Mantis:
A Debugger for the Split-C Language

Steven S. Lumetta

o

P
§

7

5
“Neas

f..\

Report No. UCB/CSD-95-865

February 1995

Computer Science Division (EECS)
University of California, Berkeley
Berkeley, CA 94720




University of California
Berkeley

Mantis:
A Debugger for the Split-C Language

a thesis submitted in partial satisfaction
of the requirements for the degree of

Master of Science in Computer Science

by

Steven S. Lumetta

February 7, 1995



© Copyright 1994 by Steven S. Lumetta



Acknowledgements

First, I wish to thank my advisor, Professor David Culler, for his continued support and
encouragement throughout the implementation of Mantis and the writing of this document.
Without his encouragement, the debugger might still be just a dream.

My thanks also go to my other committee member, Professor Lawrence Rowe, whose
teaching and comments greatly aided my understanding of user interface design and helped
to shape the debugger.

Seth Goldstein and Andrea Dusseau, my officemates and friends, gave helpful suggestions
on all aspects of the project, from implementation to writing to motivation, and for these
I am grateful. Jeffrey Jones and Michael Mitzenmacher helped with the preparation of the
thesis, giving freely of their time to provide editorial comments. I am also grateful to the
members of the Spring 1994 CS267 class and its instructor, Professor James Demmel, as
well as Arvind Krishnamurthy, without whose endurance Mantis might never have passed
beyond the alpha version.

I wish next to thank the National Science Foundation and Lawrence Livermore National
Laboratory, who supported this work through a Graduate Research Fellowship, Infrastruc-
ture Grant number CDA-8722788, and Grant number LLL-B28 3537.

Finally, and most importantly, I thank my wife, Jennie, whose love and patience with
me have known no bounds during this very stressful period of my life. I am forever grateful
for her companionship and support.



Abstract

Programming parallel machines need not be hard. A large portion of the computer science
community is working to develop tools to ease parallel programming. Split-C, a language de-
veloped as part of the Castle effort at Berkeley, extends C to control parallel machines but
retains the straightforward translation from source code to executable code necessary for high-
performance programming. Mantis, the Split-C debugger, supports the bulk synchronous and
individual node viewpoints that together dominate the design of Split-C' programs. Mantis
combines the flexibility and extensibility of a Tcl/Tk graphical user interface with the sta-
bility and functionality of the gdb debugger, providing a simple but highly effective tool for
parallel debugging. The user can control ezecution for all nodes as a group or for each node
individually, and can check state and invariants through a variety of methods. The graphi-
cal interface is simple enough for new users to understand with minimal effort yet powerful
enough to allow experienced users to work effectively. The first version of Mantis runs on the
CM-5 and made its debut in the parallel programming course at Berkeley during the Spring
199/ semester.

This document describes Mantis and our ezperiences in designing and implementing a
parallel debugger. Using a straightforward ezample, we illustrate the process of using Mantis
to find both simple and more subtle bugs. After summarizing the features of Mantis, we
discuss a range of issues in parallel debugging and our approach to those issues. We follow
with our experiences in working with large software systems, in particular the gdb debugger.
We continue with a discussion of user interface design, and conclude with commentary on
related work and directions for future efforts.
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Chapter 1

Background

Programming parallel machines need not be hard. We can solve the difficulties of parallel
programming just as we have overcome other “impossible problems” in computer science,
by developing simple and easy-to-use tools.

A large portion of the computer science community is working towards solutions for
parallel programming. At Berkeley, the Castle project [1] is building an integrated paral-
lel programming environment from the ground up, from low-level interprocessor message
libraries that deliver messages at speeds close to hardware latencies to high-level parallel
languages that support the data abstractions necessary for parallel programs. Split-C is one
of the lower levels of the Castle system, sitting just atop the Active Message communication
layer [21]. Split-C extends C to control parallel machines but retains the straightforward
translation from source code to executable code necessary for high-performance program-
ming.

We first implemented Split-C on the Thinking Machines Corporation CM-5, and before
the implementation was stable, we began to write programs. We soon realized that the
tools available at the time were not practical for debugging Split-C programs. The tools
gave no support for the extensions to C, and they provided poor user interfaces. Despite
the fact that Split-C compiled much more quickly than other parallel languages, the lack
of debugging facilities began to take its toll. In some cases, we were forced to spend days
searching for bugs using printf and recompilation to perform a binary search on the code.
We soon agreed that Split-C was stable enough to begin development of the environment
and tools to support higher levels of the Castle, and we decided to build a debugger for the
language. Our efforts resulted in Mantis, the Split-C Debugger.



1.1 Introduction

The first version of Mantis runs on the CM-5 and made its debut at Berkeley during the
Spring 1994 semester. The students in the parallel computation course used Mantis to
debug their final projects. Mantis combines the flexibility and extensibility of a Tcl/Tk [16]
graphical user interface with the stability and functionality of the gdb debugger, providing
a simple but highly effective tool for parallel debugging.

We chose to work with gdb to avoid the time required to code the generic sections of
the debugging platform. Despite the difficulty involved in learning the internals of a large
software system like gdb, we believe that we developed a more stable and more portable
parallel debugger in less time than we could have managed by writing all of the code ourselves.

The Mantis graphical user interface provides a hierarchy of functionality. The main
window controls file selection and window management. A status window gives an efficient,
graphical representation of the status of all processors, allowing the user to locate problems
rapidly and to investigate with a mouse click. The debugger allows the user to control
all processors simultaneously or to focus on a single processor, supporting both the bulk
synchronous and locally sequential views typical of Split-C programs. Data display windows
allow the user to examine and change state.

1.2 Summary

This document describes Mantis and our experiences in the design and implementation of a
parallel debugger.

We begin Chapter 2 with a description of the programming model used in Split-C. With
this model in mind, we transform general debugger goals into specific goals for Mantis.
We then explore the features and capabilities of the debugger by finding two bugs in an
example Split-C program. The chapter concludes with a summary of debugger and interface
functionality.

In Chapter 3, we touch on a number of issues in parallel debugging, indicating how
choices of language, system software, and hardware affect debugging concerns. We focus
on the requirements for Mantis on the CM-5, and give the details of our solution to each
problem.

Chapter 4 covers our experiences in working with large software systems, in particular the
Free Software Foundation’s gdb debugger. We begin with a general description of the gdb
system, then proceed with a list of changes required to create a generic parallel debugger.



We propose an ideal model of the debugger and show how that model minimizes the effort
required to build a parallel debugger with gdb. We then discuss how restrictions imposed
by the CM-5 operating system alter the model and increase the required effort. After in-
vestigating the ramifications of the change in model, we conclude with a summary of the
tradeoffs involved in using a large, pre-existing software package like gdb as a base instead
of writing all of the code necessary for a parallel debugger.

We explore user interface design in Chapter 5, applying general notions of what makes a
good interface to specific problems in the design of Mantis. We conclude with a discussion
of the Tcl/Tk package [15][16][17] used to create the Mantis user interface.

Chapter 6 offers a discussion of related work. We begin with commentary on other
parallel debuggers, including a highly portable research debugger and two commercial parallel
debuggers. We find that debugger functionality plays an important role in overall usefulness,
but that a poor user interface can effectively cripple the program. We also review other
methods of debugging in this chapter, including communication tracing and deterministic
replay schemes and brief overviews of animation and dynamic instrumentation.

Chapter 7 outlines directions for future work, including extensions to the interface and
the addition of debugging support to the Split-C library. We discuss the possibility of using
Mantis as a building block for high-level language debuggers, and end with our plans to port
Mantis to other platforms.






Chapter 2

Overview of Mantis

This chapter gives an overview of Mantis, introducing the goals, interface, and features
of the debugger. Section 2.1 discusses the goals of the debugger and the general Split-C
programming model. Section 2.2 walks the reader through an example of using Mantis to
find bugs in a simple piece of code. Section 2.3 summarizes the features of Mantis.

2.1 Goals and Programming Model

Before exploring Mantis, ask yourself this question: what should a debugger do? In response,
we offer the following: the debugging environment must support the programmer’s concep-
tion of the program by allowing the same set of abstractions and the same viewpoint used
in the compilation environment. It must also provide efficient means of performing common
tasks such as execution control (e.g., breakpoints) and verification of invariants. What do
these concepts mean in terms of Split-C?

In our experience, most Split-C programs can be decomposed into two layers. The top
layer consists of a set of bulk synchronous blocks. The term “bulk synchronous” implies that
the computing nodes enter each block more or less simultaneously and synchronize at the
end of each block before entering the next. The bottom layer occurs within blocks. At this
layer, the programmer thinks of nodes individually—each operates on a different set of data,
or possibly executes different code, but the model is locally sequential.

For the debugging example in this chapter, we draw on code to simulate the world of
WaTor, introduced by A. K. Dewdney in 1984 [5] and documented further by Fox et. al.
[7], which has been a valuable tool for teaching parallel programming at Berkeley (in the
(CS267 course). In the original WaTor, sharks and fish share a world of water and interact



loop repeats some
number of times
Y (same on all processors)

Figure 2.1: Bulk synchronous block diagram. The main loop of the sharks and fish program
cycles through three blocks.

through a small set of rules. We use a version of WaTor in which fish alone populate an
infinite plane and attract other fish according to an inverse-square law. This version of the
problem introduces programmers to basic issues in data distribution and access as well as
typical methods used in solving gravitational and electromagnetic problems.

The commented code in Appendix A presents a solution illustrating the Split-C program-
ming model discussed above. Conceptually, the program works as follows: at the top level,
all processors simulate the world in discrete time steps of length determined by the velocity
and acceleration of the fish. Each time step breaks into synchronous phases for computation
of forces, movement of fish, and collection of statistics, as shown in Figure 2.1. The three
phases compose the bulk synchronous layer of the program. Within each phase, the code
operates sequentially on the global address space (each processor looks at each fish). The
program, though short, exemplifies the programming model used in many larger parallel
programs.

2.2 Illustration of Use

The code in Appendix A contains annotations describing two bugs that are to be found in
this section. One of the bugs we introduced purposefully, having found it in another program
using Mantis; the other bug we introduced accidentally while transforming the code into a
more legible format.



Figure 2.2: Main window. Symbols for the £ish program have just been loaded.
2.2.1 Finding a simple bug

We compile and run the program on the CM-5, and the program immediately encounters a
bus error and dumps core. To find the bug, we start Mantis, intending to run the program
again.! After a brief disclaimer dialog, the main window appears, as shown in Figure 2.2. The
main window controls high level program selection and execution, access to other windows,
and the default location of source files.

The first step towards finding the bug is to locate the bus error, so we run the program
by pressing the button and then open the status window with another mouse
click. Starting a program on a CM-5 takes a noticeable amount of time, and Mantis indicates
the waiting period to the user through the status area and inverted pendulum icon. The
pendulum rocks back and forth until Mantis can accept another command. The user interface
retains full functionality during the waiting period, but any action that requires the attention
of the debugger process is stacked for later execution.

The program starts again, and the expected error occurs immediately. We detect the
error with the status window shown in Figure 2.3. The green squares (the darker squares in
the black and white version) represent nodes that are running (perhaps waiting for a reply
from another node), while the yellow squares represent nodes in error. Nodes that stop at
breakpoints or that halted by the programmer are displayed in blue.

Picking one of the problematic nodes at random, we click on the square in the status
window to create the node window displayed in Figure 2.4. The signal section confirms

Post mortem debugging is not yet available, primarily due to lack of complete information in the CM-5
core files.



Figure 2.3: Status window. Many nodes are still running (green/dark) and many others
have errors (yellow/light).

our belief that the bus error encountered from the command line caused the error, and
the stack section shows that the node stopped in all_compute force. Mantis focuses the
source display section on the top stack frame and highlights the line that caused the bus
error in black. In addition to these features, the node window gives access to the various
data display windows and controls program execution on a per node basis, supporting the
common single-node viewpoint inside of synchronous blocks.

Looking briefly at the highlighted source line (line 164 in Figure 2.4), we decide to inves-
tigate the variables used. We select the expression “local fish” by pointing and clicking the
left mouse button on a variable occurrence in the source display and evaluate the expression
by pressing the right button. The resulting value returns in the evaluation window shown
in Figure 2.5. This window provides the main interface for examining state and verifying
invariants by allowing the programmer to evaluate arbitrary? expressions in the context of
a stopped program. Evaluation includes support for Split-C’s extensions to C, such as the
global address space and spread arrays. The section at the bottom of the window allows the
user to enter a new value for a given variable.

We learn from the window that the value of “local fish” has not been initialized (see
lines 150-151 in Appendix A). After adding the initialization, we recompile the program,
hoping to encounter no further problems.

2Some restrictions with regard to function calls and macros exist, as discussed below.



Dhatug #x
Dhtaining object file inforration...done,

Figure 2.4: Node window. Node number 46 encountered a bus error in all_compute_force
at the line highlighted in black.



Node 46 Fvaluation

Figure 2.5: Evaluation window. Examining the expression “local fish” reveals the cause of
the problem. ’

Figure 2.6: Output window. The partially debugged program hangs before completion.
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2.2.2 Locating a more subtle bug

Alas, the program hangs after finishing only about a quarter of the time steps. We start up
Mantis again and run the program. The output from the program begins to pour into the
output window shown in Figure 2.6, but eventually stalls. The status window shows that all
processors are running.

Using the button in the main window (Figure 2.2), we create a node window for
node 0, as shown in Figure 2.7. By clicking on the button, we halt the processor.
The processor stops inside of a synchronization point (a barrier call), but we see that the
stack frame just below the barrier is splitc.main. We click the mouse on the line containing
splitcmain, and Mantis automatically displays the relevant section of code in the source
display area, as shown in the figure. The source line of the barrier call is highlighted in
black. Using the node number entry box in the upper left corner of the node window to
move between nodes, we halt and examine a few other nodes and find that each stopped at
the same barrier.

