

Modelling Optical Devices and Systems in MAPP

Tianshi Wang
Jaijeet Roychowdhury

Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-160
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-160.html

October 17, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

1

Modelling Optical Devices and Systems in MAPP
Tianshi Wang and Jaijeet Roychowdhury

Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
Email: {tianshi, jr}@berkeley.edu

Abstract—In this technical report, we illustrate how optical
devices and systems are formulated and implemented in the
Berkeley Model and Algorithm Prototyping Platform (MAPP).
With examples and their code snapshots, this report documents
the current structure and capabilities of MAPP’s optical modules.
It is also useful as a quick-start guide for new users working with
optical modelling and simulation in MAPP.

I. Concepts behind Optical Modelling in MAPP

Similar to electrical circuits, an optical system is modelled
as a set of optical devices interacting with each other through
node connections. One simple example is shown in Fig. 1
(from [1]) — a communication link where an optical fiber
connects a laser diode and a photodiode.

Fig. 1. A simple intensity-modulated optical fiber communication link,
adapted from Fig 1.1 in [1].

The link has connections to electrical circuits around it,
which is typical for most practical optical systems. But to
illustrate our ideas on optical modelling, we consider only
the optical parts in this report. We can then abstract the laser
diode as an ideal light source and photodiode an ideal light
sink which doesn’t emit or reflect any light. The abstracted
system diagram of the communication link is shown in Fig.
2.

Fig. 2. System diagram for the purely optical parts in the simple optical
fiber communication link in Fig. 1.

While the block diagram in Fig. 2 seems straightforward,
with optical devices represented by blocks and connections
drawn as line segments in between, several questions need to
be answered before the system is fully defined. For example,
what does an optical connection mean? Is such a connection
directional? Furthermore, what is inside of the blocks? In
the remainder of this section, we answer these questions by
clarifying a few concepts related to optical modelling.

A. Optical Connection

To begin with, the modelling of an optical connection should
not be confused with the physical device of an optical fiber
connector. Proper modelling of a physical optical connector
requires taking into account a lot of factors. Its performance
depends on the alignment of the centers of the connected
fibers, the angle between them, as well as the quality of the
assembly and polishing operations. All these factors affect the
attenuation and reflection of light. Moreover, different models
have to be deployed in the cases of multimode and single-
mode fibers, or in the context of long-haul communication
and nano-scale silicon photonics.

Therefore, it becomes clear to us that a physical optical
connection, e.g., a fiber connector, is better modelled as a
device rather than an optical connection used in diagrams
like Fig. 2. Instead, we define a simpler, artificial connection
to use in system diagrams. We define that when two optical
ports are connected with each other, all the optical properties
on one side of the connection are equal to the corresponding
properties on the other side. Under this definition, an optical
port can be thought of as the left or right side of a cross-
section of a fiber or waveguide, and an optical connection of
two ports merely describes the continuation of light through
the media. Note that this definition of an optical connection
allows only two optical ports to be connected. In the case of
connecting three fibers, a three-port device like a splitter or a
joiner is needed and all the physical factors are considered in
the modelling of such devices.

B. Optical IOs at an Optical Port

In this subsection, we define the optical quantities modelled
at an optical connection of two ports, and explain our reasons.
In electrical circuits, the consensus is that the inputs/outputs
(IOs) at an electrical port are voltages and currents; Kirch-
hoff’s current law and voltage law (KCL and KVL) is used to
write the system-level equations. However, no such standard
is agreed upon for optical modelling at this moment. Instead,
people often use different optical quantities in their models for
different applications.

In laser modelling, people often use only the intensity of
light as the IO to model at the optical port of a laser. But it
quickly becomes insufficient for applications in optical com-
munication, where the phase of light is also required for the
model to be meaningful. Moreover, in cases like Wavelength-
Division Multiplexing (WDM) fiber-optic communication, in-
tensities and phases of light with multiple frequencies or
spatial modes all need to be taken into consideration. But
even all these may still not be sufficient. While in optical

2

communication we often assume that light waves with multiple
frequencies won’t interfere with each other during transmis-
sion and the number of frequencies is fixed, this is not true
in many other applications. When light passes through non-
linear photonic devices, e.g., second-harmonic generators or
optical mixers, new frequency components can be generated.
To make situation more complicated, frequencies used in the
system can also change with time. All of these considerations
add up to the difficulty of the design of a general framework
for the modelling of optical devices and systems.

