val if R.attr “ badval

Baselines: We compare with 4 baselines: No Cleaning (NC), Minimum Covariance De-
terminant (MCD) is a robust outlier detection algorithm used in [7] and sets all detected
outliers to the mean value, dBoost uses a fast partitioned histogram technique to detect out-
liers [79], and Default Only (DO) runs AlphaClean with only the default() transformation.
Results: The classifer achieves 82% and 79% accuracy on the uncleaned census and EEG
data, respectively. Most outliers in the census data are far from the mean, so MCD and
dBoost can effectively find. Further, setting census outliers to the mean is sensible. How-
ever, the same fix is not appropriate for the EEG data; it is better to clip the outlier values,
thus MCD, dBoost, and DO have negligible or negative impact on accuracy. When we
realized this from running DO, it was straightforward to add the clipping transformations
to the language, and with no other changes, re-run AlphaClean with drastically improved
EEG accuracies.

Vanilla AlphaClean (AC) is nearly 10ˆ slower than MCD, but the adding learning and
16-thread parallelization matches MCD’s runtimes. dBoost is specialized for fast outlier
detection and AlphaClean is unlikely to match its runtime.

Schema Integration
We now evaluate cleaning on the stock dataset [30] from 55 different sources that contains
a mixture of schema integration and functional dependency errors.
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Figure 4.5: Schema integration and functional dependency errors in the stock dataset. Cleaning
schema integration (SI) or functional dependencies (DC) in isolation results in high precision but
poor recall. AlphaClean cleans both types of errors with higher recall, and is as fast as DC.

Baselines: We compare approaches for each error type in isolation. Schema Integration
(SI) matches attributes based on attribute name string similarity, and Data Cleaning (DC)
assumes schemas are consistent and enforces functions dependencies using a restricted
chase [12].

Results: The specialized cleaning approaches exhibit high precision but low recall, as they
miss records with multiple errors (Figure 4.5). AlphaClean can mix both tasks in the quality
function and has comparable precision with much higher recall. SI is significantly faster
since it only reads schema metadata, however AlphaClean with learning and 16 threads is
competitive with DC.

Mixing Error Classes
This experiment, we use the multi-error Terrorism dataset [35].
Baselines: We hand-coded blocking-based entity matching (EM) and restricted chase
(FD) algorithms in Python, and used dBoost for missing values. We also ran EM, dBoost,
and Chase serially on the dataset (Combined).
Results: Figure 4.7a shows that combining and cleaning all three classes of errors within
the same AlphaClean framework (AC) achieves higher precision and recall than all base-
lines. In fact, the combined baselines still does not achieve AlphaClean’s level of accuracy
because the cleaning operations need to be interleaved differently for different blocks. Al-
though AlphaClean is slower than any individual baseline, parallelizing AlphaClean to 8
threads is faster than the combined baseline by 2x.
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Figure 4.6: The Global Terrorism Database is a dataset of terrorist attacks scraped from
news sources since 1970. (A) Shows that AlphaClean can integrate many different forms
of cleaning that were previously handled by disparate systems, (B) AlphaClean achieves
a competitive runtime to using all of the different system and accounting for data transfer
time between them.

Figure 4.7: The terrorism dataset contains 3 classe of errors. (A) A unified cleaning framework
outperforms individual cleaning approaches and even a serial combination. (B) AlphaClean is easily
parallelized to 8 threads to outperform the combined baselines.

AlphaClean In Depth
This subsection uses the FEC setup to study the parameters that affect AlphaClean’s accu-
racy and runtime, the robustness of its cleaning programs, and its algorithmic properties.

Algorithmic Sensitivity

Block-wise Cleaning: Partitioning the dataset into smaller blocks effectively reduces the
problem complexity. This can have tremendous performance benefits when each block
exhibits very few errors that are independent of the other blocks. Figure 4.8a shows the
performance benefits when varying the block size; we define the blocks by partitioning on
three different attributes that have different domain sizes. Reducing the block size directly
improves the runtime; the search is effectively non-terminating when blocking is not used.
Language: Figure 4.8b fixes the input to a single block, and evaluates the runtime based
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Figure 4.8: (A) The degree of block-wise partitioning directly affects search time, (B) increasing
the transformation language Σ exponentially increases the search time, but learning is very effec-
tive at pruning the increased search space, (C) quality functions that couple errors between random
records are significantly harder to optimize, (D) AlphaClean degrades gracefully when adding irrel-
evant error types to the problem.

Figure 4.9: (A) Regularization by increasing an editCost penalty makes AlphaClean more robust to
noisy (mis-specified) quality functions, (B-C) overly expressive transformation templates can lead
to overfitting (2 attr) or an infeasibly large search space (3 attr).

on the size of the language |Σ|. Increasing the transformations increases the branching
factor of the search problem. The search time is exponential in the language, however
AlphaClean’s learning optimization can identify a pruning model that reduces the runtime
to linear.
Coupling in the Quality Function: The complexity of the quality function directly affects
search time. A cell-separable quality function is the simplest to optimize because each cell
in the relation can be analyzed and cleaned in isolation. In contrast, a quality function
that couples multiple records together is more challenging to optimize because a longer
sequence of transformation may be needed to sufficiently clean the records and improve
the quality function.

We evaluate this by artificially coupling between 1-10 records together, and creating a
quality function that only improves when an attribute of the coupled records all have the
same value. We perform this coupling in two ways: Random couples randomly selected
records, whereas Correlated first sorts the relation an attribute and couple records within
a continuous range. We expect that the random coupling requires individual cleaning op-
erations for each record based on their IDs, whereas the correlated setting both allows
AlphaClean to exploit the correlated structure to learn effective pruning rules and to clean
the coupled records using a single cleaning operation. Figure 4.8c shows that this is in-
deed the case when running AlphaClean on a single fixed-size block. Random slows down
exponentially with increased coupling, whereas Correlated increases linearly.
Quality Function Complexity: Finally, we incrementally increase the quality function’s
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Figure 4.10: (A) Both the materialization (Cache) and distributed communication (Comm) opti-
mizations contribute to improved scale-out runtimes. (B) The learned pruning rules improve the
search costs for each subsequent block-wise partition. (C) Best-first search is better than BFS and
DFS; reducing γ prunes more candidates at the expense of lower accuracy.

complexity and show haw it affects the cleaning accuracy. We add the following constraints
in sequence: one functional dependency (FD), a second FD, an entity resolution similarity
rule, and a third FD. We define the quality function as the sum of each constraint’s quality
function. Figure 4.8d shows that the F1 accuracy decreases as more constraints are added,
however the F1 score is still above 75%.

Cleaning Generalization and Overfitting
An important characteristic of generating cleaning solutions as programs is that we can
evaluate the program’s robustness in terms of machine learning concepts such as overfitting
and generalization. To this end, we examine two concepts in the context of data cleaning:
regularizaton and overfitting. We also find that AlphaClean’s high level interface is helpful
for iteratively tuning the cleaning process.
Regularization: Misspecified quality functions can cause AlphaClean to output poorly
performing cleaning programs. We simulate this by adding random noise to the output of
the quality function. Figure 4.9A plots the F1-score of AlphaClean on the FEC experiment
while varying the amount of noise. As expected, the output program’s F1-score rapidly
degrades as the noise increases.

Machine learning uses regularizing penalty terms to prevent overfitting. We can simi-
larly add a penalty to the quality function to prevent too many edits. Each line line shows
the edit cost penalty and shows that although the F1 is lower when there is no noise, Al-
phaClean is more robust to larger amounts of noise.
Overfitting: In machine learning, over-parameterized models may be susceptible to over-
fitting. A similar property is possible if the language Σ is overly expressive. We use a
transformation template that finds records matching a parameterized predicate and sets an
attribute to another value in its instance domain. We then vary the language expressiveness
by increasing number of attributes in the predicate between 1 and 3. Finally, we run Alpha-
Clean on a training sample of the dataset (x-axis), and report F1 accuracy on the training
and a separate test sample (Figure 4.9B-C). Note that overfitting occurs when the training
accuracy is significantly higher than test accuracy.

