

A Berkeley View of Systems Challenges for AI

Ion Stoica
Dawn Song
Raluca Ada Popa
David A. Patterson
Michael W. Mahoney
Randy H. Katz
Anthony D. Joseph
Michael Jordan
Joseph M. Hellerstein
Joseph Gonzalez
Ken Goldberg
Ali Ghodsi
David E. Culler
Pieter Abbeel
Electrical Engineering and Computer Sciences
University of California at Berkeley

Technical Report No. UCB/EECS-2017-159
http://www2.eecs.berkeley.edu/Pubs/TechRpts/2017/EECS-2017-159.html

October 16, 2017

Copyright © 2017, by the author(s).
All rights reserved.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission.

A Berkeley View of Systems Challenges for AI
Ion Stoica, Dawn Song, Raluca Ada Popa, David Patterson, Michael W. Mahoney, Randy Katz,
Anthony D. Joseph, Michael Jordan, Joseph M. Hellerstein, Joseph Gonzalez, Ken Goldberg,

Ali Ghodsi, David Culler, Pieter Abbeel∗

ABSTRACT
With the increasing commoditization of computer vision, speech
recognition and machine translation systems and the widespread
deployment of learning-based back-end technologies such as digi-
tal advertising and intelligent infrastructures, AI (Arti�cial Intelli-
gence) has moved from research labs to production. These changes
have been made possible by unprecedented levels of data and com-
putation, by methodological advances in machine learning, by in-
novations in systems software and architectures, and by the broad
accessibility of these technologies.

The next generation of AI systems promises to accelerate these
developments and increasingly impact our lives via frequent inter-
actions and making (often mission-critical) decisions on our behalf,
often in highly personalized contexts. Realizing this promise, how-
ever, raises daunting challenges. In particular, we need AI systems
that make timely and safe decisions in unpredictable environments,
that are robust against sophisticated adversaries, and that can pro-
cess ever increasing amounts of data across organizations and in-
dividuals without compromising con�dentiality. These challenges
will be exacerbated by the end of the Moore’s Law, which will con-
strain the amount of data these technologies can store and process.
In this paper, we propose several open research directions in sys-
tems, architectures, and security that can address these challenges
and help unlock AI’s potential to improve lives and society.

KEYWORDS
AI, Machine Learning, Systems, Security

1 INTRODUCTION
Conceived in the early 1960’s with the vision of emulating human
intelligence, AI has evolved towards a broadly applicable engineer-
ing discipline in which algorithms and data are brought together
to solve a variety of pattern recognition, learning, and decision-
making problems. Increasingly, AI intersects with other engineering
and scienti�c �elds and cuts across many disciplines in computing.

In particular, computer systems have already proved essential in
catalyzing recent progress in AI. Advances in parallel hardware [31,
58, 90] and scalable software systems [32, 46, 114] have sparked the
development of new machine learning frameworks [14, 31, 98] and
algorithms [18, 56, 62, 91] to allow AI to address large-scale, real-
world problems. Rapidly decreasing storage costs [1, 80], crowd-
sourcing, mobile applications, internet of things (IoT), and the com-
petitive advantage of data [40] have driven further investment in
data-processing systems and AI technologies [87]. The overall e�ect
is that AI-based solutions are beginning to approach or even surpass
⇤ Authors listed in reverse alphabetical order.
A Berkeley View of Systems Challenges for AI,
2017. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/

human-level capabilities in a range of real-world tasks. Maturing AI
technologies are not only powering existing industries—including
web search, high-speed trading and commerce—but are helping to
foster new industries around IoT, augmented reality, biotechnology
and autonomous vehicles.

These applications will require AI systems to interact with the
real world by making automatic decisions. Examples include au-
tonomous drones, robotic surgery, medical diagnosis and treatment,
virtual assistants, and many more. As the real world is continu-
ally changing, sometimes unexpectedly, these applications need to
support continual or life-long learning [96, 109] and never-ending
learning [76]. Life-long learning systems aim at solving multiple
tasks sequentially by e�ciently transferring and utilizing knowl-
edge from already learned tasks to new tasks while minimizing
the e�ect of catastrophic forgetting [71]. Never-ending learning is
concerned with mastering a set of tasks in each iteration, where
the set keeps growing and the performance on all the tasks in the
set keeps improving from iteration to iteration.

Meeting these requirements raises daunting challenges, such
as active exploration in dynamic environments, secure and robust
decision-making in the presence of adversaries or noisy and un-
foreseen inputs, the ability to explain decisions, and new modular
architectures that simplify building such applications. Furthermore,
as Moore’s Law is ending, one can no longer count on the rapid
increase of computation and storage to solve the problems of next-
generation AI systems.

Solving these challenges will require synergistic innovations
in architecture, software, and algorithms. Rather than addressing
speci�c AI algorithms and techniques, this paper examines the
essential role that systems will play in addressing challenges in AI
and proposes several promising research directions on that frontier.

2 WHAT IS BEHIND AI’S RECENT SUCCESS
The remarkable progress in AI has been made possible by a “perfect
storm" emerging over the past two decades, bringing together:
(1) massive amounts of data, (2) scalable computer and software
systems, and (3) the broad accessibility of these technologies. These
trends have allowed core AI algorithms and architectures, such as
deep learning, reinforcement learning, and Bayesian inference to
be explored in problem domains of unprecedented scale and scope.

2.1 Big data
With the widespread adoption of online global services, mobile
smartphones, and GPS by the end of 1990s, internet companies
such as Google, Amazon, Microsoft, and Yahoo! began to amass
huge amounts of data in the form of audio, video, text, and user
logs. When combined with machine learning algorithms, these
massive data sets led to qualitatively better results in a wide range of

https://doi.org/

A Berkeley View of Systems Challenges for AI,

core services, including classical problems in information retrieval,
information extraction, and advertising [49].

2.2 Big systems
Processing this deluge of data spurred rapid innovations in com-
puter and software systems. To store massive amounts of data, in-
ternet service companies began to build massive-scale datacenters,
some of which host nearly 100, 000 servers, and provide EB [65] of
storage. To process this data, companies built new large-scale soft-
ware systems able to run on clusters of cheap commodity servers.
Google developed MapReduce [32] and Google File System [43], fol-
lowed shortly by the open-source counterpart, Apache Hadoop [7].
Then came a plethora of systems [46, 55, 60, 67, 114], that aimed to
improve speed, scale, and ease of use. These hardware and software
innovations led to the datacenter becoming the new computer [11].

With the growing demand for machine learning (ML), re-
searchers and practitioners built libraries on top of these systems
to satisfy this demand [8, 52, 75].

The recent successes of deep learning (DL) have spurred a new
wave of specialized software systems have emerged to scale out
these workloads on CPU clusters and take advantage of special-
ized hardware, such as GPUs and TPUs. Examples include Tensor-
Flow [2], Ca�e [57], Chainer [20], PyTorch [89], and MXNet [22].

2.3 Accessibility to state-of-the-art technology
The vast majority of systems that process data and support AI work-
loads are built as open-source software, including Spark [114], Ten-
sorFlow [2], MXNet [22], Ca�e [57], PyTorch [89], and BigDL [15].
Open source allows organizations and individuals alike to leverage
state-of-the-art software technology without incurring the prohibi-
tive costs of development from scratch or licensing fees.

The wide availability of public cloud services (e.g., AWS, Google
Cloud, and MS Azure) allows everyone to access virtually unlim-
ited amounts of processing and storage without needing to build
large datacenters. Now, researchers can test their algorithms at a
moment’s notice on numerous GPUs or FPGAs by spending just a
few thousands of dollars, which was unthinkable a decade ago.

3 TRENDS AND CHALLENGES
While AI has already begun to transformmany application domains,
looking forward, we expect that AI will power a much wider range
of services, from health care to transportation, manufacturing to
defense, entertainment to energy, and agriculture to retail. More-
over, while large-scale systems and ML frameworks have already
played a pivotal role in the recent success of AI, looking forward,
we expect that, together with security and hardware architectures,
systems will play an even more important role in enabling the broad
adoption of AI. To realize this promise, however, we need to address
signi�cant challenges that are driven by the following trends.

3.1 Mission-critical AI
With ongoing advances in AI in applications, from banking to
autonomous driving to robot-assisted surgery and to home au-
tomation, AI is poised to drive more and more mission-critical
applications where human well-being and lives are at stake.

As AI will increasingly be deployed in dynamic environments,
AI systems will need to continually adapt and learn new “skills"
as the environment changes. For example, a self-driving car could
quickly adapt to unexpected and dangerous road conditions (e.g.,
an accident or oil on the road), by learning in real time from other
cars that have successfully dealt with these conditions. Similarly,
an AI-powered intrusion-detection system must quickly identify
and learn new attack patterns as they happen. In addition, such
mission-critical applications must handle noisy inputs and defend
against malicious actors.

Challenges: Design AI systems that learn continually by interact-
ing with a dynamic environment, while making decisions that are
timely, robust, and secure.

