

Scalable Systems and Algorithms for Genomic Variant
Analysis


Frank Nothaft


Electrical Engineering and Computer Sciences
University of California at Berkeley


Technical Report No. UCB/EECS-2017-204
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-204.html


December 13, 2017







Copyright © 2017, by the author(s).
All rights reserved.


 
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.







Scalable Systems and Algorithms for Genomic Variant Analysis


by


Frank Austin Nothaft


A dissertation submitted in partial satisfaction of the


requirements for the degree of


Doctor of Philosophy


in


Computer Science


in the


Graduate Division


of the


University of California, Berkeley


Committee in charge:


Professor Anthony Joseph, Chair
Professor David Patterson, Co-chair


Professor Haiyan Huang


Fall 2017







Scalable Systems and Algorithms for Genomic Variant Analysis


Copyright 2017
by


Frank Austin Nothaft







1


Abstract


Scalable Systems and Algorithms for Genomic Variant Analysis


by


Frank Austin Nothaft


Doctor of Philosophy in Computer Science


University of California, Berkeley


Professor Anthony Joseph, Chair


Professor David Patterson, Co-chair


With the cost of sequencing a human genome dropping below $1,000, population-scale se-
quencing has become feasible. With projects that sequence more than 10,000 genomes be-
coming commonplace, there is a strong need for genome analysis tools that can scale across
distributed computing resources while providing reduced analysis cost. Simultaneously, these
tools must provide programming interfaces and deployment models that are easily usable by
biologists.


In this dissertation, we describe the ADAM system for processing large genomic datasets
using distributed computing. ADAM provides a decoupled stack-based architecture that can
accommodate many data formats, deployment models, and data access patterns. Addition-
ally, ADAM defines schemas that describe common genomic datatypes. ADAM’s schemas
and programming models enable the easy integration of disparate genomic datatypes and
datasets into a single analysis.


To validate the ADAM architecture, we implemented an end-to-end variant calling pipeline
using ADAM’s APIs. To perform parallel alignment, we developed the Cannoli tool, which
uses ADAM’s APIs to automatically parallelize single node aligners. We then implemented
GATK-style alignment refinement as part of ADAM. Finally, we implemented a biallelic
genotyping model, and novel reassembly algorithms in the Avocado variant caller. This
pipeline provides state-of-the-art SNV calling accuracy, along with high (97%) INDEL call-
ing accuracy. To further validate this pipeline, we reanalyzed 270 samples from the Simons
Genome Diversity Dataset.







i


Contents


Contents i


I Introduction and Principles 1


1 Introduction 2
1.1 Economic Trends and Population Scale Sequencing . . . . . . . . . . . . . . 4
1.2 The Case for Distributed Computing for Genomic Analysis . . . . . . . . . . 5
1.3 Mapping Genomics onto Distributed Computing using ADAM . . . . . . . . 6


2 Background and Related Work 8
2.1 Genome Sequencing Technologies . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 Genomic Analysis Tools and Architectures . . . . . . . . . . . . . . . . . . . 10
2.3 Distributed Computing Platforms . . . . . . . . . . . . . . . . . . . . . . . . 16


II Architecture and Infrastructure 19


3 Design Principles for Scalable Genomics 20
3.1 Pain Points with Single Node Genomics Tools . . . . . . . . . . . . . . . . . 21
3.2 Goals for a Scalable Genomics Library . . . . . . . . . . . . . . . . . . . . . 24
3.3 A Stack Architecture for Scientific Data Processing . . . . . . . . . . . . . . 26


4 The ADAM Architecture 30
4.1 Realizing A Decoupled Stack Architecture In ADAM . . . . . . . . . . . . . 32
4.2 Schema Design for Representing Genomic Data . . . . . . . . . . . . . . . . 34
4.3 Query Patterns for Genomic Data Analysis . . . . . . . . . . . . . . . . . . . 38
4.4 Supporting Multi-Language Processing in ADAM . . . . . . . . . . . . . . . 40


IIIAlgorithms and Tools 44


5 Automatic Parallelization of Legacy Tools with Cannoli 45







ii


5.1 Accommodating Single-node Tools in ADAM With the Pipe API . . . . . . 46
5.2 Packaging Parallelized Single-node Tools in Cannoli . . . . . . . . . . . . . . 48


6 Scalable Alignment Preprocessing with ADAM 50
6.1 BQSR Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Indel Realignment Implementation . . . . . . . . . . . . . . . . . . . . . . . 54
6.3 Duplicate Marking Implementation . . . . . . . . . . . . . . . . . . . . . . . 57


7 Rapid Variant Calling with Avocado 58
7.1 INDEL Reassembly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
7.2 Genotyping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64


IVEvaluation 67


8 Benchmarking the ADAM Stack 68
8.1 Benchmarking The Cannoli/ADAM/Avocado Pipeline . . . . . . . . . . . . 68
8.2 Parallel E�ciency and Strong Scaling . . . . . . . . . . . . . . . . . . . . . . 70
8.3 Evaluating Compression Techniques . . . . . . . . . . . . . . . . . . . . . . . 72


9 The Simons Genome Diversity Dataset Recompute 75
9.1 Analysis Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2 Computational Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3 Observations from Joint Variant Calling . . . . . . . . . . . . . . . . . . . . 79


V Conclusion and Future Work 84


10 Future Work 85
10.1 Further Query Optimization in ADAM . . . . . . . . . . . . . . . . . . . . . 85
10.2 Extensions to Avocado . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
10.3 Hardware Acceleration for Genomic Data Processing . . . . . . . . . . . . . 90


11 Conclusion 92
11.1 Impact, Adoption, and Lessons Learned . . . . . . . . . . . . . . . . . . . . 92
11.2 Big Data Genomics as an Open Source Project . . . . . . . . . . . . . . . . . 98


Bibliography 101


Appendix 117


ADAM Schemas 118
Alignment Record Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118







iii


Fragment Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Variation Schemas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
Feature Schema . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123


Commands Used For Evaluation 126
GATK 3 Best Practices Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
FreeBayes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
SAMTools Mpileup/BCFTools Call . . . . . . . . . . . . . . . . . . . . . . . . . . 127
ADAM Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
GATK4 Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131







iv


Acknowledgments


Throughout my time at Berkeley, I was fortunate to benefit from a fantastic set of mentors,
peers, friends, and family.


I would like to thank my advisors, David Patterson and Anthony Joseph. Dave and
Anthony led the AMP Genomics project and were instrumental in defining a vision where
best practices from software engineering and distributed systems could be brought to bear
on complex genomics problems. Throughout my degree, I benefited tremendously from Dave
and Anthony’s experience and acumen.


Most critically, Dave and Anthony assembled a fantastic team. I was fortunate to receive
mentorship from both Kristal Curtis and Timothy Danford, which was critical in shaping my
research and engineering interests. I also benefited tremendously from working with Alyssa
Morrow, Michael Heuer, Justin Paschall, Devin Petersohn, Taner Dagdelen, and Lisa Wu. I
hope that they will all recognize their influence within this dissertation. Additionally, I would
be remiss to not thank Jon Kuroda and Shane Knapp, who did the critical and thankless
work of managing all of the computational resources needed for the AMP Genomics project.


Beyond Berkeley, we were fortunate to have close collaborative relationships with teams
at the University of California, Santa Cruz and The Icahn School of Medicine at Mount Sinai.
Most of all, I would like to thank Benedict Paten, who was critical in helping me straddle
the junction of computer science and bioinformatics. I would also like to thank David
Haussler, John Vivian, Hannes Schmidt, Beau Norgeot, and CJ Ketchum from UCSC, and
Uri Laserson and Ryan Williams from Mount Sinai.


All of the work done in this dissertation was released as open source software, and I
greatly benefited from interacting with others in the open source community. The full list
is much too long, but I would especially like to thank Neil Ferguson, Andy Petrella, Xavier
Tordior, Deborah Siegel, and Denny Lee.


I have also benefited from several mentors who I worked with prior to Berkeley, including
William Dally, James Balfour, and Michael Linderman, who I worked with at Stanford, and
Jacob Rael, who was my manager at Broadcom. I would especially like to thank Michael
and Jacob. My time working with Jacob was my first experience driving a research project,
and I frequently found opportunities to apply lessons I learned from Jacob to my research at
Berkeley. After Stanford, Michael moved to Mount Sinai and then Middlebury University,
and I have been able to work with him on both the ADAM and Deca projects. It has been
a true pleasure to work with Michael again.


Throughout the last few years, I have been fortunate to have Michael Pabst as a dear
friend. A fellow software engineer, Michael has always been willing to lend an ear, whether
I need to discuss an engineering problem, a research trend, or the oddities of academia. As
a friend, Michael is a truly gifted listener, and I can always count on him for helpful and
compassionate advice, witty banter, or a fascinating distraction at the end of a long day.


I owe a significant debt to my family. My parents have always encouraged my academic
interests and pursuits, and their support has been invaluable. My brothers Daniel and John







v


have been in graduate school concurrent with myself, and it has been valuable to chat with
them and to compare and contrast our di↵erent disciplines, programs, and experiences.


Most importantly, I would like to thank my wife Iris and my daughter Rosalind. Iris
inspired me to start my doctorate, and has been an incredible support throughout my whole
time at Berkeley. Whether lending me an ear when I needed to talk through a research
problem or helping me to cheer up during the inevitable doldrums that a graduate degree
entails, I could have not done this without her besides me every step of the way. While Rose
is still too young to have provided much feedback on my work, she made my doctorate much
cuter than it would have been otherwise!


Finally, I would like to thank my financial support throughout this degree. I was for-
tunate to have the support of an NSF Graduate Research Fellowship. My work was also
supported in part by NSF CISE Expeditions Award CCF-1139158, LBNL Award 7076018,
and DARPA XData Award FA8750-12-2-0331, NIH BD2K Award 1-U54HG007990-01, NIH
Cancer Cloud Pilot Award HHSN261201400006C and gifts from Amazon Web Services,
Google, SAP, The Thomas and Stacey Siebel Foundation, Adatao, Adobe, Apple, Inc., Blue
Goji, Bosch, C3Energy, Cisco, Cray, Cloudera, EMC, Ericsson, Facebook, Guavus, Huawei,
Intel, Microsoft, NetApp, Pivotal, Samsung, Splunk, Virdata, VMware, and Yahoo!.







1


Part I


Introduction and Principles







2


Chapter 1


Introduction


The rapid decrease in sequencing cost has made large scale sequencing tractable. The dra-
matic improvement in sequencing cost since the Human Genome Project has enabled a
human whole genome sequence (WGS) to be generated and analyzed for under $1,000 in
total costs [109]. Costs will continue to decrease for the foreseeable future, as sequencing
vendors like Illumina unveil new sequencers such as the NovaSeq that provide even higher
throughput while also decreasing cost, and as radically new sequencing technologies like Ox-
ford Nanopore come online [69]. The reduced cost of sequencing enables the use of genome
sequencing in population health research projects and clinical practice. As a result, the total
volume of sequencing data produced is expected to exceed that of YouTube by 2021 [144].


The massive scale of the sequencing data enables novel insight into biological phenom-
ena. The Exome Aggregation project (ExAC, [80])—now gnomAD—provides an especially
powerful demonstration: by sequencing more than 60,000 exomes, we have been able to
better understand the impact of genomic variation on prion disease [101] and cardiovascular
disease [161], and to better characterize the e↵ect of structural variation [130]. However, this
scale of data solves biological problems at the cost of technical and logistical problems. Data
storage and transfer has become a serious problem, and the focus of many researchers [56, 75]
and standards organizations [117]. Not only is the volume of data large, but the processing
cost to analyze the data is high. Due to historical design decisions, much of this processing
is currently restricted to single node architectures that assume POSIX storage APIs. As a
result, it can take upwards of 100 hours to analyze the raw read data from a single genome.
Because the computational cost of processing genomic data is so high, working with large
genomic datasets is often limited to large sequencing centers. As such, one of our goals is
to democratize genomic data analysis by develop tools that make it easy and e�cient to
process large genomics datasets.


We believe that distributed computing architectures are a good match for genomic data
analysis. Horizontally scalable storage architectures can simultaneously provide increased
data storage capacities, data access throughput, and reduced storage cost. Because most
genomic analyses are centered on analyzing the genomic data at disparate genomic loci
without coordination between them, most genomic analysis tasks can be executed in parallel.
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Even more importantly, these analysis patterns cleanly map onto quasi-relational primitives
that are powerful and can be executed in parallel. Finally, by building upon widely used open-
source, horizontally-scalable distributed processing architectures like Apache Spark [172] and
Hadoop [10], genomics can benefit from the engineering contributions that advance these
large open source projects.


In this thesis, we introduce ADAM, an Application Programming Interface (API) for
processing genomic data using Apache Spark. ADAM targets bioinformaticians who need
to implement custom queries across large genomic datasets, and who want to reduce the la-
tency/increase the throughput of their queries by using cluster or cloud computing. ADAM
is based around a novel stack-oriented architecture that uses schemas to define the narrow
waist in the stack. On top of the schemas, we provide high-level APIs that allow computa-
tional biologists and bioinformaticians to manipulate collections of genomic data in a parallel
fashion. The high level APIs extend Apache Spark’s Resilient Distributed Dataset (RDD,
see Zahaira et al. [172]) abstraction with genomics-specific functionality, and eliminates the
low level “walker” pattern [95] that provides a sorted iterator over a genomic dataset, which
is common in genomics. At lower levels in the stack, we provide e�cient implementations of
the common genomics query models. By having clearly defined APIs between each level of
the stack, we are able to exchange layers to optimize query performance for a given query,
input data type, or cluster/cloud configuration.


Since 2013, our work on ADAM has resulted in the broad ecosystem of projects, which
Figure 1.1 depicts. We refer to the tools built on ADAM as the “Big Data Genomics” (BDG)
project. In this dissertation, we will limit our focus to ADAM’s architecture and APIs, and
the tools and algorithms that form the core components of the BDG variant calling pipeline:


• Cannoli, which parallelizes single node genomic data processing tools. Cannoli is used
in our pipeline for alignment.


• The ADAM read transformations, which correct for errors in the aligned reads.


• Avocado, a fully parallelized variant caller.


This pipeline is able to call variants on a high coverage (60⇥) whole genome in under one
hour when running on commodity cloud computing resources. This represents a dramatic
improvement in performance over the widely used Genome Analysis Toolkit (GATK, see
DePristo et al. [44]), which needed over 100 hours to call variants on the same sample.
These tools demonstrate how ADAM’s APIs enable bioinformatics analyses to be written at
a high level, while also allowing for the reuse of code from legacy bioinformatics tools.


In this dissertation, we begin by describing the deluge of genomic data and the tools
that are used to process, manipulate, and store genomic data. In part two, we describe
the requirements for a distributed genomic data analysis framework and introduce ADAM’s
architecture. Part three describes how we built the Cannoli-ADAM-Avocado variant calling
pipeline on top of ADAM’s architecture, and the novel algorithms and architectural refine-
ments that were needed. We then validate the accuracy of this pipeline in part four using
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Figure 1.1: The Big Data Genomics ecosystem. Our work on ADAM has built a frame-
work for scalable genomics using external projects like Apache Spark [172] and Apache
Parquet [11]. On top of ADAM’s core APIs, we have built a broad ecosystem of
tools [90, 102, 153] demonstrating how Apache Spark can accelerate genomic data analy-
sis. To enable the reproducible use of Apache Spark in scientific data analysis workloads, we
have contributed to novel, cloud-native workflow systems [160].


ground truth datasets [179] and a large scale sequencing project [91]. We conclude by de-
scribing open problems and future directions for this research, as well as the impact of the
Big Data Genomics/ADAM project.


1.1 Economic Trends and Population Scale
Sequencing


The need for tools capable of processing large genomic datasets is precipitated by the rise
of population scale sequencing. While the raw data from a single genome may be provide
insight into the fitness of a single individual, genetic data is most meaningful when viewed
in aggregate across large cohorts. For variants that do not have an obvious and severe
pathogenic e↵ect, our best lens for understanding their impact from genomic data is through
statistical association testing.


While genome wide association testing (GWAS) has yielded some successes, including
prominent findings in neurogenetics [127], GWAS has faced several limitations. First, the
association between genotype and phenotype is often weak, unless the variant under study
is strongly pathogenic [137]. Additionally, few traits are truly Mendelian. For complex
traits, which are driven by the combined e↵ect of multiple genotypes [20], much heritability
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is explained through the complex interaction of variants that impact regulatory regions.
Modeling the e↵ect of non-coding changes is still an active area of work [162]. Additionally,
some diseases decompose into disease subtypes when studied in aggregate. A strong example
of this is acute myleoid leukemia (AML): genomic sequencing of germlines and tumors from a
cohort of AML patients reveals that AML is composed of eight or more genetic subtypes [24].
This hinders classifying the impact of a single mutation, especially as some gene mutations
can be shared across disease subtypes.


These population scale sequencing projects have been enabled entirely by technical in-
novation. While it cost more than $100M to complete the data acquisition for the Human
Genome Project, the cost of sequencing a single genome has dropped to under $1,000 [109].
This low cost has been driven by continuous technical improvements by Illumina and com-
peting sequencer vendors. With the continued improvement of nanopore sequencing [69],
we may see an additional precipitous drop in sequencing costs, as nanopore sequencers have
both lower capital and reagent costs relative to the Illumina sequencing platform, but are
currently limited in throughput and accuracy.


At the intersection of these two trends, population-scale sequencing has arisen. The first
population scale sequencing project was the 1,000 Genomes project [2], which collected a
total data catalog of more than 75 terabytes (TB) of data. Since then, sequencing projects
have pushed beyond petabyte-scale (PB), with the 3PB catalog collected by The Cancer
Genome Atlas (TCGA, [163]) and the 300PB data catalog collected by the ExAC [80] project.
While population-scale sequencing has largely been done in academic settings to date, these
sequencing projects are beginning to move into industrial and medical settings. These include
the collaboration between the United Kingdom’s Biobank, GlaxoSmithKline, and Regeneron
to sequence the 500,000 individuals in the UK Biobank [156], and the Geisenger MyCode
collaboration with Regeneron [26].


1.2 The Case for Distributed Computing for Genomic
Analysis


The rapid uptake of genome sequencing in academic, industrial, and clinical settings is driv-
ing the total number of human genomes sequenced to double approximately every seven
months [144]. This far outpaces Moore’s law at its peak, and is a rate of increase approx-
imately four times greater than current estimates of Moore’s law, which peg the doubling
of transistor counts to occur approximately every two years. As a result of this growth in
the volume of sequencing data, legacy tools are struggling to handle genome-scale analyses
across cohorts [90, 132]. We believe that distributed computing is a natural solution to these
problems.


As asserted in the original GATK manuscript that proposed a single-node MapReduce
architecture for genomic data processing [95], most genomic analysis tasks map naturally to
a share-nothing computing architecture. Heavyweight genomic data analyses like alignment,
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variant calling, and association testing either typically work on unaligned data, or are im-
plemented on a sorted stream traversing aligned data (the “walker” model). These patterns
either lack data dependencies (unaligned reads, or analyses that look at a single genomic lo-
cus), or have well defined spatial communication patterns (process data overlapping a given
locus). These computations can typically be paralellized with minimal communication. Ad-
ditionally, many genomic analysis queries map directly onto relational primitives that are
implemented in existing distributed data analysis platforms [12]. An example of this is a
genomic association test, which can be implemented as an aggregation query.


To take full advantage of distributed computing, we believe that we need a clean slate
re-architecture of the genomic data processing infrastructure. In a conventional genomic pro-
cessing pipeline, the analysis tools are typically designed assuming a flattened stack running
on a single node, or on a high performance computing (HPC)-style cluster with shared stor-
age. These systems typically make strong assumptions about the cost of making random ac-
cesses into a POSIX file system, and present low level abstractions to users. While there have
been several attempts to retrofit legacy tools onto distributed computing (CloudBurst [133]
and Crossbow [77]), these approaches have typically used custom wrappers around Apache
Hadoop Streaming and have been non-general. There have also been several attempts to
retrofit genomics-specific file formats onto distributed query architectures (SegPig [134] and
BioPig [111]), but these implementations provide either poor programming models or inef-
ficient implementations. By doing a clean-slate architecture, we can eliminate architectural
problems and provide better user-facing query models with better performance.


1.3 Mapping Genomics onto Distributed Computing
using ADAM


To address these problems, we developed ADAM, a comprehensive framework for processing
genomic data using the Apache Spark framework for distributed computing. ADAM defines
schemas for a full range of genomic datatypes, which provides a data-independent query
model. These schemas form the basis of a narrow waisted stack, which yields APIs that
support both genomic query and metadata management. By extending ADAM onto Apache
Spark SQL, these APIs can be used across multiple languages. Support for processing
genomic data with Spark SQL extends the power of distributed computing to bioinformatics
users who are writing in the Python or R languages, as opposed to previous tools that were
centered either around Java or the Pig scripting language [111, 134].


To demonstrate ADAM, we have built an end-to-end alignment and variant calling
pipeline. This pipeline includes distributed implementations of alignment, read preprocess-
ing, and variant calling. The pipeline can run end-to-end on a 60⇥ coverage whole genome
in under an hour, at a cost of <$15 on cloud computing. This pipeline provides results
comparable to state-of-the-art for single nucleotide variant (SNV) calling, and high accu-
racy (97%) for insertion and deletion (INDEL) variant calling. Additionally, the alignment
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step in this pipeline is implemented on top of a generalized interface for parallelizing single-
node genomics tools, which makes it possible to leverage distributed computing without
reimplementing a tool or developing custom shims, unlike prior approaches [77, 133].


As a result, ADAM improves over conventional genomics tools by providing:


• Schemas which can support loading data from a large variety of formats, which im-
proves programmer productivity by allowing queries against genomic datasets to be
written in a format-independent manner.


• High level, quasi-relational APIs for manipulating genomic data in both single node
and cluster environments, that abstract away low level details like sort-order invariants.


• Parallel I/O across genomics file formats, which enables e�cient ad hoc query over
large datasets.


• A simple API for parallelizing single node genomic tools with a minimal amount of code,
which enables the reuse of common bioinformatics tools in a distributed computing
architecture.


In the rest of this dissertation, we explain the design goals behind ADAM. By reviewing
the architecture and implementation of ADAM, we explain how these goals have shifted over
time, informed by our development experiences. We then demonstrate the ADAM archi-
tecture through the Cannoli and Avocado tools, which implement the Big Data Genomics
variant calling pipeline.
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Chapter 2


Background and Related Work


While there are many ways to collect and then process genomic data, this dissertation
focuses on the “genome resequencing” pipeline. In resequencing, we start with a known
genome assembly, and identify the edits between an individual genome and the genome
assembly for their species. In practice, a genome resequencing analysis pipeline will typically
take short sequenced reads (100-300 base pairs, bp), align them to a reference genome,
perform preprocessing on the reads to eliminate errors, and then probabilistically identify
true variation from the reads. In this chapter, we will start by describing how the reads
are sequenced (§2.1) and analyzed (§2.2). We then dive deeper into the representations of
genomic data (§2.2), and the architectures used to process this data (§2.2). Then, we review
the variant identification algorithms (§2.2). Finally, we discuss the emergence of commodity
distributed computing frameworks (§2.3) and how researchers have approached parallelizing
genome resequencing pipelines (2.3)


2.1 Genome Sequencing Technologies


Since the Human Genome Project released the first assembly of the Human genome in
2001 [76], biochemical and algorithmic advancements have enabled the broad analysis of
biological phenomena through sequencing. Although the full spectrum of sequencing-based
analyses is beyond the scope of this manuscript, these assays rely on encoding a biological
phenomena into DNA, which is then sequenced and analyzed statistically. In this section,
we provide a brief introduction to the sequencing process before focusing on the algorithmic
approaches used to determine the sequence variants in a single genome. We will focus on
data generated using Illumina sequencers, as this sequencing modality is commonly used for
genomic variant detection.


To run a sequencing assay, we start by preparing a sequencing library, which is then run
through a sequencer. This stage creates genomic “reads”, which include a string of bases (in
the A, C, G, T alphabet used by DNA) along with estimates of the probability that a single
base was read correctly. The library preparation stage converts the biological sample into
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DNA fragments, which we can sequence. In the simplest case (sequencing a genome), we start
by extracting DNA from a collection of cells. We then slice the long DNA strands into shorter
fragments, before selecting fragments of a certain length (“size selection”). Depending on the
sample collection methodology and the sequencing assay, we may replicate DNA sequences
via a polymerase chain reaction (PCR). Errors during PCR can lead to duplication of specific
fragments, which biases variant calling. The size of fragments collected depends on both the
sequencing instrument that is being used, and the biological assay being conducted.


Common variants on this process include exome sequencing (where we start from DNA,
but select the regions of the genome that encode genes before fragmenting and size selecting
reads), RNA-seq (where we start by converting single stranded RNA into DNA, which is
then fragmented and size selected, see [104]). There are many biological assays that can be
encoded as sequencing and a full review is beyond the scope of this manuscript; we refer
readers to Soon et al [142] for a more comprehensive overview.


Many modern variant analysis pipelines use paired reads from Illumina sequencers. De-
pending on the specific sequencer model and chemistry, Illumina sequencers support read
lengths ranging from 75 to 300 bases. All reads from an Illumina sequencer have the same
length, as the length of the read is determined by the number of cycles that the sequencer
is run. “Paired” means that we generate two reads from each DNA fragment; we read one
read from each strand of the DNA, with the two reads coming from opposite ends of the
DNA fragment.


