Adaptive Parallel Programs

Steven Lucco

Report No. UCB//CSD-95-864
August, 1994

Computer Science Division (EECS)
University of California

Berkeley, California 94720

Adaptive Parallel Programs
by

Steven Lucco
B.S. (Yale University) 1985

A dissertation submitted in partial satisfaction of the
requirements for the degree of
Doctor of Philosophy

in
Computer Science
in the

GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:

Professor Susan L. Graham, Chair
Professor James Demmel
Professor Paulo Monteiro

1994

This material is based in part upon work supported by the Defense Advanced
Research Projects Agency (DOD) under contract No. DABT63-92-C-0026, and by
the National Science Infrastructure Grant No. CDA-8722788 and CDA-9401156. The

content of the information does not necessarily reflect the position or the policy of
the Government.

Abstract

This dissertation describes a methodology for compiling and executing irregular parallel
programs. Such programs implement parallel operations whose size and work distribution
depend on input data. Irregular operations pose a particularly difficult scheduling prob-
lem because the information necessary to execute these operations efficiently can not be
known at the time the program is compiled. This dissertation describes a set of four run-
time scheduling techniques that can execute many irregular parallel programs efficiently. A
common thread among these techniques is that they gather information about the work dis-
tribution of a program during its execution and use this information to adjust the allocation
of processing resources.

The most important contribution of this dissertation is its identification and ex-
ploitation of work distribution locality properties. Previous work on irregular parallel pro-
gram scheduling unearthed the following dilemma: compilers can not predict work distri-
bution accurately enough to schedule programs efficiently; however, runtime load balancing
solutions,- while more accurate, incur prohibitive overhead. This dissertation shows how
to avoid this dilemma whenever irregular loops within parallel programs have work distri-
bution locality, that is, when a loop retains a similar distribution of individual iteration
execution times from one execution instance to the next. An execution instance is simply
an execution of the entire loop, possibly in parallel.

Where this common case arises, we exploit it through work distribution caching:
guessing the work distribution of a loop execution instance based on earlier measurements.
We also exploit work distribution locality through deferred load balancing: reducing the
communication overhead and thrashing potential of load balancing algorithms by applying
them across multiple execution instances of a loop.

We evaluated these scheduling techniques using a set of application programs, in-
cluding climate modeling, circuit simulation, and x-ray tomography, that contain irregular
parallel operations. The results demonstrate that, for these applications, the techniques
described in this dissertation achieve near-optimal efficiency on large numbers of proces-
sors. In addition, they perform significantly better, on these problems, than any previously
proposed static or dynamic scheduling method.

Contents

1 Introduction
1.1 Previous Work on Dynamic Scheduling

2 Background

2.1 CaseStudies
2.1.1 Climate Modeling
2.1.2 Circuit Simulation
2.1.3 Adaptive Vortex Methods
2.1.4 X-ray Tomography

2.2 Properties of Previous Approaches
2.2.1 Shared Memory Performance
2.2.2 Distributed Memory
2.2.3 Distributed Memory Performance.

3 Work Distribution Coherence
3.1 Work Distribution Locality

3.2 Work Distribution Caching
3.2.1 Implementation
3.3 Performance Improvement
3.4 Deferred Load Balancing
3.4.1 Implementation

3.4.2 Performance

4 Scheduling

4.1 Tapering Methods
4.1.1 TheFill Lemma
4.1.2 Probabilistic Tapering

4.2 Orchestrating Interactions Among Parallel Computations
4.2.1 Example Interaction
4.2.2 The Runtime Algorithm

5 System Support
5.1 The Compiler Intermediate Form
5.1.1 Delitium

N =

NeBE B e I«

CONTENTS

5.1.2 Multi-Stage Transforms
5.1.3 A Delirium Example
5.1.4 Related Work L L
5.1.5 Aggregate Primitives
5.1.6 Summary of Delirium

5.2 Runtime System Implementation
5.2.1 Tarmac
5.2.2 Tarmac Implementation
5.2.3 Related Work

6 Summary
6.1 Applicability,
6.2 Contributions . .

Bibliography

.................................

.................................

v

61
62
63
64
64
64
64
68
68

71
71
72
75

76

Chapter 1

Introduction

The aim of our research is to achieve efficient execution of parallel programs.
Compiler research toward this goal has focused on four main areas: discovery of parallelism
(2, 3, 48], static scheduling [18, 23, 47], linear transformation of iteration spaces to improve
data locality or expose parallelism [64, 63, 62], and improved compiler technology to support
the first three activities [13, 19]. In this dissertation we focus on a particularly intractable
class of parallel programs for which static techniques such as these are not sufficient to
achieve highly efficient execution. This is not a deficiency of the static techniques, which
are often a prerequisite for efficient execution, but a property of the programs themselves.
Such programs, which we call irregular, contain parallel operations whose size and work
distribution depend on input data. Because of this property, a static schedule that performs
well on one set of input data may perform poorly on others. Further, even static schedules
that use random task assignments to avoid bias will have only moderate efficiency if the
individual tasks have significant execution time variance.

Many basic computational techniques, such as adaptive mesh refinement [11], time-
step subdivision [1, 40], tree traversal [25], and Monte-Carlo methods[60], yield irregular
parallel programs. To execute such programs efficiently, we generate code that assigns tasks
to processors adaptively. An adaptive scheduling policy gathers runtime information about
the distribution of task execution times, and uses this information to improve the efficiency
of the schedule. The thesis of this dissertation is that such adaptive scheduling methods
can become highly efficient by exploiting work distribution locality properties. By work
distribution we mean the distribution of execution times among a set of tasks, such as the
individual iterations of a parallel loop. Identification and exploitation of work distribution
locality can play a key role in reducing the communication and synchronization overhead
incurred by any dynamic scheduling policy.

In this dissertation, we concentrate on creating efficient scheduling methods for
distributed memory multiprocessors. The techniques we introduce are also applicable to
shared memory multiprocessors. However, distributed memory architectures introduce two
features that increase the difficulty of the scheduling problem. First, data sharing among
cooperating processors can incur significant communication overhead. To reduce this over-
head, a scheduling method must preserve communication locality among tasks. A parallel
application has communication locality when most of the data sharing required by the

CHAPTER 1. INTRODUCTION , 2

application takes place on a single processor or a set of neighboring processors. Second,
scheduling methods that require centralized decision-making will incur high overhead on a
distributed memory multiprocessor because the processor controlling scheduling decisions
becomes a communication bottleneck. Because of these more stringent requirements, we
focused primarily on distributed memory architectures.

This dissertation makes two contributions. First, it introduces some specific adap-
tive scheduling techniques and demonstrates that these techniques can provide more efficient
parallel program execution than previously proposed methods. Second, it identifies some
basic principles of work distribution locality than can be exploited within any dynamic
scheduling framework.