3.2 Personalized AI
From virtual assistants to self-driving cars and political campaigns,
user-speci�c decisions that take into account user behavior (e.g., a
virtual assistant learning a user’s accent) and preferences (e.g., a
self-driving system learning the level of “aggressiveness” a user is
comfortable with) are increasingly the focus. While such personal-
ized systems and services provide new functionality and signi�cant
economic bene�ts, they require collecting vast quantities of sen-
sitive personal information and their misuse could a�ect users’
economic and psychological wellbeing.

Challenges: Design AI systems that enable personalized applica-
tions and services yet do not compromise users’ privacy and security.

3.3 AI across organizations
Companies are increasingly leveraging third-party data to augment
their AI-powered services [27]. Examples include hospitals shar-
ing data to prevent epidemic outbreaks and �nancial institutions
sharing data to improve their fraud-detection capabilities. The pro-
liferation of such applications will lead to a transition from data
silos—where one company collects data, processes it, and provides
the service—to data ecosystems, where applications learns and
make decisions using data owned by di�erent organizations.

Challenges: Design AI systems that can train on datasets owned
by di�erent organizations without compromising their con�dentiality,
and in the process provide AI capabilities that span the boundaries of
potentially competing organization.

3.4 AI demands outpacing the Moore’s Law
The ability to process and store huge amounts of data has been one
of the key enablers of the AI’s recent successes (see Section 2.1).
However, keeping up with the data being generated will become
increasingly di�cult due to the following two trends.

First, data continues to grow exponentially. A 2015 Cisco white
paper [25] claims that the amount of data generated by Internet of
Everything (IoE) devices by 2018 to be 400ZB, which is almost 50x
the estimated tra�c in 2015. According to a recent study [100], by
2025, we will need a three-to-four orders of magnitude improve-
ment in compute throughput to process the aggregate output of all
genome sequencers in the world. This would require computation
resources to at least double every year.

Second, this explosion of data is coming at a time when our
historically rapidly improving hardware technology is coming to a

A Berkeley View of Systems Challenges for AI A Berkeley View of Systems Challenges for AI,

grinding halt [53]. The capacity of DRAMs and disks are expected
to double just once in the next decade, and it will take two decades
before the performance of CPUs doubles. This slowdownmeans that
storing and processing all generated data will become impracticable.

Challenges: Develop domain-speci�c architectures and software
systems to address the performance needs of future AI applications
in the post-Moore’s Law era, including custom chips for AI work-
loads, edge-cloud systems to e�ciently process data at the edge, and
techniques for abstracting and sampling data.

4 RESEARCH OPPORTUNITIES
This section discusses the previous challenges from the systems
perspective. In particular, we discuss how innovations in systems,
security, and architectures can help address these challenges. We
present nine research opportunities (from R1 to R9), organized
into three topics: acting in dynamic environments, secure AI, and
AI-speci�c architectures. Figure 1 shows the most common relation-
ships between trends, on one hand, and challenges and research
topics, on the other hand.

Trends

Mission-critical AI

Personalized AI

AI across
organizations

AI demands outpacing
Moore’s Law

Acting in dynamic
environments:
R1: Continual learning
R2: Robust decisions
R3: Explainable decisions

Secure AI:
R4: Secure enclaves
R5: Adversarial learning
R6: Shared learning on
 confidential data

AI-specific architectures:
R7: Domain specific hardware
R8: Composable AI systems
R9: Cloud-edge systems

Challenges & Research

R1, R2, R3

R7, R8, R9

R8, R9

R4, R5, R6

R6

R7, R9
R7, R8

R4, R5

Figure 1: Amapping from trends to challenges and research topics.

4.1 Acting in dynamic environments
Many future AI applications will operate in dynamic environments,
i.e., environments that may change, often rapidly and unexpectedly,
and often in non-reproducible ways. For example, consider a group
of robots providing security for an o�ce building. When one robot
breaks or a new one is added, the other robots must update their
strategies for navigation, planning, and control in a coordinated
manner. Similarly, when the environment changes, either due to the
robots’ own actions or to external conditions (e.g., an elevator going
out of service, or a malicious intruder), all robots must re-calibrate
their actions in light of the change. Handling such environments
will require AI systems that can react quickly and safely even to
scenarios that have not been encountered before.

R1: Continual learning.Most of today’s AI systems, including
movie recommendation, image recognition, and language trans-
lation, perform training o�ine and then make predictions online.
That is, the learning performed by the system does not happen
continually with the generation of the data, but instead it happens
sporadicallly, on very di�erent and much slower time scales. Typ-
ically, models are updated daily, or in the best case hourly, while

predictions/decisions happen at second or sub-second granularity.
This makes them a poor �t for environments that change continu-
ally and unexpectedly, especially in mission-critical applications.
These more challenging environments require agents that continu-
ally learn and adapt to asynchronous changes.

Some aspects of learning in dynamic environments are addressed
by online learning [17], in which data arrive temporally and updates
to the model can occur as new data arrive. However, traditional
online learning does not aim to handle control problems, in which
an agent’s actions change the environment (e.g., as arise naturally
in robotics), nor does it aim to handle cases in which the outcomes
of decisions are delayed (e.g., a move in a game of chess whose
outcome is only evaluated at the end, when the game is lost or won).

These more general situations can be addressed in the frame-
work of Reinforcement Learning (RL). The central task of RL is
to learn a function—a “policy”—that maps observations (e.g., car’s
camera inputs or user’s requested content) to actions (e.g., slowing
down the car or presenting an ad) in a sequence that maximizes
long-term reward (e.g., avoiding collisions or increasing sales). RL
algorithms update the policy by taking into account the impact of
agent’s actions on the environment, even when delayed. If envi-
ronmental changes lead to reward changes, RL updates the policy
accordingly. RL has a long-standing tradition, with classical success
stories including learning to play backgammon at level of the best
human players [108], learning to walk [105], and learning basic
motor skills [86]. However, these early e�orts require signi�cant
tuning for each application. Recent e�orts are combining deep neu-
ral networks with RL (Deep RL) to develop more robust training
algorithms that can work for a variety of environments (e.g., many
Atari games [77]), or even across di�erent application domains,
as in the control of (simulated) robots [92] and the learning of
robotic manipulation skills [66]. Noteworthy recent results also
include Google’s AlphaGo beating the Go world champion [95],
and new applications in medical diagnosis [104] and resource man-
agement [33].

However, despite these successes, RL has yet to see widescale
real-world application. There are many reasons for this, one of
which is that large-scale systems have not been built with these use
cases in mind. We believe that the combination of ongoing advances
in RL algorithms, when coupled with innovations in systems design,
will catalyze rapid progress in RL and drive new RL applications.

Systems for RL. Many existing RL applications, such as game-
playing, rely heavily on simulations, often requiring millions or
even billions of simulations to explore the solution space and “solve"
complex tasks. Examples include playing di�erent variants of a
game or experimenting with di�erent control strategies in a robot
simulator. These simulations can take as little as a few milliseconds,
and their durations can be highly variable (e.g., it might take a
few moves to lose a game vs. hundreds of moves to win one). Fi-
nally, real-world deployments of RL systems need to process inputs
from a variety of sensors that observe the environment’s state, and
this must be accomplished under stringent time constraints. Thus,
we need systems that can handle arbitrary dynamic task graphs,
where tasks are heterogeneous in time, computation, and resource
demands. Given the short duration of the simulations, to fully uti-
lize a large cluster, we need to execute millions of simulations per
second. None of the existing systems satis�es these requirements.

A Berkeley View of Systems Challenges for AI,

Data parallel systems [55, 79, 114] handle orders of magnitude fewer
tasks per sec, while HPC and distributed DL systems [2, 23, 82]
have limited support for heterogeneous and dynamic task graphs.
Hence, we need new systems to support e�ectively RL applications.

Simulated reality (SR). The ability to interact with the environ-
ment is fundamental to RL’s success. Unfortunately, in real-world
applications, direct interaction can be slow (e.g., on the order of sec-
onds) and/or hazardous (e.g., risking irreversible physical damage),
both of which con�ict with the need for having millions of inter-
actions before a reasonable policy is learned. While algorithmic
approaches have been proposed to reduce the number of real-world
interactions needed to learn policies [99, 111, 112], more generally
there is a need for Simulated Reality (SR) architectures, in which an
agent can continually simulate and predict the outcome of the next
action before actually taking it [101].

SR enables an agent to learn not only much faster but also much
more safely. Consider a robot cleaning an environment that encoun-
ters an object it has not seen before, e.g., a new cellphone. The robot
could physically experiment with the cellphone to determine how
to grasp it, but this may require a long time and might damage the
phone. In contrast, the robot could scan the 3D shape of the phone
into a simulator, perform a few physical experiments to determine
rigidity, texture, and weight distribution, and then use SR to learn
how to successfully grasp it without damage.

Importantly, SR is quite di�erent from virtual reality (VR);
while VR focuses on simulating a hypothetical environment (e.g.,
Minecraft), sometimes incorporating past snapshots of the real
world (e.g., Flight Simulator), SR focuses on continually simulating
the physical world with which the agent is interacting. SR is
also di�erent from augmented reality (AR), which is primarily
concerned with overlaying virtual objects onto real world images.

