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Abstract


Spawnpoint: Secure Deployment of Distributed, Managed Containers


by


John Kolb


Master’s of Science, Plan II in Computer Science


University of California, Berkeley


Professor Randy H. Katz, Chair


Spawnpoint is an infrastructure for deploying and managing distributed software services
as execution containers. The heart of the system is spawnd, a persistent daemon process
that encapsulates the compute resources offered by a specific host. spawnd advertises avail-
able resources and accepts commands from clients to deploy and manage services. spawnd
enforces resource reservations, ensuring that a host does not become oversubscribed, and
performs admission control to avoid overloading. Spawnpoint offers command-line and
graphical clients for interacting with spawnd instances. A third front-end, Raptor, allows
users to describe complex distributed applications as a collection of services and specify
how these services are deployed through a simple domain-specific language. Spawnpoint
maintains security for all operations. Only authorized parties may learn of the existence
of a spawnd instance, deploy a service on a host, monitor service state, or manipulate
a running service. This is achieved through the use of Bosswave, a secure syndication
network. Experiments show that the CPU, memory, and network costs of running spawnd
are low and that managed containers have small overhead vs. unmanaged containers.
Spawnpoint has been used to deploy real systems, such as a vision-based building control
application and drivers to secure legacy IoT devices.
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Introduction







CHAPTER 1. INTRODUCTION 2


The explosion of smaller, more capable, more energy efficient, and better connected
computing platforms is beginning to have profound consequences. In particular, com-
puters are becoming increasingly pervasive in the physical world. This is perhaps best
exemplified by the emergence of the Internet of Things (IoT), a vision for a rich network
of embedded devices that bridges the divide between the physical and virtual worlds.
More concretely, computers and embedded devices are being deployed in many physi-
cal systems, like buildings [35], cars [26], and the electrical grid [30], to instrument and
monitor these systems while also using software to impelement sophisticated and flexible
control schemes. However, the devices alone are not enough. Edge devices require the
support of external software to ingest and store sensor data, to glean insights from this
data, to orchestrate the operation of compositions of devices that together form larger
systems, and so on. Visions of highly intelligent cyber-physical systems and ubiquitous
computing, e.g., [51], require both devices deployed in the environment as well as reliable
and long-lived software services to back them.


This naturally gives rise to the question of where these underlying applications and
services will run and how they will be managed. The cloud is often viewed as an attractive
complement for edge devices because of its vast computing and storage capabilities.
However, the deployment of software on-premises offers its own set of benefits. Local
services can control the flow of sensitive information, such as home occupancy data, out of
the local area. They allow edge devices to continue operating when disconnected from the
cloud and enable low-latency communication for purposes like tight control loops. Finally,
local services can act as proxies for legacy devices, encapsulating a fundamentally insecure
interface like an HTTP endpoint with a more secure and robust interface. This local tier
of services is not a replacement for the cloud; rather, it is an important complement to the
cloud with its own set of systems tradeoffs.


This thesis introduces Spawnpoint, a container management system that facilitates the
deployment and maintenance of software services deployed across heterogeneous and
physically distributed hosts, particularly drivers that run on-premises to encapsulate de-
vices in the local environment. Spawnpoint’s primary role is wrapping Docker daemons
in a secure interface using Bosswave [24] — a publish/subscribe platform in the vein of
MQTT [14] and ZeroMQ [8] — elevating Docker containers to first-class citizens on a
message bus. Bosswave uses a web of trust model for authenticated transport, enabling
decentralized administration and fine-grained permissions that dicate who or what may
send, receive, and view specific message streams. Spawnpoint’s main component is a
daemon that runs on a specific physical host. The high-level architecture of this dae-
mon is shown in Figure 1.1. The daemon advertises the host’s computational resources
and accepts remote commands for Docker container deployment and manipulation over
Bosswave. Using Bosswave’s permissions model, Spawnpoint can then enforce security
guarantees regarding the host’s visibility as well as who may push code to that host.
Spawnpoint emits diagnostic heartbeat messages about the health of a host and the ser-
vices it is running, which are similarly secured by Bosswave.


Any service that runs on a Spawnpoint node must reserve its CPU and memory re-
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Figure 1.1: High-level design of the Spawnpoint host daemon


sources upfront, upon deployment. Spawnpointmaintains a global pool of these resources
and allocates a slice from both pools to each service when that service is instantiated.
Spawnpoint leverages Docker to enforce these allocations, ensuring that no single service
monopolizes the resources of the host. A Spawnpoint daemon will also perform admis-
sion control, only accepting new services to a host if it it has sufficient CPU and memory
to satisfy the requested allocations. This prevents a host from becoming oversubscribed.
The availability of resources is emitted as part of a host’s heartbeat messages, allowing
developers and schedulers to make informed decisions about where to push new services.


Once a service is running, the Spawnpoint daemon manages its execution by mon-
itoring the state of the service’s container through the Docker daemon. This allows
Spawnpoint to control the service’s lifecycle, which can be modeled as a finite state ma-
chine, and perform useful operations like automatically restarting the container if a failure
occurs. Transitions between the states of a service’s lifecycle also prompt changes to its
resource allocations, and the task of maintaining the integrity of these allocations becomes
complex in the face of many simultaneously and independently executing containers that
may potentially fail at any time.
Spawnpoint takes measures to ensure fault tolerance even in the case of host daemon


failures. The execution of each managed container is independent of the execution of
Spawnpoint itself, allowing a service to continue running when a daemon fails. Moreover,
the daemon periodically saves snapshots of system state to persistent storage. When it
restarts after a failure, the daemon reconciles this snapshot with its view of the currently
running services, reclaiming ownership of containers that have remained running, and
restarting containers that have terminated in the meantime. The combination of this
decoupling and snapshotting helps minimize the cost of daemon failures.
Spawnpoint supports a variety of frontends that are used to issue commands to running


daemons on behalf of end users. These include spawnctl, a command-line application,
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as well as a graphical user interface. A third front-end, Raptor, is intended for the
deployment and management of complex applications formed through the composition
of services running on many Spawnpoint instances, which are potentially distributed.
Raptor specifies a DSL in which end users express the services they want to deploy,
any dependencies between these service containers, and a specification for where each
container should run (e.g., on a particular Spawnpoint, on a Spawnpoint satisfying certain
constraints, or anywhere).


The remainder of this thesis is organized as follows. Chapter 2 presents a motivating
scenario for Spawnpoint in the form of a distributed application formed by the composi-
tion of many independent software components spanning several tiers of heterogeneous
hardware, from the cloud down to on-premises servers. The notions of containers and
distributed service management have been well studied, and Chapter 3 discusses the rel-
evant properties of systems that address these issues and uses these properties as a basis
for comparison with related work drawn from a variety of domains including container
orchestration tools like Kubernetes [13], IoT frameworks offered by companies like Ama-
zon [5] and Google [12], historical distributed systems like Emerald [40] and Ninja [38],
and mobile-cloud offloading platforms such as Sapphire [52] and MAUI [34].


Chapter 4 describes Spawnpoint’s implementation and presents a refined version of
Figure 1.1. The various frontends for interaction with Spawnpoint daemons are described
in Chapter 5. Chapter 6 presents an evaluation of the Spawnpoint daemon, showing that it
is lightweight — imposing a very small CPU, memory, and network bandwidth footprint
on its host — and that its managed containers add little overhead on top of native Docker
containers. This chapter also presents two real-world use cases for the system. Finally,
Chapter 7 concludes the thesis.







5


Chapter 2


Motivating Scenario
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Consider the goal of implementing a coordinated and intelligent approach to demand
response across a fleet of buildings, perhaps on a corporate or university campus. Demand
response [49] is the practice of dynamically reducing energy consumption during periods
of high load, typically as a reaction to higher prices or at the request of a utility. This is
becoming an increasingly important tool for balancing fluctuations in the load placed on
the electrical grid, leading to more efficient and more reliable operation. However, the
effort to reduce load cannot come at the expense of safe operation of a building’s HVAC
system and other appliances, nor at the expense of the comfort and safety of the building’s
occupants.


Therefore, building managers need to be able to both predict how specific adjustments
to a building’s HVAC, appliances, and other electrical loads will affect its energy con-
sumption and measure the impact of these adjustments on building conditions. Further,
each building within the larger group must be treated as an individual. This is because
each building features a unique combination of hundreds to thousands of sensing and
actuation endpoints, environmental conditions, occupancy patterns, purposes of use, and
so on. For the purposes of demand response, a model must be constructed for each
building using the data generated by its resident sensors and actuators that accurately
maps perturbations to appliance settings (e.g., lowering the temperature setpoint for a
particular zone, turning off all lighting fixtures of a particular type, etc.) to changes in
energy consumption. However, there is also value to aggregating data across buildings.
Campus officials may want to identify patterns that occur in multiple buildings, compare
building performance, or observe the effects of campus-wide phenomena like weather
events or holidays on building operation.


This scenario naturally gives rise to a hierarchical organization of devices as well as
information, detailed in Figure 2.1. At the lowest level, we have hundreds or thousands
of sensors and actuators deployed in each building. To collect data and take actions in
response to a DR event, we need to interface with each building’s highly heterogeneous
collection of devices. Furthermore, these devices must be integrated with the compu-
tational resources deployed on the premises, generally in the form of local servers, that
make up the next level of the hierarchy. These servers in turn need to cooperate to sup-
port campus-wide services and analytics workloads, perhaps using a campus datacenter
as a point of coordination. Finally, there is the cloud, which offers immense, but remote,
compute and storage capacity. This could serve as a suitable infrastructure for location-
agnostic services like web scrapers to interact with sources of weather data or energy
prices.


Implementing, deploying, and administering an automated demand-response system
on top of this hierarchy involves a number of challenges. First, there is the issue of
efficiently using and managing the computational resources available to the system, from
edge devices to local machines to robust cloud servers. Second, there is the problem
of collecting and processing building data while carefully controlling information flows
for efficiency and privacy purposes. There is also the challenge of creating a system
that lends itself to future extensions and maintenance. It should be easy to deploy new
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Raw Device Data,
Actuation Commands
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Figure 2.1: The hierarchical organization to a campus-wide automated demand-response
application. Each building is an indepenent subdomain containing edge devices and
local servers, and all buildings communicate wtih a common campus data center that is
potentially augmented by the cloud.


software components and to move a service from one location to another, both within and
across layers of the hierarchy. Finally, and perhaps most importantly, there is the issue
of security. Campus-wide demand response involves a variety of stakeholders, such as
building managers, building occupants, and researchers, each requiring different sets of
privileges to perform tasks like installing new devices, interacting with these devices, and
prototyping new analytics techniques or building control schemes. Thus, we need to be
able to control who may deploy code where and place constraints on where each unit of
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software may be executed.
Spawnpoint addresses the challenges identified above in two key ways: by managing


the execution infrastructure for the array of services involved in campus-wide automated
DR and by giving developers a set of primitives to make these services secure and portable.
A slice through an example installation of a campus-wide DR system using Spawnpoint is
shown in Figure 2.2. A Spawnpoint instance can encapsulate any host running Linux; thus
each host involved in a DR system, from local BMS servers to a powerful cloud-based
virtual machines, runs Spawnpoint in order to advertise their respective resources for
use by software services. Additionally, each of these services runs inside a portable and
isolated container, meaning developers can write code and run it anywhere. Spawnpoint
also allows developers to deploy, manage, and update distributed software from a single
interface that unifies the heterogeneous tiers of hardware shown in the figure. New
components, such as a driver for a newly installed device or new data analysis methods,
are easily added to the system by deploying new containers. The system can be easily
maintained by updating services or by relocating them to different hosts as necessary.