In a conventional sequencing library, the DNA fragments include bases that are not
sequenced; these bases are typically referred to as the “insert”, and the number of bases not
sequenced (“insert size”) are controlled through the size selection process. For example, if
we wanted to prepare a paired sequencing library where the read length was 250 bases with
an average insert size of 500 bases, we would select all fragments that were approximately
1,000 bases long (250 bases for the first read, approximately 500 bases between the first
and second read, 250 bases for the second read). There are many variants on this process,
including those that have negative insert sizes, and “mate pair” libraries that have very long
insert sizes [92]. Additionally, library preparation varies tremendously between sequencing
vendors. While we focus on short reads sequenced using Illumina platforms that are typically
generated from fragments that are less than 1,000 bases long, long read sequencers such as
the Pacific Biosciences sequencers [48] or the Oxford Nanopore sequencers [35], the libraries
include long DNA fragments (>5,000 bases) that generate a single, full length read.


Illumina sequencers generate reads through a sequencing-by-synthesis approach. In this
process, flourescent dyes are attached to the DNA bases. The sequencer then takes an image
of the dyes, which is then converted into the called bases. This process runs for a fixed
number of cycles, which sets the length of the sequenced reads. To ensure that the bases
from a single read show up in the same locations in the image between cycles, the ends of
the reads are attached to knobs that protrude from glass plates. At the end of each cycle,
the dyes are washed o↵ of the end of the read, which exposes the next base in the read for
a new round of dyes to attach to. The probability that a base was sequenced correctly is
determined by looking at the color and intensity of the base on the captured image. Illumina
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platforms are susceptible to single base substitution errors, which occur to a 0.5–2% of bases.
This error rate is problematic for variant calling, as we expect a variant to occur at one in
every one thousand bases.


Many of the analyses that use reads generated from Illumina sequencers are analyzed with
mapping-based approaches, as opposed to de novo analyses. In alignment-based methods,
we rely on the existence of a “reference genome” for an organism. The reference genome
is a curated dataset that consists of the DNA sequences for all of the chromosomes in the
genome of a species. For humans, the first reference genome was generated through the
Human Genome Project [76]. New genome references are released every few years and
include corrections to prior reference genomes and new assemblies for areas of the genome
that are hard to sequence (typically caused by the genome being highly repetitive in a single
area). The most recent release of the human genome (GRCh38, see [30]) was released at
the end of 2014. A reference genome defines a two dimensional coordinate space, with one
coordinate selecting the chromosome and the second coordinate defining the position on this
chromosome.


Unlike alignment-based methods, de novo methods do not posit the existence of a refer-
ence genome. De novo methods are commonly used when a reference genome is not available
(e.g., to assemble a genome that has not been previously assembled), or when performing an
analysis that can be biased by the use of a reference genome, like structural variant discovery.
These methods are outside of the scope of this dissertation.


2.2 Genomic Analysis Tools and Architectures


In a mapping-based approach, the reads are mapped to a location of the reference genome,
and then locally aligned. Mappers query subsequences from a read against an index built
from the reference genome. This process will identify the ranges in the genome that the
read could plausibly align to. Once these ranges have been identified, the mapper will
then locally align the read sequence against the genomic sequences from these ranges, using
an edit calculation algorithm such as Smith-Waterman [141], Ukkonen’s algorithm [155],
or a pairwise sequence alignment Hidden Markov Model (HMM, [46]). Widely used map-
pers include BWA [88], which builds an index using the Burrows-Wheeler transform [23];
Bowtie [78], which builds an FM-index [53]; and SNAP [171], which builds a hash-based
index. Several projects have applied hardware acceleration to alignment, including Cloud-
Scale-BWAMEM [27, 28], Ahmed et al [5], and unpublished work out of Microsoft Azure [100].


Variant calling is one such mapping-based approach. To identify variants between the
genomes of two individuals, we compute the di↵erence of each individual against the refer-
ence genome, and then compute the transitive di↵erence between the two individuals. To
compute the variations between a single individual and the reference, we start by align-
ing the reads to the reference genome. From here, we can then look at each site in the
genome to see if there are reads that support an sequence edit. The test for read support
is typically done by applying a statistical model to the reads that looks at the base error
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probabilities attached to the reads that contain the reference sequence and the reads that
contain the proposed sequence variant. Examples of the models used include the SAMTools
mpileup variant caller [82], and the GATK UnifiedGenotyper [44]. However, the aligned
reads frequently include errors that can lead to incorrect variant calls. To eliminate these
errors, we rely on several preprocessing stages that are run between mapping and variant
calling. In this dissertation, we will focus on three preprocessing stages: duplicate removal,
local realignment, and base quality score recalibration. The variant calling pipeline has been
targeted for hardware acceleration in the unpublished Edico DRAGEN processor [47].


The duplicate removal stage identifies DNA fragments that were duplicated during library
preparation. If we are starting from a biological sample that contains very little DNA, we
will commonly use PCR during library preparation. This reaction will take our input DNA
and replicate it, thereby increasing the amount of DNA that we can provide to the sequencer.
However, as part of the PCR process, some fragments will be excessively replicated. PCR
duplication can lead to a single fragment being replicated >100 times. If this fragment
contains a sequence variant or a sequence that is susceptible to being sequenced incorrectly,
this can bias the genomic region where the read is located and lead to an incorrect variant
being identified.


Local realignment is typically run after duplicate marking and addresses an issue inherent
to the mapping process. Specifically, if there are larger sequence variants (e.g., multi-base
insertions or deletions) in a read, the mapping process will commonly identify the correct
genomic region that a read should map to, but will locally misalign the read relative to other
reads that contain the same underlying sequence variant [44]. During local realignment, we
start by identifying all possible insertion/deletion (INDEL) variants in our reads. For every
region that contains an INDEL, we then look at the reads that map to that region. We
identify the most common sequence variant in the set of reads and rewrite the local read
alignments to ensure that all reads that contain a single sequence variant are aligned with
a consistent representation. This step is necessary because the algorithms used to compute
the pairwise alignment of two sequences are fundamentally probabilistic [46, 141, 155], which
can lead to inconsistent representations for equivalent sequence edits [85].


The final preprocessing stage is base quality recalibration. As mentioned earlier, when the
reads are sequenced, the sequencer estimates the probability that a single base was sequenced
in error from the color and intensity of the light emitted from the floursecent dye. In practice,
sequencing errors correlate with various factors, including sequence context (the bases around
the base that is being sequenced) and the stage when the base was sequenced (due to errors
with the sequencing chemistry during that sequencing cycle). The base quality recalibration
stage associates each base with error covariates, and then calculates the empirical error rate
for the bases in that covariate by measuring the frequency with which bases in that covariate
mismatch the reference genome. These error rates are then converted back into probabilities,
which replace the probabilities attached to the reads.


We have chosen to focus on the read preprocessing algorithms used for variant calling for
several reasons. First and foremost, variant calling is the most widely used analysis across
contemporary genomics, and is a core part of large population-scale studies such as the 1,000
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Genomes Project [1, 2], the Exome Aggregation Consortium [80], and The Cancer Genome
Atlas [163]. Additionally, the read preprocessing stages are computationally expensive. For a
single human genome sequenced with an average of 60 reads covering each genomic position,
it takes over 160 hours to align the reads, preprocess the reads, and call variants, with
approximately 110 of the hours spent preprocessing the reads. Finally, implementations of
these algorithms are available as part of the widely used Genome Analysis Toolkit [95, 44]
and ADAM [93, 112] libraries.


Genomic Data Representations


Currently, genomic data are stored in a myriad of file formats that largely descend from
formats that were developed during the 1,000 Genomes project [2]. Some of these formats
are much older; many genomic feature file formats descend from the development of the
University of California, Santa Cruz’s (UCSC) Genome Browser [71], which was developed
as part of the Human Genome Project [76]. Informal specifications for the FASTQ [36] and
FASTA formats date back to at least the 1990s, through their use in the phred [50] and
FASTA/FASTP [119] tools.


The file formats developed during the 1,000 Genomes project stored high throughput
sequencing data in tab separated value (TSV) files. These formats included the Sequence
Alignment/Mapping (SAM) format [88], which represents genomic reads, and the Variant
Call Format (VCF) format [39], which was defined to store variants and genotypes. The
1000 Genomes project also made significant use of the TSV Browser Extensible Data (BED)
format for storing genomic feature data. While the BED format had been introduced earlier,
the introduction of BEDTools [125] during the 1,000 Genomes Project drove the further use
of the BED format. A plethora of textual file formats exist for storing genomic feature data,
such as the NarrowPeak format, a specialized variant of BED that is used by the MACS [174]
tool; the IntervalList format, which is used extensively by the GATK [44]; and the General
Feature Format (GFF), which is used extensively in sequence annotation projects like the
Sequence Ontology [49].


Over time, some of these formats have been replaced by binary variants that provide
improved compression and performance. SAM has been largely replaced in practice by the
Binary Alignment/Mapping (BAM) format, and the binary VCF (BCF) has entered use
for storing variant data. In practice, textual file formats are still broadly used for storing
variant and feature data, but they are often compressed using a block-compressed codec, such
as BGZF [83]. There has been significant research towards developing compressed storage
formats for alignment data [75, 56]. The CRAM codec has achieved the broadest use, and
uses reference-based compression to avoid storing read sequence that matches the reference
genome. Additionally, CRAM can apply lossy compression schemes—such as base quality
score binning—to achieve further compression.
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Genomic Analysis Architectures


Although there exist myriad tools for analyzing genomic data, very few tools espouse a
systematic architecture for traversing and processing genomic data. Instead, most tools are
built around a UNIX-inspired philosophy that asserts that “a tool should do a single task
well” [128], and simply traverse a serial stream of data. The most prominent example of a
genomic analysis architecture is the quasi-map-reduce architecture employed by the legacy
versions of the GATK [95]. This architecture uses an iterator-based model called a “walker”
to traverse over data aligned to reference genome coordinates. The “map-reduce” nature of
this API describes how chunks of genome aligned data can be parallelized, with a reduce
operation supported for summarizing tables of data across threads, as is used for combining
Base Quality Score Recalibration (BQSR) tables. While this API could conceptually be used
in a distributed setting, the GATK has historically only run as a multithreaded application on
a single node. Instead, multi-node execution was provided through the Queue [44] workflow
manager. This is resolved in the newest version of the GATK, which is implemented on
Apache Spark.


While the UNIX-like design philosophy embraced by many bioinformatics tools allows for
the creation of tools with well defined boundaries, this seems to be fundamentally at odds
with the reality of complex genomics workflows, where many tools must be cascaded one-
after-the-other. As a result, genomics has embraced workflow management as an alternate
paradigm, where tools are composed into an abstract workflow, which is then executed by
the management system. A popular early system was the Galaxy [64] tool, which provided
a graphical user interface for defining workflows and tool invocations. Recently, a set of
novel workflow management systems have been developed, such as Toil [160], NextFlow [45],
Rabix [70], Cromwell [147], and Cuneiform [21]. These systems exploit many-task paral-
lelism, and are well suited to analyses where a cohort of many samples should be analyzed
independently by sample. These systems di↵er in their approach to expressing workflows.
Several e↵orts to standardize workflow descriptions have emerged, with the most prominent
community being around the Common Workflow Language [37]. Toil is implemented as a
Python library that allows for workflows to be natively defined in Python, and can also run
workflows written in CWL, or in Cromwell’s WDL dialect. Rabix executes CWL. NextFlow
and Cuneiform both take a clean slate approach to implementing a workflow language, using
dataflow and functional approaches to describe workflows.


Variant Calling Approaches


The accuracy of insertion and deletion (INDEL) variant discovery has been improved by the
development of variant callers that couple local reassembly with haplotype-based statistical
models to recover INDELs that were locally misaligned [6]. Now, haplotype-based models
are used by several prominent variant callers such as the Genome Analysis Toolkit’s (GATK)
HaplotypeCaller [44], Scalpel [107], and Platypus [126]. Although haplotype-based methods
have enabled more accurate INDEL and single nucleotide polymorphism (SNP) calls [16],
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this accuracy comes at the cost of end-to-end runtime [145]. Several recent projects have
been focused on improving reassembly cost either by limiting the percentage of the genome
that is reassembled [19] or by improving the performance of the core algorithms used in local
reassembly [126].


The performance issues seen in haplotype reassembly approaches derives from the high
asymptotic complexity of reassembly algorithms. Although specific implementations may
vary slightly, a typical local reassembler performs the following steps:


1. A de Bruijn graph is constructed from the reads aligned to a region of the reference
genome,


2. All valid paths (haplotypes) between the start and end of the graph are enumerated,


3. Each read is realigned to each haplotype, typically using a pair HMM,


4. A statistical model uses the read$haplotype alignments to choose the haplotype pair
that most likely represents the variants hypothesized to exist in the region,


5. The alignments of the reads to the chosen haplotype pair are used to generate statistics
that are then used for genotyping.


In this dissertation, we introduce algorithms that improve the algorithmic e�ciency of
steps one through three of the local reassembly problem. We do not focus algorithmi-
cally on accelerating stages four and five, as there is wide variation in the algorithms used
in stages four and five. However, we do provide an parallel implementation of a widely
used statistical model for genotyping [82]. Stage one (graph creation) has approximately
O(rlr) time complexity, and stage two (graph elaboration) has O(hmax(lh)) time complex-
ity. The asymptotic time cost bound of local reassembly comes from stage three, where cost
is O(hrlr max(lh)), where h is the number of haplotypes tested in this region, r is the number
of reads aligned to this region, lr is the read length, and min(lh) is the length of the short-
est haplotype that we are evaluating. This complexity comes from realigning r reads to h
haplotypes, where realignment has complexity O(lrlh). Note that the number of haplotypes
tested may be lower than the number of haplotypes reassembled. Several tools (see Depristo
et al [44] and Garrison and Marth [58]) allow users to limit the number of haplotypes eval-
uated to improve performance. For simplicity, we assume constant read length. This is a
reasonable assumption as many of the variant callers discussed target Illumina reads that
have constant length, unless the reads have been trimmed during quality control.


In this dissertation, we introduce the indexed de Bruijn graph and demonstrate how
it can be used to reduce the asymptotic complexity of reassembly. An indexed de Bruijn
graph is identical to a traditional de Bruijn graph, with one modification: when we create
the graph, we annotate each k-mer with the index position of that k-mer in the sequence
it was observed in. This simple addition enables the use of the indexed de Bruijn graph
for ⌦(n) local sequence alignment with canonical edit representations for most edits. This
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structure can be used for both sequence alignment and assembly, and achieves a more e�cient
approach for variant discovery via local reassembly. To further improve the e�ciency of this
approach, we demonstrate in §7.1 how we can implement the canonicalization scheme that
we demonstrate using indexed de Bruijn graphs without constructing a de Bruijn graph that
contains both sequences.


Current variant calling pipelines depend heavily on realignment-based approaches for
accurate genotyping [85]. Although there are several approaches that do not make explicit
use of reassembly, all realignment-based variant callers use an algorithmic structure similar
to the one described above. In non-assembly approaches like FreeBayes [58], stages one and
two are replaced with a single step where the variants observed in the reads aligned to a
given haplotyping region are filtered for quality and integrated directly into the reference
haplotype in that region. In both approaches, local alignment errors (errors in alignment
within this region) are corrected by using a statistical model to identify the most likely
location that the read could have come from, given the other reads seen in this area.


Although the model used for choosing the best haplotype pair to finalize realignments
varies between methods (e.g., the GATK’s IndelRealigner uses a simple log-odds model [44],
while methods like FreeBayes [58] and Platypus [126] make use of richer Bayesian models),
these methods require an all-pairs alignment of reads to candidate haplotypes. This leads to
the runtime complexity bound of O(hrlr min(lh)), as we must realign r reads to h haplotypes,
where the cost of realigning one read to one haplotype is O(lr max(lh)), where lr is the read
length (assumed to be constant for Illumina sequencing data) and max(lh) is the length of
the longest haplotype. Typically, the data structures used for realignment (O(lr max(lh))
storage cost) can be reused. These methods typically retain only the best local realignment
per read per haplotype, thus bounding storage cost at O(hr).


For non-reassembly-based approaches, the cost of generating candidate haplotypes is
O(r), as each read must be scanned for variants, using the pre-existing alignment. These
variants are typically extracted from the CIGAR string, but may need to be normalized [85].
de Bruijn graph-based reassembly methods have similar O(r) time complexity for building
the de Bruijn graph as each read must be sequentially broken into k-mers, but these methods
have a di↵erent storage cost. Specifically, storage cost for a de Bruijn graph is similar to
O(k(l


ref


+ l
variants


+ l
errors


)), where l
ref


is the length of the reference haplotype in this region,
l
variants


is the length of true variant sequence in this region, l
errors


is the length of erroneous
sequence in this region, and k is the k-mer size.


In practice, we can approximate both errors and variants as being random, which gives
O(kl


ref


) storage complexity. From this graph, we must enumerate the haplotypes present
in the graph. Starting from the first k-mer in the reference sequence for this region, we
perform a depth-first search to identify all paths to the last k-mer in the reference sequence.
Assuming that the graph is acyclic (a common restriction for local assembly), we can bound
the best case cost of this search at ⌦(hmin lh).


The number of haplotypes evaluated, h, is an important contributor to the algorithmic
complexity of reassembly pipelines, as it sets the storage and time complexity of the re-
alignment scoring phase, the time complexity of the haplotype enumeration phase, and is
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related to the storage complexity of the de Bruijn graph. The best study of the complexity
of assembly techniques was done by Kingsford et al. [72], but is focused on de novo assembly
and pays special attention to resolving repeat structure. In the local realignment case, the
number of haplotypes identified is determined by the number of putative variants seen. We
can näıvely model this cost with (2.1), where fv is the frequency with which variants occur,
✏ is the rate at which bases are sequenced erroneously, and c is the coverage (read depth) of
the region.


h ⇠ fvlref + ✏l
ref


c (2.1)


This model is näıve, as the coverage depth and rate of variation varies across sequenced
datasets, especially for targeted sequencing runs [51]. Additionally, while the ✏ term models
the total number of sequence errors, this is not completely correlated with the number of
unique sequencing errors, as sequencing errors are correlated with sequence context [44].
Many current tools allow users to limit the total number of evaluated haplotypes, or ap-
ply strategies to minimize the number of haplotypes considered, such as filtering observed
variants that are likely to be sequencing errors [58], restricting realignment to INDELs (In-
delRealigner, [44]), or by trimming paths from the assembly graph. Additionally, in a de
Bruijn graph, errors in the first k or last k bases of a read will manifest as spurs and will not
contribute paths through the graph. We provide (2.1) solely as a motivating approximation,
and hope to study these characteristics in more detail in future work.


2.3 Distributed Computing Platforms


Dean and Ghemawat described the use of large clusters of commodity computers in their
MapReduce system [41, 42] in 2004. Since then, there has been a surge of activity focusing
on the development of distributed data analysis tools. In the open source world, this has
spawned the Apache Hadoop project [10], which started as a open source reimplementation
of Google’s MapReduce. Hadoop led to the development of scripting languages like Pig [114],
query systems like Hive [152], and resource management frameworks like Apache YARN [157]
and Apache Mesos [67]. While traditional map-reduce platforms are well suited to extract,
transform, load (ETL) pipelines that made a single pass over a large dataset, they are a poor
fit to “advanced analytics” applications—like machine learning, or graph processing—that
made several passes over a dataset. This ine�ciency was due to their reliance on the output
of every computational phase being written to disk to ensure fault tolerance. A new set of
distributed data processing tools were designed to address this problem by storing data in
memory, and relying on di↵erent models for fault resilience. These systems include Apache
Spark [173, 172] and Apache Flink [25]. Additionally, a set of highly e�cient query engines
came out, such as Cloudera Impala [73] and Spark SQL [12].
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Distributed Genomic Analysis Tools


Genomics tools that leverage commodity distributed computing have typically taken one
of two approaches: either they wrap a single-node tool so that it can be parallelized using
a distributed computing framework, or they define a distributed query model for a single
area/tool of focus. Beyond these two approaches, some tools have been built on distributed
computing technologies from the HPC ecosystem. Additionally, cloud-friendly workflow
management systems have entered broad usage.


There have been three waves of development focused on integrating single-node tools
with distributed computing platforms. The first wave of development used Apache Hadoop
Streaming as a simple mechanism for parallelizing tools that had well defined chunking
patterns. Examples of this approach include the CloudBurst aligner [133], which parallelized
the RMAP aligner [140], and CrossBow [77], which integrates the Bowtie [78] aligner with
the SoapSNP [89] variant caller.


The second wave of approaches built more fully featured applications on top of the
Apache Hadoop framework that did not just rely on the streaming APIs. These applications
include the SEAL [121] aligner, which extracted the BWA [88] aligner into a Python library
which was executed on the PyDoop [81] bindings for Hadoop; BigBWA [3], which parallelizes
BWA [88] using the Java Native Interface (JNI) on top of Apache Hadoop; and Halvade [43],
which parallelized the complex dataflow in the GATK [44] using Apache Hadoop.


The third wave of wrappers has been built around Apache Spark and includes
SparkBWA [4], a successor to BigBWA [3]; CloudScale-BWA MEM [27], which parallelizes
BWA through the JNI, with the ability to support FPGA acceleration; and SparkGA [105],
which uses a similar approach as Halvade to parallelize the GATK, but is implemented on
Spark.


Several tools have implemented genomic analyses directly on top of distributed analysis
tools from the Apache Hadoop and Spark ecosystem. Many of these tools build on top of the
Hadoop-BAM library [110], which provides Hadoop-compatible parallel I/O libraries. The
first generation of tools built query models for accessing genomic data through the Pig [114]
scripting language. Support for Pig was implemented in two separate tools: BioPig [111]
and SeqPig [134]. Additionally, the OpenCB project has built Hadoop-based tools for ma-
nipulating genomic data via the hpg-bigdata project [115]. Recent work has moved on to
Apache Spark. Beyond ADAM and the Big Data Genomics ecosystem, Spark has been used
in the SparkSeq [166] and VariantSpark [116] tools. SparkSeq is geared towards RNA-seq
analysis, and has been paired with SparkBwa [4] to build the Falco [170] single-cell RNA-seq
pipeline which runs end-to-end on Apache Spark. VariantSpark includes novel methods for
statistically analyzing genotype data on Spark, including an e�cient implementation of ran-
dom forests for wide-but-flat genomic data. There is increasing adoption of Apache Spark
in genomics, with two large unpublished projects coming out of the Broad Institute. The
first is the fourth edition of the GATK [149], which is reimplemented on Spark. The second
project is Hail [148], which is a reimplementation of the PLINK population genomics [123]
toolkit on Spark.
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We do not extensively discuss non-resequencing pipelines for de novo genome assem-
bly in this dissertation, but genome assembly has di↵erent access patterns that are more
amenable to HPC-styled distributed implementations. Specifically, since de novo assembly
operates on highly connected graphs, e�ciently mapping de novo assembly to a graph-
parallel framework like GraphX [65] is di�cult. The ABySS assembler [139] uses the Mes-
sage Passing Interface (MPI) to parallelize genome assembly across an HPC cluster. A
new and exciting avenue of work is using HPC systems that support a parallel global ad-
dress space (PGAS) and Remote Direct Memory Access (RDMA) to achieve extremely fine
grained parallelism [61, 60, 62, 63].
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Part II


Architecture and Infrastructure
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Chapter 3


Design Principles for Scalable
Genomics


When we started designing ADAM in 2013, Apache Spark was still in early development, and
few organizations were actively working with massive genomics data sets. At the time, we
believed that the major pain points in working with large scale genomics datasets centered
around low-level APIs that made it di�cult to represent complex genomic data manipulations
and the use of file formats that were di�cult to access in parallel and that had imprecise
specifications. This led to the initial goals for the ADAM project:


• Provide clean APIs for writing large scale genomic data analyses.


• Raise abstraction by centering data manipulation around schemas instead of file for-
mats.


• Allow these APIs to be exposed across commonly used languages.


• E�ciently execute non-reference oriented query patterns.


To achieve these goals, we designed a decoupled, stack-oriented architecture centered
around schemas that provided a logical view over the genomic data being manipulated. This
architecture was implemented on top of Apache Spark’s Resilient Distributed Dataset (RDD)
APIs [172], and provided the user with a distributed collection of genomic data which were
encoded in Apache Avro [9] and allowed for queries to be described at a high level through
Spark’s RDD APIs, which would execute the queries rapidly by running parallel scans over
the data. Over time, our goals grew in scope to include:


• Support coordinate-space joins with genomic data.


• Support exploratory data analysis on genomic datasets.


• Allow people to reuse their existing genomic analysis tools on Spark with minimal
modifications.
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Because of ADAM’s decoupled architecture, we were able to easily enhance ADAM to
support these query patterns. By refactoring how ADAM tracked data partitioning, the
coordinate-space joins (§4.3) and the pipe API for supporting legacy genomics tools (§4.3)
were added to ADAM’s core APIs. The Mango project enhanced ADAM’s ability to run
interactive queries against genomic data by improving support for pushing down ranged
predicates to disk [153] and by adding a spatial- and temporal-locality-aware in-memory
caching layer [102]. These modifications replaced ADAM’s default query and data access
layers with layer implementations better suited to the query patterns at hand.


In this section, we will revisit the pain points we asserted, and describe how our under-
standing of these pain points changed over time. From these pain points, we then reify a set
of functional requirements for a distributed data analysis platform for manipulating genomic
data. We then introduce ADAM’s stack architecture, and explain how it addresses these
needs.


3.1 Pain Points with Single Node Genomics Tools


Most current genomic pipelines are built entirely out of single-node tools, and often single
threaded tools. We believe that the barriers to making use of distributed tools are caused by
the computational patterns used when building traditional single node tools. As the size and
scope of genomic data continues to increase, single node analyses will become inconvenient
or impractical to run.