Arguably the biggest systems challenges associated with SR are
to infer continually the simulator parameters in a changing real-
world environment and at the same time to run many simulations
before taking a single real-time action. As the learning algorithm
interacts with the world, it gains more knowledge which can be
used to improve the simulation. Meanwhile, many potential sim-
ulations would need to be run between the agent’s actions, using
both di�erent potential plans and making di�erent “what-if” as-
sumptions about the world. Thus, the simulation is required to run
much faster than real time.

Research: (1) Build systems for RL that fully exploit parallelism,
while allowing dynamic task graphs, providing millisecond-level la-
tencies, and running on heterogeneous hardware under stringent dead-
lines. (2) Build systems that can faithfully simulate the real-world
environment, as the environment changes continually and unexpect-
edly, and run faster than real time.

R2: Robust decisions. As AI applications are increasingly mak-
ing decisions on behalf of humans, notably in mission-critical ap-
plications, an important criterion is that they need to be robust to
uncertainty and errors in inputs and feedback. While noise-resilient
and robust learning is a core topic in statistics andmachine learning,
adding system support can signi�cantly improve classical methods.
In particular, by building systems that track data provenance, we
can diminish uncertainty regarding the mapping of data sources to
observations, as well as their impact on states and rewards. We can

also track and leverage contextual information that informs the de-
sign of source-speci�c noise models (e.g., occluded cameras). These
capabilities require support for provenance and noise modeling in
data storage systems. While some of these challenges apply more
generally, two notions of robustness that are particularly important
in the context of AI systems and that present particular systems
challenges are: (1) robust learning in the presence of noisy and ad-
versarial feedback, and (2) robust decision-making in the presence
of unforeseen and adversarial inputs.

Increasingly, learning systems leverage data collected from un-
reliable sources, possibly with inaccurate labels, and in some cases
with deliberately inaccurate labels. For example, the Microsoft Tay
chatbot relied heavily on human interaction to develop rich natural
dialogue capabilities. However, when exposed to Twitter messages,
Tay quickly took on a dark personality [16].

In addition to dealing with noisy feedback, another research
challenge is handling inputs for which the systemwas never trained.
In particular, one often wishes to detect whether a query input is
drawn from a substantially di�erent distribution than the training
data, and then take safe actions in those cases. An example of a safe
action in a self-driving car may be to slow down and stop. More
generally, if there is a human in the loop, a decision system could
relinquish control to a human operator. Explicitly training models
to decline to make predictions for which they are not con�dent,
or to adopt a default safe course of actions, and building systems
that chain such models together can both reduce computational
overhead and deliver more accurate and reliable predictions.

Research: (1) Build �ne grained provenance support into AI sys-
tems to connect outcome changes (e.g., reward or state) to the data
sources that caused these changes, and automatically learn causal,
source-speci�c noise models. (2) Design API and language support for
developing systems that maintain con�dence intervals for decision-
making, and in particular can �ag unforeseen inputs.

R3: Explainable decisions. In addition to making black-box
predictions and decisions, AI systems will often need to provide
explanations for their decisions that are meaningful to humans.
This is especially important for applications in which there are
substantial regulatory requirements as well as in applications such
as security and healthcare where legal issues arise [24]. Here, ex-
plainable should be distinguished from interpretable, which is often
also of interest. Typically, the latter means that the output of the
AI algorithm is understandable to a subject matter expert in terms
of concepts from the domain from which the data are drawn [69],
while the former means that one can identify the properties of the
input to the AI algorithm that are responsible for the particular
output, and can answer counterfactual or “what-if” questions. For
example, one may wish to know what features of a particular or-
gan in an X-ray (e.g., size, color, position, form) led to a particular
diagnosis and how the diagnosis would change under minor pertur-
bations of those features. Relatedly, one may wish to explore what
other mechanisms could have led to the same outcomes, and the
relative plausibility of those outcomes. Often this will require not
merely providing an explanation for a decision, but also considering
other data that could be brought to bear. Here we are in the domain
of causal inference, a �eld which will be essential in many future AI
applications, and one which has natural connections to diagnostics
and provenance ideas in databases.

A Berkeley View of Systems Challenges for AI A Berkeley View of Systems Challenges for AI,

Indeed, one ingredient for supporting explainable decisions is the
ability to record and faithfully replay the computations that led to a
particular decision. Such systems hold the potential to help improve
decision explainability by replaying a prediction task against past
inputs—or randomly or adversarially perturbed versions of past
inputs, or more general counterfactual scenarios—to identify what
features of the input have caused a particular decision. For example,
to identify the cause of a false alarm in a video-based security
system, one might introduce perturbations in the input video that
attenuate the alarm signal (e.g., by masking regions of the image) or
search for closely related historical data (e.g., by identifying related
inputs) that led to similar decisions. Such systems could also lead to
improved statistical diagnostics and improved training/testing for
newmodels; e.g., by designing models that are (or are not) amenable
to explainability.

Research: Build AI systems that can support interactive diagnostic
analysis, that faithfully replay past executions, and that can help to
determine the features of the input that are responsible for a particular
decision, possibly by replaying the decision task against past perturbed
inputs. More generally, provide systems support for causal inference.

4.2 Secure AI
Security is a large topic, many aspects of which will be central
to AI applications going forward. For example, mission-critical AI
applications, personalized learning, and learning across multiple
organizations all require systems with strong security properties.
While there is a wide range of security issues, here we focus on two
broad categories. The �rst category is an attacker compromising
the integrity of the decision process. The attacker can do so either
by compromising and taking the control of the AI system itself, or
by altering the inputs so that the system will unknowingly render
decisions that the attacker wants. The second category is an attacker
learning the con�dential data on which an AI system was trained
on, or learning the secret model. Next, we discuss three promising
research topics to defend against such attacks.

R4: Secure enclaves. The rapid rise of public cloud and the
increased complexity of the software stack considerably widen
the exposure of AI applications to attacks. Two decades ago most
applications ran on top of a commercial OS, such as Windows or
SunOS, on a single server deployed behind organization’s �rewalls.
Today, organizations run AI applications in the public cloud on a
distributed set of servers they do not control, possibly shared with
competitors, on a considerably more complex software stack, where
the OS itself runs on top of a hypervisor or within a container. Fur-
thermore, the applications leverage directly or indirectly a plethora
of other systems, such as log ingestion, storage, and data processing
frameworks. If any of these software components is compromised,
the AI applications itself might be compromised.

A general approach to deal with these attacks is providing a “se-
cure enclave” abstraction—a secure execution environment—which
protects the application running within the enclave from malicious
code running outside the enclave. One recent example is Intel’s
Software Guard Extensions (SGX) [5], which provides a hardware-
enforced isolated execution environment. Code inside SGX can
compute on data, while even a compromised operating system or
hypervisor (running outside the enclave) cannot see this code or

data. SGX also provides remote attestation [6], a protocol enabling a
remote client to verify that the enclave is running the expected code.
ARM’s TrustZone is another example of a hardware enclave. At
the other end of the spectrum, cloud providers are starting to o�er
special bare-bone instances that are physically protected, e.g., they
are deployed in secure “vaults” to which only authorized personnel,
authenticated via �ngerprint or iris scanning, has access.

In general, with any enclave technology, the application devel-
oper must trust all the software running within the enclave. Indeed,
even in the case of hardware enclaves, if the code running inside the
enclave is compromised, it can leak decrypted data or compromise
decisions. Since a small code base is typically easier to secure, one
research challenge is to split the AI system’s code into code running
inside the enclave, hopefully as little as possible, and code running
outside of the enclave, in untrusted mode, by leveraging crypto-
graphic techniques. Another approach to ensure that code inside
the enclave does not leak sensitive information is to develop static
and dynamic veri�cation tools as well as sandboxing [9, 12, 93].

Note that beside minimizing the trusted computing base, there
are two additional reasons for splitting the application code: in-
creased functionality and reduced cost. First, some of the function-
ality might not be available within the enclave, e.g., GPU processing
for running Deep Learning (DL) algorithms, or services and appli-
cations which are not vetted/ported yet to run within the secure
enclave. Second, the secure instances o�ered by a cloud provider
can be signi�cantly more expensive than regular instances.

Research: Build AI systems that leverage secure enclaves to ensure
data con�dentiality, user privacy and decision integrity, possibly by
splitting the AI system’s code between a minimal code base running
within the enclave, and code running outside the enclave. Ensure the
code inside the enclave does not leak information, or compromise
decision integrity.

R5: Adversarial learning. The adaptive nature of ML algo-
rithms opens the learning systems to new categories of attacks that
aim to compromise the integrity of their decisions by maliciously
altering training data or decision input. There are two broad types
of attacks: evasion attacks and data poisoning attacks.

Evasion attacks happen at the inference stage, where an ad-
versary attempts to craft data that is incorrectly classi�ed by the
learning system [47, 103]. An example is altering the image of a
stop sign slightly such that it still appears to a human to be a stop
sign but is seen by an autonomous vehicle as a yield sign.

Data poisoning attacks happen at the training stage, where an ad-
versary injects poisoned data (e.g., data with wrong labels) into the
training data set that cause the learning system to learn the wrong
model, such that the adversary thereby has input data incorrectly
classi�ed by the learner [73, 74, 113]. Learning systems that are
periodically retrained to handle non-stationary input data are par-
ticularly vulnerable to this attack, if the weakly labeled data being
used for retraining is collected from unreliable or untrustworthy
sources. With new AI systems continually learning by interact-
ing with dynamic environments, handling data poisoning attacks
becomes increasingly important.