Security concerns are handled throughSpawnpoint’s use of Bosswave. EachSpawnpoint
instance maintains an independent set of permissions that determine who may push code
onto the corresponding host. Analogously, service developers know where their code
will be deployed because only the authorized Spawnpoint instance can receive their de-
ployment directives. Each running service is associated with its own set of fine-grained
permissions that determine who can inspect or manipulate that service. This gives rise
to rich combinations of privileges that can be specifically adapted to different roles in the
demand-response system. Building managers might be allowed to deploy and monitor
code on any host within their own building or in the cloud, while campus administrators
can see and interact with a service running in any building. Demand response researchers
might be permitted to consume data from building-specific services but can only deploy
code in the cloud. Moreover, Bosswave enables decentralized administration of and in-
teraction with Spawnpoint instances. A user can deploy and manage their containers
through any client that speaks Bosswave, and this client is decoupled from any particular
Spawnpoint instance.


Finally, the Raptor front-end helps users cope with the complexity of managing multi-
container (and potentially multi-host) applications. Raptor defines a domain-specific
language for configuring multiple containers, declaring their interdependencies, and
specifying where they should be run, all from a single file. This forms a declarative
specification of an application’s components, and it is submitted to the Raptor tool in
order to deploy the application. Raptorwill compute the difference between the services
that are already deployed and the services included in the specification, only instantiating
what is necessary to bring the deployment into the desired state. Raptor files can there-
fore be resubmitted at a later point in time to ensure that a deployment is in the proper
condition. Furthermore, a group of developers can collaborate on a Raptor file and keep
it under version control as an executable record of their application’s structure. Raptor’s
approach of treating these files as declarative is inspired by Kubernetes, and much like
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Figure 2.2: An example deployment of a campus-wide DR application. Spawnpoint in-
stances encapsulate computational resources deployed locally in buildings, at a shared
campus data center, and in the cloud. Building-specific services execute locally, aggre-
gation and coordination occur on campus, and wrappers for external services run in
the cloud. However, this is not the only possible arrangement. Spawnpoint ensures
that changes to the physical placement of services do not affect the application’s logical
structure.


Kubernetes, a common use case is to edit the file, perhaps to add a new container or update
the version on an existing container, and resubmit it to Raptor to maintain a previously
deployed application.
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Services, containers, and management of distributed software systems are hardly new
topics. Numerous solutions have been proposed and implemented to help software
developers deploy their code on heterogeneous, distributed infrastructure. However,
these solutions generally only offer a subset of the system features that are most useful
when developing services and applications that are expected to be persistent and robust,
execute across multiple tiers of hardware, and interface with cyber-physical systems. For
example, IoT frameworks focus on compositions of software interfaces but don’t address
the deployment and lifecycle management of services. Container management tools like
Docker Swarm and Kubernetes offer robust service scheduling, replication, and fault-
tolerance but do not offer meaningful support in developing software that spans the
multiple hardware tiers that are characteristic IoT applications.


Table 3.1 summarizes the features offered by a collection of related work drawn from
container and orchestration systems, frameworks for IoT software development, cloud
offloading platforms, and historical distributed systems. Each system is described in
more detail in the text below. The features included in this table are as follows:


• Heartbeats: Monitors the health and liveness of services, emitting periodic messages
with diagnostic information


• Fine-Grained Permissions: The ability to precisely control who can deploy, view,
and monitor services on each physical host


• Distributed Apps: Support for deploying multiple, physically distributed services
that are composed to form an application


• Containers: Support for software containers as a first-class primitive


• Cloud: Support for the deployment of code in the cloud


• On-Premises: Support for deployment of meaningful local services


• Clusters: Abstracts clusters of machines as a single deployment endpoint


• Resource Management: Enforces service-specific resource allocations and performs
admission control to avoid overloaded hosts


• Lifecycle Management: Reacts to service health information to provide useful prim-
itives like automatic restarting


• Migration: The ability to dynamically move the execution of code between hosts


• Decouple Admin from Use: Separates the administration of infrastructure from its
use, i.e., users do not need to understand the infrastructure’s internals
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AllJoyn X X
AWS IoT X X
Azure IoT X X
Google Cloud Platform X X X
Microsoft Beam X X X
Kubernetes X X X X X X
Docker Compose X X X
Docker Swarm X X X X X X
Quilt X X X
Ansible, Puppet, Chef X X X
Fog Computing, Cloudlets X X X
HomeOS, BOSS X X X
Ninja X X X X X
Condor X X X
Sprite, Emerald X X X X
Sapphire, MAUI, etc. X X X
Apache Jini X X X
Tuxedo X X X X X
Spawnpoint X X X X X X X X X


Table 3.1: Summary of Features Offered by Related Systems


3.1 Industrial IoT Frameworks
Technology and electronics companies view the Internet of Things as an important emerg-
ing market and opportunity for growth. Thus, companies are not only producing IoT
devices but also software frameworks and infrastructure to manage these devices, their
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deployment, and the data they produce. The first major class of offerings in this space are
frameworks like AllJoyn [1]. At its core, AllJoyn is simply an agreement on a common
software communications platform (a message bus built on D-Bus with a standard means
of interface advertisement and discovery) that allows devices and services offered by
different vendors to freely interoperate. AllJoyn offers language bindings for developers
to write services and device controllers that interact with the standardized message bus,
enabling compositions of independently developed modules. However, AllJoyn does not
deal with the issue of secure service deployment and management. Spawnpoint is primar-
ily concerned with instantiating services and device drivers in the local environment and
thus is orthogonal to frameworks like AllJoyn. Spawnpoint is agnostic to the technologies
running inside of its managed containers. Developers may in theory use any language or
communications platform. Thus, AllJoyn-compliant services could be deployed and run
as Spawnpoint containers, giving the developer a solution for both code deployment and
interoperation.


The second major class of industrial IoT offerings are application frameworks like
Amazon’s AWS IoT [5], Microsoft’s Azure IoT Suite [6], and the IoT tools of the Google
Cloud Platform [12]. These frameworks heavily emphasize the cloud, and are primarily
intended to integrate edge devices with backends deployed on each company’s respec-
tive cloud infrastructure. All three companies offer libraries to develop software for edge
devices, but these libraries are mainly concerned with providing publish/subscribe com-
munications primitives to ingest device data into the cloud for information processing,
aggregation, and storage. Moreover, these industrial IoT frameworks do not confront the
issue of deploying and managing units of software across both local and cloud hardware.
Google offers a cloud-based container engine that is tightly integrated with Kubernetes,
but these three companies do not provide a solution for managed and physically dis-
tributed containers. Finally, while Amazon, Google, and Microsoft all advocate local
gateways as in an important component of IoT applications [4, 11, 17], these are regarded
as little more than proxies for constrained devices or intermediate points for minimal data
processing before that data is ultimately fed into a more capable cloud backend, and it is
up to the developer to deploy and maintain any locally-running software.


Much like agreements on common APIs like AllJoyn, the IoT platforms offered by
Amazon, Google, and Microsoft are somewhat orthogonal to Spawnpoint. Their SDKs
and the underlying libraries can integrated into software applications that run inside of
Spawnpoint containers. However, these industrial frameworks are more opinionated on
how IoT applications should be architected, advocating minimal logic in edge devices
and local proxies that serve only to publish data into vendor-specific cloud backends.
Spawnpoint, when combined with Bosswave, instead is intended to facilitate the develop-
ment and deployment of more capable local device drivers that serve to fully encapsulate
local devices and, where appropriate, restrict the flow and visibility of data to the imme-
diate physical environment.


Finally, Beam [47] is an IoT applications platform developed at Microsoft Research that
restricts its attention to what the authors call “inference-based apps.” Here, an applica-
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tions developer expresses the data streams they need at a high level, and Beam handles
interfacing with the relevant sensors as well as performing any necessary intermediate
processing to produce the desired data. Thus, Beam maintains a dataflow graph with
sensors as leaves and computational processes carrying out intermediate transformations
as internal nodes. The Beam “engines” on which these processes run are analogous to
Spawnpoint instances. However, Beam and Spawnpoint operate at slightly different levels
of abstraction. Beam seeks to hide the underlying computational processes that supply a
user with their data, controlling and managing them internally. Spawnpoint is centered
around explicitly deploying and managing these services as distributed containers, and
Raptor allows the application developer to easily configure these containers and place
constraints upon where they are run. Moreover, Beam is focused on use cases that involve
the collection and processing of sensor data, while Spawnpoint aims to support more
general applications, including IoT applications featuring actuation.


3.2 Containers and Their Orchestration
Containers provide a means of encapsulating a software artifact and its execution envi-
ronment into a portable and reproducible unit. While the notion of a container and the
associated idea of lightweight virtualization is not new, the necessary kernel-provided
tools and mechanisms — including PID and networking namespaces, chroot jails, and
cgroups — have only recently matured and become widely available. Furthermore,
container creation and deployment frameworks like Docker [9] and rkt [20] have made
containers an extremely popular primitive for packaging and deploying software in recent
years.


As developers began to use containers in the cloud and at large scale, particularly
within “microservice” architectures [43] and to implement highly available web services, a
need for automated container deployment and management emerged. Kubernetes [13,50]
is arguably the foremost container orchestration system in use today. It is a framework for
deploying containers on large-scale clusters of machines, potentially provisioned in the
cloud, and scheduling containers to run on those machines while managing resource con-
sumption and balancing load across hosts. Users specify how applications are deployed
as collections of containers in YAML files, and Kubernetes will schedule and instanti-
ate these containers on the cluster accordingly. Containers can be replicated for scaling,
and Kubernetes also monitors container status in order to restart failed containers for a
“self-healing” effect.


While Kubernetes is very popular, Docker offers its own tools for container orches-
tration and management that complement the core Docker container engine. Docker
machine [10] is concerned with provisioning and administering end hosts that will sup-
port containers, but is unconcerned with the containers themselves. Docker compose [16]
is a framework for specifying and running an application as a group of containers. How-
ever, it can only manage containers within one host and is intended for testing rather than
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production purposes. Finally, Docker Swarm [21], is a tool for deploying containers on
clusters. It is much like Kubernetes but has fewer features and a smaller user base.
Spawnpoint is similar to Kubernetes and Docker Swarm in that it monitors and man-


ages container lifecycles and uses YAML files to express container configuration and
deployment. However, Spawnpoint interfaces with only a single Docker daemon in order
to manage a specific host rather than a cluster of machines. One could imagine, however,
deploying an application across multiple Spawnpoint instances, which is exactly what the
Raptor frontend is intended to facilitate. Moreover, it is possible to swap out Docker for
Kubernetes in Spawnpoint’s backend, in which case Spawnpoint would support a single
Bosswave endpoint that maps to an underlying cluster. That is, Spawnpoint could ma-
terialize a user’s services as a Kubernetes pod — a collection of Docker containers that
are scheduled onto nodes of a cluster by Kubernetes. Ultimately, the deployment still
assumes the form of Docker containers, but Kubernetes acts as an intermediary between
Spawnpoint and the Docker daemons running on the constituents of the cluster, handling
scheduling, replication, and so on.