Expressiveness of APIs


Traditionally, APIs for manipulating genomic data have been very low level. Typically, tools
follow the “walker” pattern, which provides a sorted iterator over the genome. The user then
implements any traversal that they need. This approach is undesirable for two reasons:


1. Due to the very low level nature of the API, programmers must implement their own
complex transforms, such as grouping together reads that start at a single genomic
position. Writing against low level APIs can lead to errors in user code.


2. A natural consequence of the first point is that low level APIs obscure the actual query
pattern that is being implemented. For example, a duplicate marker typically groups
together all reads that are aligned to a single genomic locus. This pattern is clear when
duplicate marking is written as a high level algorithm, but is unclear from a low level
implementation of duplicate marking on a sorted iterator.


These two issues translate into two obvious consequences. First, a low level API increases
the complexity of implementing a query, and thus necessitates increased developer e↵ort.
A low level API introduces more locations where queries can be implemented incorrectly.
We identified two concrete examples when working on the read preprocessing pipeline in
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ADAM. Specifically, we identified that the Picard duplicate marker and the GATK base
quality recalibrator incorrectly process reads that come from sequenced fragments whose
insert size violates undocumented invariants that are internal to each tool.


The second obvious consequence is that monolithic queries are di�cult to automatically
optimize. To examine this consequence, we can look again at the duplicate marking kernel.
If we are calling variants in a whole exome sequencing (WES) dataset, we would run a query
pattern with several steps:


1. Align reads.


2. Sort reads.


3. Mark duplicates by grouping by alignment position.


4. Filter out reads mapped outside of the exome.


5. Call variants by aggregating statistics at each position covered by an aligned read.


A query planner that is aware of the structure of the genome could apply several opti-
mizations:


• Since the duplicate marker groups by position, sorting and duplicate marking can be
combined into a single phase. This optimization can also be applied to variant calling.


• Since we will filter out reads mapped outside of the exome, we can push this predicate
up to after alignment.


In the absence of the ability to optimize the variant calling query plan end-to-end, most
genomics tools achieve performance benefits by enforcing sort order or grouping invariants.
For example, the Picard [150] and Sambamba [146] duplicate markers require read inputs to
be coordinate sorted, while the SAMBLASTER [52] duplicate marker requires the read data
to be queryname grouped. These invariants are necessary for e�ciency, but come at the cost
of increased complexity when integrating multiple tools together into a monolithic pipeline.


The combination of these two issues yields a final problem: it is di�cult for a domain
scientist to parallelize these queries. To parallelize single node tools across a large cluster,
existing tools typically use a “scatter-gather” pattern, as discussed in Zheng et al. [175, 176].
This scatter-gather pattern chunks a genomic dataset into many small parts (contiguous
ranges of the genome) that are then processed independently. This scatter-gather pattern
presents several problems:


• Due to bias caused by repeated sequences in the genome, we cannot achieve optimal
load balance with a partitioner that näıvely partitions the genome into uniformly sized
ranges [29].
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• This query pattern is restricted to storage systems that support e�cient ranged ac-
cess into files, and may not be e�cient to implement on cloud-based shared-nothing
stores [160].


• This approach makes it di�cult to implement queries that need to run an all-reduce
over the data. Examples of an all-reduce include the base quality score recalibration
kernel (see §6.1), or genome-wide machine learning methods [103].


Support for Parallel I/O


While most of the file formats used for genomics do not preclude parallel I/O, their structure
makes parallel I/O di�cult to implement in an e�cient manner. This limitation is caused
by two primary factors:


1. The files are often expensive to split, in the absence of an index.


2. Due to the emphasis on chaining tools into streams or transformations upon a single
file, all output must be serialized.


To demonstrate the source of costs for performing parallel reads, let us look at Hadoop-
BAM [110], a popular library used for loading genomics data into Apache Hadoop or Spark.
To split a BAM file, Hadoop-BAM implements Hadoop’s InputFormat class. When a file is
opened for read, Hadoop provides Hadoop-BAM with approximate ranges that the file should
be split into. However, a BAM file cannot be arbitrarily split; we must find the first valid
BAM record after the start of this file range. To do this, Hadoop-BAM must scan through
the file, looking for a sequence of bytes that indicates the start of a record. Currently, this is
implemented sequentially per split in a file. For a typical block size of 128MB, a BAM from a
high coverage whole genome sequencing run will have 500–1500 splits. The cost of computing
the splits can be very high, especially if the data is stored in a remote file store, as is common
on cloud computing vendors. To eliminate this issue, Hadoop-BAM supports a proprietary
index that stores valid split start positions. Recently, support was added that uses the linear
BAM index to validate split start positions. An additional issue is that Hadoop-BAM does
not always pick valid positions to begin reading. To address this issue, the Spark-BAM [167]
project has begun rewriting parts of Hadoop-BAM to add more stringent record validation
tests. These more stringent tests reduce the number of false positive record start positions
to 0.


A general exception is files compressed with the un-splittable GZIP codec. GZIP is used
in bioinformatics because of its high compression ratio, which is useful for storing textual
read data, such as FASTQ files. To allow splitting, many tools use the BGZF codec [83],
which is splittable. BGZF incurs a small performance and compression overhead relative to
the raw GZIP codec. Similar to the example with BAM files given above, BGZF also has
high overhead for splitting without an index.
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As mentioned above, another general issue is that genomics tools often assume that data
is being processed as I/O streams, or that there is a single file that corresponds to data from
a single sample. The architectural implication of this trend is that I/O must be serialized,
which leads to a typical I/O subsystem loading data in through a single thread, which
delegates the data to multiple decompression threads. The data are then decompressed,
processed, and compressed again, at which point the writes to a disk or to a stream are
serialized. Serialized I/O creates contention at both ends of the tool. The impact of this can
easily be seen in a highly e�cient tool, like the Salmon RNA-seq quantification engine [118].
Due to I/O contention, Salmon is unable to scale beyond 32 cores.


3.2 Goals for a Scalable Genomics Library


From the pain points we described above, we can assemble a set of goals for a clean slate
genomic analysis platform. In this section, we describe both the original goals that we
adopted when building ADAM, as well as the goals that evolved for the ADAM ecosystem
over time. From our original set of goals, we designed the stack architecture that we introduce
in the next section (§3.3). As we will see, the stack architecture made it easier for us
accommodate the goals that evolved during the course of the project.


Original Goals for ADAM


In the original ADAM technical report [93], we introduced an architecture that presented
fairly minimalistic wrappers around the Apache Spark APIs, but that was built out of
technical components that were optimized for batch processing over large genomic datasets.
This original architecture addressed the goals described in this section, and paved the way
for supporting the goals introduced in the next section.


Our overarching goal was to abstract away from APIs that derived directly from the
genomic file formats, towards higher level APIs for manipulating genomic data. We had
several specific goals that we felt we could achieve through building a higher-level API:


1. Minimize the amount of code needed to implement a query.


2. Eliminate the need for sort order invariants.


3. Make it more e�cient to execute queries that only touched a subset of genomic data.


4. Make our APIs usable across multiple languages.


5. Make it possible to easily query data using other parallel analysis tools than Apache
Spark.


Because of the stack smashing described in §3.1, genomics libraries like htslib (the base
for samtools [88]) and htsjdk (the base for Picard [150] and the GATK [95]) provide APIs
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that iterate directly across a file. As a comparison, Apache Spark is built on top of the
RDD API, which describes a collection of records which is parallelized across nodes in a
cluster. Because the abstractions provided by the htslib and htsjdk systems were guided
by the file formats themselves, idioms from data traversal (iterating across a collection)
and I/O (closing a stream) became intermingled. Additionally, the behavior of a row in
a collection was influenced by the I/O process. This design choice is because all extant
genomics file formats are row oriented, which means that the only way to improve the
performance of a query that does not access all of the fields in a record was to lazily parse
the fields as they were accessed.


Instead of bleeding abstractions from the I/O layer through the stack, we decided to
introduce schemas that represented the major genomic datatypes. This architecture enforces
a strict separation between the I/O layer and the end-user API. A stack-based architecture
can naturally supports the many file formats that can describe a given class of genomic data,
since we can provide a view between the genomic file format and the schemas. Additionally,
since a schema is fundamentally a logical representation of a record, our schemas need not
be language-specific, and should be reusable across a large set of languages.


To eliminate the need for sort order invariants, we proposed a two pronged approach.
First, since we were building on a system that enabled parallel I/O, we would be able to
achieve high query performance by running full scans over the dataset in parallel. Addi-
tionally, by providing APIs for filtering by row when reading from the file system, or for
selecting the specific columns that we were interested in parsing, we could minimize the
amount of data read from disk. To further accelerate these queries, we used the Apache Par-
quet [11] columnar storage system, which enabled cheap column projections and predicates
that could be pushed down into the storage system. Since Parquet was gaining broader
adoption across the analytics ecosystem, storing data in Parquet meant that it could be
accessed and manipulated with tools such as Apache Hive [152] and Cloudera Impala [73].


Goals That Evolved Over Time


Over the course of building out the ADAM project and the surrounding Big Data Genomics
ecosystem, we added several design goals. These included:


1. Supporting interactive latency for exploratory queries and data visualization.


2. Being able to optimize queries to take advantage of presorted data.


3. Enabling legacy tools to be reused and parallelized.


There were several reasons that we added these design goals. We had originally intended
ADAM to mainly support batch analyses, and deferred support for interactive analysis to
query engines like Impala. However, we felt that there was a good opportunity to reshape
interactive genomic data analysis by enabling exploratory data analysis using ADAM’s APIs.
Thus, we needed a way to lower the latency of typical Spark queries to the interactive
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(< 500ms) time range. The Mango project [153, 102] improved latency by introducing
better support for using primary indices on genomic position, as well as an e�cient in-
memory caching layer. These implementations replaced the default implementations of two
levels of our stack.


As noted in the previous paragraph, interactive queries were one reason we wanted to
take advantage of data being sorted at query time. Additionally, as we built out ADAM’s
read preprocessing transformations (see Chapter 6), we realized that many of these queries
depended on joining genomic data against other overlapping data (such as joining aligned
reads against variants during BQSR’s masking phase), or aggregating at a single genomic
locus (as in duplicate marking). In our SIGMOD article [112], we introduced the region
join to ADAM. This join provided functionality similar to BEDTools [125], and could be
implemented using both a broadcast and a sort-merge strategy. While our goal was to
eliminate the need for sort-order invariants, we saw that there was a good opportunity to
accelerate these join and aggregate patterns by eliminating shu✏es whenever a dataset was
already sorted. We describe the extensions we made to ADAM to support these optimizations
in §4.3.


Finally, while we feel that ADAM’s APIs provide a significant improvement over tradi-
tional genomic query models, we realized over time that it was an unrealistic goal to supplant
these APIs due to their widespread usage. Additionally, the experiences of our coworkers
during the SNAP project [171] led us to realize that Spark’s APIs were not a good fit to
all genomic data analysis problems. Specifically, the large indices used during short read
alignment are di�cult to manage e�ciently in the Java Virtual Machine’s (JVM) managed
memory model. Additionally, prior work which used Hadoop or Spark to manually wrap
and parallelize legacy tools [133, 77, 3, 4, 28, 27] led us to believe that there was interest
in having a general API for parallelizing genomics tools. This led to the introduction of
ADAM’s pipe API, and the Cannoli tool, which is described in Chapter 5.


3.3 A Stack Architecture for Scientific Data
Processing


The processing patterns being applied to scientific data shift widely as the data itself ages.
Because of this change, we want a scientific data processing system that is flexible enough
to accommodate our di↵erent use cases. At the same time, we want to ensure that the
components in the system are well isolated so that we avoid bleeding functionality across
the stack. If we bleed functionality across layers in the stack, we make it more di�cult to
adapt our stack to di↵erent applications. Additionally, as we discuss in Chapter 6, improper
separation of concerns can actually lead to errors in our application.


These concerns are very similar to the factors that led to the development of the Open
Systems Interconnection (OSI) model and Internet Protocol (IP) stack for networking ser-
vices [178]. The networking stack models were designed to allow the mixing and matching
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of di↵erent protocols, all of which existed at di↵erent functional levels. The success of the
networking stack model can largely be attributed to the “narrow waist” of the stack, which
simplified the integration of a new protocol or technology by ensuring that the protocol only
needed to implement a single interface to be compatible with the rest of the stack.


Application
Transformations


Physical Storage
Attached Storage


Data Distribution
Parallel FS


Materialized Data
Columnar Storage


Evidence Access
MapReduce/DBMS


Presentation
Enriched Models


Schema
Data Models


Variant calling & analysis, 
RNA-seq analysis, etc.


Disk, SDD, block
store, memory cache


HDFS, Tachyon, HPC file 
systems, S3


Load data from Parquet and 
legacy formats


Spark, Spark-SQL,
Hadoop


Enriched Read/Variant


Avro Schema for reads,
variants, and genotypes


Users define analyses
via transformations


Enriched models provide convenient
methods on common models


The evidence access layer
efficiently executes transformations


Schemas define the logical
structure of basic genomic objects 


Common interfaces map logical
schema to bytes on disk  


Parallel file system layer
coordinates distribution of data


Decoupling storage enables
performance/cost tradeoff


Figure 3.1: A stack model for scientific computing


Unlike conventional scientific systems that depend on custom data formats like BAM or
SAM [88], or CRAM [56], we believe that the use of an explicit schema for data interchange
is critical, as it allows bioinformaticians to program at a level of abstraction that hides the
implementation details of the file format. In our stack model shown in Figure 3.1, the schema
becomes the “narrow waist” of the stack. Most importantly, placing the schema as the
narrow waist enforces a strict separation between data storage/access and data processing.
Additionally, this enables literate programming techniques which can clarify the data model
and access patterns. The seven layers of our stack model are decomposed as follows, and are
numbered in ascending order from bottom to top:


1. Physical Storage: This layer coordinates data writes to physical media.


2. Data Distribution: This layer manages access, replication, and distribution of the
files that have been written to storage media.


3. Materialized Data: This layer encodes the patterns for how data is encoded and
stored. This layer determines I/O bandwidth and compression.
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4. Data Schema: This layer specifies the representation of data, and forms the narrow
waist of the stack that separates access from execution.


5. Evidence Access: This layer provides us with primitives for processing data, and
allows us to transform data into di↵erent views and traversals.


6. Presentation: This layer enhances the data schema with convenience methods for
performing common tasks and accessing common derived fields from a single element.


7. Application: At this level, we can use our evidence access and presentation layers to
compose the algorithms to perform our desired analysis.


A well defined software stack has several other significant advantages. By limiting ap-
plication interactions with layers lower than the presentation layer, application developers
are given a clear and consistent view of the data they are processing, and this view of the
data is independent of whether the data is local or distributed across a cluster or cloud.
By separating the API from the data access layer, we improve flexibility of implementation.
With careful design in the data format and data access layers, we can seamlessly support
conventional whole file access patterns, while also allowing easy access to small slices of files.
By treating the compute substrate and storage as separate layers, we also drastically increase
the portability of the APIs that we implement.


As we discuss in more detail in Chapter 4, current scientific systems bleed functionality
between stack layers. An exemplar is the SAM/BAM and CRAM formats, which expect data
to be sorted by genomic coordinate. This order modifies the layout of data on disk (level
3, Materialized Data) and constrains how applications traverse datasets (level 5, Evidence
Access). Beyond constraining applications, this leads to bugs in applications that are di�cult
to detect. These views of evidence should be implemented at the evidence access layer
instead of in the layout of data on disk. This split enforces independence of anything below
the schema.


The idea of decomposing scientific applications into a stack model is not new; Bafna, et
al. [15] made a similar suggestion in 2013. We borrow some vocabulary from Bafna, et al.,
but our approach is di↵erentiated in several critical ways:


• Bafna, et al. consider the stack model specifically in the context of data management
systems for genomics; as a result, they bake current technologies and design patterns
into the stack. In our opinion, a stack design should serve to abstract layers from
methodologies/implementations. If not, future technology trends may obsolete a layer
of the stack and render the stack irrelevant.


• Bafna, et al. define a binary data format as the narrow waist in their stack, instead of a
schema. While these two seem interchangeable, they are not in practice. A schema is a
higher level of abstraction that encourages the use of literate programming techniques
and allows for data serialization techniques to be changed as long as the same schema
is still provided.
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• Notably, Bafna, et al. use this stack model to motivate GQL [74]. While a query
system should provide a way to process and transform data, Bafna, et al. instead
move this system down to the data materialization layer. We feel that this inverts the
semantics that a user of the system would prefer and makes the system less general.


Deep stacks like the OSI stack [178] are generally simplified for practical use. Concep-
tually, the stack we propose is no exception. In practice, we combine layers one and two,
and layers five and six. There are several reasons for these mergers. First, in Hadoop-based
systems, the system does not have practical visibility below layer two, thus there is no reason
to split layers one and two except as a philosophical exercise. Layers five and six are commin-
gled because some of the enriched presentation objects are used to implement functionality
in the evidence access layer. This normally happens when a key is needed, such as when
repartitioning the dataset, or when reducing or grouping values.
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Chapter 4


The ADAM Architecture


ADAM’s architecture was introduced as a response to the challenges processing the growing
volume of genomic sequencing data in a reasonable timeframe [132, 143]. While the per-run
latency of current genomic pipelines such as the GATK could be improved by manually par-
titioning the input dataset and distributing work, native support for distributed computing
was not provided. As a stopgap solution, projects like Cloudburst [133] and Crossbow [77]
have ported individual analytics tools to run on top of Hadoop. While this approach has
served well for proofs of concept, this approach provides poor abstractions for application
developers. These poor abstractions make it di�cult for bioinformatics developers to cre-
ate novel distributed genomic analyses, and does little to attack sources of ine�ciency or
incorrectness in distributed genomics pipelines.


ADAM’s architecture reconsiders how we build software for processing genomic data by
eliminating the monolithic architectures that are driven by the underlying flat file formats
used in genomics. These architectures impose significant restrictions, including:


• These implementations are locked to a single node processing model. Even the GATK’s
“map-reduce” styled walker API [95] is limited to natively support processing on a
single node. While these jobs can be manually partitioned and run in a distributed
setting, manual partitioning can lead to imbalance in work distribution and makes it
di�cult to run algorithms that require aggregating data across all partitions, and lacks
the fault tolerance provided by modern distributed systems such as Apache Hadoop or
Spark [172].


• Most of these implementations assume invariants about the sorted order of records on
disk. This “stack smashing” (specifically, the layout of data is used to “accelerate” a
processing stage) can lead to bugs when data does not cleanly map to the assumed
sort order. Additionally, since these sort order invariants are rarely explicit and vary
from tool to tool, pipelines assembled from disparate tools can be brittle. We discuss
this more in Chapter 6.
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• Additionally, while these invariants are intended to improve performance, they do this
at the cost of opacity. If we can express the query patterns that are accelerated by
these invariants at a higher level, then we can achieve both a better programming
environment and enable various query optimizations.


At the core of ADAM, users use the ADAMContext to load data as GenomicRDDs,
which they can then manipulate. Figure 4.1 depicts the GenomicRDD class hierarchy. In
this class hierarchy, we provide several classes that contain functionality that is applicable
to all genomic datatypes, such as the coordinate-space primitives described in §4.3 and the
pipe primitive described in §5.1, and the genomic metadata management described in §4.2.


MultisampleAvroGenomicRDD


GenotypeRDD


GenomicRDD


MultisampleGenomicRDDGenomicDataset


GenomicRDDWithLineage


GenericGenomicRDD


VariantContextRDDAvroGenomicRDDCoverageRDD


AvroRecordGroupGenomicRDD NucleotideContigFragmentRDDFeatureRDD VariantRDD


FragmentRDD AlignmentRecordRDD


ADAMRDDFunctions


Figure 4.1: The GenomicRDD class hierarchy. Ovals are traits, trapezoids are abstract
classes, rectangles are classes, and a bold border means that the abstract class is sealed. In
Scala, sealing a class/trait restricts which classes can extend this class/mix-in this trait. The
shaded classes are the types returned from the ADAMContext load methods and from the
GenomicRDD methods.


While the ADAMContext API has existed since the beginning of the ADAM project, the
GenomicRDD API is a fairly recent introduction, having been added in 2016, three years
into the project. Despite its recent addition, the GenomicRDD API has been critical to
achieving ADAM’s vision:


• The GenomicRDD wraps the Apache Spark RDD [172] and Spark SQL DataFrame [12]
APIs with genomics-specific and genomic-datatype specific functionality. Access to
both APIs from a single class enables the use of both generic (RDD/DataFrame) and
specialized APIs (the region join and pipe APIs) to process genomic data in a natively
distributed manner.


• The rich GenomicRDD type hierarchy enables methodical management of genomics
metadata. We support metadata management at a read group, sample, and computa-
tional lineage level.
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• By building upon APIs from Spark SQL, the GenomicRDD API can be exposed in the
Python and R languages, which enables the use of ADAM outside of the JVM.


In the rest of this chapter, we explain the design decisions behind the ADAM architecture,
with an eye towards how the architecture has evolved over the four years of the project. We
discuss the specific trade-o↵s we needed to make in order to realize the stack architecture
we had introduced, before diving into the schema design that we used to decouple ADAM
from the genomics file formats. We review the genomics-specific query patterns supported in
ADAM, and explain how we have broadened ADAM’s APIs to support multiple languages.


4.1 Realizing A Decoupled Stack Architecture In
ADAM


While a stack-based architecture provides many of the benefits we asserted in the previous
section, these benefits can only be realized with careful API design. If the APIs are specified
at too low of a level of abstraction, then the implementations of each layer will leak through,
and the stack layers cannot be exchanged. If the APIs are specified at too high of a level of
abstraction, then programmers who are implementing their applications on top of the APIs
cannot meaningfully reason about the performance and semantics of the code that they are
running.


In ADAM, we ultimately extend two important APIs. The ADAMContext is the en-
trypoint to loading all data, while the GenomicRDD API provides an abstract wrapper
for genomic datasets. We specialize the GenomicRDD API across the various genomic
datatypes. Once data has been loaded using the ADAMContext, users largely interact with
the data by transforming the data enclosed in a GenomicRDD, which is described by our
schemas (see §4.2). These core APIs contribute to realizing the stack vision in the following
ways:


• The physical storage and data distribution layers (1 and 2) are largely deferred to
Apache Spark and Hadoop. ADAM interacts with these layers through their APIs.


• The materialized data and schema layers (3 and 4) couple together in a critical way. The
schemas provide a logical description of a given genomic datatype, and the materialized
data layer provides a set of views between the ADAM schemas and legacy genomics
file formats. This view is applied by the ADAMContext when loading data, and by
the GenomicRDD when saving data. This decomposition is critically important: a
common early misunderstanding of ADAM was that our schemas were introducing
a new file format for genomic data. Rather, by supporting views between common
formats to our schemas, we eliminate the need to know which file formats the data was
loaded from.
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• The evidence access layer (5) is largely implemented in the GenomicRDD, but can also
be specialized in downstream applications for their specific application/query pattern.
At a basic level, ADAM uses Apache Spark [172] and Spark SQL [12] for evidence
access. Without any optimizations, queries are implemented as scans over the full
dataset. However, we apply several optimizations for coordinate-based queries, as
described in §4.3. Additionally, since ADAM builds o↵ of Spark’s RDD API, any tools
that optimize at the RDD level can be used to enrich the evidence access layer [153,
102].


• The presentation layer (6) provides datatype (e.g., read/feature/variant) specific meth-
ods on top of the GenomicRDD API. This layer includes many of the operations in-
troduced in Chapter 6.


• The application layer (7) is where the user builds their code, and this is built by using
the ADAMContext to load in a GenomicRDD, which is then transformed and saved.


While many of these layers have been unchanged since we introduced our stack model
in our original technical report [93] and our SIGMOD manuscript [112], the evidence access
and presentation layers (5 and 6) have changed. The introduction of the GenomicRDD API
was symbolic of larger changes, which included:


• The evidence access layer originally assumed that other query systems like Cloudera
Impala [73] would be able to interoperate with the ADAM schemas to load data. While
this is still true, we have de-emphasized this view. Specifically, once data has been
loaded using the ADAM schemas and saved into Apache Parquet, systems like Impala
can interoperate with the data through the ADAM schemas. However, systems like
Impala cannot interoperate with the lower levels of ADAM’s stack, such as ADAM’s
views to and from legacy genomics file formats.


• Because the Hadoop ecosystem optimizes for full scans, we originally assumed that all
queries were executed as full scans over the dataset, and these queries were executed
without assuming any knowledge of the layout of the data. One of the advantages of
introducing the GenomicRDD API is that we were better able to track the layout of
data, and to specialize queries given a known layout. We describe one such mechanism
for accelerating queries in the genomic coordinate space in §4.3.


• The presentation layer (6) was originally implemented by enhancing the schemas.
Specifically, the AlignmentRecord schema (see §4.2) was accompanied by a RichAlign-
mentRecord class, which provided convenience methods on top of the schema. Similar
“enriched” classes existed for the Variant schema as well. While these enriched classes
have not been eliminated from ADAM, we have eliminated the public API exposure of
these classes. While these classes were useful for implementing some of the algorithms
in the ADAM core, it ultimately proved di�cult to understand their performance
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characteristics. They leveraged the Scala language’s compile-time implicit conversion
functionality [113], which allows for the compile-time inclusion of a method that can
satisfy a given type signature. Additionally, the enriched classes typically augmented
the raw schemas by lazily computing expensive values, which could then be reused
across calculations. Unfortunately, the way these patterns intersected made it very
di�cult to reason about when a state had been calculated, and thus what the perfor-
mance of a call to an enriched class would be. Additionally, the implicit conversion
pattern could not be supported across languages, and was out of the scope of expertise
of the average bioinformatics programmer. Instead, we surfaced transformations at the
dataset level, which is closer to the level of abstraction expected by our average user.