1.1 Previous Work on Dynamic Scheduling

The goal of dynamic scheduling policies is to balance computational load among
a set of cooperating processors, while avoiding excessive communication overhead. For the
purpose of this discussion, we will divide previously proposed dynamic scheduling policies
into two categories: self-scheduling policies [20, 49], and other load balancing policies [10, 17,
31]. Self-scheduling policies are a particular kind of load balancing policy; such policies break
a group of N concurrent tasks into a set of chunks, where each chunk contains one or more
tasks. Processors grab chunks on a first-come, first-served basis, execute the tasks in the
chunk, and then grab the next available chunk. Load balancing methods have two phases.
Given N concurrent tasks, a load balancing method first assigns each task to a particular
processor. Processors then execute some of their tasks, while simultaneously exchanging
information with other processors about their relative progress toward completion. The load
balancing method tries to identify processors that are “heavily loaded”, and offload some
of their remaining tasks to processors that are “lightly loaded.” Load balancing methods
have two main variations: local and global. Local algorithms attempt to achieve overall
balance through communication among neighboring processors. In global algorithms, a
central manager gathers load indices from each processor and directs the transfer of tasks.

The source of variation among self-scheduling methods is in the number and sizes
of the chunks of tasks. We give more details about these choices in Chapter 2. In Chapter
4, we show how to use runtime information about task execution time variance to improve
the selection of chunk sizes for a given set of N tasks.

Despite these variations, load balancing and self-scheduling methods share a com-
mon limitation: they can incur prohibitive communication and synchronization overhead.
This is especially true on distributed memory parallel architectures, where communication
must take place not only to exchange meta-information about task completions but to trans-
fer the data required to execute tasks when tasks must migrate to improve load balance.
The root cause of this overhead is lack of advance information. If a runtime system knew
in advance what the distribution of work would be within a parallel loop L, for example,
it could assign the N concurrent iterations (tasks) of the loop to processors optimally with
respect to executing L efficiently. However, with one exception [8], all previously proposed
dynamic scheduling methods begin with the assumption that no information is available
about the distribution of work within a loop and further that the only goal of the dynamic

CHAPTER 1. INTRODUCTION , 3

scheduling method is to execute this single loop efficiently.

This assumption works well when roughly equal work is performed by each loop
iteration. Under this assumption, methods can be devised that compensate for varying
processor speeds [58], and uneven processor start times [49] (that might arise from previ-
ous load imbalances within the computation). When loop iterations perform significantly
different amounts of work, this assumption leads to three performance problems. First, a
scheduling method can often compensate for irregular execution times within one parallel
loop by executing it concurrently with a regular loop or pipelining it with other concur-
rently executing tasks. Chapter 4 introduces some techniques for organizing this kind of
pipelining.

Second, when a scheduling method decides to “offload” computation from a heavily
loaded processor, it chooses a number of tasks (loop iterations) to transfer from the heavily
loaded processor to the more lightly loaded processor. The unit of transfer must be “tasks”
(i.e. how many loop iterations) rather than work (i.e. how much computation time) because
the scheduling method has made no assumption about the distribution of work among the
tasks. If some tasks perform much more work than others, the transfer of tasks may do
more harm than good, and the scheduling method can not tell the difference.

For example, suppose that processor A and processor B were each initially assigned
four tasks. Processor A takes twenty minutes to execute its first task, while processor B
executes its first three tasks during the same time interval. The dynamic scheduling method
being used specifies that, after twenty minutes, all processors will check how many tasks
they have executed, compare this number with their neighbor processor and exchange tasks
if there is a significant disparity. According to this policy, processor A decides that it should
offload one of its remaining tasks to processor B. However, it sends to processor B a task
that takes 1 minute to execute. Processor A’s remaining two tasks will each take 1 second
to execute whereas processor B’s remaining task will take twenty minutes. The transfer
has worsened load balance; further, both processors have wasted time communicating and
synchronizing. If the two processors had some information about task execution times, they
could avoid some of these useless or counter-productive task transfers.

The final performance problem with assuming that there is no work distribution
information for each new parallel loop is that scheduling methods making this assumption
tend to thrash as parallel loop execution nears completion. They must make increasingly
fine-grained transfers of tasks to achieve even processor finish times for the loop. As pro-
cessors finish, a load balancing method must perform an increasing amount of work to
find processors still executing tasks, and to decide which of the finished processors should
execute those tasks. Self-scheduling methods face the same problem in a different guise.
They can make chunk sizes large, in which case many processors will remain idle while they
wait for the last few processors to finish their large chunks. Alternatively, a self-scheduling
method can make chunk sizes small, in which case it will incur prohibitive communication
and synchronization overhead. The best self-scheduling algorithms balance these extremes
by tapering: choosing large chunk sizes toward the beginning of loop execution and smaller
chunk sizes toward the end of execution.

In any case, self-scheduling and load balancing methods must either restrict the
grain size of task transfers or incur high synchronization and communication costs toward

CHAPTER 1. INTRODUCTION , 4

the completion of a parallel loop execution. If grain size is restricted, then, relative to
the ideal completion time, completion will be delayed due to load imbalance; otherwise,
completion will be delayed due to scheduling overhead. Many proposals have been made
as to the best compromise [20, 30, 49]. None of these proposals yield efficient distributed
memory loop scheduling when iteration execution time variance is significant [38].

Hence, designers of compilation systems for irregular parallel programs face a
dilemma. As we will demonstrate further in Chapter 2, static scheduling of irregular paral-
lel programs is inherently limited in efficiency. On the other hand, we have just explained
why dynamic techniques that do not have information about task execution times will suffer
performance limitations. One solution to this dilemma is to have the programmer explic-
itly provide information about the expected completion time of each task [8]. Many of
the specific methods proposed in this dissertation can straightforwardly incorporate such
programmer-provided information. However, the goal of our research was to find a dy-
namic scheduling method that works well whether or not the programmer provides work
distribution information.

Our hypothesis was that, for many parallel loops, the distribution of work within
the loop will exhibit temporal locality. We further supposed that, in situations where work
distribution exhibits locality, we could exploit this locality by caching information about
past work distributions and using this cached information to guide scheduling decisions.
We define a single execution of an entire parallel loop to be an execution instance of that
loop. If we compare each iteration execution time for a loop execution instance A with the
corresponding iteration execution time for an execution instance B of the same loop, we can
obtain a measure of the work distribution coherence between the two instances. We say that
two instances have strong work distribution coherence if the average difference in execution
times among corresponding iterations is small compared to the average execution time of
an iteration. A parallel loop L exhibits temporal work distribution locality if immediately
following execution instances of L have strong work distribution coherence.

The main contribution of this dissertation is to define this locality property, to
demonstrate that it is common among a sampling of irregular parallel applications, and
to show how to exploit this property to achieve efficient scheduling of irregular parallel
programs.

The remainder of the dissertation is organized as follows. Chapter 2 provides back-
ground information. First, it describes in more detail the features that characterize irregular
programs. Second, it analyzes the performance of previously proposed static and dynamic
scheduling methods on a set of irregular parallel applications, demonstrating quantitatively
the performance limitations dictated by a lack of information about task execution times.
Chapter 3 defines work distribution locality in detail. It then assesses whether this property
holds for some of the important parallel loops executed by our set of benchmark applica-
tions. Chapter 3 concludes by demonstrating that scheduling methods can exploit work
distribution locality to improve performance.