Today, there are no e�ective solutions to protect against evasion
attacks. As such, there are a number of open research challenges:
provide better understanding of why adversarial examples are often
easy to �nd, investigate what method or combination of di�erent

A Berkeley View of Systems Challenges for AI,

methods may be e�ective at defending against adversarial examples,
and design and develop systematic methods to evaluate potential
defenses. For data poisoning attacks, open challenges include how
to detect poisoned input data and how to build learning systems
that are resilient to di�erent types of data poisoning attacks. In
addition, as data sources are identi�ed to be fraudulent or explicitly
retracted for regulatory reasons, we can leverage replay (see R3:
Explainable decisions) and incremental computation to e�ciently
eliminate the impact of those sources on learned models. As pointed
out previously, this ability is enabled by combining modeling with
provenance and e�cient computation in data storage systems.

Research: Build AI systems that are robust against adversarial
inputs both during training and prediction (e.g., decision making),
possibly by designing new machine learning models and network
architectures, leveraging provenance to track down fraudulent data
sources, and replaying to redo decisions after eliminating the fraudu-
lent sources.

R6: Shared learning on con�dential data. Today, each com-
pany typically collects data individually, analyzes it, and uses this
data to implement new features and products. However, not all
organizations possess the same wealth of data as found in the few
large AI-focused corporations, such as Google, Facebook, Microsoft,
and Amazon. Going forward, we expect more and more organiza-
tions to collect valuable data, more third-party data services to be
available, and more bene�t to be gained from learning over data
from multiple organizations (see Section 3).

Indeed, from our own interaction with industry, we are learning
about an increasing number of such scenarios. A large bank pro-
vided us with a scenario in which they and other banks would like
to pool together their data and use shared learning to improve their
collective fraud detection algorithms. While these banks are natural
competitors in providing �nancial services, such "cooperation" is
critical to minimize their losses due to fraudulent activities. A very
large health provider described a similar scenario in which com-
peting hospitals would like to share data to train a shared model
predicting �u outbreaks without sharing the data for other purposes.
This would allow them to improve the response to epidemics and
contain the outbreaks, e.g., by rapidly deploying mobile vaccination
vans at critical locations. At the same time, every hospital must
protect the con�dentiality of their own patients.

The key challenge of shared learning is how to learn a model
on data belonging to di�erent (possible competitive) organizations
without leaking relevant information about this data during the
training process. One possible solution would be to pool all the
data in a hardware enclave and then learn the model. However, this
solution is not always feasible as hardware enclaves are not yet
deployed widely, and, in some cases, the data cannot be moved due
to regulatory constraints or its large volume.

Another promising approach is using secure multi-party com-
putation (MPC) [13, 45, 70]. MPC enables n parties, each having a
private input, to compute a joint function over the input without
any party learning the inputs of the other parties. Unfortunately,
while MPC is e�ective for simple computations, it has a nontrivial
overhead for complex computations, such as model training. An
interesting research direction is how to partition model training
into (1) local computation and (2) computation using MPC, so that
we minimize the complexity of the MPC computation.

While training a model without compromising data con�dential-
ity is a big step towards enabling shared learning, unfortunately,
it is not always enough. Model serving—the inferences (decisions)
rendered based on the model—can still leak information about the
data [42, 94]. One approach to address this challenge is di�erential
privacy [36, 37, 39], a popular technique proposed in the context of
statistical databases. Di�erential privacy adds noise to each query
to protect the data privacy, hence e�ectively trading accuracy for
privacy [35]. A central concept of di�erential privacy is the privacy
budget which caps the number of queries given a privacy guarantee.

There are three interesting research directions when applying
di�erential privacy to model serving. First, a promising approach
is to leverage di�erential privacy for complex models and infer-
ences, by taking advantage of the inherent statistical nature of
the models and predictions. Second, despite the large volume of
theoretical research, there are few practical di�erential privacy
systems in use today. An important research direction is to build
tools and systems to make it easy to enable di�erential privacy for
real-world applications, including intelligently selecting which pri-
vacy mechanisms to use for a given application and automatically
converting non-di�erentially-private computations to di�erentially-
private computations. Finally, one particular aspect in the context
of continual learning is that data privacy can be time dependent,
that is, the privacy of fresh data is far more important than the
privacy of historical data. Examples are stock market and online
bidding, where the privacy of the fresh data is paramount, while
the historical data is sometimes publicly released. This aspect could
enable the development of new di�erential privacy systems with
adaptive privacy budgets that apply only to decisions on the most
recent data. Another research direction is to further develop the
notion of di�erential privacy under continuous observation and
data release [21, 38].

Even if we are able to protect data con�dentiality during training
and decision making, this might still not be enough. Indeed, even
if con�dentiality is guaranteed, an organization might refuse to
share its data for improving a model from which its competitors
might bene�t. Thus, we need to go beyond guaranteeing con�-
dentiality and provide incentives to organizations to share their
data or byproducts of their data. Speci�cally, we need to develop
approaches that ensure that by sharing data, an organization gets
strictly better service (i.e., better decisions) than not sharing data.
This requires ascertaining the quality of the data providing by a
given organization—a problem which can be tackled via a “leave-
one-out” approach in which performance is compared both with
and without that organization’s data included in the training set.
We then provide decisions that are corrupted by noise at a level
that is inversely proportional to the quality of the data provided
by an organization. This incentivizes an organization to provide
higher-quality data. Overall, such incentives will need to be placed
within a framework of mechanism design to allow organizations to
forge their individual data-sharing strategies.

Research: Build AI systems that (1) can learn across multiple
data sources without leaking information from a data source during
training or serving, and (2) provide incentives to potentially competing
organizations to share their data or models.

A Berkeley View of Systems Challenges for AI A Berkeley View of Systems Challenges for AI,

4.3 AI-speci�c architectures
AI demands will drive innovations both in systems and hardware
architectures. These new architectures will aim not only to improve
the performance, but to simplify the development of the next gen-
eration of AI applications by providing rich libraries of modules
that are easily composable.

R7: Domain speci�c hardware. The ability to process and
store huge amounts of data has been one of the key enablers of the
AI’s recent successes (see Section 2.1). However, continuing to keep
up with the data being generated will be increasingly challenging.
As discussed in Section 3, while data continues to grow exponen-
tially, the corresponding performance-cost-energy improvements
that have fueled the computer industry for more than 40 years are
reaching the end-of-line:

• Transistors are not getting much smaller due to the ending
of Moore’s Law,

• Power is limiting what can be put on a chip due to the end
of Dennard scaling,

• We’ve already switched from one ine�cient processor/chip
to about a dozen e�cient processors per chip, but there are
limits to parallelism due to Amdahl’s Law.

The one path left to continue the improvements in performance-
energy-cost of processors is developing domain-speci�c processors.
These processors do only a few tasks, but they do them extremely
well. Thus, the rapid improvements in processing that we have
expected in the Moore’s law era must now come through innova-
tions in computer architecture instead of semiconductor process
improvements. Future servers will have much more heterogeneous
processors than in the past. One trailblazing example that spot-
lights domain speci�c processors is Google’s Tensor Processing
Unit, which has been deployed in its datacenters since 2015 and
is regularly used by billions of people. It performs the inference
phase of deep neural networks 15⇥ to 30⇥ faster than its contem-
porary CPUs and GPUs and its performance per watt is 30⇥ to
80⇥ better. In addition, Microsoft has announced the availability
of FPGA-powered instances on its Azure cloud [88], and a host of
companies, ranging from Intel to IBM, and to startups like Cere-
bras and Graphcore are developing specialized hardware for AI
that promise orders of magnitude performance improvements over
today’s state-of-the-art processors [19, 48, 54, 78].

With DRAM subject to the same limitations, there are several
novel technologies being developed that hope to be its successor.
3D XPoint from Intel and Micron aims to provide 10⇥ storage
capacitywith DRAM-like performance. STTMRAMaims to succeed
Flash, which may hit similar scaling limits as DRAM. Hence, the
memory and storage of the cloud will likely have more levels in the
hierarchy and contain a wider variety of technologies. Given the
increasing diversity of processors, memories, and storage devices,
mapping services to hardware resources will become an even more
challenging problem. These dramatic changes suggest building
cloud computing from a much more �exible building block than the
classic standard rack containing a top-of-rack switch and tens of
servers, each with 2 CPU chips, 1 TB of DRAM, and 4 TBs of �ash.

For example, the UC Berkeley Firebox project [41] proposes a
multi-rack supercomputer that connects thousands of processor
chips with thousands of DRAM chips and nonvolatile storage chips

using �ber optics to provide low-latency, high-bandwidth, and long
physical distance. Such a hardware system would allow system soft-
ware to provision computation services with the right ratio and type
of domain-speci�c processors, DRAM, and NVRAM. Such resource
disaggregation at scale would signi�cantly improve the allocation
of increasingly diverse tasks to correspondingly heterogeneous
resources. It is particularly valuable for AI workloads, which are
known to gain signi�cant performance bene�ts from large memory
and have diverse resource requirements that don’t all conform to a
common pattern.