While the introduction of the GenomicRDD class has enabled the changes to our stack
model that were described above, it was driven by other factors. The ADAMContext would
originally return unwrapped Spark RDDs. The introduction of the GenomicRDD class was
driven largely by the need for better management of genomic metadata, as described in §4.2.


4.2 Schema Design for Representing Genomic Data


A common criticism of bioinformatics as a field surrounds the proliferation of file formats.
Short read data alone is stored in four common formats: FASTQ [36], SAM [88], BAM, and
CRAM [56]. While these formats all represent di↵erent layouts of data on disk, they tend
to be logically harmonious. Due to this logical congruency of the di↵erent formats, we chose
to build ADAM on top of a logical schema, instead of a binary format on disk. While we do
use Apache Parquet [11] to materialize data on disk, the Apache Avro [9] schema is used as
a narrow waist in the system, that enables “legacy” formats to be processed identically to
data stored in Parquet with modest performance degradation.


We made several high level choices when designing the schemas used in ADAM [93].
Over time, we have revised some of these design decisions. First, the schemas were originally
fully de-normalized. Our rationale for this decision was that this would reduce the cost of
metadata access while simplifying metadata distribution. We believed we would be able
to gain these benefits without greatly increasing the cost of memory access because our
backing store (Parquet) made use of run length and dictionary encoding, which allows for a
single object to be allocated for highly repetitive elements on read. As we discuss in §4.2,
this decision wound up being costly, and we reversed this decision as the ADAM schemas
progressed. Another key design choice was to require that all fields in the schema are nullable;
by enforcing this requirement, we enable arbitrary user specified projections. Arbitrary
projections can be used to accelerate common sequence quality control algorithms such as
Flagstat [93, 112]. We have still maintained this requirement.


We have reproduced the schemas used to describe reads, features, variants, and geno-
types below. Figure 4.2 is a UML diagram depicting how the schemas connect. ADAM
also contains schemas for describing assembled contigs, but we have not included them in
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this section. We discuss the current schemas, as well as their evolution over the course
of the ADAM project. While ADAM’s read schemas closely represent the SAM specifica-
tion, the variation and feature representations deviate significantly from the current state of
representing genomic variation and features.


Read Schemas


Our read schema (§11.2) maps closely to the logical layout of data presented by SAM and
BAM. Unlike the SAM format, we split the flags out from a single field into many fields.
Separating the flags makes it much simpler to extract state from a record. Additionally,
we promote several commonly used fields from SAM attributes to fields. These fields in-
clude the original quality, position, and Compact Ideosyncratic Gapped Alignment Rep-
resentation (CIGAR) fields, which are set during realignment (see §6.2) and base quality
recalibration (see §6.1).


Additionally, we support a schema that groups together all of the reads from a single
sequenced fragment (§11.2). The fragment data structure enables a traversal over read data
that is similar to SAM’s read-name grouping. We feel that the fragment schema is preferable
to the query name sort order and query grouping invariants that SAM allows one to specify.
By using this schema, we can reduce the cost of duplicate marking by 50% (see Chapter 8).
Additionally, this representation provides a useful alternative to the interleaved FASTQ
format for streaming reads into an aligner. We demonstrate this usage in Chapter 5.


Variation Schemas


The variant and genotype schemas (§11.2) present a larger departure from the represen-
tation used by the Variant Call Format (VCF). The most noticeable di↵erence is that we
have migrated away from VCF’s variant oriented representation to a matrix representation.
Instead of the variant record serving to group together genotypes, the variant record is em-
bedded within the genotype. Thus, a record represents the genotype assigned to a sample,
as opposed to a VCF row, where all individuals are collected together. The second major
modification is to assume a biallelic representation. In a biallelic representation, we describe
the genotype of a sample at a position or interval as the composition of a reference allele and
a single alternate allele. If multiple alternate alleles segregate at the site (e.g., there are two
known SNPs in a population at this site), we create multiple biallelic variants for the site.
Restricting records to be biallelic di↵ers from VCF, which allows multiallelic records. By
limiting ourselves to a biallelic representation, we are able to clarify the meaning of many of
the variant calling annotations. If a site contains a multiallelic variant (e.g., in VCF parlance
this could be a 1/2 genotype), we split the variant into two or more biallelic records. The
su�cient statistics for each allele should then be computed under a reference model similar
to the model used in genome VCFs. If the sample does contain a multiallelic variant at the
given site, this multiallelic variant is represented by referencing to another record via the
OtherAlt enumeration. A similar biallelic model is also used by the Hail project [148].
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The variant and genotype schemas are the schemas that have evolved the most over the
course of the ADAM project. When we wrote the original ADAM technical report [93],
the variant and genotype schemas were much narrower and closely mirrored the VCF spec-
ification. Since the VCF format contains many attributes that can be used to annotate
both a genotype (via a Format field) or a variant (via an Info field), the original schemas
largely contained overlapping field definitions. We refactored the two schemas to move to
the biallelic-only variant model, and later, expanded the variant schema to include a nested
structural variant description. This structural variant schema was removed during a large
refactor after the ADAM SIGMOD paper that improved support for variant annotations.
We have also played with flattening the variant schema out of the genotype schema for per-
formance reasons. During our work on Mango [153, 102], we realized that nesting the variant
field decreased the performance of range queries by approximately an order of magnitude.
In the variant annotation refactor, we added the variant annotation schemas (§11.2).


These schemas provide a faithful representation of the VCF/ANN specification, which
adds a formal and rich variant annotation specification to VCF [33]. This specification is
used by both the Ensembl Variant E↵ect Predictor (VEP, see [97]) and SnpE↵ [34]. We
have a separate schema for storing annotations on top of a genotype call (§11.2); we refer to
this object as a “variant calling annotation” instead of a “genotype annotation,” since the
annotations are specific to the variant calling process and the reads observed at the site, as
opposed to the called genotype. The variant calling annotations object includes annotations
that we feel are useful during the variant calling process, but that should probably be omitted
from a final callset that is used for annotation and statistical testing. Many of these variant
annotations are useful for hard filtering, as described in §7.2.


During the refactor that improved ADAM’s support for variant annotations, we refac-
tored the conversion class that provided a view from the VCF format to ADAM’s geno-
type and variant records. In this refactor, we replaced the extant conversion code with a
pure-functional converter. Our approach generated a collection of conversion functions. To
convert between the ADAM and htsjdk representations of a variant/genotype, we would fold
over this collection of functions. In turn, each function accesses the field they are convert-
ing, and mutates the new object that is being built during the conversion. The use of a
pure-functional converter had several upsides:


• One of the di�culties in working with the VCF file format is that it is semi-structured
and user extensible. Beyond the info and format attributes in the VCF specification,
users can add any attributes they desire, restricted only by the attribute types in the
VCF specification. As part of this update, we added the ability to generate attribute
conversion functions from the VCF header.


• Our new converter has a single function per field that is converted. As a result, it
is very easy to write highly directed functional tests to achieve a very high level of
test coverage for the converter. Since the functions are all orthogonal and have no
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shared state, we can also guarantee that any two functions that independently pass
their directed tests can be called in a chain correctly.


• A minor problem with our previous, monolithic converters was that they could not
support projecting out a subset of fields, unlike data stored in Apache Parquet using
the ADAM schemas. While we would still need to read all of the data in a whole row,
being able to limit the number of fields projected would reduce the amount of parsing
we need to do, which can be quite costly for semi-structured text formats like VCF.
The pure-functional converter naturally supports user-specified projections, as we can
arbitrarily filter out any conversion functions that we do not want to execute.


In the long term, we hope to apply this pure-functional conversion approach to all of our
data converters. We discuss this more in §10.1.


Feature Schemas


ADAM’s feature schema (§11.2) provides an abstracted view of a genomic feature that can
support most of the various genomic feature file formats, including NarrowPeak, BED, GT-
F/GFF2, GFF3, and IntervalList. We have full support for nested features, which are
commonly used for describing genome annotations. Instead of nesting the features recur-
sively inside of the feature record, we leverage the database cross reference schema, which is
derived from the GTF/GFF2/GFF3 file format.


ADAM originally contained an additional GenomeRDD subclass called the GeneRDD.
This class would take the nested features contained in a FeatureRDD that described an an-
notated genome, and would perform all the joins and aggregations necessary to build out the
fully nested annotation structure. Ultimately, we removed this class because the performance
was poor, and most queries that would run on the nested structure could be refactored to
run on the flattened feature hierarchy. This was possible due to the denormalized schema,
which included the transcript and gene IDs in each feature record.


Managing Genomic Metadata


A major evolution of the ADAM schemas relates to how we manage and store metadata. In
our original schemas, the metadata was denormalized across the record. For example, all of
the metadata from the sequencing run and prior processing steps were packed into record
group metadata fields, as opposed to being stored in a file header. Our rationale was that
this metadata describes the processing lineage of the sample and is expected to have limited
cardinality across all records, and thus would compresses extremely well.


This metadata is string heavy, and benefited strongly from column-oriented decompres-
sion on disk. However, proper deserialization from disk proved to be di�cult. Although
the information consumes less than 5% of space on disk, a poor deserializer implementation
may replicate a string per field per record, which greatly increased the amount of memory
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allocated and the garbage collection (GC) load. With this metadata included in each record,
a dataset that was 200GB on disk would balloon into more than 5TB in memory. Addition-
ally, implementing the deserializer conflicted with Apache Spark’s serialization architecture.
Spark assumes that deserializers have limited state, and write to a stream that does not
support seeks. While this is a reasonable assertion for row-oriented serialization techniques,
this made it extremely di�cult to implement a column-oriented serialization. Prior to elim-
inating the denormalized metadata from our schemas, this meant that we would have very
e�cient memory utilization immediately after reading from disk, as Apache Parquet would
only allocate a single string per replicated element. However, we would then see the memory
explosion after the first shu✏e in our query.


This memory explosion led to a major refactor of the ADAM schemas and the intro-
duction of the GenomicRDD hierarchy. Originally, since the metadata was consolidated in
each record, the ADAMContext load methods would return RDDs containing our Apache
Avro [9] schema objects. The methods that made up the presentation layer (6) of our stack
would be added at compile-time using Scala’s implicit methods. When we refactored the
schemas, we introduced the GenomicRDD classes as a way to track metadata alongside the
Apache Spark RDD, moved the presentation layer methods into the implementations of the
GenomicRDD classes, and eliminated the implicit conversions. Long term, we believe that
the ideal mechanism for storing this metadata is a database designed for storing metadata,
such as the Ground store [66].


4.3 Query Patterns for Genomic Data Analysis


There are a wide array of experimental techniques and platforms in genome informatics, but
many of these methods produce datapoints that are tied to locations in the genome through
the use of genomic coordinates. A platform for scientific data processing in genomics needs to
understand these 1-dimensional coordinate systems because these become the basis on which
data processing is parallelized. For example, when calling variants from sequencing data,
the sequence data that is localized to a single genomic locus can be processed independently
from the data localized to a di↵erent region.


Beyond parallelization, many of the core algorithms and methods for data aggregation in
genomics are phrased in terms of geometric primitives on 1-D intervals and points where we
compute distance, overlap, and containment. An algorithm for calculating quality control
metrics may try to calculate coverage, a count of how many reads overlap each base in the
genome. A method for filtering and annotating potential variants might assess the validity
of a variant using the quality characteristics of all reads that overlap the putative variant.


To support these algorithms, we provide the region join primitive. The algorithm used is
described in Algorithm 1 and takes as input two RDDs of ReferenceRegions, a data structure
that represents intervals along the 1-D genomics coordinate space. It produces the set of all
overlapping ReferenceRegion pairs. This join can be implemented using either a broadcast
or sort-merge approach. Algorithm 1 demonstrates the broadcast approach.
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Algorithm 1 Join Regions via Broadcast
left input dataset; left side of join
right input dataset; right side of join
sortedLeft left.sort()
collectedLeft sortedLeft.collect()
tree collectedLeft.buildTree()
broadcastTree tree.broadcast()
joined right.map(r ! broadcastTree.overlaps(r))
return joined


Our implementation of the broadcast region join has been refactored twice. The first
implementation was described in our SIGMOD manuscript [112] and required the computa-
tion of the convex hulls of the left side of the dataset. Computing the convex hulls was done
using an algorithm similar to the one described in §6.2. Additionally, this approach required
both sides to be hash-partitioned. The first rewrite of the broadcast join was very similar
to Algorithm 1. However, it used an interval tree [131] to store the left side of the join.
We abandoned this approach because of the cost of serializing the interval tree. Instead, we
introduced a new data structure, the interval array, which is a flattened representation of the
interval tree. The interval array is an array whose elements are sorted by coordinate-order.
To look up overlapping elements from an interval array, we begin by running binary search to
find the first element that overlaps our search value. In the interval array, we also compute
and store the length of the longest region in the array. We then search forward in the array
until we have searched the distance of the longest element. Since this data structure is flat,
it is inexpensive to (de)serialize. Binary search provides the same O(log n) time complexity
as searching an interval tree. However, since we require an additional linear search, we can
only guarantee the best case ⇥(log n) complexity for searching our interval array.


While the join described above is a broadcast join, a region join can also be imple-
mented via a straightforward shu✏e-based approach, which is described in Algorithm 2.
The partitionJoinFn function maintains two iterators (one each from both the left and right
collections), along with a bu↵er. This bu↵er is used to track all key-value pairs from the
right collection iterator that could match to a future key-value pair from the left collection
iterator. We prune this bu↵er every time that we advance the left collection iterator. For
simplicity, the description of Algorithm 2 ignores the complexity of processing keys that
cross partition boundaries. In our implementation, we replicate keys that cross partition
boundaries into both partitions.


These joins serve as a core that we can use to build other abstractions. For example, self-
region joins and multi-region joins are common in genomics, and can be easily implemented
using the above implementations. We are currently working to implement further parallel
spatial functions such as sliding windows, using techniques similar to the shu✏e-based join.
Additionally, we are working to improve the performance of these joins by eliminating shu✏es
of data that is already sorted on disk. We discuss these avenues for future work in §10.1.
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Algorithm 2 Partition And Join Regions via Shu✏e
left input dataset; left side of join
right input dataset; right side of join
partitions left.getPartitions()
left left.repartitionAndSort(partitions)
right right.repartitionAndSort(partitions)
joined left.zipPartitions(right, partitionJoinFn)
return joined


4.4 Supporting Multi-Language Processing in ADAM


One of the original goals in using Apache Avro was to allow the ADAM schemas to be
used across more languages than just Scala and Java, as Avro has language bindings for
commonly used languages like C/C++/C#, Python, and JavaScript. However, this wound
up not being a fruitful exercise. While Avro supported these languages, Apache Parquet
did not, and since we used Avro to manage in-memory serialization but Parquet to manage
on-disk serialization, users could not load our Parquet files from disk in non-JVM languages.
Additionally, even if we had support for reading Parquet files from these other languages, it
would have been prohibitive to port all of the logic in our stack (mostly at the materialized
data and presentation layers) over to other languages.


Instead, we followed the approach used by Apache Spark’s Python and R bindings [159]
after Spark SQL was introduced [12]. Here, we created lightweight wrappers for the ADAM-
Context and GenomicRDD in the Python and R languages. These wrappers then called
the JVM implementations of these classes through Py4j [38] or SparkR’s interoperability
layer [159]. Instead of exposing the underlying RDD, we exposed the parallel dataset through
Spark SQL’s DataFrame API. We chose this for several reasons:


• The DataFrame API is a close match to the programming models commonly used in
Python and R [12], such as the Pandas [96] and Dyplr [165] libraries.


• A major performance pitfall in PySpark and SparkR is serializer performance. Specif-
ically, to use PySpark, we would have needed to transform our binary Avro records
into textual records that PySpark would pickle for use in Python.


• Additionally, the Spark SQL query engine [12] allows Python and R users to write query
plans that can then be optimized and executed using optimized JVM implementations
where possible. This is a contrast to Spark’s RDD API, where both records and queries
are black boxes.


While building on Spark SQL enabled cross-language support, it was not a straightfor-
ward process. Specifically, Spark SQL leveraged several Scala language features that are
incompatible with our Avro schema representation. To address this, we built automation
that translates between Spark SQL’s desired representation and Avro at compile time.
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Since translating between a Spark RDD and a Spark SQL DataFrame requires a (de)ser-
ialization pass, we introduced a scheme that we call “lazy binding” to minimize serialization
overhead. In Figure 4.1, observe that most of the core GenomicRDD types were sealed ab-
stract classes. In practice, they are all implemented using the lazy binding scheme. Figure 4.3
depicts the bound variants of the AlignmentRecordRDD type. In this scheme, we track
whether the last transformation applied to the GenomicRDD was applied to the DataFrame
or RDD representation of the genomic data. The next phase of computation will run on
top of the bound output of the prior stage. Avoiding a conversion between the RDD and
SQL DataFrame representations can provide a major performance win when running Spark
SQL queries, as the Spark SQL query optimizer performs major optimizations to amortize
the method call overhead of chained transformations [12]. A further optimization deals with
loading data from Apache Parquet. While data that is being loaded from legacy file formats
like BAM or VCF must be loaded as an RDD, Parquet can be loaded as either an RDD or
DataFrame, and Spark SQL can make further optimizations if it knows that it is loading data
from Parquet. To handle this, we added the “unbound” GenomicRDD. This datatype does
not bind to the RDD or DataFrame representation of a Parquet table until a transformation
is invoked. We believe that there are further opportunities to extend lazy binding to legacy
genomic file formats, which we discuss in §10.1.
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Figure 4.2: A UML diagram showing the dependencies and structure of the ADAM schemas.
ADAM’s read schema is fairly flat, which contrasts with the other schemas which employ
nesting. The variant and feature schemas are deeply nested. This allows both rich annota-
tion and the definition of the complex feature hierarchies necessary for describing genomic
annotations [49].
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AlignmentRecordRDD


ParquetUnboundAlignmentRecordRDD RDDBoundAlignmentRecordRDD DatasetBoundAlignmentRecordRDD


Figure 4.3: With the move to support Spark SQL, we added a binding scheme to the Ge-
nomicRDD hierarchy. This figure depicts the alternative bindings available for the Align-
mentRecordRDD, which is representative of the core GenomicRDD types. The dotted lines
around the concrete implementations of the abstract AlignmentRecordRDD class signify
that these classes are protected and cannot be instantiated outside of the ADAM library.
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Part III


Algorithms and Tools
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Chapter 5


Automatic Parallelization of Legacy
Tools with Cannoli


While ADAM provides a general API for implementing genomic analyses using Apache
Spark, we will never be able to fully eliminate single node tools from genomic workflows.
Beyond the small set of tools discussed in §2.3, the majority of genomics tools are designed
to run on a single node. Additionally, due to memory access and allocation patterns, tools
like aligners pay a steep performance penalty when moving from C/C++ to the JVM. An
example of this is the SNAP aligner, which was originally written on Apache Spark, before
being rewritten in C++ for performance [171]. Finally, while it is possible to reimplement
common genomic analyses like variant calling using ADAM, it is not feasible to do this across
the hundreds of extant genomic analyses.


As discussed in §2.3, there are many tools that provide customized solutions to this prob-
lem. The GATK’s Queue engine [44] could be used to run the GATK in parallel, and the
FreeBayes variant caller [58] can be run in parallel through the SpeedSeq pipeline [29]. Ad-
ditionally, a variety of tools are parallelized by Hadoop-ecosystem wrappers. These include
tools like the Seal tool which parallelizes BWA using Pydoop [81, 121], Rail-RNA [108], which
was built on top of Hadoop, and tools built on top of Hadoop Streaming like CrossBow [77]
for SNP calling and Cloudburst [133] for alignment. Additionally, several tools have built
on top of Apache Spark, including CloudScale-BWAMEM [27] and BWASpark [4].


Instead of expecting developers to create a proliferation of custom wrappers for paral-
lelizing tools on distributed analysis systems, we should build a general infrastructure to
automatic this process. Since many genomics tools are built around a streaming paradigm,
if we can provide automated chunking, process setup, distribution of reference files, and
streaming data, we should be able to automatically parallelize a large number of genomic
analysis tools.


In this chapter, we introduce a two part architecture for automatically parallelizing ge-
nomic analyis tools. First, we describe ADAM’s pipe API, which performs the automated
chunking, resource distribution, and process coordination. Then, we describe the Cannoli
tool, which contains wrappers for a set of common genomic analysis tools. This approach
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is general but not universal: while the pipe API can be used to parallelize the majority of
analysis steps, it cannot be used for tools that require an all-reduce. All-reduce patterns
are found in RNA-seq quantification tools like Kallisto [22] or Salmon [118], or tools that
perform a global normalization, like the XHMM copy number variant caller [57]. However,
this approach works well for tools whose computation can be described as mapping over
unaligned reads, or mapping over data aligned to a genomic locus range.


5.1 Accommodating Single-node Tools in ADAM
With the Pipe API


The pipe API is an API in ADAM that provides a simple mechanism for automatically
parallelizing a command across a cluster running Apache Spark. The user specifies the
command to be run, files that need to be distributed to each worker running the command,
and any environment settings that are needed. ADAM then uses the attached genomic
reference metadata (see §4.2) to infer the proper partitioning to apply to the data, partitions
the data, and runs the user specified command. The input format to provide to the command
and the output format to expect from the command is determined at compile-time in Scala
and at runtime in R and Python.


Load and 
partition 


data


Save data 
or use in 


next 
pipeline 


step


worker


InFormatter OutFormatterLegacy tool 
instance


Figure 5.1: The implementation of the pipe API.


Figure 5.1 illustrates how the pipe API is executed by ADAM. The pipe implementation
starts by checking the genome reference metadata (see §4.2) to see if the dataset is aligned to
a reference genome. If the data is not aligned, then we assume that no specific partitioning
scheme is needed, and skip repartitioning. If the data is aligned, then we use the partitioner
used in the region join implementation (see §4.3) to chunk the data into partitions that
represent contiguous blocks of the reference genome. After the partitioning phase, we open
a subprocess per partition that is running the user specified command, and connect streams
to the standard in and out pipes of the running process.
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To handle a wide variety of file formats, we have abstracted the I/O subsystem into
“formatters.” We use the formatters to encode/decode the data going to and from the
running process:


• To create the input for the running process, we use the InFormatter trait. This trait
receives an iterator over a single partition of a GenomicRDD, and encodes that iterator
into the format that the running process is expecting. Each implementation of the
InFormatter trait is required to also implement the InFormatterCompanion trait, which
defines a singleton object that can create an instance of the class. This pattern is
necessary to expose the metadata stored in a GenomicRDD to the InFormatter by
guaranting that there will be a static method that can build an InFormatter with
access to the metadata stored in a GenomicRDD. This approach is necessary since
Scala cannot guarantee that each implementation of a trait provides a constructor
with a given type signature, and we need metadata to construct properly formatted
BAM and VCF streams. The InFormatter runs asynchronously in a new thread.


• To read the data from the running process, we use the OutFormatter trait. This trait
decodes the output of an invocation of the running process and creates an iterator. The
OutFormatter does not need access to the metadata from a GenomicRDD, so we do
not need an OutFormatterCompanion trait. The OutFormatter is run synchronously
in the thread that called the process. The OutFormatter provides an iterator so that
we can leverage Apache Spark’s pulling model, which limits the number of records that
must be materialized into memory at a given instant.


This API allows for a very concise, yet general framework. With the formatter pattern,
we can support a broad range of formats while exposing a very simple API to the user. Specif-
ically, we can pipe sequence fragments as interleaved FASTQ, reads as SAM/BAM/CRAM,
variants/genotypes as VCF, and features as BED/GTF/GFF2/GFF3/IntervalList/Narrow-
Peak. If a program needs reference files to be available locally on each node, they can achieve
this by passing an array containing the URLs of each file. We use an internal Apache Spark
API to copy these files locally on each machine. Along with this, we provide a simple syntax
that allows the user to symbolically add the local path to this file into their command, which
we know at runtime.


To demonstrate how concise the API is, Listings 5.1 and 5.2 demonstrate how to use the
pipe API to call BWA [86] from Python and FreeBayes [58] from R.


Listing 5.1: Calling BWA using the Python pipe API


from bdgenomics.adam.adamContext import ADAMContext


ac = ADAMContext(sc)


reads = ac.loadAlignments("reads.fastq").toFragments()
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alignedReads = reads.pipe(


"bwa mem -t 1 -p /data/hs38DH.fa -",


"org.bdgenomics.adam.fragments.InterleavedFASTQInFormatter",


"org.bdgenomics.adam.rdd.read.AnySAMOutFormatter",


"org.bdgenomics.adam.api.java.FragmentsToAlignmentRecordsConverter")


Listing 5.2: Calling FreeBayes using the R pipe API


library(bdg.adam)


ac <- ADAMContext(sparkR.session())


reads <- loadAlignments(ac, "alignments.bam")


variants <- pipe(reads,


"freebayes --fasta-reference /data/hs38DH.fa --stdin",


"org.bdgenomics.adam.rdd.read.BAMInFormatter",


"org.bdgenomics.adam.rdd.variant.VCFOutFormatter",


"org.bdgenomics.adam.api.AlignmentRecordsToVariantContextsConverter")


In both examples, the user can run the parallelized tool with less than five lines of code.
We believe that the power of this API lies in its simplicity. With a minimal API, we can
replace the manual sharding that was historically implemented using workflow management
systems [44, 29] or custom wrappers [77, 133, 121, 108]. Since this API is built in the query
layer of the ADAM stack, it can run independent of both the file format used to save the data
and the storage system used to store the data. This latter point is a significant improvement
over workflow systems that expect a shared POSIX file system, as these systems often use
indexed range queries into a file to perform sharding [29]. Range queries are di�cult to
apply generally on a cloud file store like S3, as the tool being run in parallel must be able
to natively query the cloud file system. Additionally, this approach makes it possible to
integrate a command line program into a larger programmatic workflow. We discuss a
possible use case that would leverage this pattern in §10.2.