Chapter 4 presents two specific techniques, probabilistic grain size selection and
parallel loop pipelining, that can benefit from enhanced runtime information about the
distribution of work within parallel loops.

Chapter 5 discusses the system software necessary to support adaptive scheduling

CHAPTER 1. INTRODUCTION _)

of irregular parallel programs. It describes Delirium, an compiler intermediate form we used
to concisely identify and package scheduling information required by the runtime system.
Chapter 5 also presents some key features of Tarmac, a distributed shared memory toolkit
that we developed to support adaptive scheduling. Finally, Chapter 6 provides a summary
of the dissertation.

Chapter 2

Background

In this chapter, we describe in more detail the features that characterize irregular
parallel programs. We introduce the most important of these features by presenting case
studies of four application programs: a climate model, an adaptive vortex method for
simulating turbulent fluid flow, a VLSI timing simulator, and a program for reconstructing
X-ray tomographic images given incomplete image data. These applications illustrate that
certain program loops can have work distributions that depend on input data. We will use
these applications throughout the dissertation as a basis for evaluating irregular parallel
program scheduling techniques.

In the latter half of the chapter, we report the results of applying previous schedul-
ing methods, both static and dynamic, to our four irregular applications. We use these pro-
grams to illustrate why static methods often fail when faced with irregular loops. We also
demonstrate that existing dynamic scheduling methods produce only modest performance
improvements over static methods when applied to our four sample irregular applications.

Figure 2.1 illustrates the kind of irregular parallel loop we found most frequently in
our sample applications. The FOR keyword indicates a loop, in this case a serial outer loop
whose index variable Timestep ranges between the values 1 and Max. The FORALL keyword
also indicates a loop, but in a FORALL loop, all loop iterations can execute concurrently. In
Figure 2.1 for example, the inner FORALL loop yields N computations that could be executed
on separate processors. The other important feature of this inner loop is that it can perform
either of two different computations, depending on runtime data. Hence, if the execution
times of computation 1 and computation 2 differ significantly, the inner loop of Figure 2.1
will be irregular, since for some values of I computation 1 will be performed, while for other
values of I computation 2 will be performed. We will use the loop in Figure 2.1 to illustrate
how scheduling methods differ in their allocation of processing resources to irregular loops.

2.1 Case Studies

In this section, we present four case studies of irregular applications. For each
application, we describe the features that lead to irregular computational behavior. We
also specify the applications’ communication patterns and typical problem sizes.

CHAPTER 2. BACKGROUND , 7

FOR Timestep = 1 to Max
FORALL I =1 to N
if (condition on data)
perform computation 1
else perform computation 2
ENDFORALL
ENDFOR

Figure 2.1: Canonical irregular parallel loop.

2.1.1 Climate Modeling

Our first irregular application is the UCLA General Circulation Model. Developed
at UCLA over twenty years, this program has been adopted as the standard climate model
by the Earth Systems Modeling project of the Department of Energy. We experimented
with a version of the program, called Camille, that has been parallelized by physicists at
Lawrence Livermore National Laboratories.

Camille tries to predict climatic trends by modeling atmospheric change over a
period of months or years. Camille uses a difference method to evaluate the fluid dynamics
of the atmosphere. The Earth’s atmosphere is divided into a three-dimensional mesh. The
dimensions of the mesh are latitude, longitude, and distance above the Earth. A typical grid
size for this problem is 42 longitude elements by 72 latitude elements by 9 vertical elements,
although the scientists involved would like to increase this resolution a thousand-fold or
more. The fluid dynamics of air flow are confined to two-dimensional shells of constant
distance from the Earth. On vector machines, the vertical layers of the atmosphere would
be updated in the inner loop of the fluid dynamics calculation, giving moderate vectorization
across vertical grid elements.

Because fluid dynamics are confined to two-dimensional shells, Livermore physi-
cists chose to assign all vertical elements with the same latitude and longitude values to the
same processor. This reduces the need for inter-processor communication. Camille’s fluid
dynamics calculation requires values only from neighboring grid points to update a partic-
ular grid point. Hence, if the computation required to update the entire grid is assigned to
processors in groups containing several contiguous grid points (a BLOCKED assignment),
considerably less inter-processor communication is required than for RANDOM or CYCLIC
assignments of grid points to processors.

The fluid dynamics calculations done by Camille have a regular communication
pattern and would have considerable communication locality when decomposed into lati-
tude/longitude blocks on a distributed memory multiprocessor. However, Camille’s fluid
dynamics account for only a third of its floating point operations. Two-thirds of Camille’s
computational load comes from its column physics operations. These operations, which
are confined to columns of vertical elements that share the same latitude and longitude,
calculate the effects of solar radiation and chemical reactions within the atmosphere. For
example, the short-wave radiation operation measures how much energy is converted from

CHAPTER 2. BACKGROUND

SpuooasoidiiN

Figure 2.2: Irregular work distribution in climate modeling application.

short-wave solar radiation to heat within a given volume of air.

Unfortunately, the execution time of the column physics operations varies sub-
stantially depending on air column composition. For example, a computationally expensive
part of the column physics package predicts the amount of radiation absorbed by water
vapor. This calculation is only performed on a particular air volume when water vapor is
present in sufficient density.

Figure 2.2 shows the distribution of work for a typical timestep within the Camille
simulation. The X and Y axes represent latitude and longitude points respectively. The
7, axis represents execution time. Each point in the plot indicates the execution time re-
quired to update a particular Camille grid point. As weather systems travel large distances
across the Earth, dragging along their particular atmospheric conditions, the distribution
of work also changes. For this reason, any static assignment of grid elements to processors
will suffer significant inefficiency. In section 2.2, we demonstrate that such static assign-

CHAPTER 2. BACKGROUND : 9

ments are inefficient for typical problem sizes. To support these experiments, we simplified
Camille’s communication pattern. The simplified version retains the load balancing and
communication characteristics described above.

2.1.2 Circuit Simulation

Our second application, EMU, is a timing simulator that is part of the MULGA
circuit design system [1]. EMU divides a circuit into regions; elements of a particular region
are connected by pass transistors. For each region, EMU uses a backward Euler integration
to update voltage values. If this numerical method diverges, EMU subdivides the timestep
and re-integrates. Because of this time-step subdivision, the distribution of work across
EMU circuit regions is statically unpredictable.

Unlike Camille, EMU does not have regular communication. Circuit regions are
connected in a graph that represents the electrical connections between regions. Though
irregular, this graph does not change during the simulation, and the algorithm that assigns
regions to processors can use static information about the graph to increase communication
locality. There is a large amount of read-only data associated with each circuit region.
Dynamic scheduling strategies can improve performance by replicating this information so
that it does not have to be transferred when a circuit region is assigned to a new processor.
The replication policy must also take into account the limited memory typically available
on multiprocessor nodes.

2.1.3 Adaptive Vortex Methods

Our third example application is an adaptive vortex method for computing tur-
bulent fluid flow (AVM) [4]. This is a three-dimensional method that uses a finer grid
size wherever vortices are present. The computational structure of AVM is similar to the
fluid dynamics portion of Camille. AVM performs considerably more floating point oper-
ations per memory access than Camille. As a consequence, AVM can expend considerable
calculation at each timestep to determine how to refine its three-dimensional grid.