At this point, we begin to hypothesize about the problem: the chance that we happened
to stop all or even most of the nodes waiting at the barrier is slim unless at least one other
node is not at a barrier. By letting the processors run for a bit and stopping them again, we
can make that chance arbitrarily small. The problem then becomes to determine why some
processors do not reach the barrier. To get a better picture of the state on each node, we
open the local variables window appearing in Figure 2.8 by pressing the button. The
window shows the values of all variables local to the frame selected in the corresponding node
window. We see that the time t agrees with the last value shown in the output window, as we
expect since node 0 performs the print statements. When we shift to another node, however,
the time no longer agrees—somehow the processors broke the programmer’s concept of bulk
synchronous, equal-length time steps. We assume that a subset of nodes reached T_FINAL
and left the main loop, causing the remaining nodes to wait indefinitely at the barrier.

To verify our hypothesis, we set breakpoints on two nodes at the point in splitcmain
where t is updated (line number 70). For each node, we open a display window with the
expression “delta_t,” as shown in Figures 2.9 and 2.10. The display window is similar to
the evaluation window except that it evaluates the expression automatically whenever the
processor stops or a new frame is selected. We want to compare the values of delta.t
between processors for each bulk synchronous step. Using a display window for each node,
we need only press the button in each node window between comparisons. As
early as the second step, we note that the times diverge, as shown in the figures.

We have verified our hypothesis about the nodes becoming unsynchronized, but we have
yet to understand how the failure occurs. To understand the process, we move upwards for a
brief period and consider the bulk synchronous model. We want to stop all processors after

11



Fining

Figure 2.7: Node window. Node 0 hung in a barrier. The programmer moved up the stack
to splitcmain, and the barrier call is highlighted in black.
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Local Variables

Figure 2.8: Local variables window. The variables shown correspond to the splitcmain
stack frame chosen in the node window.

Figure 2.9: Display window. The expression “delta_t” is evaluated on node 0 each time the
processor stops or the programmer changes the frame.
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Figure 2.10: Another display window. The expression “delta_t” is evaluated on node 1.

they complete the first few phases. In particular, we want to stop them all just before they
calculate the value of delta_t for the next time step. We click on the button in the
main window to get the window shown in Figure 2.11.

The global window supports the bulk synchronous view of the Split-C program by allow-
ing the user to toggle breakpoints and to start and stop all nodes simultaneously. We set
the desired breakpoint, as shown by the solid dot at line 99 in the figure, and restart the
program. Once all processors stop, we pick two processors and examine the quantities used
to calculate deltat. Finding that both max_speed and max_acc differ, we look up a few
lines and realize that the calls to all_reduce_to_one_dmax returned different values on the
two nodes, and we find the bug: we should use all reduce to_all_dmax, which returns the
reduced value to all processors (see lines 83-86 in Appendix A). We make the changes and
recompile the program, which now runs as we expect.

2.3 Summary of Features

This section summarizes the features of the Mantis debugger by topic, referring frequently
back to the figures used to illustrate the example in Section 2.2.

2.3.1 Interface highlights

We attempted to make Mantis easy to use by providing an interface that adheres to standards
when possible and utilizes common methods when no standards exist. The following list
exemplifies the features of Mantis that appear in many known interfaces:

14



Figure 2.11: Global window. The programmer set a breakpoint at line 99 in splitcmain.
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o Text editing supports a number of standards:

— most commonly-used GNU controls (i.e., the emacs controls),

— X cut and paste: the left button highlights text and the middle button inserts
highlighted text, and

— PC cut and paste: the left button highlights text, CTRL-X cuts text, and
CTRL-V inserts cut text.

o Menus use the left mouse button for normal use, the middle button for tearoff (persis-
tent) menus.

o Text selection and control buttons all use the left mouse button.
e The Tab key moves between entry boxes.

e The Return key executes an appropriate action within entry boxes; a control button
to the right of the entry executes the same action.

o Actions that cause implicit changes in state (e.g., those that kill the process being
debugged) request user verification before proceeding.

e All windows provide a control button, located in the lower right corner, used to dismiss
the window.

The debugger process handles requests sequentially and without overlap, but the Man-
tis interface interacts asynchronously with the debugger and enqueues requests that the
debugger is not prepared to handle immediately.

A status section in each major window (see Figures 2.2, 2.4, and 2.11) relays the current
debugger status to the user. The status section provides feedback information on com-
mands and errors, while an inverted pendulum to the right rocks back and forth whenever
a command is in progress. Note that not all interface activity requires interaction with the
debugger.

Mantis attempts to make the process of finding source and executable files as simple as
possible. Source file information taken from the executable symbol table and appears as a
menu of source files.?> A control button immediately to the right of file selection entry boxes,
marked with an arrowhead pointing right, allows the user to select files via a special dialog.
The user can traverse directories and choose files in the dialog by double-clicking with the
mouse.

3Files in the Split-C library are stripped out of the menu, sometimes resulting in user code with a library
file name not appearing in the menu. We want to give a list of header files as well, but no information on
header files is available from the executable.

16



Main

root of window

hierarchy Copymg
—=>  copyright
information
Warranty
warranty
information
Status
status of
processors
Global Node Output
bulk synchronous single processor output from
focus focus child process

Local Variables Evaluate Display

variables from expression automatic
current frame evaluation evaluation

Figure 2.12: Window hierarchy. The output window appears automatically when the user’s
program has output.

2.3.2 Window management

The user manages Mantis windows using the hierarchy depicted in Figure 2.12. Each box in
the figure represents a Mantis window. Arrows represent creation: the user can create the
window at the end of the arrow by an operation in the window at the start of the arrow.
The output window cannot be created by the user, but instead appears automatically when
the program being debugged has output.

The main window, shown in Figure 2.2 controls access to the other major windows. The
hierarchy of Figure 2.12 has roughly the same topology as the main window. The right
edge of the main window holds a pair of buttons that provide information on copying and
warranties according to the Free Software Foundation policies. A row of buttons along the
bottom of the main window divides into two groups. The left group manages creation of other
windows. Each of the three buttons generates a new window, corresponding to Figures 2.3,
2.4, and 2.11. We describe the global and node windows in later sections, and discuss the
status window in the next section. The right group contains the button and a button
marked that discards all information and closes all windows.

17



State Color | Pattern

No Process | Grey | Shaded
Running Green | Black

Halted Blue | White

Error Yellow | Diagonal Hash

Table 2.1: Mantis Status Window Colors and Patterns

2.3.3 Parallel process control

Debugging a process consists of selecting the executable and reading the symbolic information
for the program, setting any initial breakpoints, and then choosing command line arguments
and starting the program. The first and last of these operations are accomplished directly
via the Mantis main window shown in Figure 2.2, while setting breakpoints typically involves
browsing through the source files (see Section 2.3.4).

The upper two entry boxes in the main window allow selection of the executable and
command line arguments, while the third provides a mechanism for locating source files if
insufficient information appears in the symbol table of the executable.

The status window (see Figure 2.3) presents a graphical display of the current state of all
processors. The processors appear as a two dimensional mesh of squares in a pattern that
maximizes the size of each processor within the window size chosen by the user.? Table 2.1
summarizes the colors and patterns used for each possible state (patterns are used only when
color is unavailable). Clicking on a processor’s square brings up a node window corresponding
to that processor. Thus, the user can detect errors visually and investigate via the mouse.

Both the node window (Figure 2.4) and the global window (Figure 2.11) provide controls
to halt and continue processors. In either window type, a pair of buttons appears to the
left, just below the source display area. In the global window, the buttons stop and start all
processors, while for node windows, the buttons control only the processor being examined
with the window. The node window also has buttons for stepping the associated processor
through a line of code. The button continues execution until the program reaches the

next line of code or enters a new procedure. The button skips over any procedure
calls and stops only when the processor reaches the next line of code.

The CM-5 operating system provides no single-step mechanism for child processes, so
the debugger must handle steps as a sequence of single-instruction breakpoints. Combining
this requirement with the possible need for synchronization with another processor, which
may be halted, we find that stepping can cause deadlock. To allow the user to override
the possibility of deadlock, the pendulum pops up into button form when stepping occurs

*The aspect ratio may therefore change when the window is resized.
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(instructions also appear in the status area). If the user presses the button, the processor
halts immediately, whether or not the step has finished.

Output from the process being debugged appears in a separate window (see Figure 2.6).
Both stdout and stderr are channeled into the window, which appears automatically. Two
buttons at the bottom allow the user to discard the data in the window and to dismiss the
window completely. In addition to output, notification that the process being debugged has
exited or terminated also appears here.

2.3.4 Source browsing

Source browsing occurs through two Mantis windows: the node window (shown in Fig-
ure 2.4), which focuses on one processor, and the global window (shown in Figure 2.11),
which allows interaction with all processors simultaneously. All sources appear in the large
rectangular region in the center of the windows.

A line of controls just above the source display section manages access to source files and
functions. A menu of selection methods on the right, appearing as in Figure 2.4,
displays the method in use and determines the meaning of the entry box and the button to
the left. The entry box accepts names of source files or functions, depending on the selection
method chosen. The choices for selection method include:

Source indicates that Mantis should view the contents of the entry box as a source
file. The button to the left of the entry, marked [Source file:]in Figure 2.4,
allows the user to choose from an alphabetized menu of source files for the
program.

Function indicates that Mantis should view the contents of the entry box as a function.
The button to the left of the entry, marked , allows the user to
choose from a list of functions examined recently (the menu is sorted in least
recently used order).

Assembly is equivalent to the Function method except that the source display area
shows assembly code for the function instead of the original source.

The source display area splits into two sections. The left section displays line numbers
and breakpoints. Empty circles denote possible breakpoints, and filled circles denote existing
breakpoints. Source lines that generated no executable code have no breakpoint symbol. The
breakpoint section ignores horizontal scrolling. The right section of the source display shows
a portion of the source file or function. The middle mouse button toggles breakpoints on
and off when the associated processor(s) is stopped.
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2.3.5 Individual nodes and state

The Mantis node window provides a rich interface to individual processors. At the top of each
node window (shown in Figure 2.4), an entry box shows the processor number and allows
the user to examine different processors by changing the number and pressing Return. All
status, stack, and display information corresponding to a node window changes automatically
when the user chooses a new processor. Node numbers run from zero to one less than the
number of processors in the machine, as they do in Split-C. The status section of the window
is color- or pattern-coded to provide easy visual identification between the various windows
corresponding to a given node window.

Directly below the status section of the node window is a region that displays signal and
stack information when the processor halts. If a signal (e.g., a segmentation fault) caused
the process to halt, that information appears in the area marked “Signal.” The stack section
displays stack frames, which the user can select by pointing and clicking or can traverse
up or down, one at a time, using a pair of buttons to the right. When no information is
available, the stack motion buttons are disabled (they turn grey). When the user moves to a
new stack frame, the source display area presents the source code corresponding to the new

frame, complete with a highlighted line where the processor stopped, as shown in Figures 2.4
and 2.7.

2.3.6 Data display and entry

The user can examine state in Mantis in several ways. The most commonly used method
requires only two clicks of the mouse in the source display area. Pressing the left button
highlights a variable or expression. Mantis tries to select text intelligently, highlighting only a
variable name on the first click and expanding the highlighting on the second and subsequent
clicks of the mouse. The user can specify an exact portion of the text by dragging the mouse
with the left button held down. Once the expression is highlighted, pressing the right mouse
button creates the evaluation window (shown in Figure 2.5) and evaluates the expression.

The evaluation window provides a fairly standard interface from the PC world for evalu-
ating expressions and changing variable values. The expression to be evaluated is entered in
the top entry box and the value is returned in the middle box. A menu button to the right
of the entry box gives a list of recently evaluated expressions. The user can cycle through a
small set of expressions by selecting each from the menu. The bottom entry allows the user
to change the value of an expression. Errors in evaluation appear as feedback in both the
node window and the evaluation window, allowing the user to focus on either.

In addition to the usual method for checking values, Mantis provides several others. A row
of buttons to manage data display sits just above the source display area (see Figure 2.4). The
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button layout matches that shown in the window hierarchy of Figure 2.12. The
button resides in the middle and is equivalent to pressing the right mouse button in the source
display region. The button to the right creates the window shown in F igure 2.9, like
the evaluation window except that Mantis evaluates the expression automatically when the
processor halts or the stack frame changes. Because the user may want to maintain several
displayed expressions, Mantis makes the display window as small as possible by removing the
section used to change values. Values must be changed via the evaluation window instead.
Finally, the button to the left creates a window that displays variables local to
the selected stack frame. Since local variables depend on the stack frame, Mantis updates
the information automatically whenever the frame changes. Notice that Mantis marks data
display windows across the top with the color and processor number of the corresponding
node window. We also group the windows with the node window so that iconifying the node
window also iconifies the subwindows.?

Because Split-C lacks a standard output format for global and spread pointer values, we
created one for Mantis. Naturally, Mantis accepts both the format and standard Split-C
constructs such as toglobal and tolocal on input. Any global or spread pointer output
appears as follows:

processor'!address

The binary global pointer creation operator is left associative and has precedence between
arithmetic operators and logical operators. Hence

a! b! c isthesameas (a ! b) ! ¢
a+b! c isthesameas (a+b) ! ¢
a==b! c isthesameas a == (b ! «¢)

The operator evaluates the left argument for processor portion if possible, using the right
value for the address. Thus, one can combine two global pointers and form a third using the
processor of one and the address of the other. The type of the result depends on the type of
the second argument. If the argument is a type of pointer, the result is a global pointer to
the same type. Otherwise, the result is a global pointer to type void.

Creation of global and spread pointers mirrors the language. The address of a spread
array section, for example, is a spread pointer if the section consists of one or more of the
blocks on each processor, and is a global pointer if the section is part of a block. For example,
if the spread array a is declared as int a[PROCS*2]::[2] , then the expression &a[1] has
type int (*spread) [2], while the expression &a[1][1] has type int *global. Casting to
a global or spread pointer (or spread array) uses the processor associated with the window.
Also, except in the case of pointer arithmetic, casting or creating a NULL pointer (a pointer
with local address 0) discards any processor component and results in the NULL pointer 0!0.