5.2 Packaging Parallelized Single-node Tools in
Cannoli


To make the automated parallelization of the pipe API more accessible to users, we in-
troduced the Cannoli tool, which provides a command line interface (CLI) for executing
common tools using the pipe API. Our goals were to provide a minimal wrapper around the
pipe API that would:


• Allow the user to use reference files that were already present locally on all nodes in
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the cluster, or automatically distribute the necessary reference files to all nodes.


• Support running the tool from a locally installed executable or a Docker container, as
Docker is becoming a widely used method for distributing pre-built genomic analysis
tools [160].


To support switching between these modes, we have control logic that parses out the
arguments passed to the CLI. If the user has requested that we distribute all of the files
to the workers, we then elaborate out the paths needed by the tool and add the files to
the pipe call. We elaborate the paths because many tools that require prebuilt resources
use a multitude of resource files that are all at a base path. For example, BWA [86] uses
seven index files, SNAP [171] uses four index files, and SnpE↵ [34] uses a large directory
of resource files. If the user has requested to run the tool via a Docker container, we then
ensure that the directory containing the distributed index files are accessible within the
container. Currently, we support a list of tools including but not limited to BWA, SNAP,
and Bowtie2 [78] for alignment; FreeBayes [58] and mpileup [82] for variant calling; and
SnpE↵ and BEDTools [125] for annotation.
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Chapter 6


Scalable Alignment Preprocessing
with ADAM


In ADAM, we have implemented the three most commonly used pre-processing stages from
the GATK pipeline [44]. In this section, we describe the stages that we have implemented,
and the techniques we have used to improve performance and accuracy when running on a
distributed system. These pre-processing stages include:


1. Duplicate marking: During the process of preparing DNA for sequencing, reads are
duplicated erroneously during the sample preparation and polymerase chain reaction
stages. Detection of duplicate reads requires matching all reads by their position and
orientation after read alignment. Reads with identical position and orientation are
assumed to be duplicates. When a group of duplicate reads is found, each read is
scored, and all but the highest quality read are marked as duplicates.


We have validated our duplicate removal code against Picard [150], which is used
by the GATK for Marking Duplicates. Our implementation is fully concordant with
the Picard/GATK duplicate removal engine, except we are able to perform duplicate
marking for read pairs whose reads align to di↵erent reference chromosomes (known as
chimeric read pairs, see Li, et al. [87]). Specifically, because Picard’s traversal engine is
restricted to processing linearly sorted alignments, Picard mishandles these alignments.
Since our engine is not constrained by the underlying layout of data on disk, we are
able to properly handle chimeric read pairs.


2. Local realignment: In local realignment, we correct areas where variant alleles cause
reads to be locally misaligned from the reference genome. Local misalignments are
typically caused by the presence of insertion/deletion (INDEL) variants [44]. In this
algorithm, we first identify regions as targets for realignment. In the GATK, this
identification is done by traversing sorted read alignments. In our implementation,
we fold over partitions where we generate targets, and then we merge the tree of
targets. This process allows us to eliminate the data shu✏e needed to achieve the
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sorted ordering. As part of this fold, we must compute the convex hull of overlapping
regions in parallel. We discuss this in more detail later in this section.


After we have generated the targets, we associate reads to the overlapping target, if one
exists. After associating reads to realignment targets, we run a heuristic realignment
algorithm that works by minimizing the quality-score weighted number of bases that
mismatch against the reference.


3. Base Quality Score Recalibration: During the sequencing process, systemic errors
occur that lead to the incorrect assignment of base quality scores. In this step, we
label each base that we have sequenced with an error covariate. For each covariate,
we count the total number of bases that we saw, as well as the total number of bases
within the covariate that do not match the reference genome. From this data, we
apply a correction by estimating the error probability for each set of covariates under
a beta-binomial model with uniform prior.


We have validated the concordance of our BQSR implementation against the GATK.
Across both tools, only 5000 of the ⇠180B bases (< 0.0001%) in the high-coverage
NA12878 genome dataset di↵er. After investigating this discrepancy, we have deter-
mined that this is due to an error in the GATK, where paired-end reads are mishandled
if the two reads in the pair overlap.


In the rest of this section, we discuss the high level implementations of these algorithms.


6.1 BQSR Implementation


Base quality score recalibration seeks to identify and correct correlated errors in base quality
score estimates. At a high level, we associate sequenced bases with possible error covariates,
and estimate the true error rate of this covariate. Once the true error rate of all covariates
has been estimated, we then apply the corrected covariate.


The original BQSR engine in ADAM was generic and placed no limitations on the number
or type of covariates that could be applied. A covariate describes a parameter space where
variation in the covariate parameter may be correlated with a sequencing error. However,
supporting generic covariates reduced the throughput of the recalibration engine, and we
found that recalibration was generally run with two specified covariates. Currently, we
support two covariates that map to common sequencing errors [106]:


• CycleCovariate: This covariate expresses which cycle the base was sequenced in. Read
errors are known to occur most frequently at the start or end of reads. Additionally, a
reagent error can occur in a way that corrupts bases from a single cycle.


• DinucCovariate: This covariate covers biases due to the sequence context surrounding
a site. The two-mer ending at the sequenced base is used as the covariate parameter
value.
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These covariates are calculated for each sequenced base. We then merge the covariates
into a CovariateKey, which also includes the read group that the sample was from (see §4.2)
and the quality score assigned to the base. To generate the covariate observation table, we
aggregate together the number of observed and error bases per covariate. Algorithms 3 and
4 demonstrate this process. In Algorithm 3, the Observation class stores the number of bases
seen and the number of errors seen. For example, Observation(1, 1) creates an Observation
object that has seen one base, which was an erroneous base.


Algorithm 3 Emit Observed Covariates
read the read to observe
covariates covariates to use for recalibration
sites sites of known variation
observations ;
for base 2 read do
covariate identifyCovariate(base)
if isUnknownSNP(base, sites) then
observation Observation(1, 1)


else
observation Observation(1, 0)


end if
observations.append((covariate, observation))


end for
return observations


Algorithm 4 Create Covariate Table
reads input dataset
covariates covariates to use for recalibration
sites known variant sites
sites.broadcast()
observations reads.map(read) emitObservations(read, covariates, sites))
table observations.reduceByKey(merge)
return table


Originally, Algorithm 4 was implemented by running an aggregate where we merged all
of the disparate covariates into the table at each step. By restricting the BQSR engine to
two covariates, we achieved several performance optimizations:


• By hard-coding the types of covariates we used, we reduced the cost of identifying
whether two CovariateKey objects represented the same covariate.
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• Additionally, hard-coding the covariates greatly reduced the size of the CovariateKey
object in memory, which allows us to achieve higher cache hit rates when caching the
output of the first stage of BQSR.


• Merging the two base observations originally required updating and merging the new
and old Observation values. By rewriting as a reduceByKey, we were able to eliminate
the need for mutable objects. We did not move this codepath to Spark SQL, since this
refactor predated the introduction of Spark SQL support into ADAM. However, this
is a straightforward modification.


• In the process of rewriting the CovariateKey representation, we optimized the imple-
mentation of the code that assigned dinucleotide and cycle covariates to a given base.
This yielded a 2⇥ speedup when creating covariates.


Once we have computed the observations that correspond to each covariate, we estimate
the observed base quality using equation (6.1). This represents a Bayesian model of the
mismatch probability with Binomial likelihood and a Beta(1, 1) prior.


E(Perr|cov) = #errors(cov) + 1


#observations(cov) + 2
(6.1)


After these probabilities are estimated, we go back across the input read dataset and
reconstruct the quality scores of the read by using the covariate assigned to the read to
look into the covariate table. However, this process is expensive if implemented näıvely. To
handle covariate specific errors, we use the hierarchical model from the GATK [44]. In this
model, we generate the empirical quality of a CovariateKey by hierarchically computing the
empirical error rates for the covariate groups that it falls into. We treat the read group
as the highest order covariate, then the quality score, and then the two error covariates.
Algorithm 5 demonstrates this approach.


Algorithm 5 Inverting an element in the covariate table
key  covariate key to invert
global  the empirical quality of this read group
qualities the empirical qualities of bases with a given quality score
dinucs the empirical qualities of bases with a given context
cycles the empirical qualities of bases at a given cycle
p
1


 compensate(key.quality, global)
p
2


 compensate(p
1


, qualities(key.quality)
dd  delta(p


2


, dinucs(key.dinuc))
dc  delta(p


2


, cycles(key.cycle))
return p


2


+ dd + dc


In the original BQSR implementation, this inversion would be called on every read base.
This is ine�cient, as the empirical quality is equal across all bases from a given Covari-
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ateKey. We eliminated this by inverting all covariates after all of the observations had been
collected. Then, evaluating the new empirical quality score for a base assigned to a covariate
was performed by looking up the covariate key in a hash map, which is computationally
inexpensive.


6.2 Indel Realignment Implementation


Although global alignment will frequently succeed at aligning reads to the proper region
of the genome, the local alignment of the read may be incorrect. Specifically, the error
models used by aligners may penalize local alignments containing INDELs more than a local
alignment that converts the alignment to a series of mismatches. To correct for this, we
perform local realignment of the reads against consensus sequences in a three step process.
In the first step, we identify candidate sites that have evidence of an insertion or deletion.
We then compute the convex hull of these candidate sites, to determine the windows we
need to realign over. After these regions are identified, we generate candidate haplotype
sequences, and realign reads to minimize the overall quantity of mismatches in the region.


Realignment Target Identification


To identify target regions for realignment, we simply map across all the reads. If a read
contains INDEL evidence, we then emit a region corresponding to the region covered by
that read.


Convex-Hull Finding


Once we have identified the target realignment regions, we must then find the maximal
convex hulls across the set of regions. For a set R of regions, we define a maximal convex
hull as the largest region r̂ that satisfies the following properties:


r̂ = [ri2 ˆRri (6.2)


r̂ \ ri 6= ;, 8ri 2 R̂ (6.3)


R̂ ⇢ R (6.4)


In our problem, we seek to find all of the maximal convex hulls, given a set of regions. For
genomics, the convexity constraint described by equation (6.2) is trivial to check: specifically,
the genome is assembled out of reference contigs that define disparate 1-D coordinate spaces.
If two regions exist on di↵erent contigs, they are known not to overlap. If two regions are on
a single contig, we simply check to see if they overlap on that contig’s 1-D coordinate plane.


Given this realization, we can define Algorithm 6, which is a data parallel algorithm for
finding the maximal convex hulls that describe a genomic dataset.
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Algorithm 6 Find Convex Hulls in Parallel
data input dataset
regions data.map(data)generateTarget(data))
regions regions.sort()
hulls regions.fold(r


1


, r
2


) mergeTargetSets(r
1


, r
2


))
return hulls


The generateTarget function projects each datapoint into a Red-Black tree that contains
a single region. The performance of the fold depends on the e�ciency of the merge function.
We achieve e�cient merges with the tail-call recursive mergeTargetSets function that is
described in Algorithm 7.


Algorithm 7 Merge Hull Sets
first first target set to merge
second second target set to merge


Require: first and second are sorted
if first = ; ^ second = ; then
return ;


else if first = ; then
return second


else if second = ; then
return first


else
if last(first) \ head(second) = ; then
return first + second


else
mergeItem (last(first) [ head(second))
mergeSet allButLast(first) [mergeItem
trimSecond allButFirst(second)
return mergeTargetSets(mergeSet, trimSecond)


end if
end if


The set returned by this function is used as an index for mapping reads directly to
realignment targets.


Candidate Generation and Realignment


Once we have generated the target set, we map across all the reads and check to see if the
read overlaps a realignment target. We then group together all reads that map to a given
realignment target; reads that don’t map to a target are randomly assigned to a “null”
target. We do not attempt realignment for reads mapped to null targets.
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To process non-null targets, we must first generate candidate haplotypes to realign
against. We support several processes for generating these consensus sequences:


• Use known INDELs : Here, we use known variants that were provided by the user to
generate consensus sequences. These are typically derived from a source of common
variants such as dbSNP [136].


• Generate consensuses from reads : In this process, we take all INDELs that are con-
tained in the alignment of a read in this target region.


• Generate consensuses using Smith-Waterman: With this method, we take all reads
that were aligned in the region and perform an exact Smith-Waterman alignment [141]
against the reference in this site. We then take the INDELs that were observed in
these realignments as possible consensuses.


From these consensuses, we generate new haplotypes by inserting the INDEL consensus
into the reference sequence of the region. Per haplotype, we then take each read and compute
the quality score weighted Hamming edit distance of the read placed at each site in the
consensus sequence. We then take the minimum quality score weighted edit versus the
consensus sequence and the reference genome. We aggregate these scores together for all
reads against this consensus sequence. Given a consensus sequence c, a reference sequence
R, and a set of reads r, we calculate this score using equation (6.5).


qi,j =


lriX


k=0


QkI[rI(k) = c(j + k)]8ri 2 R, j 2 {0, . . . , lc � lri} (6.5)


qi,R =


lriX


k=0


QkI[rI(k) = c(j + k)]8ri 2 R, j = pos(ri|R) (6.6)


qi = min(qi,R, min
j2{0,...,lc�lri}


qi,j) (6.7)


qc =
X


ri2r
qi (6.8)


In (6.5), s(i) denotes the base at position i of sequence s, and ls denotes the length
of sequence s. We pick the consensus sequence that minimizes the qc value. To im-
prove performance, in the qi,j calculation, we terminate the loop once the running sumPlri


k=0


QkI[rI(k) = c(j + k)] is larger than the prior mini qi,j. If the chosen consensus has
a log-odds ratio (LOD) that is greater than 5.0 with respect to the reference, we realign
the reads. This is done by recomputing the CIGAR and MDTag for each new alignment.
Realigned reads have their mapping quality score increased by 10 in the Phred scale.
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6.3 Duplicate Marking Implementation


Reads may be duplicated during sequencing, either due to clonal duplication via PCR before
sequencing, or due to optical duplication while on the sequencer. To identify duplicated
reads, we apply a heuristic algorithm that looks at read fragments that have a consistent
mapping signature. First, we bucket together reads that are from the same sequenced frag-
ment by grouping reads together on the basis of read name and record group. Per read
bucket, we then identify the 5’ mapping positions of the primarily aligned reads. We mark
as duplicates all read pairs that have the same pair alignment locations, and all unpaired
reads that map to the same sites. Only the highest scoring read/read pair is kept, where the
score is the sum of all quality scores in the read that are greater than 15.


To eliminate a shu✏e, we leveraged an insight from SAMBLASTER [52], which runs
directly on the output of an aligner, that will group all reads from a single fragment to-
gether (also known as query grouped). The fragment schema introduced in §4.2 describes a
set of query grouped reads, and is equivalent to the output of the step in duplicate marking
that groups reads by read name. When reads are grouped by sequencing fragment, we can
eliminate a shu✏e. Fragment-grouped reads are found when loading reads from a query
grouped SAM/BAM/CRAM file, or when running on the output of reads aligned using
Cannoli.
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Chapter 7


Rapid Variant Calling with Avocado


This chapter introduces Avocado, a substitution and short INDEL variant caller that is built
natively on top of the ADAM APIs. For highest accuracy, Avocado is run as a two phase
tool. In the first phase, we reassemble or realign our reads around INDEL variants. In the
second phase, we apply a probabilistic model built around a biallelic model to the reads to
identify variants.


Avocado’s INDEL reassembly process cleans up all reads that are aligned near INDEL
variants. We do this as a two step process. In the first step, we pass over all the reads and use
our novel indexed de Bruijn algorithm to extract and canonicalize all of the INDEL variants.
For best accuracy, we use the ADAM INDEL realigner described in §6.2 to realign known
INDELs. This approach improves variant calling accuracy over solely using the indexed
de Bruijn algorithm. After realigning the INDELs, we run genotyping. In this phase, we
discover all SNVs and INDELs, score them using the reads, and emit either called variants
or genotype likelihoods in genome VCF (gVCF) format. Genotyping is a four step process:


1. We extract all variants from the aligned reads by parsing the alignments.


2. Using these variants, we compute all read/variant overlaps, and compute the likelihood
that each read represents a given variant that it overlaps. In gVCF mode, we also
calculate the likelihood of the reference allele at all locations covered by a read.


3. We merge all of the per-read likelihoods per variant. Aggregating the per-read likeli-
hoods gives us the final genotype likelihoods per each variant.


4. Finally, we apply a standard set of hard filters to each variant.


All of these stages are implemented as a parallel application that runs on top of Apache
Spark [173, 172] using the ADAM library [93, 112].
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7.1 INDEL Reassembly


As opposed to traditional realignment based approaches, we canonicalize INDELs in the
reads by looking for bubbles flanked by read versus reference sequence matches. In a colored
de Bruijn graph, a bubble refers to a location where the graph diverges between two samples.
We demonstrate how we can use the reconvergence of the de Bruijn graph in the flanking
sequence around a bubble to define provably canonical alignments of the bubble between
two sequences. For a colored de Bruijn graph containing reads and the reference genome,
this allows us to canonically express INDEL variants in the reads against the reference. We
then show how this approach can be implemented e�ciently without building a de Bruijn
graph per read, or even adding each read to a de Bruijn graph. Once we have extracted
a canonical set of INDELs, we realign the reads to each INDEL sequence using ADAM’s
INDEL realigner, in known INDELs mode. For a full description of the INDEL realignment
process, see §6.2.


Preliminaries


Our method relies on an indexed de Bruijn graph, which is a slight extension of the colored
de Bruijn graph [68]. Specifically, each k-mer in an indexed de Bruijn graph knows which
sequence position (index) it came from in its underlying read/sequence. To construct an
indexed de Bruijn graph, we start with the traditional formulation of a de Brujin graph for
sequence assembly:


Definition 1 (de Bruijn Graph). A de Bruijn graph describes the observed transitions be-
tween adjacent k-mers in a sequence. Each k-mer s represents a k-length string, with a k�1
length prefix given by prefix(s) and a length 1 su�x given by su�x(s). We place a directed
edge (!) from k-mer s


1


to k-mer s
2


if prefix(s
1


){1,k�2} + su�x(s
1


) = prefix(s
2


).


Now, suppose we have n sequences S
1


, . . . ,Sn. Let us assert that for each k-mer s 2 Si,
then the output of function indexi(s) is defined. This function provides us with the integer
position of s in sequence Si. Further, given two k-mers s


1


, s
2


2 Si, we can define a distance
function distancei(s1, s2) = |indexi(s1)� indexi(s2)|. To create an indexed de Bruijn graph,
we simply annotate each k-mer s with the indexi(s) value for all Si, i 2 {1, . . . , n} where
s 2 Si. This index value is trivial to log when creating the original de Bruijn graph from the
provided sequences.


Let us require that all sequences S
1


, . . . ,Sn are not repetitive, which implies that the
resulting de Bruijn graph is acyclic. If we select any two sequences Si and Sj from S


1


, . . . ,Sn


that share at least two k-mers s
1


and s
2


with common ordering (s
1


! · · · ! s
2


in both Si


and Sj), the indexed de Bruijn graph G provides several guarantees:


1. If two sequences Si and Sj share at least two k-mers s
1


and s
2


, we can provably find the
maximum edit distance d of the subsequences in Si and Sj, and bound the cost of finding
this edit distance at O(nd), where, n = max(distanceSi(s1, s2), distanceSj(s1, s2)).
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2. For many of the above subsequence pairs, we can bound the cost at O(n), and provide
canonical representations for the necessary edits,


3. O(n2) complexity is restricted to aligning the subsequences of Si and Sj that exist
before s


1


or after s
2


.


Let us focus on cases 1 and 2, where we are looking at the subsequences of Si and Sj


that are between s
1


and s
2


. A trivial case arises when both Si and Sj contain an identical
path between s


1


and s
2


(i.e., s
1


! sn ! · · · ! sn+m ! s
2


and sn+k 2 Si ^ sn+k 2 Sj8k 2
{0, . . . ,m}). Here, the subsequences are clearly identical. This determination can be made
trivially by walking from vertex s


1


to vertex s
2


with O(m) cost.
However, three distinct cases can arise whenever Si and Sj diverge between s


1


and s
2


.
For simplicity, let us assume that both paths are independent (see Definition 2). These three
cases correspond to there being either a canonical substitution edit, a canonical INDEL edit,
or a non-canonical (but known distance) edit between Si and Sj.


Definition 2 (Path Independence). Given a non-repetitive de Bruijn graph G constructed
from Si and Sj, we say that G contains independent paths between s


1


and s
2


if we can
construct two subsets S 0


i ⇢ Si,S 0
j ⇢ Sj of k-mers where si+n 2 S 0


i8n 2 {0, . . . ,mi}, si+n�1


!
si+n8n 2 {1, . . . ,mi}, sj+n 2 S 0


j8n 2 {0, . . . ,mj}, sj+n�1


! sj+n8n 2 {1, . . . ,mj}, and
s
1


! si, sj; si+mi , sj+mj ! s
2


and S 0
i


TS 0
j = ;, where mi = distanceSi(s1, s2), and mj =


distanceSj(s1, s2). This implies that the sequences Si and Sj are di↵erent between s
1


, s
2


,


We have a canonical substitution edit if mi = mj = k, where k is the k-mer size. Here,
we can prove that the edit between Si and Sj between s


1


, s
2


is a single base substitution k
letters after index(s


1


):


Proof regarding Canonical Substitution. Suppose we have two non-repetitive sequences, S 0
i


and S 0
j, each of length 2k+1. Let us construct a de Bruijn graph G, with k-mer length k. If


each sequence begins with k-mer s
1


and ends with k-mer s
2


, then that implies that the first
and last k letters of S 0


i and S 0
j are identical. If both subsequences had the same character at


position k, this would imply that both sequences were identical and therefore the two paths
between s


1


, s
2


would not be independent (Definition 2). If the two letters are di↵erent and
the subsequences are non-repetitive, each character is responsible for k previously unseen
k-mers. A substitution is the only possible explanation for the two independent k length
paths between s


1


and s
2


.


To visualize the graph corresponding to a substitution, take the two example sequences
CCACTGT and CCAATGT. These two sequences di↵er by a C $ A edit at position three.
With k-mer length k = 3, this corresponds to the graph in Figure 7.1.


If mi = k�1,mj � k or vice versa, we have a canonical INDEL edit (for convenience, we
assume that S 0


i contains the k � 1 length path). Here, we can prove that there is a mj �mi


length insertion in S 0
j relative to S 0


i, k � 1 letters after index(s
1


):
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CCA


CAC


CAA


ACT CTG


TGT


AAT ATG


Figure 7.1: Subgraph Corresponding To a Single Nucleotide Edit


Lemma 1 (Distance between k length subsequences). Indexed de Bruijn graphs naturally
provide a distance metric for k length substrings. Let us construct an indexed de Bruijn
graph G with k-mers of length k from a non-repetitive sequence S. For any two k-mers
sa, sb 2 S, sa 6= sb, the distanceS(sa, sb) metric is equal to lp + 1, where lp is the length of
the path (in k-mers) between sa and sb. Thus, k-mers with overlap of k � 1 have an edge
directly between each other (lp = 0) and a distance metric of 1. Conversely, two k-mers that
are adjacent but not overlapping in S have a distance metric of k, which implies lp = k � 1.


Proof regarding Canonical INDELs. We are given a graph G which is constructed from two
non-repetitive sequences S 0


i and S 0
j, where the only two k-mers in both S 0


i and S 0
j are s1 and s


2


and both sequences provide independent paths between s
1


and s
2


. By Lemma 1, if the path
from s


1


! · · ·! s
2


2 S 0
i has length k � 1, then S 0


i is a string of length 2k that is formed by
concatenating s


1


, s
2


. Now, let us suppose that the path from s
1


! · · ·! s
2


2 S 0
j has length


k+l�1. The first l k-mers after s
1


will introduce a l length subsequence L ⇢ S 0
j,L 6⇢ S 0


i, and
then the remaining k�1 k-mers in the path provide a transition from L to s


2


. Therefore, S 0
j


has length of 2k+ l, and is constructed by concatenating s
1


,L, s
2


. This provides a canonical
placement for the inserted sequence L in S 0


j between s
1


and s
2


.


To visualize the graph corresponding to a canonical INDEL, take the two example se-
quences CACTGT and CACCATGT. Here, we have a CA insertion after position two. With
k-mer length k = 3, this corresponds to the graph in Figure 7.2.


CAC


ACT


ACC


CTG


TGT


CCA CAT ATG


Figure 7.2: Subgraph Corresponding To a Canonical INDEL Edit


Where we have a canonical allele, the cost of computing the edit is set by the need to
walk the graph linearly from s


1


to s
2


, and is therefore O(n). However, in practice, we will see
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di↵erences that cannot be described as one of the earlier two canonical approaches. First,
let us generalize from the two above proofs: if we have two independent paths between s


1


, s
2


in the de Bruijn graph G that was constructed from Si,Sj, we can describe Si as a sequence
created by concatenating s


1


,Li, s2. This property holds true for Sj as well. The canonical
edits merely result from special cases:


• In a canonical substitution edit, lLi = lLj = 1.


• In a canonical INDEL edit, lLi = 0, lLj � 1.


