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Abstract


A Framework for Computing the Stability of Human Motion


by


Victor Andrew Shia


Doctor of Philosophy in Engineering - Electrical Engineering and Computer Sciences


University of California, Berkeley


Professor Ruzena Bajcsy, Chair


Every year, 2.5 million people visit the emergency department accounting for $34 billion in
hospital visits, stays and treatment. Financial considerations aside, falling once results in
the fear of falling further increasing the likelihood of falling. For the past few decades, much
work has gone into identifying those likely of falling or those who are stable by determining
features that distinguish fallers from non-fallers. The holy grail of such an identification
scheme would inform how much perturbation the subject can reject, which is also known as
the basin of stability. The more perturbation that can be rejected, the larger the basin of
stability is and the more stable the individual is. However, determining this basin of stability
experimentally is an impractical task. Rather than performing perturbation experiments,
recent advances in control theory and reachability analysis allow us to compute this basin of
stability in simulation.


In this thesis, we present a personalized and automated framework for computing the
basin of stability for human motion. To do this, we first develop a tool to compute the
basin of stability for dynamical systems and apply this to human motion. The utility of this
framework is illustrated on the Sit-to-Stand task, though it can handle more general motions
such as gait. The framework is broken down into three components. First, a representative
hybrid model is chosen for the standing motion. Second, a controller is constructed to
track the motion using optimal control and PD control. Third, using recent advances in
hybrid occupation measures, an outer-approximation of the basin of stability is computed.
We study the Sit-to-Stand action of 15 subjects (10 young and 5 older) and the computed
basin of stability can differentiate between less and more stable Sit-to-Stand strategies. The
contributions are the first steps towards developing a numerical method for determining the
basin of stability of human motion.
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According to the United States Centers for Disease Control and Prevention (CDC), “each
year, millions of older people - those 65 and older - fall.” In fact, one out of three older people
fall each year, but less than half inform their doctor. Furthermore, falling once doubles the
likelihood of a repeat fall [1]. With the ever-growing population of elderly individuals over
the age of 65 shown in Figure 1.1 and the increasing rate of fall-related fatalities shown in
Figure 1.2, this is an ever increasing issue for the nation’s population [2].
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Figure 1.1: Population of the Elderly over Time.


In 2015, the CDC published the following statistics:


• Twenty percent of falls cause serious injuries such as broken bones or head trauma.


• Fall injuries account for 2.5 million emergency department visits annually.


• Over 700k patients annually are hospitalized due to a fall injury.


• Over 95% of hip fractures are caused by falling, usually by falling sideways.


• The annual cost of fall injuries is approximately $34 billion.


While most falls do not result in injuries, the fear of falling leading to a decrease in
exercise, increasing the likelihood of falling and resulting in an unfortunate positive feedback
cycle. Most falls are a combination of risks factors which include:


• Lower body weakness


• Walking and balance difficulties


• Medicine use


• Vision issues
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Figure 1.2: Unintentional Death by Falls among Adults over the Age of 65.


• Dizziness/Vertigo


• Foot pain


• Vitamin D deficiency


• Home hazards


To reduce the risk of falling, identification and early-treatment of those at-risk of falling
is key. For the past two decades, much research has been conducted among the clinical and
biomechanics communities to identify those likely for falling down. If at-risk individuals can
be identified early, preventative measures such as medicine, environment change, physical
therapy, strength training exercises, prosthesis or exoskeletons can be provided to reduce
the risk of falls [3, 4]. In addition, targeted deployment could become feasible with the
development of an automated test that identified those at risk while characterizing the
specific deficiencies that increased their likelihood of falls. Two types of human motion
commonly studied are Sit-to-Stand motions (STS) and gait. While the presented framework
is general for all both motions, in this thesis we focus on Sit-to-Stand motions.


Sit-to-Stand is one of the most basic human motions and a precursor to many activities of
daily living (ADL) tasks: tasks which the medical community has deemed essential for daily
living. These tasks include walking, basic hygiene, bathing/showering, dressing, and self-
feeding. According to Lord, et al., risk factors for falling during standing include: medicine
use, previous stroke, reduced ability to rise from a chair, slow reaction time, poor vision,
and impaired physical function[5]. Intervention to improve STS stability include reduction
of medication, balance and gait training, strength training, walkers and exoskeletons [6, 7].
The STS motion can be segmented into two phases: a sitting portion and standing portion
shown in Figure 1.3 [8] and it is hypothesized that falling occurs between the transition of
these two phases [9].
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Mode 1


Sitting


Mode 2


Standing


Figure 1.3: One type of sit-to-stand segmentation


Due to the large health, economic and societal impact of falling, many measures have
been proposed and tested to identify individuals who are at risk of falling. Researchers
have identified the measurement of the basin of stability (BOS) as the most direct way to
characterize the likelihood of falling [10]. The basin of stability denotes the range possible
of perturbations or disturbances that a subject can experience and still complete the desired
motion. In fact, the calculation of an individual and motion-specific BOS has the benefit of
identifying the specific deficiencies that lead to stumbles, which can both aid the individual
and inform intervention selection. Unfortunately the computation of the BOS is challenging
since it requires measuring the effect of arbitrary disturbances to a nonlinear system. For
example, an empirical experiment would require exhaustive perturbation of an individual
throughout a locomotor pattern, which is practically infeasible and potentially harmful.
Due to the difficulty of computing the BOS, several methods have been proposed which
transform a STS motion to a single feature and perform regression analysis to determine a
patient’s stability.


1.1 State of the Art in Stability Analysis for


Sit-to-Stand


Due to the importance of STS maneuvers in maintaining quality of life, and the impossibility
of testing all possible perturbations, a variety of methods to characterize an individual’s like-
lihood of falling while performing STS have been proposed. These methods are summarized
in Table 1.1.


An example of the model-based method to determine stability was developed in 1997
by Pai et al and is shown in Figure 1.5 [16]. The position (with respect to the heel) and
forward velocity of the center of mass (COM)1 is recorded when the subject stands up from
the chair. If the subject’s placement on the graph lies within the gray zone, it is theoretically
possible to stand up successfully given the subject’s momentum and muscle strength limits.


1Position is normalized to 1 unit by the subject’s foot length. Forward velocity is normalized to 1 unit/second
pendulum length per second.
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Methods Summary References
BERG Balance Test A battery of functional tests with a single


number that determines the likelihood of
falling.


[11]


Five Times Sit-to-Stand Relates amount of time to stand up and
sit down 5 times to likelihood of falling.


[12]


Stops Walking When Talking Relates the amount of attention a person
requires to perform an action with a like-
lihood of falling.


[13]


Timed Up & Go Correlates a likelihood of falling with the
the amount of time it takes to stand up.


[14, 15]


Model based methods Uses a single inverted pendulum to deter-
mine the set of feasible initial positions or
positions and velocities that can lead to
standing up.


[16, 17, 18,
8, 19, 20]


Table 1.1: Various STS Stability Methods


However, if the subject’s placement on the graph lies outside the gray zone, he either will
either need to step forward or backward to avoid falling. The gray region is known as the
feasible stability region.


These methods generally summarize STS motions using a single feature and perform
versions of regression analysis to estimate a patient’s stability. In doing so, they forfeit
the ability to characterize an individual’s specific deficiencies that limit their STS ability.
More troublingly, according to several studies, the ability of these clinical tests to distinguish
between stable and unstable patients is unclear [13, 21, 22, 23, 24].


τ


θ


m


l


Figure 1.4: Single Inverted Pendulum Model


This leads us to determine that the search for an informative sit to stand stability metric
is still an open question.
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Figure 1.5: Theoretical basin of stability for single inverted pendulum. On the X-axis is the
normalized center of mass (COM) position. On the Y-axis is the normalized COM forward velocity.
The gray region denotes the theoretically possible BOS. If the subject’s COM begins in the gray
region, then it as long as the subject has enough strength, he should be able to stand up and
prevent himself from falling forward or backward.
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1.2 Dynamical Systems Perspective - State of the Art


The dynamical systems community has long considered the problem of computing the sta-
bility or BOS to verify the correct operation of a system. To begin, we describe continuous
dynamical systems then move to hybrid dynamical systems, which this thesis will be based
on.


Continuous dynamical systems are systems whose evolution through time t can be de-
scribed via a differential equation:


ẋ(t) = f(t, x, u) (1.1)


where x is the state of the system and u is an input to the system.
When modeled via a differential equation, the performance of a dynamical system can


be predicted and robustness guarantees can be provided. In particular, engineers have long
sought to understand the behavior of dynamical systems after arbitrary perturbation and
realized that direct simulation provided only limited insight. To address this issue, the
controls community has developed numerous methods to determine stability of dynamical
systems. In the 1960s, Lyapunov theory emerged as the prominent analytical method to
determine the stability of systems [25]. If a function that satisfies the Lyapunov criteria can
be found for a system, the system is said to be Lyapunov stable. In addition, further criteria
can guarantee that the system is either asymptotically or exponentially stable locally or
globally. This can be used to find a system’s basin of stability, which is traditionally known
as the system’s region of attraction or reachable set.


Methods to compute the BOS for continuous systems include Lyapunov-based tech-
niques [26], support functions [27, 28], Ellipsoidal methods [29, 30], barrier certificates [31],
Hamilton-Jacobi based methods [32, 33], and occupation measures [34, 35]. Lyapunov-based
methods search for functions whose sub-level sets satisfy Lyapunov’s criterion [25]. The con-
struction of such a Lyapunov function is possible for polynomial dynamical systems using
semidefinite programming [36, 26, 37], but requires solving a bilinear optimization problem
which can be challenging to apply in practice. Support functions describe the target set
using an intersection of hyper-planes. By propagating these hyper-planes through the dy-
namics, the intersection of the hyper-planes through time results in the BOS. Ellipsoidal
methods cover the inside/outside of the target set using an union/intersection of ellipses. By
propagating these ellipses through the dynamics, the union/intersection of the hyper-planes
through time results in the inner or outer-approximation of the BOS. Barrier methods search
for functions which can separate a safe region from unsafe region. Hamilton-Jacobi based
methods discretize the state space and use dynamic programming on a discretized nonlinear
partial differential equation to determine the set of states that belong to a BOS. Though
this method is able to tractably compute the BOS for dynamical systems with special struc-
ture [38], due to the curse of dimensionality, it is only able to accurately compute the BOS
for general systems with less than 5 states. Occupation measures model the target set using
probability densities and propagate these densities in time via Liouville’s equation. While
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occupation measures also suffer from the curse of dimensionality, it has been able to compute
an outer-approximation to the BOS for systems with up to 8 states.


To deal with systems with discrete modes or phases and discrete transitions, such as
phases and transitions in STS or gait, the field of hybrid systems emerged in the 1990s [39,
40]. Hybrid dynamical systems are systems whose evolution through time t can be described
via distinct differential equations depending on the discrete state:


ẋ(t) = fj(t, x, u) (1.2)


where x is the state space of the system, u is the continuous input to the system, and j is
the discrete state of the system2,3. Examples of hybrid systems include: HVAC and energy
systems [41], air traffic control [42, 43], vehicle dynamics [44, 45, 46], and gait [47, 48].


A hybrid model of the sit to stand behavior is shown in Figure 1.6 where mode 1 describes
the dynamics when the subject is sitting and mode 2 when the subject is standing. The point
of transition between two modes is called the guard. For STS motion, the guard is the point
when the subject changes from sitting to standing.


f1 f2


Mode 1: Sit Mode 2: Stand
Guard: Standing


Guard: Sitting


Figure 1.6: Pictorial Hybrid Systems for STS


Unfortunately, stability results from continuous dynamical systems do not easily extend
to hybrid dynamical systems [49]. For example, a hybrid system, consisting of two inde-
pendently stable modes, when combined may not be stable. As such, a new field studying
the stability of hybrid systems emerged [50, 51, 52, 53, 54, 55, 56, 57, 58, 59]. In addition,
extensions to the computation of BOS of hybrid systems exist for Lyapunov functions [60,
61, 37, 62, 63], support functions [64], ellipsoidal methods [65], barrier certificates [66] and
Hamilton-Jacobi based-methods [43, 67].


Recently, we have developed a method based on occupation measures to analytically
compute the BOS for polynomial dynamical systems and successfully applied it to synthesize
safe robotic motion for systems with up to eight states [34, 68]. We extend this method to


2Note that a hybrid dynamical system with one mode is equivalent to a continuous dynamical system.
3Hybrid systems will be defined mathematically in Chapter 2.
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study the BOS for hybrid polynomial dynamical systems in [69]. This method, which relies
on convex optimization and is described in Chapter 3, is able to tractably outer approximate
the BOS of a system without relying upon exhaustive perturbative experiments or simulation.
For example, the computed BOS of a single inverted pendulum with a swing-up PD controller
is shown in Figure 1.7.


Figure 1.7: An example of the BOS of an inverted pendulum swing-up controller. The top row
illustrates a nominal (black) and perturbed (magenta and cyan) swing up trajectory for the inverted
pendulum. The bottom row illustrates the BOS of the nominal controller (gray), the nominal
trajectory (black), and the perturbed trajectory (orange) in the configuration space of the inverted
pendulum. Notice that despite being perturbed at 0 and 0.16 seconds, the magenta and cyan
trajectories are able to arrive at the up-right configuration since it remains inside of the basin of
stability of the nominal trajectory. The goal of this paper is to compute this basin of stability of
an individual’s specific locomotion from observations.
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1.3 Contribution


While the work here is general to study any locomotor motion, as a proof of concept, we
demonstrate its utility on the STS motion. The contributions of this thesis are below:


• In Chapter 2, we propose a framework to compute the basin of stability for one’s mo-
tion. First, we present the conceptual framework utilizing optimal control, feedback
control synthesis, and occupation measures. Second, we present a specific implemen-
tation of the framework utilizing collocation, LQR, and a modification of occupation
measures.


• In Chapter 3, we develop an analytical method called occupation measures to compute
the backward reachable set (BRS) or basin of stability (BOS) of a dynamical system.
We begin with developing the intuition and theory of using probability densities to
propagate dynamics via Liouville’s equation resulting in an infinite dimensional linear
program. We then show how to relax this infinite dimensional program to a finite di-
mensional semi-definite program, amenable to convex optimization algorithms. Lastly,
we show its utility on 3 systems: a rimless wheel walker, a vehicle with a hybrid tire
friction model, and a compass gait walker.


• In Chapter 4, we describe the experiment protocol to collect data on various Sit-to-
Stand actions for 15 subjects: 10 subjects between the ages of 20-50 and 5 subjects
over the age of 50. This dataset consists of motion capture data (accurate to 1mm),
kinect skeletal data, force platform data (with linear and rotational forces in 3D), and
accelerometry data of the lower leg, upper leg and upper body.


• Finally, we analyze the BOS of various STS actions and show that the BOS of stable
actions are larger than not-as-stable actions. Comparing this to the only other model-
based stability method for STS, we show that the proposed method better distinguishes
stable from not-as-stable actions.


• We conclude with many ideas for future work to bring the proposed method into greater
acceptance by both the biomechanics and clinical communities.


By providing computational tools to provide a quantitative approach to studying one’s basin
of stability, we hope to improve the work of identifying and treating patients with a high-risk
of falling, enabling them to have a better quality of life.
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Chapter 2


Framework
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In this chapter, we describe the framework used to compute the basin of stability for
motion. First, we describe hybrid systems and illustrate how locomotion can be modeled
using this approach. Next, we present the conceptual framework depicted in Figure 2.1. We
conclude with the implementation of the framework.
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Figure 2.1: Conceptual Framework


2.1 Preliminaries


Given an element x ∈ Rn, let [x]i denote the (i)–th component of x. We use the same
convention for elements belonging to any multidimensional vector space. Let N denote the
non-negative integers, and Nn


k refer to those α ∈ Nn with |α|1 =
∑n


i=1[α]i ≤ k. Let R[y]
denote the ring of real polynomials in the variable y. For a compact set X ⊂ Rn, letM(X)
denote the space of signed Radon measures supported on X. The elements ofM(X) can be
identified with linear functionals acting on the space of continuous functions C(X), that is,
as elements of the dual space C(X)′ [70, Corollary 7.18]. The duality pairing of a measure
µ ∈M(X) on a test function v ∈ C(X) is:


〈µ, v〉 =


∫
X


v(x)dµ(x). (2.1)


Let C1(X,R) be the space of continuously differentiable functions over X to R; L2(X,R)
be the space of square integrable functions over X to R such that


∫
X
‖f(x)‖2dx < ∞; and


Rd[x] be the set of polynomials in X with maximum total degree d. In addition, let spt(µ)
denote the support of a measure µ and λn denote the Lebesgue measure on Rn. Given n ∈ N
and D ⊂ Rn, ∂D denotes the boundary of D. Recall that given a collection of sets {Sα}α∈A,
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Algorithm 1 Computing the Reachable Set for STS


1: Given: observations xobs(t) of the motion
2: Choose a model for the motion.
3: Run optimal control to find uobs(t), the input that tracks the


motion.
4: Construct controller to track xobs(t).
5: Compute the backwards reachable set of the controller.


the disjoint union of this collection is
∐


α∈A Sα =
⋃
α∈A Sα × {α}. Throughout the thesis


we abuse notation and say that given ᾱ ∈ A and x ∈ Sᾱ, then x ∈ ∐α∈A Sα, even though
we should write ιᾱ(x) ∈ ∐α∈A Sα, where ιᾱ : Sᾱ →


∐
α∈A Sα is the canonical identification


ιᾱ(x) = (x, ᾱ).