At its lowest level, the calculations performed by AVM have a regular work distri-
bution. The program simply loops over grid elements, performing the same very expensive
calculation for each element. However, at a higher level, this program exhibits exceptionally
irregular work distributions. The amount of calculation required for a particular volume of
space will vary drastically depending on the number of vortices present, and hence the grid
refinement, within that space.

The abundance of floating point calculations at each element of turbulent flow
calculations led Baden to suggest a library-based method for solving these problems [8]. In
this method, the programmer divides the main grid into logical sub-grids. The programmer
also provides a function that estimates at runtime the execution time of solving a partic-
ular sub-grid. Given these two components, a scheduling library can assign sub-grids to
processors at runtime. This works well for adaptive turbulent flow calculations because the
amount of computation involved dwarfs the overhead of communication among sub-grids
or of re-assigning sub-grids to processors at each time-step of the fluid flow simulation.

CHAPTER 2. BACKGROUND : 10

The dynamic scheduling methods proposed in this dissertation are similar to
Baden’s library technique in that computations are assigned to processors on the basis
of estimates of how long these computations will run. They are different in that they use
application-independent metrics of sub-computation execution time, and we therefore ex-
pect that they will be generally applicable to irregular parallel programs. Also, the methods
we propose base their execution time estimates on information collected at runtime, rather
than on a programmer-provided function. Finally, our methods are incremental; they gener-
ally re-assign only a small proportion of the total work at each simulation time-step; in this
re-assignment, they take into account communication locality. When the cost of floating
point operations is less dominant, these algorithm features improve efficiency substantially.

Since the computations underlying the AVM application are regular, we explored
two methods for obtaining execution time estimates. As with our other examples, we used
direct measurement of execution times. In addition, we also tried to estimate execution
times as a function of the number of iterations executed by the regular inner loops. This
latter method is generally applicable to programs that explicitly change the sizes of iteration
spaces to adapt to special conditions on the program’s memory state.

2.1.4 X-ray Tomography

Our final example application is taken from the field of x-ray tomography. Com-
puted tomography (CT) was originally developed for medical imaging, and applications
of CT can now be found in wide use in most hospitals (x-ray transmission tomography,
positron emission tomography, etc.). There is a strong and growing interest in non-medical
uses of tomography as well, especially in non-destructive evaluation of solid objects such
as concrete structures, machine parts, etc. For example, in civil engineering, there is a
need for a non-destructive method for evaluating the integrity of structural elements such
as concrete columns.

To take advantage of CT, a great deal of computation is necessary. Resolution
must be fine enough to distinguish the features being examined, often requiring many
hours of CPU time on supercomputers. The computational complexity of CT depends on
the number of detectors, N, used to collect the x-rays. Computation cost grows as N4,
where N is currently on the order of 1024 but must grow much larger to achieve sufficient
resolution. In addition, practical restrictions often prevent the collection of data from all
angles. This missing angle problem must be addressed by using a reconstruction algorithm.
Such algorithms are typically based on expensive iterations whose computational cost grows
even faster than N4.

We have been working with a new reconstruction program, called PSIRRFAN, devel-
oped by the UC/Berkeley civil engineering department [26]. PSIRRFAN exploits asymmetries
in the image data to achieve better performance than previous reconstruction algorithms.
However, in doing so, it introduces significant computational irregularity. The source of this
irregularity is the distribution of missing input data (see Figure 2.3). In particular, where
data is missing, PSIRRFAN uses sophisticated reconstruction techniques to try to recreate
the missing information. These reconstruction techniques require significant execution time
relative to the other operations performed by the program.

The image reconstruction algorithm uses redundant image data to reconstruct the

CHAPTER 2. BACKGROUND

PSIRRFAN: Image Reconstruction

/
l / ~ . Detectors
X-Ray = - (NFan)
Generator % I
(NBeta) \

N -) //

\\/'/ -

. Obstructions D Target Object

Physical Problem

M

NBeta

NFan

. Missing Data D Valid Data

Iteration Space

Figure 2.3: Irregular Work Distribution in PSIRRFAN

11

CHAPTER 2. BACKGROUND , 12

missing data. Because the pattern of missing data is not known until runtime, and can vary
widely among inputs, it is impossible to predict statically how the work in PSIRRFAN’s main
reconstruction loops will be distributed.

PSIRRFAN is an especially interesting program because it has three computationally
different phases of operation. First, PSIRRFAN maps input data into Fourier space. Second,
PSIRRFAN performs image reconstruction on successive image slices. As a slice is updated,
it is re-mapped into Fourier space. Finally, PSIRRFAN projects the image from Fourier space
into a two dimensional array of pixels. In Chapter 4, we will introduce an adaptive runtime
technique for pipelining interacting computational stages such as those found in PSIRRFAN.

2.2 Properties of Previous Approaches

Researchers have proposed many different approaches to scheduling parallel oper-
ations. Regular loops in scientific programs have been scheduled using delay insertion [18]
or combinatorial exploration of possible processor assignments [47]. These approaches are
not applicable to irregular parallel operations because they require loop bounds and loop
body execution times to be known at compile time.

Sarkar and Hennessy have used execution time estimates and a critical path al-
gorithm to partition parallel programs statically [53]. Our algorithm for determining a
minimum grain size is similar to Sarkar’s partitioning algorithm in that it balances com-
munication costs against execution time estimates. Also, we use the algorithm reported by
Sarkar [52] to estimate execution time variance. Our scheduling algorithm is different in
that it uses runtime information about execution time variance to guide scheduling.

A somewhat different approach to scheduling is load balancing[10, 17]. Load bal-
ancing algorithms run in parallel with a computation; their goal is to re-assign tasks such
that each processor ends up with the same number of pending tasks. There are two main
types of load balancing algorithms: local and global. Local algorithms attempt to achieve
overall balance through communication among neighboring processors. In global algorithms,
a central manager gathers load indices from each processor and directs the transfer of tasks.

These algorithms have two features which make them more applicable to dis-
tributed operating systems than to the scheduling of a single parallel program. First, they
disregard communication relationships between tasks. Second, the goal of these load balanc-
ing algorithms is to maintain even numbers of pending tasks on each processor. In contrast,
the goal of the algorithms presented here is to have all processors finish a parallel operation
at the same time. Load balancing algorithms keep throughput high when parallelism is
abundant, but lack the precision necessary to make a single parallel operation efficient.

Tang and Yew have proposed a load balancing method called self-scheduling (SS) [59].]
Self-scheduling follows the first available rule in assigning tasks to processors. Whenever
a processor finishes executing a task, the processor becomes available and requests a new
task. Self-scheduling produces even processor finishing times, even with uneven processor
starting times. However, if the cost of scheduling a task is & then the expected finishing
time for N tasks is N(u + h)/p, where p is the mean task execution time and p is the
number of processors (see Table 2.1). This formula incorporates the assumption that the
scheduling costs will be shared equally among the processors and hence the total scheduling

CHAPTER 2. BACKGROUND A 13

| Scheduling Parameters]
Parameter Description
h scheduling overhead
N number of tasks
p number of processors
I average task time
o task time std. dev.