Besides performance improvements, new hardware architectures
will also provide additional functionality, such as security support.
While Intel’s SGX and ARM’s TrustZone are paving the way to-
wards hardware enclaves, much more needs to be done before they
can be fully embraced by AI applications. In particular, existing en-
claves exhibit various resource limitations such as addressable mem-
ory, and they are only available for a few general purpose CPUs.
Removing these limitations, and providing a uniform hardware
enclave abstraction across a diverse set of specialized processors,
including GPUs and TPUs, are promising directions of research. In
addition, open instruction set processors, such as RISC-V represent
an exciting “playground” to develop new security features.

Research: (1) Design domain-speci�c hardware architectures to
improve the performance and reduce power consumption of AI ap-
plications by orders of magnitude, or enhance the security of these
applications. (2) Design AI software systems to take advantage of these
domain-speci�c architectures, resource disaggregation architectures,
and future non-volatile storage technologies.

R8: Composable AI systems. Modularity and composition
have played a fundamental role in the rapid progress of software
systems, as they allowed developers to rapidly build and evolve new
systems from existing components. Examples range from microker-
nel OSes [3, 68], LAMP stack [64], microservice architectures [85],
and the internet [26]. In contrast, today’s AI systems are monolithic
which makes them hard to develop, test, and evolve.

Similarly, modularity and composition will be key to increasing
development speed and adoption of AI, by making it easier to
integrate AI in complex systems. Next, we discuss several research
problems in the context of model and action composition.

Model composition is critical to the development of more �exible
and powerful AI systems. Composingmultiple models and querying
them in di�erent patterns enables a tradeo� between decision accu-
racy, latency, and throughput in a model serving system [29, 106]
In one example, we can query models serially, where each model
either renders the decision with su�ciently high accuracy or says
“I’m not sure”. In the latter case, the decision is passed to the next
model in the series. By ordering the models from the highest to the
lowest “I’m not sure” rate, and from lowest to the highest latency,
we can optimize both latency and accuracy.

To fully enable model composition, many challenges remain to
be addressed. Examples are (1) designing a declarative language
to capture the topology of these components and specifying per-
formance targets of the applications, (2) providing accurate perfor-
mance models for each component, including resource demands,
latency and throughput, and (3) scheduling and optimization al-
gorithms to compute the execution plan across components, and

A Berkeley View of Systems Challenges for AI,

map components to the available resources to satisfy latency and
throughput requirements while minimizing costs.

Action composition consists of aggregating sequences of basic
decisions/actions into coarse-grained primitives, also called options.
In the case of a self-driving car, an example of an option is changing
the lane while driving on a highway, while the actions are speeding
up, slowing down, turning left or right, signaling the change of
direction, etc. In the case of a robot, an example of a primitive could
be grasping an object, while actions include actuating the robot’s
joints. Options have been extensively studied in the context of hier-
archical learning [30, 34, 84, 97, 102, 110]. Options can dramatically
speed up learning or adaptation to a new scenario by allowing the
agent to select from a list of existing options to accomplish a given
task, rather than from a much longer list of low-level actions.

A rich library of options would enable the development of new
AI applications by simply composing the appropriate options the
same way web programmers develop applications today in just
a few lines of code by invoking powerful web APIs. In addition,
options can improve responsiveness as selecting the next action
within an option is a much simpler task than selecting an action in
the original action space.

Research: Design AI systems and APIs that allow the composition
of models and actions in a modular and �exible manner, and develop
rich libraries of models and options using these APIs to dramatically
simplify the development of AI applications.

R9: Cloud-edge systems. Today, many AI applications such as
speech recognition and language translation are deployed in the
cloud. Going forward we expect a rapid increase in AI systems that
span edge devices and the cloud. On one hand, AI systems which are
currently cloud only, such as user recommendation systems [72],
are moving some of their functionality to edge devices to improve
security, privacy, latency and safety (including the ability to cope
with being disconnected from the internet). On the other hand,
AI systems currently deployed at the edge, such as self-driving
cars, drones, and home robots, are increasingly sharing data and
leveraging the computational resources available in the cloud to
update models and policies [61].

However, developing cloud and the cloud-edge systems is chal-
lenging for several reasons. First, there is a large discrepancy be-
tween the capabilities of edge devices and datacenter servers. We
expect this discrepancy to increase in the future, as edge devices,
such as cellphones and tablets, havemuchmore stringent power and
size constraints than servers in datacenters. Second, edge devices
are extremely heterogeneous both in terms of resource capabilities,
ranging from very low power ARM or RISC-V CPUs that power IoT
devices to powerful GPUs in self-driving cars, and software plat-
forms. This heterogeneity makes application development much
harder. Third, the hardware and software update cycles of edge
devices are signi�cantly slower than in a datacenter. Fourth, as the
increase in the storage capacity slows down, while the growth in
the data being generated continues unabated, it may no longer be
feasible or cost e�ective to store this deluge of data.

There are two general approaches to addressing the mix of cloud
and edge devices. The �rst is to repurpose code to multiple hetero-
geneous platforms via retargetable software design and compiler
technology. To address the wide heterogeneity of edge devices and
the relative di�culty of upgrading the applications running on

these devices, we need new software stacks that abstract away the
heterogeneity of devices by exposing the hardware capabilities to
the application through common APIs. Another promising direc-
tion is developing compilers and just-in-time (JIT) technologies to
e�ciently compile on-the-�y complex algorithms and run them on
edge devices. This approach can leverage recent code generation
tools, such as TensorFlow’s XLA [107], Halide [50], and Weld [83].

The second general approach is to design AI systems that are
well suited to partitioned execution across the cloud and the edge.
As one example, model composition (see Section 4.3) could allow
one to run the lighter but less accurate models at the edge, and the
computation-intensive but higher-accuracy models in the cloud.
This architecture would improve decision latency, without compro-
mising accuracy, and it has been already employed in recent video
recognition systems [59, 115]. In another example, action composi-
tion would allow building systems where learning of hierarchical
options [63] takes place on powerful clusters in the cloud, and then
execution of these options happens at the edge.

Robotics is one application domain that can take advantage of a
modular cloud-edge architecture. Today, there is a scarcity of open
source platforms to develop robotic applications. ROS, arguably
the most popular such platform in use today, is con�ned to run-
ning locally and lacks many performance optimizations required
by real-time applications. To take advantage of the new develop-
ments in AI research such as shared and continual learning, we
need systems that can span both edge devices (e.g., robots) and
the cloud. Such systems would allow developers to seamlessly mi-
grate the functionality between a robot and the cloud to optimize
decision latency and learning convergence. While the cloud can
run sophisticated algorithms to continually update the models by
leveraging the information gathered by distributed robots in real
time, the robots can continue to execute the actions locally based
on previously downloaded policies.

To address the challenge of the data deluge collected by the
edge devices, learning-friendly compression methods can be used
to reduce processing overhead. Examples of such methods include
sampling and sketching, which have already been successfully em-
ployed for analytics workloads [4, 10, 28, 51, 81]. One research
direction is to aggressively leverage sampling and sketching in a
systematic way to support a variety of learning algorithms and pre-
diction scenarios. An arguably more di�cult challenge is to reduce
the storage overhead, which might require to delete data. The key
challenge here is that we do not always know how the data will be
used in the future. This is essentially a compression problem, but
compression for the purposes of ML algorithms. Again, distributed
approaches based in materialized samples and sketches can help
provide solutions to this problem, as can ML-based approaches in
the form of feature selection or model selection protocols.

Research: Design cloud-edge AI systems that (1) leverage the edge
to reduce latency, improve safety and security, and implement intel-
ligent data retention techniques, and (2) leverage the cloud to share
data and models across edge devices, train sophisticated computation-
intensive models, and take high quality decisions.

A Berkeley View of Systems Challenges for AI A Berkeley View of Systems Challenges for AI,

5 CONCLUSION
The striking progress of AI during just the last decade is leading
to the successful transition from the research lab into commercial
services that have previously required human input and oversight.
Rather than replacing human workers, AI systems and robots have
potential to enhance human performance and facilitate new forms
of collaboration [44].

To realize the full promise of AI as a positive force in our lives,
there are daunting challenges to overcome, and many of these chal-
lenges are related to systems and infrastructure. These challenges
are driven by the realization that AI systems will need to make
decisions that are faster, safer, and more explainable, securing these
decisions as well as the learning processes against ever more sophis-
ticated types of attacks, continuously increasing the computation
capabilities in the face of the end of Moore’s Law, and building com-
posable systems that are easy to integrate in existing applications
and can span the cloud and the edge.

This paper proposes several open research directions in systems,
architectures, and security that have potential to address these
challenges. We hope these questions will inspire new research that
can advance AI and make it more capable, understandable, secure
and reliable.

REFERENCES
[1] A History of Storage Cost. 2017. http://www.mkomo.com/

cost-per-gigabyte-update. (2017).
[2] Martin Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen,

Craig Citro, Greg S Corrado, Andy Davis, Je�rey Dean, and Matthieu Devin. 2015.
TensorFlow: Large-scale machine learning on heterogeneous systems. (2015).

