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Abstract

This paper considers the orchestration of computing with physical
processes. It argues that to realize its full potential, the core abstrac-
tions of computing need to be rethought to incorporate essential prop-
erties of the physical systems, most particularly the passage of time.
It makes a case that the solution cannot be simply overlaid on exist-
ing abstractions, and outlines a number of promising approaches being
pursued. The emphasis needs to be on repeatable behavior rather than
on performance optimization.

1 Introduction

Most microprocessors today are embedded in systems that are not first-and-
foremost computers. They are cars, medical devices, instruments, commu-
nication systems, industrial robots, toys, games, etc. Key to these micro-
processors is their interaction with physical processes through sensors and
actuators. Such microprocessors, however, increasingly resemble general-
purpose computers. They are becoming networked and intelligent, often
at the cost of dependendability. An acquaintance recently installed a wind
turbine on his farm. “The wind turbine is up but not spinning,” he said.
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Scientific Research (MURI #FA9550-06-0312), the Air Force Research Lab (AFRL), the
State of California Micro Program, and the following companies: Agilent, Bosch, HSBC,
Lockheed-Martin, National Instruments, and Toyota.
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“It seems to have a computer; need I say more.”1 We have all heard such
complaints. Whether the computer is culprit or not, they reflect a lack of
confidence in the technology. Is that lack of confidence justified?

Even general-purpose computers are increasingly being asked to per-
form such interactions with physical processes. They integrate media such
as video and audio, and through the migration to handheld platforms and
pervasive computing systems, sense physical dynamics and control physical
devices. Sadly, they don’t do it very well. It is common today to establish
a telephone connection that is of such poor quality that voices are incom-
prehensible. The first digital telephony systems deployed in the 1960s were
better. The video quality that we routinely accept on the internet can be
dramatically lower than the television broadcasts of the 1950s. We have
entered a “Low-Fi” era.2 The technological basis that we have chosen for
general-purpose computing and networking does not match these applica-
tions well. Changes in this basis could improve these applications and enable
many others.

The foundations of computing, rooted in Turing, Church, and von Neu-
mann, are about the transformation of data, not about physical dynamics.
This paper argues that we need to rethink the core abstractions if we re-
ally want to integrate computing with physical processes. In particular, I
focus on a key aspect of physical processes that is almost entirely absent in
computing, the passage of time. This is not just about “real-time systems,”
which accept the foundations and retrofit them with temporal properties.
Although that technology has much to contribute, I will argue that it cannot
solve the problem alone because it is built on flawed foundations.

Many readers will no doubt be already objecting. Computers have be-
come so fast that surely the passage time in most physical processes is so
slow that it can be handled without special effort. But then why is the
latency of audio signals in modern PCs a large fraction of a second? Audio
processes are quite slow by physical standards, and a large fraction of a
second is an enormous amount of time. To achieve good audio performance
in a computer (e.g. in a set-top box, which is required to have good audio
performance), engineers are forced to discard many of the innovations of the
last 30 years of computing. They often work without an operating system,
without virtual memory, without high-level programming languages, with-
out memory management, and without reusable component libraries, which

1Coonmessett Farm email newsletter, R. Smolowitz, June 26, 2008.
2P. Mosterman, in a talk at the Dagstuhl Seminar, Model-based Engineering of Em-

bedded Real-time Systems, Nov. 5-9, 2007.
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do not expose temporal properties on their interfaces. Those innovations are
built on a key premise: that time is irrelevant to correctness; it is at most
a measure of quality. Faster is better, if you are willing to pay the price.
By contrast, what these systems need is not faster computing, but physical
actions taken at the right time. It needs to be a semantic property, not a
quality factor.

But surely the “right time” is expecting too much, the reader may ob-
ject. The physical world is neither precise nor reliable, so why should we
demand this of computing systems? Instead, we must make the systems ro-
bust and adaptive, building reliable systems out of unreliable components.
While I agree that systems need to be designed to be robust, we should
not blithely discard the reliability we have. Electronics technology is as-
tonishingly precise and reliable, more than any other human invention. We
routinely deliver circuits that will perform a logical function essentially per-
fectly, on time, billions of times per second, for years. Shouldn’t we exploit
this remarkable achievement?

