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ABSTRACT
Tree-structured text is ubiquitous in software engineering and pro-


gramming tasks. However, despite its prevalence, users frequently


write custom, specialized routines to query and update such text.


For example, a user might wish to rapidly prototype a compiler for


a domain-specific language by issuing successive transformations,


or they might wish to identify all the call sites of a particular func-


tion in a project (e.g. eval in JavaScript). We propose a natural and


intuitive extension to regular expressions, called TreeRegex, which
can specify patterns over tree-structured text. A key insight behind


the design of TreeRegex is that if we annotate a string with special


markers to expose information about the string’s tree structure,


then a simple extension to regular expressions can be used to de-


scribe patterns over the annotated string. We develop an algorithm


for matching TreeRegex expressions against annotated texts and


report on five case studies where we find that using TreeRegex
simplifies various tasks related to searching and modifying tree-


structured texts.
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1 INTRODUCTION
Tree-structured text is widely used in many different software engi-


neering and programming tasks. Examples of tree-structured text in-


clude various programming languages, domain-specific languages,


and data formats such as XML and JSON. Users of tree-structured


text often need to query patterns over such text and modify text.


For example, a user may want to query if the eval function has


been called in the body of any function in a JavaScript program


or rapidly prototype a compiler for a domain-specific language by


modifying the abstract-syntax tree of a program.


There are several languages and associated tools that users often


use to search patterns and to modify tree-structured text. Regular
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expressions [34, 35, 38, 52, 56] are one such special formalism that


is used to describe text patterns. They are widely used by program-


mers and computer scientists [28, 36, 66] to concisely and elegantly


describe search patterns over text. Most popular programming lan-


guages support regular expressions; some popular text-processing


languages, such as awk, sed, and perl, were designed around reg-


ular expressions. A key reason behind the popularity of regular


expressions is that they are compact and concise. Moreover, regular


expressions can extract substrings from texts. This is particularly


useful in extracting information and in modifying texts.


However, formal regular expressions are not expressive enough


to describe patterns over text having a tree-like structure. For ex-


ample, it is impossible to write a regular expression that matches a


block of statements in a C-like language because a statement block


can have nested blocks.


Context-free grammars (CFGs) overcome the limitations of reg-


ular expressions by providing a more expressive formalism for


describing patterns over tree-structured text. Although CFGs are


strictly more powerful than regular expressions, they are not as


compact and concise as regular expressions—pattern matching and


replacing with CFGs, naïvely, requires the user to write an explicit


program.


Term-rewriting systems [15, 18, 20, 22, 24, 51, 58, 61] simplify


the use of CFGs for text search and modification. These systems


allow programmers to describe tree rewriting declaratively as a


set of rules. Though term-rewriting systems have been found to


be more convenient to use compared to traditional parsers and


abstract-syntax tree (AST) visitors, they require a complete porting


of the CFG of the given text to the term-rewriting system, which


could be non-trivial for complex languages.


We propose a natural and intuitive extension to regular ex-


pressions, called TreeRegex, which can specify patterns over tree-


structured text. A key insight behind the design of TreeRegex is
that if we annotate a string with special markers to expose information
about the string’s tree structure, then a simple extension to regular
expressions can be used to describe patterns over the annotated string.
Based on this insight, we propose a two-step process for specify-


ing and matching TreeRegex expressions against a tree-structured


string. In the first step, we annotate the string by inserting paren-


thesis meta-characters (% and %) in the string
1
. This annotated


string, which resembles an S-expression in LISP [53], has balanced
occurrences of (% and %) and is called a serialized tree. For example,


(%2+(%3∗4%)%) is the annotated string for 2+3∗4. The parenthesis


meta-characters make the tree-structure of the string explicit. An


1
In the implementation, the plain ASCII parentheses and percent characters are used.


We use a sub- and super-script here to improve legibility in these and related characters.



https://doi.org/10.1145/nnnnnnn.nnnnnnn

https://doi.org/10.1145/nnnnnnn.nnnnnnn





, , Benjamin Mehne


existing parser and source-code generator (i.e., a tool that serial-


izes an abstract-syntax tree to the original string) could easily be


modified to generate an annotated string.


In the second step, we write patterns over the serialized tree


as TreeRegex expressions. A TreeRegex expression is a regular


expression extended with balanced (%, %), balanced (
*
,
*
), and the


wildcard meta-character @. The exact motivation and semantics


of these extra meta-characters are described in the following two


sections. After describing a pattern in TreeRegex, we match the


pattern against the serialized tree using an efficient implementation


of our algorithms, called TreeRegexLib.
TreeRegex has several key advantages. 1) It nicely decouples


the CFG and parsing aspect of a string from the pattern expression


and matching aspect. One can easily modify an existing parser in


the first step to create a serialized tree—there is no need to port


the CFG to our system. 2) TreeRegex is a natural extension to


regular expressions, which we believe would be easy to learn if


one is familiar with regular expressions. 3) Since TreeRegex is


independent of the underlying CFG used to generate the serialized


trees, it can be used to replace a sub-tree in a serialized tree with


a sub-tree or string that does not conform to the original CFG.


We take advantage of this flexibility in a case study that generates


MIPS [3] assembly code from a simple language, based on the BC [2]


calculator language. For this compilation, our approach requires


no information about the grammar of MIPS. 4) One can restore the


original string from a serialized tree by dropping the parenthesis


meta-characters (% and %). This becomes useful while debugging


TreeRegex. 5) TreeRegex matching and replacement algorithms


can be implemented easily by using the API of an existing regular


expression library. Thus, TreeRegex can be easily ported to many


languages and this will allow programmers to use TreeRegex with


their favorite languages to deal with tree-structured texts. So far,


we have implemented TreeRegex for C++, Java, and JavaScript


programs as TreeRegexLib, we have released the C++, the most


mature version here: https://treeregexlib.github.io.


We apply TreeRegexLib to five case studies: a tool for instru-


menting JavaScript programs for branch coverage, a tool to prevent


SQL injection vulnerabilities, a linter for JavaScript, a tool for find-


ing errors in C programs, and a compiler from a BC-like [2] language


to MIPS assembly code. In our case studies, we found TreeRegex to
be powerful enough for our tasks. We also found that we wrote sig-


nificantly fewer lines of code while using TreeRegexLib compared


to conventional AST-based techniques. Our experiments on the


compiler for the BC-like language show that our TreeRegexLib im-


plementation runs fast enough for practical usage—we can compile


a 160kB file in less than 1 second.


2 OVERVIEW
We gently introduce TreeRegex through a series of motivating


examples that we often encounter in program analysis and compiler


construction.


Motivating Example. Suppose we want to check if the function


eval has been called inside the body of any function in a JavaScript


program
2
. We may try to find such a usage of eval using a regular


2
We are interested in this particular code pattern because calling the eval function
inside a JavaScript function 1) prevents just-in-time (JIT) compilation of the function,


expression. The following expression comes to mind
3
:


function .*(.*){.*eval(.*).*}


where .matches any character and * is the Kleene star operator (we


do not treat parentheses as a meta-character here). Unfortunately,


this regular expression does not work—it will match the following


code, for instance:


function f1(x){bar()} eval(s); function f2() {}


This is because .*will match too much. Making the following slight


modification to the regular expression prevents this problem:


function .*(.*){[ˆ}]*eval(.*).*}


Here, we use [ˆ}], a character class excluding curly braces, instead


of the .meta-character. Unfortunately, this regular expression does


not match


function f1(v){{bar()} eval(s)}


which should be matched—it has a call to eval in its body, preceded


by a block with a call to bar. Both of these example regular expres-


sions fail because they ignore the structure of the target expressions.


To find the pattern we are looking for, we must specify that eval
can appear either at the top-level block or in some nested block of


a function body.


Patterns over structured text could be expressed using context-


free grammars (CFGs) [29]. A standard technique to search for


such patterns is to write a full-fledged CFG of the JavaScript lan-


guage and then use a parser to convert a JavaScript program into an


abstract-syntax tree (AST). The code pattern can then be searched


by performing a programmatic traversal of the AST. This is the


de-facto technique that various linters use to discover problematic


code snippets. Unfortunately, this technique has a few disadvan-


tages. First, we need to understand the structure of the AST enough


to know where to look for the definition of a function and for the


invocation of the eval function. Second, searching for a particular


code pattern requires us to write a program that visits over the


AST and explicitly looks for the identifier eval in a function defini-


tion sub-AST. Such code will span several lines and will not be as


compact as a simple, single-line regular expression.


2.1 TreeRegex and serialized trees
We propose a two-step technique to represent strings having tree-


like structure and to express search patterns over them. In the first


step, we convert a string into an annotated string which makes the


tree structures of the string explicit. Specifically, we convert a string


into an annotated string, similar to S-expressions in LISP [53], where


the recursive structures are surrounded by the special parenthesis


meta-characters (% and %). For example, we convert the string


“3 ∗ 4+ 5 ∗ 6”, denoting an arithmetic expression, into the annotated


string “(%(%3 ∗ 4%) + (
%
5 ∗ 6%)%)”.


4
Such an annotated string has


two important properties:


and 2) can unexpectedly change the local variables of the enclosing function, which


makes reasoning about the correctness of the function difficult.


3
Whitespace handling is ignored in this section for simplicity of exposition.


4
In this serialization we do not enclose the integer literals in (% and %) to simplify


exposition and to reduce clutter. In our actual implementation, we surround integers


with (% and %).
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• An annotated string has balanced parentheses (% and %). That


is, each opening parenthesis (% has a later corresponding closed


parenthesis %), and the string between the pair of parentheses is


again balanced.


• In an annotated string, if we remove the parenthesis meta-


characters, we get back the original string.


The string between a pair of balanced parentheses denotes a


structure that can have other nested structures. We call such anno-


tated strings serialized trees. To convert a string into a serialized tree,
one can use an existing parser and an AST-to-source code generator.


Programming languages and various structured data formats, such


as XML, usually come with an implementation of a parser and an


AST-to-source code generator, and they could be easily modified to


annotate a string with (% and %). For example, we modified 108 out


of 2298 lines of code in esotope code generator [10] to generate


serialized trees for JavaScript programs. We have also implemented


a generic serialized tree generator for ANTLR [47] grammars using


128 lines of Java code. A key advantage of converting a string into


a serialized tree is that a simple extension to regular expressions


can now be used to describe patterns over serialized trees.