Fig. 3. Illustration of electric field of light with modulation. As the envelope
is changing at a much slower speed, at any time, the electric field of light
can be considered to be oscillating at a steady state.

In MAPP[2], [3],1 we model the optical properties at an
optical connection using both magnitude A(t) and phase Φ(t)
information of the light. Specifically, in the implementation,
we model a beam of light at a certain frequency as a complex
number, or a phasor E(t). Note that a phasor by definition
represents the steady state of an oscillation. Then what does
a time-varying phasor E(t) even mean?

Normally we model a light wave by considering its electric
field. Fig. 3 depicts the changing electric field of light EL(t) in
time domain 2. This electric field of light EL(t) is oscillating
at high frequencies (around 200 THz assuming wavelength is
around 1550 nm). Its value is difficult to measure in reality,
nor is it normally directly used in practice. Instead, we usually
modulate the light using external electrical signals, whose
frequencies are normally not higher than hundreds of GHz.
A typical waveform of a modulated light in optical systems is
shown in Fig. 3. As the frequencies of light and electrical
signals are widely separated by a factor of thousands, the
waveform as in Fig. 3 develops an envelope and it is this
envelope of light that is used in power or signal transmission
applications. At any time t, within a small time interval ∆t, we
consider the electric field of light to have reached its periodic
steady state. The magnitude and phase of the oscillation can
be assumed to be constant during the time interval ∆t and we
denote them as A(t) and Φ(t) respectively. In simulation, as
Φ(t) often has multiple solutions separated by k ·2π, k ∈ Z, it
is not suitable as a system unknown for non-linear solvers.
Instead, we use a complex number E(t) or its real and
imaginary parts as the terminal properties of an optical device.
In this way, the time constant of E(t) is comparable with that

1MAPP is open-source released at [4].
2EL(t) is the electric field of the light at z direction, which is along the

guiding direction

of the electric circuitry around the optical device.
Note that the complex number E(t) used to represent the

envelope of light is more like a frequency-domain property
compared with voltages or currents in electrical circuits. So the
simulation of optoelectronic systems is similar to mixed-time-
frequency-domain simulation, such that light with very high
frequency and electrical signals with much slower dynamics
can both be efficiently simulated at the same time.

II. Optical Device Models

Using the mixed-time-frequency-domain property E(t) to
represent optical IOs, we take a waveguide as an example and
develop optical models at different levels.

Fig. 4. Diagram of a waveguide model
at Level I.

Level I: A diagram of a
waveguide is shown in Fig.
4 with two optical ports
left and right. At this
level we consider the sim-
plest scenario with a single
frequency and single mode
of light transmitting in the

waveguide. Even in this case, because of the nature of light,
at one optical port there can be two light waves — the
incoming and outgoing waves superimposed on each other. As
is shown in Fig. 4, four complex numbers constitute all the
IOs of the waveguide model: Eleft in, Eleft out, Eright in
and Eright out.

Then we can write waveguide equations using these IOs.
The simplest equations describing the magnitude decay and
the phase shift caused by the waveguide are shown as follows.

Eright out = Eleft in · e−α·L · ej·2π·f ·
L·n
c , (1)

Eleft out = Eright in · e−α·L · ej·2π·f ·
L·n
c , (2)

where L is the length of the waveguide, n is the group index,
α is the decay factor of the waveguide and c is the speed of
light. f in (1) and (2) is the frequency of light. But unlike the
parameters or constants above, f is not a model parameter. It is
determined by the optical system and passed to the ModSpec
object of waveguide through its Network Interface Layer (NIL)
[5].