Finally, Kubernetes and Docker’s various tools are generally intended to be used by
system administrators, i.e., people with intimate knowledge of how the underlying infras-
tructure has been provisioned and maintained. Spawnpoint, on the other hand, is intended
to be used to cast an application onto potentially unknown infrastructure. Spawnpoint
users interact only with Bosswave URIs, meaning the underlying hosts are completely
opaque to these users. For example, switching a Spawnpoint instance’s backend from
Docker to Kubernetes (and upgrading to a cluster of machines) can be fully transparent
to end users.


3.3 Quilt
Quilt [19] is a system also developed at UC Berkeley that confronts similar issues of
container deployment and management. Where Spawnpoint is focused on applications
executing in containers locally, on the cloud, or on a combination of the two, Quilt restricts
its focus to Amazon EC2 and Google Cloud Engine. Quilt deploys both the containers and
also provisions the hosts on which they run, while Spawnpoint exposes existing resources
for consumption by containerized applications and services. Furthermore, while both
Quilt and Spawnpoint support networked containers, Spawnpoint is primarily designed
for containers that communicate over Bosswave. Quilt does not decouple infrastructure
administrators from infrastructure users, i.e., those who want to deploy code on this
infrastructure, nor does it perform container health monitoring and lifecycle management
like Spawnpoint. Finally, where Spawnpoint users construct a declarative specification of
container deployments using the Raptor DSL, Quilt requires an imperative expression of
container and host instantiation in JavaScript.
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3.4 Other Orchestration Tools
Several other tools are concerned with specifying the configuration of infrastructure at
large scale, but they do not support containers and have been discarded as container-based
system architectures and deployments have emerged. These include Ansible [2], Chef [7],
and Puppet [18]. Each of these is focused on configuring fleets of machines so that they
conform to user specifications regarding which packages are installed, which services are
running, etc. HashiCorp’s Terraform [22] goes one step further and enables code that
specifies how transient infrastructure, like cloud-based virtual machines, are provisioned.
Like Spawnpoint and Raptor, these tools share the vision of declarative system descrip-
tions, but at different levels of the stack. They focus on establishing static infrastructure
configuration invariants rather than on exposing the computational resources provided
by this infrastructure to a potentially diverse group of stakeholders. Indeed, one could
imagine configuring fleets of Spawnpointhosts using something like Terraform or Ansible,
but these tools are not suitable replacements for Spawnpoint itself.


3.5 On-Premises Computing
While most container orchestration tools place an emphasis on the cloud data-center
setting, Spawnpoint instances also run on-premises. Services can be executed locally in
order to achieve goals like reducing network latency, controlling the flow of sensitive
information to the outside world, and so on. Many other efforts have placed a similar
emphasis on local computation. Cisco introduced the vision of fog computing [29], where
computing infrastructure normally reserved for the cloud is dispersed into the edge of the
network, but did not build a system to realize this vision. Similarly, CMU has proposed
provisioning on-premises hardware — “cloudlets” — to run computations on behalf of
local users and services [46]. Spawnpoint is a software system, and could therefore be
deployed on this local hardware to enable service instantiation as connected, managed
containers.


Software platforms to facilitate local computation have assumed several forms. The
first major category are software systems to interface with physical devices for data col-
lection and automation, such as HomeOS [36], and BOSS [35]. Both of these systems, and
many like them, were initially designed before the widespread advent of containers, and
we see Spawnpoint as the execution engine for the next generation of building and home
operating systems. Ninja [38] presented a vision for pervasive deployment of services and
a software platform to support interactions between heterogeneous devices well before
there was the notion of an Internet of Things. It shares many similarities with Spawnpoint,
most importantly the notion of a shared infrastructure serving as a substrate for services
that are implemented and used by a diverse group of stakeholders. Spawnpoint takes ad-
vantage of several new technologies that have emerged since the development of Ninja,
the most important being lightweight containers to package and distribute software.
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3.6 Distributed Systems
Many historical distributed systems also aim to construct a software execution platform
that pervades the local area. In Condor [44], resources are “scavenged” from idle worksta-
tions to support the execution of background jobs, much like Spawnpoint allows services
to be cast onto infrastructure within containers. Sprite [37] and Emerald [40] allow com-
putational processes to migrate in order to balance load and achieve fault tolerance.
Spawnpoint has basic support for migration (it is triggered manually and is meant for
stateless services), but one could imagine implementing more sophisticated migration on
top of Spawnpoint’s primitives.


With the advent of cloud computing, new systems emerged to provide execution
platforms where applications running on weaker edge devices could seamlessly offload
their demanding computations onto more capable cloud-based servers [32, 34, 45, 52].
These differ from Spawnpoint in that services and computations are dynamically cast
onto the infrastructure during execution, whereas Spawnpoint’s containers are placed
and provisioned ahead of time. However, Spawnpoint could easily be used in conjunction
with these kinds of systems by managing the infrastructure that serves as a target for
offloading. For example, an application running on a mobile phone could contact a
Spawnpoint instance to launch a container that runs backend computations on its behalf.
Spawnpoint also has similarities to service-oriented architectures developed in indus-


try. Apache Jini (now Apache River) [3], is a Java platform for creating distributed systems
out of a federation of potentially distributed services. However, River is mainly focused
on service discovery and communication rather than systematic and secure service de-
ployment. Oracle’s Tuxedo [15] is a software framework for deploying services, each
within an isolated execution environment, onto a cluster of machines. These services can
be transparently replicated for scaling and fault tolerance purposes, much like containers
in Kubernetes. In addition, Tuxedo provides an event broker so that services can react to
changes in system state and communicate with one another. While Spawnpoint offers a
similar set of features, it does not restrict itself to clusters, and it features a more decentral-
ized and fine-grained permissions model with respect to the deployment and monitoring
of services, enabled by its use of Bosswave.







18


Chapter 4


Implementation







CHAPTER 4. IMPLEMENTATION 19


This chapter begins a detailed discussion of the design and implementation ofSpawnpoint.
Here, we focus on spawnd, Spawnpoint’s host management daemon, and defer the dis-
cussion of Spawnpoint front-ends to Chapter 5. spawnd is responsible for advertising the
computational resources and current state of a host, accepting commands to deploy and
manipulate service containers on that host, and manging these services while they are
running. First, we discuss the external interface presented by spawnd through Bosswave,
then we detail how service configurations and deployments are specified. Next, we dis-
cuss Spawnpoint’s use of Docker to create and manage containers. Docker also plays a role
in spawnd’s fault tolerance, dicussed in the following section. Finally, we detail service
lifecycle management and present the overall architecture of spawnd.


4.1 External Bosswave Interface
Spawnpoint exclusively uses Bosswave for external communications. The integration
between the Spawnpoint host daemon (spawnd) and Bosswave is depicted in Figure 4.1.
On each Spawnpoint host, spawnd operates in tandem with a second persistently running
process, a Bosswave agent. spawnd communicates with the agent over a purely local net-
work socket, issuing syndication commands to publish messages and to receive messages
issued to specific endpoints. These commands are expressed in a simple, plain-text “out
of band” protocol specified by Bosswave. The agent then performs all of the necessary
work on behalf of spawnd, signing, encrypting, and sending messages for publication
as well as receiving, decrypting, validating, and delivering messages matching spawnd’s
open subscriptions. Bosswave provides bindings to wrap all interactions with the local
agent in the form of a Go library.1 Interested readers are referred to Bosswave-related
papers and repositories for more information [24, 25].
Spawnpoint’s integration with Bosswave provides a number of security guarantees


to the system without complicating its implementation. First, the Spawnpoint interface
provided to external users and services is broken up into a fixed collection of publish/-
subscribe topics, expressed as URIs, that each form an independent permissions domain.
In other words, operations to send or receive a message on a particular URI are always
mediated by Bosswave, which ensures that only authorized entities may carry out such
operations, and permissions on a given topic’s URI are independent of those for any other
topic’s URI. In particular, Spawnpoint subscribes to a collection of topics in order to accept
remote commands from users and services. Bosswave’s security model ensures that only
authorized entities may issue a command (by publishing a message to the corresponding
URI) and conversely that only the authorized Spawnpoint daemon may receive the com-
mand (by subscribing to that URI). Each Spawnpoint instance is configured with a base
URI, which is a prefix for all of the topic names that the Spawnpoint daemon subscribes
to. Equivalently, when we view URIs as items in a hierarchical namespace, this is the root
of the URI subtree that the Spawnpoint daemon uses.


1https://github.com/immesys/bw2bind



https://github.com/immesys/bw2bind
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Figure 4.1: spawnd’s integration with Bosswave


The set of URI topics that a Spawnpoint subscribes to is:


• bw2://<base uri>/s.spawnpoint/server/i.spawnpoint/slot/config


• bw2://<base uri>/s.spawnpoint/server/i.spawnpoint/slot/restart


• bw2://<base uri>/s.spawnpoint/server/i.spawnpoint/slot/stop


• bw2://<base uri>/s.spawnpoint/server/i.spawnpoint/slot/logs


These URIs adhere to a standard set of structural patterns that are meant to make them
self-describing and to facilitate interoperation among Bosswave-based services. More
concretely, we can see that these URIs are interface endpoints for the s.spanwpoint
service, and while a service can have multiple interfaces, here we are only concerned with
aninterface named i.spawnpoint. Topics that are intended to serve as channels for input
to a service are dubbed “slots,” and here each slot is used to receive an external command
to perform a specific operation:


• An entity deploys a new service on a Spawnpoint instance by publishing a YAML
configuration document (detailed in the next section) to the config slot.


• An entity restarts an existing service by specifying its unique name in a message
published to the restart slot.


• An entity stops an existing service by specifying its unique name in a message
published to the stop slot.
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• An entity retrieves the log output of a service by publishing its unique name and a
log start time in a message on the logs slot.


Because each of these topics, i.e. slots, forms an independent permissions domain,
Spawnpoint enables users and services to be assigned rich combinations of access priv-
ileges. The ability to perform any Spawnpoint operation is simply contingent upon the
initiating entity’s permissions to publish a message on the corresponding slot. For exam-
ple, a systems administrator can be granted permissions to publish on any slot, which
allows them to deploy, restart, stop and log any service. A regular user might be allowed
to restart or log existing services but not to start or stop them. An external logging service
could be given the ability to read service logs but not to instantiate or manipulate any
services.


Just as slots are Bosswave channels for input to a Spawnpoint instance, “signals” are
channels for output from the instance. The daemon will periodically publish a heartbeat
to the URI:


bw2://<base_uri>/s.spawnpoint/server/i.spawnpoint/signal/heartbeat


These messages advertise the liveness of the instance to all entities with permissions to
subscribe to the signal’s URI. Thus, the permissions on this URI can be used to restrict the
visibility of a Spawnpointdaemon to a specific set of entities. Furthermore, these messages
not only establish liveness but also contain information on the current availability of
resources at the Spawnpoint. This allows users and external services to determine if a
given Spawnpoint can accommodate the resource requirements of a new service, were it
to be deployed there. Additionally, Spawnpoint automatically publishes heartbeats for
each of the services it is running to signals of the following form:


bw2://<base_uri>/s.spawnpoint/server/i.spawnpoint/signal/


heartbeat/<service_name>


Like the heartbeats for the Spawnpoint daemon itself, these heartbeats go beyond es-
tablishing liveness. They also contain useful diagnostic information about the container
hosting the service, such as how much memory and CPU it is consuming and statistics
about its IO operations. Also like the daemon’s heartbeats, service visibility is controlled
by permissions to subscribe to messages on the corresponding heartbeat signal URI. All
heartbeat messages, for both the daemon and the services it runs, are serialized using
MessagePack.2 This is similar to JSON but uses a binary format rather than plain text for
more compact representations and faster processing.