®Not all window managers support window groups, unfortunately.
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Local pointers are dereferenced on the processor associated with the window, regardless
of where the pointer was obtained. For example, dereferencing a global pointer to a local
pointer to an integer in an evaluation window for processor n returns the value at the address
of the local pointer in the address space of processor n, just as occurs in Split-C.

Finally, since dynamically allocated arrays appear often in Split-C, we describe the no-
tation used to cast a pointer to an array and to set the values of a dynamic array. To print
a fixed number N of elements beginning at a pointer p to type my_type, use the form:

(my_type [N])*p
The result is an array of elements enclosed in braces. Changes are made by typing in a new
array, also enclosed in braces, and pressing Return (or pressing the button). Note
also that we inherit from gdb an abbreviation for the fairly common cast-and-dereference
occurrence. If, for example, we have a void pointer ptr that points to something that we
want to print as type my_type, we normally use:

*(my_type *)ptr

But we can abbreviate the expression using the following:

{my_type}ptr
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Chapter 3

Issues in Parallel Debugging

In this chapter, we examine a range of issues that arise in the design of a parallel debugger
and affect tradeoffs in other areas of parallel systems. We approach each problem generally,
then focus on the requirements for Split-C and how Mantis responds to those needs.

3.1 Problem Localization

Debugging begins with problem localization. Sequential bugs appearing in parallel programs
require little more than a fast means of finding the processor and the section of code, but
inherently parallel bugs are often more subtle. Tools to compile data from across Processors
into a compact form help to reduce the amount of information presented and the time
required to locate a bug.

Bugs of the second type discussed in Chapter 2, for example, are not atypical during the
development of a Split-C program. Contrary to the programmer’s expectations, processors
pass beyond the bounds of a bulk synchronous block and cause synchronization to fail. The
source of the problem appears readily when comparing stack traces across processors, but
the user cannot be expected to compare a large number of traces by hand. Instead, the
debugger can compare the traces on request and highlight the differences, directing the user
quickly and accurately to the problem, as shown in Figure 3.1.

The current version of Mantis provides only limited facilities for machine-wide access,
but we plan to add useful mechanisms like the stack tool to future versions.
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Figure 3.1: Stack trace overview. The debugger displays only differences in stack frames,
maintaining the content but reducing the volume of information given to the user.

3.2 Breakpoints

In sequential languages, a breakpoint stops all processing instantaneously at some point
in the program, freezing the state of the program to allow inspection and alteration. The
semantics relies on the single thread model of control. Once the model is violated, providing
the same semantics for breakpoints becomes difficult or impossible. Even if the programmer
still envisions only a single control stream, mapping from the multi-threaded reality of the
program to the single-threaded understanding of the programmer may prove impossible.

Consider a data parallel language in which the programmer has written a for loop over
the rows of a distributed matrix—each step of the loop processes one row. Assume that, for
optimization reasons, the compiler reverses the loop order and splits the work across four
processors. What happens if the programmer wants to examine the state of the program
after a few rows have been processed? Figure 3.2 shows a typical program state: elements
in the shaded region have been processed, while unshaded elements remain unprocessed.
Figure 3.2a shows the programmer’s understanding, in which the loop progresses from one
row to the next. Figure 3.2b shows the actual processing pattern, in which four separate
threads work asynchronously through disjoint columns of the matrix. How can the debugger
reconcile the state of the program with the user’s expectations?

The answer is that it cannot, but the example is slightly unfair in that not only did we
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Figure 3.2: Mismatched task completion. The programmer’s conception of task completion
appears on the left (a), and actual task completion appears on the right (b).

allow multiple threads, but we also allowed the compiler to transform the program through
loop reordering. However, note that either change results in a user recognizable state only
before and after the for loop. Further, loop reordering is a typical transformation required for
optimizing programs on distributed memory machines because of data locality constraints.

In general, a tradeoff exists between the ability of the compiler to optimize the code
(including optimizing by parallelization) and the ability of the programmer to debug the
program. As optimization scope narrows, the granularity of steps between states recognizable
to the user similarly decreases. While prohibiting compiler optimizations may be feasible
for debugging sequential programs, eliminating optimizations for a parallel program often
results in unbearably long execution times and might affect numerical results as well. A
better option is to add the concept of multiple threads into the language.

Once the programmer recognizes the existence of multiple threads, through either explicit
language constructs like forall or the programming paradigm itself, as with Split-C, the
debugger’s task is more straightforward. Since threads only synchronize or interact with
each other periodically, no exact relationship exists between the PC’s of distinct processors.
Instead, the programmer provides a set of larger steps, the bulk synchronous blocks, and
each processor may be found anywhere within a block. In particular, since the relationship
1s non-deterministic, knowing the precise position of all processors when one processor hits
a breakpoint is not interesting.’

When the programmer rather than the language defines the bounds of the bulk syn-
chronous blocks and the interactions between processors, problems can arise as differences
between the programmer’s conception of the blocks and the blocks that exist in the program.

1Obtaining such knowledge is also impossible, since the breakpoint signal cannot be instantaneously
propagated to other processors.
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Figure 3.3: Bulk synchronous block diagram. The italicized text explains how the bug
violated the block structure.

The second bug found in Chapter 2 was of this type. Figure 3.3 shows the set of bulk syn-
chronous blocks that the programmer designed and how the program failed. The bug, due
to an error in the statistics gathering section, resulted in different numbers of repetitions of
the loop for different processors. Instead of all processors being inside the block for compu-
tation of forces, some processors passed off the bottom of the figure, causing the remaining
processors to hang at the barrier synchronization. Another common problem arises when the
programmer fails to properly separate the program, allowing processors to proceed into what
should be a new bulk synchronous block before other processors complete the current block
and leading to a race condition (see Section 3.4). In our experiences with users developing
Split-C programs, these two problems have appeared quite frequently.

Continuing our discussion of the effects of programming models on the meaning of break-
points, we find an even more difficult case when tasks (threads of control) are created dy-
namically during program execution, as with languages like Id [4] and Multilisp [14]. The
first hurdle in this case is to decide when a breakpoint should fire. Possibilities include the
following:

e Any processor that executes any instance of the task halts.

e If a specific processor executes any instance of the task, it halts.

e Any processor that executes a specific instance of a task halts.

The first two can be implemented in a straightforward manner, but the last presents a
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fairly general problem: how can the debugger associate meaningful labels with each possible
task? Regardless of whether or not the debugger provides the capability of halting on
specific tasks, the debugger must be able to name the tasks in order to describe the set
of tasks that exists when a breakpoint is reached. Also, the debugger must condense the
information into a simple presentation for the user. Note that the set of tasks may not be
deterministic, depending on the structure of the program synchronization and the location
of the breakpoint, and that if other processors are not halted when one processor hits a
breakpoint, the set may not even be static.

Consider now the problem of debugging the Split-C language, a relatively simple problem
compared with some other parallel languages. There are no hidden program transformations;
the Split-C compiler performs only the highly local variations typically performed by opti-
mizing sequential compilers. The programmer knows that a fixed number of threads exist
and understands how the threads interact.

Mantis allows the user to set breakpoints for individual processors or for all processors.
The processor or processors must be halted before breakpoints can be added or removed.
Each thread of control interacts independently with the breakpoints—one processor hitting
a breakpoint has no effect on any other processor. Thus, not all processors will necessarily
hit a global breakpoint simultaneously. In fact, if a processor still needs to reference data
contained on a halted node before it can reach the breakpoint, that processor spins until the
halted node is allowed to continue (but see Section 3.5 for a discussion of how to circumvent
this phenomenon).

Breakpoints may correspond to source lines or to machine instructions; the user manages
both types through the source display area described in Chapter 2. gdb allows the user to
set conditional breakpoints, which halt the program only when an expression evaluates to
true at the breakpoint, but the structure of the CM-5 version of Mantis prevents their use,
as we discuss in Section 3.8.

3.3 Expression Evaluation Context

The context or addressing environment used to evaluate expressions depends strongly on
the language of the program being debugged. If the language presents the programmer with
a single thread model, then the context for expression evaluation should correspond to the
context of the single thread. But mapping from the contexts of many processors back to the
context of the virtual machine imagined by the programmer may not always be possible for
reasons similar to those discussed in Section 3.2.

Again, when the language expects the programmer to recognize the existence of multiple
threads of control, the choices are simpler. Given an addressing model like that of Split-C,

27



Global Address Space

S S S S
AN Static
Global +——= g )
Automatic
..... a- ——— /
0 :T\ IT 3
Local Address Spaces

Figure 3.4: Data types in the Split-C address space. The dashed lines indicate that the
automatic variable is only accessible from within a certain procedure

which allows for direct addressing of both global and local data, we can define terms for
various types of data.? For our purposes, we need name only the three types of data shown
in Figure 3.4:

global data can be named symbolically by any processor from any part of the pro-
gram,

static data can be named symbolically by a single processor from any part of the
program (for SPMD models, this means that each processor has its own
copy), and

automatic data can be named symbolically by a single processor from within a specific
instance of a specific procedure.

Any evaluation intended to correspond to a section of code must occur in the context of a
single processor, but another option, one of questionable worth, is the possibility of evaluating
expressions that contain only references to global data.

2These terms could be used equally well with schemes for dynamic translation of global addresses, but
translation often requires communication with other processors and thereby causes other difficulties. We
defer discussion of these problems to Section 3.5
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For Mantis, we illustrate these concepts with the following program fragment:

1 int factorial[10 * PROCS]; /* global data */
2 int i; /* static data */
3

4 splitc_main ()

5 {

6 for_my_id (i, 10 * PROCS)

7 factorialli] = find_factorial (i + 1);
8 }

9

10 int find_factorial (int number)

11 {

12 int i, product; /* automatic data */
13

14 product = 1;

15 for (i = 2; i <= number; i++)

16 product = product * i;

17

18 return product;

19 }

The program calculates the factorials of all numbers from 1 to 10 x PROCS. Each
processor calculates ten of the factorials, calling the find factorial function for each one.
The program uses all three types of data. We now discuss the process of evaluating several
expressions.

We can evaluate the expression “factorial[18]” without any knowledge of the addressing
environment. The symbol factorial can only refer to the global data declared in line 1 of
the program. Most expressions evaluated, however, require the debugger to understand the
addressing environment.

For example, to evaluate the expression “i,” the debugger must know whether or not the
program halted in the find factorial function. If the program stopped in find factorial,
the debugger should return the value of the automatic data declared in line 12. If the program
stopped in main, the debugger should instead return the value of the static data declared in
line 2. However, on a parallel machine, each thread might stop at a different point in the
program, requiring different interpretations of the expression. Further, even if all processors
stop at the same point in our program, the expression might still evaluate to a different value
on each processor. In fact, evaluation of an expression may not be feasible on all processors.
We cannot evaluate the expression “product” on a processor that stopped in main. The
symbol product admits only one interpretation, but the result is automatic data (declared
on line 12) and does not exist unless the processor halts in find_factorial.
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Because most expressions evaluated contain ambiguous references or references to static
or automatic data, Mantis requires the association of a processor with an expression for eval-
uation. The node window manages the data display windows, so Mantis uses the processor
associated with the node window for expression evaluation.

In languages that allow multiple threads of control on each processor [4][14], the debugger
must associate expression evaluation with single threads. The Split-C model of one thread
per processor allows Mantis to make the association with processors instead.

3.4 Race Conditions

Race conditions pose one of the hardest problems in parallel debugging. Bugs of this type
often arise from differences between the programmer’s conception of the synchronization
patterns and the actual patterns, but can also be simply a failure to fully understand the
data dependencies of the algorithm.

The difficulty with race conditions is threefold: first, if the race is close, the bug may
not always appear; second, any perturbation in the program—printing, tracing, halting a
processor with the debugger—may resolve the race and make the bug disappear; and third,
race conditions usually cause indirect crashes, making them more difficult to locate.

Perhaps most difficult to handle are those race conditions that corrupt data but do
not crash the program. Results from known problems can usually be verified with the
aid of careful inspection and visualization tools, but when the parallel program solves new
problems, detecting incorrect results may be impossible. Some data parallel languages,
notably High Performance Fortran, propose to eliminate race conditions entirely by making
interprocessor activity solely the domain of the compiler. Whether the benefits of these
languages outweigh the performance cost of inhibiting optimization remains to be seen.
Alternatively, new programs can be subjected to the same test used with new sequential
computations: write two different algorithms and compare the results.

A suspected race condition can sometimes be verified as follows. In each bulk synchronous
block, halt one processor at the start of the block, allowing the other threads to run to the
synchronization at the end of the block. If the data used by the halted processor in the
block change, a race condition exists. If nothing changes, run the single processor through
the block while keeping all other processors halted. If the results written by the halted
processor in the basic block are incorrect, a race condition exists. Naturally, if in either case
the processors fail to reach the correct synchronization point, the user should inspect the
bulk synchronous block structure more closely.

The CM-5 version of Mantis does not provide any special tools for finding race conditions,
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but in future versions we plan to support the method outlined above. The method requires
that halted processors handle and respond to messages, allowing the running processors to
access remote data. In the next section, we discuss the merits and drawbacks of making
active messages truly active.

3.5 Active Messages

With Split-C on the CM-5, we chose to extract messages from the network via polling instead
of interrupts, rendering “active messages” somewhat passive. Because the messages are not
extracted from the network until the receiving processor polls or attempts to send a message,
halted processors ignore the network, effectively freezing a portion of the global address space.
In Split-C, only the memory corresponding to a halted processor is unaccessible, but in
languages and libraries (such as Orca [2] and Tarmac [11]) that dynamically translate global
data names into physical addresses, all of remote memory can freeze when any processor
halts.

More modern architectures like the Cray T3D provide DMA units to automatically write
data into the processor memory, making the messages truly active and moving closer to
shared memory.?> Keeping the entire address space accessible when a processor halts is not
always an advantage, however.