Similar to the electrical domain scenario, for the equa-
tion engine to associate IOs with their meanings, the NIL
of this waveguide model will return IOs’ names {Eleft in,
Eleft out, Eright in, Eright out}; IOs’ corresponding nodes
{left, right, left, right}; IOs’ directions {in, out, in, out}.
Apart from these properties, NIL also has a field that returns
frequency f for the ModSpec functions to use. This field is
set up by the system before evaluating waveguide equations
(1) and (2).

Fig. 5. Diagram of a waveguide model at
Level II.

Level II: As mentioned
before, in many
applications such as
WDM communication,
light waves at
multiple frequencies
are superimposed at
the optical ports of

3

waveguides. In this scenario, instead of using one complex
number to represent the incoming or outgoing wave, we
need a vector of such complex numbers. As shown in
Fig. 5, when two frequencies f1 and f2 are present in the
system, Eleft in f1 and Eleft in f2 are used to represent
the frequency components at f1 and f2 of the incoming
light wave at port left. In the code implementation of such
a ModSpec device, NIL is designed not to return a single
frequency value, but a vector of frequency values and an array
of their names. With the help of this frequency information,
the IOs and waveguide equations can then be set up in a
similar way as in Level I.

However, there is a practical concern when we introduce
multiple frequencies into the system. A nonlinear optical
device can often generate second and higher harmonics from
an incoming wave with a certain frequency. This is to say, if f2
is equal to 2f1, the device will need to know this information
in order to correctly assign outgoing waves to other ports. If
only names and values of the frequencies are available, the
device will have to check the values numerically to determine
the relationship between frequencies, e.g., which frequency
seems like the second harmonic of f1. Alternatively, we can
enforce certain naming conventions for such relationships to be
inferred from frequencies’ names. But neither of these schemes
is robust. So in MAPP, instead of using frequency names
and values, we represent system frequencies as harmonics
or intermodulations of a set of fundamental frequencies. In
this way, NIL is designed to return fundamental frequency
names and values and a list of indices to construct all the
frequencies used in the optical system. For example, there
may be two fundamental frequencies in the system, namely
f1 and f2. If freq index is set to be [1, 0; 0, 1; 1, 1], then
three frequencies will be considered in the simulation: f1, f2
themselves as well as one intermodulation term f1 + f2. To
include the second harmonics, we can add entries [2, 0] and
[0, 2] to freq_index so that 2f1, 2f2 will also be available
in the system. In general, if we have d fundamental frequencies
with values f1 to fd, then a row [k1, k2, ·, kd] will represent
the frequency

∑d
i fi · ki. Using freq_index, the ModSpec

object of device can then be able to relate different harmonic
and intermodulation terms inside its equations.

(a) Box truncation:
M1 = 3,M2 = 2.

(b) Diamond trunca-
tion: M = 3.

(c) Hybrid
truncation: M =
3,M1 = 5,M2 = 4.

Fig. 6. Three types of frequency truncations when the system has two-
fundamental frequencies.

Note that freq_index doesn’t have to be set up com-
pletely manually. When the system has only one fundamental
frequency, freq_index is normally a column vector with
entries from 1 to the highest harmonic order of interest to

designers. In cases with multiply fundamental frequencies, we
can use box truncation, diamond truncation or more complex
methods to select frequencies from the multi-frequency space.

box truncation: |k1| ≤M1, · · · , |kd| ≤Md. (3)
diamond truncation: |k1|+ · · ·+ |kd| ≤M. (4)

Fig. 6(a) and Fig. 6(b) illustrate box and diamond trunca-
tions respectively. Fig. 6(c) shows a hybrid truncation which
combines the shapes of a cross and a diamond. Hybrid
truncation is suitable for moderately non-linear optical systems
where intermodulation is relatively weak. In this case, both Mi

and M have to be specified to define the number of harmonics
for each tone and the maximum order of intermodulation
respectively.

At this level, we have split one electric wave into a
vector of them at different frequencies. Similar separation can
be performed for spatial modes, polarizations of light, etc.,
expanding the scope of optical modelling when needed.

Fig. 7. Diagram of a waveguide model at
Level III.