2.2 Conceptual Framework


This section presents the framework to compute the BOS of an individual’s locomotor pattern
given observations. This section is intended to provide a high-level overview of the framework
composed of modular pieces, each which could be an entire PhD thesis in of themselves. The
approach is summarized in Algorithm 11. These steps are described abstractly at first in
this section to ensure straightforward generalization to arbitrary locomotor patterns.


Individualized Hybrid Model


The first component of the framework is to construct a representative model of the desired
action. There are various levels of individualized models ranging from simple models, known
as template models, to complex models, know as anchor models, each with different use
cases [71]. Template models are simple models that track limited and relevant features that
are used to explain the action. An example of a template model for STS is an inverted
pendulum with the mass placed at the subject’s center of mass [16]. Anchor models are
complex model which describe the real action with as much detail as possible. An example
of an anchor model for the human body can be found in OpenSIM [72]. For example,
OpenSIM has been used to find the muscle excitations for gait. Due to their complexity,
current stability tools are unable to analyze anchor models. For this work, we use template
models for modeling STS.


Therefore, we consider control affine systems which is a special case of the dynamical


1The framework MATLAB code is available at www.w3id.org/people/vshia/jrsi/



www.w3id.org/people/vshia/jrsi/
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equations defined as:
ẋ(t) = f(t, x) + g(t, x)u(t, x)


x ∈ [x, x] ⊂ Rn


u ∈ [u, u] ⊂ Rm


(2.2)


where X = [x, x] ⊂ Rn represents the state space of the model, f ∈ C1([0, T ]× Rn,Rn) and
g ∈ C1([0, T ]×Rn,Rm) describe how the input u ∈ L2([0, T ]×Rn,Rm) affect the dynamics
and u, u ∈ Rm represent input bounds. As each individual is different, x, x, u and u are
distinct for each individual and must be identified as described in further detail in Section
4.1. While the dynamics vary due to individual specific parameters of the model (e.g. mass,
limb length, moment of inertia, etc.), we refer to the dynamics simply as f and g for brevity.


Many actions such as STS undergo various phases also known as modes. Since each phase
contain different physical constraints, the range of possible actions may change in each phase.
These phases and transitions can be modeled using the hybrid system construction allowing
these actions to be analyzed with the available methods in control theory. Sit to stand up
can be described with 2 modes: mode 1 when the subject is sitting on the chair and mode
2 when the subject is off the chair, shown in Figure 2.2 [8]. These modes can be described
using a directed graph with each mode represented by a vertex of the graph and each mode
containing a vector field governing the evolution of trajectories in that mode.


f1 f2


Mode 1: Sit Mode 2: Stand
Guard: Standing


Guard: Sitting


Figure 2.2: Phases of Sit to Stand


Here we formalize the notion of a hybrid system with control affine dynamics. First, let
hXji


, hUi
, h(j′,j) ∈ R[x] be polynomials which describe the state space domain, input domain,


and switching surface, respectively.


Autonomous Hybrid System


Definition 1: A controlled autonomous hybrid system is a tuple H = (V,E,D, U,F ,S,R)
s where:


• V is a finite set indexing the discrete states of H;
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• E ⊂ V × V is a set of edges, forming a directed graph structure over V ;


• D =
∐


j∈V Xj is a disjoint union of domains, where Xj =
{
x ∈ Rnj | hXji


(x) ≥
0, hXji


∈ R[x],∀i = {1, . . . , nXj
}
}


is a compact subset where nXj
∈ N;


• U = {u ∈ Rm | hUi
(u) ≥ 0, hUi


∈ R[u],∀i ∈ {1, . . . , nU}} is a compact, convex subset
which describes the range space of the control inputs where m ∈ N;


• F = {(fj, gj)}j∈V is a set of control affine systems, where fj : R×Xj → Rnj , gj : R×
Xj → Rnj×m, for t ∈ R, x ∈ Xj, and u ∈ U , fj(t, x) + gj(t, x)u is a tangent vector on
Xj at x, and f, g ∈ R[t, x];


• S =
∐


e∈E Se is a disjoint union of the guards, where each S(j′,j) =
{
x ∈ ∂Xj |


h(j′,j)i(x) = 0, h(j′,j)i ∈ R[x],∀i = {1, . . . , n(j′,j)}
}


is a compact, co-dimension 1 guard
that defines a transition from domain j ∈ V to domain j′ ∈ V and S(j′,j) ∩ S(k′,j) = ∅,
∀(j′, j), (k′, j) ∈ E when k′ 6= j′;


• R = {Re}e∈E is a set of reset maps, where each R(j′,j) : S(j′,j) → Xj′ defines the
transition from guard S(j′,j) to Xj′, R(j′,j) ∈ R[x] where x ∈ Xj, and R(j′,j) is an
injective, continuously differentiable function whose Jacobian is nonzero for every x ∈
S(j′,j).


Note that Xj and U are the 0 super-levelsets of polynomial functions hXji
and hUi


. Similarly,
S is the 0-levelset of the polynomial functions h(j′,j). These sets are also called semi-algebraic
sets. For convenience, we refer to controlled hybrid systems as just hybrid systems.


x


D X3


f1
X1


f2
X2


f3


S(2,3)


S(1,2) S(2,1)


S(3,1)


R(3,1)
R(2,3)


R(1,2)


R(2,1)


Figure 2.3: Hybrid System Definition


Next, we define an execution of a hybrid system via construction in Algorithm 2. This
definition agrees with the traditional intuition about executions of hybrid systems, which
describes an execution as evolving as a dynamical system until a guard is reached, at which
point a discrete transition occurs to a new domain using a reset map, and evolution continues
again as a dynamical system.
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Hybrid systems can suffer from Zeno executions, i.e. executions that undergo an infinite
number of discrete transitions in a finite amount of time. Since the state of the trajec-
tory after the Zeno occurs maybe undefined, we do not consider hybrid systems with Zeno
executions:


Assumption 1: H has no Zeno execution.


Algorithm 2 Execution of Hybrid System H
Require: t = 0, j ∈ V , (x0, j) ∈ D, and u : R→ U Lebesgue measurable.


1: Set x(0) = x0.
2: loop
3: Let γ : I → Xj be an absolutely continuous functiona such that:


1. γ̇(s) = fj(s, γ(s)) + gj(s, γ(s))u(s) for almost every s ∈ I with respect
to the Lebesgue measure on I ⊂ [0,∞],


2. γ(t) = x(t), and


3. for any other γ̃ : Ĩ → Xj satisfying (i) and (ii) Ĩ ⊂ I.


4: Let t′ = sup I and x(s) = γ(s) for each s ∈ [t, t′)b.
5: if t′ =∞, or @(j′, j) ∈ E such that γ(t′) ∈ S(j′,j) then
6: Stop.
7: end if
8: Let (j′, j) ∈ E be such that γ(t′) ∈ S(j′,j).
9: Set x(t′) = R(j′,j) (γ(t′)), t = t′, and j = j′.


10: end loop


aNote that the existence of a curve satisfying conditions (i),(ii), and (iii) follows from [73, Theorem
10.1.4]


bNote if t′ <∞, then γ(t′) ∈ ∂Xj . [73, Theorem 10.1.12]


Figure 2.3 shows an example hybrid system that:


1. starts with the red circle in X1 and follows the red trajectory arriving at S(1,2)


2. undergoes reset R(1,2) to X2 and follows the green trajectory arriving at S(2,3)


3. undergoes reset R(2,3) to X3 and follows the blue trajectory until final time T .


Collecting Observations


After selecting a model, high dimensional observations of the action to analyze are collected
from different sources ranging from motion capture [74, 75] to the Kinect [76]. These obser-







CHAPTER 2. FRAMEWORK 17


vations are then reduced to the features required by the model. The domain bounds are the
minimum and maximum observed values from the data.


Identifying an Input from Observations


After selecting a model, the input, uobs : [0, T ]→ Rm that generates the given observations
must be constructed. There are two methods for determining the input for the observed
motion: inverse dynamics and optimal control.


Inverse dynamics is the simplest method to determine input forces to a dynamical system.
Inverse dynamics uses the observed variables xobs : [0, T ]→ X to estimate ẋobs : [0, T ]→ Rn.
For continuous systems, with a known (xobs(t), ẋobs(t)), uobs(t) can be defined as:


uobs(t) = g†(t, xobs(t)) (ẋobs(t)− f(t, xobs(t))) (2.3)


where g† is the Moore-Penrose inverse of g. For hybrid systems, this method requires us to
know which mode the subject is in for all time.


Optimal control calculates uobs(t) via optimization. For continuous systems, the opti-
mization can be written as:


inf
uobs∈L2([0,T ],Rm)


∫ T


0


‖x(t)− xobs(t)‖2
2dt (2.4)


s.t. ẋ(t) = f(t, x) + g(t, x)uobs(t) ∀t ∈ [0, T ]


x(t) ∈ X ∀t ∈ [0, T ]


uobs(t) ∈ [u, u] ∀t ∈ [0, T ]


The solution to this problem is a feedforward open loop control input uobs that minimizes
the L2 error between the state trajectory and the observed trajectory.


Inverse dynamics and optimal control theoretically return identical uobs(t). However, in
practice, they do not. While inverse dynamics is computationally very fast, due to experi-
mental error resulting from the differentiation in xobs(t), it often is dynamically inconsistent
which means that forward integration of the dynamics with uobs(t) does not result in xobs(t).
To address this issue, researchers have used a combination of least squares, filtering, and opti-
mization [77, 72]. On the other hand, optimal control results in a dynamically consistent uobs


but requires running an optimization algorithm and as a result is slower. Many algorithms
have been proposed to solve the optimal control problem from calculus of variations, dynamic
programming, Pontryagin’s minimum principle [78], and nonlinear programming [79]. Since
the inverse kinematic solution is more susceptible to noise in xobs(t), we use optimal control
to compute uobs(t), the nominal input generating xobs(t).


Due to the discrete transitions for hybrid systems, optimal control for hybrid systems
does not extend naturally from continuous system optimal control. If the transition sequence
and times are known, Equation 2.4 can independently be run each mode. If the transition
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sequence is not known, algorithms such as [80, 81, 82] can be used. As there are many
formulations for optimal control of hybrid systems, for this section, we simply assume that
the switching sequence and transition times are known and Equation 2.4 is run for each
mode to obtain uobs,j(t), the optimal controller that tracks xobs(t) in mode j.


Feedback Controller Design


Neuroscientists, psychologists, motor control researchers and biomechanists have observed
that the nominal trajectories followed by humans during locomotor patterns are robust to
small perturbations [83, 84, 85, 86, 87]. This robustness which is conferred by some feedback
about the nominal control input or goal but the specific strategy that endows such robustness
remains unclear.


Flash and Hogan, for example, showed that subjects minimize the square of jerk during
reaching tasks [83]. Liu and Todorov showed that for endpoint reaching tasks, subjects utilize
a time-varying Proportional Derivative (PD) control to reach a specified endpoint [88]. For
the lower body, Dingwell et al. tracked the evolution of step width and found that subjects
tended to correct deviations with just a proportional controller [89, 90].


To imbue the nominal control input that is identified by the optimal control algorithm in
Section 2.2 with this feedback robustness and to measure the BOS, the following assumptions
are made:


Assumption 2: For each distinct locomotion action, humans utilize a feedforward control
law with corresponding feedback. To perform a different action, the subject switches control
laws.


Assumption 2 states that for a particular action, such as standing up slowly, the subject
follows a combination of feedforward and feedback control laws. If the subject decides to
stand up differently, the subject follows a different control law. If a specific control law is
not able to take a subject to standing after perturbation, a subject must switch control laws.
The inability to switch control laws fast enough during an unexpected disturbance correlates
with a likelihood of falling [9].


Assumption 3: While performing a specific action, the subject utilizes a PD feedback around
a nominal trajectory, xobs, to correct deviations in the trajectory.


According to Assumption 3 the feedback control law is:


uj(t, x) = uobs,j(t) +Kj(x(t)− xobs(t))


= uobs,j(t) + ucc,j(t, x)
(2.5)


where for each mode j, Kj is the controller gain acting on the states and observed states
and ucc,j(t, x) represents the general form of the controller correcting for deviations in the
nominal trajectory. Note, the method presented to estimate the BOS, which is described in
Section 2.2, cope with more general nonlinear feedback control inputs; however, as described
earlier, the existing literature suggests that humans apply only linear feedback [89, 90].
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Of concern is that the feedback controller would enforce the desired trajectory too rigidly
causing the system to oscillate about the desired trajectory. With small enough gains,
this can be avoided. For example, consider the system in Figure 1.7. The two perturbed
trajectories in magenta and cyan do not oscillate about the desired trajectory.


Assumption 4: The torque limits are constant throughout the motion.


As humans do not have the ability to apply arbitrary torque to any joint, torque limits
[u, u], which are individual-specific, are set to the minimum and maximum of uobs generated
from the optimal control. Assumption 4 results in an outer-approximation of the BOS as
the maximum torque limit will not be applicable at every instance in time.


Computing the Basin of Stability


Given a model, input bounds, and feedback control input that tracks xobs, the BOS can be
formally defined as follows: the BOS is the set of states as a function of time that can be
driven by the feedback control input to a target configuration, XT ⊂ X, by time T via the
dynamical system H. The target set XT in the case of STS corresponds to the set of states
where the subject is standing. The optimization algorithm to compute the BOS is shown in
D and describe in depth in Chapter 3.


d? = inf
wj∈C1(Rn,Rn)


vj∈C1([0,T ]×Rn,Rn)
p∈R


∑
j∈J


∫
Xj


wj(x)dλnj
(x) (D)


s.t.
∂vj(t, x)


∂x
(fj(t, x) + gj(t, x)uj(t, x))


+
∂vj
∂t
≤ 0 ∀(t, x, j) ∈ [0, T ]×D


wj(x) ≥ vj(0, x) + p+ 1 ∀(x, j) ∈ D,
wj(x) ≥ 0 ∀(x, j) ∈ D
vj(T, x) ≥ −p ∀(x, j) ∈ XT


vj(t, x) ≥ vj′(t, R(j′,j)(x)) ∀(t, (x, (j′, j)))∈[0, T ]× S


where v, w are continuously differentiable polynomials.
To understand the relationship between the solution, wj and vj, to this optimization


problem and the BOS notice that wj(x) ≥ p and vj(0, x) ≥ 0 for points that belong in the
BOS:


Theorem 1: For every j ∈ J , Xj ⊂ {x0 ∈ Xj|wj(x) ≥ 1} for any feasible wj of D.


Proof. Consider a feasible (v, w) in D. Given any (x0, j0) ∈ X , there exists a u such that
u(t) ∈ U for all t ∈ [0, T ] and x(T ) ∈ XT where x : [0, T ]→ D is generated via Algorithm 2.
Let {τi}ni=0 ⊂ [0, T ] be the strictly monotonic and finite sequence of transition times of the
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trajectory (which exists by Assumption 1) with τ0 = 0 and τn = T and {ji}ni=0 ⊂ J be the
sequence of visited modes. Due to D’s constraints:


−p ≤ vjn(T, x(T )) = vjn−1(τn−1, R(jn,jn−1)(x(τn−1)))+∫ τn


τn−1


Ljnvjn(t, x(t), u(t))dt


≤ vjn−1(τ
−
n−1, x(τ−n−1))


= vjn−2(τn−2, R(jn−1,jn−2)(x(τn−2)))+∫ τn−1


τn−2


Ljn−1vjn−1(t, x(t), u(t))dt


...


≤ vj0(0, x0) ≤ wj0(x0)− p− 1,


which proves the first statement since (x0, j0) was arbitrary. The second result follows from
a straightforward extension to [34, Theorem 3]


Therefore, the
⋃
j∈V {x ∈ Xj|vj(0, x) ≥ 0} levelset represents the BOS of the system at


time t = 0. Furthermore, the
⋃
j∈V {(t, x) ∈ [0, T ] ×Xj|vj(t, x) ≥ 0} levelset represents the


BOS of the system for all time. In Figure 1.7, for example, the light gray region denotes the
v(t, x) ≥ 0 level set with the dark gray region denoting different time slices of the v(t, x) ≥ 0
level set. Formal proofs for this will be given in Chapter 3. After computing w(x) and v(t, x),
points in the domain [0, T ]×X that exceed input bounds [u, u] are excluded manually.
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2.3 Implementable Framework for STS


In this section, we describe the implementation of framework presented in Section 2.2. A
visual representation of the framework is shown in Figure 2.4. Note that there are slight
differences from the conceptual framework in the hybrid system and BOS computation used.
The reasons for these will be discussed in the relevant sections.
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Figure 2.4: Implementable Framework


Individualized Hybrid Model


We consider two models to represent an individual’s STS action: a single inverted pendulum
model (IPM), shown in Figure 2.5a, and a double inverted pendulum (DPM), shown in
Figure 2.5b. Pai and Patton first used the IPM to determine the feasible states in which
balance could be obtained [16]. Most recently, the IPM has been used to determine the
feasible COM velocities and accelerations at seat-off (when the subject leaves the chair) that
lead to balance [91, 20].