[3] Mike Accetta, Robert Baron, William Bolosky, David Golub, Richard Rashid,
Avadis Tevanian, and Michael Young. 1986. Mach: A New Kernel Foundation for
UNIX Development. 93–112.

[4] Sameer Agarwal et al. 2013. BlinkDB: queries with bounded errors and bounded
response times on very large data. In EuroSys.

[5] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative
technology for CPU based attestation and sealing. In Proceedings of the 2nd
international workshop on hardware and architectural support for security and
privacy, Vol. 13.

[6] Ittai Anati, Shay Gueron, Simon P Johnson, and Vincent R Scarlata. 2013. Inno-
vative Technology for CPU Based Attestation and Sealing. (2013).

[7] Apache Hadoop. 2017. http://hadoop.apache.org/. (2017).
[8] Apache Mahout. 2017. http://mahout.apache.org/. (2017).
[9] Sergei Arnautov, Bohdan Trach, Franz Gregor, Thomas Knauth, Andre Martin,

Christian Priebe, Joshua Lind, Divya Muthukumaran, Daniel OâĂŹKee�e, Mark L
Stillwell, et al. 2016. SCONE: Secure linux containers with Intel SGX. In 12th
USENIX Symp. Operating Systems Design and Implementation.

[10] Peter Bailis, Edward Gan, Samuel Madden, Deepak Narayanan, Kexin Rong, and
Sahaana Suri. 2017. MacroBase: Prioritizing Attention in Fast Data. In Proceedings
of the 2017 ACM International Conference on Management of Data (SIGMOD ’17).
ACM, New York, NY, USA, 541–556.

[11] Luiz Andre Barroso and Urs Hoelzle. 2009. The Datacenter As a Computer: An
Introduction to the Design of Warehouse-Scale Machines. Morgan and Claypool.

[12] Andrew Baumann, Marcus Peinado, and Galen Hunt. 2015. Shielding applications
from an untrusted cloud with haven. ACM Transactions on Computer Systems
(TOCS) 33, 3 (2015), 8.

[13] Michael Ben-Or, Sha� Goldwasser, and Avi Wigderson. 1988. Completeness theo-
rems for non-cryptographic fault-tolerant distributed computation. In Proceedings
of the 20th ACM symposium on Theory of Computing.

[14] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pascal Lamblin, Razvan Pas-
canu, Guillaume Desjardins, Joseph Turian, David Warde-Farley, and Yoshua
Bengio. 2010. Theano: a CPU and GPU math expression compiler. In Proceedings
of the Python for scienti�c computing conference (SciPy), Vol. 4. Austin, TX, 3.

[15] bigdl. BigDL: Distributed Deep Learning on Apache Spark. https://software.intel.
com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark. (????).

[16] Tay (bot). 2017. https://en.wikipedia.org/wiki/Tay_(bot). (2017).
[17] Léon Bottou. 1998. On-line Learning in Neural Networks. (1998), 9–42.
[18] Léon Bottou. 2010. Large-scale machine learning with stochastic gradient descent.

In Proceedings of COMPSTAT’2010. Springer, 177–186.

[19] Cerebras. 2017. https://www.cerebras.net/. (2017).
[20] Chainer. 2017. https://chainer.org/. (2017).
[21] T.-H. Hubert Chan, Elaine Shi, and Dawn Song. 2010. Private and Continual

Release of Statistics. In ICALP (2), Vol. 6199. Springer.
[22] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun

Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and E�cient Machine Learning Library for Heterogeneous Distributed Systems.
arXiv preprint arXiv:1512.01274 (2015).

[23] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun
Xiao, Bing Xu, Chiyuan Zhang, and Zheng Zhang. 2015. MXNet: A Flexible
and E�cient Machine Learning Library for Heterogeneous Distributed Systems.
CoRR abs/1512.01274 (2015).

[24] Travers Ching, Daniel S Himmelstein, Brett K Beaulieu-Jones, Alexandr A Kalinin,
Brian T Do, Gregory PWay, Enrico Ferrero, Paul-Michael Agapow,Wei Xie, Gail L
Rosen, et al. 2017. Opportunities And Obstacles For Deep Learning In Biology
And Medicine. bioRxiv (2017), 142760.

[25] cisco. 2015. Cisco Global Cloud Index: Forecast and Methodology, 2015-
2020. http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/
global-cloud-index-gci/white-paper-c11-738085.pdf. (2015).

[26] D. Clark. 1988. The Design Philosophy of the DARPA Internet Protocols. SIG-
COMM Comput. Commun. Rev. 18, 4 (Aug. 1988), 106–114.

[27] CMS updates rule allowing claims data to be sold. 2016. http://www.
modernhealthcare.com/article/20160701/NEWS/160709998. (2016).

[28] Graham Cormode, Minos Garofalakis, Peter J Haas, and Chris Jermaine. 2012.
Synopses for massive data: Samples, histograms, wavelets, sketches. Foundations
and Trends in Databases 4, 1–3 (2012), 1–294.

[29] Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. NSDI ’17 (2017).

[30] Peter Dayan and Geo�rey E. Hinton. 1992. Feudal Reinforcement Learning. In
Advances in Neural Information Processing Systems 5, [NIPS Conference, Denver,
Colorado, USA, November 30 - December 3, 1992]. 271–278. http://papers.nips.cc/
paper/714-feudal-reinforcement-learning

[31] Je�rey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Mark
Mao, Marcaurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang, Quoc Le, and
Andrew Y. Ng. 2012. Large Scale Distributed Deep Networks. In NIPS ’12.
http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf

[32] Je�rey Dean and Sanjay Ghemawat. 2004. MapReduce: Simpli�ed Data Processing
on Large Clusters. In Proceedings of the 6th Conference on Symposium on Opearting
Systems Design & Implementation - Volume 6 (OSDI’04).

[33] DeepMind AI Reduces Google Data Centre Cooling Bill by 40%. 2017. https://
deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/.
(2017).

[34] Thomas G. Dietterich. 1998. The MAXQ Method for Hierarchical Reinforcement
Learning. In Proceedings of the Fifteenth International Conference on Machine
Learning (ICML 1998), Madison, Wisconsin, USA, July 24-27, 1998. 118–126.

[35] John Duchi, Michael Jordan, and Martin Wainwright. to appear. Minimax optimal
procedures for locally private estimation. J. Amer. Statist. Assoc. (to appear).

[36] Cynthia Dwork. 2006. Di�erential Privacy. In ICALP (2), Vol. 4052. Springer.
[37] Cynthia Dwork. 2008. Di�erential privacy: A survey of results. In International

Conference on Theory and Applications of Models of Computation.
[38] Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N Rothblum. 2010. Dif-

ferential privacy under continual observation. In Proceedings of the 42nd ACM
symposium on Theory of computing.

[39] Cynthia Dwork and Aaron Roth. 2014. The algorithmic foundations of di�erential
privacy. Foundations and Trends in Theoretical Computer Science 9 (2014).

[40] The Economist. 2017. The world’s most valuable resource is no longer oil, but
data. (May 2017).

[41] FireBox. 2017. https://bar.eecs.berkeley.edu/projects/2015-�rebox.html. (2017).
[42] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. 2015. Model inversion

attacks that exploit con�dence information and basic countermeasures. In Pro-
ceedings of the 22nd ACM SIGSAC Conference on Computer and Communications
Security. ACM, 1322–1333.

[43] Sanjay Ghemawat, Howard Gobio�, and Shun-Tak Leung. 2003. The Google File
System. In Proceedings of the Nineteenth ACM Symposium on Operating Systems
Principles (SOSP ’03). 29–43.

[44] Ken Goldberg. 2017. Op-Ed: Call it Multiplicity: Diverse Groups of People and
Machines Working Together. Wall Street Journal (2017).

[45] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to play any mental
game. In Proceedings of the 19th ACM symposium on Theory of computing.

[46] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
2012. PowerGraph: Distributed Graph-parallel Computation on Natural Graphs
(OSDI’12). 17–30.

[47] Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. 2014. Explaining and
harnessing adversarial examples. arXiv preprint arXiv:1412.6572 (2014).

[48] Graohcore. 2017. https://www.graphcore.ai/. (2017).
[49] Alon Halevy, Peter Norvig, , and Fernando Pereira. 2009. The Unreasonable

E�ectiveness of Data. IEEE Intelligent Systems 24, 2 (2009), 8–12.

http://www.mkomo.com/cost-per-gigabyte-update

http://www.mkomo.com/cost-per-gigabyte-update

http://hadoop.apache.org/

http://mahout.apache.org/

https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark

https://software.intel.com/en-us/articles/bigdl-distributed-deep-learning-on-apache-spark

https://en.wikipedia.org/wiki/Tay_(bot)

https://www.cerebras.net/

https://chainer.org/

http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf

http://www.cisco.com/c/dam/en/us/solutions/collateral/service-provider/global-cloud-index-gci/white-paper-c11-738085.pdf

http://www.modernhealthcare.com/article/20160701/NEWS/160709998

http://www.modernhealthcare.com/article/20160701/NEWS/160709998

http://papers.nips.cc/paper/714-feudal-reinforcement-learning

http://papers.nips.cc/paper/714-feudal-reinforcement-learning

http://papers.nips.cc/paper/4687-large-scale-distributed-deep-networks.pdf

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

https://deepmind.com/blog/deepmind-ai-reduces-google-data-centre-cooling-bill-40/

https://bar.eecs.berkeley.edu/projects/2015-firebox.html

https://www.graphcore.ai/

A Berkeley View of Systems Challenges for AI,

[50] Halide: A Language for Image Processing and Computational Photography. 2017.
http://halide-lang.org/. (2017).