Level III: In the previous
levels, we treat frequen-
cies or fundamental fre-
quencies as system-level
parameters specified ex-
ternally by users. This
approach is valid under
the assumption that fun-
damental frequency val-

ues do not change over time, which is true for most optical
simulation applications. However, there are exceptions. For
example, the frequency of the output of a laser may vary
as temperature changes and temperature may rely on the
heat emitted by the laser as well as the rest of the system.
Therefore, without simulating the system as a whole we cannot
determine the frequency a priori. If we take this scenario into
consideration, fundamental frequencies then become system
unknowns instead of parameters. Therefore, we introduce a
frequency node into the system. When optical devices connect
to this node, their vector of IOs will also contain the system’s
fundamental frequencies. The devices’ equations can use or
assign values to these frequencies.

We illustrate this idea also using the waveguide example. As
shown in Fig. 7, we connect the model’s fnode port to the sys-
tem’s frequency node. The ModSpec object can get the time-
varying fundamental frequency values, use freq_index to
calculate all the frequencies of interests, then use them to
evaluate its functions.

MAPP implements Level III for optical device modelling.
At the same time, MAPP also supports devices without a con-
nection to a frequency node, in which case the models become
compatible with the other two lower levels. In the remainder of
this section, we illustrate the actual implementation of MAPP’s
optical device models in more detail.

In MAPP, device models are specified as differential alge-
braic equations (DAEs) in the ModSpec format [2], [6]:

~z =
d

dt
~qe(~x, ~y) + ~fe(~x, ~y, ~u) (5)

0 = ~w =
d

dt
~qi(~x, ~y) + ~fi(~x, ~y, ~u) (6)

4

where the variables ~x, ~z are IOs, with ~z being those that
can be expressed explicitly in equations; ~y contains non-IO,
internal unknowns in the model; functions ~fe, ~qe, ~fi, ~qi are
the differential and algebraic parts of the model’s explicit and
implicit DAEs that describe the relationship between all the
variables.

In optical models, IOs consist of two parts: the incom-
ing/outgoing light waves at optical ports, and the fundamental
frequencies at the frequency node 3. The optical model’s role
is to describe the relationship between these IOs (frequencies
and incoming/outgoing waves) with equations.

Unlike in electrical devices, the number of IOs in an optical
device depends on the amount of frequencies of interest
to the system-level simulation. An optical device gets such
information through its NIL. As illustration, assume the system
has two fundamental frequencies, namely ff1 and ff2, and
two operating frequencies f1=ff1, f2=ff2. Then the NIL
of the waveguide model has the following fields.
NIL
.NodeNames {’port1’, ’port2’}
.FreqNodeNames {’freq’}

.FreqNames {’f1’, ’f2’}

.FundFreqNames {’ff1’, ’ff2’}

.LocalFundFreqNames {}

.FundFreqVals [200e15; 201e15]

.FreqIdx [1, 0; 0, 1]

.IOnames {’port1_f1_in’,’port1_f1_out’,’port1_f2_in’,...
’port1_f2_out’,’port2_f1_in’,’port2_f1_out’,...
’port2_f2_in’,’port2_f2_out’,’ff1_scale’,...
’ff2_scale’}

.IOtypes {’E’,’E’,’E’,’E’,’E’,’E’,’E’,’E’,...
’fscale’,’fscale’}

From the NIL of the waveguide, we can see that IOs consist
of in/out waves (at each port, at each frequency), and also
variables named fscales. An fscale is the ratio between a
fundamental frequency and its nominal value (specified in
NIL.FundFreqVals)4. Part of the NIL is set up by the system
(e.g., FreqNames, FundFreqNames, FreqIdx, etc.), while part
of it is set up by the device (e.g., NodeNames, FreqNode-
Names, etc.). To know about the full definition of optical NIL,
users can run the following command in MAPP.
help attach_optical_NIL

With the IOs specified, we can then set up the device’s
ModSpec APIs by specifying explicit outputs (~z), the other
IOs (~x), and model functions (~fe, ~qe, ~fi, ~qi). Selected fields
of the waveguide ModSpec object are shown below:
MOD
.ModelName: waveguideModSpec
.parmnames: {’Alpha’, ’L’, ’n’}
.parmdefaults: {288, 0, 4.1963}
.ExplicitOutputNames: outgoing waves (based on NIL)
.OtherIONames: incoming waves and fscales
.InternalUnkNames: {}
.uNames: {}

.fe:
fundfreqnames = feval(MOD.opticalNIL.FundFreqNames, MOD);
nfundfreqs = length(fundfreqnames);

3MAPP currently supports only one frequency node in the system, which
is to say all devices share the same frequencies in simulation.