The second step of our technique will be to check whether an


annotated input string matches a desired pattern. To do so, we


propose a simple, yet powerful, extension to regular expressions,


called TreeRegex, to specify patterns over serialized trees. We next


introduce TreeRegex gradually through a series of simple examples


to demonstrate its intuitiveness.


In our examples, we assume that the inputs are strings denot-


ing arithmetic expressions constructed using positive integers and


arithmetic operators +,−, ∗, /, (, ). We assume that the strings have


no space or newline characters. We also assume that the strings


have been parsed and converted into serialized trees using a parser


with standard precedence declaration for arithmetic operators. For


simplicity of exposition and to reduce clutter, we assume that in-


teger literals are not enclosed within (% and %). For example, the


arithmetic expression string “3 ∗ 4+ 5 ∗ (6− 2)” has been converted


to the serialized tree “(%(%3 ∗ 4%) + (
%
5 ∗ (%((%6 − 2%))%)%)%)”.


Matching an exact serialized tree. Let us first write a pattern that


checks if an arithmetic expression is the addition of two positive


integers. For example, “2 + 3 + 1” does not match this pattern, but


“2 + 3” matches the pattern. Such a pattern can be easily written


using the regular expression: \d+\+\d+. Here \d denotes the digit


character class and \d+ denotes one or more digits. Since + is a


meta-character in regular expressions, we escape + with \ to de-


note the actual + arithmetic operator. When matching against the


serialized tree corresponding to an arithmetic expression, we need


to use a TreeRegex expression. In TreeRegex, we extend regular


expressions by allowing the usage of parenthesis meta-characters


(% and %) in a balanced fashion. For example,


(%\d+\+\d+%)


is a TreeRegex expression and it matches the serialized tree (e.g.


“(%2 + 3%)”) corresponding to an arithmetic expression where two


positive integers are being added. It is important to note that a


regular expression in a TreeRegex expression cannot match the


meta-characters (% and %). Another example of a TreeRegex ex-


pression that matches an arithmetic expression is one that de-


notes the addition of two expressions, where each expression


is the multiplication of two positive integers. This expression


is: (%(%\d+\*\d+%)\+(
%\d+\*\d+%)%). This TreeRegex expression


matches the serialized tree “(%(%31∗4%)+(
%
5∗62%)%)” (i.e. serialized


tree for “31 ∗ 4 + 5 ∗ 62”).


Matching an arbitrary serialized tree. So far, we have extended


regular expressions with parenthesis meta-characters (% and %)—a


TreeRegex expression with this extension has the form of a serial-


ized tree. However, this extension is not enough if we want to match


more complex patterns. For example, suppose we want to write a


pattern that matches an arithmetic expression that is the addition


of two arbitrary arithmetic expressions. We need a (sub-)TreeRegex
expression that matches an arbitrary arithmetic expression. In the


general case, we want a pattern that matches an arbitrary serialized


tree beginning and ending with (% and %), respectively. We add the


meta-character@ to TreeRegex to match such arbitrary serialized


trees. A TreeRegex expression that matches the addition of two


arbitrary arithmetic expressions could then be written as


(%@\+@%).


Here@ matches any serialized tree that starts with a (% and ends


with a %). Note that @ cannot match any arbitrary string. This


TreeRegex expression will now match “(%(%31∗ 4%)+ (
%
5∗ 62%)%)”


(i.e. serialized tree for “31∗4+5∗62”), and “(%(%2+3%)+(
%
1∗4%)%)”


(i.e. serialized tree for “2 + 3 + 1 ∗ 4”). It will not match “(%2 + 3%)”,


because “2” and “3” do not start with (% and end with %). Note that


we did not enclose an integer literal in (% and %) to illustrate this


subtlety; our implementation does enclose integers in (% and %).


Matching a serialized tree nested in another serialized tree. Now
suppose wewant tomatch any arithmetic expression that contains a


specific form of nested sub-expression. The form we are looking for


is an addition of two integers, and it can be nested arbitrarily deep


inside the top-level expression. For example, the pattern should


match both “(%(%2∗ (%((%3+11%))%)%) ∗1%)” (i.e. serialized tree for


“2∗(3+11)∗1”) and “(%2+3%) (i.e. serialized tree for “2+3”). We now


need the ability to specify a pattern that matches a serialized tree


that contains a serialized tree at an arbitrary depth. To do so, we add


twomore parenthesesmeta-characters (* and *) (inspired by Kleene


star in regular expressions) to TreeRegex. A TreeRegex expression
can use these meta-characters as long as the expression is balanced


with respect to both (%, %), and (*, *). A pattern (*t*), where t


is some other TreeRegex expression, matches any serialized tree


that contains a nested serialized tree matching t. With this new


extension, the TreeRegex expression


(*\d+\+\d+*)


matches an arithmetic expression that has a nested arithmetic sub-


expression that is the addition of two positive integers.


Revisiting the motivating example. We are now ready to write a


TreeRegex expression that checks if a JavaScript program contains


an eval-calling function body. First note that a function definition


in a JavaScript program can be arbitrarily nested inside the program.


A call to eval can be arbitrarily nested within the body of a function
as well. Therefore, we need two sets of (*, *): one pair to match a
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function definition and another pair to match a call to eval. The
TreeRegex expression for the pattern is


(*function .*(@){(*eval(@)*)}*)


This pattern matches the serialized tree of a JavaScript program


if the program has a function whose body calls eval. The first @
matches the serialized tree for the list of parameters, and the second


@ matches the serialized tree for the argument to eval. Note that
while .* matches an arbitrary string, it cannot match a serialized


tree—if the name of function included structured information, like


a template type in C++, a TreeRegex matching a serialized tree


would be required. Similarly,@matches an arbitrary serialized tree,


but it cannot match any string.


2.2 Capture Group and Replacement
Most regular expression libraries provide support for search-and-


replace via replacement strings. We provide support for similar


search-and-replace operations in TreeRegex.
Let us consider the motivating example again. Now we want to


replace the eval call with a safe_eval call. To do this, we make


slight modifications on the TreeRegex expression as follows:


(%function ((.*)) (@){(*eval(@)*)}%)


We simplify the example by replacing the outermost *-parentheses


with %-parentheses, and add (( and )) to capture the name of the


function. We use (( and )) to denote regular expression parenthesis


metacharacters that capture. Now we need to capture four pieces


of information: the name of the function, the formal parameters,


the argument of the eval function call, and the text that surrounds


the eval function call. The function name is matched and captured


by the ((.*)). In TreeRegex, we specify that the wildcard@ captures


the serialized tree it matches. This means the formal parameters


and the argument passed to the eval function are captured. We


can now build our desired replacement string


(%function $1($2){. . . safe_eval($4). . . }%)


where $1 and $2 refers to the first and second captured values, $4


refers to the value captured by @ (which is the argument passed


to the eval function), and . . . are the missing strings that we are


yet to specify.


The strings that surround the eval function call aremore difficult


to manipulate because there is no replacement string syntax in


conventional regular expressions for inserting a string in the middle


of a captured value.


We need to insert our new safe_eval function call between the


strings that are to the left and right of the eval function call. Before


that, though, we need to capture the strings to the left and right of


the eval function call. In TreeRegex, we specify that an expression


of the form (* t *) creates a capture group that captures a string


with a hole. For example, if (*eval(@)*) matches the string bar();


foo(eval(s),2); , then the (*, *) pair will capture the string bar();


foo(•,2); , which has a hole •. This captured string will be referred


by $1 in this case. With this new definition of a capture group, we


can specify our desired replacement string as


(%function $1($2){$3(%safe_eval($4)%)}%)


In this replacement string, $3 represents the strings surrounding


the eval function call. This string has a hole. The question is what


(a) A valid tree. (b) An invalid tree.


Figure 1: Example trees. The first tree is equivalent to serial-
ized tree “(%Hello (%(%I%)am a(%tree%)%).%)”. The second tree
is invalid, and doesn’t have a corresponding serialized tree.


string dowe use to fill the hole. In our approach, we fill the hole with


the serialized tree that follows $3 in the replacement string, which


in our case is the string (%safe_eval($4)%) where $4 is suitably


replaced.


In summary, in TreeRegex a @ captures a serialized tree string,


and (*t*) captures a string with a hole. If in a replacement string, $n


refers to a string with hole, then the hole is filled with the serialized


tree string that follows $n in the replacement string.


3 FORMAL DESCRIPTION
We formalize the behavior of TreeRegex expressions and replace-


ments in this section. We begin with describing serialized trees


and how to construct them from a tree data-structure in 3.1. We


then describe the syntax, semantics, and a matching algorithm for


TreeRegex expressions in 3.2, 3.3, and 3.4, respectively. We describe


the replacement algorithm in 3.5. Finally, the time/space complexity


of the matching algorithm is discussed in 3.6.


3.1 Serialized Tree
A TreeRegex expression is a pattern that matches against a serial-


ized tree. A serialized tree is formed from a tree. A tree is recursively


defined as follows. A tree is a non-empty list each element of which


is either a tree or a non-empty string. Moreover, two strings in a list


cannot be next to each other. Figure 1a shows a valid tree. The tree


in Figure 1b is not a valid tree because there are two consecutive


nodes in the tree that are strings.


For the purpose of TreeRegexmatching, we assume that an input


tree against which we need to match a TreeRegex expression is


given in a serialized form as a string. This serialized tree form, which


resembles S-Expressions in LISP [53], can be constructed recursively


from a tree as follows. The serialized tree of a string is the string


itself. For a list, compute the serialized trees of its elements: the


serialized tree of a tree is computed recursively. Once we have the


serialized trees of the elements of the list, we concatenate them


and surround the resulting string with (% and %). This gives us the


serialized tree of the tree represented by the list.


For example, the serialized tree for the tree in Figure 1a is


“(%Hello (%(%I%)am a(%tree%)%).%)”. Note that a serialized tree re-


tains the structure of the tree by surrounding each sub-tree with


(% and %). If we remove occurrences of (% and %) from a serialized


tree, we get back the original string.
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We need a formal grammar for serialized trees in order to de-


scribe the matching and replace algorithms for TreeRegex. We use


the following grammar to describe the set of all serialized trees.