Indeed we find an interesting trade-off. The 1 attribute predicate performed worst on
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the training sample but outperformed the alternatives on the test sample. The 2 attribute
predicate was more expressive and overfit to the training data. Finally, the 3 attribute
predicate is overly expressive and computationally difficult to search. Thus, it did not
sufficiently explore the search space to reliably identify high quality cleaning programs.
Discussion: We have shown that data cleaning can overfit, and believe this is a potential
issue in any cleaning procedure. These results highlight the importance of domain experts
to judge and constrain the cleaning problem in ways that will likely generalize to future
data. Further, it shows the value of a high-level interface that experts can use to express
these contraints by iteratively tuning the quality function and cleaning language.

Scaling
Next, we present preliminary results illustrating the scaling properties of AlphaClean.

Parallelization Optimizations: The experiments run on a cluster of 4 mx.large EC2
instances, and we treat each worker in a distributed (not shared-memory) fashion. Fig-
ure 4.10a shows the benefits of the materialization and communication optimizations in.
No opt. simply runs best-first search in parallel without any materialization; workers only
synchronize at the end of an iteration by sending their top-γ candidate programs to the
driver, which prunes and redistributes the candidates in the next iteration. Cache extends
No opt by locally materializing parent programs, and Cache+Comm further adds the com-
munication optimizations for distributed parallelization.

The single threaded No Opt setting runs in 4432s, and the materialization optimization
reduces the runtime by 10ˆ to 432s. Scaling out improves all methods: at 64 workers,
Cache+Comm takes 67s while Cache takes 137s. Surprisingly, although No Opt with
64 workers is slower than Cache+Comm by 10ˆ, it scales the best because it only syn-
chronizes at the end of an iteration and only communicates candidate programs and their
quality values. In contrast, the alternative methods may communicate materialized relation
instances.
Within-Block Learning: Although we have shown how learning reduce the overall search
runtime, we show that learning also improves the search speed for individual blocks. We
run single-threaded AlphaClean and report the time to evaluate each block. Figure 4.10b
shows the ith block that is processed on the x-axis, and the time to process it on the y-axis.
We see that as more blocks are cleaned, the learned pruning classifier is more effective at
pruning implausible candidate programs. This reduces the per-block search time by up to
75%.
Search Algorithm Choice: Figure 4.10c shows that best-first search out-performs naive
depth and breadth first search. We also report AlphaClean when γ “ t0.5, 0.25u. We
see that as the block size increases, DFS and BFS quickly become infeasible, whereas
AlphaClean runs orders of magnitude more quickly. In addition, reducing γ improves the
runtime, however can come at the cost of reduced accuracy by pruning locally sub-optimal
but globally optimal candidate programs.
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Program Structure
Finally, we present results describing the structure of the data cleaning programs found
with AlphaClean. It is often the case that the program found by AlphaClean is a concise
description of the needed data cleaning operations, that is, the total number of cell edits is
much larger than the length of the program. We consider the FEC dataset, the EEG dataset,
and GTD dataset.

Sometimes, the program (FEC and GTD) encodes a significant amount of literal values.
This happens in entity matching type problems. For these problems, the program length is
relatively large, however, the number of cells modified is even larger (up to 10x more). For
datasets like the EEG dataset, the program is very concise (26x smaller than the number
of cells modified). Numerical thresholds are generalize better than categorical find-and-
replace operations.

Program Length Cells Modified
FEC 6416 78342
EEG 6 161
GTD 1014 104992



Chapter 5

Reinforcement Learning For SQL
Query Optimization

Joins are a ubiquitous primitive in data analytics. The rise of new tools, such as Tableau,
that automatically generate queries has led to renewed interest in efficiently executing SQL
queries with several hundred joined relations. Since most relational database management
systems support only dyadic join operators (joining two tables) as primitive operations, a
query optimizer must choose the “best” sequence of two-way joins to achieve the k-way
join of tables requested by a query.

5.1 Problem Setup
The problem of optimally nesting joins is, of course, combinatorial and is known to be
NP-Hard. To make matters worse, the problem is also known to be practically challenging
since a poor solution can execute several orders of magnitude slower than an optimal one.
Thus, many database systems favor “exact” solutions when the number of relations are
small but switch to approximations after a certain point. For example, PostgreSQL uses
dynamic programming when the query has less than 12 relations and then switches to a
genetic algorithm for larger queries. Similarly, IBM DB2 uses dynamic programming and
switches to a greedy strategy when the number of relations grows.

Traditionally, exact optimization is addressed with a form of sequential dynamic pro-
gramming. The optimizer incrementally builds optimal joins on subsets of relations and
memoizes the optimal join strategy as well as the cost-to-go based on an internal cost
model. This dynamic programming algorithm still enumerates all possible join sequences
but shares computation where possible. Natually, this enumeration process is sensitive
when the underlying cost models in the RDBMS are inaccurate. Care has to be taken to
avoid enumerating plans that are risky, or high variance, if table sizes or system parameters
are not known exactly. Some work has considered incorporating feedback to the cost model
after execution to improve the model for future optimization instances.

113
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As it stands there are three challenges that modern join optimizers try to simultaneously
address: (1) pruning a large space of possible plans, (2) hedging against uncertainty, and
(3) feedback from query evaluation. For each of these three problems, the community
has proposed numerous algorithms, approximations, and heuristics to address them. Often
the dominant techniques are sensitive to both the particular workload and the data. The
engineering complexity of implementing robust solutions to all of these challenges can
be very significant, and commerical solutions are often incomplete—where some level of
query engineering (by creating views and hints) from the developer is needed.

Recent advances in Artificial Intelligence may provide an unexpected perspective on
this impasse. The emergence of deep reinforcement learning, e.g., AlphaGo, has presented
a pragmatic solution to many hard Markov Decision Processes (MDPs). In an MDP, there
is a decision making agent who makes a sequence of decisions to effect change on a sys-
tem that processes these decisions and updates the system’s internal state (potentially non-
deterministically). MDPs are Markovian in the sense that the system’s current state and the
agent’s decision completely determines any future evolution. The solution to an MDP is a
decision to make at every possible state. We show that the join optimization can be posed
as an MDP where the state is the join graph and decisions are edge contractions on this
graph.

Given this formulation, the Deep Q Network (DQN) algorithm can be applied, and
in essence, this formulation gives us an approximate dynamic programming algorithm.
Instead of exactly memoizing subplans in a table with cost-to-go estimates as in dynamic
programming, DQN represents this table with a neural network of a fixed size. This allows
the algorithm to “estimate” the cost-to-go of subplans even if they have not been previously
enumerated.

This learning based approach gives us flexibility in designing new intelligent enumera-
tion strategies by manipulating how the neural network is trained and how it represents the
subplans. For example, the neural network allows us to efficiently share query processing
information across planning instances with the neural network parameters and learn from
previously executed queries. The consequence is enumeration strategies tuned to the spe-
cific workload and data. We can also vary the features used to represent the subplans, to
allow the network to capture different properties like interesting orders and physical op-
erator selection. We can also train the neural network with observations of actual query
execution times and make through repeated executions make it robust to uncertainty.

In short, Deep RL provides a new algorithmic framework for thinking about join enu-
meration. We can architect an entire query processing stack around this Deep RL frame-
work. We explore this architecture and evaluate in what situations its behavior is more
desirable (either in terms of cost or planning time) compared to classical approaches. Our
system is built on Apache Calcite and integrates with Apache Spark, Postgres SQL, and an
internal join planning simulator. We present results on a variety of experimental workloads
and datasets.
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5.2 Background
First, we will introduce the algorithmic connection between Reinforcement Learning and
the join optimization problem.

Query Model
Consider the following query model. Let tR1, ..., RT u define a set of relations, and let
R “ R1ˆ ...ˆRT denote the cartesian product. We define an inner join query q as a subset
of q Ď R as defined by a conjunctive predicate ρ1^...^ρj where each expression ρ is binary
boolean function of the attributes of two relations in the set ρ “ Ri.at“, ! “,ą,ăuRj.bq.
We assume that the number of conjunctive expressions is capped at some fixed sizeN . We
further assume that the join operation is commutative, left associative, and right associative.
Extending our work to consider left and right outer joins is very straight-forward but we
will defer that to that to future work.