Consider a case in which one processor writes an address into a global variable in a second
processor’s memory. When the message arrives, the address becomes valid. Assume that
the programmer has forgotten to synchronize the use of the address with the arrival of the
message, and that the second processor crashes in an attempt to use the address before the
message arrives. Before the user can respond to the error, the message arrives. Should the
message be handled? Certainly not—the message will change state and hinder the process
of finding the bug. State must be preserved to allow the user to correctly backtrack through
the code executed prior to the crash.

Both options have advantages and disadvantages, and the best choice is to give control
to the user. One way to accomplish this is to add a library routine that does nothing but
handle messages. The routine, which will be short and will not perturb the program, can be
included automatically in all Split-C programs. By calling the routine at the request of the
user, Mantis can unfreeze the address space of a halted processor.

3The operating system can prevent messages from being delivered to halted processes in some cases.
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3.6 Procedure Calls

The ability to call program functions from within the debugger often proves useful, par-
ticularly when the program contains a large amount of state information that is otherwise
difficult to search. So long as the functions operate within the local address space and do
not synchronize with other processors, no problem arises. Routines that read or modify data
or perform atomic operations on other processors will hang if the other processor has halted
without the modifications discussed in the previous section.

The user must also avoid calling routines that modify state when a processor halts in
a critical section of code. Current versions of Split-C use polling rather than interrupts or
DMA to deliver messages, and messages are only received when the code communicates with
another processor. Large portions of the code are thus protected by default, and the user
must understand the consequences if the protection is violated using Mantis.

The debugger can allow the user to call global functions provided that the functions are
called simultaneously on all nodes, but this operation can be tricky. The global communi-
cation functions in the Split-C library, for example, use static state and are not re-entrant.
Even if the user halts all processors to ensure that a global function will properly synchronize,
the program results may still be corrupted.

3.7 Linear Time Operations

All parallel tools suffer to some degree from lack of scalability. For tools restricted to a small
number of processors, scalability does not matter, but if the tool must handle a large number
of processors or be useful on any parallel platform, per-processor sequential tasks should be
avoided. Ideally, all commands and operations are performed in parallel, allowing the tool
to perform as well on thousands of processors as it performs on a handful of processors.
If nothing else, however, the user interface must be sequential. The best tools parallelize
operations to the point that for any machine size used, the slowest step is that of presenting
the data. Data display should be optimized, of course, but gathering the data should be fast
and independent of the number of processors.

Unfortunately, the point is complicated by scheduling issues. On the CM-5, for example,
the Time Sharing Daemon gives equal time to each process regardless of status. In order
to parallelize operations, the debugger must run as a parallel process (as does Node Prism,
described in Section 6.1.2). Assuming that the machine is otherwise unoccupied, the debug-
ger will be scheduled for half of the time even when idle, doubling the time needed for the
program being debugged to progress.
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On massively parallel machines like the CM-5, however, the sequential alternative is far
worse. When we wrote Mantis, the CMOST operating system did not support debugging
programs directly from the parallel processors. Instead, we had to operate through the Time
Sharing Daemon on the host processor, allowing only one debugger process and making
moot the idea of parallelizing operations. Certain operations in Mantis require time linear
in the number of processors, primarily those associated with the global view of the program:
halting and continuing all processors, setting global breakpoints when the program starts,
and synchronously checking the status of the processors. Each takes on the order of a second
when running on a 64-processor machine. On future platforms, Mantis will parallelize these
operations.

3.8 Asynchronous Notification of Status

Sequential debuggers typically ignore the user while the child process runs, paying full atten-
tion to the child process. The debugger thus receives immediate notification of any changes
in status due to breakpoints or errors and passes the status change information quickly to
the user. The ability to detect status changes asynchronously without operating system
support requires the attention of the debugger process, and parallel debuggers must create
stub processes for each thread in order to retain the ability.

The CM-5 version of Mantis uses only a single debugging process, working directly with
each thread through the CM-5 Time Sharing Daemon. By changing the interface between
the debugger and the child process, Mantis forfeits the ability to detect status changes
asynchronously. Instead, Mantis polls each processor periodically to detect changes. Since
polling takes §(P) time for P processors, Mantis polls in 5 second intervals, and changes in
status reach the user on average 2.5 seconds after they occur. The lack of debugger stubs
also prevents use of conditional breakpoints.

3.9 Summary

As discussed in this chapter, many problems arise in the development of a parallel debug-
ger. Several of the problems depend strongly on the degree to which the programmer’s
conception of the program matches the compiled code. Some languages attempt to ease the
programmer’s task by presenting a single-threaded model and eliminating the possibility of
race conditions, but debugging this type of language can be hard: in many cases the de-
bugger cannot translate the state of the program into something recognizable by the user.
Further, automatic compilers can only obtain reasonable performance for a small class of
very regular problems. Explicitly parallel languages make the debugging task more straight-
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forward and permit the programmer to obtain maximum performance for the program, but
cannot prevent the user from introducing difficult parallel bugs such as race conditions. If
the language provides for dynamic task creation, the debugger must also be able to assign
meaningful names to the tasks.

The issue of handling messages on halted processors has good arguments for both sides.
Not handling the messages prevents the user from exercising full control over the machine,
since allowing one processor to run may require that another be allowed to run at the same
time. On the other hand, handling the messages can destroy important state and confuse the
user. The best option is to ignore the messages by default and to allow the user to override
the default when necessary.

We also noted that procedure calls are a useful mechanism in debugging and should be
included in parallel debuggers. The user must be particularly careful, however, to avoid
corrupting data by calling a procedure when the processor halts in a critical section or
non-re-entrant library routine.

Finally, we saw that parallel debuggers must operate in parallel. The time required for
a single process to gather data or operate on P computing nodes grows as 6(P), making
many operations slow unless parallelized. More importantly, however, a single-process de-
bugger cannot monitor all threads simultaneously, greatly increasing the response time of
the debugger to changes in thread status and making several useful debugging abstractions
impossible.
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Chapter 4

Experience with Large Software
Systems

Mantis is composed of a graphical user interface process that pipes information to and from
a debugger child process. The child process performs the actual debugging, handling all
typical debugging tasks, while the user interface attempts to present the information in a
more accessible and automatic fashion than that provided by command-line debuggers.

We wrote the user interface using the Tool Command Language (Tcl) [15][16] and X11
toolkit (Tk) [17] developed by Ousterhout, which greatly simplified the task.! The interface
required about eight thousand lines of code, which divide equally into script code and C
code.

We based the Mantis debugger on the Free Software Foundation’s gdb debugger. gdb
is composed of over two hundred thousand lines of code and provides a portable sequential
debugging environment. Understanding and extending the gdb code to support parallel
debugging proved fairly difficult, and complications with the CM-5 operating system made
the modifications to the code extensive. Nevertheless, adding language support and parallel
processes to gdb required much less time than that required to write a high-quality debugger
from scratch. Furthermore, gdb eases portability problems by allowing us to incorporate our
changes into future releases. Modification of an existing tool worked to great advantage with
Split-C, which uses the gcc compiler, and we expect the same results with Mantis and gdb.

This chapter discusses the use of gdb as a starting point from which to build a parallel
debugger, and in particular Mantis. We begin by listing the basic extensions required to turn
a sequential debugger into one capable of supporting parallel language debugging. We then

1The value of Tcl’s interpreted script nature for rapidly creating attractive, functional, and consistent
user interfaces is hard to overestimate.
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propose a debugging model intended to minimize the size and breadth of gdb modifications
and consider the required coding efforts using this model. Next, we talk about the model
used to build Mantis on the Thinking Machines CM-5 and how that model affected the
coding process. We cover certain issues in more detail, and finally move on to discuss our
experience and the tradeoffs involved in using a base platform like gdb as opposed to writing
all of the code for the project.

4.1 Extensions Required for Mantis

Because Split-C is a new language, and because it explicitly recognizes the fact that the
program runs on many processors simultaneously, a sequential debugger like gdb must be
changed on many levels to be useful for debugging Split-C programs. Beginning with low-
level issues and moving gradually upwards, the list of changes includes the following:

BFD support The debugger must understand the executable file format. gdb uses
the BFD (binary file descriptor) library, which handles many com-
mon formats.

target type The debugger must recognize the machine architecture and the ac-
cess methods used to read and write data to the process being de-
bugged. gdb already has targets for sequential child processes, core
files (post-mortem debugging), and debugging over serial lines.

multiple processes The parallel program consists of a large number of processes run-
ning in parallel. The debugger must provide the means to access
and control all of these processes simultaneously. gdb provides no
capabilities for this purpose.

language extensions The debugger must support language constructs to allow for natural
output and entry of expressions, values, and other language-specific
data. gdb recognizes C and several other languages, but support
for Split-C abstractions must be added.

user interface The debugger must provide the user interface with data usually
considered internal to the debugger, e.g., which lines in a source
file correspond to actual machine instructions and which are merely
comments or otherwise empty statements.

This list does not specify the form of possible implementations. Implementation decisions
are instead based on the abstract debugging model chosen. This model is sometimes forced
upon the debugger by the operating system, as we will see in Section 4.2.2.
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Global Debugger (gdb) User Interface (Tcl/Tk)

Global Language Support

Node Debugger (gdb)

Nodal Language Support
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Figure 4.1: Ideal implementation structure. The node debuggers use a standard sequential
interface to the child processes. The global debugger provides machine-wide functionality.

4.2 Effect of Debugger Model on Implementation

We now examine two models of debugging, one based on making a minimal set of changes to
the existing sequential debugger (i.e., gdb), and the second based on working with system
software on the CM-5. We then focus on some of the specific problems of the latter model.

4.2.1 Ideal set of changes

Being a sequential debugger, gdb is most easily used on a one-to-one basis with the parallel
processes. For each process running as part of the parallel program, we want to use a separate
copy of gdb to monitor that process, as shown in Figure 4.1. In the figure, the bottom
four boxes represent processors running a parallel program; each node also runs a debugger
process that interacts directly with the user process on the node. Each node debugger also
interacts with a single global debugger that gathers information from the nodes and directs
user requests to appropriate nodes. The user interface process communicates only with the
global debugger.

Given this model for building the debugger, consider in turn each of the general extensions
to gdb given in Section 4.1.
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First, the debugger must understand the executable file format used for the parallel
program and recognize the machine architecture. For almost any network of workstations, or
for any MPP built with common processors and running a fairly standard operating system
software (e.g., the IBM SP-1 and SP-2 and the Meiko CS-2), gdb can be used without
modification. But even if the current version of gdb does not support a particular file format
or architecture, adding that capability to gdb is still far more productive than writing the
entire debugger, since the effort indirectly provides other researchers who want to port
debugging tools to the same machine with a stable, open, and supported platform for their
work.

Second, we must make the debugger handle multiple processes. With the proposed model,
a distinct gdb process monitors each process of the parallel program; all of the gdb processes
maintain the one-on-one interface already present in the sequential version. We need only
create a modified version of gdb to ease access to the many processes. However, since this
global debugger only communicates with other gdb processes, it will seldom or never need
to incorporate new releases of gdb. The node debuggers, on the other hand, might have to
be merged with later releases to allow Mantis to run on an expanded set of platforms. We
try to keep changes to the node debugger to a minimum, as does the model of Figure 4.1.
Restricting changes to the global debugger is not as important.

Third, we must add support for the Split-C language. New data types include global
pointers, spread pointers, and spread arrays. The node debugger must recognize the new
types in symbolic information and cast them into appropriate C data types within the
local address space. The global debugger must handle access to these new data types: the
expression parser and evaluation code must translate new data types and global references
into a form understood by the node debuggers, consisting of only local references and C data
types. The global debugger must also answer questions about the number of processors and
other parallel issues. As before, the number of changes to create the node debugger from
gdb is minimal, and while the changes to create the global debugger are more extensive, the
latter changes will not need to be combined with new releases of gdb.

Finally, certain information normally considered internal to gdb must be made available
for the graphical user interface, and some output formats must be changed slightly. These
modifications require only simple changes and the addition of a few new commands? and
integrates easily with new releases of gdb.

2The changes mentioned here are also those required to generate a sequential version of Mantis. The
patch file for the sequential version contains approximately one thousand lines.
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Figure 4.2: CM-5 implementation structure. A single process combines the global and node
debuggers, interacting with the child processes via the Time Sharing Daemon

4.2.2 Changes required for the CM-5 version

Unlike Split-C, Mantis currently runs only on the CM-5. When we built Mantis, system
software on the CM-5 forced the debugging model to vary quite dramatically from that
given in Figure 4.1.° Under the CMOST operating system, process state information must
be obtained through the Time-Sharing Daemon, which runs on the CM-5 host processor. We
use a single debugger process on the host to support this model. The process communicates
with the TS-Daemon to gather debugging information, as shown in Figure 4.2. As the figure
shows, the user interface work remains the same, but the modifications to gdb are combined
into a single version. In addition, the interface between gdb and the user process has changed,
working now through the TS-Daemon.

Consider again each of the extensions listed in Section 4.1, this time in light of the CM-5
debugger model.

3TMC later added support for accessing other processes from the nodes for use with the Node Prism
debugger.
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The debugger must first understand the executable file format. CMOST uses a format
similar to that used in SunOS but combines two executables, one for the host processor and
one for all of the node processors, into one file. To join the programs, CMOST concatenates
the SunOS binaries and adds a special structure at the end which points to the beginning
of the node code in the file. Adding a binary file descriptor (BFD) to interpret the CMOST
format is not inordinately difficult since a BFD already exists for SunOS, but the BFD
library does consist of roughly fifty thousand lines of code that could otherwise be ignored.
Also, debugging on the CM-5 requires access to the host program, but the user is interested
only in the node program. Since gdb maintains symbols for only one executable, we must
modify the code to read and manage symbols for both halves of the CMOST executable.