The complete set of URIs that are involved in routine Spawnpoint operations are
diagrammed in Figure 4.2. There is one potential issue with this configuration. Each
Spawnpoint instance features just one slot URI for restarting, stopping, or logging any
service. This means that, for an entity to have permission to manipulate any service on


2https://msgpack.org/index.html



https://msgpack.org/index.html
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Figure 4.2: The external interface of a Spawnpoint daemon, presented through Bosswave


a Spawnpoint, it will have permissions to manipulate all services on that Spawnpoint.
This is not a fundamental limitation of the implementation, but rather a design decision
based on the idea that the users of a shared Spawnpoint have some degree of mutual
trust. However, it would be easy to create unique slots for each service that accept
external commands for restarting, stopping, or logging that service. A second approach,
which is in fact already a feature of the current Spawnpoint implementation, is to create
the illusion of multiple Spawnpoint instances from a single daemon process simply by
subscribing to distinct collections of signals and slots, with different base URIs. Hence,
a single Spawnpoint daemon can expose distinct domains of trust, and users on each of
these domains are not allowed to access services deployed on other domains.


4.2 Daemon and Service Configuration
All Spawnpoint configuration settings are specified in YAML files. YAML was chosen
because its syntax is flexible and easily readable while still amenable to machine parsing
and because it is extensively used by popular tools like Kubernetes. ASpawnpointdaemon
is described by two YAML files. The first specifies the following configuration parameters:


• path: The base URI for all Bosswave slots and signals (as described above)


• entity: The Spawnpoint daemon’s identifying key-pair for all Bosswave operations.


• localRouter/containerRouter The Bosswave agent to connect to and use for all
messaging operations, both for the daemon itself and the containers it hosts.
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• memAlloc: The total amount of memory to make available to running containers.
Each container then allocates a slice of this pool for itself.


• cpuShares: The number of CPU cores to make available to running containers,
expressed in shares. As with memory, this is a pool that is allocated among the
containers.


• allowHostNet: A flag for container host networking. If enabled, containers may use
the host’s networking stack directly. This is intended to be very rare as it represents
a security risk.


An example configuration file might look like the following:


path: ucberkeley/spawnpoint/alpha


entity: alpha.key


memAlloc: 16G


cpuShares: 8192


localRouter: "172.17.0.1:28589"


containerRouter: "172.17.0.1:28589"


allowHostNet: false


The second YAML file for a Spawnpoint daemon specifies the metadata key/value pairs
that are advertised through Bosswave. For example:


arch: "amd64"


location: "Soda Hall"


owner: "Allan Turing"


Service configuration involves more fields, many of which are optional or most often
left to their default values. The most important fields are as follows. Many of the
parameters relate to the container build process, which is described in detail in the next
section.


• image: The Docker image to use to create the service’s container. This defaults to an
Ubuntu Linux container with tools like Go and Bosswave already installed.


• entity: A key pair to copy into the container that will serve as the identifier for any
Bosswave operations performed by its corresponding service


• source: An optional URL for source code to check out use as part of the container
build process


• build: A sequence of shell commands to run to initialize the container (e.g. compil-
ing checked out source code)


• run: The container’s entrypoint, i.e. a sequence of commands to launch the necessary
software, such as invoking a binary
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• memAlloc: The container’s required memory, which is allocated from the Spawnpoint
daemon’s pool


• cpuShares: The container’s required CPU cores, expressed as shares, also allocated
from the daemon’s pool


• autoRestart: When explicitly set, this flag triggers an automatic restart of the
container when it terminates (normally or abnormally)


• restartInt: Specifies a delay interval that will precede any automatic container
restarts, if they are enabled


• includedFiles/includedDirs: Files and directories to be copied into the container.


A typical service configuration file might be written like so:


entity: demoDev.ent


source: "git+http://github.com/jhkolb/demosvc"


build: ["go get -d", "go build -o demosvc"]


run: [./demosvc, 60]


memAlloc: 512M,


cpuShare: 512,


includedFiles: ["params.yml",]


Here, we see that a new container will be created from the default, Ubuntu-based im-
age.3 The service will be instantiated with source code from http://github.com/jhkolb/
demosvc. Because this is code written in Go, the two commands listed in the build pa-
rameter are required to compile a binary, which is then invoked (with a command line
argument) in run. In Spawnpoint, service developers must state the memory and CPU
requirements of their containers upfront, before they are launched. In this example, the
container will be allowed to use up to 512 MiB of memory and 512 CPU shares, which
translates to half of a CPU core.


The last line of the configuration specifies that a single file, params.yml is copied into
the container. Note that this file is not drawn from the container’s host, i.e. the Spawnpoint
daemon’s host machine, but rather from whatever machine is running the Spawnpoint
front-end that initiates the service deployment. Spawnpoint front-ends are not coupled
to any particular instance of a Spawnpoint daemon. Additionally, inclusion of a YAML
parameters file is a fairly common idiom of use for services deployed on Spawnpoint.
This is because a service cannot be completely characterized by its normal configuration
file. There are certain parameters, such as API keys and unique device identifiers, that are
particular to one instance of a service but not to the service in general. While the service
configuration file might be kept under version control and reused, a unique version of a
separate parameters file is created for each instance of the service that is deployed.


3Available at https://hub.docker.com/r/jhkolb/spawnpoint



http://github.com/jhkolb/demosvc
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4.3 Container Management with Docker
Spawnpoint internally relies on Docker for container creation and management. Spawnpoint
can thus be viewed as a system to manage and host Docker containers and to elevate them
to the status of first-class citizens within a secure message bus, i.e. Bosswave. This arrange-
ment has several advantages. First, it simplifies the implementation of Spawnpoint, as it
need only focus on issues like exposing an interface over Bosswave, managing container
lifecycles and resource consumption (discussed in the next section), and achieving fault
tolerance, rather than providing a fully-featured container system. Moreover, Spawnpoint
leverages Docker’s ancillary tools and infrastructure. Users who do not wish to use the
stock Spawnpoint container image can create their own with Docker’s standard, well-
documented tools and host these images on Docker’s repository hub. Also, Spawnpoint is
not permanently tied to Docker, which is treated as an isolated back-end that could easily
be swapped out for a different container toolchain. For example, Spawnpoint could work
just as well with rkt or even with Kubernetes to serve as an abstraction over a cluster of
machines.


Container Initialization


When a Spawnpoint daemon receives a new service configuration from a user or external
service, it first verifies that it has sufficient resources to accommodate the new container
(discussed below) and then needs to create and start a new container in accordance with
the configuration’s specifications. First, Spawnpoint obtains the necessary Docker im-
age, which defaults to an Ubuntu-based and Bosswave-enabled container, but can be any
image of the user’s choosing. Images that are available locally are reused if possible, oth-
erwise they are pulled from a remote repository. Next, Spawnpoint creates a temporary
“Dockerfile” — essentially a build file that specifies how the container will be instantiated
from its base image. This is where Spawnpoint instructs Docker to check out and incor-
porate source code from a user-specified repository, copy in the necessary external files,
run a specific command to to start the container, and so on. Finally, Spawnpoint passes
the Dockerfile to Docker itself and waits either for notification of a successful container
build or an error. The full container instantiation process is diagrammed in Figure 4.3.


Container Management


Once a container has been launched, Spawnpoint oversees it through Docker’s monitor-
ing capabilities. The Docker daemon will publish events through a REST API on a Unix
domain socket, which Spawnpoint connects to and monitors. Because Docker relies on
cgroups to track and potentially restrict container resource consumption, it also emits
detailed information on the status of running containers. Thus, Spawnpoint’s task is to
observe the information published by Docker, publish status information about the con-
tainers for services it is actively managing, and react appropriately to changes in container
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state. Spawnpoint periodically samples container container CPU and memory consump-
tion and includes this information in the heartbeats it publishes to establish service live-
ness. When Docker notifies Spawnpoint about a container termination, Spawnpoint will
either release the corresponding resource allocations back to its central pool, or it will
automatically restart the container if this was enabled in the service’s configuration.
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Figure 4.3: The steps to instantiating a new service on Spawnpoint


4.4 Fault Tolerance
As the previous section made clear, one way to view Spawnpoint is as a Docker client
that wraps containers and their deployment in a management layer with a Bosswave
interface. Aside from the advantages of simplifying the implementation and achieving
compatibility with the plethora of Docker tools in use today, this leads to another im-
portant benefit: Docker’s daemon serves to decouple Spawnpoint from the services that
it manages. Importantly, failures in Spawnpoint are not tied to failures in its managed
services, and vice versa. This is because service containers are independently executing
processes that can continue running without Spawnpoint present — they simply won’t be
managed or monitored. In fact, Spawnpoint itself can run as a normal Docker container,
in a sense putting it on equal footing with the services it manages. The Docker daemon
interacts with its clients through a RESTful API over a UNIX domain socket. The spawnd
container is configured to have the socket’s endpoint mapped from the host’s file system
into its own file system, allowing it to issue commands to the Docker daemon and manage
the execution of other containers on the host.


This has important consequences for the design and fault tolerance of the Spawnpoint
daemon. Because the daemon may fail, it also must recover gracefully. In particular,
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when the daemon is restarted, it should cleanly reassume ownership of containers that it
instantiated in the past. This breaks down into three distinct cases:


1. A service has continued to run while Spawnpointwas down. The Spawnpoint should
resume management of this container, restore its resource allocation from the central
pool, and resume emitting heartbeats for the service.


2. A service that was running when Spawnpoint failed has since terminated, and its
configuration has automatic restarts enabled. Spawnpoint should restore its resource
allocation and restart the container. Once the restart is complete, Spawnpoint should
publish heartbeats for the service.


3. A service that was running when Spawnpoint failed has since terminated, but it does
not have automatic restarts enabled. Spawnpoint should free the service’s resource
allocation but otherwise take no action.


To achieve this behavior, and because it could potentially fail at any time, the Spawnpoint
daemon periodically saves a snapshot of its current state to persistent storage. This
state includes a detailed manifest for each service currently managed by the Spawnpoint
instance — with information like the user’s specified configuration, Docker’s unique
identifier for the service’s container, and so on — as well as a record of all resource
allocations granted by the daemon to its services. When a Spawnpoint daemon is started,
it consults this snapshot, queries the Docker daemon for information on all running
containers, and reconciles the two using the procedures laid out in the list above. This
allows Spawnpoint to restart cleanly, picking up where it left off as well as possible and
leaving long-running services undisturbed by its own failures.