⟨Tree⟩ ::= (% ⟨ListOfTrees⟩ %)


⟨ListOfTrees⟩ ::= (⟨String⟩?⟨Tree⟩)* ⟨String⟩?


⟨String⟩ ::= u ∈ Σ+


In a grammar, we surround non-terminals with ⟨⟩. ⟨Tree⟩ denotes
the root of a tree. This non-terminal has a starting (% to distin-


guish it from a leaf, a list whose each element is either a tree or


a string (denoted by ⟨ListOfTrees⟩), and then a closing %) to end


the list. The production rule for ⟨ListOfTrees⟩ denotes a non-empty


list of alternating strings and sub-trees. For simplicity, we use a


regular expression to describe the production rule as in Extended


Backus-Naur Form [37]. The rule ensures that any two strings are


non-consecutive in the list. This property is important to prevent


ambiguity in transforming an input to the corresponding serialized


tree, as observed in the example of Figure 1b. ⟨String⟩ is the gram-


mar for strings: they are of non-zero length, from the alphabet Σ.
We assume Σ does not contain the metacharacters (%and %), or the
TreeRegex metacharacters@, (*, and *).


5
In the rest of the paper,


we will use the symbols s, s ′, s1, si , sn etc. to denote serialized trees


or strings over Σ. We use Σs to denote the alphabet that contains Σ
plus all the meta-characters and a serialized tree is a string over Σs .


3.2 TreeRegex
TreeRegex is a simple extension to regular expressions. The exten-


sion has been designed keeping in mind that we want to describe


patterns not only over simple linear strings, but also on serialized


trees. The following is the grammar for TreeRegex.


⟨TreeRegex ⟩ ::= (
% ⟨ListOfTreeRegexes⟩ %) | (* ⟨ListOfTreeRegexes⟩ *) |@


⟨ListOfTreeRegexes⟩ ::= (⟨Regex ⟩?⟨TreeRegex ⟩)* ⟨Regex ⟩?


⟨Regex ⟩ ::= a regular expression over Σ


The grammar is similar to that of a serialized tree. A TreeRegex
expression, denoted by ⟨TreeRegex⟩, can be of three types: exact ex-


pressions, context expressions, and wildcard expressions. An exact


expression starts with a (
%
followed by a list whose each element is


either a TreeRegex expression or a regular expression, and finishes


with a %). The list is denoted by ⟨ListOfTreeRegexes⟩ and cannot


have two regular expressions next to each other. This restriction


naturally follows from the similar restriction posed on serialized


tree. A context expression is visually similar to an exact expression,


except that it starts with a (
*
and ends with a


*
), using symbols


inspired by the Kleene star
6
. A wildcard expression is denoted by


the terminal symbol @ (and it contains no ⟨ListOfTreeRegexes⟩
expressions). A regular expression describes a regular language


over the alphabet Σ which does not contain (
%
, %), (


*
,
*
), and @.


Thus a regular expression (including .*) cannot match any of these
meta-characters.Wewill use the symbols t , t ′, t1, ti , tn etc. to denote


TreeRegex expressions.


5
In the actual implementation we escape the meta-characters in a string suitably.


6
It operates like a Kleene star, except instead of matching multiple characters on a


single level of a tree, it matches many levels of a tree.


3.3 Language of TreeRegex
A TreeRegex expression t describes a set of serialized trees, denoted
by L(t). L(t) is defined recursively as follows.


Exact Expressions. If t is a an exact expression of the


form (%t1 . . . tn%), then the language of this expression is:


L((%t1 . . . tn%)) = {(
%s1 . . . sn%) | s1 ∈ L(t1) . . . sn ∈ L(tn )}. For a


string to be in the language of (%t1 . . . tn%), it must be constructed


from an element of the language of each ti and then surrounded


by (% and %). That is, if each si is in L(ti ) then (
%s1 . . . sn%) ∈


L((%t1 . . . tn%)).


Context Expressions. If t is a context expression of the form


(*t1 . . . tn *), then it describes the language where each string is


a serialized tree containing a string from L((%t1 . . . tn%)) as some


subtree. In order to define the language of a context expression


formally, we need to define a serialized tree context. A serialized tree
context is a serialized tree where some subtree is replaced by a hole.


The subtree does not need to be immediate—it can be the subtree of


a subtree that is the hole, for instance. The hole is denoted by a •.


Given a serialized tree context c and a serialized tree s , we use c(s)
to denote the serialized tree obtained by replacing the hole in c by s .
Then we can define L((*t1 . . . tn *


)) = {c(s) | s ∈ L((%t1 . . . tn%)) and


c is any serialized tree context}


Wildcard Expressions. If t is a wildcard expression (i.e. if t = @),


then L(t) is the set of all serialized trees.


Regex Expressions. We do not define the language of regular ex-


pressions since it is a well-studied topic and for the purpose of


defining TreeRegex, we do not need a formal definition of reg-


ular expressions. We just assume that the language of a regular


expression is a subset of the strings in Σ∗, where Σ is our string


alphabet.


3.4 TreeRegexMatching Algorithm
Next we describe an algorithm that matches a string against a


TreeRegex expression. We say that a TreeRegex expression t
matches a serialized tree s if s ∈ L(t). Similar to conventional regu-


lar expressions, TreeRegex allows us to not only match against a


string, but also to extract strings, serialized trees, and serialized tree


contexts for further processing. In conventional regular expressions,


this is achieved by defining groups of characters and capturing them


using the parenthesis capture group meta-characters. A string that


matches a nested/sub-regular expression within a pair of parenthe-


ses gets captured as a group. In the case of TreeRegex, a serialized
tree that matches a wildcard expression or a serialized tree con-


text that matches a context expression gets captured as a group.


Note that in case of TreeRegex we do not need to explicitly use


parentheses to define a capture group—any wildcard expression or


context expression implicitly defines a capture group.


We describe a function match which takes a TreeRegex expres-


sion t and a serialized tree s . It returns a list of captures if s matches t
and returns nil, which we distinguish from an empty list, otherwise.


We will denote lists of captures using the symbols K ,K ′,K1,Ki ,Kn
etc. The function match(t , s) is defined recursively as follows:


• Case 1. t is a regular expression and s is a string in Σ+ and


not a serialized tree: If t matches the string s using conventional
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regular expression matching algorithm, thenmatch(t , s) returns a
list of captures that one gets from the regular expressionmatching


algorithm.


• Case 2. t is of the form (%t1 . . . tn%) and s is of the form


(%s1 . . . sm%): If n = m and match(t1, s1), . . ., match(tn , sn ) re-
turns the lists K1, . . . ,Kn , respectively, then match(t , s) returns
the list K1 · K2 . . .Kn if none of Ki ’s are nil. (We use K1 · K2 to


denote the list obtained by concatenating lists K1 and K2.)


• Case 3. t is @ and s is of the form (%s1 . . . sm%): match(t , s) re-
turns [s]. (We use [s] to denote the list containing a single element


s .)
• Case 4. t is of the form (*t1 . . . tn *) and s is of the form


(%s1 . . . sm%): we consider the following two cases, the second


of which is recursive. Note that in the recursive step, the entire


depth of the tree may be matched against.


– If match((%t1 . . . tn%), s) returns a list, say K , then match(t , s)
returns the list obtained by prepending the serialized tree con-


text • to K , i.e. returns the list [•] · K .
– Otherwise, if there exists a i such that match(t , si ) returns
a list of the form [e] · K , then match(t , s) returns the list


[(%s1, . . . , si−1, e, si+1, . . . , sn%)] · K . If multiple such i’s exist,
the first is chosen.


• Default Case. t and s do not match any of the above cases:


match(t , s) returns nil, which we use as a “bottom” value and is


not the same as an empty list.


A formal description of the function match(t , s) can be found in


Appendix B.


3.5 TreeRegex Replacement Algorithm
Most regular expression libraries provide support for search-and-


replace via replacement strings. A replacement string is the string


that a regular expression match is replaced with during a search-


and-replace operation. Replacement strings usually are strings with


special meta-characters of the form $n, where n is a positive integer.


During a replacement action each $n in the string gets replaced


by the nth capture while matching the regular expression against


a string. In TreeRegex, we support similar search-and-replace ca-


pabilities. A replacement string in TreeRegex is a serialized tree


which could contain special meta-characters of the form $n, where
n is a positive integer. These special meta-characters will be re-


placed by strings, serialized trees, or serialized tree contexts. The


replacement algorithmworks in a straight-forward way for captures
in the form of strings and serialized trees: we simply replace a $n


in the replacement string with the nth capture during TreeRegex
matching. However, the algorithm gets slightly complicated when


we have a capture in the form of a serialized tree context.


We now define the function replace(r ,K), which takes a replace-


ment string r and a list K of captures captured during a TreeRegex
matching and returns a new serialized tree. We assume that all


meta-characters $n appearing in the replacement string have a cor-


responding item in the list of captures. We use K(i) to denote the


ith capture in K ,w1 andw2 to denote arbitrary strings over Σs (i.e.
strings containing meta-characters and characters from Σ), s to
denote a serialized tree, c to denote a serialized tree context. In the


replace function, we replace each $n with a string or a serialized


tree as follows.


• Case 1. r is the string w1$nw2 (where w1 and w2 are arbitrary


strings) and K(n) is a string: Function replace replaces w1$nw2


with the string obtained by concatenatingw1, K(n), andw2.


• Case 2. r is the string w1$nw2 and K(n) is a serialized tree: As


before, function replace replacesw1$nw2 with a string obtained


by concatenatingw1, K(n), andw2. Note that K(n) is a serialized
tree, so it is a string in Σs .
• Case 3. r is the stringw1$nsw2 and K(n) is a serialized tree con-


text. If K(n) is a serialized tree context, then we do a replacement


only if a serialized tree, s , follows $n in r ; we use s to fill up the


hole in K(n). Function replace first replaces the hole • in K(n)
with s to get the serialized tree


7 K(n)(s), then replacesw1$nsw2


with a string obtained by concatenatingw1, K(n)(s), andw2.