The IPM model consists of an inverted pendulum attached to a fixed foot on the ground.
Let [θ, θ̇]T represent the angle (with respect to the vertical) and angular velocity of the
pendulum, which is the state space X of the IPM, and u represent the actuation at the
ankle. The dynamics of the IPM are


θ̈ = f(t, θ, θ̇) + g(t, θ, θ̇)u


=
g


l
sin(θ) +


1


ml2
u


(2.7)


where g is gravity, m is the mass and l is the length of the pendulum, and u is the exogenous
input. To fit the observed data from motion capture to the IPM, we set g to be gravity,
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(a) Inverted Pendulum Model
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(b) Double Pendulum Model


Figure 2.5: STS models


m as the subject’s mass, l as the average distance from the subject’s ankle to the subject’s
COM2, and θ as the angle from the ankle to the subject’s COM.


The DPM consists of a double inverted pendulum attached to a fixed foot on the ground.
Let θ = [θ1, θ2]T and [θ1, θ2, θ̇1, θ̇2]T represent the state space X of the DPM and u = [u1, u2]T


represent the ankle and hip actuation. The dynamics of the DPM are standard double
pendulum dynamics are:


M(θ, θ̇)θ̈ + C(θ, θ̇)θ̇ +N(θ) = u (2.8)


where


M(θ, θ̇) =


[
m1r


2
1 +m2r


2
2 + l1m2 (l1 + 2r2 cos(θ2)) m2r2(l1 cos(θ2) + r2)


m2r2(l1 cos(θ2) + r2) m2r
2
2


]
(2.9)


C(θ, θ̇) =


[
−l1m2r2 sin(θ2)θ̇2 −l1m2r2 sin(θ2)(θ̇1 + θ̇2)


l1m2r2 sin(θ2)θ̇1 0


]
(2.10)


N(θ) =


[
−gm1r1 sin(θ1) + gm2 (−l1 sin(θ1)− r2 sin(θ1 + θ2))


−gm2r2 sin(θ1 + θ2)


]
(2.11)


where M represents the mass matrix, C represents the coriolis and centrifugal matrix,
N represents the potential matrix, g is gravity, and u ∈ R2 represents the external input.
To fit the observed data from motion capture to the DPM, we set m1 as the mass of the
subject’s lower body (calf and thigh), m2 as the mass of the subject’s upper body, l1 as the
average length from the ankle of the subject’s ankle to hip, r1 as the average length to the


2Fuijimoto notes that the length of the COM does not affect the results significantly [20].
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COM of the lower body, and r2 as the average length from the hip to the COM of the upper
body. θ1 represents the angle from the subject’s ankle to hip and θ2 represents the angle of
the subject’s hip to upper body.


The dynamics for the double pendulum can be represented in control affine form as:


θ̈ = M−1(θ, θ̇)(−C(θ, θ̇)θ̇ −N(θ)) +M−1(θ, θ̇)u


= f(t, θ, θ̇) + g(t, θ, θ̇)u
(2.12)


For both models, masses and the COM positions of each individual limb were computed
using tabulated values found in [92] and the COM for each model was calculated using the
weighted average of each limb’s COM.


To model this action using hybrid systems, the transition can be defined when the subject
lifts off the chair. However, due to the lack of a knee joint, this event is lost in both the IPM
and DPM models. For this work, we ignore this hybrid transition and nature of the STS
motion. Due to numerical issues (elucidated later), we treat the STS motion using 3 modes
where transitions occur at a fixed time. This is traditionally known as a switched hybrid
system defined below:


Definition 2: A switched switched hybrid system is a tuple Hswitch = (V,D, U,F , T ) where:


• V is a finite set indexing the discrete states of Hswitch with ‖V ‖ as the cardinality of
V ;


• D =
∐


j∈V Xj is a disjoint union of domains, where Xj =
{
x ∈ Rnj | hXji


(x) ≥
0, hXji


∈ R[x],∀i = {1, . . . , nXj
}
}


is a compact subset where nj ∈ N;


• U = {u ∈ Rm | hUi
≥ 0, hUi


∈ R[u],∀i ∈ {1, . . . , nU}} is a compact, convex subset
which describes the range space of the control inputs where m ∈ N;


• F = {(fj, gj)}j∈V is a set of control affine systems, where fj : R×Xj → Rnj , gj : R×
Xj → Rnj , for t ∈ R, x ∈ Xj, and u ∈ U , f(t, x) + g(t, x)u is a tangent vector on Xj


at x, and f, g ∈ R[t, x];


• T =
⋃‖V ‖−1
i=0 [τi, τi+1] is a union of the time intervals where T = [0, T ] and τi+1 denotes


the switching time from mode i to i+ 1 with τ0 = 0 and τ‖V ‖ = T ;


A switched hybrid system can be thought of an autonomous hybrid system with a known
switching sequence, a guard on time and an identity reset map. As the switching sequence
is known, without loss of generality, the sequence of modes traversed can be defined as
{0, 1, . . . , ‖V ‖ − 1}.
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Collecting Observations


We obtain detailed observations consisting of 43 markers on the body for the STS motion
using the PhaseSpace Impulse X2 system [93]. Using Recap2, the markers are processed
to obtain a skeletal model [74]. Afterwards, the joint angles are processed to project the
skeleton down to the IPM and DPM model. The full experimental protocol for collecting
data can be found in Chapter 4.


Identifying an Input from Observations


For optimal control we utilize collocation of polynomial with forward Euler [94] to trans-
form the optimal control problem in Equation 2.4 into a nonlinear optimization program.
Collocation discretizes the dynamics in time and enforces the equality:


xk+1 = xk +
(
f(t, xk) + g(t, xk)uk


)
ts (2.13)


for all k, xk and uk where ts is the integration timestep3. The full optimal control algorithm
is presented in Equation 2.14.


inf
{xk}Nk=0,{uk}


N
k=0


‖xk − xobs(kts)‖2
2


s.t. xk+1 = xk +
(
fj(k)(kts, xk) + gj(k)(kts, xk)uk


)
ts, ∀k = {0, . . . , N − 1}


(2.14)


where j(k) is a monotonic function denoting the mode at timestep k, ts denotes the timestep
and N denotes the number of timesteps such that ts = T/(N − 1).


However, due to requirements of our algorithm (elucidated later), polynomial inputs are
required and the collocation algorithm used is shown below:


inf
{xk}Nk=0,{ui,j}


d,‖V ‖
i,j=0


‖xk − xobs(kts)‖2
2 (2.15)


s.t. xk+1 = xk +


(
fj(k)(kts, xk)


+gj(k)(kts, xk)


(
d∑
i=0


ui,j(k)(kts)
i


))
ts


∀k = {0, . . . , N − 1}


where j(k) is a monotonic function denoting the mode at timestep k, ts denotes the timestep,
N denotes the number of timesteps such that ts = T/(N − 1), and d denotes the degree of


3Note that collocation methods exist with higher order methods such as Runge-Kutta which increases the
accuracy of uobs.
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the input. For the rest of the paper, we refer to the nominal input in mode j generated by
the optimal control as uobs,j(t) where:


uobs,j(t) =
d∑
i=0


ui,jt
i (2.16)


Feedback Controller Design


To determine the feedback gain Kj for each mode j, the Linear Quadratic Regulator (LQR)
algorithm in Equation 2.17 is applied to determine the optimal state feedback law u(t) that
minimizes a quadratic cost.


min
ucc,j∈L2([0,T ])


1


2


∫
Tj


(
(x(t)− xobs(t))


TQ(x(t)− xobs(t))


+ ucc,j(t)
TRucc,j(t)


)
dt


s.t. ẋ(t) = Ajx(t) +Bj(uobs,j(t) + ucc,j(t, x))


(2.17)


By selecting Q = I and R = 0.01I where I is the identity matrix of appropriate dimension,
the resulting controller is designed to minimize the Q-weighted l2 error of x(t) from xobs(t).
Aj and Bj are obtained via small-angle approximations of fj and gj.


The complete controller for each mode j is written as:


uj(t, x) = uobs,j(t) +Kj(x(t)− xobs(t))


= uobs,j(t) + ucc,j(t, x)
(2.18)


For linear systems, the LQR problem has a closed form solution provided by the Algebraic
Ricatti Equation and the optimal controller is a linear state feedback law [95].


Computing the Basin of Stability


Due to numerical reasons, a modified optimization algorithm inspired by [34] to compute
this BOS is presented:


inf
vj∈C1(Tj×Rn,Rn)


∑
j∈V


∫
Tj×Xj


vj(t, x)dtdx (D′)


s.t.
∂vj(t, x)


∂x


(
fj(t, x) + gj(t, x)uj(t, x)


)
+
∂vj
∂t
≤ 0 ∀(t, x) ∈ Tj ×Xj (2.19a)


vj(τj, x) ≥ vj+1(τj, x) ∀x ∈ Xj (2.19b)


vj(t, x) ≥ 0 ∀(t, x) ∈ Tj ×Xj (2.19c)


v‖V ‖−1(T, x) ≥ α ∀x ∈ XT (2.19d)
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where α ∈ R with α > 0 is a parameter that can be selected by the use, and ‖V ‖ − 1 is
the final mode. After computing vj(t, x), points in the domain Tj × Xj that exceed input
bounds [u, u] are excluded manually via masking.


To understand the relationship between the solution, vj, to this optimization problem
and the BOS notice that vj(t, x) ≥ α for points that belong on the BOS:


Lemma 2: If vj is a solution to (D), then vj(0, ·) ≥ α on the BOS.


Proof. Since
∂vj(t,x)


∂x
(fj(t, x) + gj(t, x)u(t, x)) +


∂vj
∂t
≤ 0 on Tj ×Xj and v‖V ‖−1(T, ·) ≥ α on


XT , we have x(t) ∈ X and x(T ) ∈ XT .


α ≤ v‖V ‖−1(T, x(T ))


= v‖V ‖−1(t‖V ‖−1, x) +


∫
T‖V ‖−1


(
∂v‖V ‖−1(t, x)


∂x


(
f‖V ‖−1(t, x)


)
+
∂v‖V ‖−1(t, x)


∂x


(
g‖V ‖−1(t, x)u(t, x)


)
+
∂v‖V ‖−1


∂t


)
dt


≤ v‖V ‖−1(τ‖V ‖−1, x)


. . .


≤ v0(0, x)


(2.20)


Therefore, the BOS at t = 0 is given by the levelset defined by {x ∈ D | v0(0, x) ≥ 0}. In
fact, the BOS in mode j is given by the levelset defined by {(t, x) ∈ [0, T ]×D | vj(t, x) ≥ 0}.
To solve (D′) numerically, vj(t, x) and the dynamics are assumed to be polynomial and
the state space and target set are assumed to be semialgebraic sets. Using the S-procedure,
positivity constraints are converted to sum-of-squares constraint [36]. This optimization pro-
gram constructs an outer approximation to the BOS [69]. This method requires polynomial
dynamics and inputs. Instead of using a high degree polynomial to model the input, the
input is partitioned into three, resulting in the 3 mode switched system mentioned earlier.
More details are given in Chapter 3.
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2.4 Summary


In this chapter, a conceptual framework for studying the basin of stability of human lo-
comotion is presented followed by an implementable framework for specifically analyzing a
subject’s sit-to-stand motion. A summary showing the differences between the conceptual
and implementable framework is shown in Figure 2.1. Further details regarding the basin of
stability calculation are provided in Chapter 3 with experimental results in Chapter 4.
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Figure 2.6: Conceptual and Implementable Framework
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Chapter 3


Computational Tools for Stability
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3.1 Introduction


Hybrid systems have been widely adopted as a modeling tool due to their expressive power
while describing the dynamics of systems undergoing continuous and discrete transitions
simultaneously. Consequently, the development of computationally tractable algorithms for
reachability analysis is critical not only for verifying safe system behavior, but also due to
its applicability during incremental control design [96]. This chapters presents a numerical
approach to construct the set of points that reach a given target set at a specified finite time
for controlled polynomial hybrid systems.


Many algorithms have been proposed to compute this backwards reachable set (BRS) for
a hybrid system. The most popular of such techniques rely either upon the linearity of the
distinct subsystems of the hybrid system under investigation [97, 98], the Hamilton-Jacobi-
Bellman Equation [32], or Lyapunov-type analysis [62, 99, 100]. Though the Hamilton-
Jacobi-Bellman based methods work even in the presence of general nonlinear dynamics, they
rely upon state-space discretization which can restrict their applicability to systems of low
dimensionality. In contrast, Lyapunov based methods can be applied to higher dimensional
systems. These approaches rely on checking Lyapunov’s criteria for stability using sums-of-
squares (SOS) programming which are formulated as semi-algebraic constraints and casted
as SOS constraints using the S-procedure. However, constructing these Lyapunov functions
requires solving a nonconvex bilinear program that is solved using some form of alternation,
which is not guaranteed to converge to global or even local optima and requires feasible
initialization.


In this chapter, we address these issues by presenting a convex approach to computing
the BRS of a semialgebraic target set for a controlled polynomial hybrid system in the
presence of semialgebraic state and input constraints. Our approach is inspired by the
method presented in [34], which describes a framework based on occupation measures for
computing the BRS for classical polynomial dynamical systems. The contributions in this
chapter are three–fold. First, in Section 3.2, we formulate the determination of the BRS as an
infinite dimensional linear program (LP) over the space of nonnegative measures. The target
set in this formulation can in fact be divided amongst the distinct subsystems of the hybrid
system. Second, in Section 3.4, we construct a sequence of finite dimensional relaxations to
our infinite dimensional LP in terms of semidefinite programs (SDP)s. Finally, in Section 3.4,
we prove that each solution to the sequence of SDPs is an outer approximation to the largest
possible BRS with asymptotically vanishing conservatism. In Section 3.5, we demonstrate
the performance of our approach on 3 examples.


3.2 Preliminaries


In this section, we formalize our problem of interest, construct an infinite dimensional LP,
and note that the solution of this LP is equivalent to solving our problem of interest. We
make substantial use of measure theory, and the unfamiliar reader may wish to consult [70]
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for an introduction.


Problem Statement


Next, we describe the target set whose BRS we are interested in computing. First, we define
the projection of the target set in each mode j ∈ J :


XTj =
{
x ∈ Xj |hTji(x) ≥ 0, hTji∈ R[x], ∀i = {1, . . . , nTj}


}
(3.1)


where XTj is the semi-algebraic set given by the polynomial functions hTji . The target set is
then defined as:


XT =
∐
j∈J


XTj . (3.2)


Given a finite final time T > 0, our goal is to compute the time–limited BRS of XT for
hybrid dynamical system defined in Definition 1 which is defined as:


X =
{


(x0, j) ∈ D | ∃u : [0, T ]→ U Lebesgue measurable


s.t. x : [0, T ]→ D defined via Algorithm 2,


x(0) = x0 ∈ Xj, x(T ) ∈ XT


}
. (3.3)


We denote the projection of X in each mode j as:


Xj =
{
x0 ∈ Xj | (x0, j) ∈ X


}
(3.4)


We make the following assumption to solve this problem:


Assumption 5: XTj is compact for all j ∈ J .


Liouville’s Equation


Liouville’s equation is an partial differential equation in classical statistical and Hamiltonian
mechanics concerning the conservation of probability density through dynamics. It is the
analogue of the conservation of mass via dynamics for probability densities. In this section,
we first show how to define a measure along a system trajectory (via the idea of occupation
measures), then define a measure along a set of system trajectories, and show how Liouville’s
equation “falls” out of the derivation.


We compute X by defining measures over [0, T ]×Xj for each j ∈ J whose supports’ model
the evolution of families of trajectories in each mode. An initial condition and its relationship
with respect to the terminal set can be understood via Algorithm 2, but the relationship
between a family of trajectories and the terminal set is best understood differently. To
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appreciate this distinct perspective, first define the linear operator Lj : C1
(
[0, T ] × Xj


)
→


C
(
[0, T ]×Xj × U


)
on a test function v as:


Ljv =
∂v


∂t
+


nj∑
i=1


∂v


∂xi


(
[f(t, x)]i + [g(t, x)u(t)]i


)
, (3.5)


and its adjoint operator L′j : C
(
[0, T ]×Xj ×U


)′ → C1
(
[0, T ]×Xj


)′
by the adjoint relation:


〈L′jµ, v〉 = 〈µ,Ljv〉 =


∫
[0,T ]×Xj×U


Ljv(t, x, u)dµ(t, x, u) (3.6)


for all µ ∈M
(
[0, T ]×Xj × U


)
and v ∈ C1


(
[0, T ]×Xj


)
.


Using this operator, we can understand the evolution of any test function v ∈ C1
(
[0, T ]×


Xj


)
in Xj. To make this explicit, consider the evolution of a point xτi ∈ Xj beginning at


time τi ∈ [0, T ] under the control input u(·|τi, xτi) according to Algorithm 2, which we denote
by x(·|τi, xτi). Define the first hitting time of a guard in Xj as:


τf (τi, xτi) = min
{
T, inf{τ ≥ τi | ∃i ∈ J s.t.


x(τ |τi, xτi) ∈ Gi,j}
}
. (3.7)


It follows from Equation (3.5) that:


v(τf , x(τf |τi, xτi))− v(τi, xτi) =


∫ τf


τi


d


dt
v(t, x(t|τi, xτi))dt (3.8)


=


∫ τf


τi


Ljv(t, x(t|τi, xτi), u(t|τi, xτi))dt, (3.9)


where we have suppressed the dependence on τi and xτi in τf . A standard approach to
determining the BRS of a system imposes Lyapunov conditions on the test functions and
their derivatives. However, this results in nonconvex bilinear matrix inequalities. Instead we
examine conditions on the space of measures–the dual to the space of continuous functions–in
order to arrive at a convex formulation.