We will use the following database of three relations denoting employee salries as a
running example throughout the chapter:

Emppid, name, rankq

Posprank, title, codeq

Salpcode, amountq

Consider the following join query:

SELECT ∗
FROM Emp , Pos , S a l
WHERE Emp . r ank = Pos . r ank AND
Pos . code = S a l . code

In this schema, R denotes the set of tuples tpe P Emp, p P Pos, s P Salqu. There are two
predicates ρ1 “ Emp.rank “ Pos.rank and ρ2 “ Pos.code “ Sal.code, combined with
a conjunction. One has several possible options on how to execute that query. For example,
one could execute the query as Emp ’ pSal ’ Posq. Or, one could execute the query as
Sal ’ pEmp ’ Posq.

Graph Model of Enumeration
Enumerating the set of all possible dyadic join plans can be expressed as operations on a
graph representing the join relationships requested by a query.

Definition 5 (Query Graph) Let G define an undirected graph called the query graph,
where each relation R is a vertex and each ρ defines an edge between vertices. The number
of connected components of G are denoted by κG.
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Each possible dyadic join is equivalent to a combinatorial operation called a graph
contraction.

Definition 6 (Contraction) Let G “ pV,Eq be a query graph with V defining the set of
relations and E defining the edges from the join predicates. A contraction c is a function
of the graph parametrized by a tuple of vertices c “ pvi, vjq. Applying c to the graph G
defines a new graph with the following properties: (1) vi and vj are removed from V , (2) a
new vertex vij is added to V , and (3) the edges of vij are the union of the edges incident to
vi and vj .

Each contraction reduces the number of vertices by 1. And, that every feasible dyadic
join plan can be described as a sequence of such contractions c1 ˝ c2... ˝ cT until |V | “ κG.
Going back to our running example, suppose we start with a query graph consisting of
the vertices pEmp, Pos, Salq. Let the first contraction be c1 “ pEmp, Posq, this leads
to a query graph where the new vertices are pEmp ` Pos, Salq. Applying the only re-
maining possible contraction, we arrive at a single remaining vertex Sal ` pEmp ` Posq
corresponding to the join plan Sal ’ pEmp ’ Posq.

The join optimization is to find the best possible one of these contraction sequences.
Assume that we have access to a cost model J , which is a function that can estimate the
incremental cost of a particular contraction Jpcq ÞÑ R`.

Problem 4 (Join Optimization Problem) Let G define a query graph and J define a cost
model. Find a sequence of c1 ˝ c2... ˝ cT terminating in |V | “ κG to minimize:

min
c1,...,cT

T
ÿ

i“1

Jpciq

Note how the “Principle of Optimality” arises in Problem 4. Applying each contraction
generates a subproblem of a smaller size (a query graph with one less vertex). Each of
these subproblems must be solved optimally in any optimal solution. Also note that this
model can capture physical operator selection as well. The set of allowed contractions can
be typed with an eligible join type e.g., c “ pvi, vj, hashq or c “ pvi, vj, indexq.

Greedy vs. Optimal
A greedy solution to this problem is to optimize each ci independently. The algorithm
proceeds as follows: (1) start with the query graph, (2) find the lowest cost contraction,
(3) update the query graph and repeat until only one vertex is left. The greedy algorithm,
of course, does not consider how local decision might affect future costs. Consider our
running example query with the following costs (assume symmetry):

JpEP q “ 100, JpSP q “ 90, JppEP qSq “ 10, JppSP qEq “ 50
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The greedy solution would result in a cost of 140 (because it neglects the future effects
of a decision), while the optimal solution has a cost of 110. However, there is an up-
side, this greedy algorithm has a computational complexity of Op|V |3q—despite the super-
exponential search space.

The decision at each index needs to consider the long-term value of its actions where
one might have to sacrifice a short term benefit for a long term payoff. Consider the follow-
ing way of expressing the optimization problem in the problem statement for a particular
query graph G:

V pGq “ min
c1,...,cT

T
ÿ

i“1

Jpciq (3)

We can concisely describe Equation 3 as the function V pGq, i.e., given the initial graph
G, what is the value of acting optimally till the end of the decision horizon. This function
is conveniently named the value function. Bellman’s “Principle of Optimality” noted that
optimal behavior over an entire decision horizon implies optimal behavior from any starting
index t ą 1 as well, which is the basis for the idea of dynamic programming. So, V pGq can
be then defined recursively for any subsequent graph G1 generated by future contractions:

V pGq “ min
c
t Jpcq ` γ ¨ V pG1q u (4)

Usually, write this value recursion in the following form:

QpG, cq “ Jpcq ` γ ¨ V pG1q

Leading to the following recursive definition of the Q-Function (or cost-to-go function):

QpG, cq “ Jpcq ` γ ¨min
c1
QpG1, c1q (5)

The Q-Function describes the long-term value of each contraction. That means at each
G1 local optimization of minc1 QpG

1, c1q is sufficient to derive an optimal sequence of de-
cisions. Put another way, the Q-function is a hypothetical cost function on which greedy
descent is optimal and equivalent to solving the original problem. If we revisit the greedy
algorithm, and revise it as follows: (1) start with the query graph, (2) find the lowest Q-
value contraction, (3) update the query graph and repeat. This algorithm has a computa-
tional complexity of Op|V |3q (just like the greedy algorithm) but is provably optimal.

The Q-function is implicitly stored as a table in classical dynamic programming ap-
proaches, such as the System R enumeration algorithm. In the System R algorithm, there
is a hash table that maps sets of joined relations to their lowest-cost access path:

HashMap<Set < R e l a t i o n > , ( Plan , Long ) > b e s t J o i n s ;

As the algorithm enumerates more subplans, if a particular relation set exists in the table
it replaces the access path if the enumerated plan has a lower cost than one in the table.
We could equivalently write a different hash table that moves around the elements on the
table described above. Instead of a set of relations mapping to a plan and a cost, we could
consider a set of relations and a plan mapping to a cost:
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HashMap <( Set < R e l a t i o n > , P l an ) , Long> b e s t Q J o i n s ;

Learning the Q-Function
This change would be less efficient implementation in classical dynamic programming, but
it crucially allows us to setup a machine learning problem. What if we could regress from
features of (Set<Relation>, Plan) to a cost based on a small number of observa-
tions? Instead of a Q-Function as a table, it is parametrized as a model:

QθpfG, fcq « QpG, cq

where fG is a feature vector representing the query graph and fc is a feature vector rep-
resenting the particular contraction on the graph. θ defines the neural network parameters
that represent this function.

The basic strategy to generate observational data, that is, real executions of join plans,
and optimize θ to best explain the observations. Such an optimization problem is a key
motivation of a general class of algorithms called Reinforcement Learning [121], where
statistical machine learning techniques are used to approximate optimal behavior while
observing substantially less data that full enumeration.

For those familiar with the AI literature, this problem defines a Markov Decision Pro-
cess. G is exactly a representation of the state and c is a representation of the action. The
utility function (or reward) of this process is the negative overall runtime. The objective
of the planning problem is to find a policy, which is a map from a query graph to the best
possible join c.

In the popular Q-Learning approach [121], the algorithm enumerates random samples
of decision sequences containing pG, c, runtime,G1q tuples forming a trajectory. From
these tuples, one can calculate the following value:

yi “ runtime` arg max
u

QθpG
1, cq

Each of the yi can be used to define a loss function since if Q were the true Q function,
then the following recurrence would hold:

QpG, cq “ runtime` arg max
u

QθpG
1, cq

So, Q-Learning defines a loss:

LpQq “
ÿ

i

}yi ´QθpG, cq}
2
2

This loss can be optimized with gradient descent. This algorithm is called the Deep Q
Network algorithm [85] and was used to learn how to autonomously play Atari Games.
The key implication is that the neural network allows for some ability for the optimizer
to extroplate the cost-to-go even for plans that are not enumerated. This means that if the
featurization fG and fc are designed in a sufficiently general way, then the neural network
can represent cost-to-go estimates across an entire workload–not just a single planning
instance.
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5.3 Learning to Optimize
Next, we present the entire optimization algorithm for learning join enumeration. We will
first presented the algorithm only for the enumeration problem, and then we contextualize
the optimizer for full Select-Project-Join queries accounting for single relation selections,
projections, and sort-orders.