We apply the above steps repeatedly until nomore replacements can


be performed. Note that in the third case above, ifK(n) is a serialized
tree context and $n is not followed by a serialized tree in r , we skip
the replacement of $n until replace converts r into a r ′ where $n is


followed by a serialized tree. Because of this, after the termination


of the algorithm we may end up in a serialized tree which contains


a meta-character of the form $n. In that case, replacement has failed


and we raise an exception. For example, the replacement string


(%a$1c%)will fail if the listK = [•, (
%b%)]. However, when the same


list is used with the replacement string (%a$1$2c%), the algorithm
first replaces $2 with (%b%) to yield (%a$1(%b%)%) [second case]


and then fills the hole in $1 with (%b%), yielding the final string


(%a(%b%)c%) [third case]. A formal description of the algorithm can


be found in Appendix C.


3.6 Running Time Complexity
The time complexity of the matching algorithm is bounded by


O((mn)k+1), wherem is the size of the TreeRegex expression, n is


the size of the serialized tree, and k is the number of context ex-


pressions in the TreeRegex expression. The algorithm has a space


complexity ofO(k). One can also use memoization during matching


to come up with an algorithm whose time complexity isO(mn) and
space complexity is O(mn). In our implementation we do not use


memoization because k is usually 1 or 2 in our usage. A detailed


complexity analysis of the algorithm can be found in Appendix D.


The replacement algorithm is straight-forward and has a time com-


plexity of O(mn), where where m is the size of the replacement


string and n is the size of the serialized tree.


4 CONSTRUCTING TREEREGEX EXPRESSIONS
To perform matching or replacement in a tree-structured text, we


need to construct suitable TreeRegex expressions. This could be-


come tedious if we need to construct large number of TreeRegex
expressions from scratch. In our case studies, we found that if we


take a look at a couple of source and target serialized trees, we can


easily write our desired TreeRegex expressions and replacement


strings. We next describe a simple process that we used to derive


TreeRegex expressions and replacement strings from examples.


The process significantly helped us through our case studies. The


process has three steps: creating a few examples of serialized trees


7
Note that if c is a serialized tree context and s is a serialized tree, then c(s) is the
serialized tree obtained by replacing the hole in c with s .
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before and after the transformation, stripping out irrelevant con-


text and details via “diff”-ing, and identifying replacement indices.


We use a simple example to demonstrate the process: finding and


instrumenting the conditions of if-statements in JavaScript.


Collecting Relevant Serialized Trees. In order to derive a


TreeRegex expression for a particular task, we first create a few


sample programs before and after transformation. To search for


if-statements in JavaScript programs, we use the following example


input programs:


• if(x<0) m--; • function f(){if(k==3){i*4;}}


We specifically varied the condition and the body of the if-


statements so that the only commonality between the samples


is the presence of an if-statement. The desired instrumented forms


are as follows:


• if(Cond(x<0)) m--;


• function f(){if(Cond(k==3)){i*4;}}


Typically only two to three examples are necessary to derive the


correct TreeRegex expression. Examples with comments or un-


usual whitespace are also useful so that the user can determine if


the parser removes them or treats them as separate sub-serialized


trees. For the duration of this section, we will consider a parser that


removes these artifacts.


We next convert these example programs into the following


serialized trees:


• (%if((%(%x%)<(
%0%)%))(


%(%(%m%)--%);%)%)
• (%function f()(% {(%if((%(%k%)==(


%3%)%))(
%


{(%(%(%i%)*(
%4%)%);%)}%)%)}%)%)


We generate similar serialized trees for the instrumented


JavaScript programs.


Stripping Out Irrelevant Context and Details via Diff-ing. Each of


the serialized trees, obtained from the examples, have additional


context and details that are unimportant to the task of instrumen-


tation. For instance, the body of each if-statement does not change


the instrumentation behavior—this is an irrelevant detail. Whether


an if-statement is in a function or in the global scope is equally


unimportant—this is an irrelevant context.
To detect these irrelevant context and details, we perform a “diff”


on each set of serialized trees. The “diff” divides each serialized tree


into those parts that are in common with each other serialized tree


in the set, and those parts which are not in common. Following is


the diff result of the set of serialized trees obtained from the two


example input programs:


• (%if( (%(%x%)<(
%0%)%) ) (%(%(%m%)--%);%) %)


• (%function f()(% { (%if( (%(%k%)==(
%3%)%) )


(% {(%(%(%i%)*(
%4%)%);%)}%) %) }%)%)


The highlighted parts represent the differences of two serialized


trees. They are either the irrelevant context or the irrelevant details.


If the highlighted part is outside of the non-highlighted parts, then


it is the irrelevant context and can be removed. If it is inside, then it


is an irrelevant detail. For each irrelevant detail that is a serialized


tree, we replace it with an indexed wildcard TreeRegex expression


(@i ). For each irrelevant detail that is a string, we replace it with


an indexed ((.*))i regular expression. This distinction is necessary


because @ expressions do not match non-serialized trees and reg-


ular expressions do not match serialized trees. The following are


the results after this step. The left items are obtained from the ex-


ample input programs, and the right items are from the example


instrumented programs:


• (%if(@1)@2%)
• (%if(@3)@4%)


• (%if((%(%Cond%)(@5)%))@6%)
• (%if((%(%Cond%)(@7)%))@8%)


During the process, we maintain a mapping from the indexed expres-
sions to the concrete serialized trees and strings they have replaced.
For example, @1 and @5 refer to (%(%x%)<(


%0%)%), and @2 and @6


refer to (%(%(%m%)--%)%). This mapping will be used in the next step.


Assigning Replacement Indices. The last step is to construct re-


placement strings for the TreeRegex expressions obtained in the


previous step. To do so, we first match each @i from the pre-


instrumentation TreeRegex expression with @j from the post-


instrumentation TreeRegex expression such that they map to the


same serialized tree (e.g. @1 and @5). Thus to obtain the replace-


ment string corresponding to the post-instrumentation version,


we replace @5 with $1, where 1 is the index of the capture group


corresponding to @1 in the pre-instrumentation version.


We construct the final TreeRegex expressions by dropping the


indices from the@ expressions in the TreeRegex expressions in the
pre-instrumentation set. Additionally, one could further constrain


the ((.*)) regular expressions with more constrained regular expres-


sions, e.g. with ((\d+)). Lastly, we remove any duplicate pattern pairs,


yielding the following TreeRegex expression and replacement ex-


pression:


• (%if(@)(%{@}%)%)
• (%if((%(%Cond%)($1)%))(


%{$2}%)%)


5 TRANSFORMERS AND IMPLEMENTATION
We have implemented TreeRegexLib, a match-and-replace engine


for TreeRegex, in C++ (926 lines), Java (1044 lines), and JavaScript


(746 lines). We use the existing, unmodified regular expression li-


braries of these languages for matching regular expressions. We


believe that if a language has a library for regular expressions, it is


straight-forward to implement TreeRegexLib. In our implementa-


tions, we use a simple tree data-structure to denote a serialized tree.
This helps us to avoid unnecessary serialization and parsing of a


serialized tree while performing multiple TreeRegex matching and


replacements.


Both implementation provide the transformerAPI as a primary


interface to search and manipulate an AST. TreeRegex expressions
and replacement expressions are good at describing a single match-


and-replacement task. However, an AST-manipulating program


often needs more than that. For example, it may need to find all


subtree matching a given pattern, to accumulate information from


each matching subtree, and to perform different actions based on


the collected information rather then just depending on the syn-


tactic pattern. The transformer API is designed to support such


tasks, using TreeRegex expressions and replacement expressions


as components.


With the transformer API, an AST manipulation task can be


described using a collection of transformers. A transformer is
defined as a tuple of the form (type, t ,M, r ), where type is either
pre or post, t is a TreeRegex expression,M is the modifier, which


is a function taking a list of captures and a user-defined state, and
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returning a possibly modified list of captures, and r is a replacement


string. Each transformer essentially describes a single match-and-


replacement task, with additional components (a pre/post tag and a


modifier). Having a collection of transformers, the transformer
API traverses an input serialized tree in depth-firstmanner, applying


all transformers in the collection to each sub-serialized tree. When


a transformer is applied to a sub-serialized tree, the following


actions take place.


Only transformers of type pre are applied to a sub-serialized


tree before its children have been visited, and only transformers
of type post are applied to a sub-serialized tree after its children


have been visited. While visiting a sub-serialized tree, t is matched


against the sub-serialized tree to obtain a capture list, say K .
Next modifier M of the transformer is applied to the list of


captures K and the user-defined state σ . The modifier could change


the user-defined state σ and return a potentially modified list of


captures. A default implementation of a modifier returns the list of


captures passed as argument. The modifier is also a suitable place


where a warning could be printed or where necessary informa-


tion could be accumulated to the user-defined state. If the modifier


returns a non-nil list of captures, a new serialized tree is created


from the replacement string r using the list of captures. The new
serialized tree replaces the current sub-serialized tree. If a replace-


ment string is not provided, the current sub-serialized tree is kept


unmodified. A formal description of the transformation algorithm


can be found in Appendix E.1 and an example usage can be found


in Appendix E.2.


6 CASE STUDIES
We report on five case studies where we found that TreeRegexLib
significantly simplifies various tasks related to manipulating tree-


structured texts. Note that a TreeRegex expression depends on the


structure of the serialized tree of the target language. One may


think that this could pose a problem if we change our serialization


format frequently.We usually create the most generic serialized tree


for a given AST, where each internal node of the AST is enclosed


with (% and %). Such a format does not change unless we switch


to a different parser and AST. In general, once we fix a parser for


a language, the serialized tree format for the language is fixed as


well. For example, we used the same serialization format for both


of our JavaScript case studies. We did not find any need to change


the serialization format from one application to another.


6.1 Measuring JavaScript Test Coverage
In this case study, we use TreeRegexLib to instrument JavaScript


programs for tracking branch and statement coverage. The instru-


mentor has two parts: a JavaScript program to serialized tree con-
verter, and a list of transformers implementing the instrumen-


tation. We built our converter on top of the acorn parser [6] and
esotope [10] JavaScript code generator by adding 108 lines of mod-


ification.