I believe we have been lulled into a false sense of confidence by the
considerable successes of embedded software, for example in automotive,
aviation, and robotics applications. But the potential is vastly greater; we
have reached a tipping point, where computing and networking may be inte-
grated into the vast majority of artifacts that humans make. However, as we
move to more networked, more complex, and more intelligent applications,
the problems are going to get worse. Embedded systems will no longer be
black boxes, designed once and immutable in the field. Instead, they will be
pieces of a larger system, a dance of electronics, networking, and physical
processes. An emerging buzzword for such systems is cyber-physical systems
(CPS). The charter for the recent “CPS Summit” says3

“The integration of physical systems and processes with net-
worked computing has led to the emergence of a new generation
of engineered systems: Cyber-Physical Systems (CPS). Such sys-
tems use computations and communication deeply embedded in
and interacting with physical processes to add new capabilities
to physical systems. These cyber-physical systems range from
miniscule (pace makers) to large-scale (the national power-grid).
Because computer-augmented devices are everywhere, they are
a huge source of economic leverage.”

3R. Rajkumar, B. Krogh, et al., CPS Summit: Holistic Approaches to Cyber-Physical
Integration, April 24-25, 2008, St. Louis
http://ike.ece.cmu.edu/twiki/bin/view/CpsSummit/WebHome
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“... it is a profound revolution that turns entire industrial sec-
tors into producers of cyber-physical systems. This is not about
adding computing and communication equipment to conventional
products where both sides maintain separate identities. This is
about merging computing and networking with physical systems
to create new revolutionary science, technical capabilities and
products.”

The challenge of integrating computing and physical processes has been rec-
ognized for some time [26], motivating the emergence of hybrid systems
theories. Progress in that area, however, remains limited to relatively sim-
ple systems combining ordinary differential equations with automata. New
breakthroughs are needed for CPS.

Applications of CPS arguably have the potential to rival the 20-th cen-
tury IT revolution. They include high confidence medical devices and sys-
tems, assisted living, traffic control and safety, advanced automotive sys-
tems, process control, energy conservation, environmental control, avion-
ics, instrumentation, critical infrastructure control (electric power, water
resources, and communications systems for example), distributed robotics
(telepresence, telemedicine), defense systems, manufacturing, and smart
structures. It is easy to envision new capabilities that are technically well
within striking distance, but that would be extremely difficult to deploy
using today’s methods. Consider, for example, a city without traffic lights,
where each car provides the driver with adaptive information on speed limits
and clearance to pass through intersections. We have in hand all the tech-
nical pieces for such a system, but achieving the requisite level of confidence
in the technology seems decades off.

Other applications seem inevitable, but will be deployed without the
benefit of many (or most) developments in computing. Consider distributed
real-time games that integrate sensors and actuators to change the (rela-
tively passive) nature of on-line social interactions. The engineering style of
these systems will more closely resemble the set-top box than the PC.

I contend that today’s computing and networking technologies unnec-
essarily impede progress towards these applications. In an article about
“physical computing systems,” Stankovic et al. [34] state “existing tech-
nology for RTES [real-time embedded systems] design does not effectively
support the development of reliable and robust embedded systems.” In this
paper, I focus on the lack of temporal semantics. Today’s “best effort”
operating system and networking technologies cannot produce the levels of
precision and reliability that most of these applications demand.
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2 Glib Responses

Calling for a fundamental change in the core abstractions of computing is
asking a lot. The reader may argue that the problems can be dealt with
without such a revolution. To illustrate that this is not so, I examine some
popular but misleading aphorisms, some of which suggest that incremental
changes will suffice.

“Computing takes time”
This phrase is used to suggest that if only software designers would ac-

cept this fact of life, then the problems could be dealt with. However, the
phrase is not using the commonly accepted meaning of the word “comput-
ing.” In fact, computing is an abstraction of a physical process that takes
time. But every abstraction omits some details (or it wouldn’t be an ab-
straction), and one of the details that computing omits is time. This choice
(to omit time) has been enormously beneficial, enabling the development of
a very sophisticated technology. My main point in this paper is that there
is a price. This choice has resulted in a mismatch with many of the appli-
cations to which we apply computing. Asking software designers to accept
this fact of life, therefore, is asking them to forgo a key aspect of their most
effective abstractions, without offering a replacement.

The term “computing” refers to the abstraction, not to the physical
process. Were this not true, then a program in a programming language
would not define a computation. One could only define a computation by
describing the physical process. A computation is the same regardless of
how it is executed. This is, in fact, the essence of the abstraction. When
considering CPS, it is arguable that we (as a community) have chosen a
rather inconvenient abstraction.

Moreover, the fact that the physical process takes time is only one of the
reasons that the abstraction is inconvenient. It would still be inconvenient
if the physical process were infinitely fast. In order for computations to
interact meaningfully with other physical processes, they must include time
in the domain of discourse.