4Such design improves the numerical properties of the system DAE
compared with using fundamental frequency values directly as unknowns.

fundfreqvals = feval(MOD.opticalNIL.FundFreqVals, MOD);
freqidx = feval(MOD.opticalNIL.FreqIdx, MOD);

% separate E-field and frequency parts from vecX
nvecX = length(vecX);
Es = vecX(1:nvecX-nfundfreqs);
nE = nvecX-nfundfreqs;
fscales = vecX((nvecX-nfundfreqs+1):end);

% get freqs from fundfreq and freqidx
freqs = freqidx * (fscales .* fundfreqvals);

% calculate outgoing waves (explicit outputs)
feout(1:nE/2) = Es(nE/2+1:end) .* exp(-Alpha*L)...

.* exp(2*pi*(0+1i) .* freqs .* (L*n/c));
feout(nE/2+1:end) = Es(1:nE/2) .* exp(-Alpha*L)...

.* exp(2*pi*(0+1i) .* freqs .*

.qe: return all zeros

.fi: []

.qi: []

Note that the model function ~fe is written to handle in/out
waves and fscales as vectors. And the exact size of waves
and frequencies modelled in the device comes from its NIL,
which depends on the system settings of operating frequencies.
When implemented in this low-level method by setting up
ModSpec APIs directly, most optical devices have to be written
in this vector form. To make it more convenient for users, we
are currently developing higher-level ModSpec wrappers for
optical devices that will come in later releases.

III. Optical Netlists

After defining optical models, the connection between them
can be described using a netlist similar to those used for
electrical circuits. The netlist is a Matlab structure. It contains
a number of data fields that are normally set up as follows:

1) The first two fields in the netlist are:

.name % A name for the optical system (string).

.nodenames % Names of all the optical nodes
% (cell array of strings).

They are normally set up directly. For example:

netlist.name = ’example’;
netlist.nodenames = {’n1’, ’n2’, ’n3’};

2) The optical netlist also contains a frequency node.
Associated with this frequency node there are a few data
fields describing the frequencies used in the simulation
of the optical system (e.g., freq_names, freq_idx,
fund_freq_names, etc.). However, users don’t have
to deal with these fields directly. They can specify all
of them by calling a utility function add_freq_node.
To learn about the definitions of these data fields as well
as the usage of add_freq_node, see

help add_freq_node

3) Then devices/elements are added to the netlist by
specifying the field netlist.elements. Similar to
adding electrical devices in circuits, users can use
add_element to enter a device in an optical system.
While the utility function add_element for optical
systems is the same as the one used in circuits, there
is one difference in its usage. When specifying the
nodes of the element, because there are both optical

5

nodes and frequency node in the system, these two
types of nodes can be specified together. To be exact,
the following arguments are all acceptable as nodes in
add_element:

{’n1’, ’n2’} or {{’n1’, ’n2’}}
% when the device doesn’t connect to freq node

{{’n1’, ’n2’}, {’fn1’}}
% when the device connects to freq node, optical
% nodes and freq node are organized in separated
% cell arrays with freq node in the end

{{’n1’, ’n2’}, {’fn1’, {’f1’, ’f2’}}}
% when the device has to provide equations for
% some or all of the fund freqs at the freq node,
% the names of these fund freqs are specified in
% a cell array after freq node name.

The following example code illustrates the above procedures
by specifying a netlist structure for the system in Fig. 2.

% 1. name and nodenames:
netlist.name = ’LS-WG-Sink’;
netlist.nodenames = {’n1’, ’n2’};

% 2. frequency node:
netlist = add_freq_node(netlist, ’fn1’,...