Table 2.1: Parameters used to describe scheduling methods.

FOR Timestep = 1 to Max
WHILE iterations remain
obtain chunk of K loop iterations
FOR I= StartChunk to EndChunk
if (condition on data)
perform computation 1
else perform computation 2
ENDFOR
ENDWHILE
synchronize with all other processors
ENDFOR

Figure 2.4: Canonical irregular parallel loop modified to perform self-scheduling on each
Processor.

cost, Nh, is divided by the number of processors, p. Unless h is significantly less than ,
overhead of self-scheduling will be prohibitive.

Self-scheduling can be generalized so that processors are given a chunk of K tasks
whenever they become available. Kruskal and Weiss suggest a technique (SSO) [34] for
determining the optimal value of K, given N, p, o, and p, where o is the standard deviation
of task execution times. However, any method that uses a single chunk size K has expected
unevenness of K /2 in its processor finishing times. If we choose a large value of K, this
unevenness will be significant. If we choose a small value, we incur a large total scheduling
overhead.

Figure 2.4 shows how a self-scheduling method would execute the canonical irreg-
ular parallel loop presented in Figure 2.1. The loop in Figure 2.4 would be executed by
each of the p processors. Note that, since the original outer loop was serial, all processors
must be synchronized at the end of each parallel inner loop execution. This is why it is
critical that the p processors finish the parallel inner loop at roughly the same time.

One would like to have a strategy that combines the low runtime overhead of large
chunk sizes with the even finishing times of self-scheduling. In Chapter 4, we investigate the

CHAPTER 2. BACKGROUND , 14

| Scheduling Methods |

Method Description
SS self-scheduling
SSO SS; “optimal” single chunk
FAC factoring
GSS guided self-scheduling
LLB local load balancing
GL1 global load balancing (1)
GL2 global load balancing (2)

Table 2.2: Key to scheduling method performance figures.

finishing times of tapering methods, which use the first available rule but reduce runtime
overhead by scheduling large chunks at the beginning of a parallel operation and successively
smaller chunks as the computation proceeds. In theory, the smaller chunks should smooth
out uneven finishing times left by the larger chunks.

Polychronopoulis and Kuck suggest a tapering method, guided-self-scheduling
(GSS) [49], that chooses chunk size K; = [R;/p] where R; is the number of tasks re-
maining after the 7 — 1° chunk has been scheduled (R; = N). The goal of this tapering rule
is to smooth out uneven processor start times. It is optimal when o = 0 (where o is the
standard deviation of task execution times), but does not address the problem of variable
task execution times. Hummel et. al. [30] propose a similar method called Factoring (FAC)
that chooses chunks more conservatively than GSS, and hence performs somewhat better
when task execution times are variable.

Chapter 4 presents a new grain-size selection technique, TAPER, that incorporates
information about task execution variance. It chooses smaller chunk sizes where variance
is high, and larger chunk sizes where variance is low.

2.2.1 Shared Memory Performance

In this section, we analyze the shared memory performance of these previously
proposed static and dynamic scheduling methods. When contrasted with the performance
measurements in the next section, these measurements illustrate that the performance of
a scheduling method on a shared memory multiprocessor does not necessarily predict its
performance on a distributed memory multiprocessor.

We applied a representative set of static, self-scheduling and load balancing meth-
ods to our four benchmark applications. Figures 2.5 through 2.16 compare the efficiencies
of these methods at scheduling each of these applications on an eight processor Cray Y/MP.

The X axis for each of these figures represents problem size. The Y axis represents
efficiency on eight processors. We define efficiency as speedup divided by ideal speedup.
Speedup is defined as the time required to execute an optimized sequential version of the
application divided by the time required to execute the parallel version of the application.
Ideal speedup is defined as the the number of processors used to execute the parallel version,

CHAPTER 2. BACKGROUND

0.3

02

0.1 4

0.0 -

FAC Gss ss 880

Figure 2.5: Climate on 8 processor Cray
Y /MP; self-scheduling methods.

8so

Figure 2.7: EMU on 8 processor Cray
Y /MP; self-scheduling methods.

15

Figure 2.6: AMR on 8 processor Cray
Y /MP; self-scheduling methods.

§SG

Figure 2.8: Psirrfan on 8 processor Cray
Y /MP; self-scheduling methods.

CHAPTER 2. BACKGROUND _ 16

10 10
09 08
08 08
07 0.7
06 06
§05 ?2:0{)

0.3 03

02 02 4

0.1 0.1

00 - 00

Figure 2.9: Climate on 8 processor Cray Figure 2.10: AMR on 8 processor Cray
Y /MP; static methods. Y /MP; static methods.

go.s gos
Figure 2.11: EMU on 8 processor Cray Figure 2.12: Psirrfan on 8 processor Cray

Y /MP; static methods. Y /MP; static methods.

CHAPTER 2. BACKGROUND : 17

Figure 2.13: Climate on 8 processor Cray Figure 2.14: AMR on 8 processor Cray
Y/MP; load balancing methods. Y/MP; load balancing methods.

Figure 2.15: EMU on 8 processor Cray Figure 2.16: PSIRRFAN on 8 processor
Y/MP; load balancing methods. Cray Y/MP; load balancing methods.

CHAPTER 2. BACKGROUND _ 18

Synchronization

Figure 2.17: Contributions to static scheduling overhead in the X-ray Tomography Example.

i.e. in the ideal case, the sequential computation time is divided evenly among the processors
with no additional overhead time. Efficiency is a metric of scheduling method effectiveness.
The perfect scheduling method incurs no overhead and maintains perfect load balance,
yielding efficiency of 1.0.

We can observe from the measurements shown in Figures 2.9 through 2.12 that
none of the static scheduling methods discussed above execute the benchmark programs
with high efficiency. Note that for the climate model and adaptive mesh refinement, both
BLOCKED and CYCLIC data decompositions are possible; for PSIRRFAN and EMU, only
a BLOCKED static decomposition makes sense and so there is only one static scheduling
measurement for these applications. Figure 2.17 shows the relative contributions of load
imbalance and synchronization overhead to the reductions in static scheduling efficiency for
PsirRrFAN. Figure 2.17 shows that for the BLOCKED method used on PSIRRFAN and the

CHAPTER 2. BACKGROUND _ 19

other applications (contiguous groups of tasks assigned to processors) load imbalance causes
most of the inefficiency. This was also true for both applications that could use a CYCLIC
decomposition (tasks assigned to processors periodically). As illustrated by Figures 2.5
through 2.8 and Figures 2.13 through 2.16, dynamic methods perform relatively well on the
Cray Y/MP. These methods, such as guided-self-scheduling (GSS), achieve their main goal
of reducing load imbalance, at moderate synchronization expense.