The debugger must also recognize the machine architecture and the access methods used
to read and write data to the process being debugged. The architecture presents no difficulty,
as gdb already contains everything necessary for the Sparc. The access methods present a
much more difficult problem, however. gdb interacts with the program being debugged
through an abstraction known as a target. Targets for sequential child processes, core files,
and serial line debugging are already built into gdb. The program is normally only associated
with a single target, but with the CM-5, we must access both the host process via the SunOS
ptrace interface and the node processes through the TS-Daemon. Permitting the dual access
requires either the use of two targets or a modification of the target structure, neither of
which can be done very cleanly with gdb. We decided to extend the target structure to
support selection between processors, a modification also necessary for switching between
the various node processes. The host processor uses a distinct identification value, and the
underlying routines choose access methods based on whether the process being accessed lives
on the host or on a node.

Next, the debugger must provide the means to access and control the processes that make
up the parallel program. Memory on the host processor does not permit a separate copy of
gdb for each user process, so the debugger process must interact with a large number of child
processes instead of the usual one-to-one relationship between the debugger and the child.
Adding the capability to interact with multiple child processes to the gdb debugger was
the most difficult modification required, and also the hardest to integrate with new releases
since the changes permeate a large fraction of the gdb source. Further, the changes to the
debugging model and problems that arise from those changes (described in the next section)
are enough to convince us that the CM-5 model is not worth porting to other platforms.

Finally, the debugger must support Split-C constructs and provide certain information to
the graphical user interface for presentation to the user. The required changes are essentially
the same as those made under the ideal debugger model, except that all changes are made
to a single version and must be integrated with new releases of gdb, making them more
troublesome for future efforts.
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4.2.3 Complications of the single process debugger model

In this section, we examine the problem of the single debugger process in more detail. Much of
the effort to build Mantis from gdb dealt with extending gdb to work with multiple processes,
an extension only necessary because of the restricted process access methods available on
the CM-5. Although the graphical user interface relieves much of the burden that would
otherwise be forced upon the user because of these changes, we could not provide complete
insulation. Also, the coding required is extensive, spread throughout most of gdb, and not
very portable.

The biggest problem in dealing with multiple processes in gdb, a problem that spawns
many other problems, arises from gdb’s handling of process control, input, and output. gdb
is normally inaccessible to the user when the child process is running. gdb forwards user
input to the child along with keyboard interrupt and stop signals (CTRL-C and CTRL-
Z respectively) and relays program output to the user’s tty. The user cannot check stack
frames, evaluate expressions, or do anything else with gdb while the child process is running.
gdb meanwhile waits quietly for the child process to stop, whether by hitting a breakpoint,
finding an error, or receiving a user interrupt, at which point gdb immediately wakes up and
interacts with the user, giving prompts and handling all input and output itself. The child
process remains completely dormant during the latter phase until the user gives a command
to continue.

Once gdb must manage multiple processes, the whole system breaks down. We can no
longer expect that all processes be halted while the user examines any of them, nor can
we allow gdb to ignore the user when any of the processes run. We can still enforce the
prohibition on accessing a processor’s registers or local memory while the corresponding
process is running, but we must allow the user to interact with a halted process regardless
of the status of other processes.

Making gdb provide continuous attention to the user requires fairly extensive changes.
Prohibitions against accessing the data of a running process, previously inherent in the
control strategy, must now be inserted into the code for each command. We must also
provide commands for the user to switch between processes and to deal with all processes
at once and must add a way for the user to halt a process. The major change in interaction
management also complicates other, more subtle issues.

gdb, for example, can no longer watch the running processes to detect when a process
stops. Thus, the debugger does not always have current information on the status of each
process and must check the status before handling a command or notifying the user of
changes. The user must ask gdb to determine whether or not a process has hit a breakpoint,
for example.

Although we can afford to have the gdb process ignore most running processes, certain
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operations require its full attention. Among these are the [Next]and [Step , operations, which
perform one machine instruction at a time until the PC passes out of the current source line.
One can imagine how long these commands might take if the gdb process polled the status
of the stepping process every second. Instead, we assume that the user’s attention is focused
on the process being stepped for the brief time required to perform the step. Since we are
dealing with parallel processes, however, we must account for the possibility that the process
being stepped tries to synchronize with a halted process. In this case, the user interface can
send gdb a signal to immediately halt the process.

Since we have lost the ability to asynchronously notify the user of changes in process
status, we must provide a command that allows the user to poll that status.

Finally, we must extend the breakpoint abilities of gdb to allow for breakpoints that
extend across multiple processes. However, we cannot allow breakpoints to be modified on
running processes, since gdb inserts breakpoints when a process starts and removes break-
points when a process stops. These restrictions must again be added into the code since the
user can now issue commands while processes are running.

Another major problem with using gdb to manage multiple processes is that gdb main-
tains a large collection of global data specific to the child process. The data does not reside in
a single place, but is instead spread throughout the code modules that make up gdb. Much
of the data must be duplicated for each parallel child process. Perhaps the best solution to
the problem is to change the variables into arrays (changing all declarations and references)
and to perform dynamic allocation once the number of processors is known. Unfortunately,
such changes require an inordinate number of modifications to the gdb code, all of which
must be redone to incorporate each new release of gdb. A more manageable solution, the one
we chose to implement, involves adding the storage and dynamic allocation code, but calling
special procedures to swap the appropriate values into the global variables when gdb focuses
on a new process. Unfortunately, the swapping can be fairly time-consuming, particularly
when the debugger must switch many times between processors (e.g., when gathering data
on a spread array).

4.2.4 Asynchronous notification revisited

We now return to the problem of the debugger being unable to asynchronously notify the
user when a process has halted. This inability leads to several problems besides the simple
nuisance of having to poll the status of each process. Since several capabilities of gdb require
the full attention of the debugger process, these capabilities are lost in Mantis. Conditional
breakpoints, which allow the user to create a breakpoint that halts the program only when
a given expression evaluates to true, cannot be used with Mantis. Nor can watch points,
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which stop the process when it modifies a value at a particular memory location or locations.*
Note also that the synchronous poll takes §(P) time for P processors. The time required is
significant when running on a large machine, and can be slow even on small machines when
other parallel processes compete for time.

Remember that the ideal model, which we plan to implement on other platforms such
as networks of workstations, pairs a debugger process with each user process, allowing fast
asynchronous notification and making polling unnecessary.

4.3 Experience and Tradeoffs

In this section, we comment on the overall usefulness of gdb as a platform for building parallel
debuggers, giving specific attention to some of the benefits and drawbacks involved.

First note that gdb is a very big program, consisting of roughly two hundred thousand
lines of code counting various libraries, and when we first used the package, we had trouble
deciding where to look. The Free Software Foundation tries to give good documentation, and
succeeds to some extent, but the documentation appears primarily at the file level. Figuring
out which gdb file contains a certain piece of information can be difficult. A central file
that explains the abstractions and capabilities at a high level and points to an appropriate
file for more detailed information might ease the learning process. Such a file could also
contain commentary on possible changes and extensions to gdb and how they might fit in
using the existing structures. Support for multiple process management, for example, goes
against many of the concepts utilized in the development of gdb and therefore gives rise to
many problems. gdb is not designed for certain changes, and such changes should be avoided
whenever possible.

While we worked with gdb, we noticed many hooks, perhaps intended to allow people to
use the gdb code by merely defining the hooks. We are unconvinced, however, that one can
provide a general enough set of hooks to be useful to a person who must make significant
changes to gdb.

However, despite the difficulty of dealing with such a large software package, we still
feel that modifying gdb was far easier than writing our own debugger, since many areas
of gdb remained unchanged and we avoided the design of many other interfaces. We also
benefit from future releases—bugs in unchanged sections of the debugger will be fixed by
other people, and other people will provide most of the work necessary to port our debugger
to new platforms. The latter relies on our using the more natural model of debugging with

*Watch points are already very slow on most machines—the processor is single-stepped and an expression
evaluated after each machine instruction.
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gdb, of course, since the changes required for the CM-5 version are fairly extensive and for
the most part unusable on other platforms.
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Chapter 5

User Interface Design

The user interface is an important part of a tool because a good interface makes an average
tool worthwhile and a bad interface renders a good tool worthless. While agreement on
the value of specific features of a user interface is rare, we can put forth ideas upon which
everyone can agree and then use those ideas to develop good interfaces.

We began with the following ideas for the Mantis graphical user interface:

e The interface should be easy for beginners to use (ideally without instructions), but
should allow experienced users to work efficiently.

e A response should be given immediately for any user action, even if the response merely
indicates that the user must wait.

o The interface should attempt to predict actions in order to reduce the user’s workload,
but should not be intrusive.

e The interface should cache information that is expensive to obtain so that redisplay is
fast.

e Common interface controls (e.g., the emacs text editing controls) should be supported—
the choice of interface often depends on the expected experience of the user.

e The interface should present information concisely and allow the user to manage the
screen area.

e Components of an interface should be easily identifiable as belonging to the interface,
and any tasks that can be performed on more than one piece (such as dismissing a
window) should be done in the same way.
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o The interface should be visually pleasing.

This chapter explores each of these ideas, attempts to make them more concrete, and
shows where they apply to the design of Mantis. At the end of the chapter, we discuss the
use of the Tcl/Tk package to design and build user interfaces.

5.1 Simple, but Efficient

In our experience, a new user typically tries a new program as follows. First, the user starts
the program to see what it can do. What it can do is often defined by what the user can
get done in five or ten minutes without looking at any documentation on the program. If
the program seems adequate by this measure, the user tries to perform a task using the
new program. If at any point the interface seems restrictive or prevents the user from doing
something important, the user gives up and goes back to an old program. If the new program
manages to pass the test, the user may consider looking at the documentation for features
that could speed up the work. The documentation is otherwise consulted only when the
program has become a commonly used tool and the user runs into something for which the
solution is not apparent after ten or twenty minutes of playing with the interface.

The point of this anecdote is that most users gauge tool functionality with the user
interface, not the documentation. A good interface presents the user with a hierarchy of
commands organized by usage. Common commands receive buttons or other control widgets,
while less common commands appear in pull-down menus. For the advanced user, both
command sets are accessible via keyboard shortcuts. Rarely-used commands are placed in a
separate options window or on submenus. Using this hierarchy, an interface can introduce
new users to the program yet still provide a valuable tool for the experienced user.

Mantis shifts the view slightly by splitting the hierarchy into sets of related tasks. The
tasks are then grouped with distinct windows. Rarely used commands are placed into menus
(e.g., changing between the source file, function, and disassembly selection methods is a menu
operation). We are currently tracing the use of commands in the Mantis user interface to
help structure the command hierarchy. We plan to use the trace data to develop a powerful
set of keyboard shortcuts for the debugger.

5.2 Instantaneous Reaction

A good interface ensures that the user understands what the program is doing at all times;
whether or not the interface recognized the last command should never be an open question.
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When an action takes an extended period of time, the user should be made aware via some
form of animation, either the cursor shape or a suitable icon. If the time can be quantified,
the interface should provide an estimate of the remaining time or fraction of work until the
task is complete.

In Mantis, many commands are passed on to the underlying gdb process, and we have no
way of knowing how long that process will take to respond. The interface shows the user that
the process is busy by writing a message describing the current action in the closest status
area and oscillating the pendulum until the command finishes. Since only the gdb process
is busy, the interface itself still interacts in a limited way with the user. Any command
requiring the attention of the debugger results in the response that the interface is waiting
for the previous command to complete, and the new command is stored for later execution.
An arbitrary number of commands can be stacked in this fashion, but because of the methods
of task management used in Mantis, stacks deeper than one are carried out in the reverse of
the order given (a known bug).

To further aid the user, the cursor shape should reflect the function of the mouse buttons
at the cursor location, and should be altered when the function changes. This kind of
feedback helps provide users with hints as to the purpose of various areas without forcing
them to read help files or manuals. If the task is one common to another program familiar
to the user, the cursor shape from that program’s interface should be used.

Mantis inherits cursor interface functionality automatically from Tcl/Tk. Buttons are
highlighted when the cursor enters, and the cursor changes to an I-bar within entry boxes
and text regions.

5.3 Intelligent Prediction

One measure of an interface is the time or amount of work required for the user to accom-
plish a task. When designing an interface to perform well under this metric, the designer
must first understand the relative frequencies of tasks, then use those frequencies to make
decisions about the placement and type of controls for each command. Once the designer has
integrated the frequencies into the interface, further improvements can be made by trying
to predict the user’s next action. Intelligent prediction makes a user’s work proceed more
quickly, but the interface must not be overaggressive in its attempts to make predictions.

In Mantis, for example, the source file display switches to the current line when the
processor halts or a new stack frame is selected. The time taken is negligible compared to
the time required for the user to enter a command?, and prediction saves the user the effort

The time is noticeable in two cases. When a file is first read, a short delay occurs because gdb must
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Fvaluation

Figure 5.1: Evaluation window. A pull-down menu displays the cache of previously evaluated
expressions.

of looking up the new function (requiring typing in most instances). On the other hand, the
code previously displayed is accessible via the source menu.

In several cases, however, following a prediction is unwise. First, if the predicted task
takes a long time (relative to the user’s requesting the task to be performed), prediction is
a bad idea because the user is forced to wait even when the task is undesired. Second, if the
task destroys or replaces data that require a long time to recover, prediction is again bad.
Finally, the interface should not follow a prediction if the user does not nearly always want
the predicted task to be performed.

Evaluation of expressions, for example, is not always the right thing to do when a pro-
cessor stops. Evaluation can be time-consuming on the CM-5 because of the Time Sharing
Daemon and the lack of optimization in the modified gdb code. Forcing the user to wait
for several evaluations each time a processor steps is unacceptable. Instead, Mantis allows
the user to decide which, if any, expressions should be evaluated by providing the display
window in addition to the normal evaluation window.

When the decision whether or not to act on predicted actions is not clear, it is best left
up to the user, either via an option or through explicitly different means of accomplishing
the task leading to the prediction.

load symbol information for the file. Also, when any function is disassembled during program execution, gdb
reads the memory of the child process instead of reading the executable file, and memory reads can be quite
slow under CMOST because of the Time Sharing Daemon bottleneck.
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5.4 Caching Data

The general problem of caching information should not fall to the interface alone. If extensive
calculations are required to generate a data view for the user, the program should also keep
information for later reuse. Whether the latter type of caching is part of the interface or
part of optimizing the program is debatable, but important. However, we are concerned here
with reducing the time required for the user to generate information.