Our instrumentation program wraps the conditional expressions


in various statements and expressions, such as if-else, for,
while, and switch. For example, the code if (x>0){x = 0;} gets


instrumented into if (Cond(id, x>0)){x = 0;}. A unique static


id is passed as the first argument to Cond and the conditional


expression is passed as the second argument. An implementation


of Cond records the branch being taken and returns the value of


the conditional expression unmodified. Similarly, we add a call to


Stmt before every statement to track statement coverage.


The instrumentation program has 13 transformers imple-


mented in 37 lines of JavaScript code. A simplified version of the


TreeRegex expression and replacement string used to instrument


an if-statement is shown below.


(%if (@) @ %) (%if (Cond($3, $1)) $2%)


Here $3 represents a static id which is generated and appended to


the list of captures in the modifier of the transformer.
The instrumentation program was quite straight-forward to


write. The total lines of code of the instrumentation program, which


is 145 including the serialized tree converter, is significantly fewer


than the 968 lines of code of the instrumentor in istanbul [13], a
popular JavaScript coverage tool. Istanbul uses a similar parser,


called esprima [11], and the esotope code generator. It program-


matically visits the AST of a JavaScript program to perform the


instrumentation. We believe that such traversal code is tedious to


write, debug, and maintain. Another important aspect of our instru-


mentation tool is that we did not use a specialized term-rewriting


tool to perform instrumentation. Such a tool would simplify the


task of writing an instrumentor; however, it would require one


to define a grammar for JavaScript. We simply reused an existing


parser and code generator. The ability to exploit existing tools for


generation of serialized trees makes TreeRegexLib practical for


real-world usage.


6.2 Detecting Injection Attacks
In this case study, we show that TreeRegex can be used to detect in-


jection attacks. Injection is a class of attacks that works by injecting


data into a program template (i.e. a program with missing portions


to be filled with data) in order to facilitate the execution of a ma-


licious program that alters the intended behavior of the original


program. Examples of injection attacks include cross-site scripting


(XSS), SQL injection, injection in strings passed to JavaScript’s eval
function and system C function, shell variable expansions.


We focused on SQL injection attacks in this case study because


they are quite common: in the past 4 years, there are over 700 CVE


reports of distinct SQL injection vulnerabilities [1]. Therefore, a


significant corpus of vulnerabilities is available for evaluation. Since


TreeRegexLib is not specifically designed for SQL, we expect that


our technique is portable to other types of injection attacks.


There is a significant volume of research on detecting injection


attacks in SQL [17, 30, 54, 64, 65]. The most popular techniques to


detect SQL injection attacks ensure that the injected string is not


treated as instructions but as a string value. Instead of checking


if the injected string has a restricted format, we use TreeRegex
expressions to check if, after injection, there is any alteration in


the syntactic structure of the resultant string. We believe that our


approach to check the resultant string instead of checking the


injected string is quite powerful. In most languages, this is sufficient


to determine whether an attack has occurred.


We evaluate our technique on existing SQL injection vulnera-


bilities in Wordpress [5] plugins. Wordpress plugins are ideal for


evaluating injection-detection techniques because (1) Wordpress
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does not require plugins to use a safe SQL command API, (2) Word-


press has a large installation base [5], and (3) vulnerable plugins are


easily available. From an exploit database [12] we downloaded the


last 4 years of vulnerableWorldpress plugins with exploit code. This


amounted to 32 plugins, 390k lines of PHP source code, and approx-


imately 2000 SQL commands. For each exploit, we read the exploit


writeup from the database and found the vulnerable SQL command.


We used the technique from Section 4 to construct TreeRegex ex-
pressions that matched non-exploited versions of the commands
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We used the constructed TreeRegex expressions to detect any ex-


ploited vulnerability at runtime by inserting a check before the SQL


command is evaluated.


We constructed 34 TreeRegex expressions, with an average


length of 61 tokens, for the 32 vulnerable plugins. We were able to


detect all exploits, with neither false-positives nor false-negatives.


All of the vulnerable SQL commands could be parsed into serialized


trees. To understand how the expressions were able to detect injec-


tion attacks, consider these two SQL serialized trees from function


calls of the cp-multi-view-calendar plugin, version 1.1.7 [8]:


(%update (%‘wp_dc_mv_events’%) set
(%‘exdate’%)=(


%‘’%) where (%(%‘id’%)=(
%4%)%)%)


(%update (%‘wp_dc_mv_events’%) set (%‘exdate’%)=(
%‘’%)


where (%(%‘id’%)=(
%(%SLEEP%)((


%2%))%)%)%)


In the second serialized tree, the SLEEP SQL function is an injected


behavior change. The intended structure is straightforward: an


update SQL statement sets the variable exdata to be an empty


string where id has a certain value. We can create a TreeRegex
expression specifying the expected structure of the SQL command:


(%update (%.*%) set (%‘exdata’%)=(
%.*%)


where (%(%‘id’%)=(
%.*%)%)%)


Note that we are using the regular expression .* to prevent


serialized trees from appearing in certain positions above. The


regular expression .* only matches strings and not serialized trees—


therefore, any attempt to inject a syntactic structure, which is not


a string, would be blocked. In the example, we are restricting the


right-hand side of the assignments to extdata and id, along with


the table name.


6.3 Linter for JavaScript
In this case study, we re-implemented a subset of the code-checking


rules used in the popular JavaScript linting tool, ESLint [9]. Lint-
ing is a light-weight static analysis that is used to find erroneous


code patterns. ESLint implements a total of 223 checking rules. We


picked the first 10 rules listed on the ESLint website and imple-


mented them with TreeRegexLib. (We skipped two trivial rules in


the list, e.g. no-debugger).
For the implementation of the linter, we re-used the converter


from our branch/statement-coverage case study. For each checking


rule we usually wrote 1-10 transformers. In all transformers, we


had to implement a custom modifier to report warnings and, in


some cases, to perform some extra checks on the list of captures.
Next we describe the implementation of a couple of checking rules.


The no-cond-assign rule checks if there is an assignment in


a conditional expression. We wrote a TreeRegex expression for
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In order to convert the SQL commands to serialized trees, we used an available SQL


ANTLR grammar [4] and implemented a library that takes the ANTLR parse tree and


produces serialized trees.


each of the syntactic statements and expressions that could have


a conditional expression. One such expression is (%while ((*@
= @*)) @%). This TreeRegex expression matches a while-loop


statement if its condition contains an assignment.


The no-cond-constant rule checks if there is a constant ex-


pression in a condition. For this checker we modify the TreeRegex
expressions from the above rule to extract the conditional expres-


sion from a condition statement. The conditional expression is then


passed through a set of 4 transformers which evaluate an expres-


sion to 1 (to denote that the expression is a constant) if both of


its operands are constant. If the extracted conditional expression


evaluates to a constant, we report a warning.


Overall, we managed to implement all the checkers in signif-


icantly fewer number of lines than that in ESLint. The size of


ESLint checkers ranges from 33 to 133 lines (median 57 lines),


whereas the size of corresponding TreeRegex checkers ranges from
1 to 19 lines (median 8 lines)
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. We also found that the TreeRegex


expressions used in these checkers are often easy to read and un-


derstand. More data is available in Appendix F.


6.4 Finding Errors in C Programs
In this case study, we re-implemented potential-error checkers for


C programs [21] using TreeRegexLib. The checkers check for the


following patterns:


(1) Repeated if branches: if (x) {y;} else {y;}


(2) Suspicious loop conditions: for (i=0; i>0; i++)


(3) Repeated lines (without side effects): x; x;


The first two analyses—identifying repeated branches and suspi-


cious loop conditions—are re-implementations of previous work,


and were originally written in a framework designed for creating


checkers [21]. This framework also supports five other checkers,


four of which reason about the program’s control flow graph and


are therefore out of scope. The last checker inspects arbitrarily


nested if statements; this requires a more complicated expression


than is ideal for regex-like tools generally. The two checkers that


we do reimplement, however, require fewer total lines of code than


they do in the original system while having the same functionality.


Though the checks in this section seem simple, they detect errors


that may cause serious problems in practice—not crashing bugs,


but bugs that silently compute an incorrect result, which are often


harder to diagnose [16]. We run all three checks on Linux 4.4 driver


code (gpu, net, and staging) and detect 25 bugs and nine false


positives. We now describe the implementation of one of these


checkers. We describe the remaining checkers in Appendix G.


Repeated if branches. This checker extracts both branches of


if-statements and check whether they are syntactically equal. It


detects nineteen bugs, thirteen suspicious statements, and six false


positives in Linux driver code. The following is one such bug:


1 // linux/drivers/net/wireless/realtek/


2 // rtlwifi/btcoexist/halbtcoutsrc.c:224


3 if (priv ->mac80211.link_state >= MAC80211_LINKED)


4 undec_sm_pwdb = priv ->dm.undec_sm_pwdb;


9
Note that ESLint supports a few options per rule, which turns the checking of the


rule on or off. We do not implement such options. If we ignore the lines of code that


check options, the number of lines of code for the ESLint checkers would still be at


least half.
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5 else /* associated entry pwdb */


6 undec_sm_pwdb = priv ->dm.undec_sm_pwdb;


The comment above the else branch is a tipoff that this code snip-


pet is a real bug: “associated entry pwdb” describes the false branch


but not the true branch, which suggests that the two branches


should perform different actions.


To implement the checker, we first adapt a parser to output the


serialized tree format from the source code, minus any comments


or formatting that we don’t need. We also write a TreeRegex ex-
pression that captures if statements: (%if (@) @ else @%)
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Then, we write a transformer with a modifier that compares the


matches for the true and false branches of the if statement.


6.5 A Simple Compiler
In this section, we implement a compiler to understand the applica-


bility of TreeRegexLib to implement a DSL compiler. The compiler


takes BC--, a mini-language based on GNU BC [2], and outputs


MIPS assembly code. BC-- supports expressions, functions, loops,
and branch statements like those in C, but restricts all variable to


have the 32-bit integer type. The complete grammar is given in


Appendix H. The front-end (tree-serializer) was implemented on


top of the GNU BC [2] parser by adding 195 lines of modifications.