Featurizing the Join Decision
We need to featurize the query graph G and a particular contraction c, which is a tuple of
two vertices from the graph.

Participating Relations: The first step is to construct a set of features to represent which
relations are participating the in the query and in the particular contraction. Let A be the
set of all attributes in the database (e.g., tEmp.id, Pos.rank, ..., Sal.code, Sal.amountu).
Each relation r (including intermediate relations that are the result of join) has a set of
visible attributes; those attributes present in the outputAr Ď A. So every query graphG can
be represented by its visible attributesAG. Each contraction is a tuple of two relations pl, rq
and we can get the visible attributes Al and Ar for each. Each of these subsets AG, Al, Ar
can be represented with a binary 1-hot encoding representing which subset of the attributes
are present. We call the concatenation of these vectors Vrel and it has dimensionality of
3 ¨ |A|.

Join Condition: The next piece is to featurize the join condition, or the predicate that
defines the join. Participating relations define vertices and the predicate defines an edge. As
before, let A be the set of all attributes in the database. Each expression has two attributes
and an operator. As with featurizing the vertices we can 1-hot encode the attributes present.
We additionally have to 1-hot encode the binary operator t“, ! “,ă,ąu. Concatenating all
of these binary vectors together for each expression ρ there there is a binary feature vector
fρ. For each of the expressions in the conjunctive predicate, we concatenate the binary
feature vectors. Here is where the fixed size assumption is used. Since the maximum
number of expressions in the conjunction capped at N , we can get a fixed sized feature
vector for all predicates. We call this feature vector Vcond and it has dimensionality of
N ¨ p|A| ` 4q.

Representing the Q-Function: The Q-function is represented as a multi-layer perceptron
(MLP) neural network. It takes as input two feature vectors Vrel and Vcond. Experimentally,
we found that a two-layer MLP gave the best performance relative to the training time. We
implmented the training algorithm in DL4J a java framework for model training with a
standard DQN algorithm.



CHAPTER 5. QUERY OPTIMIZATION 120

Generating the Training Data
Experimentally, we found that the process of generating the process of training data for
a given workload was very important for robust learning. The basic challenge is that the
Q-function must accurately be able to differentiate between good plans and bad plans. If
the training data only consisted of optimal plans, then the learned Q-function may not
accurately score poor plans. Likewise, if the training purely sampled random plans–it may
not see very many instance of good plans. We want an efficient algorithm that avoids
exhaustive enumeration to sample a variety of very good plans and poor plans.

The data generation algorithm, which we denote as samplepG, εq, takes as input a
query graph G and a randomization parameter ε P r0, 1s.

samplepG, εq:

1. if κG “ |G| return.

2. For all graph contractions ci on G:.

(a) Gi “ cipGq

(b) V pci, Giq “ leftDeeppGiq

3. if rand() > ε: yield cj, Gj “ arg maxci V pci, Giq, return samplepGj, εq

4. else: yield uniform random cj, Gj , return samplepGj, εq

The algorithm essentially acts as the Q-Function algorithm described in the previous
section. The algorithm proceeds as follows: (1) start with the query graph, (2) find the
lowest cost contraction, (3) update the query graph and repeat. The lowest cost contraction
is determined by assuming the remaining joins will be optimized with a left-deep strategy.
Let leftDeep(G) be the function that calculates the final cost of the best left deep plan given
the query graph G. To implement leftDeep(G), we use the System R dynamic program.
This acts as an approximation to the Q function where the current step is locally optimal
but future joins are efficiently approximate.

To sample some number of poor plans in the training dataset, the ε parameter controls
the number of randomly selected decisions. This trades off reasonable optimality during
training vs. covering the space of plans. In this sense, we base the data generation algorithm
in a particular workload. The workload is distribution over join queries that we want to
optimize. We have an optimizer that samples some number of initial queries from the
workload and is tested on unseen data.

Execution after Training

After training, we will have a parametrized estimate of the Q-function, QθpfG, fcq. For
execution, we simply go back to the standard algorithm as in the greedy method but instead
of using the local costs, we use the learned Q-function: (1) start with the query graph, (2)
featurize each contraction (2) find the lowest estimated Q-value contraction, (3) update
the query graph and repeat.
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5.4 Reduction factor learning
Classical approaches to reduction factor estimation include (1) histograms and heuristics-
based analytical formulae, and (2) applying the predicate under estimation to sampled data,
among others. In this section we explore the use of learning in reduction factor estimation.
We train a neural network to learn the underlying data distributions of a pre-generated
database, and evaluate the network on unseen, randomly selections that query the same
database.

To gather training data, we randomly generate a database of several relations, as well
as random queries each consisting of one predicate of the form “R.attr xopy literal”. For
numeric columns, the operands are t“,‰,ą,ě,ă,ďu, whereas for string columns we
restrict them to equality and inequalities. Each attribute’s values are drawn from a weighted
Gaussian.

To featurize each selection, we similarly use 1-hot encodings of the participant at-
tribute and of the operand. Numeric literals are then directly included in the feature vector,
whereas for strings, we embed “hash(string_literal) % B” where B is a parameter control-
ling the number of hash buckets. The labels are the true reduction factors by executing the
queries on the generated database.

A fully-connected neural network is used1, which is trained by stochastic gradient de-
scent.

5.5 Optimizer Architecture
In the previous section, we described the join enumeration algorithm. Now, we contextu-
alize the enumeration algorithm in a more fully featured optimization stack. In particular,
there are aspects of the featurization and graph definitions that have to change based on the
nature of the queries.

Selections and Projections
To handle single relation selections and projections in the query, we have to tweak the
feature representation. This is because upstream selections and projections will change
the cost properties of downstream joins. As in the classical optimizers, we eagerly apply
selections and projections to each relation.

This means that each relation in the query graph potentially a different number of at-
tributes and a different cardinality than the base relation. While the proposed featurization
does capture the visible attributes, it does not capture changes in cardinality due to upstream
selections.

Here, we leverage the table statistics present in most RDBMS. For each relation in the
query graph, we can estimate a reduction factor δr, which is an estimate of the fraction of

1Two hidden layers, 256 units each, with ReLU activation.
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tuples present after applying the selection to relation r. In the featurization described in
the previous section, we have a set of binary features Vrel that describe the participating at-
tributes. We multiply the reduction factors δr for each table with the features corresponding
to attributes derived from that relation.

Physical Operator Selection
To add support for an optimizer that selects physical operators, we simply have to add
“labeled” contractions, where certain physical operators are eligible. Suppose we have a
set of possible physical operators, e.g., nestedLoop, sortMerge, indexLoop. We would
simply add an additional feature to the Q-Function that captures which physical operator is
selected.

Indexes and Sort Orders
Similarly, adding support for indexes just means adding more features. We eagerly use
index scans on single relation selections, and can use them for joins if we are optimizing
physical operators. We can add an addition set of binary features Vind that indicate which
attributes have indexes built on them. Handling, sort-orders are similar and we have to add
features describing which attributes need to be finally sorted in the query.

Summary and System Architecture
Surprisingly, we found that we could build a relatively full featured query optimizer based
on a Deep RL join enumeration strategy. Our system, called RL-QOPT, is built on Apache
Calcite. The system connects to various database engines through a JDBC connector. It
executes logically optimized queries by re-writing SQL expressions and setting hints. The
system parses standard SQL and the learning steps are implemented using DL4J. The op-
timizer has two modes, training and execution. In the training mode, the optimizer will
collect data and based on a user set parameter execute suboptimal plans. In the execution
mode, the optimizer will leverage the trained model to improve its optimizer performance.