“Time is a resource”
Computation, as expressed in modern programming languages, obscures

many resource management problems. Memory is provided without bound
by stacks and heaps. Power and energy consumption are not the concern of
a programmer (mostly). Even when these resource management problems
are important, there is no way to talk about them within the semantics of
a programming language.
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Time, however, is not quite like these other resources. First, barring
metaphysical discourse, it is genuinely unbounded. To consider it a bounded
resource, we would have to say that the available time per unit time is
bounded, a tautology. Second, time gets expended whether we use it or not.
It cannot be conserved and saved for later. This is true up to a point with,
say, battery power, which is unquestionably a resource. Batteries leak, so
their power cannot be indefinitely conserved, but designers rarely optimize
a system to use as much battery power before it leaks away as they can. Yet
that is what they do with time.

If time is a resource, it is a rather unique resource [20]. To lump together
the problem of managing time with the problems of managing other more
conventional resources will inevitably lead to the wrong solutions. Conven-
tional resource management problems are optimization problems, not cor-
rectness problems. Using fewer resources is always better than using more.
Hence, there is no need to make energy consumption a semantic property of
computing. This is not true of time.

“Time is a non-functional property”
What is the “function” of a program? In computation, the function is

a mapping from sequences of input bits to sequences of output bits (or an
equivalent finite alphabet). The Turing-Church thesis defines “computable
functions” to be those that can be expressed by a terminating sequence
of such bits-to-bits functions, or mathematically by a finite composition of
functions whose domain and codomain are the set of sequences of bits.

In CPS, the function of a computation is defined by its effect on the
physical world. This is no less a function than a mapping from bits to bits.
It is a function in the intuitive sense of “what is the function of the system,”
and can also be expressed as a function in the mathematical sense of a
mapping from a domain to a codomain [18]. But as a function, the domain
and codomain are not sequences of bits. Why are we insisting on the wrong
definition of “function”?

Designers of operating systems, web servers, and communication pro-
tocols take a reactive view of programs, where a program is a sequence of
input/output events rather than a mapping from bits to bits. This view
needs to be elevated to the application programmer level and augmented
with explicit temporal dynamics.

“Real time is a quality of service problem”
Everybody wants quality. Higher quality is always better than lower

quality (at least, under constant resource usage, creating a paradox with
“time is a resource”). Indeed, in general-purpose computing, a key quality
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measure is execution time (or equivalently, “performance”). But time in
embedded systems plays a different role. Less time is not better than more
time, as it is with performance. That would imply that it is better for an
engine controller to fire the spark plugs earlier than later. Finishing early
is not always a good thing, and in fact can lead to paradoxical behaviors
where finishing early causes deadlines to be missed [8]. In an analysis that
remains as valid today as 19 years ago, Stankovic [33] laments the resulting
misconceptions that real-time computing “is equivalent to fast computing”
or “is performance engineering.” CPS requires repeatable behavior far more
than optimized performance.

Precision and variability in timing are quality of service problems, but
time itself is much more than that. If time is not present in the semantics
of programs, then no amount of “quality of service” will adequately address
timing properties of CPS.

3 Correctness

To solidify our discussion, we need to define some terms. Our definitions
are based on the formal model known as the tagged signal model [19].

A design is a description of a system. For example, a C program is a
design. So is a C program together with a choice of microprocessor, a choice
of peripherals, and a choice of operating system. The latter design is more
detailed (less abstract) than the former.

More precisely, a design is a set of behaviors. A behavior is a valuation
of observable variables, including all externally supplied inputs. These vari-
ables may be themselves functions. For example, in a very detailed design,
each behavior may be a trace of electrical signals at the inputs and outputs
of the system. The semantics of a design is a set of behaviors.

In practice, a design is given in a design language, which may be for-
mal, informal, or some mixture of the two. A design in a design language
expresses the intent of the designer by defining the set of acceptable behav-
iors. Clearly, if the design language has precise (mathematical) semantics,
then the set of behaviors is unambiguous. There could, of course, be errors
in the expression, in which case the semantics will include behaviors that
are not intended by the designer.

For example, a function given in a pure functional programming language
is a design. We can define a behavior to be a pair of inputs and outputs (ar-
guments and results). The semantics of the program is the set of all possible
behaviors. This set defines the function specified by the program. Alter-
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natively, we could define a behavior to include timing information (when
the input is provided and when the output is produced). In this case, the
semantics of the program includes all possible latencies (outputs can be pro-
duced arbitrarily later than the corresponding inputs), since nothing about
the design language constrains timing.