’fundfreqnames’, {’f1’, ’f2’}, ...
’nominal_vals’, [200e12; 201e12], ...
’truncation’, ’fund_only’);

% 3. elements:
netlist = add_element(netlist, lightsourceModSpec(), ’LS’,...

{{’n1’}, {’fn1’, {’f1’, ’f2’}}});
netlist = add_element(netlist, waveguideModSpec(), ’WG’,...

{{’n1’, ’n2’}, {’fn1’}}, {{’L’, 1e-5}});
netlist = add_element(netlist, lightsinkModSpec(), ’Sink’,...

Such a netlist contains all the information about device
models and their connection; an optical equation engine can
then use it to generate system DAEs.

IV. OPTICAL EQUATION ENGINE

With optical models defined and their connection specified
in netlists, an optical equation engine can formulate the system
equations just by equating the incoming and outgoing waves
of two connected optical ports.

When the outgoing wave of a port and the corresponding
incoming wave of the connected port are equal to each other,
they can be represented with only one unknown variable in
the final equation system. In this way, for the system in Fig.
2 with 4 optical ports and 1 frequency, instead of having 8
optical quantities, only 4 unknown variables are needed to
model the system:

~x =[E n1 forward,E n1 backward,

E n2 forward,E n2 backward]T
(7)

where the subscription forward indicates the light is trans-
mitting to the right of the diagram 5. As the equality between
incoming and outgoing waves are implicit in the choice of
unknowns when building system DAEs, the optical equation
engine can then simply call each device’s equations to set up
system DAEs:

5This is a convention set up in the optical equation engine. Our implemen-
tation sets up forward and backward based on the order in which devices
are added into the netlist. The outgoing wave of the device connected to the
system first is named forward wave.

LS: E n1 forward = ~u (8)
WG-1: E n2 forward = E n1 forward ·

e−α·L+j·2π·f ·
L·n
c (9)

WG-2: E n1 backward = E n2 backward ·
e−α·L+j·2π·f ·

L·n
c (10)

Sink: E n2 backward = 0 (11)

With this simple optical example, we have illustrated the
modelling of optical connection, model, system netlist and
the equation engine used to connect them together and create
system DAEs — all within the MAPP framework and in a
way intended to be most appropriate and natural for the optical
domain. The use of equation engine allows optical devices to
be connected in a way as convenient as putting together circuit
components, separating the routines for individual device mod-
elling and integrated system construction in a modular way,
enabling the modelling of more complicated optical systems.

V. Optical System Examples
In this section we provide a couple of optical system

examples currently implemented in MAPP.

A. Mach-Zehnder Modulator

In a Mach-Zehnder modulator, a waveguide is split up into
two waveguide arms. If the two arms have slightly different
group indices (e.g., by applying a voltage to one arm), a
phase shift difference is induced for the waves passing through
them. When the two arms are recombined, the phase difference
is converted to an amplitude modulation. The diagram of a
Mach-Zehnder modulator is shown in Fig. 8.

Fig. 8. Diagram of a Mach-Zehnder Modulator. Laser is modelled as an ideal
light source, while the photodetector an ideal light sink.

Similar to the example in Sec. III, the optical system in Fig.
8 can be modelled in MAPP by specifying a netlist structure.
netlist.name = ’Mach Zehnder modulator’;
netlist.nodenames = {’n1’, ’rl’, ’b1l’, ’b2l’, ...

’b1r’, ’b2r’, ’rr’, ’n2’};

netlist = add_freq_node(netlist, ’fn1’, ...
’fundfreqnames’, {’f1’, ’f2’}, ...
’nominal_vals’, [200e12; 210e12], ...
’truncation’, ’fund_only’);

netlist = add_element(netlist, lightsourceModSpec(), ’LS’,...
{{’n1’}, {’fn1’, {’f1’, ’f2’}}}, {});

netlist = add_element(netlist, waveguideModSpec(), ’WG1’,...
{{’n1’, ’rl’}, {’fn1’}}, {{’L’, 1e-5}});

netlist = add_element(netlist, splitterModSpec(), ’S1’,...
{{’b1l’, ’b2l’, ’rl’}, {’fn1’}});

netlist = add_element(netlist, waveguideModSpec(), ’WGup’,...
{{’b1l’, ’b1r’}, {’fn1’}}, {{’L’, 1e-5}});

netlist = add_element(netlist, waveguideModSpec(), ...
’WGdown’, {{’b2l’, ’b2r’}, {’fn1’}}, ...