5.6 Experiments
We evaluate this framework on a standard join optimization benchmark called the Join
Order Benchmark. This benchmark is derived from the Internet Movie Data Base (IMDB).
It contains information about movies and related facts about actors, directors, production
companies, etc. The dataset is 3.6 GB large and consists of 21 relational tables. The largest
table has 36 M rows. The benchmark contains 33 queries which have between 3 and 16
joins, with an average of 8 joins per query.
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Evaluation Methodology
We first evaluate RL-QOPT against 3 different cost models for the workload and data in
the join order benchmark. Each of these cost models is designed to elicit a different set
of optimal plans. We show that, as a learning optimizer, RL-QOPT adapts to the different
search spaces efficiently.
CM1: In the first cost model, we model a main-memory database that performs two types
of joins: index nested-loop joins and in-memory hash joins. Let Ol be the left operator and
Or be the right operator the costs are defined as follows:

cinlj “ cpOlq ` rfpOl, Orq ¨ |Ol|

chj “ cpOlq ` cpOrq

where c denotes the cost estimation function and rf denotes the estimated reduction factor of
the join. As we can see, this model favors index-based joins when available. The reduction
factor rfpOl, Orq is always less than 1. More importantly, this cost model is a justification
for the use of left-deep plans. In cinlj , the right operator does not incur a scan cost. A left
deep tree where the indexed relations are on the right exploits this structure.
CM2: In the next cost model, we model a database that accounts for disk-memory rela-
tionships in the hash joins. We designate the left operator as the “build” operator and the
right operator as the “probe” operator. If the previous join has already built a hash table on
an attribute of interest, then the hash join does not incur another cost.

cnobuild “ cpOrq

This model favors right-deep plans where to maximize the reuse of the built hash tables.
CM3: Finally, in the next cost model, we model temporary tables and memory capacity
constraints. There is a budget of tuples that can fit in memory and an additional physi-
cal operator that allows for materialization of a join result if memory exists. Then, the
downstream cost of reading from a materialized operator is 0.

cpOq “ 0 if materialized

This model requires bushy plans due to the inherent non-linearity of the cost function and
memory constraints. The cost model encourages plans that group tables together in ways
that the join output can fit in the available memory.

Join Order Benchmark
We train RL-QUOPT on 90 Queries and hold out 23 queries from the worklaod. In the
initial experiment, we assume perfect selectivity estimates of single-table predicates. We
compare three optimizers as baselines: left-deep, right-deep, and bushy (exhaustive). Fig-
ure 5.1 shows the aggregate results for the entire workload over random partitions of the
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Figure 5.1: (A) The log cost of the different optimizers with CM1, (B) the log cost of the
different optimizers with CM2, (C) the log cost of the different optimizers with CM3, and
(D) the runtime of the different optimizers.

Figure 5.2: The learning curve as a function of the number of queries. The log normalized
cost describes the cost difference between learning and the exhaustive bushy optimizer.

data. We present results for each of the cost models. While the bushy optimizer works
well in terms of cost in all three regimes, it is very expensive to run. The left-deep and
the right-deep optimizers are far quicker, but require the prior understanding of costs in the
database. We see that in each of the different cost models a different optimizer (left-deep or
right-deep) dominates in terms of performance. On the other hand, the learning optimizer
nearly matches the bushy performance in all of the regimes while retaining a very fast run
time.

For CM1, we plot the learning curve as a function of the number of training queries
(Figure 5.2). We actually find that even with 50 training queries, we can consistently find
plans competitive with exhaustive search. This suggests that the network is not simply
memorizing and is generalizing to unseen subplans.

TPC-H
The TPC-H Benchmark is a dataset and workload of SQL queries. It consists of ad-hoc
queries and concurrent data modifications. The queries and the data populating the database
are inspired by those seen in industry. Unlike the JOB where there is fixed number of
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Figure 5.3: The performance improvement of learning over the postgres query optimizer
for each of the TPCH template queries.

Figure 5.4: How exploration and discount parameters affect learning performance.

queries, TPCH contains a query generator that generates an arbitrary number of queries
from templates. In this experiment, we learn the selectivity estimates from data as well.

Using our Apache Calcite connection, we also execute these queries on a real postgres
database. Unlike the JOB, these are not idealized cost model. We train the RL algorithm
with real runtimes. We first generate 10k training queries for the RL algorithm. Then, we
evaluate the RL algorithm on a 100k queries from the generator. We aggregate results by
query template. We find that after 10k queries, RL-QUOPT significantly improves on the
postgres optimizer on several of the template (Figure 5.3).

The real execution experiment also raises questions about training data collection. Dur-
ing data collection the learner has to execute suboptimal query plans; this could make
collecting data very expensive. We evaluate this tradeoff in Figure 5.4. As the exploration
parameter ε increases, the query plans executed during training are increasingly subopti-
mal. However, the learning optimizer has to see a sufficient number of “bad plans” to learn
an effective optimization policy. Similarly, the discount parameter also affected training
performance. Lower discount settings lead to greedier cost attribution–and actually faster
training.
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Conclusion
Reinforcement learning introduces a new approximate dynamic programming framework
for SQL query optimization. Classical query optimizers leverage dynamic programs for
optimally nesting join queries. This process creates a table that memoizes cost-to-go es-
timates of intermediate subplans. By representing the memoization table with a neural
network, the optimizer can estimate the cost-to-go of even previously unseen plans allow-
ing for a vast expansion of the search space. I show that this process is a form of Deep
Q-Learning where the state is a query graph and the actions are contractions on the query
graph. One key result is that the same optimization algorithm can adaptively learn search
strategies for both in-memory databases (where the search space is often heuristically re-
stricted based to maximize index accesses) and disk-based databases (where the search
space is often heuristically restricted to maximize re-use of intermediate results).



Chapter 6

Reinforcement Learning for
Surgical Tensioning

Robotic surgical assistants (RSAs), such as Intuitive Surgical’s da Vinci, facilitate precise
minimally invasive surgery [129]. These robots currently operate under pure tele-operation
control, but introducing assistive autonomy has potential to improve surgical training, as-
sist surgeons, reduce fatigue, and facilitate tele-surgery. For example, when cutting thin
tissue with surgical scissors, a surgeon may use a second or even a third tool to pin down
and fixture the tissue. This technique, called tensioning (also called traction), adds addi-
tional constraints on the material to prevent deformations during the cutting from drastically
changing the position of the desired cutting path. The optimal direction and magnitude of
the tensioning force changes as the cutting progresses, and these forces must adapt to any
deformations that occur. However, practically, the surgeon’s tensioning policy is often sub-
optimal because: (1) surgeon can automatically manipulate only two of the tools at once
leaving any third arm stationary, and (2) asymmetric multilateral tasks (arms doing different
procedures) are known to be challenging without significant training with the tele-operative
system.

Therefore, it would be beneficial to automatically synthesize tensioning policies to best
assist an open loop cutting trajectory. The first challenge is modeling the dynamics of
cutting and tensioning. One way to model deformable sheets is with a 3-dimensional mass-
spring-damper network. A sheet is a planar graph of point masses connected by damped
springs at edges. k of the point masses are constrained to be fixed at a particular 3D
location, i.e., they are tensioned, and the positions of the remaining masses is determined
by the dynamics induced these constraints. At each time step, the constraint can be moved
to a new location. Cutting is modeled by removing a single edge in the graph at each time-
step. For k assistive arms, the optimization objective is to plan sequence of k movable
boundary value constraints to maximize cutting accuracy.

This problem constitutes a highly non-convex optimal control problem, whether cut-
ting accuracy is a non-convex objective that measures the symmetric difference between a

127
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perfectly cut contour and the actual cut. Furthermore, the underlying deformable manip-
ulation system is also highly non-linear. Efficient policy search techniques are required if
we want to effectively assist a human surgeon seamlessly during a procedure. What is dif-
ferent about this problem is that we do not have access to “expert demonstrations” as in the
previous chapters. Instead, we show that we can get an approximate suboptimal controller
using physics-based approximations and then use Deep RL to fine-tune this controller. The
archite

6.1 Motivation
Nienhuys and Van Der Stappen proposed the seminal work on modeling cutting with
finite-element mesh models [90]. This work led to a bevy of follow-on work in robotics
and graphics modeling the cutting problem, especially in the context of surgical simu-
lation [14, 83, 108, 114]. In parallel, the graphics community studied fabric modeling
with similar finite-element techniques [17, 37]. In our prior work, we implemented such
an approach for the Pattern Cutting task in the Fundamentals of Laparoscopic Surgery
(FLS) [123]. This paper is inspired by the challenges noticed in our prior work, namely,
that state-estimation of a deformable object when there are occlusions is very challenging.
Therefore, we investigate whether synthesizing a tensioning plan a priori can mitigate this
problem.