A correct execution is any execution consistent with the semantics of the
design. That is, given inputs, a correct execution finds a behavior consis-
tent with those inputs in the semantics. If the design language has loose or
imprecise semantics, then “correct” executions may be unexpected. Con-
versely, if the design expresses every last detail of the implementation, down
to printed circuit boards and wires, then a correct execution may be, by
definition, any execution performed by said implementation. For the func-
tional program above, an execution is correct regardless of how long it takes
to produce the output.

A repeatable behavior is a behavior exhibited by every correct execution
given the same inputs in that behavior. For example, any behavior of the
pure functional program is repeatable if we define behaviors without timing,
but no behavior is repeatable if we define behaviors to include timing. How
we define behaviors is important. The functional program can be made
repeatable with timing by giving more detail in the design, for example by
specifying a particular computer, compiler, and initial condition on caches,
memory, etc. The design has to get far less abstract to make these behaviors
repeatable.

A predictable behavior is a behavior that can be determined in finite time
by analysis of the design. That is, given only the information expressed in
the design language, it needs to be possible to infer the behavior given the
inputs. For a particular functional program, behaviors may be predictable,
but given an expressive enough functional language, it will always be possible
to give programs where behaviors are not predictable. If the language is
Turing complete, then behaviors may be undecidable. In practice, even
“finite time” is not really sufficient. To be usefully predictable, behaviors
need to be inferred in reasonable time.

Designs are generally abstractions of systems, omitting certain details.
For example, even the most detailed design may not specify how behaviors
change if the system is incinerated or crushed. An implementation of this
design, however, does have specific reactions to these events (albeit probably
not predictable reactions). Reliability is the extent to which an implemen-
tation of a design delivers correct behaviors over time and over varying
operating conditions. A system that tolerates more operating conditions
or remains correct for a longer period of time is said to be more reliable.
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The operating conditions include conditions in the environment (tempera-
ture, input values, timing of inputs, humidity, etc.), but also may include
conditions in the system itself, such as fault conditions (failures in commu-
nications, loss of power, etc.). A brittle system is one where small changes
in the operating conditions or in the design yield incorrect behaviors. Con-
versely, a robust system remains correct with small changes in operating
conditions or in the design. Making these concepts mathematically precise
is extremely difficult for most design languages, so engineers are often stuck
with intuitive and approximate assessments of these properties.

4 Requirements

Embedded systems have always been held to a higher reliability standard
than general-purpose computing. Consumers do not expect their TV to
crash and reboot. They have come to count on highly reliable cars, where
in fact the use of computer controller has dramatically improved both the
reliability and efficiency. In the transition to CPS, this expectation of relia-
bility will only increase. In fact, without improved reliability, CPS will not
be deployed into such applications as traffic control, automotive safety, and
health care.

The physical world, however, is not entirely predictable. Cyber-physical
systems will not be operating in a controlled environment, and must be
robust to unexpected conditions and adaptable to subsystem failures. An
engineer faces an intrinsic tension; designing reliable components makes it
easier to assemble these components into reliable systems. But no compo-
nent is perfectly reliable, and the physical environment will manage to foil
reliability by presenting unexpected conditions. Given components that are
reliable, how much can a designer depend on that reliability when designing
the system? How does she avoid brittle designs?

The problem of designing reliable systems is not new in engineering. Two
key engineering tools that we use are analysis and testing. Engineers analyze
designs to predict behaviors under various operating conditions. For this to
work, the designs must be predictable. They must yield to such analysis.
Engineers also test systems under various operating conditions. Without
repeatability, testing is a questionable practice.

Digital circuit designers have the luxury of working with a technology
that delivers predictable and repeatable logical function and timing. This is
true despite the highly random underlying physics. Circuit designers have
learned to harness intrinsically stochastic physical processes to deliver a
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degree of repeatability and predictability that is unprecedented in the history
of human innovation. In my opinion, we should be extremely reluctant to
give this up.

The principle that we need to follow is simple. Components at any level
of abstraction should be made as predictable and repeatable as is technolog-
ically feasible. The next level of abstraction above these components must
compensate for any remaining variability with robust design.

Successful designs today follow this principle. It is (still) technically fea-
sible to make predictable gates with repeatable behaviors that include both
logical function and timing. So we design systems that count on this. It is
harder to make wireless links predictable and repeatable. So we compensate
one level up, using robust coding schemes and adaptive protocols.