[51] JosephM. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. Online Aggregation.
In Proceedings of the 1997 ACM SIGMOD International Conference on Management
of Data (SIGMOD ’97). ACM, New York, NY, USA, 171–182. https://doi.org/10.
1145/253260.253291

[52] Joseph M. Hellerstein, Christoper Ré, Florian Schoppmann, Daisy Zhe Wang,
Eugene Fratkin, Aleksander Gorajek, Kee Siong Ng, Caleb Welton, Xixuan Feng,
Kun Li, and Arun Kumar. 2012. The MADlib Analytics Library: Or MAD Skills,
the SQL. Proc. VLDB Endow. 5, 12 (Aug. 2012), 1700–1711.

[53] John L. Hennessy and David A. Patterson. to appear. Computer Architecture,
Sixth Edition: A Quantitative Approach. (to appear).

[54] Intel Nervana. 2017. https://www.intelnervana.com/intel-nervana-hardware/.
(2017).

[55] Michael Isard, Mihai Budiu, Yuan Yu, Andrew Birrell, and Dennis Fetterly. 2007.
Dryad: Distributed Data-parallel Programs from Sequential Building Blocks. In
Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference on Computer
Systems 2007 (EuroSys ’07). 59–72.

[56] Martin Jaggi, Virginia Smith, Martin Takac, Jonathan Terhorst, Sanjay Krish-
nan, Thomas Ho�mann, and Michael I. Jordan. 2015. Communication-E�cient
Distributed Dual Coordinate Ascent. In NIPS, 27.

[57] Yangqing Jia, Evan Shelhamer, Je� Donahue, Sergey Karayev, Jonathan Long,
Ross Girshick, Sergio Guadarrama, and Trevor Darrell. 2014. Ca�e: Convolutional
architecture for fast feature embedding. In Proceedings of the ACM International
Conference on Multimedia. ACM, 675–678.

[58] Norman P. Jouppi, Cli� Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Cli�ord Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Je�rey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati,
William Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu,
Robert Hundt, Dan Hurt, Julian Ibarz, Aaron Ja�ey, Alek Jaworski, Alexander
Kaplan, Harshit Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve
Lacy, James Laudon, James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle
Lucke, Alan Lundin, Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran
Miller, Rahul Nagarajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie,
Mark Omernick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross,
Amir Salek, Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham,
Jed Souter, Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo
Tian, Horia Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang,
Eric Wilcox, and Doe Hyun Yoon. 2017. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the 44th Annual International
Symposium on Computer Architecture (ISCA ’17). ACM, New York, NY, USA, 1–12.
https://doi.org/10.1145/3079856.3080246

[59] Daniel Kang, John Emmons, Firas Abuzaid, Peter Bailis, and Matei Zaharia.
2017. Optimizing Deep CNN-Based Queries over Video Streams at Scale. CoRR
abs/1703.02529 (2017).

[60] Asterios Katsifodimos and Sebastian Schelter. 2016. Apache Flink: Stream Ana-
lytics at Scale.

[61] Ben Kehoe, Sachin Patil, Pieter Abbeel, and Ken Goldberg. 2015. A Survey of
Research on Cloud Robotics and Automation. IEEE Trans. Automation Science
and Eng. 12, 2 (2015).

[62] Diederik P. Kingma and Jimmy Ba. 2014. Adam: A Method for Stochastic Opti-
mization. CoRR abs/1412.6980 (2014). http://arxiv.org/abs/1412.6980

[63] Sanjay Krishnan, Roy Fox, Ion Stoica, and Ken Goldberg. 2017. DDCO: Discovery
of Deep Continuous Options for Robot Learning from Demonstrations. In 1st
Conference on Robot Learning (CoRL).

[64] LAMP (software bundle). 2017. https://en.wikipedia.org/wiki/LAMP_(software_
bundle). (2017).

[65] Leo Leung. 2015. How much data does x store? (March 2015). https:
//techexpectations.org/tag/how-much-data-does-youtube-store/

[66] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. 2016. End-to-end
Training of Deep Visuomotor Policies. J. Mach. Learn. Res. 17, 1 (Jan. 2016),
1334–1373. http://dl.acm.org/citation.cfm?id=2946645.2946684

[67] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed,
Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. 2014. Scaling
Distributed Machine Learning with the Parameter Server. In OSDI ’14. 583–598.

[68] J. Liedtke. 1995. On Micro-kernel Construction. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems Principles (SOSP ’95). ACM, New York,
NY, USA, 237–250. https://doi.org/10.1145/224056.224075

[69] M. W. Mahoney and P. Drineas. 2009. CUR Matrix Decompositions for Improved
Data Analysis. Proc. Natl. Acad. Sci. USA 106 (2009), 697–702.

[70] Dahlia Malkhi, Noam Nisan, Benny Pinkas, Yaron Sella, et al. 2004. Fairplay-
Secure Two-Party Computation System.. In USENIX Security Symposium, Vol. 4.
San Diego, CA, USA.

[71] Michael Mccloskey and Neil J. Cohen. 1989. Catastrophic Interference in Connec-
tionist Networks: The Sequential Learning Problem. The Psychology of Learning
and Motivation 24 (1989), 104–169.

[72] H. Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and
Blaise Aguera y Arcas. 2016. Communication-E�cient Learning of Deep Net-
works fromDecentralized Data. In Proceedings of the 20th International Conference
on Arti�cial Intelligence and Statistics (AISTATS). http://arxiv.org/abs/1602.05629

[73] Shike Mei and Xiaojin Zhu. 2015. The Security of Latent Dirichlet Allocation.. In
AISTATS.

[74] Shike Mei and Xiaojin Zhu. 2015. Using Machine Teaching to Identify Optimal
Training-Set Attacks on Machine Learners.. In AAAI. 2871–2877.

[75] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris
Xin, Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet
Talwalkar. 2016. MLlib: Machine Learning in Apache Spark. Journal of Machine
Learning Research 17, 34 (2016), 1–7. http://jmlr.org/papers/v17/15-237.html

[76] Tom M Mitchell, William W Cohen, Estevam R Hruschka Jr, Partha Pratim
Talukdar, Justin Betteridge, Andrew Carlson, Bhavana Dalvi Mishra, Matthew
Gardner, Bryan Kisiel, Jayant Krishnamurthy, et al. 2015. Never Ending Learning..
In AAAI. 2302–2310.

[77] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness,
Marc G. Bellemare, Alex Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg
Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, Ioannis Antonoglou, Helen
King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis. 2015.
Human-level control through deep reinforcement learning. Nature 518, 7540 (26
02 2015), 529–533. http://dx.doi.org/10.1038/nature14236

[78] Dharmendra Modha. 2016. The brainâĂŹs architecture, e�ciencyâĂę
on a chip. (Dec. 2016). https://www.ibm.com/blogs/research/2016/12/
the-brains-architecture-e�ciency-on-a-chip/

[79] Derek G. Murray, Malte Schwarzkopf, Christopher Smowton, Steven Smith, Anil
Madhavapeddy, and Steven Hand. 2011. CIEL: A Universal Execution Engine for
Distributed Data-�ow Computing. In Proceedings of the 8th USENIX Conference
on Networked Systems Design and Implementation (NSDI’11). USENIX Association,
Berkeley, CA, USA, 113–126. http://dl.acm.org/citation.cfm?id=1972457.1972470

[80] Average Historic Price of RAM. 2017. http://www.statisticbrain.com/average-
historic-price-of-ram/. (2017).

[81] Frank Olken and Doron Rotem. 1990. Random sampling from database �les: A
survey. Statistical and Scienti�c Database Management (1990), 92–111.

[82] Open MPI: Open Source High Performance Computing. 2017. https://www.
open-mpi.org/. (2017).

[83] Shoumik Palkar, James J. Thomas, Anil Shanbhag, Deepak Narayanan, Holger
Pirk, Malte Schwarzkopf, Saman Amarasinghe, and Matei Zaharia. 2017. Weld:
A Common Runtime for High Performance Data Analytics. In CIDR.

[84] Ronald Parr and Stuart J. Russell. 1997. Reinforcement Learning with Hierarchies
of Machines. In Advances in Neural Information Processing Systems 10, [NIPS
Conference, Denver, Colorado, USA, 1997]. 1043–1049. http://papers.nips.cc/paper/
1384-reinforcement-learning-with-hierarchies-of-machines

[85] Pattern: Microservice Architecture. 2017. http://microservices.io/patterns/
microservices.html. (2017).

[86] Jan Peters and Stefan Schaal. 2008. Reinforcement learning of motor skills with
policy gradients. Neural networks 21, 4 (2008), 682–697.