6

{{’L’, 1e-5}, {’n’, 4}});
netlist = add_element(netlist, splitterModSpec(), ’S2’,...

{{’b1r’, ’b2r’, ’rr’}, {’fn1’}});
netlist = add_element(netlist, waveguideModSpec(), ’WG2’,...

{{’rr’, ’n2’}, {’fn1’}}, {{’L’, 1e-5}});
netlist = add_element(netlist, lightsinkModSpec(), ’Sink’,...

{{’n2’}, {’fn1’}});

After specifying the netlist, we can then convert it into
system DAEs using optical equation engine by issuing the
following commands.

DAE = opticalEqnEngine(netlist);
DAE.unknames(DAE)
% unk names displayed in comments below:
% ’n1_f1_forward’ ’n1_f1_backward’ ’n1_f2_forward’
% ’n1_f2_backward’ ’rl_f1_forward’ ’rl_f1_backward’
% ’rl_f2_forward’ ’rl_f2_backward’ ’b1l_f1_forward’
% ’b1l_f1_backward’ ’b1l_f2_forward’ ’b1l_f2_backward’
% ’b2l_f1_forward’ ’b2l_f1_backward’ ’b2l_f2_forward’
% ’b2l_f2_backward’ ’b1r_f1_forward’ ’b1r_f1_backward’
% ’b1r_f2_forward’ ’b1r_f2_backward’ ’b2r_f1_forward’
% ’b2r_f1_backward’ ’b2r_f2_forward’ ’b2r_f2_backward’
% ’rr_f1_forward’ ’rr_f1_backward’ ’rr_f2_forward’
% ’rr_f2_backward’ ’n2_f1_forward’ ’n2_f1_backward’
% ’n2_f2_forward’ ’n2_f2_backward’
% ’fn1_f1_scale’ ’fn1_f2_scale’

The netlist contains 8 optical nodes and 1 frequency node.
From the add freq node statement in the netlist we can see
that the system considers two frequencies in simulation. Then
we know that each node has forward, backward waves at two
frequencies, and the system unknowns then consist of 8 ×
2 × 2 = 32 waves and 2 fscale variables representing the
ratios between fundamental frequencies in the system and their
nominal values.

With the optical DAE, various analyses can be performed
on it. The code below uses dot_dcsweep to run DC sweep
on one of the arm’s group index, and plot the magnitude
modulations at the two frequencies. Results are plotted in Fig.
9.

DAE = DAE.set_uQSS(’LS:::f1_scale_u’, 1, DAE);
DAE = DAE.set_uQSS(’LS:::f2_scale_u’, 1, DAE);
DAE = DAE.set_uQSS(’LS:::port_f1_u’, 1, DAE);
DAE = DAE.set_uQSS(’LS:::port_f2_u’, 1, DAE);

swp = dot_dcsweep(DAE, [], ’WGdown:::n’, 4, 4.2, 70);
[ns, sols] = swp.getSolution(swp);

idx = unkidx_DAEAPI(’n2_f1_forward’, DAE);
plot(ns, abs(sols(idx, :)), ’.-r’);
hold on;
idx = unkidx_DAEAPI(’n2_f2_forward’, DAE);
plot(ns, abs(sols(idx, :)), ’.-b’);
legend(’n2_f1_forward’, ’n2_f2_forward’);
xlabel(’WGdown:::n’); ylabel(’magnitudes’); grid on;

B. Ring Resonator

Similar to the Mach-Zehnder modulator example, a silicon
ring resonator [7] can also be modelled in MAPP as a network
of several optical components, as shown in Fig. 10.