To do this, we begin by defining an occupation measure:


µ(A×B × C|τi, xτi) =


∫ T


0


IA×B×C (t, x(t|τi, xτi), u(t|τi, xτi))) dt, (3.10)


for all subsets A×B×C in the Borel σ-algebra of [0, T ]×Xj ×U , where IA×B×C(·) denotes
the indicator function on a set A × B × C. As a result of its definition, the occupation
measure of a set A × B × C quantifies the amount of time the graph of a solution and its
associated control, (t, x(t|τi, xτi), u(t|τi, xτi)), spends in A×B ×C. For example, Figure 3.1
shows the occupation measure for two sets: A1 × B1 and A2 × B2 for a trajectory x(t|x0)
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beginning at x0
1. Since the trajectory x(t|x0) goes through A1×B1, the occupation measure


µ(A1 × B1|x0) is non-zero. Conversely, since the trajectory x(t|x0) does not go through
A2 ×B2, the occupation measure µ(A2 ×B2|x0) is zero.


Gf1


A1 ×B1


A2 ×B2


µ(A2 ×B2|x0) =
T


0


IA2×B2
(t, x(t|x0))dt


x0


X


t


Figure 3.1: Pictorial view of occupation measures on a single trajectory for a system without input.


For any measurable function h : [0, T ] × Xj × U → R an occupation measure by con-
struction satisfies the following property:∫ T


0


h(t, x(t|τi, xτi), u(t|τi, xτi))dt =


∫
[0,T ]×Xj×U


h(t, x, u)dµ(t, x, u|τi, xτi) (3.11)


As a result, Equation (3.9) then becomes:


v(τf , x(τf |τi, xτi))− v(τi, xτi) =


∫
[0,T ]×Xj×U


Ljv(t, x, u)dµ(t, x|τi, xτi). (3.12)


If the initial state whose evolution was of interest was not just a single point at a specific
time, but was a family of points each beginning at distinct times, then we could define an


1For simplicity, the system has no input and hence, no set C.
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initial measure, µi ∈ M([0, T ] × Xj), whose support coincided with this family of points
and their initialization times. We could then define an average occupation measure shown
in Figure 3.2, µ ∈M ([0, T ]×Xj × U) by:


µ(A×B × C) =


∫
X


µ(A×B × C|τi, xτi)dµi(τi, xτi), (3.13)


and a final measure, µf ∈M ([0, T ]×Xj) by:


µf (A×B) =


∫
[0,T ]×Xj


IA×B(τf (τi, xτi), x(τf |τi, xτi))dµi(τi, xτi). (3.14)


µ0


Gf1


A1 ×B1


X


t


Figure 3.2: Pictorial view of initial, average occupation and final measures for a system without
input.


Integrating with respect to µi, introducing the average occupation measure and final
measure, and using the property defined in Equation (3.11), Equation (3.12) becomes:


〈µf , v〉 − 〈µi, v〉 = 〈µ,Ljv〉, ∀v ∈ C1([0, T ]×Xj). (3.15)
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The support of µ models the flow of trajectories beginning in the support of µi, and the
support of µf represents the distribution of states at some final time after being transported
along system trajectories from the initial measure.


Notice that Equation (3.15) is linear in its measure components. Since Equation (3.15)
must hold for all test functions, we obtain a linear operator equation:


µf − µi = L′jµ, (3.16)


called Liouville’s Equation, which is a classical result in statistical physics that describes
the evolution of a density of particles within a fluid [101]. The occupation measures µi, µ
and µf , along with Liouville’s equation allow us to reason about families of trajectories of
a classical dynamical system. This equation is satisfied by families of trajectories generated
according to Algorithm 2 starting from the initial distribution µi. The converse statement
is true for control affine systems with a convex admissible control set, as we have assumed.
We refer the reader to [34, Appendix A] for an extended discussion of Liouville’s Equation.
Extending the applicability of this result to hybrid systems requires careful modification and
selection of the initial and final measures.


3.3 Infinite Dimensional Linear Program


In this section, we derive an infinite-dimensional LP characterization of the BRS of XT .
The basic idea is to introduce and then maximize the mass of initial occupation measures
defined just at t = 0 in each of the hybrid modes, denoted µj0, under the constraint that
it is dominated by the Lebesgue measure, i.e., λ ≥ µji . System dynamics in each mode are
captured by Liouville’s Equation (3.16) on each mode and state and terminal constraints are
handled by suitable constraints on the support of the measures. To describe all trajectories
of a hybrid system, two modifications are required.


First, trajectories arriving at a guard in each mode must be detected. By splitting the
final measure in each mode into two types of measures this detection can be accomplished:


µjf = µjT +
∑


(j′,j)∈Γ


µS(j′,j) (3.17)


with µjT ∈M({T}×XTj) and µS(j′,j) ∈M([0, T ]×S(j′,j)). Second, once trajectories arriving
at a guard, S(j′,j), are detected they must be re-initialized after the application of the reset
map, R(j′,j), in mode j′ ∈ J . To accomplish this task, the mass of the occupation measure
at each guard at each time between [0, T ] must be transferred exactly to the new domain
after resetting:


Lemma 3: Let H be a controlled polynomial hybrid system as in Definition 1 and µS(j′,j) ∈
M([0, T ]× S(j′,j)). Let σ ∈M([0, T ]×R(j′,j)(S(j′,j))) be such that:


〈σ, v〉 = 〈R∗(j′,j)µS(j′,j) , v〉 ∀v ∈ C([0, T ]×Xj′), (3.18)
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where 〈R∗(j′,j)µS(j′,j) , v〉 is defined as:∫
[0,T ]×S(j′,j)


v(t, R(j′,j)(x))| det(DR(j′,j))(x)|dµS(j′,j)(t, x), (3.19)


and DR(j′,j) is the Jacobian of R(j′,j), then x ∈ spt(µS(j′,j)) (x /∈ spt(µS(j′,j))) if and only if
R(j′,j)(x) ∈ spt(σ) (x /∈ spt(σ)).


Intuition: This lemma is the analogue of the change of variables theorem in calculus for
measures.


Proof. This proof follows directly from [102, Theorem 263D].


As a result of this lemma, for any t ∈ [0, T ] the support of R∗(j′,j)µ
S(j′,j)(t, ·) characterizes


exactly the reinitialization in mode j′ after the application of the reset map R(j′,j) of points
arriving at the guard Sj′,j at time t. By splitting the initial measure in each mode into two
types of measures this reinitialization can be accommodated:


µji = µj0 +
∑


(j,j′)∈Γ


R∗(j,j′)µ
S(j,j′) (3.20)


with µj0 ∈M({0} ×Xj) and µS(j,j′) ∈M([0, T ]× S(j,j′)).
With these two modifications, we can define an infinite dimensional LP, P , that maximizes


the size of the BRS, modeled by
∑


j∈J spt(µj0), for a given target set, modeled by spt(µjT )
for each j ∈ J . That is, define P as:


p? =sup
∑
j∈J


µj0(Xj) (P )


s.t. L′jµj=µjT +
∑


(j′,j)∈Γ


µS(j′,j)−µj0 −
∑


(j,j′)∈Γ


R∗(j,j′)µ
S(j,j′) ∀j ∈ J ,


µj0 + µ̂j0 = λnj
∀j ∈ J ,∑


j∈J


µjT (XTj) =
∑
j∈J


µj0(Xj),


µj, µj0, µ̂
j
0, µ


j
T ≥ 0 ∀j ∈ J ,


µSe ≥ 0 ∀e ∈ Γ,


where the given data are H and XT and the supremum is taken over a tuple of measures
(µ, µ0, µ̂0, µT , µS) ∈


(
M([0, T ]×D)×M({0}×D)×M({0}×D)×M({T}×XT )×M([0, T ]×


S)
)
. For notational convenience, we denote the j ∈ J slice of µ using the super index j (i.e.


for any (t, x) ∈ [0, T ]×Xj set µj(t, x) = µ(t, x, j)) and applied a similar convention to µ0, µ̂,
and µT . Similarly, we denote the (j, j′) ∈ Γ slice of µS using the notation µS(j,j′) . Implicitly,
spt(µ) ⊂ [0, T ]×D which means µ is non-zero on [0, T ]×D and zero outside the [0, T ]×D.
Also, we have spt(µ0) ⊂ D, spt(µT ) ⊂ XT , and spt(µS) ⊂ [0, T ]× S.
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A pictorial version of P of a 1-dimensional hybrid system with 2 discrete modes is shown
in Figure 3.3. Starting at t = 0, µ0 is defined as the initial measure in mode 1. The measure
flows via the dynamics through Liouville’s equation in mode 1 until it hits the guard S(2,1),
upon which the measure undergoes a reset map to become R?


(2,1)µ
S(2,1) in mode 2. The


“terminal” measure for mode 1 is defined by µS(2,1) . In mode 2, the measure flows via the
dynamics through Liouville’s equation in mode 2 until time t = T ending at the terminal
measure µT . Informally, P is tasked with maximizing


∑
j∈J µ


j
0(Xj). There are two ways


to maximize this sum: first, µj0(Xj) can be scaled up. However, this scaling is limited by
the constraint µj0 + µ̂j0 = λnj


, which limits how much µj0 can be scaled to the Lebesgue


measure. Second, spt(µj0) can grow in volume, and through Liouville’s equation, spt(µT )
grows. However, the growth of spt(µT ) is constrained to XT so spt(µ0) is limited to the BRS
of XT .


t+s T


f2


R


G


t−s


f1X


t


Figure 3.3: Pictorial View of Hybrid Occupation Measures.


The constraint
∑


j∈J µ
j
T (XTj) =


∑
j∈J µ


j
0(Xj) ensures that the BRS computes only


points arriving at the target set at time T rather than at any of the guards at time T .
The slack measures (denoted with “hats”) are introduced to impose the constraints λ ≥ µj0
which ensures that the optimal value of P is the Lebesgue measure of the largest achievable
BRS. These observations are summarized next:
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Theorem 4: The optimal value of P is equal to
∑


j∈J λnj
(Xj), i.e. the sum of the Lebesgue


measures of the BRS restricted to each domain of the hybrid system.


Intuition: Theorem 4 proves that the optimal value of P is equal to the volume of Xj which
is the BRS, converting the optimization over volume to a tractable closed-form equation.


Proof. Notice that for any initial condition in x0 ∈ X there is a hybrid trajectory constructed
via Algorithm 2 with x(T ) ∈ XT . As a result for any initial measure µ0 with spt(µ0) ⊂ X
there exists occupation measures µ̂0, µ, µ


T , and µS such that the constraints of P are satisfied.
Thus p∗ ≥∑j∈J λnj


(Xj).
To prove the other direction, notice that as a result of [34, Theorem 1], p∗ =


∑
j∈J λnj


(spt(µj0)).


Suppose then for contradiction that ∃j ∈ J such that λnj
(spt(µj0) \ Xj) > 0. Using [34,


Lemma 3] there exists a family of trajectories generated via Algorithm 2 starting from µj0
generating the occupation measures µj and µjT +


∑
j′,j µ


S(j′,j) . If the trajectories arrive at
XT , then we have a contradiction, so suppose there exists some j′ ∈ J such that the tra-
jectories arrive at S(j′,j). Using Lemma 3, we can reset these trajectories and reapply the
same argument to extend the family of trajectories through modes of the system. Notice
that due to Assumption 1 the times of transitions for this family of trajectories are strictly
monotonic. If at the final time T the family of trajectories generated according to Algorithm
2 are in spt(µT ), then we have a contradiction, so suppose that they are at a guard. In that
instance


∑
j∈J µ


j
T (XTj) <


∑
j∈J µ


j
0(Xj) which would violate a constraint in P , so we have a


contradiction and p∗ =
∑


j∈J λnj
(spt(µj0)) ≤∑j∈J λnj


(Xj).


Next, lets define the dual program to P denoted D as:


d? =inf
∑
j∈J


∫
Xj


wj(x)dλnj
(x) (D)


s.t. Ljvj(t, x, u) ≤ 0 ∀(t, x, j, u) ∈ [0, T ]×D × U
wj(x) ≥ vj(0, x) + p+ 1 ∀(x, j) ∈ D,
wj(x) ≥ 0 ∀(x, j) ∈ D
vj(T, x) ≥ −p ∀(x, j) ∈ XT


vj(t, x) ≥ vj′(t, R(j′,j)(x)) ∀(t, (x, (j′, j)))∈[0, T ]× S


where the given data are H and XT and the infimum is taken over the tuple (v, w, p) ∈(
C1([0, T ] × D) × C(D) × R


)
. As before, for notational convenience, we denote the j ∈ J


slice of v using the subscript j (i.e. for every (t, x) ∈ [0, T ] × Xj set vj(t, x) = v(t, x, j))
and apply a similar convention to w. The next result verifies that there is no duality gap
between the two programs:


Theorem 5: There is no duality gap between P and D.


Intuition: This theorem proves that the solution for problems P and D are equivalent. Often,
solving one is easier than the other and this gives us options to choose which to solve.
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Proof. To prove this theorem, P and D are converted to standard LP form, from which the
theorem follows from [103, Theorem 3.10]. Let


C :=
(
C([0, T ]×D)× C({0} × D)× C({0} × D)× C({T} ×XT )× C([0, T ]× S)


)
M :=


(
M([0, T ]×D)×M({0} × D)×M({0} × D)×M({T} ×XT )×M([0, T ]× S)


)
(3.21)


and let K denote the positive cone of nonnegative continuous functions in C and K ′ denote
the positive cone of nonnegative measures of M , which is the topological dual of K. The
cone K ′ is equipped with the weak? topology (see...). P can be rewritten as:


p? = sup 〈γ, c〉
s.t. A′γ = β


γ ∈ K ′
(3.22)


where the supremum is over the vector γ := (µ, µ0, µ̂0, µT , µS), the linear operator A′ : K ′ →(
C1([0, T ]×D)′ ×M({0} × D)×M({0} × D)×M({T} ×XT )×M([0, T ]× S)


)
where


A′γ :=


L′jµj − µjT −
∑


(j′,j)∈Γ µ
S(j′,j) + µj0 +


∑
(j,j′)∈ΓR


∗
(j,j′)µ


S(j,j′)


µj0 + µ̂j0∑
j∈J µ


j
T (XTj)−


∑
j∈J µ


j
0(Xj)


 (3.23)


, β = [0, λ, 0] ∈ M([0, T ] × D) ×M(0 × D) × R, and c = [0, 1, 0, 0, 0] ∈ C. The objective
function is 〈γ, c〉 =


∑
j


∫
Xj
dµj0 =


∑
j µ


j
0(Xj).


The dual problem to P can be interpreted as:


d? = inf 〈β, z〉
s.t. A(z)− c ∈ K (3.24)


where the infimum is over z := (v, w, p) ∈
(
C1([0, T ] × D) × C(D) × R


)
, and the linear


operator A : C1([0, T ] ∈ D)× C(D)× R→ C is defined by


A(z) :=



Ljvj(t, x, u)


wj(x)− vj(0, x)− p
wj(x)


vj(T, x) + p
vj(t, x)− vj′(t, R(j′,j)(x))


 (3.25)


. Notice that A and A′ satisfy the adjoint relation 〈A′γ, z〉 = 〈γ,Az〉 and P is the same as
the problem in 3.22. By [103, Theorem 3.10], the LP problems P and D have no duality
gap.


Theorem 5 shows that the solution to P and D are equivalent and allows us to utilize the
dual, which is simpler to compute numerically, to obtain outer approximations of the BRS:
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Theorem 6: For every j ∈ J , Xj ⊂ {x0 ∈ Xj|wj(x) ≥ 1} for any feasible wj of D.
Furthermore, there is a sequence of feasible solutions to D such that for each j ∈ J , the
wj-component converges from above to IXj


in the L1 norm and almost uniformly.


Intuition: This shows that the 1-levelset of wj denotes an outer-approximation of the BRS,
providing an analytical expression for the outer-approximation for the BRS.


Proof. To prove the first result, consider a feasible (v, w) in D. Given any (x0, j0) ∈ X ,
there exists a u such that u(t) ∈ U for all t ∈ [0, T ] and x(T ) ∈ XT where x : [0, T ]→ D is
generated via Algorithm 2. Let {τi}ni=0 ⊂ [0, T ] be the strictly monotonic and finite sequence
of transition times of the trajectory (which exists by Assumption 1) with τ0 = 0 and τn = T
and {ji}ni=0 ⊂ J be the sequence of visited modes. Due to D’s constraints:


−p ≤ vjn(T, x(T )) = vjn−1(τn−1, R(jn,jn−1)(x(τn−1)))+


+


∫ τn


τn−1


Ljnvjn(t, x(t), u(t))dt


≤ vjn−1(τ
−
n−1, x(τ−n−1))


= vjn−2(τn−2, R(jn−1,jn−2)(x(τn−2)))+


+


∫ τn−1


τn−2


Ljn−1vjn−1(t, x(t), u(t))dt


...