The compiler is implemented in 142 lines of C++ code, including


39 transformers.
During this case study, we found that TreeRegexLib provides


many advantages. First, TreeRegexLib uses a flexible intermediate


representation: mixing the source and target languages in a single


serialized tree is allowed, as is adding macros to defer compilation


steps. TreeRegexLib also helps with debugging. Because of the uni-
fied intermediate representation, we could print the intermediate


result at any step of compilation without implementing a dedicated


pretty printer. Finally, we found that TreeRegexLib naturally sup-


ports modular development. We can write one transformation step


at a time and selectively enable or disable it.


Example transformers. We now describe two example


transformers to give a sense of how compilers can be imple-


mented with TreeRegexLib. A larger selection of the compilation


transformers are provided in Appendix I.


The example transformers handle assignment statements. As-


signments have two variations in BC--: binary-operation assign-


ments (e.g. a+=3) and simple assignments (e.g. x=5). During com-


pilation, we first de-sugar binary-operator assignments to simple


assignments using using the following TreeRegex expression and


replacement string: (%IR (%IR ((.+))%) ((.+))= @%) and (%IR (%IR


$1%)=(
%IR(%IR load $1 %) $2 $3%)%). We use IR to denote serial-


ized trees that are not MIPS, and MIPS for the remainder. Here $1


is the variable name, $2 is the binary operation and $3 is the right-


hand side of the binary-operation assignment. We use a loadmacro


here to defer the compilation of loading the $1 variable. These


macros are later compiled into the appropriate MIPS assembly by


another transformer. Here we take advantage of the lack of a rigid
grammar to mix BC-- and macros in a single serialized tree.


10
The parser used in this case study removes comments and normalizes white-space.


We additionally have a parser that maintains comments and white-space.


BC-- BC-- Parse Compile MIPS Compile Rate


Size (kB.) Time (sec.) Time (sec.) Size (kB.) (kB./sec.)


1.61 0.001 0.012 14.38 134.17


16.08 0.002 0.082 143.06 196.1


32.16 0.004 0.174 286.62 184.83


64.32 0.008 0.312 573.86 206.15


96.48 0.011 0.467 861.14 206.6


128.64 0.015 0.646 1149.71 199.13


160.8 0.019 0.777 1438.81 206.95


Avg. - - - 190.56


Table 1: BC-like Compiler Performance.


After de-sugaring, assignments are only in one form. We now


rewrite simple assignments to a simpler form using another macro,


save. We use the following TreeRegex expression and replacement


string: (%IR (%IR ((.+))%) = @%) and (%MIPS $2 (%IR save $1%)%).


This replacement string places the expression on the right-hand side


of the assignment first ($2), and then a save macro for the variable


($1). The right-hand side expression will be compiled by another


transformer. The compiled MIPS code maintains the invariant


that, when an expression is evaluated, it stores the result in an


accumulator register. The save macro takes this value and stores it


in the appropriate place in memory, and will be compiled a later


transformer. As demonstrated here, we were able to modularize


the compilation of assignments in separate steps, and each step is


implemented independently.


Performance. To investigate the performance of our


TreeRegexLib implementation, the runtime of the BC-- compiler


was profiled. All measurements were done on a Intel(R) i7-3630QM


CPU with 16GB of RAM and a solid state drive (SSD). We used an


example BC program—extensions.bc—from the X-Bc project [7],


edited to only use the features of BC--. The file is 181 lines of


non-comment source code. To simulate a large, human-written


code, the contents of the file were duplicated. Table 1 summarizes


our results. The first column shows the size of the source file


excluding comments and empty lines. The second column and


the third column show the runtime of the BC-- to serialized tree


converter, and the compiler, respectively. The fourth column shows


the size of the resulting MIPS code. The final column shows the


performance of the compiler by giving the ratio of the first column


to the fourth column.


From this result we make two observations. First, the compiler


runs adequately fast—it handles the largest input (composed of


18k lines) in under a second. This shows that TreeRegexLib could


be practical for sophisticated transformation tasks. Second, the


compilation rate is consistent: approximately 190 kB. per seconds.


This indicates that TreeRegexLib has linear time complexity in


this case-study.


7 RELATEDWORK
Language extensions. Machete [32], PLT-Redex [39], and


XDuce [36] extend programming languages to enable structural


pattern matching. Machete extends Java to support structured term


patterns, XML patterns, and bit-level patterns. PLT-Redex extends


Racket to support structural pattern matching over S-expressions.


XDuce is an extension of ML, which uses regular expressions


to describe patterns over XML documents. The above projects


are bound to a particular problem and a particular programming
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language. To the contrary, TreeRegex can be applied to any


problem domain in any language as long as a parser is provided.


Natural Language Tree Processing. The natural language process-
ing community has developed many tools to match and manipulate


natural language parse trees. Tools like Tgrep [49], Tgrep2 [50], and


Tregex [40] are designed to search trees representing the natural-


language parse of a sentence. These tools effectively operate on a


subset of serialized trees by requiring each sub-tree to be labeled


with the expression type—in the trees these tools operate on, each


sub-tree can and must contain exactly one string, which is the first


part of that sub-tree. TreeRegex is thus more general. The tool


Tsurgeon [40] additionally allows for modification of the natural


language parse trees. Tsurgeon is designed around a different para-


digm: TreeRegex replacement operations are performed once and


have a known, bounded running time, but Tsurgeon tree manipula-


tion operations may never complete. This is because a Tsurgeon


tree manipulation operation continues until no tree or sub-tree is


found that matches a the given pattern.


Island Grammars. Island Grammars [26, 42, 59] have been pro-


posed to specify parts of programs satisfying a specific syntax.


They have been used as a light-weight means of implementing


syntactic analysis tools [43, 55]. Island Grammars view programs


as sequences composed of land chunks (parts to find out) and water


chunks (parts to ignore), and uses a SGLR parser to find out as many


land chunks as possible. Unlike TreeRegex, Island Grammars are


not suitable for program transformation because they do not have


a mechanism to capture parts parsed as water chunks. Moreover,


Island Grammars ignore the structure of the ignored parts, so they


usually have false positives.


Perl-style regular expressions. Perl [63] and PCRE [31] allow for


named, mutually-recursive patterns, which are sufficient to imple-


ment CFG parsers. Perl and PCRE, like CFG parsers, are intended to


solve different problems than TreeRegex: TreeRegex attempts to


implement a simple tool for matching tree-structured text. Perl and


PCRE are at least as powerful as CFG parsers and have significantly


more syntactic varieties than TreeRegex. The generality of Perl and
PCRE expressions comes at a high performance cost: these systems


are Turing-complete and use backtracking, which has exponential


runtime for even simple regular expressions. For instance, we at-


tempted to use a Perl/PCRE expression for the motivating example


(detecting calls to eval), but the expression required over 3 hours to
match on a 300k JavaScript file. The TreeRegexLib implementation


finished in 3 seconds.


Rewriting systems. AST-rewriting frameworks [15, 18, 20, 24, 33,
58, 61] synthesize an AST-manipulating program from a high-level


description. They have been successfully applied to a variety of


problem domains, including optimizing compilers [48] and domain-


specific languages [19, 62].We propose TreeRegex as a complement


to AST-rewriting frameworks, and not as a replacement.


The main difference stems from the design principle: our tool


aims to provide a regular expression equivalence of AST manip-


ulation, i.e. a simple library concentrating on matching and re-


placement operations. We believe that TreeRegex is easy to learn


because of the small core. TreeRegexLib retains expressiveness


by delegating tasks other than matching, such as free-form tree


traversal and conditional matching, to host languages without con-


voluting the core concepts. Moreover, it can be easily implemented


for any programming language, as we did this for C++, Java, and


JavaScript. AST-rewriting frameworks, on the other hand, are de-


signed to provide a versatile and powerful standalone solution to


develop AST-manipulation programs. However, being a standalone


solution, inter-operation between an AST-rewriting framework


and another programming language may not be as easy as it is


for TreeRegexLib. For instance, frameworks such as Cobra [33]


design their matching and rewriting syntax to be a super-set of


the language that it manipulates (the C-like languages C, C++ and


Java). Therefore, most of the work has to be done within the AST-


rewriting framework and this can be a burden to newcomers.


In terms of describing patterns to match, AST-rewriting frame-


works and TreeRegex again take different routes. In modern AST-


rewriting frameworks a matching pattern can be in a concrete


syntax form not involving any details of the parser-specific AST


representation [60]. TreeRegex expressions, to the contrary, allow


users to mix regular-expressions with serialized trees. If we want to


find all variable declarations where the variable names begin with


an upper-case letter, for example, concrete syntax is not expressive


enough. TreeRegex can express such patterns easily.


Rewriting logic [22, 39, 41, 51] is a logic framework to describe


and verify semantics and transformation of programs. TreeRegex
focuses more on practical issues, such as compilation and syntactic


checking, and rewriting-logic aims for more formal problems, such


as formal specifications [46].


Tree automata. Tree automata and tree transducers have been


widely studied [14, 23, 27, 45] and used to form the theoretical


basis of many tree manipulating tools [25, 40, 44, 57]. TreeRegex
expressions and transformers can be formalized as a means of


expressing tree automata and tree transducers.
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(
%@(


*
A
*
)%)


↔


Figure 2: An example TreeRegex expression and its tree rep-
resentation. Direct expressions are denoted with a dot node,
context expressions with a triangle with a smaller triangle
removed, subtree expressions with a triangle, and strings as
nodes with the string inside.


A TREE FORMULATION OF TREEREGEX
EXPRESSION


TreeRegex expressions can also be represented as a tree. Figure 2


shows an example tree for the TreeRegex expression (
% @ (


*
A
*
)


%). We use a triangle to denote a wildcard expression, a notched


triangle to denote a context expression, and a dot to represent an


exact expression.


B FORMAL DESCRIPTION OF THE TREEREGEX
MATCHING ALGORITHM


A formal description of the function match(t , s) can be found in


Figure 3. The figure describes five rules, corresponding to the four


cases from Section 3.4, except that context matches are described in


two rules. The rules should be read as follows. The statements above


the horizontal bar are hypotheses of the rule; if the hypotheses are


satisfied, then the statement below the bar is true. The behavior


of match is described recursively using the rules. A statement of


the form match(t , s) → K states that match(t , s) returns the list K
(which is assumed to be not nil). regexMatch(t ,w) → K means that


regular expression t matches the stringw and generates the list K
of captures. The predicate isRegex(t) is true if t is a pure regular
expression.