Manipulation of deformable materials, particularly cutting, is a challenging area of re-
search interest in robotic surgery [87,90] as well as in computer graphics and computational
geometry [23,136]. The use of expert demonstrations has been considered in prior work as
an alternative to explicit models and simulations when studying and handling deformations
in the environment. For example, Van den Berg et al. [128], Osa et al. [92], and Schulman
et al. [102] all approached manipulation of suture material using Learning From Demon-
strations (LfD), an approach that uses demonstration trajectories to learn how to execute
specific tasks. RL has been a popular control method in robotics when dynamics are un-
known or uncertain [59]. There are a few examples of RL applied to deformable object
manipulation, e.g. folding [8] and making pancakes [10]. The recent marriage between RL
and Neural Networks (Deep RL) opened a number of new opportunities for control in non-
linear dynamical systems [76]. An obstacle to applying Deep RL to physical robots is that
large amounts of data are required for training, which makes sufficient collection difficult
if not impossible using physical robotic systems–leading to our study of simulation-based
learning.

6.2 Physics of Multi-Dimensional Spring Systems
As an introduction, we first describe the physics of a multi-dimensional spring system.
This will provide the basic intuition for the deformable sheet model in the next section.
Figure 6.1 illustrates the most basic multi-dimensional spring system. A point mass m is



CHAPTER 6. REINFORCEMENT LEARNING FOR SURGICAL TENSIONING 129

Figure 6.1: This illustration describes a basic mass-spring-damper system with spring con-
stant k and damping constant c.

connected by a spring and damper to a infinitely strong block T . The spring constant is k
(let ` denote the resting length) and the damping constant is c. Let denote the acceleration
vector a “ r:x :y :zsT of the point mass:

ma “ Fspring ` Fdamper.

Hooke’s law states that the magnitude of the force applied by a spring is proportional to its
deviation D from the rest length:

|Fspring| “ kD.

Using unit vector notation, we can parametrize the force vector with spherical coordinates:

Fspring “ i kpD ´ `q sin θ cosψ ` j kpD ´ `q sin θ sinψ ` k kpD ´ `q cos θ

where D “
a

px´ Txq2 ` py ´ Tyq2 ` pz ´ Tzq2, θ “ cos´1 pz´Tzq
D

, ψ “ tan´1 py´Tyq

px´Txq
.

For the damper, let v “ r 9x 9y 9zsT denote the velocity vector:

Fdamper “ cv.

The resulting equations of motion are:

ma “ i pkpD ´ `q sin θ cosψ ` cvxq ` j pkpD ´ `q sin θ sinψ ` cvyq ` k pkpD ´ `q cos θ ` cvzq. (6)

Simulator

We can use this model to design a simulator for cutting deformable sheets. LetGx,y,z Ă R3

be a three-dimensional global coordinate frame. We denote the set of points on this sheet
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as Σ, and ΣpGq is the locations of these points in the global frame. The points are connected
by a graph of springs and dampers. To apply the above equation of motion, we can treat
each neighboring vertex as a wall. For each p P Σ, the neighboring vertex q P Nppq applies
a force Fpq. Cutting is modeled as removing an edge from the graph. In this paper, we
assume that all of the springs have the same constant, natural length, and all the damping
constants are the same.

The simulator is initialized with some initial state Σ
pGq
0 P Gx,y,z. The state is then

iteratively updated based on the derived equations of motion above. For each p P Σ, the
updates have the following form:

m:p “
ÿ

qPNppq

Fpq ` Fexternal (7)

To update the position p, we use the implicit Adams method with a standard python toolkit
1. Tensioning is simulated as a position constraint for a chosen pinch point p1 P Σ:

p1 “ u

This means that regardless of the forces applied to this point it will remain at position u.

Manipulation Actions
We are given a rectangular planar sheet and a simple algebraic desired cutting contour of
bounded curvature, which can be either closed or open.

Cutting

We assume that one arm of the robot is designated as the cutting arm and the other as the
tensioning arm. A cutting contour is a sequence of points C on the surface of the sheet. The
cutting arm operates in an open-loop trajectory that attempts to cut alongC0, the position of
the cutting contour in the global frame at time zero. Error is measured using the symmetric
difference between the desired contour on the sheet and the achieved contour cut. These
will be different due to deformation of the sheet during cutting. Let X be the set of points
inside a closed intended trajectory and let Y be the set of points inside a closed simulated
trajectory. The symmetric difference is then the exclusive-or A ‘ B of the two sets. For
open contours, the contours are closed by forming boundaries with the edges of the sheet.

Tensioning

Since the cutting is open-loop it cannot account for deformation, and this is why we need
tensioning to apply feedback based on the state of the sheet.

1https://docs.scipy.org/doc/scipy-0.14.0/reference/generated/scipy.integrate.ode.html
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Definition 7 (Tensioning) Let s P Σ be called a pinch point. Tensioning is defined as
constraining the position of this pinch point to a specific location u P Gx,y,z:

T “ xs, uy

For each of the k tensioning arms of the robot, we can have one tuple Ti. We consider
a single pinch point for each arm for an entire cutting trajectory. This allows us to define a
tensioning policy:

Definition 8 (Tensioning Policy) For arm i P t1, .., ku, let Σ
pGq
t be the locations of all of

the points on the sheet in the global coordinate frame at time t. For a fixed pinch point s, a
tensioning policy πs is a function where ∆u “ ut`1 ´ ut:

πi : ΣpGqptq ÞÑ ∆u

Problem. Tensioning Policy Search: For each arm i, find a tensioning policy that mini-
mizes the symmetric difference of the desired vs. actual contour.

6.3 Reinforcement Learning For Policy Search
We chose an RL algorithm since the symmetric difference reward function is non-convex
and the system in non-linear. We model the tensioning problem as a Markov Decision
Process (MDP):

xS,A, ξp¨, ¨q, Rp¨, ¨q, T y.

where the actions A are 1mm movements of the tensioning arm in the x and y directions,
and the states S are described below. The action space is tuned so the policy can generate
sufficient tension to manipulate the cloth significantly over a few timesteps. Reward is
measured using the symmetric difference between the desired contour and the achieved
contour cut. The robot receives 0 reward at all time-steps prior to the last step, and at the
last time-step T ´ 1 receives the symmetric difference. We do not shape the reward, as
symmetric difference is exactly the error metric used for evaluation as well.

To optimize θ, we leverage the TRPO implementation [103] in Rllab [32]. We use a
neural network to parametrize the policy πθ, which maps an observation vector to a dis-
crete action. A two 32x32 Hidden Layer Multi-Layer Perceptron is used to represent this
mapping. Since neural networks are differentiable, we can optimize the quantity Rpθq.
The state space is a tuple consisting of the time index of the trajectory t, the displacement
vector from the original pinch point ut, and the location xi P R3 of fiducial points chosen
randomly on the surface of the sheet. In all experiments we use 12 fiducial points. This is
a sample-based approximation of tracking Σ

pGq
t .
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6.4 Approximate Solution
Directly applying the RL algorithm to the FEM simulator has a two problems: (1) large
sample complexity and (2) local minima. Even in an optimized simulator, every new con-
tour required 5 minutes of learning before a viable policy was found. The key insight was
that ultimately the simulator used in RL was based on an analytic model. Thus, we explored
whether we could initialize learning with a prior developed from a simplified objective.