≤ vj0(0, x0) ≤ wj0(x0)− p− 1,


which proves the first statement since (x0, j0) was arbitrary. Next we prove the second result.
By Theorem 4, the optimal solution to P is IX where for general sets, IA(x) is the indicator
function such that


IA(x) =


{
1 x ∈ A
0 x 6∈ A (3.26)


. Therefore, p? =
∑


j


∫
Xj
IXj


(x)dλ(x) which also equates to the volume of X . By Theorem


5, there is no duality gap and p? = d? and there exists a sequence (vk, wk, pk) ∈ C1([0, T ] ∈
D)× C(D)× R feasible such that:


p? = d? = lim
k→∞


∑
j


∫
Xj


wjk(x)dλ(x) (3.27)


where wjk is the component of wk in mode j. Since wk ≥ 1 on X and wk ≥ 0 on D, wk ≥ IX
on D for all k. Therefore, we have:


p? =
∑
j


∫
Xj


IXj
(x)dλ(x) = lim


k→∞


∑
j


∫
Xj


wjk(x)dλ(x) (3.28)


lim
k→∞


∑
j


∫
Xj


(
wjk(x)− IXj


(x)
)
dλ(x) = 0 (3.29)
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Since the integrand is non-negative, wk converges to IX in L1 norm. From X, there exist a
subsequence converging almost uniformly.


Theorem 6 proves that the set {x0 ∈ Xj|wj(x) ≥ 1} is an outer-approximation of the
BRS and that there is a sequence of solutions to D which converge almost uniformly to the
optimal w.


3.4 Numerical Implementation


The infinite–dimensional problems P and D are not directly amenable to computation.
However, a sequence of finite–dimensional approximations in terms of SDPs can be obtained
by characterizing measures in P by their moments, and restricting the space of functions
in D to polynomials. The solutions to each of the SDPs in this sequence can be used to
construct outer approximations that converge to the solution of the infinite–dimensional LP.
A comprehensive introduction to such moment relaxations can be found in [104].


For each j ∈ J , measures on the set [0, T ] × Xj are completely determined by their
action (via integration) on a dense subset of the space C1([0, T ]×Xj) [70]. Since [0, T ]×Xj


is compact by assumption, the Stone–Weierstrass Theorem [70, Theorem 4.45] allows us to
choose the set of polynomials as this dense subset. Every polynomial on Rn, say p ∈ R[x],
can be expanded in the monomial basis via:


p(x) =
∑
α∈Nn


pαx
α, (3.30)


where α ∈ Nn ranges over vectors of non-negative integers, xα =
∏n


i=1[x]
[α]i
i , and vec(p) =


(pα)α∈Nn is the vector of coefficients of p. By definition, the pα are real and only finitely
many are non-zero. We define Rk[x] to be those polynomials such that pα is non-zero only
for α ∈ Nn


k . The degree of a polynomial, deg(p), is the smallest k such that p ∈ Rk[x].
The moments of a measure µ ∈M(K) for K ⊂ Rn are:


yαµ =


∫
xαdµ(x). (3.31)


Integration of a polynomial with respect to a measure µ can be expressed as a linear func-
tional of its coefficients:


〈µ, p〉 =


∫
p(x)dµ(x) =


∑
α∈Nn


pαy
α
µ = vec(p)Tyµ. (3.32)


Integrating the square of a polynomial p ∈ Rk[x], we obtain:∫
p(x)2dµ(x) = vec(p)TMk(yµ)vec(p), (3.33)
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where Mk(yµ) is the truncated moment matrix defined by


[Mk(yµ)](α,β) = yα+β
µ (3.34)


for α, β ∈ Nn
k . Note that for any positive measure µ, the matrix Mk(yµ) must be positive


semidefinite. Similarly, given h ∈ R[x] one has:∫
p(x)2h(x)dµ(x) = vec(p)TMk(h, yµ)vec(p), (3.35)


where Mk(h, y) is a localizing matrix defined by


[Mk(h, yµ)](α,β) =
∑
γ∈Nn


hγy
α+β
µ (3.36)


for all α, β ∈ Nn
k . Note that the positive semidefiniteness of a localizing matrix for a moment


sequence allows us to guarantee the existence of a Borel measure on the semialgebraic set
defined by h whose moments coincide with the given moment sequence [104, Theorem 3.8].
The localizing and moment matrices are symmetric and linear in the moments.


Approximating Problems


Finite dimensional SDPs approximating P can be obtained by replacing constraints on mea-
sures with constraints on moments. All of the equality constraints of P can be expressed
as an infinite–dimensional linear system of equations which the moments of the measures
appearing in P must satisfy. This linear system is obtained by restricting to polynomial test
functions: v(t, x) = tαxβ and w(x) = xβ, ∀α ∈ N and ∀β ∈ Nn. For example, Liouville’s
equation in P is obtained via:∫


[0,T ]×Xj×U
Ljvj(t, x, u)dµj(t, x, u) =


∫
XTj


vj(T, x)dµT (x)+


+
∑


(j′,j)∈Γ


∫
[0,T ]×S(j′,j)


vj(t, x)dµS(j′,j)(t, x)−
∫
Xj


vj(0, x)dµ0(x)−


+
∑


(j,j′)∈Γ


∫
[0,T ]×S(j,j′)


v(t, R(j,j′)(x))| det(DR(j,j′)(x))|dµS(j,j′)(t, x)


Notice in particular that | det(DR(j,j′)(x))| is a polynomial function by Definition 1.
A finite–dimensional linear system is obtained by truncating the degree of the polynomial


test functions to 2k. Let ΞJ =
∐


j∈J µ
j, Ξ0 =


∐
j∈J {µj0, µ̂j0}, ΞΓ =


∐
e∈Γ µ


Se , and ΞT =∐
j∈J µ


j
T . Let yηk = (yk,ξ) ⊂ R be a vector of sequences of moments truncated to degree 2k


for each (ξ, j) ∈ Ξη and for each η ∈ {J , 0,Γ, T}. The finite–dimensional linear system is
then represented by the linear system:


Ak(y
J
k ,y


0
k,y


Γ
k ,y


T
k ) = bk. (3.37)
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Constraints on the support of the measures also need to be imposed (see [104] for details).
Let the k-th relaxed SDP representation of P , denoted Pk, be defined as:


sup
∑
j∈J


y0
k,µj0


(Pk)


s.t. Ak(y
J
k ,y


0
k,y


Γ
k ,y


T
k ) = bk,


Mk(yk,ξ) � 0 ∀(ξ, j) ∈ {ΞJ ,Ξ0,ΞΓ,ΞT},
MkXji


(hXji
, yk,ξ) � 0 ∀(i, ξ, j) ∈ {1, . . . , nXj


} × ΞJ ,


MkXji
(hXji


, yk,ξ) � 0 ∀(i, ξ, j) ∈ {1, . . . , nXj
} × Ξ0,


MkSei
(hei , yk,ξ) � 0 ∀(i, ξ, e) ∈ {1, . . . , ne} × ΞΓ,


MkTji
(hTji , yk,ξ) � 0 ∀(i, ξ, j) ∈ {1, . . . , nTj} × ΞT ,


Mk−1(hτ , yk,ξ) � 0 ∀(ξ, j) ∈ {ΞJ ,ΞΓ},


where the given data areH and XT and the supremum is taken over the sequence of moments,
yJk ,y


0
k,y


Γ
k ,y


T
k , hτ = t(T − t), kXji


= k − ddeg(hXji
)/2e, kSei


= k − ddeg(hei)/2e, kTji =
k−ddeg(hTji )/2e, and � 0 denotes positive semi-definiteness. For each k ∈ N, p∗k denote the
supremum of Pk.


The dual of Pk can be constructed as a sums-of-squares (SOS) program denoted Dk for
each k ∈ N. It is obtained by restricting the optimization space in the D to the polynomial
functions with degree truncated to 2k and replacing the non-negativity constraint D with an
SOS constraint [36]. To make this explicit, for each j ∈ J , let Qk(hXj1


, . . . , hXjnXj


) ⊂ R2k[x]


be the set of polynomials q ∈ R2k[x] (i.e. of total degree less than 2k) expressible as:


q = s0 +


nXj∑
i=1


sihXji
, (3.38)


for some polynomials {si}
nXj


i=0 ⊂ R2k[x] that are the sums of squares of other polynomials
where x ∈ Xj. Every such polynomial is clearly non-negative on Xj. Similarly, for each
j ∈ J and e ∈ Γ, define Q2k(hτ , hXj1


, . . . , hXjnXj


) ⊂ R2k[t, x], Q2k(hTj1 , . . . , hTjnTj


) ⊂ R2k[x],


and Q2k(hτ , hTe1 , . . . , hTene
) ⊂ R2k[t, x]. Employing this notation, the k-th relaxed SDP
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representation of D, denoted Dk, is defined as:


inf
∑
j∈J


lTvec(wj) (Dk)


s.t. − Ljvj ∈ Q2k(hτ , hXj1
, . . . , hXjnXj


) ∀j ∈ J ,


wj − vj(0, ·)− p− 1 ∈ Q2k(hXj1
, . . . , hXjnXj


) ∀j ∈ J ,


wj ∈ Q2k(hXj1
, . . . , hXjnXj


) ∀j ∈ J ,


vj(T, ·) + p ∈ Q2k(hTj1 , . . . , hTjnTj


) ∀j ∈ J ,


vj−vj′◦(1, Re)∈Q2k(hτ , hTe1 , . . . , hTene
) ∀e := (j′, j) ∈ Γ,


where the given data are H and XT , the infimum is taken over the vector of polynomials
(v, w, p) ∈∐j∈J R2k[t, x]×∐j∈J R2k[x]×R, and l is a vector of moments associated with the


Lebesgue measure (i.e.
∫
X
wj dλ = lTvec(wj) for all wj ∈ R2k[x] and j ∈ J ). For notational


convenience in the description of Dk we denote the j ∈ J slice of v using the subscript j
(i.e. for every (t, x) ∈ [0, T ]×Xj we let vj(t, x) = v(t, x, j)) and apply a similar convention
to w. For each k ∈ N, let d∗k denote the infimum of Dk. In fact, the following result holds:


Theorem 7: For each k ∈ N, there is no duality gap between Pk and Dk.


Proof. By establishing that Pk is bounded due to the constraint µ0+µ̂0 = λ and then arguing
that the feasible set of the SDP, Dk, has an interior point which is sufficient to establish zero
duality gap [105, Theorem 5]. A complete proof can be found in [34, Appendix D].


Convergence of Approximating Problems


Next, we prove the convergence properties of Pk and Dk. We begin by proving that the poly-
nomial wj approximates the indicator function on Xj. As we increase k, this approximation
gets tighter.


Theorem 8: For each k ∈ N and j ∈ J , let wjk ∈ R2k[x] denote the j-slice of the w-
component of the solution to Dk, and let w̄jk(x) = mini≤kwji(x). Then, wjk converges from
above to IXj


in the L1 norm, and w̄jk(x) converges from above to IXj
in the L1 norm and


almost uniformly.


Intuition: This proof shows that the 1-super-levelset of the polynomial wj converges to the
BRS in L1 and almost uniformly.


Proof. As each wjk is independent of the w polynomial in other modes, convergence needs
only to be proven for a single mode. This proof is a straightforward extension of Theorem
5 in [34] we which reiterate here for completeness. From Theorem 5 and 6, for any j, k and
ε > 0 there exists a (vjk , wjk , pjk) ∈


(
C1([0, T ]×D)×C(D)×R


)
feasible such that wjk ≥ IXj
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and
∫
Xj


(wjk − IXj
)dλ ≤ ε. Let:


∼
vjk(t, x) = vjk(t, x)− εt+ (T + 1)ε
∼
wjk(x) = wjk(x) + (T + 3)ε


(3.39)


Following from these equations, Lj
∼
vjk = Ljvjk − ε < 0,


∼
vjk(T, x) = vjk(T, x) + ε > 0, and


∼
wjk(x)−∼vjk(0, x) ≥ 1+2ε > 1. Since vjk is a solution to P , the solution (


∼
vjk ,


∼
wjk(x), pk) also


satisfies the constraints in D and furthermore, the solution is strictly feasible with a margin
of at least ε. Since [0, T ] × Xj is compact, the Stone–Weierstrass Theorem [70, Theorem
4.45] allows us to choose polynomials v̂jk(t, x) and ŵjk of sufficiently high degree such that


sup
[0,T ]×Xj


|∼vjk − v̂jk | < ε (3.40)


sup
[0,T ]×Xj


|
∼
Ljvjk − Lj v̂jk | < ε (3.41)


sup
[0,T ]×Xj


|∼wjk − ŵjk | < ε (3.42)


Since the solution (
∼
vjk ,


∼
wjk) has a margin of at least ε, the solution (v̂jk , ŵjk) is also strictly


feasible in P . Integrating Equation 3.42 over Xj via the Lebesgue measure, we have∫
Xj


|∼wjk − ŵjk |dλ ≤ ελ(Xj) (3.43)


Consequently, we have:∫
Xj


|ŵjk − wjk |dλ ≤
∫
Xj


|ŵjk −
∼
wjk |+


∫
Xj


|∼wjk − wjk |dλ (3.44)


≤ ελ(Xj) + (T + 3)ελ(Xj) (3.45)


≤ ελ(Xj)(T + 4) (3.46)


Therefore, we have ∫
Xj


(ŵ − IXj
)dλ < ε(1 + λ(Xj)(T + 4)), ŵ ≥ IXj


(3.47)


Since Xj is compact, ε(1 + λ(Xj)(T + 4)) < ∞. Since j, k, ε were arbitrary, the first state-
ment is proved. The second statement follows since wk → IXj


in L1 norm, there exist a
subsequence wjkm that converges almost uniformly to IXj


by X. By definition of w̄jk(x),
w̄jk(x) ≤ min{wjkm (x) : km ≤ k} and w̄jk converges in L1 norm and almost uniformly.


As a result of Theorems 1 and 8 we have:
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Corollary 1: {d∗k}∞k=1 and {p∗k}∞k=1 converge monotonically from above to the optimal value
of D and P .


Proof. Monotonic convergence of d?k follows from Theorem 8 and from the fact that a higher
order relaxation allows for a looser constraint set. From weak duality, we have d?k ≥ p?k and
from Theorem 5 and 7, we have p? = d?. Therefore, we have p?k ≥ p? and p?k+1 ≤ p?k since a
higher order relaxation k results in a tighter constraint set of the maximization problem as
more moments are enforced. Therefore, p?k → p? monotonically.


Next, we prove that for each j ∈ J the 1-superlevel set of wj converges in Lebesgue
measure to Xj.
Theorem 9: For each k ∈ N and j ∈ J , let wjk ∈ R2k[x] denote the j-slice of the w-
component of the solution to Dk, and let Xjk := {x ∈ Rn|wjk(x) ≥ 1}. Then, limk→∞ λnj


(Xjk\Xj) =
0.


Intuition: This shows that the outer-approximation of the computed BRS converges to the
true BRS in the limit.


Proof. Via Theorem 6 we see wjk ≥ IXjk
≥ IXj


. From Theorem 8, wjk → IXj
in the L1 norm


on Xj. Hence:


λnj
(Xj)= lim


k→∞


∫
Xj


wjkdλnj
≥ lim
k→∞


∫
Xj


IXjk
dλnj


=lim
k→∞


λnj
(Xjk).


Since Xj ⊂ Xjk for all k, limk→∞ λnj
(Xjk) = λnj


(Xj).
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3.5 Implementation and Examples


In this section, we describe the performance of our approach on three examples. The relaxed
problems were prepared using SPOTLESS [106] and solved using MOSEK [107] on a machine
with an Intel i7-4820k 3.70GHz processor with 32GB RAM. We briefly describe an extension
of our algorithm to the case when our goal is to determine whether an initial condition is
able to reach a target set within a pre-specified time T rather than exactly at T , which
we refer to as the time-free backwards reachable set problem. This is done by allowing
the support of µT ∈ M([0, T ] × D) in P . Consequently, the only modification on the dual
program D is that the non-negativity constraint on v is imposed for all t ∈ [0, T ]. Each
of the aforementioned corollaries, lemmas, and theorems extend with nearly identical proof
and the numerical implementation extends in a straightforward manner. The measures are
supported on variables corresponding to time, states and control inputs, totaling (1+n+m)
variables where n is the number of states and m is the number of control inputs. The total
number of moments in the primal problem scales as O((1 + n + m)k) for a fixed relaxation
k and O(k1+n+m) for a fixed n,m. Assuming a linear reset map, the number of variables in
the dual problem scale as O(max(nvnfj , nvngjnu)) where nv, nfj , ngj , nu are the degrees of v,
fj, gj, and u, respectively.


Rimless Wheel


Figure 3.4: Rimless wheel system


The rimless wheel is a simple planar walking model illustrated in Figure 3.4. It consists
of a single point mass with spokes radiating outward with dynamics given by an inverted
pendulum f(θ, θ̇) = [θ̇; sin(θ)], where θ is the angle between the vertical and pinned spoke.
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The front spoke hits the ground when θ = α + γ, upon which the system undergoes a reset
where [θ+, θ̇+] := [2γ − θ−, cos(2α)θ̇−].


The limit cycle and basin of attraction of this system have been studied analytically[108].
By choosing α = 0.4, γ = 0.2, the rimless wheel has a stable limit cycle where the energy
lost during ground impact is equal to the change in potential energy through the cycle.
Figure 3.5 illustrates this limit cycle along with the phase portrait, with the guard shown
in dotted red and the image of the reset map shown in solid red. We considered the task of
determining the BRS of the limit cycle with T = 10 and for implementation we considered a
third-order Taylor expansion of the dynamics and reset map. The result of our computation
is illustrated in Figure 3.5. The time to compute the BRS for 6, 8, and 10 degrees took:
1.5s, 4.8s, 18s.