Entering a function name requires many keystrokes, for example. If the user is forced
to retype the information many times, the interface becomes quite frustrating. Instead, the
interface should maintain a cache of recently used values and let the user swap between them
via either a menu or single keystrokes. ‘

Mantis caches function names for function lookup and expressions for expression evalu-
ation. The down-arrow menu button to the right of the entry box provides access to the
cache, as shown in Figure 5.1. We currently maintain a separate data cache for each window,
and information must be copied manually (via cut and paste) for use in another window.
Alternatively, we might maintain a single cache of values for all windows.

Note that gdb also caches variable values and frame information while a processor is
halted; all of this information becomes invalid when we allow the processor to continue.

5.5 Support for Known Interfaces

If a person encounters a familiar situation when trying out a new interface, the person
naturally attempts to handle the situation with familiar means. Consider, for example, the
process of text editing. Almost all users recognize one of the following interfaces:

e GNU Emacs
Microsoft Word

Word Perfect

Borland Turbo Compilers (originally from WordStar)

o vi

Designing a new interface may seem like the right thing to do in some cases (after all,
what could possibly be more natural than Alt-U to move the cursor up and Alt-D to move
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it down?), but the designers are lucky if their intuition matches even half of the users’
intuitions. Unless they plan to quickly replace every program with a version that supports
the new interface or can convince large corporations to adopt their ideas, the new interface
becomes yet another thing for the user to learn. It also becomes a stumbling block, since
the user must remember to switch to the new interface when using the new program instead
of simply remembering a single interface for a given task.

Since two common interfaces may assign different tasks to a particular key sequence,
the designer should choose a single default interface for the new tool. The interface chosen
should be determined by the user community—the interface familiar to the largest fraction
of the users should be the default. Ideally, any interface already used by a significant fraction
of the user community is available as an option, and the interface is also fully customizable.
But since developing options and custom capabilities takes quite a bit of time, a first step is
to simply allow commands from interfaces other than the default when they do not conflict
with default commands. For example, if the default text editing interface makes no use of
the arrow keys, the arrow keys should move the cursor in the appropriate directions.

For Mantis, we use the GNU emacs controls for text editing since GNU tools are common
in the academic setting. In addition to the emacs controls, Mantis supports the common
X-windows select and copy control (the left and middle mouse buttons, respectively) as well
as typical PC cut and paste controls (CTRL-X and CTRL-V, respectively). The user
can also move the cursor around with the arrow keys. Menus use the nearly universal left
mouse button for normal operation, and the less common middle mouse button for tearoff
(persistent) operation. Text selection and control buttons act with the left mouse button.
For entry boxes, the Tab key moves the cursor to the next box and the Return key initiates
an action related to the entry.

5.6 Eflicient Information Display

The interface should generally allow the user to control the amount of space used by each
window, and should scale and remove controls as necessary to fit within the desired space.
When the program has more data than can be legibly displayed within the space allotted,
the interface must provide mechanisms for the user to obtain the data that do not fit.
Certain programs, including parallel debuggers and performance tools, have an amount of
data proportional to the number of processors and must perform a significant amount of
work to compress the data into a simple, but easily traversed, hierarchy.

Mantis uses the multiple window approach, creating a new window for each new set of
data to be displayed. The advantage of this approach is that the data layout can be managed
by the user by simply moving the windows about the screen and temporarily iconifying
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Figure 5.2: Main window. Control buttons found to the right of entry boxes are used for
menus, file selection dialogs, and actions associated with the entry text.

windows as necessary. The disadvantage is that the windows use a large amount of screen
space for labels, dismiss buttons, and blank space. We feel in retrospect that a better option
is to add new fields to a window that displays data and to expand the window slightly when
those fields are present. For example, one can imagine having evaluated expressions appear
near the source file display in the node window instead of in a separate window.

The status window of Mantis provides an example of efficient data display. By repre-
senting the status of each node with color, and reducing the dimensions of the window to
6(v/P), Mantis allows the user to locate problems quickly and to focus on the problem with
a single mouse click.

5.7 Common Design Pattern

The user should not have to read the fine print to recognize components of the same interface.
Programs that use only one type of window can be distinguished easily by shape, size, and
layout of the window. However, if multiple types of windows exist for an application, they
should all have something in common. Further, the interface designer must select symbols
and markings to be used for similar purposes across the entire interface.

The patterns used in designing an interface should be written down, both to help the
designer to remember them and to later provide insight for the user who takes the time to
read the documentation.

In Mantis, for example, all windows are labeled in a large, italicized font as shown in
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Figure 5.2. Node subwindows such as the evaluation window in Figure 5.1 are then color-
coded (pattern-coded on monochrome machines) to aid the user in finding related windows.
A status region appears just below the label in each of the larger windows, with the inverted
pendulum icon placed to the right. Spacing for borders and between widgets is the same in
all Mantis windows, enhancing the similarities. F inally, all Mantis windows are dismissed
using the button on the lower right hand corner. Dismissing the main window exits the
program, of course.

A second example occurs with entry boxes: one or two control buttons are commonly
placed to the right of each entry box, as with the three entries in the main window of
Figure 5.2. An arrow symbol, pointing to the right for a file selection dialog or downward
for a menu of recently cached values, sits closest to the entry box. A second button to the
right is labeled with a brief textual description of the action performed by pressing Return
in the entry.

Finally, the topological aspect of a widget frame is selected with the purpose of the widget
in mind. Raised widgets indicate controls: buttons, menus, or scroll bars. Sunken widgets
indicate text entry. Grooved and ridged widgets indicate data displayed for the user, with
the ridge having the additional meaning that the user can then select data from within the
widget to obtain further information. The matching of visual clues to purpose helps the user
to understand intuitively how the interface works.

5.8 Pleasing to the Eye

Aesthetic value is the most qualitative aspect on our list and is therefore the most difficult
to discuss. The interface should clearly allow users to make their own decisions about color
schemes and patterns, but we must also consider a few finer points.

Color should not be abused. Color is effective for highlighting important information and
helping to focus the user’s attention, but using too many colors, or using bright colors too
often, frustrates the user by making it hard to know where to look.

In general, a graphical interface should not be distracting. Frames and controls should
be placed along straight lines unless they are intended to stand out. If several items appear
on a line, spacing between the items should be even unless a natural subgrouping exists, in
which case spacing for each level of the grouping hierarchy should be even.
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5.9 Building Interfaces with Tcl/Tk

As we mentioned in Chapter 4, we wrote the Mantis user interface with the Tool Command
Language (Tcl) [15][16] and Tcl toolkit (Tk) [17] developed by Ousterhout.

Tcl/Tk interfaces generally consist of two parts: a set of application-specific extensions
to the language and a script to manage user interaction. On modern workstations, most
operations run with adequate speed using only the interpreted script code. The remaining
operations are written in C and included as new Tcl commands. Once the new commands
are in place, they can be used in the scripts in the same way as any other Tcl command.

Because of its modular nature and the fact that the Tcl/Tk code was designed to be
extensible, working with the system is very simple and straightforward. Full documentation
is available with the package, and further explanation and examples of use can be found in

[16].

For Mantis, we added one widget and five new commands. We created the source file
display widget, which appears in Figure 5.3, by simply copying the code for the standard Tk
listbox widget (one file) and changing the name, then making a few modifications. Figuring
out the set of X calls needed to obtain the desired behavior was the most difficult part of
the process. We then added the following commands to the Tcl interpreter:

a command to create a child process (the debugger process) with extra pipes for the
process being debugged,

a command to check on the status of a child process in case the debugger process
crashed,

a command to take asynchronous action when something appears on a pipe shared
with the debugger or the process being debugged,

a command to animate the pendulum icon, and

a command to propagate breakpoint changes to all source file widgets.

The code for the source file widget is about twenty-five hundred lines, and the code for
the commands comes to almost fifteen hundred. Although the C code is only broken up
into two files, the functions separate easily into individual commands if desired. We have
already reused commands written for Mantis several times, and we found the operation
straightforward on each occasion.

The scripts for Mantis consist of sixteen files broken up by functionality and window
type. Most files are a few hundred lines long, and the total length is over four thousand
lines.

93



Figure 5.3: Node window. The source file display widget directs the user’s attention to a
problem.
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Because of the script nature of the interface, we found it very easy to experiment and
develop the interface to Mantis in real time. The time to make a change is dominated by the
time it takes the programmer to type in the change instead of by compilation. The scripts
also permit anyone who wants to customize the interface for their own purposes to do so.
We doubt that the Mantis interface could be as clean as it is without the use of Tcl/Tk.
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Chapter 6

Related Work

In this chapter, we explore other parallel debuggers, commenting on interface design, func-
tionality, and portability, and examine other approaches to parallel debugging, noting the
benefits and drawbacks of each approach.

6.1 Other Parallel Debuggers

This section discusses the merits of several parallel debuggers available to the general pub-
lic. We begin with Panorama [12], created by John May to integrate the myriad techniques
developed for parallel debugging in an easily portable and extensible manner. Next, we
consider Node Prism [18], a product of Thinking Machines Corporation for the CM-5. Node
Prism provides traditional debugging features and introduces a flexible method of control,
emphasizing scalability for all operations. Finally, we examine TotalView, a debugger origi-
nally built by Bolt, Beranek, and Newman for the TC-2000 (the Butterfly) and now licensed
by BBN for use on other platforms. TotalView emphasizes simplicity and consistency in its
user interface, giving the user a very efficient debugging tool. All three present graphical
interfaces to the user.

6.1.1 Panorama

Like Mantis, the Panorama debugger interface uses Tcl/Tk to enhance portability and ex-
tensibility. The Tcl/Tk interface communicates through a socket with the vendor-supplied
debugger for the machine. Panorama provides a standard debugging interface across ma-
chines, using a “platform file” to translate between Panorama’s commands and responses
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and those used by the machine’s debugger. Panorama currently provides platform files for
the Intel Paragon and iPSC/860 and the N cube/2.

Although Panorama allows for multiple windows and graphic visualizations of data and
communication, the interaction is primarily textual. The user can create a, separate window
for each processor, and the commands allow for overriding the default processor (e.g., “on
all continue”), but the commands themselves must be typed. Source browsing, program
control, and general expression evaluation are all performed using a command-line interface
within a Tk text window. A more graphical interface could greatly reduce the time required
to perform general tasks.

The visualization techniques, on the other hand, use primarily graphical mechanisms.
Buttons on the main window create visualization windows, and the mouse manages alteration
and expansion of information within the new windows. Windows in Panorama generally
operate independently and only update displayed information by request. Included with
Panorama are two windows to display message traffic, one statically and a second as a
function of time. The user can add other visualizations easily by writing Tcl scripts, and
the authors plan to extend the set of predefined visualizations as time permits.}

In addition to the traditional debugging capabilities, Panorama allows for tracing of
communication activity for post-mortem debugging, supplying for each machine a library of
tracing routines and preprocessor macros. Although the library is harder to port than the
Tcl/Tk interface, the bulk of the code (over ninety percent) remains machine-independent.
The value of the tracing facilities is questionable, however. Data presented in [12] indicate
tracing overheads of between 5 and 65% of communication cost on the Intel iPSC /860 and the
Ncube/2, depending primarily on message size and ignoring trace buffer overflow. Such large
overheads can change the outcome of a race condition and prevent a bug from appearing.
Further, and perhaps more importantly, real programs produce an enormous volume of trace
data, creating I/O bottlenecks and storage difficulties. Tracing issues are discussed in more
detail in Section 6.2.1.

The simple model used to build Panorama results in a highly portable platform for
debugging, one readily extended to include new developments in visualization as they emerge.
Panorama provides a standard interface with a minimum of effort.

Naturally, the model also has drawbacks. A significant amount of the debugging infor-
mation in executable files is condensed or simply masked from the debugger user, and the
results are then encased in English phrases and formatting characters. Though necessary
for command-line debugging, the filtering process restricts the capabilities of programs like
Panorama that must try to reverse the process in order to locate useful data. For example,
information on source to executable mapping, communication library internals, scoping of

1The two visualizations discussed here were available in mid-1993, and others have been added since that
time. In particular, a tool to display array values in color appears in the current version.
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variables, and symbol lists are typically not directly available. Further, Panorama can only
utilize the intersection of vendor debugger functionality, eliminating possibly useful tools,
since otherwise Panorama could not fully support the standard interface on all platforms.

6.1.2 Node Prism

After developing Prism for debugging data parallel applications on the CM-5, Thinking Ma-
chines Corporation extended the capabilities of that debugger to support message-passing
programs. Node Prism, described in [18], [19], and [20], gives the user traditional debug-
ging capabilities combined with data visualization, performance tuning facilities, interesting
methods of information compression, and a flexible method of control.

Node Prism, which currently runs only on the CM-5, uses capabilities of the CMOST
operating system that were not available when we first conceived Mantis. In particular, Node
Prism runs as a parallel process, monitoring each copy of the user’s program with a separate
debugger stub and retaining the one-to-one nature of the sequential debugger-to-program
interface. The parallel nature of Prism makes scalability of commands fairly straightforward,
since the bulk of the work can be done in parallel, leaving only small tasks for the host
processor (which must still manage the user interface). A discussion of parallelizing the
debugging tasks and deciding on the amount of information needed by the stubs can be
found in [18].

In addition to the graphical user interface that we discuss here, Node Prism supports a
command-line interface capable of managing data visualization and other graphics. Node
Prism also integrates performance tuning tools with the debugging capabilities, and even
provides a rudimentary interface to editors and compilers, but these features are beyond the
scope of this document.