2.2.2 Distributed Memory

Unfortunately, these dynamic methods are communication-intensive, and their
performance suffers on distributed memory multiprocessors. On distributed memory ma-
chines, we can no longer assume that the scheduling of a chunk of tasks has a fixed overhead.
Each task may require a certain amount of data for its computation, so there will be a per-
task as well as a per-chunk transfer cost. Further, we often need to preserve communication
locality by maintaining a minimum chunk size. Since, for most of our example applications,
neighboring tasks communicate much more frequently than distant tasks, separating most
neighboring tasks would drastically increase communication cost. A scheduling method can
avoid this situation by maintaining a minimum contiguous block size for transfer of work.

Self-scheduling methods such as GSS and Factoring (FAC) were designed for shared
memory. Since they centralize the pool of remaining work, they can be extremely inefficient
on distributed memory multiprocessors. For example, we will show that, on our four sample
applications, no self-scheduling method achieved more than 23% efficiency.

To investigate their effectiveness on distributed memory machines, we created
distributed memory versions of shared memory self-scheduling algorithms such as SS and
GSS. In the distributed memory versions, we avoid placing all the tasks in a central queue,
because we found that centralizing the scheduling of tasks created a synchronization bot-
tleneck. Instead, we begin with some original data decomposition (assignment of tasks to
Processors).

In our distributed memory algorithm the p processors are logically connected as
a binary tree with p leaves. Some of the processors act both as leaves and as internal
nodes of the tree. We modify each self-scheduling algorithm so that each processor chooses
the same sequence of chunk sizes. When a processor chooses a new chunk size and starts
executing tasks from that chunk, we say it is beginning a new epoch. SS and FAC already
yield p chunks of the same size. In SS, all chunks are of size 1. In FAC, the p chunks from
epoch i are of size R;/2p, where R; is the number of tasks remaining to be executed (in the
remaining epochs). For GSS, we modified the chunk size selection algorithm K; = R;/p, to
K; = 2R;/3p for each epoch.

All processors start in epoch 0. When a processor begins executing a chunk it
sends its current epoch value (called a token) to its parent, which passes the token to its
parent (possibly combining messages from both children). When the root receives p tokens
from the same epoch, it increments the global epoch value and broadcasts (through the
tree) a message to all processors. The message tells the processors to increment their epoch
value and may also tell some processors to transfer a chunk of tasks (and their associated
data) to another processor.

Processors compete for the p chunks of each epoch. If processor a can get two

CHAPTER 2. BACKGROUND , 20

FOR Timestep = 1 to Max
WHILE iterations remain
receive task transfer instructions
initiate task transfers, if any
compute K[i], the size of next chunk
FOR I= StartChunk to StartChunk+K[i]
if (condition on data)
perform computation 1
else perform computation 2

ENDFOR
notify parent that chunk i is done
ENDWHILE
synchronize with all other processors
ENDFOR

Figure 2.18: Canonical irregular parallel loop modified to perform self-scheduling on each
processor of a distributed memory multiprocessor.

tokens of value 7 to the root before processor b can send one token of value i, then the
root will re-assign to processor a the chunk of size K; that would have gone to processor b.
Processor b is then forced to re-interpret the chunk it is currently executing as belonging
to some later epoch. If most of the actual task cost is on a few processors, this scheme will
degenerate into a centralized scheduling algorithm. If task costs are independent then we
expect most tasks to remain on the processor owning them at the beginning of the parallel
operation; thus, the algorithm reduces task transfer costs and maintains communication
locality.

Figure 2.18 shows the loop that each processor would execute under our distributed
self-scheduling method. This method is different from regular self-scheduling in that each
processor begins with N/p of the loop iterations. Also, each processor computes how many
loop iterations to perform locally. After completing a chunk of loop iterations, each proces-
sor notifies its parent. If a processor is excessively tardy, it may be notified by its parent
to offload some of its loop iterations. If it has completed its loop iterations more quickly
than average, it may receive a message giving it responsibility to execute an extra chunk of
tasks. Such messages will also contain the data required to execute these tasks.

2.2.3 Distributed Memory Performance

In this section, we present the results of repeating our suite of shared memory
benchmark experiments, this time using a distributed memory multiprocessor, the Ncube-
2. Figures 2.19 through 2.22 compare the efficiencies of several self-scheduling methods
on a 512 processor Ncube-2. Figures 2.23 through 2.26 compare the efficiencies of static
scheduling methods on the Ncube. Figures 2.27 through 2.30 compare the efficiencies of
representative local and global load balancing methods with some of the more efficient self-

CHAPTER 2. BACKGROUND , 21

scheduling methods. These figures show that no previously proposed static or dynamic
scheduling method can efficiently execute more than two of the four example applications.
Most of the methods do not exceed 60% efficiency for any of the four example applications.

Figure 2.19: Climate on 512 processor Figure 2.20: AMR on 512 processor
Ncube-2; self-scheduling methods. Ncube-2; self-scheduling methods.
Figure 2.21: EMU on 512 processor Figure 2.22: PSIRRFAN on 512 processor

Ncube-2; self-scheduling methods. Ncube-2; self-scheduling methods.

CHAPTER 2. BACKGROUND , 22

10 10
09 0.9
0.8 08
07 07

Figure 2.23: Climate on 512 processor Figur'e. 2.24: AMR on 512 processor
Ncube-2; static methods. Ncube-2; static methods.
§J§E gég
-
Figure 2.25: EMU on 512 processor Figure 2.26: PSIRRFAN on 512 processor

Ncube-2; static methods. Ncube-2; static methods.

CHAPTER 2. BACKGROUND , 23

Figure 2.27: Climate on 512 processor Figure 2.28: AMR on 512 processor
Ncube-2; load balancing methods. Ncube-2; load balancing methods.

Figure 2.29: EMU on 512 processor Figure 2.30: Psirrfan on 512 processor
Ncube-2; load balancing methods. Ncube-2; load balancing methods.

CHAPTER 2. BACKGROUND _ 24

In this section, we also present the results of applying several load balancing meth-
ods to our sample applications: one local load balancing method and two global load balanc-
ing methods. The local load balancing method and the first global load balancing method
are hybrids, designed to capture the best features of previously proposed methods. The
second global load balancing method is a recently proposed method that claims substantial
performance improvement over previously proposed methods.

The local load balancing method (LLB) has each processor in the hypercube com-
municate only with its neighbors. At the beginning of parallel loop execution, subsets of
the loop’s iterations are assigned equally among the participating processors. Each proces-
sor then executes some number of loop iterations K sync, without synchronization. After
K gyn. iterations, processors query their neighbors to find out how many iterations each of
their neighbors have executed. If a disparity of greater than 2K,,;, iterations is found, the
laggard processor donates half of its iterations to the processor that is ahead. The results
presented here are for the values of K, and Ky that yielded the highest efficiency.

Global load balancing method GL1 begins with the same initial assignment of
iterations to processors as LLB. Each processor then executes Ky of its iterations (this
may be all the iterations assigned to the processor) without communication. After Ksync
iterations, the processor sends a load index (the number of iterations remaining) to its
parent processor in a tree of processors like that used by the distributed self-scheduling
algorithm. If a given node in this tree detects a disparity of greater than 2K,,;, iterations
between any of its descendent processors, it sends messages to these processors dictating an
exchange of half the disparity in iterations.