The obvious question, therefore, is whether it is technically feasible to
make software systems that yield predictable and repeatable behaviors for
CPS. At the foundations of computer architecture and programming lan-
guages, software is essentially perfectly predictable and repeatable, if we
limit the term “software” to refer to what is expressed in simple program-
ming languages. Given an imperative language with no concurrency, well-
defined semantics, and a correct compiler, designers can count on any com-
puter with adequate memory to perform exactly what is specified in the
program with nearly 100% confidence.

The problem arises when we scale up from simple programs to software
systems, and particularly to CPS. The fact is that even the simplest C
program is not predictable and repeatable in the context of CPS because
the design does not express aspects of the behavior that are essential to the
system. It may execute perfectly, exactly matching its semantics (to the
extent that C has semantics), and still fail to deliver the behavior needed
by the system. For example, it could miss timing deadlines. Since timing
is not in the semantics of C, whether a program misses deadlines is in fact
irrelevant to determining whether it has executed correctly. But it is very
relevant to determining whether the system has performed correctly. A
component that is perfectly predictable and repeatable turns out not to be
predictable and repeatable in the dimensions that matter. This is a failure
of abstraction.

The problem gets worse as software systems get more complex. If we
step outside C and use operating system primitives to perform I/O or to
set up concurrent threads, we immediately move from essentially perfect
predictability and repeatability to wildly nondeterministic behavior that
must be carefully reigned in by the software designer [18]. Semaphores,
mutual exclusion locks, transactions, and priorities are some of the tools
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Figure 1: Abstraction layers in computing.

that software designers have developed to attempt to compensate for this
loss of predictability and repeatability.

But the question we must ask is whether this loss of predictability and
repeatability is really necessary. I believe it is not. If we find a way to
deliver predictable software with repeatable behavior (with respect to be-
havior properties that matter, such as timing), then we do not eliminate the
need to design robust systems, but we dramatically change the nature of the
challenge. We must follow the principle of making systems predictable and
repeatable if this is technically feasible, and give up only when there is con-
vincing evidence that this is not possible or cost effective. There is no such
evidence for software. Moreover, we have an enormous asset: the substrate
on which we build software systems (digital circuits) is essentially perfectly
predictable and repeatable with respect to properties we care about (timing
and logical functionality).

Let us examine further the failure of abstraction. Figure 1 illustrates
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schematically some of the abstraction layers on which we depend when de-
signing embedded systems. In this three-dimensional Venn diagram, each
box represents a set of designs. E.g., at the bottom, we have the set of all
microprocessors. An element of this set, e.g., the Intel P4-M 1.6GHz, is a
particular microprocessor design. Above that is the set of all x86 programs,
each of which can run on that processor. This set is defined precisely (unlike
the previous set, which is difficult to define) by the x86 instruction set ar-
chitecture (ISA). Any program coded in that instruction set is a member of
the set; for example, a particular implementation of a Java virtual machine
may be a member of the set. Associated with that member is another set,
the set of all JVM bytecode programs. Each of these programs is (typically)
synthesized by a compiler from a Java program, which is a member of the set
of all syntactically valid Java programs. Again, this set is defined precisely
by Java syntax.

Each of these sets provides an abstraction layer that is intended to isolate
a designer (the person or program that selects elements of the set) from the
details below. Many of the best innovations in computing have come from
careful and innovative construction and definition of these sets.

However, in the current state of embedded software, nearly every ab-
straction has failed. The instruction-set architecture, meant to hide hard-
ware implementation details from the software, has failed because the user
of the ISA cares about timing properties that the ISA cannot express. The
programming language, which hides details of the ISA from the program
logic, has failed because no widely used programming language expresses
timing properties. Timing is merely an accident of the implementation. A
real-time operating system hides details of the program from their concur-
rent orchestration, yet this fails if the timing of the underlying platform
is not repeatable, or if execution times cannot be determined. The net-
work hides details of electrical or optical signaling from systems, but most
standard networks provide no timing guarantees and fail to provide an ap-
propriate abstraction. A system designer is stuck with a system design (not
just implementation) in silicon and wires.

All embedded systems designers face versions of this problem. Aircraft
manufacturers have to stockpile the electronic parts needed for the entire
production line of an aircraft model to avoid having to recertify the software
if the hardware changes. “Upgrading” a microprocessor in an engine control
unit for a car requires thorough re-testing of the system. Even “bug fixes”
in the software or hardware can be extremely risky, since they can change
timing behavior.