General interface

After Node Prism has read in the symbols for an executable and distributed the necessary
information to the debugging stubs, the main window shown in Figure 6.1 becomes oper-
ational. The window divides into several regions: across the top is a menu bar, followed
by a set of control buttons, a status region, a region for source file display, a scrollable
feedback region, and a command entry line at the bottom. Prism automatically focuses the
source display on the function main. The relative size of certain regions can be controlled
by dragging one of the two small pins in the figure (one is just down and right from the
checkbutton, and the other is between the source and feedback regions. The
sizes and other data are saved in an options file, making the user’s customizations semi-
permanent. The command entry line supports emacs controls, including moving forward
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Figure 6.1: Main window of Node Prism. The source region automatically displays the start
of main.
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and backward through the command history with CTRL-N and CTRL-P. Unfortunately,
the pleasantness of the general interface ends there.

The controls used to execute an action are often arcane, unnatural, or overcomplicated.
Consider the keyboard shortcuts used for the row of buttons in Figure 6.1. Printable charac-
ters are sent to the command entry region, so the shortcuts cannot simply be letters. Prism
chooses to use the function keys (F1, F2, etc.), a reasonable decision. The natural mecha-
nism is to give the buttons and the shortcuts the same ordering and to use the unmodified
function keys for the shortcuts. Prism, however, scrambles the order and requires the user
to press the CTRL key for the shortcuts. The unmodified function keys are not used by
Prism. By requiring the CTRL key and neglecting to make use of the natural keyboard
to screen mapping of keys to buttons, Prism makes learning and use of the shortcuts more
difficult than is necessary.

Once we manage to memorize the controls, we find that certain controls function spo-
radically or not at all. Deleting the character to the right of the cursor using CTRL-D,
for example, ceases to work when the cursor is at the start of the line. Simultaneous two-
button combinations on the mouse reportedly move through a list of previously displayed
source files, but one direction of motion merely brings up a menu (the usual function of the
second button pressed), while the other direction rarely works (we have seen it change files,
but cannot get the control to work by choice). The list of files cannot be inspected, so the
user must guess whether the lack of response indicates that the control does not work, the
button presses were incorrectly performed, or the operation was executed on an empty list
and resulted in no change.

As another example, we will try to select an expression in the source display region.
Instead of allowing the user to point and click on expressions, Prism chooses to duplicate
X-windows mechanisms exactly, using the left button click only to deselect text. Expres-
sion selection requires either pointing and dragging or double-clicking. In this instance,
Prism has taken the idea of copying other interfaces too far, sacrificing simplicity for useless
functionality.

Pointing to a variable and double-clicking, we must wait two seconds before Prism high-
lights the expression. During the two seconds, the interface gives no feedback, but freezes
completely. If the user mistakenly assumes that Prism misread the double-click as two single
clicks and double-clicks again, Prism will unhighlight the selection after freezing the interface
for another three seconds and then, after yet another three seconds (for a total of eight),
highlight the expression a second time. If the user is so bold as to click wildly, trying to
force Prism to respond, the interface will merely crank away, making one change every two to
three seconds, remembering every click received and never giving any indication of activity
except for the periodic changes in highlighting.

We have no idea why Prism takes so long. The times given assume that Prism is the only
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process running on the CM-5, prohibiting any explanation involving time sharing. When N
other processes are sharing the machine, times are generally a factor of N + 1 longer. The
debugged process, running or halted, counts toward the factor as well, so that if the user’s
program is running, the minimum selection response time is three or four seconds. Other
interface activities such as scrolling the source suffer from the same delays in some instances,
but react reasonably in others. The combination of huge delays and sporadic behavior can
be incredibly frustrating.

Accepting the delays, we return to the selection process. Hopefully, the programmer has
surrounded the expression with spaces, because Prism will include any commas, semicolons,
or parentheses (and anything else except white space, it seems) along with alphanumeric
strings when the user double-clicks. Since none of the Prism commands can filter out the
extraneous bits of the string, the double-click method is often rendered useless.

At this point, most users return to the method of pointing and dragging to make selec-
tions. Hopefully, the user remembers to deselect expressions immediately, since otherwise
Prism will force a two second delay while it unhighlights the old expression before allowing
the user to see the bounds of the new selection.

Source browsing

Prism shows source code in the main window, which cannot be duplicated. The user can
only display one source file at a time, perhaps a reasonable interface if the user can easily
switch back and forth between pieces of code. Prism claims to keep a list of previously viewed
files, but we were unable to use or view the list, as mentioned in the previous section. Even
using other means of changing the displayed source, the three to five second delay required
for Prism to show a new file prevents the user from quickly moving back and forth between
pieces of code.

In order to change the file, the user must either type in the full filename at the command
line or make use of a separate file selection window (shown in Figure 6.2) that lists the
source files for the given executable. Prism can only display source files—the user must open
a separate editor to view header files or other related information, even if the exact file name
is known. Note also that if the user makes any mistake in the file selection window, the error
information is routed to the feedback region of the main window (as is all error information).
The response is clear when the user’s attention is focused on the main window, but can go
unnoticed when the user works with other windows. Also notice that in Figure 6.2, the
file bulk.h appears many times. The problem is that the compiler inlines a function from
bulk.h and must note the correct location of the source code in the debugging information.
If the same function is used in several places, Prism lists each as an independent source file.
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Figure 6.2: File selection window of Node Prism. Files with inlined code such as bulk.h
appear once for each instance of inlining.

Finding a function is not much easier. The user can choose between the command-line, a
separate function selection window, or a SHIFT-double-click mechanism that requires white
space on both sides of the function name.

One redeeming feature of the source browsing interface is its ability to display assembly
code simultaneously with the source code in two independent regions. Prism marks the as-
sembly code with the line numbers of the original source file when available, and breakpoints
can be set in either region.

Program control

Prism provides a very flexible scheme for program control, allowing the user to move easily
between arbitrary subsets of processors. All operations involving program control, including
breakpoints, interrupt, continue, and single-stepping the processors make use of the current
processor subset. The syntax used to name the sets is drawn from data parallel array nota-
tion:

first : last : step
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Prism extends the notation slightly to allow for arbitrary sets by linking multiple array
specifiers together with commas. The processor set

1:5:2, 33:36
would include processors 1, 3, 5, and 33 through 36, for example.

A separate window allows the user to change between defined sets or to define new
ones. Although some of the visualization tools allow the user to create a new set without
typing, we could not find a graphical means of defining an arbitrary set. On the other hand,
the command line and processor set creation window provide powerful textual tools for set
definition, including set operations (union, intersection) and the ability to define a set based
on the result of a Boolean expression evaluated on the processors.

Prism also handles breakpoints well. Breakpoints can be created and destroyed using a
single click near a line number to the left of the source region. The cursor becomes a “B”
when it enters the region, and the same symbol is used to mark existing breakpoints. No
information is given as to where breakpoints may be set, however, so the user must watch
the feedback region if clicking results in no response. More detailed breakpoint creation is
available via a separate window. The user can give a condition and count to check before
stopping and can provide an arbitrary set of actions to execute when the breakpoint is
reached.

Data display and visualization

Data display in Prism uses a single interface with several options. Prism automatically
collects the results from each processor in the processor set and allows the user to choose
between display in the feedback region or in a dedicated window.

Prism compresses any text entering the feedback region into a list of unique responses.
Each response is tagged with a subset of the processor set to tell the user which processors
gave a particular response. Changes in processor status and other feedback information
also use the compression process, requiring less effort for the user to understand possibly
important information.

Dedicated display windows can be marked as “snapshots,” in which case Prism preserves
the data from modification by the program. Non-snapshot windows are partially obscured
with diagonal slashes when the data becomes stale, but the user can request that the data
be updated from a menu in the display window.

A second menu in the display window allows the user to gather statistics and to change
the representation of the data, selecting from one of several interesting options. Besides the
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Figure 6.3: Stack trace comparison window of Node Prism. The second bug from Chapter 2
causes the first branching.

standard textual representation, Prism supports several graphical displays. For example, a
color map display uses a heat color scheme (blue is cold or low-valued, red is hot or high-
valued) to represent each data point as a block of color, allowing the user to quickly scan
the data for appropriate patterns.

Prism also supports a graphical views of structures, representing each structure as a
separate box. Pointers within the structure are represented as small dots—the user can click
on the dot and expand the pointer into a new value or structure box. The interface displays
dynamic arrays, but the programmer must add a function and recompile to set the size of a
dynamic array.
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One particularly useful tool is a window displaying a tree of stack traces, as shown in
Figure 6.3. In the figure, we have taken the second bug from Chapter 2 and displayed
the stack trace tree after halting all processors. Nodes and subtrees in the window can be
iconified to better manage the display space, and the amount of data shown in each node can
be controlled using the zoom buttons. The figure shows the highest zoom level, giving not
only the arguments to each call but a map of processors which entered that call. By double-
clicking on a node, the user can change the current processor set to the set of processors in
the node selected.

Summary

Prism is a highly functional debugger that is already integrated with many useful tools. By
placing debugging stubs on each node, Prism maintains the one-to-one relationship between
the debugger and the program threads and retains the ability to support asynchronous noti-
fication and useful abstractions such as conditional breakpoints. Processor set specification
enhances the power of traditional debugging operations, and compression of feedback reduces
the amount of data scanned by the user. A selection of visualization tools are available along
with a uniform data display interface. A graphical tool for comparing stack traces rapidly
focuses the user’s attention on problem areas of the program.

The main difficulty in using Prism is the interface. Whether because of the TS Daemon’s
scheduling methods or because of bugs in the interface, Prism at times runs inordinately
slowly. Combined with overcomplicated controls and complete lack of feedback in some
cases, the speed problems result in an interface that can be almost painful to use.

Prism is also only available on the CM-5, meaning that users must choose another de-
bugging tool if they wish to port the code to other parallel platforms. We see no reason,
however, for TMC not to follow BBN’s example with TotalView and license Node Prism for
use on other machines.

6.1.3 TotalView

The TotalView debugger from BBN presents the user with a consistent interface to all
functionality. The user can open a separate source display window for each process in the
parallel program and perform various data visualization tasks.

TotalView assigns each of the three mouse buttons a general purpose, and the buttons
act appropriately in all situations. The left button makes selections from lists and text, the
middle button drives the menu system, and the right button “dives” deeper into information.
In the source region, for example, the left button can be used to select expressions from the
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source, the middle button brings up a menu for data display and other options, and the right
button evaluates the expression or brings up the function selected.

Despite the beneficial features of the TotalView interface, learning to use the debugger
does take some effort. Many operations require keyboard shortcuts or menus, offering no
means to gradually introduce users with more visually-oriented means such as buttons and
entry boxes. Although consistency aids a new user in the learning process, the interface
caters primarily to the expert user who prefers to use the keyboard over the mouse.

TotalView had a strong influence on the development of Mantis. The popularity of
TotalView over other debuggers convinced us of the key role played by the user interface in
making a tool productive or useless.

6.2 Different Approaches to Debugging

This section discusses a few other approaches to debugging, including tracing of communi-
cation for deterministic replay, animation of program activity, and dynamic instrumentation
techniques.

6.2.1 Tracing communication

A large fraction of the parallel debugging community believes that tracing and deterministic
replay will prove essential to debugging parallel programs. Another large fraction, including
the author, recognizes the potential usefulness but maintains that the perturbations to the
program and the sheer volume of trace data generated by real programs will continue to
make tracing an impractical alternative.

Tracing generally consists of adding small sections of code to each interprocessor com-
munication call at the library level. The code records interesting information such as the
time according to the local processor and the type, size, and destination of the message. The
tracing code writes the data into a special buffer and flushes the buffer to disk when full.

Performance tuning tools also use tracing. Paragraph [9][10], for example, displays an-
imated graphical views of trace files generated using the Portable Instrumented Communi-
cation Library (PICL). PICL supports optional tracing of communication events as defined
above. The PICL library consists of two portable layers on top of a third, non-portable
layer that makes use of the machine-dependent message-passing primitives. The authors of
ParaGraph give a favorable view of the overhead and perturbation effects of PICL, but some
users are less sure [8].
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For debugging purposes, the most interesting and perhaps useful view in Paragraph,
called the “Task Gantt Graph,” shows the tasks performed by each processor, the y-axis,
as a function of time, the x-axis. Tasks are defined by the user: for each section of code
comprising a task, the user selects a numerical ID and inserts special PICL calls marking
the start and end of the section. The ID’s need not be unique, but sections with the same
ID appear in the same color. Paragraph assigns a different color to each task up to the
sixth? and recycles colors for later tasks. The graph is equivalent to a sequential profiler
that retains time data for each processor instead of collapsing the data into averages. When
debugging, the graph could be used to illustrate the bulk synchronous block structure of
the program, highlighting violations of the blocks for the user. The graphical representation
helps call attention to anomalies. Unfortunately, Paragraph requires that the user recompile
the program to change the definition of tasks.

Trace data for the Gantt graph is minimal, but in order to provide a deterministic re-
play of the program, we must collect much more data. In fact, we must record data for all
interprocessor communication. Selecting the size of the trace buffer for full traces can be
tricky. The smaller the buffer, the more frequently the program suffers an extremely slow
disk access as the buffer flushes. The larger the buffer, the less memory can be used by
the parallel program. In our experience with tracing Split-C communication, real programs3
often generate more data than even the largest buffers can hold (more than 10MB per pro-
cessor in a sample human genome problem), causing repeated flushes via slow 1/O channels
and altering the temporal behavior of the program.

Even for the class of programs that perform sufficiently little communication that tracing
might be feasible, the amount of time taken by the tracing code is generally comparable to the
faster message-passing calls. As machines progress, the limiting factor for both tracing and
communication will become the cost of accessing the lowest level of the memory hierarchy.
The trace must read the clock and write the trace data, both of which miss higher levels
of the hierarchy, while communication calls must send a short message across the memory
bus to a DMA controller or full network interface processor. The time required on future
machines will thus continue to be comparable, and tracing will continue to disrupt program
behavior.

6.2.2 Animation

Several parallel debugging projects have suggested the use of animation as a tool to help
the user understand the program’s interactions. The general approach requires that the user
spend time to augment the program with appropriate icons and annotations to allow the

?Paragraph supports sixty-four colors in later versions, but distinguishing sixty-four colors is hard.
3By “real programs,” we mean programs written by people other than the language designers to solve
problems that they want to solve (i.e., not benchmarks, kernels, or example programs).
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animation package to display the results. The approach also entails tracing, often beyond
that required for deterministic replay.