Global load balancing method GL2 [51] also uses the same initial assignment of
iterations to processors as LLB. However, this time each processor executes all its iterations
before initiating communication. This is a sub-case of the GL1 scenario where K sync 18
equal to the number of iterations initially assigned to the processor. Unlike in GL1, when a
processor A finishes its iterations, it chooses another processor B at random, and requests
that B transfer half its remaining iterations to A. This method keeps throughput high as
long as parallelism is abundant. However, it thrashes tremendously toward the completion
of parallel loop execution. As most of the processors finish, they compete to find the
few processors still executing loop iterations, creating a storm of random communication,
usually netting little improvement in load balance and incurring large overhead.

For both Climate and X-ray Tomography, GL2 had the worst efficiency. Most of
the overhead of this strategy was due to thrashing in the later stages of loop scheduling.
Figure 2.31 shows how GL2 scheduling overhead increases dramatically during the latter
stages of loop execution. The loop executed is one of the main loops found in the X-
ray Tomography application. This figure also shows that LLB and GL1 suffer significant
thrashing toward the completion of this parallel loop. The profile of overhead given in
Figure 2.31 is typical of the behavior we observed on all the major irregular parallel loops
of our four applications.

Figures 2.32 and 2.33 summarize the important causes of overhead for both sets
of dynamic scheduling methods: self-scheduling and load balancing. These figures depicts
overheads on the X-ray Tomography application, but are typical of the other three applica-
tions as well. Together with Figures 2.19 through 2.30, these figures illustrate the dilemma

CHAPTER 2. BACKGROUND _ 25

0.9

0.8 +

0.7 4

0.6

0.5+

Efficlency

0.4 4

0.3 4

0.2+

0.1

0.0 T T T T T
0.0 02 04 06 o8 10
Percent Complete

Figure 2.31: Degradation in GL2 efficiency for typical PSIRRFAN loop.

Communication Communication
Figure 2.32: Contributions to load bal- Figure 2.33: Contributions to self-
ancing overhead of X-ray Tomography. scheduling overhead of X-ray Tomogra-

phy.

CHAPTER 2. BACKGROUND _ 26

we faced when we tried to apply previous dynamic and static scheduling methods to irregu-
lar parallel programs: static methods incur too much load imbalance because they can not
predict uneven loop iteration execution times; dynamic methods must choose between load
imbalance and high scheduling overhead. To solve this dilemma, we looked for a way to
predict loop iteration execution times, so that we could balance computational load without
incurring high scheduling overhead. Chapter 3 presents our attempt to solve this problem.

27

Chapter 3

Work Distribution Coherence

In this chapter, we analyze the work distributions of our four example applications.
We observe that the important parallel loops in these applications exhibit considerable
temporal work distribution locality. We define a single execution of an entire parallel loop
to be an execution instance of that loop. If we compare the execution times of each iteration
from a loop execution instance A with the execution time of the corresponding iteration
from an execution instance B of the same loop, we can obtain a measure of the work
distribution coherence between the two instances. We say that two instances have strong
work distribution coherence if the average difference in execution times among corresponding
iterations is small compared to the average execution time for an iteration. A parallel loop
L exhibits temporal work distribution locality if successive execution instances of I have
strong work distribution coherence.

Once we have established that this locality property exists in our set of benchmark
applications, we demonstrate two techniques for exploiting it. First, we show that any
dynamic scheduling technique can benefit from work distribution caching, in which a cost
function is stored that maps iteration number to execution time for each of the important
parallel loops in the program. A dynamic scheduling method can use this cost function
to scale task transfers so that the intended amount of work is transferred. Second, we
show that many dynamic scheduling methods can benefit from deferred load balancing in
which decisions about task transfers are made during one execution instance of a parallel
loop, but carried out across several instances. Deferred load balancing is especially effective
when the underlying multiprocessor architecture supports overlapping of communication
with computation.

3.1 Work Distribution Locality

We analyzed the work distributions of our four example applications by tracing the
execution time of each loop iteration for each execution instance of each important parallel
loop. A parallel loop was deemed important if it represented more than one percent of the
parallel program’s execution time. We post-processed the traces by comparing correspond-
ing loop iterations of successive execution instances of each parallel loop. We also looked
at trends across several successive parallel loop execution instances.

CHAPTER 3. WORK DISTRIBUTION COHERENCE 28

Work Distribution Coherence
Work Distribution Coherence

XRY XRY

Figure 3.1: Average distribution coher- Figure 3.2: Average distribution coher-

ence over all important loops for each ence over all important loops for each

parallel application parallel application; loops subdivided by
call-site.

For each application we measured the average distribution coherence between all
pairs of successive parallel loop instances. For example, suppose an application contains a
single parallel loop. Further suppose that the parallel loop is executed E times during a
run of the application program. Then there would be E — 1 pairs of successive execution
instances for this loop. Each execution instance has N iterations, and hence each pair
of execution instances has N pairs of corresponding iterations. We define the distribution
coherence between a pair of corresponding iterations to be the ratio of the smaller execution
time to the larger execution time. Hence, if a pair of iterations have the same execution
time, they will have a distribution coherence of 1.0. If they have radically different execution
times, their distribution coherence will be near zero.

Figure 3.1 summarizes these results. It presents, for each application, the av-
erage work distribution coherence between all pairs of successive parallel loop execution
instances. Our initial results showed strong work distribution locality in two applications,
X-ray Tomography and AMR, but weaker locality in the other two applications.

We then refined our instrumentation system to cache parallel loop work distribu-
tions according to the dynamic call graph environment of the parallel loop. A function
enclosing a parallel loop may be called from many different call sites. Each call site may
pass different inputs to the function and hence different parameters to the parallel loop.
If we separate cached work distribution information by dynamic call-site, we can compen-
sate for this effect. Figure 3.2 summarizes the work distribution locality we observed using
the refined instrumentation system. For this figure, execution instances were separated into
equivalence classes defined by a 3 function deep call trace. Successive execution instances in

CHAPTER 3. WORK DISTRIBUTION COHERENCE 29

the same equivalence class were measured for work distribution coherence in the same way
that all successive instances of each important parallel loop were measured for Figure 3.1.
The work distribution coherence between successive instances in the same equivalence class
was extremely strong.

3.2 Work Distribution Caching

When programs exhibit strong work distribution locality, like our four example
applications, we can use work distribution caching to build a cost function for each parallel
loop.! We can use this cost function to adjust task transfers so that the intended amount of
work is transferred. We call the number of tasks that would have been transferred by a given
scheduling method 7n.r;;. To obtain the number of tasks to transfer, we add or subtract
tasks until we obtain an amount of work equal to n,.;ou wWhere p is the average amount
of work done to execute a task. This type of adjustment based on a cost function can be
applied to any dynamic scheduling method, to avoid the unnecessary or counter-productive
task transfers that are inevitable when a method has no information about task execution
times.