Of interest is the blue curve near the top of Figure 3.5. While the true BRS contains
the initial conditions in red (look at Figure 8 in [62]), as the trajectories resulting from the
initial conditions evolve outside the compact domain and thus not included in the computed
BRS.


−0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5 0.6
−0.5


0


0.5


1


θ


θ̇


Figure 3.5: BRS of the Rimless Wheel. The limit cycle of the system is drawn in as a dotted
black line. The magenta, green, and blue lines denote outer-approximations of the BRS degree 6,
8, and 10, respectively. 50 points were sampled drawn in blue circles within the degree 10 BRS,
used as initial conditions, and evolved using the dynamics of the Rimless Wheel (not the Taylor
approximation). Their final time state is plotted with the blue X. 20 points were sampled outside
the BRS starting at the red circles and their evolutions are plotted.
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Vehicle Dynamics


Next, we compute the forward reachable set of the vehicle illustrated in Figure 3.6. Motivated
by [109] we model its dynamics as follows:


mẍ1 = mẋ2ψ̇ + 2Fx1f + 2Fx1r


mẍ2 = −mẋ1ψ̇ + 2Fx2f + 2Fx2r


Izψ̈ = 2aFx2f − 2bFx2r


(3.48)


where m = 2050 and Iz = 3344 denote the vehicle mass and inertia, respectively, a = 1.43
and b = 1.47 denote the distances from the vehicle’s center of gravity to the front and
rear axles, respectively. The states ẋ1 and ẋ2 denote the vehicle’s longitudinal and lateral
velocities, respectively, and ψ̇ denotes the vehicle’s yaw rate about the center of gravity. Fx1f
and Fx2f are the forces of the front tire in the longitudinal and lateral axis, respectively, and
Fx1r and Fx2r are the forces of the rear tire in the longitudinal and lateral axis, respectively.


Figure 3.6: An illustration depicting the forces modeled in the vehicle body-fixed frame (Fx1? and
Fx2?), the forces in the tire-fixed frame (Fl? and Fc?), and the rotational and translational velocities
used in the vehicle model described in Equation (3.48).


The longitudinal and lateral tire force components in the vehicle body frame are modeled
as:


Fx1? = Fl? cos(u?)− Fc? sin(u?),


Fx2? = Fl? sin(u?) + Fc? cos(u?),
(3.49)


where ? denotes f or r for the front and rear tire and u? denotes the steering angle at the
wheel. For this example, we assume only the front tire can be controlled, thus uf = u and
ur = 0. The longitudinal force in the tire frame is Fl? = 4269.125. As described in [110], we
model the dynamics as a hybrid system by splitting Fc?,the force due to tire friction, into
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Figure 3.7: An illustration of four trajectories of the vehicle beginning at x0 with constant input
−0.3,−0.2,−0.1 and 0. The green dots on the trajectory denote states that when evaluated with
respect to the computed w belonged to the 1-superlevel set. The red dots along the trajectory denote
corresponding states that did not belong to the 1-superlevel set of w. Note that the trajectory with
constant input 0.2 and 0.3, in contrast with the other two trajectories, has portions of its trajectory
that are red. Portions of the trajectory drawn in black, magenta, and blue illustrate when the system
was in mode 1, 2, and 3, respectively.


different zones depending upon the longitudinal velocity:


Fc? =



− ẋ2+aψ̇


18
, if ẋ1 ∈ [15, 21) - Mode 1


− ẋ2+aψ̇
24


, if ẋ1 ∈ [21, 27) - Mode 2


− ẋ2+aψ̇
30


, if ẋ1 ∈ [27, 33) - Mode 3


For this example, we look at the forward reachable set of a vehicle beginning at x0 which
is equal to x1 = −32, x2 = 0, ψ = 0, ẋ1 = 15, ẋ2 = 0, and ψ̇ = 0 with the steering input u
constrained to [−0.1, 0.1]. We use small angle approximations for the trigonometric terms
in Equation (3.49). We compute the full forward reachable set, as illustrated in Figures 3.7
and 3.8, by running our degree 6 relaxation of our algorithm on the time-reversed dynamics
and by solving the time-free backwards reachable set problem. Time to compute the BRS
took 40min.
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Figure 3.8: An illustration of the value of the computed w for different trajectories starting at x0


with 200 distinct inputs all constrained to [−0.1, 0.1]. Notice that for all time, the value of w is
greater than 1 indicating the trajectories lie in the forward reachable set.
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Compass Gait


The compass gait (CG) walker is a simple model of legged locomotion consisting of two legs:
one leg fixed to the ground called the stance leg, and one leg that swings called the swing leg
and shown in Fig. 3.9. The CG is a one mode hybrid system in which the guard is reached


Figure 3.9: Schematic of the compass gait walker.


when the swing leg makes contact with the inclined plane, upon which the swing and stance
leg switch. With different slopes and parameters, the CG has been found to reach a limit
cycle consisting of 1, 2+ steps [111]. In this example, we consider a passive CG walker with
no actuation. Let θ = [θsw, θst] and l = a+ b, the dynamics of the passive CG are given by:


M(θ, θ̇)θ̈ + C(θ, θ̇)θ̇ +N(θ) = 0 (3.50)


where


M(θ, θ̇) =


[
mb2 −mlb cos(θst − θsw)


−mlb cos(θst − θsw) (mh +m)l2 +ma2


]
(3.51)


C(θ, θ̇) =


[
0 mlb sin(θst − θsw)θ̇st


mlb sin(θst − θsw)θ̇sw 0


]
(3.52)


N(θ) =


[
mbg sin(θsw)


−(mhl +ma+ml)g sin(θst)


]
(3.53)


The guard is defined as when the swing leg hits the inclined slope and mathematically
defined as:


G(1,1) = {(θ, θ̇) | θsw + θst + 2γ = 0}. (3.54)


The reset map is given by:


R(1,1)(θ
−, θ̇−) =


[
θst θsw (Q+


α )
−1
Q−α θ̇


−
]′


(3.55)
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where


Q−α =


[
−mab −mab+ (mhl


2 + 2mal) cos(2α)
0 −mab


]
(3.56)


Q+
α =


[
mb(b− l cos(2α)) ml(l − b cos(2α)) +ma2 +mhl


2


mb2 −mbl cos(2α)


]
(3.57)


and α = θsw−θst
2


. The reset dynamics are derived using conservation of momentum result-
ing in a loss of kinetic energy. The loss of kinetic energy is recovered via change in potential
energy as the CG walks down the slope.


Prior to [62] which presents an inner-approximation to the BRS, the BRS was limited
to exhaustive simulation. However, [62] is limited to a small region and misses much of the
BRS. For computation, we consider the 5th order Taylor approximation of the dynamics
about the origin and a linearized reset map about the point where the limit cycle encounters
the guard.


Figure 3.11 presents the polynomial degree 10 approximation to the backwards reachable
set for the compass gait (with γ = 0.05) which is tasked with reaching within 0.001 of the
limit cycle (in black) in T = 1.5 seconds with mh = 10kg, m = 5kg, a = b = 1. Through
simulation of 1.2 million randomly sampled points in the BRS, we find that 70% of the BRS
reaches within 0.1 of the limit cycle.
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Figure 3.10: The finite time region of attraction for the compass gait’s limit cycle shown in black
(swing leg is the upper black cycle, stance leg is the lower black cycle). The blue region denotes the
finite time region of attraction for the swing leg projected down to the (θsw, θ̇sw) domain. The red
region denotes the finite time region of attraction for the stance leg projected down to the (θst, θ̇st)
domain. The time horizon is 1.5s which allows trajectories to undergo two resets.
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Figure 3.11: The finite time region of attraction for the compass gait with blue and red dots
indicating sampled points which reach within 0.1 of the limit cycle after 1.5s. The blue region
denotes the finite time region of attraction for the swing leg projected down to the (θsw, θ̇sw)
domain. The red region denotes the finite time region of attraction for the stance leg projected
down to the (θst, θ̇st) domain.
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3.6 Conclusion


This chapter presents an approach for computing the BRS of a hybrid system using an infinite
dimensional LP over the space of non-negative measures. Finite dimensional approximations
to this LP in terms of SDPs were then constructed to obtain outer approximations of the
BRS. In contrast to previous approaches relying on Lyapunov’s stability criteria, our method
is convex and does not require feasible initialization. The work in this chapter can be found
in [63, 35]. Slight modifications to problem (D and Dk) were used to calculate the BRS for
STS.
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Chapter 4


Experiment
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In this chapter, we describe the experimental protocol, data, and conduct a comparison
to the existing biomechanical STS metric. All analysis was performed a system with an
Intel Xeon E5-2680 2.70 GHz processor with 32 cores and 128GB RAM. The optimal control
problem was solved using MATLAB’s nonlinear solver fmincon [112]. The optimization
problem (D) is solved using SPOTLESS [106] and MOSEK [107].


4.1 Experiments


From Chapter 3, we have an algorithm to determine the BRS or BOS for a dynamical system.
In this section, we show how this algorithm is used to obtain the BOS for an individual’s
STS motion with the constructed controller. In order to test the utility of the BOS, there
are certain properties the set must satisfy.


Property 1: Slower motions are more stable than faster motions.


Due to the time delay of the nervous system, many motor control researchers have hy-
pothesized that the response of perturbations to fast motions is largely governed by reflex
responses [113, 114]. Slower motions, in comparison, are long enough to allow a correcting
response to perturbations. This hypothesis has been validated experimentally [115, 116,
117]. To validate Algorithm 1 experimentally, participating subjects were asked to perform
STS in their natural manner, but at a fast and slow speed.


Property 2: Quasi-static motions are more stable than momentum transfer motions.


Property 2 is that the stability of the STS motion is governed by the strategy in which
the subject stands. Two distinct methods of STS from a chair have been observed in the
literature: momentum-transfer and quasi-static [118, 119, 120], shown in Figure 4.1. The
momentum-transfer strategy consists of swinging one’s trunk forward rapidly and undergoing
a dynamically unstable transition phase to transfer the upper body forward momentum to
stand up. The quasi-static strategy, in comparison, consists of moving one’s center of mass
(COM) over one’s foot while sitting and using as little momentum as possible, then standing
up. The motion is performed slowly and at any given point in time, the subject is statically
stable. The momentum transfer strategy, in comparison, tends to be faster, requires more
postural control [118], and uses less energy [121]. Therefore, we will evaluate the computed
results from each stability metric as ‘accurate’ if the quasi-static strategy has a larger BOS
than the dynamic strategy for the same individual. To validate Algorithm 1 experimentally,
participating subjects were asked to perform STS quasi-statically and dynamically.


The trade-offs between each strategy are described below and summarized in Table 4.1.
The momentum transfer strategy tends to be faster and more energy efficient, but is less
stable. As a result, younger and healthier subjects typically stand up this way as they
are able to easily adjust to perturbations. Due to the dynamic nature of the motion, the
momentum transfer strategy requires fine postural and momentum control to ensure that the
subject does not overshoot the standing position. On the other hand, by nature of moving
one’s COM over the BOS, the quasi-static strategy must be slower and is statically stable at
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(a) Momentum Transfer STS Pictorially (orange) and velocity profile (bottom).
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(b) Quasi-static STS Pictorially (green) and velocity profile (bottom).


Figure 4.1: Momentum-Transfer vs Quasi-Static STS Motions. Angular velocity of the ankle joint
is negligible between the two motions and not shown.


all points in time. Among STS trials of an individual’s motion, we expect the quasi-static
strategy to have a larger BOS than the momentum transfer strategy.


Data Collection


Next we describe the data collection and experimental setup to verify both properties of
our BOS. The experimental setup, shown in Figure 4.2, consists of an AMTI OPT464508
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Momentum Transfer Strategy Stabilization Strategy


Prioritizes energy efficiency Prioritizes stability
Faster Slower


Fast speed of trunk Slow speed of trunk
Dynamically stable Statically stable


Table 4.1: Comparison between STS strategies


force plate, 2 Microsoft HD webcams, and PhaseSpace Impulse X2 motion capture with 8
infrared cameras. Motion capture data was collected at 480Hz and the subject’s skeleton was
extracted using PhaseSpace’s Recap2 software. All systems were time-synchronized using a
Networked Time Protocol server running on the motion capture system. Ground reaction
forces were collected at 2400Hz with the force place placed under the subject’s foot1. Both
the motion capture and force plate data were smoothed using a 4th-order Butterworth filter
with a cut-off frequency of 2Hz. The chair height was adjusted such that the subject’s thighs
were parallel to the ground. Surrounding the chair were 6 inch memory foam mattresses as
a safety precaution to cushion any falls.


Subjects wore a customized motion capture suit with 43 PhaseSpace markers placed on
the suit according to the Recap2 software shown in Figure 4.3a. Subjects were asked to
sit in a standardized posture with their trunk starting off vertical, thighs horizontal to the
ground, arms crossed in front (constraining variability of the arms), and shank vertical to
the ground.


We collected data from 2 cohorts2. The first cohort consisted of 10 young and healthy
subjects with an average age of 26 and weight of 66kg. The second cohort consisted of 5 older
and healthy subjects with an average age of 76 and weight of 71kg. Data for each subject
is provided in Table 4.2. Subjects were asked to rise from the seat upon the researcher’s
command and asked to rise at a specific speed for the following STS strategies. Each STS
strategy was performed 5 times consecutively.


1. Natural motion (untrained dataset)


2. Momentum transfer strategy (trained dataset)


3. Quasi-static strategy (trained dataset)


4. Starting off Bending (trained dataset)


5. Bordering Instability (called “unstable” for brevity)


1Force measurements were used to determine the start and end time of the STS motion
2This study was approved by the UC Berkeley Center for Protection of Human Subjects, Protocol #2015-
07-7767
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Figure 4.2: Experimental Setup


To avoid biasing the subjects, we first asked the subjects to perform the STS motion
naturally at a normal, fast, and slow speed. After, the subjects were asked to perform
the momentum transfer and quasi-static in a random order. For consistency and to avoid
individual interpretation of the motion, the subjects were shown videos demonstrating how
to perform the momentum transfer and quasi-static strategy3. At the start and end of the
experiment, the subjects were asked to perform a calibration phase which required them
to rotate each joint, allowing the Recap software to fit an individualized skeleton to each
subject.


3Videos can be found at: www.w3id.org/people/vshia/jrsi/



www.w3id.org/people/vshia/jrsi/
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(a) Front View (b) Back View


Figure 4.3: Motion Capture Marker Placement
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Group ID Gender Age Height (cm) Weight (kg)


Young


1 F 23 153.7 70.3
2 F 25 165.1 68.6
4 M 37 184.2 74.0
5 M 26 180.3 66.2
6 F 22 165.1 58.7
7 M 28 175.3 55.1
8 M 29 175.3 79.8
9 M 21 167.6 64.9
14 F 25 160.0 54.2
16 M 25 172.7 69.1


Older


3 F 84 162.6 65.3
11 M 69 185.4 92.5
12 M 77 170.2 66.2
13 F 76 164.7 64.6
15 M 74 175.3 69.1


Table 4.2: Data for each individual


Natural (Untrained) Momentum Transfer Quasi-static Bending Unstable
Slow x x x


Normal x x x x x
Fast x x x


Table 4.3: All STS motions and speeds collected
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Type Data type Filename


Raw


Force plate ForcePlate XXX.mat
Motion Capture Mocap XXX


Kinect 2.0 kinect XXX.txt
Accelerometer datalogXXX.csv


Video vid XXX *.mp4


Processed
C3D Motion Capture file Mocap XXX.c3d


BVH Recap2 Skeleton Mocap XXX.bvh
Kinect 2 Skeleton kinect XXX.mat


Table 4.4: Filenames for STS data where XXX denotes the STS motion.


1 2 3 4 5 6 7 8
Voltage high Acc X Acc Y Acc Z Moment X Moment Y Moment Z Voltage low


Table 4.5: Force Plate Data Structure


4.2 STS Data


Here, we explain the raw and processed data which is generic and can be used by anyone
interested in the data. Next, we explain how the data is processed for use in the framework.


The raw data is split up into 4 files and processed motion capture data into 2 files
described in Table 4.4.


Generic Data


In this section, we describe the experimental data4.
The force plate data is a MATLAB file consisting of the timestamps and data. The


timestamps are in the MATLAB datenum time format5. Data is a N × 8 array with the
column descriptions listed in Table 4.5.


The motion capture data is saved in a text file delimited by spaces consisting of XYZ
positions of 43 LED markers with the last two columns representing the timestamps in epoch
time.


The kinect data consists of data to be processed by the MATLAB function: get skeleton kinect2.m
which outputs a structure with the kinect data and timestamps.


The IMU data is stored in a csv file consisting of 37 columns: 36 columns of data and 1
column with timestamps shown in Table 4.6. The data consists of the XYZ readings from
4 gyroscope, accelerometer, and compass sensors. The timestamp is also in the MATLAB
datenum time format.


The video data is saved as a standard mp4 video file.