Small Deviation Approximation
The equation of motion defines a non-linear system. We are, however, modeling point
masses on a sheet that will have relatively small deformations from the resting length. We
further assume that there is no damping c “ 0 or external forces. For linearization, it
is more convenient to work in Cartesian coordinates, so we can also re-parametrize the
equations using Pythagorean identities:

max “ k∆x ´ k
`∆x

a

∆2
x `∆2

y `∆2
z

may “ k∆y ´ k
`∆y

a

∆2
x `∆2

y `∆2
z

maz “ k∆z ´ k
`∆z

a

∆2
x `∆2

y `∆2
z

To linearize, we can first take the gradient:

∇pmaxq “ k
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fl

We linearize around the operating point ∆x,∆y,∆z “ ρ “ ?̀
3
, and let λ “ 1
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We can define some notation to make the future algebra more concise:

L “
k

m

»

–

1´ 2λ λ λ
λ 1´ 2λ λ
λ λ 1´ 2λ

fi

fl

The resulting system can be described in the state-space model for a position of a point
mass p:

:p “ Lp
ÿ

qPNppq

pp´ qq ´ ρq (8)
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Tensioning Problem
The key trick to understanding tensioning based on this linearization is an efficient compu-
tation of the equilibrium state, i.e., :p “ 0. LetX P RNˆ3 denote the positional state of each
of the masses. For N masses and E edges, let A be an E ˆN matrix where every Aij “ 0
if edge i is not incident to the mass j, Aij “ ˘1 for edges incident to the mass (pushing
or pulling, can be selected arbitrarily). And, finally, let R be an REˆ3 matrix where each
component is ρ, or the natural length of the spring. It can be shown that the acceleration of
all of the masses is:

:P “ ATAXL´ ATRL

making the equilibrium condition:

ATAX “ ATR

To enforce constraints, we simply have to enforce that some subset of the components
of X are fixed. This restricts the equilibrium solution to the subspace of values for which
Xi,: “ ui. These are exactly the tensioning constraints, and we can solve the system of
equations by partitioning the masses into free and tensioned sets.

First, we can re-write the above equation as:

BX “ ATR

which can in turn be written as:

BfreeXfree “ ATR `BtensU

and solving for the least squares solution

Xfree “ pB
T
freeBfreeq

´1
rBT

freeA
TR `BT

freeBtensU s

This expression is just an affine function of the tensioning constraints:

Xfree “ CU `D

Optimization
To find tensioning directions and magnitudes, we have to pose an optimization problem to
set the values of U as the grid is cut. The model and its equilibrium states give us a way to
quantify deformation induced by cutting. C and D depend on the structure of the graph at
time t.

We cannot directly optimize for symmetric difference so instead, we optimize for min-
imizing total deformation from the original state:

It “ }Xfreer0s ´Xfreert` 1s}22
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Figure 6.2: This plot shows the expected reward over 50 trials for TRPO, TRPO initialized
with the analytic approximation (TRPO AN), and the analytic model on its own. Three
cutting curves are visualized of increasing difficulty with a single pinch point marked in
red. Results suggest that initializing with an analytic model can greatly accelerate learning.

This measures the amount of change in the position of the points after a cut and the sheet
has settled into a new equilibrium state. This sets up our control objective for synthesizing
a set of tensions from a fixed pinch point.

min
u1,...,uT

T´1
ÿ

t“0

It ` q}ut`1 ´ ut}
2
2 (9)

where q}ut`1´ut}
2
2 is a control penalty on changing the tensioning between time-steps for

q ą 0.
This problem is a convex program which can be solved with standard solvers. Once

this open-loop strategy is learned, we can initialize TRPO by training the policy network to
predict ut from the state. Out intuition is that this analytic model gets close to the optimal
policy and TRPO simply has to refine it. This mitigates the effects of bad local minima far
from the optimum and slow convergence.

6.5 Experiments

Performance
We present a set of illustrative initial experiments in this paper. In the first experiment,
we generated three contours of increasing difficulty and learned tensioning policies for a
single pinch point k “ 1. We compare TRPO with no initialization, TPRO+An with the
analytic initialization, and An which is just the analytic model. Figure 6.2 plots the learning
curves. We stopped training when the reward was no longer reliably decreasing. We find
that in all three cases, the analytic initialization significantly reduces the time needed to
learn a similarly successful policy. Furthermore, the analytic model is within 25% of the
final reward of TRPO achieves indicating that it is a very good initialization.

The next experiment evaluates the run time of the algorithms as we increase the num-
ber of tensioning arms. Figure 6.3A measures the number of episodes needed for TRPO to
crossover, i.e., match the performance of the analytic method, as a function of the number
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of tensioning arms to plan for. While the analytic method is greedy, TRPO requires nearly
350000 episodes before it is at parity with this method for 4 tensioning arms. For compari-
son, the analytic optimization requires two orders of magnitude less time to reach the same
result (Figure 6.3B). And, we explore using the combination of the two to achieve higher
accuracy results with less rollouts.

Figure 6.3: (A) We measure the number of episodes needed for TRPO to crossover, i.e.,
match the performance of the analytic method, as a function of the number of tensioning
arms to plan for. (B) For comparison, we plot the wall clock time of TRPO and the analytic
optimization on a log scale. The optimization is order of magnitudes faster, but may be
suboptimal.

End-to-End
Next, we compare TPS to alternative tensioning approaches. We first evaluate the tech-
niques in terms of performance by calculating the symmetric difference between the target
pattern and actual cut. Then, we compare the techniques in terms of robustness by tuning
the techniques for one simulated parameter setting and then applying them to perturbations.

Cutting Accuracy
We manually drew 17 different closed and open contour to evaluation in simulation, as
illustrated in the table. For each of the contours, we evaluated four different tensioning
methods:

• Not Tensioned: Single-arm cutting is performed with no assisted tensioning other
than the stationary corner clips that fix the sheet in place.
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• Fixed Tensioning: The material is pinched at a single point with the gripper arm
(with corner points still fixed in place), but no directional tensioning is applied. We
simulate area contact by pinching a circular disc.

• Centroid Tensioning: Tensioning is proportional to the direction and magnitude of
the error in the 3D position of the cutting tool and the closest point on the desired
contour. The gain was hand-tuned on randomly-chosen contours and is fixed to 0.01.

• TPS A separate policy is trained for each shape, this requires 20 iterations of TRPO
in the simulator.

For the analytic tensioning model, the centroid of the contour is used as the pinch point.
For the fixed policy, the point was chosen by random search over the feasible set of points.
Performance is measured using the symmetric difference between the desired contour and
the actual cut.

The averaged symmetric difference scores for each instance and tensioning method are
reported in table. The success of the different tensioning algorithms are presented as the
percentage of improvement in symmetric difference score over the non-tensioned baseline.
The average of the scores over all 17 contours are also included in the table. For the
selected set of contours, TPS achieves the best average relative improvement of 43.30%,
the analytical method 9.70%, and the fixed approach 13.54%.

dVRK: Hardware and Software
We use the Intuitive Surgical da Vinci Research Kit (dVRK) surgical robot assistant, as
in [40, 87, 105]. We interface with the dVRK using open-source electronics and software
developed by [56]. The software system is integrated with ROS and allows direct robot
pose control. We use the standard laparoscopic stereo camera for tracking fiducials on the
surgical gauze. We equip the right arm with the curved scissors tooltip for cutting and the
left arm with the needle driver tooltip for pinching and tensioning. The arms are located on
either side of the surgical gauze to maximize the workspace for each without collision.