[87] Gil Press. 2016. Forrester Predicts Investment In Arti�cial Intelligence Will Grow
300% in 2017. Forbes (November 2016).

[88] Project Catapult. 2017. https://www.microsoft.com/en-us/research/project/
project-catapult/. (2017).

[89] PyTorch. 2017. http://pytorch.org/. (2017).
[90] Rajat Raina, Anand Madhavan, and Andrew Y. Ng. 2009. Large-scale Deep

Unsupervised Learning Using Graphics Processors. In Proceedings of the 26th
Annual International Conference on Machine Learning (ICML ’09). ACM, New
York, NY, USA, 873–880. https://doi.org/10.1145/1553374.1553486

[91] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. 2011. Hogwild:
A Lock-Free Approach to Parallelizing Stochastic Gradient Descent. In NIPS 24.

[92] John Schulman, Sergey Levine, Philipp Moritz, Michael I. Jordan, and Pieter
Abbeel. 2015. Trust Region Policy Optimization. In Proceedings of the 32nd
International Conference on Machine Learning (ICML).

[93] Felix Schuster, Manuel Costa, Cédric Fournet, Christos Gkantsidis, Marcus
Peinado, Gloria Mainar-Ruiz, and Mark Russinovich. 2015. VC3: Trustworthy
data analytics in the cloud using SGX. In Security and Privacy (SP), 2015 IEEE
Symposium on. IEEE, 38–54.

[94] Reza Shokri, Marco Stronati, and Vitaly Shmatikov. 2016. Membership inference
attacks against machine learning models. arXiv preprint arXiv:1610.05820 (2016).

[95] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George
Van Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershel-
vam, Marc Lanctot, and others. 2016. Mastering the game of Go with deep neural
networks and tree search. Nature 529, 7587 (2016), 484–489.

[96] Daniel L Silver, Qiang Yang, and Lianghao Li. 2013. Lifelong Machine Learning
Systems: Beyond Learning Algorithms.. In AAAI Spring Symposium: Lifelong
Machine Learning, Vol. 13. 05.

[97] Satinder P. Singh. 1992. Reinforcement Learning with a Hierarchy of Abstract
Models. In Proceedings of the 10th National Conference on Arti�cial Intelligence.

http://halide-lang.org/

https://doi.org/10.1145/253260.253291

https://doi.org/10.1145/253260.253291

https://www.intelnervana.com/intel-nervana-hardware/

https://doi.org/10.1145/3079856.3080246

http://arxiv.org/abs/1412.6980

https://en.wikipedia.org/wiki/LAMP_(software_bundle)

https://en.wikipedia.org/wiki/LAMP_(software_bundle)

https://techexpectations.org/tag/how-much-data-does-youtube-store/

https://techexpectations.org/tag/how-much-data-does-youtube-store/

http://dl.acm.org/citation.cfm?id=2946645.2946684

https://doi.org/10.1145/224056.224075

http://arxiv.org/abs/1602.05629

http://jmlr.org/papers/v17/15-237.html

http://dx.doi.org/10.1038/nature14236

https://www.ibm.com/blogs/research/2016/12/the-brains-architecture-efficiency-on-a-chip/

https://www.ibm.com/blogs/research/2016/12/the-brains-architecture-efficiency-on-a-chip/

http://dl.acm.org/citation.cfm?id=1972457.1972470

https://www.open-mpi.org/

https://www.open-mpi.org/

http://papers.nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines

http://papers.nips.cc/paper/1384-reinforcement-learning-with-hierarchies-of-machines

http://microservices.io/patterns/microservices.html

http://microservices.io/patterns/microservices.html

https://www.microsoft.com/en-us/research/project/project-catapult/

https://www.microsoft.com/en-us/research/project/project-catapult/

http://pytorch.org/

https://doi.org/10.1145/1553374.1553486

A Berkeley View of Systems Challenges for AI A Berkeley View of Systems Challenges for AI,

San Jose, CA, July 12-16, 1992. 202–207. http://www.aaai.org/Library/AAAI/1992/
aaai92-032.php

[98] Evan R Sparks et al. 2013. MLI: An API for distributed machine learning. In
ICDM.

[99] Stephane Ross. 2013. Interactive Learning for Sequential Decisions and Predic-
tions. https://en.wikipedia.org/wiki/LAMP_(software_bundle). (2013).

[100] Zachary D Stephens, Skylar Y Lee, Faraz Faghri, Roy H Campbell, Chengxiang
Zhai, Miles J Efron, Ravishankar Iyer, Michael C Schatz, Saurabh Sinha, and
Gene E Robinson. 2015. Big data: Astronomical or genomical? PLoS Biology 13, 7
(2015), e1002195.

[101] Richard S. Sutton. Integrated architectures for learning, planning, and reacting
based on approximating dynamic programming. In Proceedings of the Seventh
International Conference on Machine Learning. Morgan Kaufmann.

[102] Richard S. Sutton, Doina Precup, and Satinder P. Singh. 1999. BetweenMDPs and
Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.
Artif. Intell. 112, 1-2 (1999), 181–211. https://doi.org/10.1016/S0004-3702(99)
00052-1

[103] Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru
Erhan, Ian Goodfellow, and Rob Fergus. 2013. Intriguing properties of neural
networks. arXiv preprint arXiv:1312.6199 (2013).

[104] Kai-Fu Tang, Hao-Cheng Kao, Chun-Nan Chou, and Edward Y. Chang. 2016.
Inquire and Diagnose: Neural Symptom Checking Ensemble using Deep Rein-
forcement Learning. http://infolab.stanford.edu/~echang/NIPS_DeepRL_2016_
Symptom_Checker.pdf. (2016).

[105] Russ Tedrake, Teresa Weirui Zhang, and H Sebastian Seung. 2005. Learning to
walk in 20 minutes. In Proceedings of the Fourteenth Yale Workshop on Adaptive
and Learning Systems, Vol. 95585. Yale University New Haven (CT), 1939–1412.

[106] TensorFlow Serving. 2017. https://tensor�ow.github.io/serving/. (2017).
[107] TensorFlow XLA. 2017. https://www.tensor�ow.org/performance/xla/. (2017).
[108] Gerald Tesauro. 1995. Temporal di�erence learning and TD-Gammon. Commun.

ACM 38, 3 (1995), 58–68.
[109] Sebastian Thrun. 1998. Lifelong learning algorithms. Learning to learn 8 (1998),

181–209.
[110] Sebastian Thrun and Anton Schwartz. 1994. Finding Structure in Reinforce-

ment Learning. In Advances in Neural Information Processing Systems 7, [NIPS
Conference, Denver, Colorado, USA, 1994]. 385–392. http://papers.nips.cc/paper/
887-�nding-structure-in-reinforcement-learning

[111] Joshua Tobin, Rachel Fong, Alex Ray, Jonas Schneider, Wojciech Zaremba,
and Pieter Abbeel. 2017. Domain Randomization for Transferring Deep Neu-
ral Networks from Simulation to the Real World. CoRR abs/1703.06907 (2017).
http://arxiv.org/abs/1703.06907

[112] Eric Tzeng, Judy Ho�man, Ning Zhang, Kate Saenko, and Trevor Darrell. 2014.
DeepDomain Confusion:Maximizing for Domain Invariance. CoRR abs/1412.3474
(2014). http://arxiv.org/abs/1412.3474

[113] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and
Fabio Roli. 2015. Is feature selection secure against training data poisoning?. In
ICML. 1689–1698.

[114] Matei Zaharia et al. 2012. Resilient distributed datasets: A fault-tolerant abstrac-
tion for in-memory cluster computing. In NSDI ’12.

[115] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodík, Matthai Philipose,
Paramvir Bahl, and Michael J. Freedman. 2017. Live Video Analytics at Scale
with Approximation and Delay-Tolerance. In NSDI.

http://www.aaai.org/Library/AAAI/1992/aaai92-032.php

http://www.aaai.org/Library/AAAI/1992/aaai92-032.php

https://en.wikipedia.org/wiki/LAMP_(software_bundle)

https://doi.org/10.1016/S0004-3702(99)00052-1

https://doi.org/10.1016/S0004-3702(99)00052-1

http://infolab.stanford.edu/~echang/NIPS_DeepRL_2016_Symptom_Checker.pdf

http://infolab.stanford.edu/~echang/NIPS_DeepRL_2016_Symptom_Checker.pdf

https://tensorflow.github.io/serving/

https://www.tensorflow.org/performance/xla/

http://papers.nips.cc/paper/887-finding-structure-in-reinforcement-learning

http://papers.nips.cc/paper/887-finding-structure-in-reinforcement-learning

http://arxiv.org/abs/1703.06907

http://arxiv.org/abs/1412.3474

		Abstract

		1 Introduction

		2 What is Behind AI's Recent Success

		2.1 Big data

		2.2 Big systems

		2.3 Accessibility to state-of-the-art technology

		3 Trends and Challenges

		3.1 Mission-critical AI

		3.2 Personalized AI

		3.3 AI across organizations

		3.4 AI demands outpacing the Moore's Law

		4 Research Opportunities

		4.1 Acting in dynamic environments

		4.2 Secure AI

		4.3 AI-specific architectures

		5 Conclusion

		References