4Data can be found on www.w3id.org/people/vshia/jrsi/
5http://www.mathworks.com/help/matlab/ref/datenum.html



www.w3id.org/people/vshia/jrsi/

http://www.mathworks.com/help/matlab/ref/datenum.html
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Sensor 1
. . . Sensor 4 TimestampGyro Acc Compass


X Y Z X Y Z X Y Z


Table 4.6: Inertial Measurement Unit Data Structure


The C3D file is a standard processed motion capture file used and used with PhaseSpace
Recap2 software. The BVH file is a standard skeleton filed outputted by the Recap2 software.
The Kinect Matlab file is the processed Kinect data consisting of a structure array with all
of the data.


Framework Data


First, we time synchronize the various forms of data based on the timestamps from all of
the data. Next, we separate each STS trial using the event segmentation proposed in [122]
and shown in Figure 4.4.


The STS motion in the sagittal plane is segmented into 6 events: Initiation, Counter,
Seat-off, Vertical Peak, Rebound, and Standing. The STS motion begins with the initiation
phase, which is defined at the point the subject begins to lean forward. The Initiation phase
is followed by the Counter, which is when the subject’s feet slightly lift off the ground. The
Counter is followed by Seat-off which is when the subject’s buttocks leaves the seat. The
Vertical Peak is when the subject exerts the maximum downward force, which is followed
by the Rebound, when the subject is fully extended with upward velocity, and ends with
Standing. Each STS trial is defined by the Initiation to Standing events and is saved in a
separate file containing all sensor data for the time duration of the STS trial.
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Figure 4.4: Force Plate Data with a single STS action.
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4.3 Results using an existing stability metric


In this section, we will show the utility of looking at the trajectory of the STS motion
by comparing the analysis to the metric proposed by Fujimoto et al [20]. Specifically, we
analyze the ability of the STS volumes to quantify the BOS of slow vs fast and quasi-static
vs momentum-transfer STS motions. Analysis was performed on a system with an Intel Core
i7 processor and 32 GB RAM.


The model-based stability method proposed by Fujimoto et al consists of of two types of
stability metrics [20]. These methods were chosen as they are the only-known model based
method for determining the BOS of STS. The first metric, shown in Figure 4.5 called Region
of Stability based on Velocity (ROSv), considers the normalized position and velocity of the
patient’s COM at the instance the patient lifts off the chair6. Points to the left (right) of
the solid (dotted) line indicate initial positions and velocities in which it is infeasible for the
subject to exert any type of torque to stand up. Specifically, points to the left of the solid line
indicate initial conditions where the subject should fall backwards and points to the right of
the dotted line, fall forwards. The second metric, shown in Figure 4.6 and called Region of
Stability based on Acceleration (ROSa), considers the normalized position of the patient’s
COM at the instance the patient lifts off the chair and maximum normalized acceleration
before the patient lifts off the chair7.


The region of stability is defined as the region between the solid and dotted black line in
Figures 4.5 and denotes all possible initial states where the patient theoretically can provide
enough torque to stand up. If the subject’s initial state lies left of the black line (right of
the dotted line), the subject is guaranteed to fall backward (forward) unless he takes a step.
The developers of the ROSv and ROSa metric correlate this distance with the likelihood of
falling. The smaller the distance, the more likely the subject is to fall forward.


Figure 4.5 shows the average ROSv for subjects 1 to 16 summarized in Table 4.7. Figure
4.6 shows the average ROSa for subjects 1 to 16 summarized in Table 4.8. Notice that there
are some initial conditions where the points lie to the left of the solid line yet all subjects
were able to stand up successfully.


However, there are a few issues with this method. First, while the authors relate distance
to the dotted line to the likelihood of falling forward, points closer to the solid line would be
considered more stable and points to the left of the solid line should be considered very stable.
However, this does not follow intuition as points left of the solid line should theoretically not
be able to stand up. Rather, points of “maximum” stability should be located between
the solid and dotted line. More importantly, summarizing the trajectory with a single
feature loses information about the stability of the motion. To illustrate this issue, we
look specifically at a subject in the young cohort (subject with ID 7) and in the older cohort
(subject with ID 11) Figures 4.7 and 4.8 shows this analysis the individual in the young and
elderly cohort8. Specifically, the younger subject slow natural STS has a smaller ROSv value


6Position normalized to the subject’s foot length and velocity normalized to pendulum length / second
7Position normalized to the subject’s foot length and acceleration normalized to pendulum length / second2


8Figures for all subjects can be found at www.w3id.org/people/vshia/jrsi



www.w3id.org/people/vshia/jrsi





CHAPTER 4. EXPERIMENT 68


(a) Slow STS


-0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8


Normalized COM Position


0


0.2


0.4


0.6


0.8


1


N
o


rm
a


liz
e


d
 C


O
M


 V
e


lo
c
it
y


Slow


1


2
3


4


5


6


7


8


9


11


12


13


14


15


16


(b) Fast STS
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(c) Quasi-static STS
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(d) Momentum Transfer STS
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Figure 4.5: Median ROSv (across 5 trials per STS action) per subject. The subject ID is found in
the circle. The BOS is the region between the solid and dotted black line.


than fast natural STS, indicating that slow natural STS is “less” stable than fast natural
STS. For the older subject, the quasi-static STS has a smaller ROSv and ROSa value than
momentum-transfer STS, indicating that quasi-static STS is “less” stable than momentum-
transfer STS. Intuitively, this doesn’t match what we expect to be true as slower motions
should be more stable and able to handle larger perturbations than faster motions.


According to Table 4.7, ROSv shows that in the young cohort, the quasi-static method
of standing is more stable than momentum transfer and that slow standing is more stable
than fast standing. For all other categories, ROSv and ROSa are not consistent with what
we expect to be true. These results, summarized in Table 4.17, highlight the deficiencies of
summarizing the motion to a single feature.
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(a) Slow STS
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(b) Fast STS
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(c) Quasi-static STS
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(d) Momentum Transfer STS
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Figure 4.6: Median ROSa (across 5 trials per STS action) per subject. The subject ID is found in
the circle. The BOS is the region between the solid and dotted black line.
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Group ID
Untrained Motion Trained STS Strategy
Slow Fast Quasi-static Momentum


Young


1 0.72 0.81 0.56 0.35
2 0.74 0.70 0.81 0.30
4 0.70 0.44 0.62 0.11
5 1.13 0.85 1.03 0.64
6 0.86 1.00 0.81 0.52
7 0.56 0.72 0.68 0.23
8 0.76 0.52 0.81 0.63
9 0.45 0.48 0.43 0.47
14 1.24 0.73 1.20 0.51
16 0.82 0.67 0.86 0.50


Older
3 0.89 0.94 1.03 0.97
11 0.73 0.73 0.12 0.20
12 1.02 0.93 0.92 0.78
13 0.75 0.71 0.62 0.32
15 0.78 0.74 0.66 0.51


Table 4.7: Median ROSv value for each type of STS action for each subject. The ROSv value is
the distance from the point in Figure 4.5 to the dotted line. The red cells highlight results contrary
intuition.
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Group ID
Untrained Motion Trained STS Strategy
Slow Fast Quasi-static Momentum


Young


1 0.94 0.96 0.73 0.87
2 0.72 0.75 0.61 0.72
4 0.90 0.82 0.36 0.64
5 0.86 0.95 1.07 1.01
6 0.95 0.92 0.71 0.59
7 0.64 0.90 0.43 0.70
8 0.87 0.85 0.80 0.85
9 0.73 0.71 0.43 0.57
14 1.16 0.78 1.04 0.57
16 0.99 0.78 0.90 0.74


Older
3 0.95 0.98 1.09 1.07
11 0.80 0.84 0.14 0.57
12 0.94 1.03 0.90 0.98
13 0.77 0.96 0.43 0.81
15 0.76 0.76 0.35 0.58


Table 4.8: Median ROSa value for each type of STS action for each subject. The ROSa value is the
distance from the point in Figure 4.6 to the dotted curve. The red cells highlight results contrary
to intuition.
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(a) ROSv - Young subject
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(b) ROSa - Young subject


Figure 4.7: ROSv and ROSa for different STS actions for a specific subject in the young cohort
(ID 7). The stars denote the individual trials for each motion.
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(a) ROSv - Older subject


-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1


Normalized COM Position


0


0.5


1


1.5


N
o


rm
a


li
z
e


d
 C


O
M


 A
c
c
e


le
ra


ti
o


n


Slow


Fast


Quasi-static


Momentum


(b) ROSa - Older subject


Figure 4.8: ROSv and ROSa for different STS actions for a specific subject in the older cohort (ID
11). The stars denote the individual trials for each motion.
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4.4 Reachability results for IPM


Using the proposed method in Chapter 2, the BOS for each individual’s motion is computed
for the IPM model. The purpose of this method is to quantify the amount of disturbance
that a subject can handle and still stand up. The more disturbances the subject can handle,
the more “stable” the subject is said to be. The model dynamics was approximated with a
5th order Taylor expansion centered about the origin. The open loop feedback identification
via optimal control was performed using 101 timesteps with a polynomial input of degree 6
and the optimization problem (D) was solved with a degree 14 polynomial. The computation
time for entire pipeline for a single action was on average 211 seconds. To compare volumes
of the computed BOS for trajectories of different time lengths, the computed volume is
normalized with the volume of the domain. For example, 100% indicates that the entire
domain (or all possible states and disturbances) is in the BOS and 0% indicates that the
BOS is empty.


The median and maximum volumes for the computed BOS for all subjects are shown in
Tables 4.9 and 4.10 and the proposed method correctly identifies stable and unstable motions
according to the intuition developed in Section 4.1. As expected, motions that are intuitively
more “stable” have a larger BOS volume demonstrating that these motions are more robust
to perturbations. More importantly, these regions quantify the amount of perturbation the
subject can reject to stand up.


Group ID
Untrained Motion Trained STS Strategy
Slow Fast Quasi-static Momentum


Young


1 35.5 22.8 36.2 20.8
2 43.1 17.1 46.7 16.7
4 38.6 17.0 30.6 13.9
5 37.7 18.2 38.1 19.7
6 40.6 9.6 44.9 8.6
7 31.3 16.7 37.5 14.9
8 37.3 21.9 37.5 17.2
9 35.4 18.7 38.5 14.4
14 37.7 16.7 35.1 11.6
16 36.1 10.7 39.1 8.8


Older


3 38.9 26.1 42.5 23.6
11 40.4 21.1 45.9 14.6
12 35.5 19.2 34.4 20.9
13 51.3 23.1 52.9 10.1
15 46.3 16.8 41.2 11.9


Table 4.9: Median percentage of the computed BOS for each type of STS action for the Inverted
Pendulum Model.
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Group ID
Untrained Motion Trained STS Strategy
Slow Fast Quasi-static Momentum


Young


1 37.5 24.7 38.4 22.8
2 44.2 24.7 49.6 34.0
4 40.9 22.5 39.1 23.3
5 38.8 24.1 40.6 21.0
6 41.5 11.6 50.0 19.6
7 31.8 20.6 38.6 16.2
8 39.1 23.8 39.0 24.1
9 36.6 19.3 42.0 16.7
14 53.9 17.8 44.2 16.9
16 36.5 11.8 39.5 14.2


Older


3 41.2 26.3 43.5 31.5
11 47.3 21.7 46.2 20.9
12 37.9 19.9 39.6 27.5
13 52.2 36.0 53.4 22.1
15 46.7 20.7 44.1 18.7


Table 4.10: Maximum percentage of the computed BOS for each type of STS action across the
5 trials for the Inverted Pendulum Model.
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To compute the extent of the outer-approximation, we also found the BOS via simulation
with results shown in Tables 4.11 and 4.12. The “true” BOS for each action matched intuition
for every STS motion. The simulated BOS was on average 52% percentage smaller (11%
std dev) than the computed BOS confirming that the computed BOS is indeed an outer-
approximation.


Group ID
Untrained Motion Trained STS Strategy
Slow Fast Quasi-static Momentum


Young


1 11.3 9.3 19.4 6.2
2 16.0 7.4 34.3 8.3
4 10.6 7.6 17.3 7.5
5 15.9 7.5 25.9 8.7
6 14.6 4.5 31.4 4.2
7 13.7 7.8 27.4 7.8
8 22.5 9.9 24.2 8.5
9 18.0 8.6 28.0 7.2
14 14.7 6.2 18.7 4.8
16 18.1 4.8 28.0 5.4


Older


3 26.1 13.5 31.5 13.5
11 27.4 9.4 33.2 7.1
12 18.6 9.1 20.1 10.9
13 29.0 10.4 42.3 5.9
15 30.1 6.7 28.3 6.6


Table 4.11: Median percentage of the simulated BOS for each type of STS action for the Inverted
Pendulum Model.
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Group ID
Untrained Motion Trained STS Strategy
Slow Fast Quasi-static Momentum


Young


1 18.3 10.6 28.1 9.3
2 30.7 8.5 37.3 14.3
4 18.3 9.4 23.9 10.2
5 24.5 10.3 27.6 10.3
6 21.2 5.3 35.5 7.0
7 18.1 9.9 28.7 8.0
8 23.0 11.3 26.7 11.1
9 20.5 9.2 29.5 8.5
14 16.2 6.5 23.4 5.8
16 24.4 6.0 29.5 7.1


Older


3 27.2 13.9 31.5 17.2
11 29.0 10.6 35.7 10.8
12 20.7 10.1 25.1 12.5
13 35.5 12.8 43.9 9.2
15 31.8 7.6 32.8 8.6


Table 4.12: Maximum percentage of the simulated BOS for each type of STS action for the
Inverted Pendulum Model.
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To illustrate the utility of this metric, we consider the computed BOS for the same
subjects presented in Section 4.3. Figure 4.9 shows the computed BOS of the younger
subject, subject with ID 7. Figure 4.10 shows the computed BOS of the older subject,
subject with ID 11. Both figures show that slow STS and quasi-static STS are able to
handle more perturbations than fast STS and momentum-transfer STS, respectively.


(a) Young subject - Slow


(b) Young subject - Fast
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(c) Young subject - Quasi-static


(d) Young subject - Momentum Transfer


Figure 4.9: Proposed method for stability of different STS methods for subject 7. The gray skeleton
represents the skeleton of the subject from the sagittal plane and non-gray color represents the IPM.
The thick lines denote the observed trajectory (yobs(t)) of the STS motion. The gray region denotes
the computed BOS with time slices in dark gray with the intersection between the trajectory and
slice in black and the corresponding position of the model above. Time is on the X-axis, angle from
foot to COM on the Y-axis, and angular velocity on the Z-axis.
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(a) Older subject - Slow


(b) Older subject - Fast
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(c) Older subject - Quasi-static


(d) Older subject - Momentum Transfer


Figure 4.10: Proposed method for stability of different STS methods for subject 11. The gray
skeleton represents the skeleton of the subject from the sagittal plane and non-gray color represents
the IPM. The thick lines denote the observed trajectory (yobs(t)) of the STS motion. The gray
region denotes the computed BOS with time slices in dark gray with the intersection between the
trajectory and slice in black and the corresponding position of the model above. Time is on the
X-axis, angle from foot to COM on the Y-axis, and angular velocity on the Z-axis.
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The IPM model itself is not without limitations however. First, the IPM assumes the
STS can be modeled via the center of mass while sitting and standing. Second, while Patton
et al used theoretical values for the input bounds [18], it is unknown how to convert strength
values from the full body to input bounds for the model. Third, only the sagittal plane is
considered. Finally, this assumes that foot placement is static and the feet are not moved to
position underneath the chair in a more stable manner. Despite these limitations, we believe
these results are promising for demonstrating the utility of the BOS. To address a few of
these limitations, a higher order model is required and in the next section, the results for
the double pendulum model are presented.
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4.5 Reachability results for DPM


In this section, the BOS for each individuals motion is computed for the DPM model to
determine the effect of using a model that more accurately reflects the morphology of an
individual. The model dynamics were approximated with a 4th order Taylor expansion. The
optimal control was performed using 101 timesteps with a polynomial input of degree 4 and
the optimization problem (D) was solved with a degree 8 polynomial. The computation time
for entire pipeline for a single action was on average 4130 seconds.


The median and maximum volumes for the computed BOS for all subjects are shown
in Tables 4.13 and 4.14 and show that the proposed method correctly identifies stable and
unstable motions. As expected, motions that are intuitively more “stable” have a larger BOS
volume demonstrating that these motions are more “robust” to perturbations. More impor-
tantly, these regions quantify the amount of perturbation the subject can reject to stand up.
The red cells in Table 4.14 corresponds to volumes which are contrary to expectation which,
when looking at the simulated BOS, is a result of the outer-approximation of the method.