Physical Evaluation of TPS
We show the physical results on 4 contours using Fixed Tensioning and Deep RL using the
symmetric difference as the evaluation metric in table. The tensioning policy for Deep RL
was derived from simulation experiments by registering the physical gauze to a sheet in the
simulator environment. In this set of experiments, we used fixed tensioning as the baseline.
The no tensioning policy frequently failed in the physical experiment so we excluded that
from the results table for a fair baseline comparison. We were unable to evaluate the ana-
lytic method in the physical experiments because the state-estimation needed for feedback
control was not possible outside of the simulated environment.
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We do not attempt analytic tensioning since it requires real-time tracking of the pattern
to estimate local error. We observed that 3 out of 4 of the TPS experiments performed bet-
ter than the fixed tensioning policy with respect to the symmetric difference of the cut and
ideal trajectories. This is the same objective the trained policy was designed to minimize in
simulation. A weakness of the policy was failure to address discrete failure modes, includ-
ing discrete failure modes induced by the policy itself. Failure as a result of the scissors’
entanglement in the gauze occurred in both experimental groups. The active manipulation
and tensioning of TPS also caused increased deformation of the cloth which occasionally
directly resulted in entanglement as well. We did not optimize our policy to minimize these
discrete failures, and our simulator does not model the robot with acceptable fidelity to do
so. To address this, we would require very accurate models of the robot arms and tools.
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Table 6.1: Evaluation of TPS: For the 17 contours shown, we evaluate the three tensioning
policies described in policyeval. We measure and report performance in terms of relative
percentage improvement in symmetric difference over a baseline of no tensioning for the
tensioning trials. The 95% confidence interval for 10 simulated trials is shown for fixed,
analytic, and Deep RL tensioning, while the mean absolute symmetric difference error is
reported for the no-tensioning baseline experiments. The data suggest that TPS performs
significantly better in comparison to the fixed and analytic baseline. The corresponding
pinch points used for fixed and TPS are indicated in red. The analytic pinch point is the
centroid of the shape.

Shape Tensioning Method
No-Tension Fixed Analytic Deep RL

1 17.4 -20.69˘4.44 -149.43˘10.24 64.37˘5.77

2 22.5 32.44˘1.74 -117.78˘0.00 55.11˘7.40

3 23.2 -21.12˘5.41 18.10˘1.78 38.36˘9.43

4 102.9 7.48˘0.62 30.42˘1.45 36.15˘3.97

5 41.1 0.49˘7.99 9.98˘0.00 52.31˘7.26

6 42.0 55.00˘1.77 11.43˘1.52 45.95˘6.60

7 40.2 22.64˘1.14 3.73˘1.46 33.83˘3.99

8 40.0 -1.25˘0.82 1.75˘2.83 35.50˘4.67

9 66.6 2.85˘2.60 34.68˘2.25 28.38˘4.98

10 63.6 25.63˘2.98 20.60˘3.60 41.35˘9.90

11 73.6 2.31˘1.66 24.32˘0.98 56.11˘8.99

12 79.3 22.82˘4.51 55.49˘0.38 63.56˘3.61

13 94.3 3.29˘2.05 27.15˘0.32 34.04˘5.87

14 71.7 3.07˘7.15 -2.51˘0.61 39.89˘8.20

15 178.7 74.71˘1.22 80.75˘0.88 81.25˘1.38

16 114.6 -8.03˘2.16 31.06˘0.62 29.06˘8.81

17 74.8 10.29˘2.08 28.34˘2.07 0.80˘7.03
Mean (%) 13.54˘9.84 9.70˘21.96 43.30˘8.61
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Table 6.2: dVRK Physical Experiments: This table compares the relative percentage
improvement in terms of symmetric difference to a baseline of fixed tensioning to TPS in
experiments performed on the dVRK robot. The black dot indicates the pinch point of the
gripper arm.

1 2 3
4

Shape

Deep RL 118.63 % 36.77 % 75.33 %
-44.59



Chapter 7

Conclusion

This dissertation explores reinforcement learning, a family of algorithms for finding solu-
tions to MDP that assume query access to the underlying dynamical system:

qt : st, at Ñ system() Ñ st`1, rt

High-dimensional and long-horizon search problems can require a prohibitive number of
such queries, and exploiting prior knowledge is crucial. In several domains of interest,
a limited amount of expert knowledge is available and my dissertation presents an argu-
ment learning such structure can significantly improve the sample-efficiency, stability, and
robustness of RL methods. With this additional supervision, the search process can be re-
stricted to those sequences that are similar to the supervision provided by the expert. The
dissertation explores several Deep RL systems for control of imprecise cable-driven sur-
gical robots, automatically synthesizing data-cleaning programs to meet quality specifica-
tions, and generating efficient execution plans for relational queries. I describe algorithmic
contributions, theoretical analysis about the implementations themselves, and the architec-
ture of the RL systems.

7.1 Challenges and Open Problems
The promise of (deep) reinforcement learning is a general algorithm that applies to a large
variety of MDP settings. My dissertation focuses on the RL setting with the most minimal
assumptions on the MDP. In general, there is a spectrum of assumptions one could make
and interesting sub-families of algorithms arise at different points on the spectrum.

A Vision For Reinforcement Learning
I believe that role of Reinforcement Learning is analagous to the role of Stochastic Gra-
dient Descent in supervised learning problems. While it is not practical to expect that RL

140
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will solve every MDP in the most efficient way, we would like it to be competitive to spe-
cialized algorithms. This is similar to SGD in many supervised learning problems, while
special case alterative exist that are often more performant (e.g., SDCA for SVM problems
and Newton’s Method for Linear Regression), SGD is a reasonable general purpose frame-
work that works decently well across a variety of problems. This unification has allowed
the community to build optimized frameworks around SGD, e.g., TensorFlow, and has ul-
timately, greatly accelerated the rate of applications research using supervised learning. I
envision a similar future for RL, one where a small number of RL algorithms are essentially
competitive with classical baselines. Better alternatives may exist in special cases but one
can expect RL to work across problem domains. This requires that RL exploit much of the
same problem structure that the classical algorithms exploit.

Reset Assumptions
One assumption not discussed in this work is how the system can be reset to its initial state
after querying it. In many problems, one has arbitrary control over the reset process, i.e.,
the system can be initialized in any state. This is the principle of backtracking search in
constraint satisfaction and graph search. Designing RL algorithms that intelligently select
initial states to begin their search is an interesting avenue of research. For example, one
could imagine a Deep Q-Learning learning algorithm which rather than sampling from
the initial state distribution begins its rollouts from a random point in a trajectory in its
replay buffer. This would simulate some level of backtracking behavior in the algorithm.
Optimizing the initialization process over a collection of tasks would be very valuable.

Distance Assumptions
Another crucial assumption exploited in many discrete search settings is a priori knowledge
of distance between states. For example, the A* search algorithm uses this to prioritize ex-
pansion with an admissible heuristic that lower bounds the cost-to-go. This is functionally
equivalent to a lower bound on the Q-function in RL. An interesting problem is techniques
to learn such lower bounds and transfer them between problems. For example, are there
ways to distill a Q network into a simpler model that simply provides a lower approxima-
tion and share that with other search problem instances.

Demonstration Assumptions
State-action sequences are the most basic form of supervision from an expert. A more
advanced expert may be able to provide much more information such as task segments,
hierarchical information, and perhaps even hints to the learner. Thinking about how to
formalize the notion of hints from the supervisor is another interesting research direction.
What if the supervisor could give a partially written program to the describe the control
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policy and the search algorithm could fill in the gaps? There are interesting questions of
how we represent partial or incomplete knowledge in a framework like RL.

Transfer
The “holy grail” of Deep Reinforcement Learning is to demonstrate non-trivial transfer
of learned policies between MDPs or perturbations of the system. Ensuring safe policy
deployments involves understanding the effects of applying a policy trained in simulation
or in a training environment to the non-idealities of the real world. For example, in our
query optimization project, to deploy the policies trained from a cost model, we had to
perform significant fine-tuning in the real world.

The challenge is that real world observations often have very different properties than
the data seen in training. When we execute an SQL query, we do not observe all of the in-
termediate costs without significant instrumentation of the database. We may only observe
a final runtime (the simulator is a proxy for this). Executing subplans can be very expensive
(queries can take several minutes to run). However, we can still leverage a final runtime
to adjust plans that optimize runtime, while still leveraging what we have learned from the
cost-model. One can think about the fine-tuning process as first using the cost model to
learn relevant features about the structure of subplans (i.e., which ones are generally ben-
eficial). After this is learned, those features are fed into a predictor to project the effect of
that decision on final runtime. Generalizing such ideas is an interesting avenue of research.
Can Deep RL in a simulator be used to learn features, which allow for rapid transfer to the
real world?
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