The design of an abstraction layer involves many choices, and computer
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scientists have chosen to hide timing properties from all higher abstractions.
Wirth [38] says “It is prudent to extend the conceptual framework of se-
quential programming as little as possible and, in particular, to avoid the
notion of execution time.” In an embedded system, however, computations
interact directly with the physical world, where time cannot be abstracted
away. Even general-purpose computing suffers from these choices. Since
timing is neither specified in programs nor enforced by execution platforms,
a program’s timing is not repeatable. Concurrent software often has timing-
dependent behavior in which small changes in timing have big consequences,
introducing a new form of brittle behavior. And the vast number of possible
interleavings of threads makes predictability intractable.

Designers have traditionally covered these failures by finding worst case
execution time (WCET) bounds [37] and using real-time operating systems
(RTOS’s) with well-understood scheduling policies [8]. Despite recent im-
provements, these often require substantial margins for reliability, partic-
ularly as processor architectures develop ever more elaborate techniques
for dealing stochastically with deep pipelines, memory hierarchy, and par-
allelism [36, 14]. Modern processor architectures render WCET virtually
unknowable; even simple problems demand heroic efforts. In practice, re-
liable WCET numbers come with many caveats that are increasingly rare
in software. Worse, any analysis that is done, no matter how tight the
bounds are, applies to only a very specific program on a very specific piece
of hardware. Any change in either the hardware or software, no matter how
small, renders the analysis invalid. The processor ISA has failed to provide
an adequate abstraction. Still worse, even perfectly tight WCET bounds
for software components does not guarantee repeatability. The so-called
“Richard’s anomalies,” explained nicely in [8], show that under very pop-
ular EDF scheduling policies, the mere fact that all tasks finish early can
cause deadlines to be missed that would not have been missed if the tasks
had finished at the WCET bound. Designers have to be very careful to
analyze their scheduling strategies under worst case and best case execution
times, and everything in between.

Timing behavior in RTOSs is coarse and becomes increasingly uncon-
trollable as the complexity of the system increases, e.g., by adding inter-
process communication. Locks, priority inversion, interrupts and similar is-
sues break the formalisms, forcing designers to rely on bench testing, which
often fails to identify subtle timing bugs. Worse, these techniques produce
brittle systems in which small changes can cause big failures. As a telling
example, Patrick Lardieri of Lockheed Martin discussed some experiences
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with the Joint Strike Fighter Program, saying4 “Changing the instruction
memory layout of the Flight Control Systems Control Law process to op-
timize Built in Test processing led to an unexpected performance change
- [the] System went from meeting real-time requirements to missing most
deadlines due to a change that was expected to have no impact on system
performance.”

While there are no true guarantees in life, we should not blithely dis-
card predictability and repeatability that is achievable. Synchronous digital
hardware—the technology on which computers are built— delivers aston-
ishingly precise timing behavior reliably. Software abstractions, however,
discard several orders of magnitude of precision. Compare the nanosecond-
scale precision with which hardware can raise an interrupt request to the
millisecond-level precision with which software threads respond. We don’t
have to do it this way.

5 Solutions

The problems raised in this paper pervade computing abstractions from top
to bottom. As a consequence, most specialities within computer science
have work to do. This section suggests a few directions. All of these draw
on current and past contributions, thus suggesting that the vision outlined
in this paper, albeit radical, is indeed achievable. We do not need to restart
from scratch.

5.1 Computer Architecture

The ISA of a processor provides an abstraction of computing hardware for
the benefit of software designers. The value of this abstraction is enor-
mous. Among the benefits is that generations of CPUs that implement the
same ISA can have different performance without compromising compati-
bility with existing software. Today’s ISAs hide most temporal properties of
the underlying hardware. Perhaps the time is right to augment the ISA ab-
straction with carefully selected timing properties, so that this compatibility
extends as well to time-sensitive systems.

In 1980, Patterson and Ditzel [31] argued that computer architects had
gone overboard with specialized and complex instructions in the instruction
set. They argued for a back-to-basics approach to architecture, launching

4National Workshop on High-Confidence Software Platforms for Cyber-Physical Sys-
tems (HCSP-CPS), Arlington, VA November 30 December 1, 2006.
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the era of RISC machines. Perhaps a similar retrenchment is needed to-
day, but this time to recover predictable and repeatable timing with a new
generation of “precision timed” (PRET) machines [10].

Of course, achieving timing precision is easy if we are willing to forgo per-
formance; the engineering challenge is to deliver both precision and perfor-
mance. For example, although cache memories may introduce unacceptable
timing variability, we cannot do without memory hierarchy. The challenge
is to provide memory hierarchy with repeatable behavior. Similar challenges
apply to pipelining, bus architectures, and I/O mechanisms. Some progress
in this direction is reported in [23].