The combination of persisted snapshots and independent service execution dramati-
cally reduces the cost of execution failures in the Spawnpoint daemon. The obvious result
is that Spawnpoint can cleanly restart and recover upon failure, helping it more reliably
manage its services and enhancing its availability to end users. However, there are other
interesting use cases for this behavior. For example, in-place updates are now possible
where a new version of Spawnpoint is deployed without disturbing running services. The
original Spawnpoint daemon is intentionally shut down, the new version of the software
is deployed, and the new Spawnpoint daemon starts up, reading the snapshot from the
older version and resuming management of all hosted services. Note that this does re-
quire a consistent format for the persisted data that is understood by both versions of
Spawnpoint, but this is a small cost to pay compared to the benefits of in-place software
updates.
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4.5 Resource and Service Lifecycle Management


Service Lifecycle


The lifecycle of a Spawnpoint container forms a finite state machine, shown in Figure 4.4.
By monitoring events published by the Docker daemon, Spawnpoint is made aware when a
container transitions to a new state and can then modify the relevant resource allocations.
When Spawnpoint deploys a new service, it first must take the time to complete the
container creation process described above. After it is created, a container transitions
from the “Booting” state to the “Running” state, and its execution is independent of the
Spawnpoint daemon, as described above. Once a running container terminates, the rest
of its lifecycle depends on how the service has been configured. If automatic restarts are
enabled, the container will be restarted by Spawnpointwithout any user intervention. This
continues until an external user or service sends an explicit request to stop the container.
After a container enters the “Stopped” state, either because its underlying process has
terminated or in response to a request, it becomes a zombie — it is neither dead nor alive.
If Spawnpoint receives a request to restart the container, it is brought back up with the
same configuration, and there is no need to go through the time-consuming container
creation process a second time. However, if a timeout expires (the duration of which is a
configuration parameter of the daemon), then the container becomes dead. Spawnpoint
purges its configuration, and the service must be explicitly deployed again from scratch.


Booting Running Stopped Dead


Container
Started


Boot Failure


Termination


Resurrection


(Auto) Restart


Timeout 
Expires


Deployment
Initiated


Acquire Allocation


Release Allocation


No Change


Possible Change


Figure 4.4: A state machine representation of a Spawnpoint container’s lifecycle and the
management of its resource allocations
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Restricting Container Resource Consumption


Through its use of cgroups, Docker can place limits on container memory and CPU con-
sumption if instructed to do so. This achieves a measure of performance isolation, albeit
with much weaker guarantees than a strategy based on full virtualization. More impor-
tantly, this prevents containers with faulty code from monopolizing the host’s resources.
One of the main tasks of the Spawnpoint daemon is to use this mechanism to allocate
resources to individual containers while ensuring that the host does not become overbur-
dened by the containers in aggregate. A Spawnpoint daemon is configured with a cap on
the total amount of memory and CPU that its containers may use in total. The memory cap
is simply expressed in megabytes or gigabytes, while the CPU cap is expressed in shares.
In a naive Docker environment, containers are subject to relative scheduling — their shares
dictate what proportion of host CPU resources they may use. With Spawnpoint’s cap on
the total number of shares however, this becomes absolute scheduling. In terms of both
memory and CPU, then, containers are allocated a portion of a shared pool maintained
by the Spawnpoint daemon, and these resource allocations are acquired, released, and
modified in reaction to changes in container state.
Spawnpoint’s approach to the management of the shared memory and CPU pools


is relatively simple, but it is easy to reason about and can easily be swapped out for
more sophisticated approaches in future versions of the system. First, Spawnpoint takes
a conservative approach to admission control for new services. When a new service is
submitted for execution, its configuration must state its resource requirements upfront,
and Spawnpoint immediately allocates those resources to the new service from the global
CPU and memory pools. If either pool contains insufficient resources, then the service
deployment is rejected, and it will not be allowed to run on the host.


Managing Resource Allocations


Once a container is started, Spawnpoint watches for changes in its state and updates
the container’s resource allocation accordingly. This involves several subtleties because
the Spawnpoint daemon must now manage resources allocated to many simultaneously
and independently executing containers, each of which can potentially fail at any time,
all while preventing race conditions and maintaining consistency in allocations from
the shared CPU and memory pools. A service container is immediately allocated the
necessary resources when the request for its deployment is submitted to the daemon, i.e.,
when the container enters the “Booting” state shown in Figure 4.4. If the initialization of
a new container fails at any point, its resource allocation is released when the container
transitions to the “Stopped” state. Similarly, a container’s allocated resources are returned
to their respective pools when the container terminates.


Handling container restarts is more nuanced. A restart cannot be treated as a termi-
nation and subsequent boot of the same container because it introduces a race condition.
If the container’s termination were treated normally, its resource allocations would be
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released, allowing a new service to acquire them before the container is restarted. Then,
the original container’s reacquisition of its original allocations would be rejected, pre-
venting it from restarting. Thus, when a container is restarted, either automatically upon
termination or when explicitly requested through Spawnpoint’s restart slot, container
termination and booting is treated as an atomic operation, as reflected by the self-loop
involving the “Running” state in Figure 4.4’s finite state machine.


The situation is further complicated by the fact that a user can request the deployment
of a service that is already present on a Spawnpoint instance, which essentially becomes a
restart. This may be done to prompt an update to the container, either in terms of the code
it executes or in terms of its configuration. Therefore, a request can be made to restart
a service but with different CPU and memory allocations than before. If the allocation
needs to shrink, the unused portion of the service’s allocation is returned to the pool.
However, if an allocation needs to grow, Spawnpoint must validate that this is possible
before initiating the restart.


4.6 Complete System Architecture
The Spawnpoint daemon is expected to perform a number of tasks simultaneously: mon-
itoring the slots of its Bosswave interface for incoming commands, maintaining pools
of shared resources, reacting to changes in container state, and publishing heartbeats.
Spawnpoint is implemented in Go [23], which provides a set of tools that have proven
very well suited to the challenge of implementing this kind of system. Concretely, the
Spawnpoint daemon cleanly decomposes into a set of lightweight userland-schedule
coroutines, a first class primitive in Go, which emphasize communication through shared
message channels rather than shared memory. Each task within the daemon roughly
corresponds to a coroutine or set of coroutines:


• One coroutine handles all communications on each slot of Spawnpoint’s Bosswave
interface.


• One coroutine interfaces with the host’s Docker daemon, forwarding events to other
coroutines as necessary.


• A coroutine is devoted to publishing heartbeat messages to advertise the daemon’s
liveness and current status.


• One coroutine periodically snapshots the daemon’s state and saves it to persistent
storage to enable clean recovery from restarts.


• Each managed service is backed by three coroutines: one to periodically publish
heartbeats, another to tail the container’s log entries and publish them to a Bosswave
signal, and a third to instantiate the state machine depicted in Figure 4.4.
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These coroutines, as well as the communication that occurs among them, are shown in
Figure 4.5.
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Figure 4.5: The architecture of a Spawnpointdaemon, in terms of its underlying coroutines,
external software components, and the communication between them


The realization of the state machine from Figure 4.4 as a single coroutine merits further
discussion. In a sense, this set of coroutines, with each element corresponding to a run-
ning service, is the backbone of the Spawnpoint daemon. All other coroutines serve roles
that are ancillary to this core set. For example, the coroutine that manages the daemon’s
config slot is tasked with adding new coroutines to this set that will initialize and then
manage a new service. The coroutines for the restart and stop slots simply forward
incoming commands to the state machine management coroutine for the relevant service,
much like the coroutine to interface with Docker forwards events signalling transitions in
a container’s lifecycle. This approach has significantly simplified the internal design of
the daemon. It centralizes the logic for service management in one place. More impor-
tantly, any transition in a service’s state, which may correspond to allocating or freeing its
associated resources, is prompted by a message sent to its underlying mnagement corou-
tine. Because all changes in service state and resource allocations occur in one place, they
become linearized. A service’s management coroutine can enforce much of its consistency
semantics internally and without expensive synchronization, as there is no other thread
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of execution that manipulates the same collection of state. All that this coroutine needs to
do is move between consistent states upon receiving each incoming message.
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Chapter 5


System Front-ends
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While its host and container management daemon forms the bulk of its complexity,
Spawnpoint also includes three frontends for interaction with instances of these daemons.
The first is spawnctl, a command line tool that allows a user to search for and inspect
spawnpoints and to deploy and manage services. The second front-end is a “wavelet” —
a graphical application built using a modified version of Qt with native Bosswave support
— that enables monitoring and interaction with a specific Spawnpoint. Finally, Raptor is a
front-end intended to facilitate the deployment of complex multi-container and multi-host
applications. It consists of a DSL to describe these applications and a command line tool
to parse a description written in this DSL and deploy the necessary containers. However,
in reality any program that can publish and subscribe using Bosswave can interact with
a Spawnpoint daemon. A Go library, spawnclient, wraps publications and subscriptions
in more convenient functions that perform the necessary validation and serialization, and
thus enables any Go program to interact with Spawnpoint. In fact, spawnctl is little more
than a command line wrapper for interactive use of this library, and Raptor uses the same
library after parsing the user’s application specification. If more flexibility is required, a
program can bypass this library and publish or subscribe manually.


5.1 spawnctl


spawnctl is the primary means of interacting with running Spawnpoint daemons. Its
command line interface is meant to be straightforward and flexible. spawnctl serves two
major purposes. The first is to search for and inspect Spawnpoint daemons as well as
the services they are hosting. spawnctl can scan for any Spawnpoint instances that are
operating on a particular subtree of Bosswave’s URI-based topic space. Frequently, scans
are in fact performed on an entire Bosswave namespace. spawnctl then provides the
user with a list of such Spawnpoint daemons, as well as some basic information about
them, as shown in Figure 5.1a. Spawnpoint users have typically performed scans either
to find a suitable host for their services on a particular namespace, or to check the health
of running daemons. When a scan finds only one daemon instance on the specified URI
subtree, spawnctl produces more detailed diagnostic information, including a list of the
services it hosts and their respective states, as shown in Figure 5.1b. Additionally, a user
may also inspect a specific service to view information about its resource consumption
and configuration. As shown in Figure 5.2, the user must specify the URI of the daemon
hosting the service as well as the service’s unique name.


The second major purpose of the spawnctl tool is to deploy or manipulate services
from the command line. To deploy a new service, the user must specify the URI of the
host Spawnpoint daemon, the YAML configuration file for the service, and a unique name
for the service. spawnctl then tails the daemon’s logs for the service as it is starting and as
it executes, until the user exits. This allows a user to determine if the service was correctly
booted and if not, to diagnose what went wrong. An example service deployment is
shown in Figure 5.3. Once a service is running, spawnctl can be used to tail its logs
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Searching for Spawnpoints


(a) Results from a spawnctl scan when multiple daemons are found on one URI subtree


(b) Results from a spawnctl scan when only one daemon is found on the specified subtree


Figure 5.1: Scanning for running daemons with the spawnctl tool


or to retrieve old log entries. A service’s logs contain anything that the service itself
logs or prints to stdout and stderr as well as status information logged by the daemon
regarding the service. Finally, a user may restart or stop a running service with spawnctl
by specifying the host Spawnpoint’s base URI and the unique name of the service. An
example of a service restart is shown in Figure 5.4.