Conceptually, a non-canonical edit occurs when two edits occur within k positions of each
other. In this case, we can trivially fall back on a O(nm) local alignment algorithm (e.g., a
pairwise HMM or Smith-Waterman, see Durbin, et al. [46] or Smith and Waterman [141]),
but we only need to locally realign Li against Lj, which reduces the size of the realignment
problem. However, we can further limit this bound by limiting the maximum number of
INDEL edits to d = |lLi � lLj |. This allows us to use an alignment algorithm that limits the
number of INDEL edits (e.g., Ukkonen’s algorithm [155]). By this, we can achieve O(n(d+1))
cost. Alternatively, we can decide to not further canonicalize the site, and to express it as
a combined insertion and deletion. For simplicity and performance, we use this approach in
Avocado.


Implementation


As alluded to earlier in this section, we can use this indexed de Bruijn concept to canonicalize
INDEL variants without needing to first build a de Bruijn graph. The insight behind this
observation is simple: any section of a read alignment that is an exact sequence match with
length greater than our k-mer length maps to a section of the indexed de Bruijn graph where
the read and reference paths have converged. As such, we can use these segments that are
perfect sequence matches to anchor the bubbles containing variants (areas where the read
and reference paths through the graph diverge) without first building a graph. We can
perform this process simply by parsing the CIGAR string (and MD tags) for each read [88].
We do this by:


• Iterating over each operator in the CIGAR string. We coalesce the operators into a
structure that we call an “alignment block”:


– If the operator is a sequence match (CIGAR =, or CIGAR M with MD tag
indicating an exact sequence match) that is longer than our k-mer length, we can
create an alignment block that indicates a convergence in the indexed de Bruijn
block (a sequence match block).


– If the sequence match operator is adjacent to an operator that indicates that
the read diverges from the reference (insertion, deletion, or sequence mismatch),
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we then take k bases from the start/end of the matching sequence and ap-
pend/prepend the k bases to the divergent sequence. We then create an alignment
block that indicates that the read and reference diverge, along with the two di-
verging sequences, flanked by k bases of matching sequence on each side. We call
these blocks realignment blocks.


• We then loop over each alignment block. Since the sequence match blocks are exact
sequence matches, they do not need any further processing and can be directly emitted
as a CIGAR = operator. If the block is a realignment block, we then apply the
observations from §7.1. Again, we can apply our approaches without building de
Bruijn graphs for the bubble. Specifically, both of the canonical placement rules that
we formulate in §7.1 indicate that the variant in a bubble can be recovered by trimming
any matching flanking sequence. We begin by trimming the matching sequences from
the reference and read, starting from the right, followed by the left. We then emit a
CIGAR insertion, deletion, or sequence mismatch (X) operator for this block, along
with a match operator if either side of the flanking sequence was longer than k.


This process is very e�cient, as it can be done wholly with standard string operators in
a single loop over the read. To avoid the cost of looking up the reference sequence from a
reference genome, we require that all reads are tagged with the SAM MD tag. MD tags allow
us to reconstruct the reference sequence for a bubble from the read sequence and CIGAR.


One problem with this method is that it can be misled by sequencing errors that are
proximal to a true variant. As can be seen in Chapter 8, solely using our indexed de Bruijn
algorithm to clean up INDEL alignments leads to lower accuracy than the state-of-the-art
toolkit. However, if the INDEL variant in a read that is discovered is a true variant, it is
a good candidate to be used as an input to a local realignment scheme. To implement this
approach, we used our indexed de Bruijn algorithm to canonicalize INDEL variants, and
then we used our variant discovery algorithm (see §7.2) with filtration disabled to collect all
canonical INDELs. We then fed these INDELs and our input reads into ADAM’s INDEL
realignment engine [93, 112]. This tool is based on the algorithms used in the GATK’s INDEL
realigner [44], and calculates the quality-score weighted Hamming edit distance between a
set of reads, a consensus sequence (a haplotype containing a potential INDEL variant),
and the reference sequence. If the sum weighted edit distance between the reads and the
consensus sequence represents a su�cient improvement over the sum weighted edit distance
between the reads and the reference genome, the read alignments are moved to their lowest
weighted edit distance position relative to the consensus sequence. A detailed description of
this algorithm can be found in §6.2. As seen in Chapter 8, coupling local realignment with
our INDEL canonicalization scheme improves SNP calling accuracy to comparable with the
state-of-the-art, while improving INDEL calling accuracy by 2–5%.
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7.2 Genotyping


Avocado performs genotyping as a several stage process where variants are discovered from
the input reads and filtered, joined back against the input reads, and then scored. We
use a biallelic likelihood model to score variants [82], and run all stages in parallel. Our
approach does not rely on the input reads being sorted, and as such, is not unduly impacted
by variations in coverage across the genome. This point is critical in a parallel approach,
as coverage can vary dramatically across the genome [120]. If the input reads must be
sorted, this can lead to large work imbalances between nodes in a distributed system, which
negatively impacts strong scaling. An alternative approach is to use previously known data
about genome coverage to statically partition tasks into balanced chunks [29]. Unlike the
static partitioning approach used by SpeedSeq that discards regions with very high coverage,
this allows us to call variants in regions with very high coverage. However, as is also noted
in the SpeedSeq paper [29], variant calls in these regions are likely to be caused by artifacts
in the reference genome that confound mapping and thus are uninformative or spurious, and
are hard filtered by our pipeline (see §7.2).


Variant Discovery and Overlapping


To identify a set of variants to score, we scan over all of the input reads, and generate a set
of variants per read where each variant is tagged with the mean quality score of all bases in
the read that were in this variant. We then use Apache Spark’s reduceByKey functionality
to compute the number of times each variant was observed with high quality. We do this to
discard sequence variants that were observed in a read that represent a sequencing error, and
not a true variant. By default, we set the quality needed to consider a variant observation as
high quality to Phred 18 (equivalent to a error probability of less than 0.016), and we require
that a variant is seen in at least 3 reads. To score the discovered variants, we use the overlap
join primitive introduced in §4.3 to find all of the variants that a single read overlaps. Our
implementation uses a broadcast strategy, as the set of variants to score is typically small
and this approach eliminates the work imbalance problem introduced earlier.


Genotyping Model


Once we have joined our reads against our variants, we score each read using a variant of
the biallelic genotyping model proposed by Li [82]. Our approach di↵ers in several ways:


• Due to the limited numerical precision of double-length floating point numbers, we
implement our likelihood model entirely in log space. To avoid computing logs repeat-
edly, we tabulate all the possible values of a single read’s contribution to the likelihood
of a single variant given a fixed range of base and mapping qualities.


• To handle multi-allelic sites, we decompose the likelihood model further. Specifically,
we compute the likelihood that the read supports the reference allele, the alternate
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allele under test, another observed alternate allele, or an allele that was not observed.
We can use this approach to compute the likelihood of a compound heterozygous
variant, and to make a partial no-call.


An early variant of Avocado used a strict biallelic model, but this generated incorrect
calls for compound heterozygous sites and INDEL variants. This early version of Avocado
performed the following process to score variants. For each variant, we check to see if the
read supports the variant allele. If the variant is present, we treat the read as positive
evidence supporting the variant. If the read contains the reference allele at that site, we
treat the read as evidence supporting the reference. If the read neither matches the variant
allele nor the reference, we do not use the read to calculate the genotype likelihoods, but we
do use the read to compute statistics (e.g., for calculating depth, strand bias, etc.) about
the genotyped site. This version calculated the genotype likelihood for the genotype in log
space, using Equation (7.1). Equation (7.1) is not our contribution and is reproduced from
Li [82], but in log space.


logL(g) = �mk
X


i=0


jlr(g,m� g, ✏i)
kX


i=j+1


lr(m� g, g, ✏i) (7.1)


lr(cr, ca, ✏) = logsum(log cr + log ✏, log ca + logm1(log ✏)) (7.2)


In Equation (7.1), g is the genotype state (number of reference alleles), m is the copy
number at the site, k is the total number of reads, j is the number of reads that match
the reference genome, and ✏ is the error probability of a single read base, as given by the
harmonic mean of the read’s base quality, and the read’s mapping quality, if present. The
logsum function adds two numbers that are in log space, while logm1 computes the additive
inverse of a number in log space. These functions can be implemented e�ciently while
preserving numerical stability [46]. By doing this whole calculation in log space, we can
eliminate issues caused by floating-point underflow. Additionally, since ✏ is derived from
Phred scaled quantities and is thus already in log space (base ten), while g and m � g are
constants that can be pre-converted to log space. For all sites, we also compute a reference
model that can be used in joint genotyping in a quasi-gVCF approach. Additionally, we
support a gVCF mode where all sites are scored, even if they are not covered by a putative
variant.


The new scoring model used in Avocado checks to see if the read matches the alternate
allele we are testing, the reference allele, another alternate allele that overlaps with the
allele we are testing, or none of the above. To do this, we use the “one sided” variant of
Equation (7.1), which is given in Equation (7.3).


logL(g) =
X


i=0


jlr(g,m� g, ✏i) (7.3)
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For all sites, the log sum of the one-sided likelihood of the reference allele and the one-
sided likelihood of the alternate allele under test will be equal to the value of the full biallelic
likelihood model. However, the one-sided model can also be applied to sites with more
than one alternate allele. For these sites, after computing all one-sided likelihoods, we then
calculate the combined likelihoods for each pair of alleles, and emit a genotype call that
corresponds to the highest likelihood of all admissible likelihood combinations.


We compute the likelihoods for each read in parallel. The scoring function maps over all
of the reads. For each variant covered by the read being observed, the scoring function will
emit a record that contains the mapping and base qualities, and whether the read supported
the reference allele, the alternate allele under test, another alternate allele, or no known
alleles. These records are converted into a Spark SQL DataFrame, and we join these values
against a small table containing all of the pre-computed one-sided likelihoods. We then run
an aggregation over all reads covering a given variant, for all variants in parallel. Once we
have aggregated all of the observations for a given site, we call the genotype state by taking
the genotype state with the highest likelihood. In single sample mode, we assume no prior
probability.


Variant Filtration


Once we have called variants, we pass the calls through a hard filtering engine. First, unless
we are in gVCF mode, we discard all homozygous reference calls and low quality genotype
calls (default threshold is Phred 30). Additionally, we provide several hard filters that retain
the genotype call, but mark the call as filtered. These include:


1. Quality by depth: the Phred scaled genotype quality divided by the depth at the site.
Default value is 2.0 for heterozygous variants, 1.0 for homozygous variants. The value
can be set separately for INDELs and SNPs.


2. Root-mean-square mapping quality: Default value is 30.0 for SNPs. By default, this
filter is disabled for INDELs.


3. Depth: We filter out genotype calls below a minimum depth, or above a maximum
depth. By default, the minimum depth is 10, and maximum depth is 200. This value
can be set separately for INDELs and SNPs.
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Part IV


Evaluation
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Chapter 8


Benchmarking the ADAM Stack


In this dissertation, we have introduced ADAM, and then discussed how we parallelize single
node analyses using Cannoli, and introduced the Avocado variant caller. In this chapter, we
benchmark ADAM and our variant calling pipeline on widely used genomics datasets. We
compare to other widely used tools, and where possible, we evaluate against “ground truth”
datasets.


8.1 Benchmarking The Cannoli/ADAM/Avocado
Pipeline


To benchmark Avocado’s accuracy, we used the high coverage, PCR-free whole genome se-
quencing (WGS) run of NA12878 from the 1,000 Genomes project [2]. We chose this dataset
because NA12878 has extensive orthogonal verification data that is available through the Na-
tional Institute for Standards and Time’s (NIST’s) Genome-in-a-Bottle (GIAB) project [179],
and the high coverage (⇠ 58⇥) WGS preparation of NA12878 for the 1,000 Genomes project.
We verified our calls using the Global Alliance for Genomics and Health’s (GA4GH’s) bench-
marking suite. As our input reads are from an Illumina sequencing platform, we limited our
evaluation to variants that the GIAB’s orthogonal validation mechanism were able to observe
on an Illumina sequencing platform.


We processed the data through Avocado, the GATK’s HaplotypeCaller [44] (both GATK
3 and 4), SAMTools Mpileup/BCFtools Call [82], and FreeBayes [58]. We ran the Haplo-
typeCaller with the “Best Practices” settings, using Toil [160]. The specific commands
used are described in §11.2. Figure 8.1 contains the precision/recall curve for the variant
callers we evaluated, sweeping over variant quality. Substitution and INDEL variants have
been separated into di↵erent charts. As is evident from the chart, all variant callers perform
comparably on substitution variants. For INDEL variants, the GATK outperforms Avocado,
and SAMTools provides significantly worse results.


Table 8.1 summarizes the precision and recall values across the whole dataset. This table
also contains the runtime when running on a single node. To run Avocado on a single node,
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Figure 8.1: Precision/Recall curves for SNP and INDEL calling.


we ran Avocado on a cluster configured with a single Spark executor. Each experiment was
run on a 32-core node. Both FreeBayes and SAMTools are implemented as single-threaded
applications, but with support for e�ciently reading a subset of an indexed BAM file. To run
these applications in parallel on a single node, we used the GNU Parallel utility, as described
in §11.2. This is similar in methodology to the freebayes-parallel script which is packaged
with FreeBayes. However, we were not able to successfully run the freebayes-parallel script
on our cluster.


Table 8.1: Accuracy on NA12878


GATK3 Avocado Mpileup FreeBayes


SNP Recall 99.9% 99.6% 96.8% 99.8%
SNP Precision 99.0% 99.0% 98.9% 98.3%
INDEL Recall 99.2% 96.1% 80.4% 97.0%
INDEL Precision 98.6% 95.3% 64.4% 97.4%
Single Node Runtime 35h49m 7h11m 3h56 11h58


While Avocado is not as accurate as the GATK’s HaplotypeCaller, it is faster by approx-
imately 5⇥. A more interesting tradeo↵ is between Avocado and FreeBayes, as FreeBayes
is closer to the GATK in terms of INDEL calling accuracy, and both tools have comparable
SNP calling accuracy. FreeBayes is approximately 1.7⇥ slower than Avocado, but this figure
does not include the time cost of running ADAM’s INDEL realigner, which adds 6h36m of
runtime to the cost of running Avocado. This means that the cumulative ADAM/Avocado
pipeline takes 13h47m to run, which is slightly slower than FreeBayes. We did not include
the GATK4 in Table 8.1 because of an issue with exporting to VCF that caused bands of
records to be lost, which falsely reduced recall. The precision of the GATK4’s Haplotype-
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Caller is comparable to the GATK3’s HaplotypeCaller, with a 98.9% SNP calling precision
and a 98.4% INDEL calling precision.


8.2 Parallel E�ciency and Strong Scaling


To test the e�ciency of ADAM’s implementations of the various algorithms that are used
in our variant calling pipeline, we ran the strong scaling experiment depicted in Figure 8.2.
In this experiment, we used the high coverage genome from the previous section. We held
the executor configuration constant, and stepped from one to four executors before doubling
until we reached 32 executors. This represented slightly more parallelism than we could
obtain with our input dataset, which maxes out at a paralellism of 935 tasks with our
default configuration.


Figure 8.2: Speedup achieved when scaling the number of nodes used to process data for a
fixed input size.


In general, most of the algorithms in ADAM and Avocado scale linearly as the amount
of compute resources is increased. The significant exception is BQSR, which is explained by
the large broadcast which runs during BQSR. The broadcast introduces a serial step that
runs for several minutes, as the multiple gigabyte mask table is broadcast to all of the nodes
in the cluster. Figure 8.3 further breaks these results down and compares them to the latest
implementation of these algorithms in the GATK4.


As Figure 8.3 demonstrates, ADAM’s implementations of the various algorithms in the
standard germline reads-to-variants pipeline are more performant than the same algorithms
implemented in the GATK. While it is not straightforward to compare Avocado and the
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Figure 8.3: Speedup achieved when scaling the number of nodes used to process data for
a fixed input size, broken out by algorithm and compared to the Spark implementations in
the GATK4. The GATK4 does not include an INDEL realigner. Additionally, we included
an additional duplicate marking implementation from ADAM, which further accelerates
duplicate marking by eliminating a shu✏e.


GATK’s HaplotypeCaller, since the algorithms used for genotyping are distinct, ADAM
outperforms the GATK when running equivalent implementations of BQSR (1.4⇥ speedup)
and duplicate marking (1.1⇥ speedup). To improve the performance of duplicate marking,
we added a variant of the duplicate marking algorithm that operates on reads that are
grouped by sequencing fragment. By optimizing for reads that are grouped with the other
reads from their fragment, we can eliminate the first shu✏e in duplicate marking, which
reassembles reads by read-pair. This optimization is common in duplicate markers, as paired-
end aligners will typically emit a SAM or BAM file where consecutive reads are from the
same sequencing fragment. Both Picard [150] and SAMBLASTER [52] optimize for reads
grouped by sequencing fragment.
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8.3 Evaluating Compression Techniques


In addition to ADAM’s support for conventional genomics file formats, ADAM uses the
columnar Apache Parquet [11] file format to store genomic data. Parquet is an e�cient
columnar storage system that is widely used in the analytics ecosystem, and integrates with
a variety of data management tools and query engines. Parquet provides improved storage
capacity relative to several conventional genomics data storage formats. Here, we look at
the storage cost of aligned reads, features, and variants.


Aligned Reads


In this benchmark, we have stored a copy of NA12878 aligned to the GRCh37 reference
genome using BWA. We store this genome in BAM, CRAM, and ADAM, using the de-
fault lossless compression settings for each. BAM and CRAM files were generated using
htslib. This read file was sequenced at approximately 60x coverage across the whole genome.
Figure 8.4 contains the file sizes for each of these formats.


Figure 8.4: Storage cost of a 60x coverage WGS aligned dataset.


ADAM provides a 20% improvement in storage size over BAM, while CRAM achieves a
43% improvement in storage cost. While CRAM achieves a higher compression ratio, CRAM
uses reference-based compression techniques that minimize the amount of data stored on disk.
This improved compression comes at the cost of 2–3⇥ slower encoding performance [59].


Features


Here, we benchmark both the GFF3 and BED formats. Figure 8.5 contains a comparison
between GFF3 and Parquet, using the ENSEMBL GRCh38 genome annotation file. GFF3
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is used to store functional annotations on the reference genome. Figure 8.6 contains a
comparison between BED and Parquet. BED is a generic file format for describing genomic
“features”, which are a set of labels or numbers attached to a genomic coordinate range.
To benchmark BED, we use genome-wide read depth coverage counts generated from the
NA12878 dataset used in the aligned read benchmarks.


Figure 8.5: Storage cost of genome annotations.


Figure 8.6: Storage cost of coverage data.


For the genome annotation file, ADAM provides a 20% improvement in storage size rela-
tive to the compressed GFF file. For the coverage data, ADAM provides a 45% improvement
in storage size relative to the compressed BED file.







74


Genomic Variants


In this benchmark, we used the 1,000 Genomes phase 3 data release VCFs. Figure 8.7
compares GZIP-compressed VCF and uncompressed VCF to ADAM. Compressed VCF is
approximately 10% smaller than genotype data stored as Parquet.


Figure 8.7: Storage cost of variant data.
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Chapter 9


The Simons Genome Diversity
Dataset Recompute


To validate that ADAM could scale to a large cohort, we used Cannoli, ADAM, and Avocado
to align, preprocess, and call variants on 270 genomes from the Simons Genome Diversity
Dataset (SGDP, see Mallick et al. [91]). This dataset is comprised of high coverage (approxi-
mately 40⇥ average coverage per sample) genomes from a wide range of human populations.
We generated both SNP and short INDEL calls, as well as copy number variant (CNV) calls
using Deca [90]. We ran this evaluation on our internal cluster, which is comprised of 55
compute nodes, each with two eight-core Intel Xeon E5-2670 CPUs with 2⇥ hyperthreading,
256 GB RAM and 4TB of HDD (four 1TB 7200RPM HDDs connected via 6Gpbs SATA).
The nodes are connected by a Gigabit ethernet network. In total, this recompute took
nine days of computational time, which represents an average elapsed processing time of 48
minutes per sample.


9.1 Analysis Pipeline


To analyze the genomes in this dataset, we ran the pipeline depicted in Figure 9.1. In this
pipeline, we used Cannoli’s parallel implementation of BWA [84] to align reads before using
ADAM’s INDEL realigner, which was discussed in §6.2. To call copy number variants, we
sorted the reads, and then used Deca to compute the average coverage over 10kbp windows
in the genome. We then used Deca to call CNVs from this coverage data. The reads and
CNV calls were then fed into Avocado’s biallelic genotyper, which was described in §7.2.
Avocado was used to generate genome-VCF (gVCF) style output, where each position in the
genome is scored, even if the position does not show evidence of variation.


Originally, we had planned to run the pipeline depicted in Figure 9.2 instead. The
two pipelines perform the same processing for alignment, preprocessing, and CNV calling.
However, the two pipelines have di↵erent variant calling steps. In the original variant calling
pipeline, we planned to run variant discovery across all samples. We would then merge
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Cannoli BWA ADAM Realign INDELs


ADAM Sort


Avocado Genotype Sample


DECA Coverage DECA Call CNVs


Figure 9.1: Analysis pipeline for the SGDP recompute. Filled in boxes were run jointly
across all samples.


the variants across all samples, and pass these variants as sites to call in Avocado’s variant
calling module. Our original intention was to minimize the amount of sites that needed to
be scored by only scoring variant sites. As we discuss in §9.3, this approach did not work
due to serialization limitations. Instead, we ran Avocado in gVCF mode.


Cannoli BWA ADAM Realign INDELs


ADAM Sort


Avocado Discover Variants Avocado Genotype Sample


DECA Coverage


Avocado Merge Variants Avocado Joint Genotype


DECA Call CNVs


Figure 9.2: Original analysis pipeline for the SGDP recompute. Filled in boxes were run
jointly across all samples.


The pipeline was encoded as a set of Toil [160] scripts. These scripts used native exe-
cutables of ADAM, Avocado, Cannoli, and Deca, instead of Docker containers. The scripts
are available from the BDG workflows repository [18].


9.2 Computational Characteristics


We captured traces of the cluster-wide disk and CPUmetrics for all phases of this experiment.
Figure 9.3 depicts the disk and CPU metrics for alignment, preprocessing, and the per-sample
portion of copy number variant calling, while Figure 9.4 depicts the disk and CPU metrics
for single-sample variant calling. In the disk bandwidth plots, solid dark blue represents
mean read bandwidth, solid light blue represents mean write bandwidth, and the dotted
lines represent maximum read/write bandwidth. The mean and maximum plots are both
stacked: mean write bandwidth stacks on top of mean read bandwidth, and max write
bandwidth stacks on top of max read bandwidth.


There are several notable observations from Figure 9.3. First, note that alignment has
the lowest disk bandwidth of all processing stages. This reduced use of disk bandwidth can
be attributed to two factors: alignment is largely CPU bound, and alignment is our only
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shu✏e-free phase. Since we only run INDEL realignment during preprocessing, we achieve
both high disk bandwidth (due to the shu✏es needed to identify the convex hull of targets
and needed to group reads by targets) and high CPU utilization (due to the inner loop of the
realignment process). In the coverage computation phase, we achieve high disk bandwidth,
but relatively lower CPU utilization. Note that this stage runs the per-sample sort and
coverage computation in a single phase. In this step, our resource utilization is limited by
scheduling; since the jobs are short lived (sort and coverage counting is < 5 minutes per
sample), we often wind up with cores sitting idle. As we see in the next section, we can
achieve both higher disk and CPU utilization.


Figure 9.3: Disk and CPU metrics for alignment, preprocessing, coverage computation, and
variant discovery. In the disk bandwidth plot, the solid dark blue line is the average read
bandwidth, and the solid light blue line is the average write bandwidth. The two solid lines
are stacked. The dotted dark blue line is the maximum read bandwidth, and the dotted
light blue line is the maximum write bandwidth. The two dotted lines are stacked. In the
CPU utilization plot, the di↵erent colors represent the individual nodes in our cluster.


We originally ran per-sample variant discovery at the end of the computation shown in
Figure 9.3, as we were running through the original computational workflow from Figure 9.2.
While we abandoned the results from this stage, it is instructive to look at before we examine
the results from Figure 9.4. Specifically, in the full Avocado genotyping run, we run single-
sample variant discovery before running genotyping. Variant discovery performs a rapid
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scan over the reads to identify locations where there is a putative sequence edit, and takes
approximately thirty seconds per sample. While we achieved very high read bandwidth when
running just variant discovery, we see that this is mediated when we run discovery followed
by genotyping, as the more computationally intensive genotyping phase is a substantially
larger amount of the runtime.


Figure 9.4: Disk and CPU metrics for single-sample genotyping. In the disk bandwidth plot,
the solid dark blue line is the average read bandwidth, and the solid light blue line is the
average write bandwidth. The two solid lines are stacked. The dotted dark blue line is the
maximum read bandwidth, and the dotted light blue line is the maximum write bandwidth.
The two dotted lines are stacked. In the CPU utilization plot, the di↵erent colors represent
the individual nodes in our cluster.
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9.3 Observations from Joint Variant Calling


One of the disappointing outcomes of this work was that we were unable to successfully
joint variant call the Simons Genome Diversity data in a single run. We went through three
iterations of our joint variant calling workflow:


1. Jointly discover variants, then genotype discovered variants in each sample and merge
genotype calls.


2. Run per-sample variant discovery and genotyping with a reference model at each site,
and square o↵ and merge models.


3. Run per-sample variant discovery and genotyping with a reference model at each site.
Filter discovered variants per-sample, and then merge models.