5.2 Programming Languages

Programming languages provide an abstraction layer above the ISA. If the
ISA is to expose selected temporal properties, and programmers wish to
exploit this, then one approach would be to reflect these in the languages.

There is a long and somewhat checkered history of attempts to insert
timing features into programming languages. Ada can express a delay op-
eration, but not timing constraints. Real-Time Java augments the Java
model with a few ad-hoc features that reduce variability of timing [7]. The
synchronous languages [5], such as Esterel, Lustre, and Signal, do not have
explicit timing constructs in them, but because of their predictable and
repeatable approach to concurrency, can yield more predictable and repeat-
able timing than most alternatives. They are only limited by the underly-
ing platform. Much earlier, Modula-2 [39] gives control over scheduling of
co-routines, which makes it possible, albeit laborious, for programmers to
exercise some coarse control over timing. Like the synchronous languages,
timing properties of the program are not explicit in the program. Real-time
Euclid [15], on the other hand, expresses process periods and absolute start
times.

Rather than new languages, an alternative is to annotate programs writ-
ten in conventional languages. Lee [21] gives a taxonomy of timing properties
that must be expressible in such annotations. Münzenberger et al. [29] give
annotations for SDL to express real-time constraints. TimeC [22] introduces
extensions to specify timing requirements based on events, with the objec-
tive of controlling code generation in compilers to exploit instruction level
pipelining.

Domain-specific languages with temporal semantics have firmly taken
hold in some areas. Simulink, from The MathWorks, provides a graphical
syntax and language for timed systems that can be compiled into embedded
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real-time code for control systems. LabVIEW, from National Instruments,
recently added timed extensions. It is widely used in instrumentation sys-
tems. A much earlier example is PEARL [28], also aimed at control systems;
PEARL could specify absolute and relative start times, deadlines, and pe-
riods, and was fairly widely used at the time.

All of these, however, remain outside the mainstream of software engi-
neering. They are not well integrated into software engineering processes
and tools, and they have not benefited from many innovations in program-
ming languages.

5.3 Software Component Technologies

Software engineering innovations such as data abstraction, object-orientation,
and component libraries have made it much easier to design large complex
software systems. Today’s most successful component technologies (class li-
braries and utility functions) do not export even the most rudimentary tem-
poral properties in their APIs. Although a knowledgeable programmer may
be savvy enough to use a hash table over a linked list when random access is
required, the API for these data structures expresses nothing about access
times. Component technologies with temporal properties will be required,
and in fact provide an attractive alternative to real-time programming lan-
guages.

An early example, Larch [4], gives a task-level specification language
integrating functional descriptions with timing constraints. Other exam-
ples function at the level of coordination languages rather than specifica-
tion languages. A coordination language executes at run time, whereas a
specification language does not. For example, Broy [6] focuses on timed
concurrent components communicating via timed streams. Zhao et al. [40]
give an actor-based coordination language for distributed real-time systems
based on discrete-event systems semantics. New coordination languages
where the components are given using established programming languages
(such as Java and C++) may be more likely to gain acceptance than new
programming languages that replace the established languages. When coor-
dination languages acquire rigorous timed semantics, designs function more
like models than programs [13].

But many challenges remain in developing this relatively immature tech-
nology. Naive abstractions of time, such as the discrete-time models com-
monly used to analyze control and signal processing systems, do not reflect
the true behavior of software and networks [30]. The concept of “logical
execution time” [11] offers a more promising abstraction, but ultimately

16



E. A. Lee, Berkeley Computing Needs Time

still relies on being able to get worst-case execution times for software com-
ponents. This top-down solution depends on a corresponding bottom-up
solution.

5.4 Formal Methods

Formal methods use mathematical models to infer and prove properties of
systems. Formal methods that handle temporal dynamics are less prevalent
than those that handle sequences of state changes, but there is good work on
which to draw. For example, in interface theories [9], software components
export temporal interfaces, and behavioral type systems validate the com-
position of components and infer interfaces for compositions of components.
Specific interface theories of this type are given in [35, 17].

Various temporal logics support reasoning about timing properties of
systems [12, 3]. Temporal logics mostly deal with “eventually” and “al-
ways” properties to reason about safety and liveness, but various extensions
support metric time [1, 27, 2]. A few process algebras also support reasoning
about time (see for example [32, 25, 20]). The most accepted formalism for
the specification of real-time requirements is timed automata (and variations
thereof) [2].