5.2 Wavelet
“Wavelets” are graphical applications built around publishing and subscribing to Boss-
wave channels. They are implemented using a modified version of the Qt framework that
includes first-class support for Bosswave. Spawnpoint includes one such Wavelet as a
graphical frontend. Unlike spawnctl however, the user must specify a particular daemon
instance when launching the app, which is then bound to that instance for the remainder
of its execution. The GUI includes three main tabs, each devoted to a particular function.
The first tab, shown in Figure 5.5a, is for viewing the status of the daemon, much like
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Inspecting a Running Service


Figure 5.2: Inspecting a specific service with spawnctl


Figure 5.3: Deploying a new service with spawnctl


Figure 5.4: Restarting an existing service with spawnctl


a spawnctl’s scan function. The second tab, shown in Figure 5.5b, provides a detailed
listing of all services running on the daemon, and each service can be stopped or restarted
at the push of a button. Finally, the third tab allows the user to launch a new service on the
daemon by specifying a YAML configuration file. Note that, while this is a very different
interface from the spawnctl tool, they are merely different wrappers for the same ultimate
primitives: publishing to and subscribing on a specific collection of Bosswave URIs that
constitute the interface for a Spawnpoint daemon, which itself is oblivious to the nature
of its clients as long as they adhere to a common protocol.
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(a) An overview of the daemon’s status


(b) A detailed listing of the daemon’s running services


Figure 5.5: Interfaces provided by the SpawnpointWavelet







CHAPTER 5. SYSTEM FRONT-ENDS 38


5.3 Raptor


Raptor is Spawnpoint’s most advanced frontend. Its role is to facilitate the construction
and deployment of complex multi-container, multi-host applications. A real use case of
Raptor is discussed in Section 6.4. It consists of two major components. The first is a
domain-specific language (DSL) that is specified and parsed with a Scala program. Users
describe the containers that form their application, how they are related to each other,
and how they should be deployed, in this DSL. The Scala parser reads and validates such
a description and converts it into a language-agnostic intermediate form with Google’s
Protocol Buffer framework.1 The second component of Raptor, implemented in Go, reads
this intermediate form and automatically instantiates the necessary containers according
to the user’s specifications. Artifacts written in Raptor’s DSL are treated as declarative
specifications rather than imperative instructions. More precisely, Raptor computes a
“delta” between the containers described using the DSL and the containers that are already
up and running on the relevant Spawnpoint daemons. Only containers that are not
already running will be deployed. Raptor only does the minimum work necessary to
bring the relevant collection of Spawnpoint instances into the desired state to support the
application.


DSL and Parser


We implemented the parser for Raptor’s DSL using Scala’s standard parser combinator
library.2 This tool makes it easy to write clean, readable code for the parser that easily
doubles as a specification for the DSL itself. An EBNF specification of the DSL is provided
in Listing 1.


As can be seen from its EBNF specification, Raptor’s DSL is fairly small and simple. A
user describes their application from a few basic building blocks:


1. The spawnpointList symbol is a sequence of Bosswave URIs that identify theSpawnpoint
daemons that will host the application’s containers. An item in this list may specify
the base URI for a specific spawnpoint, e.g. jkolb/spawnpoint/alpha, or it may use
wildcards in order to reference any Spawnpoint instances that adhere to a particular
URI pattern, e.g. jkolb/spawnpoint/* would refer to Spawnpoint instances with
base URIs of jkolb/spawnpoint/alpha, jkolb/spawnpoint/sodaHall/beta, and so
on.


2. The optional dependencySpec is a sequence of service names that are required by the
application and are each expected to be up and running on one of the Spawnpoint
instances described above. If any of these services are not found, the user’s deploy-
ment specification is rejected, and they are notified of the missing services.


1https://developers.google.com/protocol-buffers
2https://github.com/scala/scala-parser-combinators



https://developers.google.com/protocol-buffers

https://github.com/scala/scala-parser-combinators
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appDeployment = spawnpointList, [dependencySpec],


{serviceDeployment | forComprehension}, [svcGraphSpec] ;


spawnpointList = "spawnpoint", "[", {uri, ","}, uri, [","], "]" ;


dependencySpec = "external", "[", {simpleName, ","}, simpleName, [","], "]" ;


serviceDeployment = "container", imageName, "as", (simpleName | varSubstitution),


"with", paramSequence, spawnpointSpec ;


paramSequence = "{", simpleName, (":" | "="), value}, "}" ;


spawnpointSpec = ("on", (simpleName | varSubstitution)) |


("where", paramSequence) ;


forComprehension = "for", simpleName, "in", "[", value, ",", {value, ","}, "]" ,


"{", serviceDeployment, "}" ;


svcGraphSpec = "dependencies", "{", {svcPath, ","}, "}" ;


svcPath = simpleName, "->", {simpleName, "->"}, simpleName ;


value = (""", simpleName, """) | number | path | memAllocLiteral | varSubstitution ;


varSubstitution = "$", "{", simpleName, "}" ;


path = {simpleName, "/"}, simpleName ;


uri = path, ["/", ("*" | "+")] ;


simpleName = (digit | letter), {digit | letter | "_"} ;


imageName = path, [":", simpleName] ;


memAllocLiteral = number, ("M" | "m" | "G" | "g") ;


number = ["-"], digit, {digit} , [".", digit, {digit}] ;


digit = "0" | "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9" ;


letter = "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J"


| "K" | "L" | "M" | "N" | "O" | "P" | "Q" | "R" | "S" | "T"


| "U" | "V" | "W" | "X" | "Y" | "Z" ;


Listing 1: EBNF specification for Raptor’s domain-specific language
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3. The most important part of a Raptor application specification is the sequence of
serviceDeployment blocks. These may be enclosed within a forComprehension in or-
der to avoid repetitive code when specifying services that verify only by a single
parameter. It consists of several parts:


• An imageName to identify the Docker image that will be used to instantiate the
container


• A name that will be used to identify the container within Spawnpoint and in
the remainder of this Raptor specification


• A sequence of configuration parameters, identical to the service configuration
parameters described in Section 4.2.


• A spawnpointSpec that indicates which Spawnpoint instance to deploy the con-
tainer to. This may simply identify a specific Spawnpoint or it may take the
form of a list of key/value pairs that specify constraints on the metadata of
the Spawnpoint that will host the container. For example, a user may wish to
deploy a service to any Spawnpoint where the location metadata key is 410
Soda Hall.


4. Finally, a user may specify any dependencies among the containers of the appli-
cation that should influence the order in which these containers are initialized in
the svcGraphSpec. This takes the form of specifying paths and links in a directed
acyclic graph. Raptor will then perform a topological sort and start the containers
according to this ordering.


An example specification written in the Raptor DSL is provided in Listing 2. We can
see that Spawnpoint daemons are referenced using two URIs, one with a wildcard. The
vision driver service is required to be deployed on one of the Spawnpoints referenced by
these URIs for the application deployment to proceed. Next, five containers are specified
inside of a single for comprehension. They share identical configuration parameters,
except for their unique names. The containers can each be deployed on any of the
Spawnpoint instances referred to by URIs at the beginning of the code snippet, as long as
these daemons satisfy the given constraints on their owner and location metadata tags.
Alternatively, the user could have instead identified a specific Spawnpoint to host all of
the containers. Finally, the DSL specification describes a container dependency DAG with
two components. Container gamma must be started before container beta, which in turn
needs to be started before container alpha can be deployed. Similarly, the initialization of
container epsilonmust be complete before container delta can begin its deployment.


After successfully parsing an application specification, Raptor’s Scala component also
performs basic validation. Every service that has been described must include parame-
ters specifying its CPU and memory requirements, much like in a YAML file submitted
to spawnctl, and these parameters must be in the proper form, i.e., both are positive inte-
gers and memory allocation must use valid units. Additionally, the service dependency
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spawnpoints [scratch.ns/spawnpoint/alpha, jkolb.ns/spawnpoint/*]


external [vision_driver ,]


for name in [alpha, beta, gamma, delta, epsilon] {


container jhkolb/spawnpoint:amd64 as ${name} with {


entity: ˜/bosswave/keys/demosvc.ent,


memAlloc: 512M,


cpuShares: 1024,


includedFiles: [params.yml],


} where {


owner = "Oski Bear",


location = "Cloud"


}


}


dependencies {


alpha -> beta -> gamma,


delta -> epsilon,


}


Listing 2: An example application specification written in Raptor’s DSL


DAG is traversed to ensure that it is self contained — all nodes in the graph must be
services described within the specification or explicitly listed as external dependencies.
Finally, Raptor returns an error to the user if it encounters any undefined variables in
the document. If an app specification passes the validation phase, it is serialized into a
language-independent form as a final step.


Container Deployment


Raptor’s second component is written in Go and has the task of realizing a user’s applica-
tion specification by deploying the necessary containers onto the underlying Spawnpoint
hosts. It does so by taking the following steps:


1. Read the serialized specification in order to understand what containers need to be
deployed as part of the application it describes.


2. Scan the Spawnpoint daemons identified by URI in the specification to learn what
services they’re currently running.


3. Check that each service listed as an external dependency is up and running. If a
required service is not present, raise an error.


4. Topologically sort the containers according to their interdependency DAG.
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5. Deploy the application’s containers in this sorted order, omitting any containers that
are already deployed.


6. Tail the logs of the newly deployed services until the user explicitly exits, much like
spawnctl.


Currently, Raptor’s deployment strategy is fairly rudimentary. It deploys all containers
in serial, and, if a container deployment fails, Raptor simply raises an error and stops at
that point. Note that failed deployments are not necessarily a rare occurrence, as they
include the situation where a Spawnpoint instance does not have enough CPU or memory
to accommodate the new container. There are two major improvements that can be made
to this strategy, which are left as future work. First, a degree of parallelism can be achieved
by instantiating each component of the service DAG in parallel. Second, Raptor could
endeavor to make application development more “atomic” by cleaning up the containers
that are left over after an application deployment encounters an error and is only partially
completed.


Step 5 in the list above glosses over an important challenge: determining which
Spawnpoint daemon will host each container. When the user chooses a daemon for a
container explicitly in their specification, this is trivial. However, when the specification
only identifies a set of metadata constraints for a container’s host, Raptor has more
freedom in container placement. Currently, Raptor features a simple first fit scheduler
— the first Spawnpoint instance that satisfies the metadata constraints and has sufficient
CPU and memory to accommodate the new container is chosen to host it. This is another
interesting prospect for future work, as more sophisticated schedules might try to enact
more interesting placement techniques, such as minimizing the number of inter-service
links that traverse machine boundaries in order to reduce network communication.
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Chapter 6


Evaluation & Case Studies
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This chapter describes both experimental evaluations of the Spawnpoint host daemon
as well as case studies demonstrating the system’s utility in real-world applications. First,
we look at Spawnpoint’s behavior as it is subjected to a synthetic, steadily increasing
workload and are able to establish that spawnd imposes minimal load on its host. Next,
we examine the latency of Spawnpoint operations and observe that managed containers
add very little overhead on top of native Docker containers. The discussion then shifts
to two case studies based on real Spawnpoint-based software deployments. The first case
study examines software drivers to encapsulate connected devices characteristic of today’s
IoT, while the second case study examines a computer vision application composed of
several distributed software modules.


6.1 Overhead and Footprint
One of the primary development goals in Spawnpoint is to make its host management
daemon, spawnd, lightweight. To the fullest extent possible, Spawnpoint hosts should
devote their resources to executing and supporting services, with spawnd adding minimal
overhead. To quantify this overhead, we measured the CPU consumption, memory
footprint, and network traffic incurred by spawnd as it was subjected to a synthetically
generated load that increases over time. Note that the system load associated with spawnd
is decoupled from the load associated with the services it manages. That is, the cost of
managing a service is independent of the cost of executing that service; spawndmaintains
the same data structures and executes the same code for all services it manages. There
is one important exception to this rule involving logging of container output, discussed
below.


As shown below, spawnd’s burden on its host system is quite small, even when manag-
ing up to 100 services. Thus, it achieves its goal of serving as a lightweight management
daemon that leaves the resources of the host available for executing services and avoids
interfering with the execution of those services.


Experimental Setup


To determine spawnd’s overhead, an instance of the daemon was deployed as a container
on a desktop PC with an Intel Core i7-6700 CPU featuring 8 logical cores running at 3.40
GHz and 32 GB of RAM. The machine ran Ubuntu 16.04 with Docker version 17.05.0 as its
container engine. The Spawnpoint daemon was configured to allocate 8192 CPU shares
and 16 GB of memory among all running services. Detailed instrumentation of the spawnd
container was carried out using Google’s cadvisor1 tool.