C FORMAL DESCRIPTION OF THE TREEREGEX
REPLACEMENT ALGORITHM


Figure 4 summarizes the replacement rules. In these rules,w refers


to a string and s refers to a serialized tree. Any serialized tree is


a string, but not all strings are serialized trees (as serialized trees


follow a grammar). c is a serialized tree context.


D COMPLEXITY ANALYSIS
We describe two different complexities for matching: one that


naïvely uses a significant amount of auxiliary memory and one


that uses O(k) auxiliary memory, which we have implemented.


To understand the complexity with higher auxiliary memory,


consider each subsequent call tomatch from an initial call tomatch.


Exact


match(t1, s1) → K1


.


.


.
match(tn, sn ) → Kn


match((%t1 . . . tn%), (
%s1 . . . sn%)) → K1 · . . . · Kn


Wildcard


match(@, (%s1 . . . sn%)) → [(
%s1 . . . sn%)]


ContextCapture


match((%t1 . . . tn%), (
%s1 . . . sm%)) → K


match((*t1 . . . tn *
), (%s1 . . . sm%)) → [•] · K


ContextBuild


∃i∈1. . .mmatch((*t1 . . . tn *
), si ) → [e] · K


∄j∈1. . .m j < i ∧match((*t1 . . . tn *
), sj ) → [e′] · K ′


c
def
= (%s1 . . . si−1esi+1 . . . sm%)


match((*t1 . . . tn *
), (%s1 . . . sm%)) → [c] · K


StringMatch


isReдex (t )
r eдexMatch(t, u) → K


match(t, u) → K


Figure 3: Algorithm for matching a TreeRegex expression to
a serialized tree. Each ti is a TreeRegex or regular expression.
Each si is a serialized tree and eachw is a string


Context


K (n) = c
c(s) = s′


r eplace(w1$nsw2, K ) → w1s′w2


Tree


K (n) = s


replace(w1$nw2, K ) → w1sw2


String


K (n) = w ′


r eplace(w1$nw2, K ) → w1w ′w2


Figure 4: Algorithm for replacements. Eachw is a string and
each s is a serialized tree. c is a serialized tree context.


Firstly, note each subsequent call to match reduces the input ei-


ther into a sub-TreeRegex expression or sub-serialized tree ex-


pression. Also note that all match calls on a TreeRegex expres-


sion that have no sub-TreeRegex expressions terminate, as do all


the calls on strings (i.e. not serialized trees) in serialized trees.


This makes sense—each call to match makes progress along ei-


ther the TreeRegex expression or the serialized tree. Let us assume


that these cases—matching on a TreeRegex expression with sub-


expressions and matching on a string from a serialized tree—take


constant time. If they take constant time and we do not repeat com-


putation (calling match on the same argument pair twice), then the


runtime is bounded by the number of sub-TreeRegex expression
and sub-serialized trees. Let us use n andm to refer to these two val-


ues; the big-Oh, assuming we do not repeat computation, is O(mn).
This is saying that, at worst, each sub-TreeRegex expression can


be matched against each sub-serialized tree.


To prevent repeated computation, we can naïvely use


memoization—everytime a matching is performed on a sub-


TreeRegex expression and sub-serialized tree pair, we record the


result. This leads to O(mn) auxiliary memory at minimum. We
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found that, in practice, a slower algorithm that uses less memory


was sufficient and quite usable. The slower algorithm algorithm


uses O(k) auxiliary memory. We next analyze the complexity of


this slower algorithm.


The algorithm presented in Section 3.4 can repeatedly compute


matches: during the matching on a context expression (
*
(
*t
*
)
*
) and


a serialized tree s , each subtree of s can be matched on t multiple


times in the worst case. The call tomatch with (
*
(
*t
*
)
*
) will result in


subsequent calls to match with (
*t
*
) and calls with t . Both of these


subsequent calls will be done on the input argument s and each of its
subtrees si . Hence,match(t, si) is called at least twice in this example,


because both levels of context expressions backtrack. We bound


the computation caused by k context expressions as traversing


the entire serialized tree and applying each TreeRegex expression


on each element of the serialized tree. Because each TreeRegex
expression may contain a context expression, we may evaluate


all TreeRegex expressions and serialized tree match calls k times.


This leads to a runtime that is bounded byO((mn)k+1), while using
O(k) auxiliary memory. We needO(k)memory to keep track of the


sub-serialized tree index while matching context expressions. This


runtime was practical because the number of context expressions


is typically 1 or 2, at most, in our usage.


E TRANSFORMATION ALGORITHM AND
TRANSFORMERS EXAMPLE


E.1 Pseudocode of the Transformation
Algorithm


Given a list of user-defined transformers, say T , and a serialized


tree, say s , the following pseudocode shows the steps of the algo-
rithm:


function traverse(s)
let σ be a user -defined state


// apply all pre transformers


foreach (type, t, M, r ) in T
if type = pre


K ←match(t, s)
K ← M (K, σ )
if K , nil and r is defined


s ←replace(r, K )
// recursively traverse all children


foreach si where s is of the form (%s1 . . . sn %)


if si is a serialized tree


si ← traverse(si )
s ← (%s1 . . . sn %)


// apply all post transformers


foreach (type, t, M, r ) in T
if type = post


K ←match(t, s)
K ← M (K, σ )
if K , nil and r is defined


s ←replace(r, K )
return s


E.2 Transformer example
We illustrate the power of transformers by example: we imple-


ment an interpreter for an expression language. Consider the fol-


lowing simple expression language:


⟨expr ⟩ ::= ⟨expr ⟩ + ⟨expr ⟩ | ⟨id ⟩ | ⟨int ⟩ | let ⟨id ⟩ = ⟨int ⟩ in ⟨expr ⟩


⟨id ⟩ ::= a sequence of letters


⟨int ⟩ ::= a sequence of digits


Expressions are the addition of two expressions, identifiers, inte-


gers, or let-in expressions, defining an integer constant. The “let”
ambiguity can be handled in any way for the purposes of this ex-


ample. The following is an example expression in this language:


“let x = 1 in let y = 2 in x + let x = 3 in x + y + 3”.
This expression evaluates to 9, by replacing identifiers with their


aliased integers and performing additions.


In order to implement an interpreter for the language, we use a


list of four transformers. The simplest transformer we need is


the one that handles integer additions. The TreeRegex expression


for addition expressions is (% ((\d+)) \+ ((\d+)) %). We define modi-


fier MAdd to do the addition as follows. (Here we use a JavaScript-


like pseudo language to illustrate the modifiers.)


function MAdd(K, σ )


return [K(1) + K(2)]


The replacement string for this transformer is just the computed


value, so it is $1. If this transformer has the post-order type, then


it will collapse any serialized trees that do not use identifiers into


their values. For example, consider the post-order application of


this transformer to “(
%
(
%
3+4%)+(


%
5+6%)%)”. First, the transformer


will run on the sub-serialized trees “(
%
3+4%)” and “(


%
5+6%)” and


rewrite them into “7” and “11”, respectively. The serialized tree after


this transformation is “(
%
7+11%)”. After another application to the


only serialized tree, the result will be “18”.


Handling identifiers requires two steps; we need to collect


identifier values and we need to replace them. In our serialized


tree representation, we surround identifiers with “(
%
” and “%)”.


To collect the mapping from identifiers to integers, we need


to match on “let” expressions and use the TreeRegex expres-


sion (%let (%((.+))%) = ((\d+)) in @%). We can specify that the state


passed to the modifier function keeps track of the mapping as


follows:


function MLet(K, σ )


pushMapping(σ , K(1) 7→ K(2))


return nil


The modifier uses the state σ to keep track of the mapping of


identifiers to integers, by pushing the identifier mapping for the


“let” expression. This modifier returns nil, so the serialized tree


is never modified by it (so a replacement string is not used). This


transformer provides information for subsequent transformers,
and we assign it a pre-order type so that it is performed before


them.


We use the mapping produced by this modifier in the


transformer for identifiers. We match on (% (([a-z]+)) %), and use


the following modifier:


function MId(K, σ )


return [lookup(σ , K(1))]


This modifier uses a lookup function to find the last pushed integer


mapped to the identifier, and the integer is returned as a captured


value. The replacement string is, as before, just $1. This transformer


does not rely on information from sub-serialized trees, so it can


have any order type.
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Checker name TreeRegex LOC ESLint LOC


no-cond-assign 8 133


no-console 1 56


no-constant-cond 19 73


no-control-regex 2 57


no-dupe-args 10 73


no-dupe-keys 15 48


no-duplicate-case 8 33


no-empty 1 46


no-empty-character-class 1 45


no-extra-boolean-cast 13 78


Table 2: JavaScript Linter: TreeRegex vs. ESLint LOC


Now that we have transformers that collect identifier map-


pings and use them, we only need to be concerned with restor-


ing mappings after a “let” expression is finished. To do this


we use a transformer that matches on the “let” expressions


(which we did not modify in the other “let” transformer).
We can use a similar TreeRegex expression to last time:


(%let (%((.+))%) = ((\d+)) in ((\d+)) %). We use the following modi-


fier to remove that identifier mapping:


function MClearLet(K, σ )


popMapping(σ )


return K


Finally, we use the replacement string $3 to rewrite the “let” into
just the integer after the “in”. This transformer must be applied


after the “in” expression has been evaluated (a post-order type).


F JAVASCRIPT LINTER DATA
Table 2 shows, for each rule, the number of lines of JavaScript code


to implement a checker in comparison to the number of lines used


by the corresponding checker in ESLint.
Overall, we managed to implement all the checkers in signif-


icantly fewer number of lines than that in ESLint. The size of


ESLint checkers ranges from 33 lines to 133 lines (median 57 lines),


whereas the size of corresponding TreeRegex checkers ranges


from 1 line to 19 lines (median 8 lines)
11
. We also found that


the TreeRegex expressions used in these checkers are often easy


to read and understand.