The first approach was described in Figure 9.2. In this approach, we ran variant discovery
on each sample, and then merged the discovered variants across all samples. After this,
we then ran single-sample genotyping against the jointly discovered variants. While this
approach is simplest, the number of discovered variants increases rapidly with population
size, as shown in Figure 9.5. As the number of variants increases, it is no longer tractable to
broadcast these variants, as is used in Avocado’s default variant/read intersection strategy.
While we could run a shu✏e region join instead, this approach leads to an unacceptably
large performance penalty due to skew in the reads.


Instead, we went with a gVCF-based approach. In this approach, we calculate likelihoods
for the alternate allele at each site where we have observed a possible variant, and we
calculate likelihoods for a theorized non-reference allele at all other sites in the genome. We
then identify the sites where at least one sample showed significant evidence of a variant
allele. For each site that is variant, we then collect the data for all samples, and compute
the prior probability of the site being variant, which we use to compute posteriors which
are used to finalize the genotype calls for a sample/variant pair. Running Avocado in gVCF
mode generated 10.8TB of Parquet-encoded genotypes, an average of 40GB of data per
sample. Figure 9.6 breaks down the distribution of file sizes across samples. These gVCFs
were generated at basepair resolution, which means that a likelihood was emitted for every
variant site, and every base in the genome that was covered by at least one read. If we had
generated a banded gVCF, where adjacent bases with similar quality were collapsed down
into a single record, we could have reduced the amount of data that was saved per sample
by a significant fraction.


Our initial joint genotyping implementation that ran on top of the gVCF files was de-
signed to run in a single pass over all of the samples. This approach contained three steps:


1. Identify all variants that were called in at least one sample.


2. Join these variants back against the genotypes. Wherever a sample had observed the
alternate allele, take that likelihood. If the sample had not observed the variant, but
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Figure 9.5: The number of discovered variants, as a function of the population size. While
the number of observed variants grows rapidly over the first ten samples, the growth is
roughly a�ne after that point. Once the growth becomes a�ne, each new sample contributes
approximately fifty thousand novel variants.


did have a reference model, we inferred the likelihood from the reference model. If the
sample had no reads at the site, a no-call was emitted.


3. For all of the genotypes at a single variant, we then calculated the alternate allele
frequency from the called genotypes. We generated a binomial prior from this allele
frequency, which was used with the likelihoods to calculate a posterior probability.
This posterior probability was then used to calculate the genotype quality for each
sample, and to update the called genotype if the call was changed. Additionally, we
used the posterior probabilities that no alternate allele genotypes were called across all
samples to calculate the probability that the site was variant.


Unfortunately, this approach did not work. We ran the region join using the shu✏e strat-
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Figure 9.6: The sizes of the base pair resolution gVCFs that were generated by Avocado.
While the mean file size is 40GB, we can see that the median is closer to 38GB, and that
there are a few files that are closer to 50GB in size.


egy, which generated a total shu✏e of 17TB. While writing the 17TB shu✏e succeeded, we
would encounter task failures when reading the shu✏e data due to timeouts when connecting
to the Apache Spark shu✏e manager.


As a workaround, we split this computation up into three separate jobs, where the first
and third jobs were unchanged. The second job was changed so that it would run separately
on each sample. This reduced the volume of the shu✏e during joint genotyping down to
approximately 500GB, and allowed joint genotyping to successfully run to completion. Fig-
ure 9.7 depicts the disk and processor utilization during the single sample extraction phase
(step 2), and Figure 9.8 depicts the disk and processor utilization during the final phase of
joint genotyping where genotypes were merged across all samples.


While this approach was successful in that it allowed us to finish jointly calling across
the whole cohort, it seems less than ideal as a workflow. Since we are built on top of Apache
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Figure 9.7: Disk and CPU metrics during the per-sample genotype extraction phase of
joint genotyping. In the disk bandwidth plot, the solid dark blue line is the average read
bandwidth, and the solid light blue line is the average write bandwidth. The two solid lines
are stacked. The dotted dark blue line is the maximum read bandwidth, and the dotted
light blue line is the maximum write bandwidth. The two dotted lines are stacked. In the
CPU utilization plot, the di↵erent colors represent the individual nodes in our cluster.


Spark, we should be able to handle the > 10TB shu✏e in the middle of joint genotyping.
In the intermediate term, we can work to lessen this problem by moving to a banded gVCF
model, which merges adjacent sites with similar qualities into a single gVCF record. In the
longer term, we need to identify why the shu✏e was failing, which we believe is an issue in our
cluster’s configuration, as the task failures indicated that they were encountering timeouts
when connecting to Spark’s shu✏e manager. Longer term, this problem may be obviated by
moving to an incremental joint genotyping approach, as described in §10.2.
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Figure 9.8: Disk and CPU metrics during the final stage of joint genotyping. In the disk
bandwidth plot, the solid dark blue line is the average read bandwidth, and the solid light
blue line is the average write bandwidth. The two solid lines are stacked. The dotted dark
blue line is the maximum read bandwidth, and the dotted light blue line is the maximum
write bandwidth. The two dotted lines are stacked. In the CPU utilization plot, the di↵erent
colors represent the individual nodes in our cluster.
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Part V


Conclusion and Future Work
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Chapter 10


Future Work


In this dissertation, we have articulated a set of overarching goals for ADAM and the Big Data
Genomics project. We aimed to make it easier to write genomic analyses that could be run
on large datasets using distributed computing. With these APIs, we started working on the
Avocado variant caller, with the goal of making variant calling both faster and more accurate.
From this work, we have identified several important future directions. In this section, we
will discuss possible avenues for improving query performance in ADAM by providing more
genomics specific query optimizations, extending the variant calling algorithms in Avocado,
and mapping genomics analysis tasks directly into hardware.


10.1 Further Query Optimization in ADAM


ADAM provides several interfaces that either provide genomics-specific query APIs, or that
perform a runtime optimization. These interfaces include the region join API described
in §4.3, the pipe API described in §5.1, and the lazy binding optimization described in §4.4.
We can improve the performance of the region join and pipe APIs by eliminating shu✏es
when data is already presorted. We can also improve the performance of the pipe API by
applying the lazy binding technique to the various genomic file formats. Additionally, we
discuss how we can make it easier to understand the performance of distributed code in
Apache Spark, and how we can make it easier to manipulate genomic metadata.


Preserving Sorted Knowledge in ADAM


An ine�ciency in ADAM’s region join API stems from the need to achieve an equivalent
partitioning between the two datasets being joined. We recently added functionality to
ADAM that saves metadata to disk if the dataset is being saved as a sorted table of Apache
Parquet data, with the sort order being defined lexicographically by the contig names. While
this approach can eliminate shu✏es for some joins, it has several limitations:
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• Since the region join API requires records that straddle the partition boundaries to be
replicated across the boundary, this approach only works for Apache Parquet. Con-
ceptually, we could implement this with a sharded codec, but Hadoop-BAM’s support
for sharded file formats is limited. As a result, we cannot eliminate shu✏es for data
coming in from a standard genomic file format that defines a sort order.


• Additionally, the current partitioning scheme requires a lexicographical contig ordering.
This order is inconsistent with the karyotypic ordering that is commonly used in the
bioinformatics ecosystem, and which relies on being able to specifiy the ordering of
contigs with an index.


We are working on an alternative approach that is compatible with all contig orderings
and file formats. In this in-progress approach, we have made several changes:


• Instead of replicating the records that straddle a partition boundary in the dataset
that is saved to disk, we move these records using a shu✏e-free approach. To do this,
we run a first pass that looks as the records at the start of each partition and selects all
records that need to be replicated to the end of the previous partition. These records
are then collected to the driver and appended to the ends of the partitions prior to
the join running. Since this approach doesn’t require records to be replicated, it is
compatible with all file formats.


• In the current implementation, once data is loaded as sorted, it is encoded by setting
a field that is protected to the GenomicRDD trait. This makes it more di�cult to
implement methods that can be optimized to make use of sort order. Specifically, if a
method can optimize for sort order, the method needs to check this field and select the
sorted or unsorted codepath at runtime. In the new implementation, we make sorted
and unsorted traits. If an implementation of GenomicRDD has behavior that can be
optimized for data that is known to be sorted, that implementation should provide
the optimized variant in a class that implements the sorted trait, and an unoptimized
variant in the unsorted trait.


• We drop the requirement for a lexicographic ordering, and use an indexed contig or-
dering. This supports both the lexicographic ordering that we typically use, as well as
the karyotypic ordering that is commonly used in genomics.


Beyond broadening the opportunities for eliminating a shu✏e in the region join codepath,
an additional benefit of this new approach is that it allows us to harmonize the partitioning
scheme used by the pipe API with the scheme used by the region join API. Currently, these
two schemes are not compatible because the region join’s partitioning scheme does not allow
a flanking length to be specified. In the pipe API, we allow the user to specify the width of
flanking sequence to include in each call. Since this new partitioning scheme uses a flanking
length to decide which record to copy from the start of a partition to the end of the prior
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partition, we can unify these two schemes. We have prototyped this approach, but have not
yet evaluated and critiqued this approach on read world datasets.


Lazily Binding To Genomic File Formats


An ine�ciency in the pipe API occurs when reading data from a file stored in a legacy file
format and then piping this data into a command using that same file format. An example
of this would be loading reads from a SAM file and then pipeing these reads into a variant
caller using SAM input. This redundancy is ine�cient because we wind up converting the
reads into the ADAM schema, just to convert the data back into the legacy file format.


One possible approach to eliminate this issue would be to change how we implement
the conversion/view system in ADAM. Currently, the view mechanism is implemented using
monolithic datatype conversion classes. These classes provide methods that convert a single
record from a legacy data file into ADAM’s schema records. The GATK4 [149] uses an alter-
native approach. In this approach, the GATK4 wraps the record types that it converts from
in an interface that these records then implement. The conversions are then implemented
through the methods in the wrapper classes.


Improving Debugging Capabilities for Distributed Systems


Debugging is a persistent problem in developing code that runs on distributed systems. While
much work has focused on debugging errors [7, 177] in a distributed system, we are more
interested in debugging performance anomalies. Due to the nature of genomic data, faults are
typically easy to diagnose, as the faults are localized to a set of genomic loci. These loci can
then be isolated, and used for debugging. A bigger challenge can be isolating performance
anomalies, especially since many performance anomalies may be related to complex genomic
loci. Additionally, Apache Spark’s execution model pipelines multiple transformations into
a single analysis stage [172], which can obfuscate the contribution of multiple functions to a
performance anomaly.


In ADAM, we attempted to address the latter problem through a library enhancement
that was contributed by an open source developer. In this approach, we wrap the RDD API
in a way that wraps all RDD function calls in timers. These timers are high resolution timers
and are specified at a very fine granularity (e.g., a timer might wrap a single function call
inside of a map over the RDD). Once a job runs, the statistics collected by the timers are
reported in a tabular format.


While this library is useful, it still doesn’t have a su�cient faculty for aiding in the
causal discovery of performance anomalies. One approach that would be useful would be
to time slice the statistics further, and to couple them with timewise reports of events that
indicate a performance issue, such as long or frequent GC pauses. By coupling this tool
with a performance visualizaton tool like Ganglia [94], there would be an opportunity to
visualize the instrumented performance of a method along with other indicators such as
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JVM garbage collection epochs and statistics, network/disk/memory bandwith utilization,
CPU utilization, and other performance indicators.


Additionally, it would be useful to integrate the performance instrumentation code with
the genomic locus being processed during an instrumented function invocation. This pairing
is particularly important for genomics, as many issues with work imbalance are due to
pathological regions in the genome where a repeat or a section of low-complexity sequence
cause several orders of magnitude increased coverage. It might be possible to use a statistical
model that predicts performance [158] to isolate key-specific/skew-driven performance issues.


10.2 Extensions to Avocado


There are several extensions that we would consider for the Avocado variant caller. In this
dissertation, we have discussed Avocado’s INDEL reassembly and single sample germline
genotyping methods. There is ongoing work to add more joint variant calling methods to
Avocado, such as a pedigree-aware caller (currently only supports mother/father/o↵spring
trios). In this section, we discuss support for incremental joint variant calling, tumor-normal
variant calling, and methods for merging the output of multiple variant callers.


Incremental Joint Variant Calling


In a gVCF-based joint variant calling workflow, variant discovery is done per sample, prior to
a joint genotyping phase. In discovery, gVCF files are generated that contain the likelihoods
of the reference allele at all sites in the genome, and likelihoods for alternate alleles observed
in that sample. In the joint genotyping phase, the gVCFs of all samples are then used to
generate a prior probability for the variant being called as an allele in the population. While
this process allows the expensive gVCF creation process to be done only once per sample,
the joint genotyping must be repeated every time the cohort is updated.


This calculation is unnecessarily expensive, since genotype priors are generally based
upon allele frequency and should be stable as long as the composition of the cohort remains
uniform as the cohort grows. Ideally, instead of recomputing the prior using the whole
population, we could make an update to the current prior using the new samples that we
have added. For some statistical models, there are well known techniques that can provide
provably correct approaches [135] or approximate results [99].


One possible shortcoming of the gVCF approach is that it may result in reduced sensi-
tivity when detecting INDEL variants. Specifically, for INDELs, longer variants that benefit
from realignment or reassembly may be missed. However, if these variants are later discov-
ered in a sample with strong support for the variant, we may be able to discover them in a
sample that previously called the INDEL as a negative by realigning the reads that overlap
the site. As such, we believe that it would be worth investigating this problem, either in
the context of a pipeline that discovers all INDEL variants across all samples before joint
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calling variants, or by reviewing the read evidence in every prior called sample whenever a
novel INDEL variant is observed in the cohort.


Somatic Variant Calling


Although the reassembly algorithm introduced in §7.1 can run on data that does not have
known copy number, the Avocado genotyper described in §7.2 requires known copy number
to call a variant. While this genotyping model can be used as a first step in a variant caller
that assumes a population structure, it is not compatible with somatic variant calling. In
somatic mutation calling, we are looking for the variants that appear in one sequencing run
from a sample that do not appear in another sequencing run from a sample. Typically, this
technique is used to call mutations in a tumor, and it would be desirable to support somatic
variant calling using Apache Spark. We have worked to port the Mutect [31] algorithm over
to Avocado, but have not completed this e↵ort.


One critical part of somatic variant calling is coming up with a statistical model that
addresses low allele frequency variation, which is caused by tumor subclonality. Many tools
address this by calling variants that are supported by a small number of high quality bases.
One possible way to address this issue would be with an approach that mixes contamination
estimation [32] with base quality recalibration. Specifically, we could use an advanced form
of base quality recalibration to try to capture sequence specific error models, while using
the germline variants as the known variants for masking. Then, we could use contamination
estimation to try to identify a background rate of sequence contamination. We have imple-
mented an ADAM-based variant of the ContEst [32] tool in Quinine, which is the Big Data
Genomics’ quality control tool. From here, we would need to merge these two approaches
into a novel probabilistic model.


E�cient Consensus Methods


To improve the accuracy of variant calls generated from a single set of aligned reads, some
pipelines use a consensus method [179]. In this approach, several variant callers are used,
and a variant is accepted as a true positive if multiple variant callers confidently call the
variant. While this approach can improve the accuracy of variant calling, it necessitates
running multiple variant calling pipelines and can substantially increase computational cost.


One approach that may be tractable is to use a machine learning approach to run a
limited consensus approach. A possible implementation might use a setup similar to the
GATK’s [44] variant quality score recalibration (VQSR) algorithm, which fits a Gaussian
mixture model to annotated genotypes. To do this, we would use a read dataset that has
good ground truth data, such as one of the GIAB truth sets [179]. We would then run the
variant callers that we are interested in, and annotate all the variant calls as either true or
false positives. Using the variant calling annotations on each called genotype, we would then
train a statistical model that explained when a variant caller would call a variant correctly.
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To use this model to decrease consensus calling runtime, we would use the tool that was
the most sensitive as a first pass. Once we had called variants with this tool, we would look
at all sites that appeared to be weak false positives, and would run one or more variant callers
that the trained model indicated would perform well on these sites. This approach would
also need the first variant caller to either emit a gVCF or to emit calls for all possibly variant
sites. One natural extension would be to optimize for runtime. Specifically, if two variant
callers have similar sensitivity, but one of the two variant callers achieves this sensitivity
with significantly lower runtime, we would likely want to use the faster variant caller as our
first pass tool. This representation of the problem may be more di�cult to optimize, as the
amount of time needed to call a variant may depend on the complexity of the variant and
the reads around the variant site [19].


10.3 Hardware Acceleration for Genomic Data
Processing


As we increase the I/O bandwidth that can be achieved by running many tasks in parallel
across a horizontally scalable file system, single thread performance becomes an issue. As we
have seen with the Cannoli tool, the JVM can provide good performance, but it is di�cult
to outperform C/C++ from within the JVM. However, the marginal performance gain from
moving to a lower level language is unclear. To enable an even higher performance gain,
we should consider moving to a hardware accelerator, which can be highly specialized to
our specific application patterns [13]. There has already been commercial work towards
building hardware accelerated solutions for genomic data analysis [47], as well as academic
work towards accelerating the BWA alignment algorithm [27, 28] and alignment for de novo
assembly [154].


To this end, we have been working on the Darwin project, which implements the pre-
processing algorithms introduced in Chapter 6 in a library which can be synthesized to
target both field programmable gate arrays (FPGAs) and application specific integrated cir-
cuits (ASICs). The FPGA form factor is especially desirable as commercial cloud vendors
like AWS [8] and Microsoft Azure [124] have moved to support FPGAs in the datacenter.
This library provides a 2–10⇥ performance improvement over ADAM’s read preprocessing
library. In the immediate short term, we will continue to validate the algorithms in Genie,
and will work to add variant calling.


While FPGAs hold promise for accelerating complex and computationally intensive ge-
nomic data analysis pipelines, they face the same accessibility problem as Apache Spark,
which was described in Chapter 5. To address this problem, we have used the Q100 [169]
architecture, which uses a SQL-like programming methodology to drive a high-level synthe-
sis workflow. This greatly increases the accessibility of hardware design, which is currently
restricted to people who are willing to learn a hardware description language, which typically
have programming patterns that are divergent from software design [14]. One possible direc-
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tion for future work is to use the Apache Spark SQL library to drive a high level synthesis
flow, as the SQL query captured by the query engine could be turned into synthesizable
hardware. This would make the programming model accessible to a larger group of pro-
grammers.


One significant remaining question is how to process user defined functions (UDFs) that
are specified outside of the SQL dialect. UDFs cannot typically be optimized by a query
planner [12, 73], but are critical for genomic data analysis. While the duplicate marker
and base recalibrator can be implemented in Genie with modest extensions to SQL, the
INDEL realigner is implemented as a monolithic UDF. One option is to use a dataflow
methodology [17], which would map the dataflow described by a program into hardware.
This choice would be compatible with a purely functional programming methodology that
relies on list comprehensions, which is a idiomatic programming style in the Scala [113]
language. This approach could be used to synthesize hardware from a UDF, which would
make it increasingly possible to implement genomic analysis tasks in hardware.
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Chapter 11


Conclusion


In this dissertation, we have introduced ADAM and the Big Data Genomics project. We have
then taken a deep dive into ADAM’s variant calling pipeline, which has included running
single node tools in parallel using Cannoli, read preprocessing using ADAM, and genotyping
using Avocado. After diving into our variant calling pipeline, we discussed how we validated
our pipeline on standard genomics “ground truth” datasets, and by reprocessing 270 genomes
from the Simons Genome Diversity Dataset. We have demonstrated the ability to rapidly
process a single sample using thousands of cores in a compute cluster, as we were able to
process samples at a rate of one sample per 48 minutes during the Simons Genome Diversity
recompute. Our pipeline is able to attain this latency while being competitive in accuracy
with other state-of-the-art variant calling pipelines.


As shown by Figure 11.1, the Big Data Genomics project was a major engineering un-
dertaking. Over more than four years, ADAM and the Big Data Genomics project grew
to more than 90,000 lines of code, contributed by a body of more than 75 contributors.
In the rest of this chapter, we will reflect upon ADAM’s impact, as well as the lessons
we have learned about engineering such a large-scale research system under an open-source
development model.


11.1 Impact, Adoption, and Lessons Learned


It is di�cult to assess the impact of ADAM. The two manuscripts we published about
ADAM’s architecture [93, 112] have gone on to become well-cited, and there was signif-
icant early industrial interest in ADAM as a technology, as evidenced by industrial blog
posts [55, 138], talks [40, 79], and book chapters [164, 168] that built on top of ADAM. Ad-
ditionally, ADAM was used as a driving application for performance research in distributed
systems [158] and for work at the intersection of hardware acceleration, genomics, and dis-
tributed systems [27]. However, ADAM’s adoption as a bioinformatics tool has been slow.
We believe there are several major reasons for this:


• While we delivered a performant set of read preprocessing stages early in the project,
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Figure 11.1: The total number of lines of code across the core Big Data Genomics projects
over time. This figure includes tests, but excludes test resources. Both ADAM and Avocado
are composed of multiple modules; for clarity, we have labeled all of ADAM’s modules in
di↵erent shades of red, and all of Avocado’s modules are labeled in di↵erent shades of green.


we struggled to deliver an end-to-end variant calling pipeline. This was caused by both
architectural and algorithmic limitations. As we discussed in §4.2, the original schema
designs used in ADAM caused extreme memory bloat. This memory consumption made
the ADAM preprocessing stages unstable unless we provided ADAM with an extremely
large amount of memory. To eliminate this issue, we undertook a major refactor in
the ADAM core which took approximately a year and a half to complete. Similarly in
Avocado, we made use of query patterns in Apache Spark that would materialize all of
the reads that covered a single locus in a single partition, which caused failures when
we encountered data with pathologically high coverage. To resolve this issue, we did
a ground-up rewrite of Avocado that took six months to complete. In both cases, we
were able to resolve the issues we encountered, but it came at the cost of significant
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amounts of time.


• We had an insu�cient focus on backwards-compatibility early in the project. This hurt
us in two ways. From a data ingest/egress perspective, people were hesitant to use
ADAM since they were unsure whether they could export their data back into formats
that other tools depended on. During the large refactor of the ADAM core, we focused
on data ingress/egress, and resolved the data egress compatibility issues. The second
way that we hurt ourselves was that we discarded much of the extant genomics tooling.
In the context of the variant calling pipeline, this meant that we would have needed
to develop our own Spark-based aligner as well. Over the course of the project, this
became an increasingly obvious cost, which led to the development of the pipe API,
which was introduced in Chapter 5.


• Beyond the issue of backwards compatibility with formats and tools, we chose to de-
velop ADAM in Scala, which is a language that is not widely used in bioinformatics and
which requires significant ramp-up to become productive in. We contrast this decision
against the decision to develop Toil [160] as a Python library. While the Python and R
languages are the lingua franca of bioinformatics, Scala served to dissuade developers
from our project. Once performant support for Python and R via Spark SQL emerged,
it still took over a year for us to provide Python and R APIs for ADAM. This delay
was due to the decision to use the Avro serialization library to describe our data model,
which was incompatible with the architecture that Spark SQL decided on. While we
could not have anticipated this development when we chose Avro, we did choose Avro
to provide cross-language compatibility benefits that it never delivered on.


• Finally, we did a poor job of messaging what ADAM could do. Early on, we strongly
emphasized that ADAM was a unique solution for scan-based genomic queries, i.e.,
queries that touched a whole dataset and which could not be accelerated in an obvious
way with an index. However, we did a poor job of articulating what these queries were,
why they were important, and how you would map them to ADAM.


We review the lessons learned from building ADAM in the next section. While these
were a few failings that hindered our adoption, over the last year, ADAM has seen increased
adoption in industrial settings. As discussed in the next section, we have surpassed 75 con-
tributors across the BDG project. As ADAM has matured, it has begun to drive several
genomic data warehousing use cases, such as computing read distributions across large co-
horts, or for training machine learning models across multisample datasets. Additionally,
the introduction of the pipe API has made ADAM an attractive platform for accelerating
a broad range of analyses, which has spurred the use of ADAM as a platform for deploying
multiple di↵erent aligners using cloud computing.
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Lessons Learned: Successes


Project Management: Commitment to Open Source


As we discuss in §11.1, early in the project, we made a commitment to building ADAM as
an open-source project. Over the course of the project, this led to us receiving contributions
from more than 75 developers. While many of these contributions were small—but still highly
valuable, of course!—some of the contributions were significant, such as an instrumentation
framework for tracing method-level performance in Spark jobs, performance improvements
for parsing reference genomes, and signficant code style improvements. Additionally, our
commitment to open source served as a positive marketing item for ADAM and the Big
Data Genomics project. While we greatly benefited from the open source community, we
think that we could have benefited even more. We discuss how we could have better leveraged
open source contributors later in this section.


Implementation: Compatibility


In Chapter 5, we discussed the pipe API, which allows users to seamlessly run conventional
single node genomics applications on top of Apache Spark using ADAM to manage file
formats and data distribution. The pipe API was originally developed as a quick hack to
allow us to run expensive alignment jobs on top of ADAM. In spite of the humble beginnings
of this API, it has become a significant selling point for ADAM. In retrospect, it is not
surprising that an API that automatically parallelizes single node genomics tools would
have been popular: there are many projects that have focused on parallelizing a single
tool [3, 43, 77, 121, 133]. As we discuss later in this section, had we focused earlier on simple
APIs that would have enabled greater compatibility with the broader genomics ecosystem,
ADAM would have had a greater reach.