In order to steadily increase load on spawnd, 100 instances of a simple service were
deployed on the host, using the spawnctl frontend, at a rate of 1 service per minute.
Each instance of the service was allocated 80 CPU shares and 64 MB of memory. Each


1https://github.com/google/cadvisor



https://github.com/google/cadvisor
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service instance maintains an internal counter. Once per second, it increments the value
of this counter, publishes this value to Bosswave, and writes a notification message to
stdout. Recall that we can use this kind of simple service in this experiment because
the management overhead of a service is independent of its complexity. While a com-
putationally intensive service may increase the degree to which spawnd has to contend
for system resources, it does not mean that spawnd will require more CPU, memory, or
network resources to manage the service.


CPU and Memory Consumption
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(b) Memory Footprint


Figure 6.1: spawnd’s CPU and Memory Requirements as More Containers are Deployed


The CPU consumption of spawnd as load increases is shown in Figure 6.1a. Note that
the x-axis of this graph represents both the number of currently running containers as
well as the time that has elapsed since the start of the experiment in minutes. This is
because new containers are deployed at a rate of one per minute. As depicted in the
figure, spawnd’s load on its host increases as it is tasked with managing more containers,
and the rate of this increase begins to slow as the total number of containers grows. Even
when managing 100 separate containers, spawnd’s CPU demands peak at a very modest
3.5% of one core.


The memory footprint of spawnd is depicted in Figure 6.1b. The graph’s shape is
roughly a monotonically increasing step function. This is an artifact of the Go runtime’s
memory allocation system. As Go is a memory-safe language, it requests memory from the
operating system in bulk to amortize the cost of these allocations, and subsequently doles
out this memory internally for language objects that are subject to garbage collection. Thus
what we are observing in this experiment is the footprint of the spawnd process, including
free space internally maintained by the Go runtime, rather than the strict memory footprint
of the running code. Similarly to CPU load, memory consumption increases with container
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count, and this increase begins to slow as more containers are added. When managing
100 containers, spawnd’s memory demands are also modest, peaking at roughly 40 MB of
space.
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Figure 6.2: spawnd’s Induced Network Traffic as More Containers are Deployed


The total quantity of network traffic induced by spawnd is depicted in Figure 6.2 and
is separated into upstream and downstream portions. Network traffic for both sending
and receiving increases linearly with container count and, unlike CPU consumption and
memory footprint, the rate of increase remains steady as more containers are deployed.
This is the expected result as nearly all of the network traffic is the result of the periodic,
service-specific heartbeat messages published to Bosswave by the Spawnpoint daemon.
These messages are roughly equally sized across different services, producing the linear
increase in upstream network traffic as more containers are deployed. The received traffic
consists of control messages that are part of the Bosswave protocol and notify spawnd of
the success or failure of its publication attempts. This is why the growth in upstream
traffic is synchronized with the growth in downstream traffic.


Logging


While in general the load associated with a particular service on spawnd is independent
of that service’s complexity and resource demands, there is one important exception.
Spawnpoint gives users the ability to view or tail a running service’s output via Bosswave.
That is, the text written to stdout or stderr is captured by spawnd and can be published
to Bosswave when requested. In this situation, the load imposed on spawnd by a service
is proportional to the amount of console output it produces.
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To more precisely quantify logging overhead, we reran the experiment described
above with one important change. When a new service is deployed on spawnd, a request
to publish its output to Bosswave is also submitted and remains in effect for the duration
of its execution. Memory footprint was generally unaffected by the change, and its peak
remained at 40 MB. CPU consumption experienced a clear increase but remained modest,
peaking at about 6% of one core. Finally, network traffic increased significantly and
reached about 75 KB/sec. when all 100 services were actively running. The bandwidth
demands of spanwd are thus fairly sensitive to the logging demands of the services it
manages, although this has not presented a problem in any Spawnpoint deployments to
date.


6.2 Efficiency of Container Operations
Here, we evaluate two important aspects of Spawnpoint: how quickly it can perform
various container management tasks, and how the speed of each operation compares
to the corresponding operation for an unmanaged docker container. This second point
thus helps determine the cost of running a service as a managed Spawnpoint container as
opposed to a standard Docker container. The results below demonstrate that Spawnpoint
is both responsive (e.g., it can stop or restart a container in under a second) and that
operations on managed containers have comparable latency to operations on unmanaged
containers. Together with the results from 6.1, this indicates that the cost of container
management is small.


Experimental Setup


All measurements of operational latency were collected on the same hardware used for
the experiments described in Section 6.1. The spawnd implementation was modified to
record the time required to perform the following operations:


1. Stop an existing service container


2. Restart a recently stopped service container


3. Restart a running service container


4. Deploy a new service container


These timing measurements are observed entirely within the Spawnpoint daemon and
therefore do not capture network latency involved in sending the command from the
client or in receiving a response. However, these measurements do capture the time
required to parse the incoming Bosswave message as well as the time required to extract
and deserialize the contents of the message.
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Using Spawnpoint’s command-line client and the same simple counter-based service
as before, each command listed above was repeatedly performed and profiled. Items (1)
through (3) were repeated 100 times, while item (4) was repeated 50 times. A delay was
included between each repetition of a command to allow spawnd to reach a quiescent state
before performing the next test operation.


To perform corresponding operations on unmanaged containers, we used Docker’s
command line tool to perform operations on an identical container, i.e., a container built
from the same image that was used to instantiate the counter service on Spawnpoint. The
corresponding operations are as follows:


1. docker stop


2. docker start


3. docker restart


4. docker build followed by docker run


Once again, each operation was repeatedly performed while the time required for comple-
tion was measured and recorded, with a delay inserted in between tests. Items (1) through
(3) were repeated 100 times, and item (4) was repeated 50 times. As a final note, neither
spawnd Dockerwere running any other containers for the duration of these experiments.


Results


The results from these timing experiments are shown in Figure 6.3. The height of each
bar represents the average of all latency measurements for a given container operation;
the error bars represent standard deviation. The cost of stopping a container is roughly
identical for both managed and unmanaged containers. A managed Spawnpoint container
takes longer than a native Docker container, although this difference is very small, on the
order of 50 msec. Moreover, this is unsurprising as restarting a stopped container requires
spawnd to perform the necessary admission control operations — checking if sufficient
resources for the service are available and allocating those resources if so.


Interestingly, a more significant latency gap exists between spawnd and Docker when
restarting a running container, although averages for both are well under a second. This
may be due to the fact that the spawnd implementation, for the sake of simplicity, does
not optimize heavily for container restarts vs. starting a fresh container. It does omit the
process of building the container’s image and is careful to avoid unnecessarily releasing
and reacquiring the service’s resource allocations (which would introduce a race condi-
tion), but spawnd still performs validation and container setup that is not strictly necessary
when restarting an existing service. If this proves to be a bottleneck, the restart logic can
be further optimized in the future.


Booting a container requires much more time (an order of magnitude) than the other
operations. This is expected as it involves building a new Docker image. Spawnpoint
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service developers are free to deploy a service with a ready-made image, but currently
the common workflow is simply to push new versions of a service to a repository and
let Spawnpoint update container images accordingly. The build process for the simple
service container used in these experiments, for example, involves expensive operations
such as downloading code from a source repository, compiling this code, and unpacking
a compressed tarball containing items such as a Bosswave key and configuration param-
eters. While spawnd’s boot process does take longer than building and running a new
container with Docker alone, the overhead is again fairly small, at under a second.
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Figure 6.3: Latency for operations on both managed and unmanaged containers


6.3 Case Study: Securing Legacy IoT Devices
As the Internet of Things remains a nascent area, the design of many IoT hardware
and software systems fails to adhere to proper security practices. For example, a web-
connected camera might employ ”hole-punching” to bypass a local NAT and expose itself
directly over the Internet, allowing anyone to potentially connect to the camera and access
its video feed. This situation not only raises serious concerns about user privacy, but also
means that any security vulnerabilities in the device can be exploited by remote attackers.
The Mirai Botnet is a famous example in which publicly accessible devices were hijacked
simply by logging in using factory-set credentials. While this approach is quite simple,
enough devices were compromised to power distributed denial of service (DDOS) attacks
at unprecedented scale [41].


This motivates the secure deployment of local proxy services to encapsulate IoT devices
and mediate access to such devices. Moreover, Bosswave serves as an excellent means of
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securing access to these devices. The device’s communications are restricted to the local
area network, and a locally-deployed container running Bosswave communicates with
the outside world on behalf of the device. Only authorized parties may access the data
published by the device or send control commands to the device, and security is enforced
through the primitives offered by Bosswave.


The deployment and management of these proxies is naturally accomplished with
Spawnpoint and its associated tools. A homeowner who wishes to secure access to a
legacy IoT device sets up a proxy on their local server running Spawnpoint. Because
Spawnpoint containers can only be instantiated via publication to a Bosswave topic, only
the homeowner or people who possess the necessary permissions can instantiate such
a proxy. The ability to monitor the proxy is similarly restricted. Furthermore, a device
proxy gains several useful abilities by running as a Spawnpoint container — automatic
restart upon failure, enforced caps on CPU and memory consumption, advertisements
of liveness through heartbeats — without complicating the implementation of the proxy
itself.


Spawnpoint


Bosswave Proxy


Local Premises


Raw TCP
Communication


Publish Energy
Usage Statistics


Subscribe to
Actuation Commands


Figure 6.4: Deployment of a Bosswave Proxy for the TP-Link HS-110 on Spawnpoint


We implemented such a proxy for the TP-Link HS-100 series of WiFi-enabled electrical
plugs.2 The architecture for this proxy is shown in Figure 6.4. These plugs are fundamen-
tally insecure as they expose a TCP endpoint that can accept remote actuation commands
as well as requests for electricity consumption data in a JSON-based format. While the
smart plugs do not communicate in the clear, they use a simple autokey cipher with a
hard-coded initial key that can be gleaned by decompiling TP-Link’s Android applica-
tion [48]. This makes it trivial to encrypt and decrypt any traffic sent or received by the
device. The role of the proxy, therefore, is to wrap the plug’s vulnerable TCP interface
with a Bosswave interface for sending data and receiving actuation commands. A par-
ticularly attractive feature of this proxy is its fine-grained permissions model. Different


2http://www.tp-link.com/us/home-networking/smart-home/smart-plugs



http://www.tp-link.com/us/home-networking/smart-home/smart-plugs
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principals may be granted different combinations of permissions on the various Bosswave
URIs exposed by the proxy. For example, the homeowner might have full permissions on
all URIs, while guests may have (temporary) permissions to actuate the plug but not to
view consumption data.


The configuration for the TP-Link HS-100 proxy is shown in Listing 3. It is fairly
straightforward but is also a good illustration of Spawnpoint in action. It specifies the
following for the proxy’s container:


• The proxy will use the entity evtplink.ent, which is a file on the deploying host
that is automatically included in the container, as its identity for all Bosswave com-
munications.


• The container will be built from the jhkolb/spawnpoint:amd64 base image.


• As part of the container build process, Go’s get command line utility will be used
to fetch the proxy’s code at the specified git source control URL.


• To launch the container, the tp-link-plugstrip binary is invoked. This was pro-
duced as a result of the go get operation specified above.


• The container requires 512 megabytes of memory and half of a CPU core as alloca-
tions from the Spawnpoint daemon.