G ADDITIONAL C CHECKERS
Suspicious loop conditions. This checker flags instances where a


loop’s condition and increment do not match. We detect four odd


loop increment-bound pairs: (>, ++), (>=, ++), (<, --), (<=, --). These
describe instances where, for example, the loop index is supposed


to be less than a bound but is decremented on each loop iteration.


1 linux/drivers/net/ethernet/qlogic


2 /netxen/netxen_nic_hw.c:2334


3 // int k, u32 read_cnt;


4


5 for (k = 0; k < read_cnt; k−−) {


6 nx_rd_dump_reg(read_addr ,


7 adapter ->ahw.pci_base0 , &read_value );


8 *data_buff ++ = read_value;


9 read_addr += read_stride;


10 }


11
Note that ESLint supports a few options per rule, which turns the checking of the


rule on or off. We do not implement such options. If we ignore the lines of code that


check options, the number of lines of code for the ESLint checkers would still be at


least half of the number of LOC reported in the table.
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in this case, the loop terminates when k < read_cnt . unfortunately,


int k is initialized to 0 and decremented on each iteration of the loop;


after the first iteration of the loop, k will be negative. read_cnt , on


the other hand, is guaranteed to be positive (since it is unsigned).


as a result, k will never be less than read_cnt . the loop will proceed


until k underflows; since int underflow is undefined behavior, there


are no guarantees about what happens to k or the loop after many


hundreds of iterations.


We implement this checker using different TreeRegex expres-


sions to extract different suspicious loop bound-increment pairs.


The following TreeRegex expression, for example, detects (<, --):(%


for(%(@; (%@ < @%); (% @--%)) @%). We use a transformer
to ensure that the variable on the left-hand side of the bound is


the same variable that is incorrectly incremented or decremented.


This checker detects two true bugs in gpu, one in net, and one in


staging . A similar expression is used to detect the same issue for


pre-decrement in loops. None of its reports are false positives.


Repeated lines. This checker emits a warning when two lines of


code are directly repeated. We filter any lines with calls repeated


separately more than twice (e.g. x; x; y; x; x;), since we want


to identify mis-types and incomplete copy-pastes, not instances


where developers are purposely using the same calls multiple times.


We also filter read, write, in, and out for the same reasons. We


implement this checker with the TreeRegex expression (%(%@;


%)@;%) to capture the consecutive expressions, then we use the


modifier to check both@ matches for equality. It filters out cases


with obvious side effects like x++;. The checker identifies two bugs,


two suspicious statements, and three false positives—two of which


are commented as “workarounds.”


H BC-- LANGUAGE GRAMMAR
Grammar for BC-like language to compiled, shortened for clarity


and exposition, is as follows:


⟨program⟩ ::= ⟨function⟩+


⟨function⟩ ::= ‘define’ ⟨id ⟩ ‘(’ [⟨id ⟩[‘,’ ⟨id ⟩]*]? ‘)’ ⟨block⟩


⟨block⟩ ::= ‘{’ [⟨statement ⟩ ‘;’]+ ‘}’


⟨statement ⟩ ::= ‘break’ | ⟨expr ⟩ |‘if’ ‘(’ ⟨expr ⟩ ‘)’ ⟨block⟩
| ‘while’ ‘(’ ⟨expr ⟩ ‘)’ ⟨block⟩ | ‘return’ ‘(’ ⟨expr ⟩ ‘)’


⟨expr ⟩ ::= ⟨id ⟩ | ⟨int ⟩ | ‘(’ ⟨expr ⟩ ‘)’ | ⟨unary-op⟩ ⟨expr ⟩
| ⟨id ⟩ ⟨assign-op⟩ ⟨expr ⟩ | ⟨expr ⟩ ⟨bin-op⟩ ⟨expr ⟩
| ⟨id ⟩ ‘(’ [⟨expr ⟩ [‘,’ ⟨expr ⟩]*]? ‘)’


⟨assign-op⟩ ::= ⟨bin-op⟩ ‘=’ | ‘=’


⟨bin-op⟩ ::= ‘+’ | ‘-’ | ‘*’ | ‘/’ | ‘^’ | ‘==’ | ‘!=’


⟨unary-op⟩ ::= ‘-’ | ‘!’


⟨id ⟩ ::= a non-empty string of alphanumeric characters


⟨int ⟩ ::= a non-empty string of numeric characters


I ADDITIONAL COMPILER TRANSFORMERS
⟨expr⟩ ‘+’ ⟨expr⟩ Expressions. This expression sums the results of two


other expressions. We implement this as a post-order transformer, similar
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to the example in Section E.2. The following TreeRegex expression matches


these expressions: (%IR @ \+ @%). This pattern states that we are looking


for an expression of two sub-serialized trees, separated by a non-meta-


character plus. If these two sub-serialized trees contain the code to generate


the value of the left and right expressions, we just need to use these values


in the summation. Unfortunately, the evaluations of both expressions return


their results in the accumulator register, so we need to save the result


after evaluating one operand expression. We can use the push , top, and


pop macros to handle the necessary stack operations. If we use $a0 as the
accumulator register and $t0 as a temporary register to store popped value,


our replacement string is: (%MIPS $1 (%IR push /$a0%) $2 (%IR top
/$t0%) add /$a0 /$t0 /$t0 (%IR pop%)%). We escape $ with forward


slashes to distinguish it from the $ meta-character. In this replacement


string, we place the code to evaluate the left expression first, then we save


the current value of the accumulator register to the stack, followed by


the second expression’s code, we retrieve the value of the first expression,


and, finally, we perform the addition. The last part restores the stack to its


original height by popping off the value we pushed.


Collecting Local Variable Offsets. Local variables can only be introduced


as parameters to a function in this language and they are stored on the


stack. The offsets in the stack can be determined by the location of the


variable in the parameter list: the last parameter is 4 bytes from the frame


pointer, the second-to-last parameter is 8 bytes from the frame pointer


(the size of a 32-bit integer farther than the last parameter), and so on. We


implemented a transformer computing the relative offset of the variable


by visiting parameters in a sequence. This transformer must run before


other transformers on the body of the function. The non-terminal for


parameters uses a Kleene star and we encode this in a binary tree form


in the serialized tree. For instance, if the parameters of a function were


“a,b,c”, the serialized treewould be: (%IR (%IR parameter a%),(
%IR (%IR


parameter b%),(
%IR (%IR parameter c%)%)%)%). Tomatch this and other


parameter serialized trees, we use the following TreeRegex expressions:


(%IR (%IR parameter ((.+)) %),@%) and (%IR (%IR parameter ((.+))


%)%).
The modifier function tracks variable offsets using the state:


function MParam(K, σ )


v ← lastMapping(σ )


pushMapping(σ , K(1) 7→ v+4)


return nil


This modifier function takes the name of the variable and maps it to the last


mapping plus the 4 bytes. If there is no last mapping, then the lastMapping
function returns zero. The modifier function returns nil, so the serialized
tree is unchanged.


Save Macro. The save macro is an example of the modularity of


transformers and their usefulness during development. Before implement-


ing the save macro, we could visually inspect the serialized tree after the


existing transformers had run to see if there were errors. Once we had fin-


ished implementing the save macro logic, we just added the transformer.
The save macro is transformed using the TreeRegex expression (%IR save
(( .* )) %). The save transformer uses the following modifier function


to lookup the variable offset for the saved variable and put it as a captured


value:


function MVar(K, σ )


return [lookup(σ , K(1))]


The captured value is evaluated with the following replacement string,


which generates a save from the accumulator to the offset from the frame


pointer register: (%MIPS sw /$a0 $1 (/$fp)%). This transformer is


very simple because it was able to be separated from the handling of the


assignment syntax.


Variable Loading and the Load Macro. The second macro that uses the


variable offsets is the load macro. This macro is generated from vari-


able expressions using another simple order-agnostic transformer. The
TreeRegex expression is (%IR (%IR ((.+)) %)%), which finds variable ex-


pressions and captures the name of the variable. The replacement string


generates a load macro of the captured variable (the modifier function does


no modification of the captured values): (%IR load $1%).
The load macro is handled in a nearly identical order-agnostic


transformer to the save macro. It is made up of the following parts: the


TreeRegex expression (%IR load ((.+)) %), the MVar modifier function


from before, and the replacement string (%MIPS lw /$a0 $1(/$fp)%),
which generates the load from the correct offset from the frame-pointer


register.


Clearing Local Variable Offsets. The last part of handling local variables


is forgetting the offsets when we have finished with the function. To do


this, we write a post-order transformer on functions. We can match with


the following TreeRegex expression: (%IR define .* (@)@%) and use


the following modifier function to forget the mappings:


function MFunction(K, σ )


clearAllMappings(σ )


return nil


Themodifier function returns nil, so there is no need for a replacement string.


We could also erase the function at this point; instead the implementation


erases all non-“MIPS” serialized trees before printing the final MIPS code.


‘if’ Statements. A ‘if’ statement semantically involves the evaluation


of a predicate, a test on that predicate, and possibly the execution of a


body. To generate code for this, we need to use labels after this body: we


need to know where to jump if the predicate evaluates to false. We can


write a transformer that does this; the modifier function can generate the


necessary label. Because MIPS assembly does not allow for duplicate labels,


we must use the state to generate unique labels. The TreeRegex expression


for this transformer matches ‘if’ statements and is: (%IR if(@)@%). In
this TreeRegex expression, the first captured value is the predicate and the


second is the body that may be evaluated if the predicate is true. We use


these captured values in the replacement string, so our modifier function


must leave them intact and just provide a label. We can use the following


modifier function to do that:


function MLabel(K, σ )


v ← nextUniqueLabel(σ )


append(K, v)


return K


Thismodifier function appends the next unique label—the resulting captured


values can be used with the following replacement string to generate the


MIPS code: (%MIPS $1(%MIPS beqz /$a0 $3%) $2 (%MIPS $3:%)%). This
replacement string places the code for the predicate first, followed by a test


on the predicate’s result in the accumulator, and then either branches to


the label, or proceeds to the body’s code. The label is placed after the body,


so that branching to the label will skip over the body. This transformer is


order-agnostic because it does not generate any sub-serialized trees that


are not MIPS code already.
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