Lessons Learned: Mistakes


Project Management: Execution and Focus


The biggest barrier to adoption for ADAM was that we failed to deliver concrete wins that
users could deploy early on in the project. When we wrote the ADAM technical report, we
had a clearly defined focus on the read preprocessing algorithms that were in the GATK,
as these were widely used kernels that were expensive to run. While these kernels were not
production-quality, we achieved performance numbers that were su�cient to validate the
architectural merit of ADAM. Instead of working to harden the implementations of these
kernels, we decided to increase the scope of the ADAM project to address a very wide range
of genomics applications.


As a result, we started a broad range of projects and interface refactors and added code
to support these projects that bloated the ADAM codebase and API. For example, we began
to work on an RNA-seq fusion transcript caller and quantification stack, utilities for pairwise
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alignment of long read datasets, and a read error corrector, while also performing a major
refactor of the schemas for representing variation data. Several of these projects wound up
not coming to fruition, and some of the major refactors to the ADAM core and schemas
were only partially completed.


In retrospect, we should have focused our e↵ort in Spring of 2014 on delivering an end-
to-end variant calling pipeline, and ensuring that we could better interoperate with legacy
bioinformatics tools. Fully concordant support for exporting data from ADAM back to
conventional bioinformatics formats did not materialize until 2016, and a pipeline to run
alignment through variant calling on ADAM did not exist until early 2017. This omission
made it impossible to use ADAM for anything other than exploratory data analysis, which
drastically limited ADAM’s utility. We would have benefited from reducing our scope down
even further. If we had chosen to build our schemas, concordant import/export to legacy
formats, and the pipe API early in the project, we could have very easily provided myriad
genomics processing pipelines that were parallelized on Apache Spark, which would have
been a great way to gain mindshare around the project.


Project Management: Positioning and Messaging


While implementing many of the algorithms that were in the GATK seemed like a logical
way to demonstrate the benefits of ADAM’s architecture, it had the e↵ect of positioning us
as a direct competitor to the GATK. While we do have many features that compete with
equivalents that are in the GATK, this diluted the message around ADAM, which was that by
choosing to properly build an architecture around schemas and clean APIs for transforming
parallel collections, we could implement complex computational kernels on large genomic
datasets using a minimal amount of code.


Simultaneously, germline variant calling has grown to be a bad space to work in. While
there are open questions around accuracy in germline variant calling [85], many bioinfor-
matics users perceive the accuracy of germline variant calls to be su�cient. Additionally,
since alignment and variant calling is one of the most computationally expensive steps in a
conventional bioinformatics pipeline, multiple companies have invested in the space. These
include the commercial software products from Microsoft [100], Sention [54], and GENAL-
ICE [122], the hardware accelerated DRAGEN genomics analysis product from Edico [47],
and the investments by AWS, Cloudera, Google, IBM, Intel, and Microsoft towards porting
the GATK4 over to Apache Spark [151]. As a relatively small team of academic researchers,
it has been di�cult to compete with the velocity and engineering expertise that well-funded
industrial teams can bring to bear.


Project Management: Collaboration and Community Management


As we discuss in §11.2, we believe that ADAM was a highly successful open source project,
as it grew from a small team of developers centered at Berkeley into a project that received
contributions from more than 75 developers. While this is true, we also could have engaged
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more productively with the community. Although we attempted to make developing on
ADAM a good experience by investing heavily in build and test infrastructure, we did a
poor job of documenting ADAM’s internals and high level APIs. Our documentation was
often insu�cient in detail, and we did a poor job of communicating how the high-level
ideals we discussed in our manuscripts mapped directly to implementation choices in code.
Additionally, while Apache Spark and Scala were powerful frameworks to build upon, they
were unfamiliar to many of our users and we invested insu�ciently in user education. While
a stream of blog posts and book chapters grew around ADAM, most of these resources were
aimed at a computer science audience instead of a bioinformatics audience. As a result,
many of our open source contributions came from computer engineers who were curious
about bioinformatics, and we struggled to gain traction with bioinformaticians since we did
not provide the appropriate materials to show them how to use ADAM’s architecture to
solve problems that were relevant to them.


Architecture: Implementation Lock-in


The principles we espoused in our architecture are fairly general, and include building trans-
formations centered around schemas instead of file formats, and having APIs that allowed
us to manipulate data in parallel on top of existing distributed systems projects. In spite
of this, we decided to tie our implementation directly to Apache Avro, Parquet, and Spark.
While this decision seemed reasonable at the time, it burned us in the long run.


The biggest example of where this caused issues was with Avro. Avro was selected
because it provided good serialization runtime, an abstract schema description language,
and cross-language support. Beyond ADAM, we pushed for the GA4GH to adopt Avro in
their schema definition project. Avro wound up being a huge problem: Avro’s cross-language
support was fairly weak in comparison to other libraries like Google’s Protocol Bu↵ers, or
Apache Thrift, which led to the GA4GH dropping Avro. Additionally, it was di�cult to
reason about the cost of data in Avro, especially when reading from Parquet. The memory
cost of a single record read from disk versus serialized over the wire would vary by up to
an order of magnitude, which precipitated the year long refactor to our schemas described
in §4.2 which resolved long term memory issues. Finally, Avro wound up being incompatible
with broader industry trends, like the introduction of Spark SQL [12], which meant that we
had to add a shim compatibility layer to work around these compatibility issues.


While neither Apache Spark nor Parquet caused such significant and persistent issues,
they were problematic at times. While Apache Spark has become a very polished project, it
has been di�cult to tune and there was a stretch where the codebase was growing too quickly,
which led to significant technical debt. This caused tensions with collaborators [129], who
wound up spending several months investigating performance problems in Spark by rewriting
their applications on other computational platforms, like Apache Hadoop MR. Additionally,
Parquet has failed at times to deliver on its promises. While Parquet is based on the
architecture used by Google’s Dremel [98] that is optimized for storing columnar data with
nested layouts, Parquet has had disappointing performance in the real world on nested data.
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At times, we have refactored schemas (especially highly nested schemas, like the Genotype
schema) to work around performance anomalies in Parquet at the cost of a worse schema
representation.


Architecture: Optimization


When defining some of ADAM’s APIs, we defined the APIs in ways that precluded us from
optimizing the query execution. An example of this is running queries that select data
aligned to a single genomic locus. Currently, users need to specify that they are loading a
subset of regions from an indexed BAM file, or they need to define a predicate to run over
data stored in Parquet. Ideally, we would have implemented this so that a user would have
provided us a region or list of regions to filter, and we would have converted that query into
predicates to push down into Parquet, or filters accelerated using the BAM index, or an
in-memory scan. We see this as a logical extension over the work-in-progress described in
§10.1, and hope to resolve this abstraction inversion in a later release of ADAM.


11.2 Big Data Genomics as an Open Source Project


While not mentioned as a design goal in Chapter 3, one of the earliest goals of ADAM was to
be a permissively licensed alternative to the GATK, which was licensed under a proprietary
license that allowed free access to the GATK for academic use only. We chose to license all
of our software under the permissive Apache 2 open source license. Throughout the project,
we always aimed to engage our community of users and developers, with an aim towards
openness of code and methods.


Figure 11.3 contains a representation of the cumulative number of commits to BDG
projects broken out by contributor. As mentioned earlier in this section, we have been able
to attract a large number of contributors to the project, but it has been di�cult to turn
many of these contributors into long term contributors to the tool. At any given point in
time, we have typically relied on a core cast of 3–5 contributors to the BDG project.


We believe that this commitment to an open source model was a significant contributor
to the success of the project. As seen in Figure 11.2, the Big Data Genomics project grew
steadily over the last five years, and has received contributions from more than 75 devel-
opers. Our engagement with the open source community has led to several major feature
contributions (e.g., the debugging features mentioned in §10.1), and has led to three separate
engineers joining our team at UC Berkeley. We see the continued movement towards open
science and open source scientific software as a huge positive force in science, and have been
glad to see projects like the GATK move to re-license themselves under an open license.
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Figure 11.2: The total number of unique contributors across core Big Data Genomics projects
over time. Contributors who have contributed to multiple projects are counted in the project
they contributed to first. While the Utils project has not been discussed extensively in this
dissertation, it contains non-genomics utility functionality that is used heavily in ADAM
and other BDG projects.
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Figure 11.3: These plots show the contribution patterns of contributors to our project. The
first plot shows the contributions to the project over time, broken out by contributor. The
plot is ordered vertically by when the user first contributed to the project; i.e., the share
starting at 0 represents Matt Massie, who was the initial committer to ADAM. The second
graph shows the number of commits that each user has contributed.
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[61] E. Georganas, A. Buluç, J. Chapman, L. Oliker, D. Rokhsar, and K. Yelick. Parallel de
Bruijn graph construction and traversal for de novo genome assembly. In Proceedings of
the International Conference for High Performance Computing, Networking, Storage
and Analysis (SC ’14), pages 437–448. IEEE Press, 2014.
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ADAM Schemas


Alignment Record Schema


Listing 1: ADAM read schema


record AlignmentRecord {


union { int, null } readInFragment = 0;


union { null, string } contigName = null;


union { null, long } start = null;


union { null, long } oldPosition = null;


union { null, long } end = null;


union { null, int } mapq = null;


union { null, string } readName = null;


union { null, string } sequence = null;


union { null, string } qual = null;


union { null, string } cigar = null;


union { null, string } oldCigar = null;


union { int, null } basesTrimmedFromStart = 0;


union { int, null } basesTrimmedFromEnd = 0;


union { boolean, null } readPaired = false;


union { boolean, null } properPair = false;


union { boolean, null } readMapped = false;


union { boolean, null } mateMapped = false;


union { boolean, null } failedVendorQualityChecks = false;


union { boolean, null } duplicateRead = false;


union { boolean, null } readNegativeStrand = false;
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union { boolean, null } mateNegativeStrand = false;


union { boolean, null } primaryAlignment = false;


union { boolean, null } secondaryAlignment = false;


union { boolean, null } supplementaryAlignment = false;


union { null, string } mismatchingPositions = null;


union { null, string } origQual = null;


union { null, string } attributes = null;


union { null, string } recordGroupName = null;


union { null, string } recordGroupSample = null;


union { null, long } mateAlignmentStart = null;


union { null, string } mateContigName = null;


union { null, long } inferredInsertSize = null;


}


Fragment Schema


Listing 2: ADAM fragment schema


record Fragment {


union { null, string } readName = null;


union { null, string } instrument = null;


union { null, string } runId = null;


union { null, int } fragmentSize = null;


array<AlignmentRecord> alignments = [];


}


Variation Schemas


Listing 3: ADAM core variant and genotype schemas


record Variant {
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union { null, string } contigName = null;


union { null, long } start = null;


union { null, long } end = null;


array<string> names = [];


union { boolean, null } splitFromMultiAllelic = false;


union { null, string } referenceAllele = null;


union { null, string } alternateAllele = null;


union { null, double } quality = null;


union { null, boolean } filtersApplied = null;


union { null, boolean } filtersPassed = null;


array<string> filtersFailed = [];


union { null, VariantAnnotation } annotation = null;


}


enum GenotypeAllele {


REF,


ALT,


OTHER_ALT,


NO_CALL


}


record Genotype {


union { null, Variant } variant = null;


union { null, string } contigName = null;


union { null, long } start = null;


union { null, long } end = null;


union { null, VariantCallingAnnotations } variantCallingAnnotations = null;


union { null, string } sampleId = null;


union { null, string } sampleDescription = null;


union { null, string } processingDescription = null;


array<GenotypeAllele> alleles = [];


union { null, float } expectedAlleleDosage = null;


union { null, int } referenceReadDepth = null;
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union { null, int } alternateReadDepth = null;


union { null, int } readDepth = null;


union { null, int } minReadDepth = null;


union { null, int } genotypeQuality = null;


array<double> genotypeLikelihoods = [];


array<double> nonReferenceLikelihoods = [];


array<int> strandBiasComponents = [];


union { boolean, null } splitFromMultiAllelic = false;


union { boolean, null } phased = false;


union { null, int } phaseSetId = null;


union { null, int } phaseQuality = null;


}


Variant Annotation Schemas


Listing 4: ADAM variant annotation schemas


record TranscriptEffect {


union { null, string } alternateAllele = null;


array<string> effects = [];


union { null, string } geneName = null;


union { null, string } geneId = null;


union { null, string } featureType = null;


union { null, string } featureId = null;


union { null, string } biotype = null;


union { null, int } rank = null;


union { null, int } total = null;


union { null, string } genomicHgvs = null;


union { null, string } transcriptHgvs = null;


union { null, string } proteinHgvs = null;


union { null, int } cdnaPosition = null;


union { null, int } cdnaLength = null;


union { null, int } cdsPosition = null;
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union { null, int } cdsLength = null;


union { null, int } proteinPosition = null;


union { null, int } proteinLength = null;


union { null, int } distance = null;


array<VariantAnnotationMessage> messages = [];


}


record VariantAnnotation {


union { null, string } ancestralAllele = null;


union { null, int } alleleCount = null;


union { null, int } readDepth = null;


union { null, int } forwardReadDepth = null;


union { null, int } reverseReadDepth = null;


union { null, int } referenceReadDepth = null;


union { null, int } referenceForwardReadDepth = null;


union { null, int } referenceReverseReadDepth = null;


union { null, float } alleleFrequency = null;


union { null, string } cigar = null;


union { null, boolean } dbSnp = null;


union { null, boolean } hapMap2 = null;


union { null, boolean } hapMap3 = null;


union { null, boolean } validated = null;


union { null, boolean } thousandGenomes = null;


union { boolean, null } somatic = false;


array<TranscriptEffect> transcriptEffects = [];


map<string> attributes = {};


}


Genotype Annotation Schema
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Listing 5: ADAM genotype annotation schema


record VariantCallingAnnotations {


union { null, boolean } filtersApplied = null;


union { null, boolean } filtersPassed = null;


array<string> filtersFailed = [];


union { null, boolean } downsampled = null;


union { null, float } baseQRankSum = null;


union { null, float } fisherStrandBiasPValue = null;


union { null, float } rmsMapQ = null;


union { null, int } mapq0Reads = null;


union { null, float } mqRankSum = null;


union { null, float } readPositionRankSum = null;


array<float> genotypePriors = [];


array<float> genotypePosteriors = [];


union { null, float } vqslod = null;


union { null, string } culprit = null;


map<string> attributes = {};


}


Feature Schema


Listing 6: ADAM’s feature schemas


enum Strand {


FORWARD,


REVERSE,


INDEPENDENT,


UNKNOWN


}


record Dbxref {


union { null, string } db = null;


union { null, string } accession = null;


}


record OntologyTerm {
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union { null, string } db = null;


union { null, string } accession = null;


}


record Feature {


union { null, string } featureId = null;


union { null, string } name = null;


union { null, string } source = null;


union { null, string } featureType = null;


union { null, string } contigName = null;


union { null, long } start = null;


union { null, long } end = null;


union { null, Strand } strand = null;


union { null, int } phase = null;


union { null, int } frame = null;


union { null, double } score = null;


union { null, string } geneId = null;


union { null, string } transcriptId = null;


union { null, string } exonId = null;


array<string> aliases = [];


array<string> parentIds = [];


union { null, string } target = null;


union { null, string } gap = null;


union { null, string } derivesFrom = null;


array<string> notes = [];


array<Dbxref> dbxrefs = [];


array<OntologyTerm> ontologyTerms = [];


union { null, boolean } circular = null;
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map<string> attributes = {};


}
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Commands Used For Evaluation


GATK 3 Best Practices Pipeline


TheToil scripts used can be found at https://github.com/BD2KGenomics/toil-scripts/
tree/master/src/toil_scripts/gatk_germline.


FreeBayes


FreeBayes [58] is a single-threaded tool that is published with a script for running the tool
in parallel using GNU Parallel. However, we could not get the freebayes-parallel script
to run properly on our cluster due to issues with the VCF parsing utilities in the script.
Instead, we executed the following command, which used GNU Parallel:


Listing 7: FreeBayes Parallel Script


parallel --gnu \


-a regions -j 32 \


freebayes.exec.sh {} {#}


The regions file contained 10Mbp subsets of the genomic coordinate space. The
freebayes.exec.sh script contained the following commands:


Listing 8: FreeBayes Executor Script


freebayes \


-f reference.fa \


sorted.bam \


--region ${1} \


> ${2}.vcf


FreeBayes was built and installed on our network file system (NFS) share. The FA,
BAM and VCF files were distributed on a Pure Storage FlashBlade, which was connected to
the worker nodes in our cluster on a 10GbE network connection. The final VCF files were
merged using ADAM.



https://github.com/BD2KGenomics/toil-scripts/tree/master/src/toil_scripts/gatk_germline

https://github.com/BD2KGenomics/toil-scripts/tree/master/src/toil_scripts/gatk_germline
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SAMTools Mpileup/BCFTools Call


SAMTools Mpileup and BCFTools Call are two single threaded variant calling tools that
are designed to be run where the output of Mpileup is piped into BCFTools Call [82]. To
parallelize SAMTools Mpileup across 32 threads, we used the GNU Parallel utility, similar
to how we ran FreeBayes.


Listing 9: Samtools Parallel Script


parallel --gnu \


-a regions -j 32 \


samtools.exec.sh {} {#}


The samtools.exec.sh script contained the following commands:


Listing 10: Mpileup/Call Executor Script


samtools mpileup \


--reference reference.fa \


--region ${1} \


-v sorted.bam | bcftools call \


-v -m > ${2}.vcf


As with FreeBayes, both Samtools and Bcftools were built and installed on our network
file system (NFS) share. The FA, BAM and VCF files were distributed on a Pure Storage
FlashBlade, which was connected to the worker nodes in our cluster on a 10GbE network
connection. The final VCF files were merged using ADAM.


ADAM Pipeline


For all ADAM commands, timing included job submission, executor registration, appli-
cation runtime, and executor deregistration and shutdown. In all code snippets below,
${executors} can be subtituted with the number of executors we were running (the number
of threads divided by 32). Disabling dynamic allocation was necessary to prevent Spark-on-
YARN from requesting more executors than the number of executors requested.


Duplicate Marking


For benchmarking, we ran ADAM’s duplicate marker with the following settings:


Listing 11: ADAM Duplicate Marking Command


bin/adam-submit \


--master yarn \


--deploy-mode cluster \
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--num-executors ${executors} \


--executor-memory 200g \


--executor-cores 32 \


--driver-memory 64g \


--conf spark.dynamicAllocation.enabled=false \


--conf spark.driver.maxResultSize=0 \


--conf spark.yarn.executor.memoryOverhead=8192 \


--conf spark.kryo.registrationRequired=true \


--conf spark.kryoserializer.buffer.max=1024m \


--packages org.apache.parquet:parquet-avro:1.8.2 \


-- transformAlignments \


aln.adam \


mkdups.adam \


-mark_duplicate_reads


To run the improved duplicate marker that is optimized for reads that are grouped by
sequencing fragment, we invoked the following command:


Listing 12: ADAM Fragment Duplicate Marking Command


bin/adam-submit \


--master yarn \


--deploy-mode cluster \


--num-executors ${executors} \


--executor-memory 200g \


--executor-cores 32 \


--driver-memory 64g \


--conf spark.dynamicAllocation.enabled=false \


--conf spark.driver.maxResultSize=0 \


--conf spark.yarn.executor.memoryOverhead=8192 \


--conf spark.kryo.registrationRequired=true \


--conf spark.kryoserializer.buffer.max=1024m \


--packages org.apache.parquet:parquet-avro:1.8.2 \


-- transformFragments \


frag.adam \


mkdups.adam \


-mark_duplicate_reads


Note that this command invokes ADAM’s transformFragments command instead of the
transformAlignments command.


Base Quality Score Recalibration


For benchmarking, we ran ADAM’s BQSR implementation with the following settings:
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Listing 13: ADAM BQSR Command


bin/adam-submit \


--master yarn \


--deploy-mode cluster \


--num-executors ${executors} \


--executor-memory 200g \


--executor-cores 32 \


--driver-memory 64g \


--conf spark.dynamicAllocation.enabled=false \


--conf spark.driver.maxResultSize=0 \


--conf spark.yarn.executor.memoryOverhead=8192 \


--conf spark.kryo.registrationRequired=true \


--conf spark.kryoserializer.buffer.max=1024m \


--packages org.apache.parquet:parquet-avro:1.8.2 \


-- transformAlignments \


aln.adam \


bqsr.adam \


-recalibrate_base_qualities \


-known_snps dbsnp.adam


The dbSNP database [136] was pre-converted from VCF into the ADAM variant format.


INDEL Realignment


For benchmarking, we ran ADAM’s INDEL realigner with the following settings:


Listing 14: ADAM INDEL Realignment Command


bin/adam-submit \


--master yarn \


--deploy-mode cluster \


--num-executors ${executors} \


--executor-memory 200g \


--executor-cores 32 \


--driver-memory 64g \


--conf spark.dynamicAllocation.enabled=false \


--conf spark.driver.maxResultSize=0 \


--conf spark.yarn.executor.memoryOverhead=8192 \


--conf spark.kryo.registrationRequired=true \


--conf spark.kryoserializer.buffer.max=1024m \


--packages org.apache.parquet:parquet-avro:1.8.2 \


-- transformAlignments \


aln.adam \


ri.adam \


-realign_indels \







130


-aligned_read_predicate \


-max_consensus_number 32 \


-max_reads_per_target 256 \


-max_target_size 2048 \


-limit_projection \


-reference reference.fa \


-log_odds_threshold 0.5


Changing the max number of consensus sequences, target length, and reads per target
has a negligible impact on variant calling accuracy.


Avocado Biallelic Genotyper


For benchmarking, we ran Avocado’s biallelic genotyper with the following settings:


Listing 15: Avocado Biallelic Genotyper Command


bin/avocado-submit \


--master yarn \


--deploy-mode cluster \


--num-executors ${executors} \


--executor-memory 216g \


--executor-cores 32 \


--driver-memory 216g \


--conf spark.dynamicAllocation.enabled=false \


--conf spark.driver.maxResultSize=0 \


--conf spark.yarn.executor.memoryOverhead=16384 \


--conf spark.akka.frameSize=1024 \


--conf spark.rpc.askTimeout=300 \


--conf spark.kryoserializer.buffer.max=2047m \


--conf spark.sql.shuffle.partitions=880 \


--packages org.apache.parquet:parquet-avro:1.8.2 \


-- biallelicGenotyper \


aln.adam \


gt.adam \


-print_metrics \


-is_not_grc \


-min_genotype_quality 10 \


-min_phred_to_discover_variant 15 \


-min_observations_to_discover_variant 3 \


-min_het_indel_quality_by_depth -1.0 \


-min_hom_indel_quality_by_depth -1.0 \


-min_het_indel_allelic_fraction 0.2 \


-min_het_snp_allelic_fraction 0.125 \


-max_het_snp_allelic_fraction 0.8 \
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-max_het_indel_allelic_fraction 0.85 \


-min_indel_rms_mapping_quality 30 \


-min_het_snp_quality_by_depth 2.5 \


-max_het_indel_allelic_fraction 0.7


GATK4 Pipeline


The GATK4 was timed using the same methodology used for ADAM in §11.2. We ran the
GATK in sharded output mode, as we ran into errors when merging files when running
the GATK in single-file output mode. Additionally, sharded mode will provide the best
performance, as it avoids introducing latency by merging files.


Duplicate Marking


To mark duplicates with the GATK4, we ran the following command:


Listing 16: GATK4 Duplicate Marking Command


./gatk-launch MarkDuplicatesSpark --input aln.bam \


--output md.bam \


--shardedOutput true \


-- \


--driver-memory 64g \


--executor-cores 32 --executor-memory 200g \


--sparkRunner SPARK --sparkMaster yarn --deploy-mode cluster \


--conf spark.dynamicAllocation.enabled=false \


--num-executors ${executors}


Base Quality Score Recalibration


In the GATK, base quality score recalibration is a two step process where the base quality
score recalibration table is generated and then applied. We timed each stage separately
and then summed the two times together. To run table generation, we ran the following
command:


Listing 17: GATK4 BQSR Table Generation Command


./gatk-launch BaseRecalibratorSpark --input aln.bam \


--output table \


--knownSites dbsnp.vcf \


--reference reference.2bit \


-- \


--driver-memory 64g \
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--executor-cores 32 --executor-memory 200g \


--sparkRunner SPARK --sparkMaster yarn --deploy-mode cluster \


--conf spark.dynamicAllocation.enabled=false \


--num-executors ${executors}


Note that currently, the GATK cannot load neither the dbSNP VCF nor the 2Bit ref-
erence file from HDFS, so we distributed these files using the Pure Storage FlashBlade.
Additionally, the recalibration table must be written to POSIX storage.


To apply the recalibration tables, we ran the following command:


Listing 18: GATK4 BQSR Table Apply Command


./gatk-launch ApplyBQSRSpark --input aln.bam \


--bqsr_recal_file tables \


--output bqsr.bam \


--shardedOutput true \


-- \


--driver-memory 64g \


--executor-cores 32 --executor-memory 200g \


--sparkRunner SPARK --sparkMaster yarn --deploy-mode cluster \


--conf spark.dynamicAllocation.enabled=false \


--num-executors ${executors}


Haplotype Caller


To run the Haplotype Caller, we ran the following command:


Listing 19: GATK4 HaplotypeCaller Command


./gatk-launch HaplotypeCallerSpark --input aln.bam \


--output hc.vcf \


--reference reference.2bit \


--shardedOutput true \


-VS LENIENT \


-- \


--driver-memory 64g \


--executor-cores 32 --executor-memory 200g \


--sparkRunner SPARK --sparkMaster yarn --deploy-mode cluster \


--conf spark.dynamicAllocation.enabled=false \


--num-executors ${executors}


As with BQSR, the 2Bit file cannot be read o↵ of HDFS, so we distributed the file using
the Pure Storage FlashBlade.
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