• One file is included in the container, a YAML parameters file with instance-specific
information like the local IP of the TP-Link plug.


entity: evtplink.ent


container: jhkolb/spawnpoint:amd64


build: [go get github.com/SDB/bw2-contrib/driver/tp-link-plugstrip]


run: [tp-link-plugstrip]


memAlloc: 512M


cpuShares: 512


autoRestart: true


includedFiles: [params.yml]


Listing 3: Configuration for the TP-Link smart plug proxy container


6.4 Case Study: Building Vision Application
One of the primary purposes of Spawnpoint is to enable the vision of smart, software-
augmented environments by providing a convenient and robust platform for service
execution. SnapLink [31] is a smart environment application that relies on Spawnpoint
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entity bosswave/keys/snaplink.ent


spawnpoints [ucberkeley/410/spawnpoint/*]


container kaifeichen/snaplink_dist:latest as front with {


run: ["SnapLink/server/build/front", "spawnpoint_feature:8081"],


memAlloc: 64M,


cpuShares: 1024,


} where {


location = "Soda Hall"


}


container kaifeichen/snaplink_dist:latest as feature with {


run: ["SnapLink/server/build/feature", ],


memAlloc: 512M,


cpuShares: 1024,


} where {


location = "Soda Hall"


}


container kaifeichen/snaplink_dist:latest as image_localize with {


run: ["SnapLink/server/build/image_localize", "data/db/160308-162616.db",


"data/417/db/160606-224205.db"],


memAlloc: 1G,


cpuShares: 2048,


} on castle


container kaifeichen/snaplink_dist:latest as image_project with {


run: ["SnapLink/server/build/image_project", "data/db/160308-162616.db",


"data/417/db/160606-224205.db"],


memAlloc: 1G,


cpuShares: 2048,


} on castle


container kaifeichen/snaplink_dist:latest as model_build with {


run ["SnapLink/server/build/model_build"],


memAlloc: 4G,


cpuShares: 4096


} where {


Location = "Cloud"


}


dependencies {


front -> feature -> image_localize -> image_project -> model_build


}


Listing 4: SnapLink’s Raptor deployment specification, originally written by its primary
developer and modified for clarity
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as its execution substrate. It is a system that facilitates human interaction with the many
control points dispersed throughout a building. A user captures an image of an appliance
using an application on their smartphone, and SnapLink identifies the specific appliance
contained within the image. The smartphone app presents the appliance’s associated
control interface (e.g., a slider for controlling the luminosity of a light) on the user’s
phone. The user can then issue actuation commands through their smartphone, which are
forwarded to the appliance, e.g., through a building management system or a Bosswave
driver.
SnapLink’s backend is naturally implemented as a composition of services. The system


architecture is shown in Figure 6.5. The components of SnapLink are as follows:


• A front end that interacts with smartphone clients, featuring an HTTP API for
uploading query images and retrieving appliance matching results


• A module to extract the most significant features of submitted images using com-
puter vision algorithms


• A module to match a submitted image to a location within a 3D point-cloud model of
the building (and thus a location in the physical world) using the image’s extracted
features


• A module that projects the image onto 3D space based on its physical location, thus
identifying the appliance contained in the image


• A module to construct and periodically update the building’s 3D model using video
of the building’s interior captured with an RGB-d camera


Frontend Feature
Extraction


Image 
Localization


View 
Projection


3D Model
Construction


Figure 6.5: SnapLink architecture. Note that the arrows represent communication, not
dependencies, between components. The dashed arrows indicate that model construction
is performed offline.
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SnapLink’s backend performance is a significant concern because it influences the
latency of the appliance identification process, which must be kept small in order to
maintain responsiveness and give the user the experience of “instantaneous” interactions
with their environment. Moreover, each of the services listed above has its own set of
resource demands as well as deployment constraints that need to be met in order to
optimize system performance. For example, creating a building’s 3D model from video is
computationally expensive and requires ample CPU and memory. The image localization
and projection components are also somewhat expensive and should be co-located because
they reference the same underlying data (i.e., the same 3D model). Finally, the feature
extraction process should be run locally (in the building) because it reduces network traffic
to external servers or the cloud — it is far cheaper to send the features extracted from an
image than the image itself.


Listing 4 shows SnapLink’s deployment description for Spawnpoint’s Raptor frontend.
The DSL is able to express all of the necessary configuration details and constraints. Each of
SnapLink’s modules is deployed as a container. The frontend and image feature extraction
components run on local Spawnpoint instances (more precisely, spawnd instances with the
Locationmetadata tag matching Soda Hall). Image localization and projection services
are pinned to a specific Spawnpoint instance with alias castle in order to ensure that
they are colocated. Finally, the model building process is constrained to a cloud-based
Spawnpoint that is more likely to be able to satisfy its larger CPU and memory allocation
requests.


Together with Raptor, Spawnpointhandles all of the deployment process for SnapLink.
The developer’s role is simple; all they need to do is submit the application specification
from Listing 4 using Raptor’s command-line tool. The tool will monitor the progress of
the application’s deployment and provide the user with updates as it proceeds. Internally,
Raptor identifies the best Spawnpoint instance to host each container and issues appropri-
ate deployment commands to each of these instances. From the application’s deployment
specification, we know that the frontend and feature extraction containers will run on a
local Spawnpoint instance, the image localization and projection analysis containers run
on castle, and model building is carried out on a cloud-based Spawnpoint host, e.g., on
Amazon EC2. Currently, Raptor uses a simple first-fit heuristic when there are multi-
ple Spawnpoint instances that both satisfy the user-specified deployment constraints and
have sufficient available resources to host a particular service. However, this can easily
be changed to a more sophisticated strategy in the future.
Raptor will also deploy services in the proper order, i.e., to satisfy any dependencies


between services identified by the user. For example, in Listing 4, we can see that the
service dependency graph is a simple path, with model build at the end and front at
the beginning. Therefore, model build is the first service deployed and, once it is up
and running, its predecessor in the graph is deployed, and so on until front is the last
service deployed. Finally, recall from the earlier discussion that a Raptor description is
declarative. Any services that are already running need not be redeployed. This can be
quite useful when updating an application, e.g., to update a service to a newer version or
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to add a new component to an existing application.
The specification in Listing 4 was originally written by SnapLink’s primary developer.


Their experience in using Raptor revealed both strengths and weaknesses in the frontend’s
current implementation. The DSL was not difficult to learn, understand, and write, nor
was it difficult to use Raptor’s built-in tool to submit a specification for deployment.
However, once the application was deployed, Raptor did not provide sufficient assistance
in monitoring the application’s status. The user reverted back to the spawnctl client to
understand the health of their application. Additionally, as Raptor does not leave a
persistent record of how a logical specification was instantiated as a physical deployment,
it is difficult for a user to remember where some of their services are running, especially
when they are returning to work on their application after a long period of time has passed
since its deployment. In the future, Raptor can be improved to address these issues. First,
the system can give the user a persistent record of how their services have been deployed.
Second, Raptor can provide the user the ability to query the health of every service in
their application in one place.
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Chapter 7


Conclusion
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As computers have become increasingly pervasive in they physical world, they have
fueled exciting visions of a future involving ubiquitous computing, smart environments,
and a global scale Internet of Things. Fulfilling these visions, however, also requires a
plethora of services to control and manage devices, collect and process data, interact with
end users, and so on. Spawnpoint is a system that handles the deployment, management,
and monitoring of these services. It leverages containers as a primitive in order to package
service software and its dependencies, to ensure portability across heterogeneous hosts,
and to monitor service execution and resource consumption. Spawnpoint enforces its
security guarantees through its use of Bosswave, a secure publish/subscribe message bus.
Only authorized users may deploy or control services, learn what services are running,
or monitor service status.


At the heart of Spawnpoint is spawnd, a persistent daemon process that encapsulates the
compute resources offered by a physical host running in the cloud or on premises. spawnd
advertises the host on Bosswave and accepts commands to deploy new services on the
host and to restart or remove existing services. spawnd conservatively allocates resources
to running services and performs admission control for any potential new service in
order to ensure that the host does not become oversubscribed. Services must reserve
CPU and memory upfront, and spawnd enforces these reservations to ensure that no
service monopolizes the underlying host. The daemon monitors the health of all running
services, publishing status information on Bosswave, and recovers services from failures
when configured to do so. spawnd leverages the Docker container engine to decouple itself
from the services it manages, allowing the daemon to fail and recvoer without disrupting
running services.
Spawnpoint features three frontends for users to interact with distributed hosts under


management by spawnd instances. The first is a command-line interface that allows
users to search for hosts, deploy a new service to a host, or manipulate an existing
service. A graphical application for interaction with a single Spawnpoint instance is also
available. Finally, Raptor is a tool for users to provision and launch complex applications
comprised of multiple Spawnpoint-based services, potentially running on a distributed
collection of hosts, all from one place. A user describes the collection of services and their
configurations, constraints on the placement of these services, and the interdependencies
between them. Raptor determines the final physical placement of each of the services,
determines the order in which to deploy them, and issues appropriate commands to each
of the spawnd instances involved. In short, Raptor allows users to describe a distributed
application through a logical deployment specification without needing to reason about
the application’s instantiation on the underlying physical infrastructure.


Experiments demonstrate that Spawnpoint is lightweight and imposes minimal over-
head on the hosts it encapsulates or the services it manages. When managing 100 services
on a single host, spawnd requires about 6% of a CPU core, 40 MB of memory, and 20
KB/s of network bandwidth. Primitive operations like launching or restarting a service
are efficient and comparable in speed to corresponding operations on unmanaged Docker
containers. Moreover, Spawnpoint has been deployed as a key component in multiple
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software systems, running a composition of services to support SnapLink, a vision-based
building control application (Section 6.4), and as a deployment and monitoring framework
for Bosswave-based secure device drivers (Section 6.3).


There are a number of interesting prospects for future work involving Spawnpoint.
First, there are some potential augmentations to the existing system, such as supporting
Kubernetes as a container deployment backend. This would enable Spawnpoint to run
on clusters as well as single machines, which opens the possibility of more sophisticated
deployment features such as load-balancing and replication. Support for clusters would
also make Spawnpoint better suited for computationally intensive jobs and services, such
as those involving machine learning. Another possible improvement to Spawnpoint is
support for migrating services in response to changes in network conditions and resource
availability. This would be easier for stateless services or services with soft state, as the
main challenge would be a smooth handoff in which client requests are routed to the
new instance of the service rather than the old instance. For services with state, more
sophisticated migration techniques, such as those used for virtual machine migration
[33, 42], would be necessary.


Running services on infrastructure managed by other parties raises important security
concerns. Thus far, Spawnpoint’s design has assumed that the hosts it manages are trusted.
A host does not tamper with a container’s code, it does not inspect the container’s internal
state as it executes, and it does not deny service (e.g. network bandwidth or compute time)
to the container. Intel has recently released CPUs that support a special set of instructions
called Secure Guard Extensions (SGX) [39]. These instructions enable the creation and
execution of secure “enclaves” — essentially encapsulated software that is protected
from tampering and inspection by the host OS and/or hypervisor. This technology has
already been leveraged in implementations of secure cloud computing [28] and secure
containers [27]. However, SGX has not been applied to a distributed service infrastructure
like Spawnpoint, nor does SGX deal with the issue of denial of service. A future version of
Spawnpoint that provides both secure execution and guarantees against denial of service
would form a powerful tool for distributed application and service developers.
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