Group ID
Untrained Motion Trained STS Strategy
Slow Fast Quasi-static Momentum


Young


1 16.9 11.4 20.8 11.1
2 20.2 10.1 26.1 16.5
4 12.0 9.4 15.3 10.0
5 9.9 7.9 14.0 8.0
6 17.3 15.7 23.0 12.4
7 17.5 11.5 18.9 12.2
8 11.3 7.6 13.8 6.5
9 21.2 15.8 25.1 19.7
14 25.1 12.8 26.1 11.7
16 13.4 8.3 15.3 10.7


Older


3 35.9 29.6 33.0 27.2
11 23.5 20.1 28.2 26.3
12 8.4 5.8 9.4 6.6
13 17.6 15.2 26.3 12.9
15 21.9 10.6 19.5 10.4


Table 4.13: Median percentage of the computed BOS for each type of STS action for the Double
Pendulum Model.
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Group ID
Untrained Motion Trained STS Strategy
Slow Fast Quasi-static Momentum


Young


1 17.5 12.6 23.9 12.7
2 23.7 19.7 29.0 24.1
4 14.0 10.8 16.1 14.1
5 13.4 8.9 16.5 8.1
6 19.9 20.5 24.7 12.9
7 19.3 16.8 20.8 12.8
8 18.7 8.6 16.0 8.2
9 27.7 20.0 27.9 21.3
14 26.3 20.0 27.6 13.9
16 16.8 10.0 17.4 12.4


Older


3 38.2 32.6 36.8 31.6
11 37.7 33.2 28.6 28.8
12 9.8 8.2 17.0 6.9
13 19.9 20.7 27.7 16.7
15 26.5 17.0 21.0 12.9


Table 4.14: Maximum percentage of the computed BOS for each type of STS action for the
Double Pendulum Model.
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To compute the extent of the outer-approximation, we also found the BOS (via a simu-
lation of 175k points sampled uniformly) with results shown in Tables 4.15 and 4.16. The
“true” BOS for each action matches intuition for every STS motion. The simulated BOS
was on average 41% percentage smaller (16% std dev) than the computed BOS confirming
that the computed BOS is indeed an outer-approximation.


Group ID
Untrained Motion Trained STS Strategy
Slow Fast Quasi-static Momentum


Young


1 9.0 3.8 11.7 4.1
2 14.8 4.4 20.4 8.6
4 6.6 3.3 10.2 4.6
5 4.8 1.1 6.5 1.6
6 6.9 3.9 15.2 2.5
7 7.8 2.3 9.4 2.0
8 6.3 2.3 7.7 1.8
9 10.0 5.7 13.0 7.5
14 13.0 3.2 16.5 2.8
16 9.7 3.0 10.7 4.4


Older


3 17.5 9.9 16.5 6.9
11 12.7 6.0 13.8 8.1
12 3.2 1.0 3.6 1.7
13 13.7 4.9 18.7 3.5
15 15.1 3.6 12.3 3.8


Table 4.15: Median percentage of the simulated BOS for each type of STS action for the Double
Pendulum Model.
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Group ID
Untrained Motion Trained STS Strategy
Slow Fast Quasi-static Momentum


Young


1 9.4 4.6 12.9 5.0
2 19.4 9.4 22.2 10.4
4 7.9 3.9 10.6 8.0
5 5.2 2.2 8.1 1.8
6 13.8 4.9 17.2 4.5
7 9.7 5.9 11.2 4.1
8 9.7 2.5 9.2 2.6
9 15.3 6.7 14.2 9.3
14 14.9 4.4 17.1 4.5
16 11.3 4.1 13.3 5.2


Older


3 18.2 12.3 17.6 9.4
11 23.1 14.9 15.1 12.9
12 3.4 1.8 7.0 2.2
13 15.0 8.3 19.7 5.2
15 16.2 6.0 14.0 5.1


Table 4.16: Maximum percentage of the simulated BOS for each type of STS action for the
Double Pendulum Model.
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To illustrate the utility of this metric, we consider the computed BOS of subjects 7 and
11, the same subjects presented in Section 4.39. Figure 4.11 shows the computed BOS of
the younger subject, subject 7. Figure 4.12 shows the computed BOS of the older subject,
subject 11. Both figures show that slow STS and quasi-static STS are able to handle more
perturbations than fast STS and momentum-transfer STS, respectively.


The DPM model itself is also not without limitations however. While the DPM improves
upon the IPM by separating the body center of mass into the upper and lower body masses,
the model collapses the shank and thigh (lower and upper leg) into one link. However, by
separating the upper body, the model is able to account for the fact that the upper body
is more stable when the subject is sitting down and the input bounds for the upper body
correlate more with actual physical limits. Second, only the sagittal plane is considered.
Finally, this assumes that foot placement is static and the feet are not moved to position
underneath the chair in a more stable manner.


9Figures for all subjects can be found at www.w3id.org/people/vshia/jrsi/.



www.w3id.org/people/vshia/jrsi/
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(a) Young subject - Slow


(b) Young subject - Fast
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(c) Young subject - Quasi-static


(d) Young subject - Momentum Transfer


Figure 4.11: Proposed method for stability of different STS methods for subject 7. The gray
skeleton represents the skeleton of the subject from the sagittal plane and non-gray color represents
the DPM. The thick lines denote the observed trajectory (yobs(t)) of the STS motion. The gray
region denotes the computed BOS with time slices in dark gray with the intersection between the
trajectory and slice in black and the corresponding position of the model above. Time is on the
X-axis, angle from foot to COM on the Y-axis, and angular velocity on the Z-axis.
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(a) Older subject - Slow


(b) Older subject - Fast
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(c) Older subject - Quasi-static


(d) Older subject - Momentum Transfer


Figure 4.12: Proposed method for stability of different STS methods for subject 11. The gray
skeleton represents the skeleton of the subject from the sagittal plane and non-gray color represents
the DPM. The thick lines denote the observed trajectory (yobs(t)) of the STS motion. The gray
region denotes the computed BOS with time slices in dark gray with the intersection between the
trajectory and slice in black and the corresponding position of the model above. Time is on the
X-axis, angle from foot to COM on the Y-axis, and angular velocity on the Z-axis.
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Comparison of metrics and models


In this subsection, we compare the metrics and the models. According to Table 4.17, the
metric in [20] is unable to distinguish the expected stability characteristics for each motion.
On the other hand, our proposed metric correctly distinguishes the expected stability results
for each motion 95% or higher. For each subject, according to Tables 4.9 and 4.13, the
computed BOS for slow standing is larger than fast standing and the BOS for the quasi-
static method is larger than the momentum-transfer method.


Table 4.18 and 4.19 shows the side-by-side comparison of Fujimoto’s metric and the
proposed metric for subjects 7 and 11, the younger and older subject respectively. According
to Fujimoto’s method, for subject 7 in Figure 4.7a and 4.7b, the slow STS motion is less
stable than the fast STS motion (highlighted red in Table 4.18). In addition, for subject 7,
the proposed metric shows that for both models the slow STS (Figure 4.9a) is more stable
than the fast STS (Figure 4.9b), shown in green in Table 4.18. In addition, for subject 11
in Figure 4.8a and 4.8b, the quasi-static method is less stable as the momentum-transfer
method (highlighted red in Table 4.19). However, for subject 11, the proposed metric for
both models correctly shows the quasi-static method (Figure 4.10c) as more stable than the
momentum transfer method (Figure 4.10d), shown green in Table 4.19.


Method Type
Slow > Fast Stable > Momentum


Young Older Young Older


Fujimoto
ROSv 6/10 4/5 9/10 4/5
ROSa 6/10 2/5 4/10 0/5


Proposed
IPM 10/10 5/5 10/10 5/5
DPM 10/10 5/5 10/10 5/5


Table 4.17: Summary of comparison of the various metrics for Slow vs Fast, Quasi-static vs
Momentum-Transfer using the median values.


Slow Fast Stable Momentum
ROSv 0.55 0.71 0.67 0.22
ROSa 0.71 0.89 0.48 0.69
IPM 25.2 16.7 37.5 14.9
DPM 17.5 11.5 18.9 12.2


Table 4.18: Comparison of ROSv and ROSa vs the proposed method for subject ID 7. Expected
results shown in green; unexpected results shown in red.


These results suggest that the proposed method can distinguish stable from unstable
actions by characterizing the set of disturbances one can handle during standing. Specifically,
the IPM and DPM models are able to accurate determine stable from unstable motions for
all subjects.
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Slow Fast Stable Momentum
ROSv 0.76 0.73 0.09 0.20
ROSa 0.82 0.84 0.16 0.57
IPM 39.8 21.1 45.9 14.6
DPM 23.5 20.1 28.2 26.3


Table 4.19: Comparison of ROSv and ROSa vs the proposed method for subject ID 11. Expected
results shown in green; unexpected results shown in red.
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5.1 Conclusion


In this thesis, a personalized computational framework to model, identify and analyze the
stability of an individual’s STS motion by computing the basin of stability of the observed
motion is described. To the author’s best knowledge, this is the first framework to analyti-
cally compute an individual’s BOS. The experimental analysis leads us to propose that the
basin of stability of a locomotor pattern can be used to distinguish stable and unstable STS
motions. Rather than reducing the STS motion to a single feature, the entire trajectory is
analyzed to provide a more informative metric of stability. Where other methods fails, our
proposed method successfully is able to show that the BOS of slow and quasi-static standing
is large compared to fast and momentum-transfer standing.


In Chapter 2, we lay out the conceptual and implementable framework for this work. First
we define notation and the hybrid system of interest. Then we describe how to synthesize
a controller that tracks the observed human motion. Finally we present the problem to
compute the BOS.


In Chapter 3, we delve deeper into the BOS computation. First we describe the theoretical
background of occupations measures and present intuition for the method. Second we present
the numerical implementation. We conclude with the BOS for 3 systems: rimless wheel,
vehicle dynamics, and compass gait walker.


In Chapter 4, we verify the proposed framework on experimental data obtained via
motion capture. First we describe the STS model used, the experimental protocol and the
data collected from our sit to stand experiments. Second we present issues with the existing
methods: ROSv and ROSa. Finally we present our BOS computation for two STS models
and show that the proposed method successfully distinguishes stable from not-as-stable STS
motions.


One question naturally arises: is it possible to simulate the volume of the BOS via direct
simulation and not use the optimization problem defined in Chapter 3? While this is possible
for systems with few states (i.e. IPM), direct simulation suffers from exponential scaling in
the number of states. For example, for the DPM, a 2-link pendulum, a sparse simulation
of the BOS consists of 175k randomly sampled points takes over 8 hours to compute. To
simulate the BOS for a more representative human model such as a 3-link pendulum or
higher would take days or weeks and is not practically feasible. While the optimization
problem in Chapter 3 also suffers from exponential scaling with respect to the number of
states, we are looking into ways to improve the optimization program itself.


By using modeling and dynamics to study human locomotor patterns, we can use numer-
ical tools to compute basin of stability of locomotion without the need to perform extensive
perturbation experiments. While there are many causes for falling, many of which are unre-
lated to perturbation response, this framework can help therapists identify those at-risk of
falling due to muscle weakness by computing the subject’s BOS while standing up. In ad-
dition, this framework can calculate the optimal trajectory or parameter change to increase
one’s BOS.


This framework may also be used to evaluate gait stability by quantifying the amount of
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perturbation one can handle and continue walking, thereby opening new avenues to study
the stability of human locomotion from a control-theoretic point of view.


5.2 Future Work


In this section, we describe the deficiencies of the current implementation and outline ideas
for future work.


Improved Human Models


Here, we describe simple extensions to improve on the human modeling portion of this
framework.


• The first step to improving the human model is to use an improved human skeletoniza-
tion algorithm and to obtain accurate estimates of masses and inertias of each body
segment. This thesis uses estimated limb segment masses from [92] and Recap [74],
which utilizes a proprietary algorithm to determine the skeleton The framework would
benefit by using work in [123] to obtain a more accurate skeleton and estimates of the
limb masses and inertias. This would yield a more accurate human model and thus,
more accurate stability results. As part of this work, more accurate torque bounds
could be obtained also.


• The STS action is inherently an autonomous hybrid system with discrete mode 1
defined when the subject is sitting down and mode 2 when the subject is standing.
Each state should be modeled differently: at minimum, state 1 modeled using a single
inverted pendulum to model the torso and state 2 modeled using a triple inverted
pendulum to model the entire body shown in Figure 5.1. This can be easily modeled
with a hybrid system with the guard defined as the point where the vertical velocity
of the hip joint is positive, indicating that the person’s hip is raising off the chair, and
analyzed with the stability algorithm presented in Chapter 3.


f1 f2


Mode 1: Sit Mode 2: Stand


X1
X2


Figure 5.1: Hybrid Model for STS
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• People don’t stand up with their arms crossed. Rather, people usually either push off
their legs using their arms to propel themselves up or hold onto arm rests to stand up.
This system is inherently a closed chain with holonomic constraints. Additional work
needs to be conducted to model the behavior of the arm and study its influence on
stability.


• To bring this system out of the research environment and into clinics, the experimental
setup needs to be inexpensive. Work needs to be done to study the accuracy and
trade-offs of cheaper devices such as the Microsoft Kinect [76], accelerometers and the
Nintendo Wii board [124]1.


Improved Control Synthesis


In this work, we assumed that individuals track a nominal trajectory with a PD controller.
However, it is still has not been confirmed if this is indeed what people use. Future work
involves synthesizing the controller that subjects use that is consistent with the various
trials of the same STS motion. Currently the dataset has 5 trials of each STS motion
which can be used to construct or verify a controller. Perturbation experiments would
also need to be conducted to obtain trajectories which deviate from the nominal trajectory
and for validation. Work from the computer graphics community to synthesize human-like
controllers [125] may serve as an inspiration to develop these controllers.


Improved Reachable Set / Basin of Stability Calculations


At the moment, the limitation of the algorithm presented in Chapter 3 is a dynamical system
with 8 states, 3 inputs, and degree 4 relaxation of the v(t, x) and w(x) polynomials. With a
trigonometric system such as a 3-link pendulum, this quickly becomes infeasible as a 3-link
pendulum requires with 6 states, or 12 states using standard trigonometric reductions, each
with dynamics of degree 5. To study more complex systems, a more scalable approach needs
to be developed to study STS and gait. Promising work by Jacobs [126] may serve as a good
beginning for this work.


In addition, the current method enforces torque bounds manually by verifying that con-
troller values in the BOS stay within input bounds. A more rigorous method of enforcing
torque bounds in the dynamics would be to add the input as a state u with the dynamics of
u governed by ∂u


∂t
. By adding the torque as a state, the torque becomes subject to domain


restrictions.


ẋ = f(t, x) + g(t, x)ux


u̇x = u(t)
(5.1)


Finally, while the outer-approximation provides guarantees when the subject will defi-
nitely fall over, the inner-approximation provides guarantees when the subject will not fall


1In this thesis, Kinect data and accelerometry was also collected but not analyzed
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over and is equally, if not more, useful. Occupation measures may also be used to com-
pute the inner-approximation [35, 127]. In addition, for lower-dimensional systems, such as
the single and 2-link pendulum, recent advances with the Hamilton-Jacobi formulation for
decoupled systems may also be used [128].


Perturbation Experiments


To validate the BOS for human motion, perturbation experiments should be done. After
computing the BOS for a subject, the subject should be called to a second experiment to
test the subject’s response to perturbations at different points in the STS trajectory. The
IRB required for these types of experiment limits these experiments to labs with specialized
harnesses and equipment for protection.


Intra-individual or Intra-cohort Comparisons


At the moment, the BOS of an individual’s STS motion was compared to other actions
from the same individual and not to other subjects and cross-cohort comparison was not
done. To do individual-individual or cohort-cohort comparison, many more subjects would
be required to conduct a thorough analysis on how and why the BOS varies between subjects
and cohorts.


Comparisons to Other Sit-to-Stand Metrics


In order to gain acceptance by the clinical community, in addition to cheaper equipment, the
BOS needs to be compared to existing STS metrics such as the BERG balance test, Timed
Up and Go, and Stops Walking when Talking tests. To accomplish this, collaborations
with rehabilitation centers and physical therapists need to be established to establish the
relationship between existing metrics and the BOS.


Friction Analysis


Additional work could be done to study the effect of friction on STS. Using work in [35], the
BOS can be computed over uncertain friction coefficients (µfric) and slip conditions, giving
insight into how stable a subject’s STS action is to floor conditions. This would require
modeling the horizontal and vertical ground reaction forces (fgrf,x(θ), fgrf,y(θ)) with slippage
occurring when the horizontal ground reaction force exceeds the friction force. Figure 5.2
shows pictorial hybrid system definition of the model. The guard is mathematically defined
as:


G(θ) = {(θ, θ̇) | fgrf,x(θ)− µfricfgrf,y(θ) > 0} (5.2)


with an identity reset map R(θ, θ̇) = [θ; θ̇].
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f1 f2


Mode 1: Sit Mode 2: Stand


X1
X2


Mode 3: Slip


X3


f3


Figure 5.2: Hybrid Model for STS with Friction


Gait Analysis


The same framework and extensions presented in this thesis can be extended to studying the
stability of one’s gait. In fact, gait stability was the original impetus for this work. The first
step is to develop a representative model for gait that includes ground contact constraints
needs to be developed. As each individual’s gait cycle may be different, the optimal control
algorithm must be able to distinguish the discrete modes of an individual’s gait cycle [82].
Because any meaningful gait model for the lower body includes 6+ states with trigonometric
dynamics, work by Jacobs [126] or equivalent must be used to compute the BOS.


Robotics Applications


Finally, this framework is not limited to studying human motion. The BOS computation
for human motion can be extended to studying the stability of exoskeletons, prosthetics or
bipedal robots. Studying these systems may be simpler than studying human motion due
to the deterministic nature of robots. In addition, this framework could be used to develop
controllers to maximize the stability of the robot using work in [68].
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5.3 Concluding Remarks


This thesis hopefully is only the start of bringing advances in dynamical systems and control
theory to study the stability of human motion. While there is much work to be done and
this thesis lays out several avenues to pursue, the path is by no means straight. However,
if successful, this work could advance quantitative medicine, improving diagnostic capabil-
ities for physicians and physical therapists, as well as improve controller design for robotic
systems.
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