Another approach uses static analysis of programs coupled with models
of the underlying hardware [37]. This approach is gaining traction in in-
dustry, but suffers from some fundamental limitations. The most important
one is brittleness. Even very small changes in either the hardware or the
software invalidate the analysis. A less important limitation, nonetheless
worth noting, is that the use of Turing-complete programming languages
and models leads to undecidability. Not all programs can be analyzed.

All of these techniques enable some form of formal verification. How-
ever, properties that are not formally specified cannot be formally verified.
Thus, for example, timing behavior of software that is not expressed in the
software, must be separately specified, and the connection between speci-
fications and between specification and implementations becomes tenuous.
This solution depends on progress in programming languages. Moreover,
despite considerable progress in automated abstraction, scalability to real-
istic systems remains a major issue. Although offering a wealth of elegant
results, the impact of most of these formal techniques on engineering prac-
tice has been small (not zero, but small). In general-purpose computing,
type systems are formal methods that have had enormous impact. What is
needed is time systems with the power of type systems.

17



E. A. Lee, Berkeley Computing Needs Time

5.5 Operating Systems

One of the key services of an operating system is scheduling. Scheduling of
real-time tasks, of course, is a venerable, established area of inquiry. Classic
techniques like rate-monotonic scheduling (RMS) and earliest deadline first
(EDF) are well studied and have many elaborations. With a few exceptions
[16, 11], the field has seen less emphasis on repeatability over optimiza-
tion. Consider a concrete challenge: to get repeatable real-time behavior,
a CPS designer may use the notion of logical execution time (LET) [11]
for the time-sensitive portions of a system, and best-effort execution for the
less time-sensitive portions. The best-effort portions will typically not have
deadlines, and hence EDF will give them lowest priority. However, the cor-
rect optimization is to execute the best-effort portions as early as possible
subject to the constraint that the LET portions match their timing speci-
fications. Even though the LET portions have deadlines, they should not
necessarily get higher priority than the best effort portions.

Today, embedded system designers avoid mixing time-sensitive opera-
tions with best effort ones. Every cell phone currently in use has at least
two CPUs in it, one for the hard real-time tasks of speech coding and radio
functions, and one for the user interface, database, email, and networking
functionality. The situation is worse in cars and manufacturing systems,
where distinct CPUs tend to be used for a myriad of distinct features. The
design is this way not because there are not enough cycles in today’s CPUs
to combine the tasks, but rather because we do not have reliable technology
for mixing distinct types of tasks. My opinion is that a focus on repeata-
bility of timing behavior could lead to such a technology. Work on de-
ferrable/sporadic servers [24] may provide a promising point of departure.

5.6 Networking

In the context of general-purpose networks, timing behavior is viewed as a
quality of service (QoS) problem. Considerable activity a decade or two ago
led to many ideas for addressing QoS concerns, few of which were deployed
with any impact. Today, designers of time sensitive applications on general-
purpose networks, such as voice over IP (VOIP), struggle with inadequate
control over network behavior.

Meanwhile, in the embedded systems space, specialized networks such as
FlexRay and the time-triggered architecture (TTA) [16] emerged to provide
timing as a correctness property rather than a QoS property. A flurry of
recent activity has led to a number of innovations such as time synchroniza-
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tion (IEEE 1588), synchronous ethernet, time-triggered ethernet, etc. At
least one of these (synchronous ethernet) is encroaching on general-purpose
networking, driven by the demand for convergence of telephony and video
services with the internet, as well as by the potential for real-time inter-
active games. My opinion is that introducing timing into networks as a
semantic property rather than a QoS problem will lead to an explosion of
new time-sensitive applications, helping to realize the vision of CPS.

6 Conclusion

To fully realize the potential of CPS, the core abstractions of computing
need to be rethought. Incremental improvements will, of course, continue to
help. But effective orchestration of software and physical processes requires
semantic models that reflect properties of interest in both.

This paper has focused on making temporal dynamics explicit in com-
puting abstractions, so that timing properties become correctness criteria
rather than quality of service measures. I have argued for making timing of
programs and networks as repeatable and predictable as is technologically
feasible at reasonable cost. This will not eliminate timing variability, and
hence does not eliminate the need for adaptive techniques and validation
methods that work with bounds on timing. But it does eliminate spurious
sources of timing variability, and enables precise and repeatable timing when
this is needed. The result will be computing and networking technologies
that enable vastly more sophisticated cyber-physical systems.
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