We doubt that parallel programmers will frequently use animation. Only large programs
merit the additional overhead of writing and debugging animation extensions, but large
programs generate an enormous volume of trace data, invariably changing the behavior of
the program.

6.2.3 Dynamic instrumentation

The process of dynamic instrumentation involves the addition of short instruction sequences
to an existing executable. Parallel performance tuning tools like Paradyn [13] avoid per-
turbing the program except during short intervals by dynamically inserting and removing
performance instrumentation.

Dynamic instrumentation also appears in some debuggers to supplement debugging ca-
pabilities by compiling extensions to the program immediately, allowing the user to make
small modifications to the program without a full recompilation process. The modifications
generally include minor changes to source code and creation of fast conditional breakpoints
and trace points.
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Chapter 7

Future Work

This chapter briefly outlines the future of Mantis, discussing plans and possibilities for
extension. In Section 7.1, we consider additions to the user interface. Section 7.2 discusses
the benefits of adding library support for debugging. Section 7.3 describes a way to use
Mantis as a starting point for other projects. Finally, Section 7.4 details our current efforts
in porting Mantis to other platforms.

7.1 Extensions to the Interface

The first addition to Mantis will involve some form of data visualization. Most parallel
debuggers provide support for graphical representation of data to help the user to recognize
incorrect results and to locate the source of the error. Simple methods of adding support for
visualization are to create a file or socket interface to a visualization package like AVS or to
instrument the code to work with a package like VIGL (described in [6]). Alternatively, we
might build visualizations directly into Mantis using Tcl/Tk scripts as Panorama[12] does,
trading faster functionality for better extensibility.

A related extension involves displaying structures and dynamic arrays as objects and
allowing the user to expand and contract links. Although many debuggers already support
this type of display, several features seem to be lacking from all of them. For example,
coercing objects into related templates (other structures) should be straightforward, perhaps
even allowing the user to alter templates and define new ones. Often related structures can
be differentiated by means of a field near the top of the object, and we might allow the user
to define the relationship within the debugger. Mantis should also accept an expression for
the length of dynamic arrays. Some users may prefer to build extra code into their programs
to support our new displays, but others will prefer to work through the debugger. For the
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latter group, Mantis should save display information for later use, learning about the user’s
preferences and shortening the time-consuming process of configuration.

Another useful feature would allow the user to save and restore information on the state
of Mantis, including window layout and breakpoint data. A programmer working on a single
project might be saved considerable effort if Mantis could automatically manage windows
and duplicate the breakpoints of previous debugging sessions.

Finally, we would like Mantis to distinguish between user code and Split-C library code
when we examine a processor. Special functions could be added to give the user a meaningful
indication of events when the processor operates inside the Split-C library. For example,
if the processor stops in a message handler, Mantis could provide details on the message
type, source, and contents. Mantis could also differentiate between processors busy doing
computation and those simply waiting for data from other processors at any point in time.
More interesting results can be achieved by adding support within the library, as we discuss
in the next section.

7.2 Library Support

Another direction for future work involves modifying the Split-C library to support new
debugging operations. Until now, we have avoided changes to the library for two reasons:
they require that the user recompile the program (or at least relink it), and the more in-
teresting changes inevitably perturb the program. As we discussed in Section 6.2.1, even
minor perturbations can cause changes in timing and make bugs disappear, leaving the user
frustrated. However, when used optionally and with the understanding that they may not
work, the methods that follow make the user’s task easier.

First we might add a piece of code to handle incoming messages, simply a loop that
constantly polls the network. By calling the loop on a halted processor, Mantis could allow
the user to stop one processor without interfering with the computations of others. The user
must exercise caution in using the option to avoid corrupting data on a processor halted in
a critical section.

Recording the location of the last barrier passed might help the user locate bugs with the
bulk synchronous block strategy. At the cost of a minor perturbation, Mantis could present
a compressed representation of the various barriers, allowing the user to rapidly detect any
inconsistency. We might couple this extension with a global option to step to the next
barrier, enhancing the capabilities of the bulk synchronous view.

We could also add partial message tracing to the library. Full tracing and storage is not
feasible with real programs, and any software tracing results in significant perturbation of
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the program—the time to fill a trace record is comparable to the time to send a message on
the CM-5. Nevertheless, in some cases we can gain valuable insight by examining the last
few messages sent and received by each processor. Mantis can recognize library functions
in the message data and present the messages using Split-C terminology: “Processor 17
put (int)0x125411 into my_array[102],” for example. Finding an appropriate name for the
storage location might be difficult, however.

7.3 DMantis as a Subprogram

Split-C provides the direct control and simple source to executable translation required for
programmers to fully optimize parallel programs, but it can also serve as a target language.
Higher-level parallel languages and libraries can compile into Split-C, avoiding the cost of
developing separate translations for each architecture.

Figure 7.1 shows how a high-level language and debugger might interact with the Split-C
compiler and Mantis. The user in the upper right portion of the figure writes source code
in the high-level language and then compiles the code using the high-level compiler. The
compiler produces not only source code in Split-C, but a mapping from the original source to
the Split-C source. The mapping is analogous to the debugging information included in the
executable file, but appears instead in a separate file. The Split-C compiler is then invoked
to create an executable.

For debugging, the high-level debugger uses Mantis and the mapping produced by the
high-level compiler. Commands that refer to high-level constructs are translated into Split-
C via the mapping before being sent to Mantis. Similarly, Mantis’ responses undergo the
inverse translation from Split-C into the high-level language abstractions before returning to
the user.

The Castle project includes several high-level languages and library abstractions; hope-
fully they will be able to use Mantis in the fashion outlined here to simplify the process of
building debuggers.

7.4 Porting to Other Platforms

Work has already begun on a version of Mantis for networks of workstations with the NOW
project at Berkeley. We have upgraded the interface significantly, adding X configuration
options and other features and cleaning up the code. We have created a sequential version of
Mantis in preparation for the new platform, which will utilize the debugging model described
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Figure 7.1: High-level language built using Split-C and Mantis. The user need only interact
with the high-level compiler and debugger.
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in Section 4.2.1. The updated graphical user interface runs both with the sequential version
and with the CM-5 version of the underlying gdb debugger, allowing the user to have the
same debugging interface for sequential and parallel debugging needs.

The new model will solve the problem of asynchronous notification and all of the diffi-
culties arising from that problem, as outlined in Sections 3.8 and 4.2.4. Further, the new
version will match the requirements of more typical systems, and should ease the process of
porting Mantis in the future.
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Appendix A

Code for Fish and Gravity

1 #include <split-c/split-c.h>

2 #include <split-c/control.h>

3 #include <split-c/com.h>

4 #include <math.h>

5 #include <malloc.h>

6

7

8 #define NFISH 100 /* number of fish */

9 #define T_FINAL 10.0 /* simulation end time */
10 #define GRAV_CONSTANT 1.0 /* proportionality constant of
11 gravitational interaction */
12
13 /*
14 This structure holds information for a single fish, including
15 position, velocity, and mass.
16 */
17
18 typedef struct {
19 double x_pos, y_pos;
20 double x_vel, y_vel;
21 double mass;
22 } fish_t;
23
24
25 /* These procedures perform subtasks for splitc_main. */
26 void all_init_fish (int num_fish, fish_t *local_fish);
27 void all_compute_force (int num_fish, fish_t *spread fish,
28 double *x_force, double *y_force);
29 void all_move_fish (int num_fish, fish_t *local_fish, double delta_t,
30 double *x_force, double *y_force,
31 double *max_acc_ptr, double *max_speed_ptr,
32 double *sum_speed_sq_ptr);
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33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

/*

*/

Simulate the movement of NFISH fish under gravitational attraction.
splitc_main initializes the fish, then enters the main loop. The loop
divides into three synchronous blocks for force computation, fish
motion, and data collection.

splitc_main ()

{

/*

double t = 0.0, delta_t = 0.01;

double max_acc, max_speed, sum_speed_sq, mnsqvel;
fish_t *spread fish, *local_fish;

int num_£fish;

double *x_force, *y_force;

/* Allocate a global spread array for the fish data set and
obtain a pointer to the local portion of the array. Then
find the number of fish owned by this processor. */

fish all_spread_malloc (NFISH, sizeof (fish_t));

local_fish = tolocal (fish);

num_fish = my_elements(NFISH);

/* Allocate force accumulation arrays. */
x_force = (double *)malloc (num_fish * sizeof (double));
y_force = (double *)malloc (num_fish * sizeof (double));

/* Initialize the fish structures, then synchronize
to ensure completion. */

all_init_fish (num_fish, local_fish);

barrier ();

/* Enter the main loop. */
while (t < T_FINAL) {

/* Update time. */
t += delta_t;

/* Compute forces on fish due to other fish, then synchronize to
ensure that no fish are moved before calculations finish. */

all_compute_force (num_fish, fish, x_force, y_force);

barrier ();

/* Move fish according to forces and compute rms velocity.
Note that this function is completely local. */
all _move_fish (num_fish, local_fish, delta_t, x_force, y_force,
&max_acc, &max_speed, &sum_speed_sq);

BUG: The programmer used all _reduce_to_one_d* instead of

78



84 all_reduce_to_all_d*, resulting in different time steps on each

85 processor that eventually caused synchronization errors and

86 hung the program.

87 */

88

89 /* Compute maximums across all processors and sum for rms speed
90 (this will synchronize the processors). */

91 max_acc = all_reduce_to_one_dmax (max_acc);

92 max_speed = all_reduce_to_one_dmax (max_speed);

93 sum_speed_sq = all_reduce_to_one_dadd (sum_speed_sq);

94 mnsqvel = sqrt (sum_speed_sq / NFISH);

95

96 /* Adjust delta_t based on maximum speed and acceleration--this
97 simple rule tries to insure that no velocity will change

98 by more than 10%. */

99 delta_t = 0.1 * max_speed / max_acc;

100

101 /* Print out time and rms velocity for this step. */

102 on_one {printf ("%15.61f %15.61f;\n", t, mmnsqvel);}
103 }
104 }
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105

106

107 /*

108 Place fish in their initial positions.

109 */

110

111 void

112 all_init_fish (int num_fish, fish_t *local_fish)
113 {

114 int i, n;

115 double total_fish = PROCS * num_fish;

116

117 for (i = 0, n = MYPROC * num_fish; i < num_fish; i++, n++) {
118 local_fish[i].x_pos = (n # 2.0) / total_fish - 1.0;
119 local_fish[i].y_pos = 0.0;

120 local_fish[i].x_vel = 0.0;

121 local_fish[i].y_vel = local_fish[i].x_pos;
122 local_fish[i].mass 1.0 + n / total_fish;
123 }

124 }

125

126

"
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127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
185
156
187
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

/*

*/

Compute the force on all local fish according to the 2-dimensional
gravity rule,

F =d * (GMm/d"2),
and add it to the force vector (fx, fy). Note that both fish and
both components of the force vector are local.

void
all_compute_force (int num_fish, fish_t *spread fish,

{

/*

*/

double *x_force, double *y_force)

int i, j;
fish_t *local_fish, remote_fish;
double delta_x, delta_y, dist_sq, grav_base;

/* Clear forces on local fish. */
for (i = 0; i < num_fish; i++) {
x_force[i] = 0.0;
y_forcel[i]l = 0.0;

n

BUG: The programmer forgot to initialize local_fish before
using it below.

/* Move through the global fish list and
accumulate forces on local fish. */
for (j = 0; j < NFISH; j++) {

/* Read remote fish data. */
remote_fish = fish[j];

/* Calculate force between remote fish and all local
fish and accumulate force on local fish. */
for (i = 0; i < num_fish; i++) {
delta_x = remote_fish.x_pos - local_fish[i].x_pos;
delta_y = remote_fish.y_pos - local_fish[i].y_pos;
dist_sq = MAX ((delta_x * delta_x) + (delta_y * delta_y), 0.01);
grav_base =
GRAV_CONSTANT * (local_fish[i].mass) * (remote_fish.mass) /
dist_sq;

x_force[i] += grav_base * delta_x;
y_force[i] += grav_base * delta_y;
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177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

/*
Move fish one time step, updating positions, velocity, and
acceleration. Return local computations of maximum acceleration,
maximum speed, and sum of speeds squared.

*/

void .
all_move_fish (int num_fish, fish_t *local_fish, double delta_t,
double *x_force, double *y_force,
double *max_acc_ptr, double *max_speed_ptr,

double *sum_speed_sq_ptr)

{

int i;

double x_acc, y_acc, acc, speed, speed_sq;

double max_acc = 0.0, max_speed = 0.0, sum_speed_sq = 0.0;

/* Move fish one at a time and calculate statistics. */

for (i = 0; i < num_fish; i++) {
/* Update fish position, calculate acceleration, and update

velocity. */
local_fish[i].x_pos += (local_fish[i].x_vel) * delta_t;
local_fish[i].y_pos += (local_fish[i].y_vel) * delta_t;
x_acc = x_force[i] / local_fish[i].mass;
y-acc = y_force[i] / local_fish[i].mass;
local_fish[i].x_vel += x_acc * delta_t;
local_fish[i].y_vel += y_acc * delta_t;
/* Accumulate local max speed, accel and contribution to
mean square velocity. */
acc = sqrt (x_acc * x_acc + y_acc * y_acc);
max_acc = MAX (max_acc, acc);
speed_sq = (local_fish[i].x_vel) * (local_fish[i].x_vel) +
(local_fish[il.y_vel) * (local_fish[il.y_vel);

sum_speed_sq += speed_sq;
speed = sqrt (speed_sq);
max_speed = MAX (max_speed, speed);

¥

/* Return local computation results. */

*max_acc_ptr = max_acc;

*max_speed_ptr = max_speed;

*sum_speed_sq_ptr = sum_speed_sq;

}
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