The netlist is constructed in the same way as the Mach-
Zehnder modulator example, by the following script.

netlist.name = ’ring resonator demo’;
netlist.nodenames = {’n1’,’n2’,’in1’,’in2’,’out1’,’out2’};

netlist = add_freq_node(netlist, ’fn1’,...
’fundfreqnames’, {’f1’}, ...
’nominal_vals’, 193e12, ...
’truncation’, ’fund_only’);

Fig. 9. Results from DC sweep on the Mach-Zehnder Modulator.

Fig. 10. A 3D illustration of a silicon micro-ring resonator (left) and its system
diagram used in MAPP. The coupling region is modelled as a photo-coupler.

netlist = add_element(netlist, lightsourceModSpec(), ’LS’,...
{{’n1’}, {’fn1’, {’f1’}}}, {});

netlist = add_element(netlist, waveguideModSpec(), ’WG1’,...
{{’n1’, ’in1’}, {’fn1’}}, {{’L’, 1e-4}});

netlist = add_element(netlist, waveguideModSpec(), ’WG2’,...
{{’out1’, ’n2’}, {’fn1’}}, {{’L’, 1e-4}});

netlist = add_element(netlist, photocouplerModSpec(),...
’Coupler’, {{’in1’,’in2’,’out1’,’out2’},...
{’fn1’}}, {{’cc’, 0.5}});

netlist = add_element(netlist, ...
waveguideModSpec_effective_ng(), ’ring’,...
{{’out2’, ’in2’}, {’fn1’}}, {{’L’, 5e-4}});

netlist = add_element(netlist, lightsinkModSpec(), ’Sink’,...
{{’n2’}, {’fn1’}});

When we set the outgoing wave from the laser source to
1, the corresponding incoming wave arriving at the photo-
detector is a complex number indicating the decay in mag-
nitude and shift in phase of the light. We perform a DC
sweep with frequency as the sweeping parameter, and plot
the magnitude of Eout as in Fig. 11. From Fig. 11 designers
can then observe the resonant frequencies of the modulator.

Fig. 11. DC sweep of laser frequency on the ring resonator in Fig. 10.
The relative magnitude of the electric field of the light arriving at the photo-
detector with respect to that emitted by the source is plotted.

REFERENCES

[1] K. Petermann, Laser diode modulation and noise. Springer, 1991, vol. 3.
[2] T. Wang, K. Aadithya, B. Wu, J. Yao, and J. Roychowdhury, “MAPP:

The Berkeley Model and Algorithm Prototyping Platform,” Sep. 2015,
pp. 461–464, DOI link.

http://dx.doi.org/10.1109/CICC.2015.7338431

7

[3] T. Wang, A. V. Karthik, B. Wu and J. Roychowdhury, “MAPP: A
platform for prototyping algorithms and models quickly and easily,” in
IEEE MTT-S International Conference on Numerical Electromagnetic and
Multiphysics Modeling and Optimization (NEMO). IEEE, 2015, pp. 1–3.

[4] “MAPP: The Berkeley Model and Algorithm Prototyping Platform,” web
site: https://github.com/jaijeet/MAPP.

[5] T. Wang and J. Roychowdhury, “Multiphysics Modelling and Simulation
in Berkeley MAPP,” in Numerical Electromagnetic and Multiphysics
Modeling and Optimization (NEMO), 2016 IEEE MTT-S International
Conference on. IEEE, 2016, pp. 1–3.

[6] D. Amsallem and J. Roychowdhury, “ModSpec: An open, flex-
ible specification framework for multi-domain device modelling,”
in Computer-Aided Design (ICCAD), 2011 IEEE/ACM International
Conference on. IEEE, 2011, pp. 367–374.

[7] E. Kononov, “Modeling photonic links in Verilog-A,” Ph.D. dissertation,
Massachusetts Institute of Technology, 2013.

https://github.com/jaijeet/MAPP

		Concepts behind Optical Modelling in MAPP

		Optical Connection

		Optical IOs at an Optical Port

		Optical Device Models

		Optical Netlists

		Optical Equation Engine

		Optical System Examples

		Mach-Zehnder Modulator

		Ring Resonator

		References