In Chapter 1, we presented an example in which processor A and processor B were
each initially assigned four loop iterations. Processor A takes twenty minutes to execute
its first loop iteration, while processor B executes its first three loop iterations during the
same time interval. The dynamic scheduling method described in Chapter 1 specifies that,
after twenty minutes, all processors will check how many loop iterations they have executed,
compare this number with their neighbor processor and exchange loop iterations if there is
a significant disparity. According to this policy, processor A decides that it should offload
one of its remaining loop iterations to processor B.

Without loop iteration execution time information, processor A sends to proces-
sor B a loop iteration that takes 1 minute to execute. Processor A’s remaining two loop
iterations will each take 1 second to execute whereas processor B’s remaining loop iteration
will take twenty minutes. The transfer has worsened load balance; further, both processors
have wasted time communicating and synchronizing.

In this example, and in the presence of work distribution information, a dynamic
scheduling method can use the cost function built from previous execution instances of the
same parallel operation (i.e. loop) to avoid this type of counter-productive loop iteration
transfer. The method would use the cost function to observe that, in the last execution
instance of the loop, processor B’s single remaining loop iteration required much more time
to execute than processor A’s three remaining loop iterations. Hence, it would not initiate
a loop iteration transfer.

3.2.1 Implementation

In our prototype system, we implemented work distribution caching using the
microsecond counters available on both the Cray Y/MP and the Ncube-2. Using these

1 From this point, when we refer to a parallel loop, we are referring to a single call-site equivalence
class of a parallel loop.

CHAPTER 3. WORK DISTRIBUTION COHERENCE 30

memory-mapped counters, the overhead of sampling a loop iteration execution time was
only a few machine instructions. Using a FORTRAN preprocessor we associated a unique
identifier with each static call-site in the program. We also modified the call sequence to
maintain a runtime stack trace (3 deep from the innermost frame). Using pre-processing
coupled with profiling information for some programs (such as X-ray Tomography) and
hand compilation for other programs, we identified the important parallel loops in each
program, and gave each a unique identifier.

At runtime, our scheduling system combines parallel loop identifiers with call-stack
traces to decide the equivalence class of each parallel loop execution instance. The schedul-
ing system builds a cost function for each parallel loop equivalence class. On distributed
memory architectures, this cost function is distributed, in that different processors may
store different portions of the cost function. In general, a processor will store at least that
portion of the cost function which corresponds to the loop iterations it is currently assigned.

In addition, each processor maintains summary information about the cost func-
tion of each parallel loop. This summary information includes the mean loop iteration
execution time (u), and the variance in loop iteration execution times (o?).

On each processor, cost functions are built by execution time sampling. Suppose
that a given processor P has been assigned loop iterations ¢ through i + & of a parallel loop.
If k£ is large, or u is small relative to the overhead of sampling, P will choose a random
subset of the iterations between i and i+ k to sample. This random subset is called the base
sample. Using a base sample rather than sampling all iterations reduces the execution time
overhead of sampling. In practice, this overhead was usually insignificant. However, using
a base sample also reduces the amount of memory required to store a cost function. This
was very important in practice, because most parallel loops that we encountered iterated
over large arrays, hence the iteration space contained millions of elements and a complete
cost function would require several megabytes to store.

Adaptive Work Distribution Sampling

In practice, using a base sample rather than a complete sample impacts perfor-
mance only positively. This is because our scheduling methods rely much more heavily on
aggregate characteristics such as the mean and variance of execution times than on individ-
ual loop iteration execution times. However, in some cases portions of a loop will exhibit
wide variation in execution times. In such cases, a uniformly random base sample does not
contain enough information to prevent counter-productive task transfers.

To handle these cases without incurring prohibitive memory overhead, we intro-
duced adaptive work distribution sampling. Under this sampling scheme, each processor
computes a base sample as before. In addition, each processor computes summary infor-
mation about its base sample that it uses to decide where to sample further. In particular,
sections of the sample which have a high variance compared to the variance of the parallel
loop as a whole are sampled further. Also, sections of the sample which have a high average
iteration execution time compared to the average iteration execution time of the parallel
loop as a whole are sampled further. Variance and average execution times for parallel loops
are computed and maintained during program execution.

There are many possible choices for how to implement an adaptive sampling scheme

CHAPTER 3. WORK DISTRIBUTION COHERENCE 31

such as this. In practice, we found it was sufficient to simply sub-divide the base sample
into four sections with equal numbers of samples and to compute the mean and variance
of the execution times for each of these sections. If the product of the mean and variance
for a particular section exceeded the scaled product of the mean and variance for the entire
loop (apo?), we applied the adaptive sampling procedure recursively to this section by
measuring additional samples from within this section’s range of loop iteration indices.?

This adaptive sampling scheme works well because of a general property of par-
allel inner loops we found in our benchmark application programs: either the loop is only
executed a few times and hence does not contribute to the overall runtime of the program,
or it is executed so many times that the execution time of its first few execution instances
is unimportant, because the cost of analysis during these first few iterations is amortized
over the much longer total execution time for the application. The results we present in
this chapter apply best to parallel applications that contain mostly these cases.

In the parallel programs that we have encountered so far, we have observed that,
if a parallel loop executes only a few times but its execution time is significant, it con-
tains nested loops that execute more frequently and whose work distribution can be cached
through adaptive work distribution sampling. In this situation, we can obtain a very good
picture of each parallel loop’s work distribution using only a fraction of the execution time
and memory required by a full sampling of the work distribution.

Scaled Task Transfer

Once a cost function can be established and maintained during the course of paral-
lel program execution, it can be used by any dynamic scheduling method to avoid counter-
productive task transfers, and hence to increase the efficiency of the scheduling method.
The basic technique for exploiting a cost function is called scaled task transfer. Load bal-
ancing and self-scheduling methods share a common basis for measuring progress toward
parallel loop completion: number of loop iterations remaining. They also share a method
for estimating the amount of time it will take to execute a given set of loop iterations: the
number of loop iterations in that set. As we have demonstrated above, these estimates are
inaccurate when a paralle] loop has significant loop iteration execution time variance.

A dynamic scheduling method can use a cost function to compensate for this
inaccuracy by scaling loop iteration execution times. For instance, suppose that the mean
loop iteration execution time for a parallel loop is p,. We call this value the global mean
for the loop. Now suppose that a pair of processors, A and B have synchronized in order to
determine whether a transfer of loop iterations should take place between the two processors.
Processor A has executed all but three of its assigned iterations while processor B has eight
iterations remaining.

In this situation, a cost function can have two benefits. First, both processors can
use the cost function to compute how much work is remaining. In doing so, they might
discover that the processor with fewer iterations remaining has the same or even more work
left to perform, and can compute the correct amount of work that should be transferred,
given the overhead of the transfer. Second, both processors can compare their local mean

2 All measurements done for this dissertation used o = 2.0

CHAPTER 3. WORK DISTRIBUTION COHERENCE 32

loop iteration execution times to the loop’s global mean, tg. In doing so, they might
discover that the amount of work remaining on both processors is insignificant so that a
transfer is not warranted no matter what the disparity in work on the two processors. To
make such determinations even more accurate, our prototype system periodically updates
another value R, which is the total remaining work that must be performed to complete
the parallel loop.

3.3 Performance Improvement

Before presenting the particular set of scheduling methods used by our prototype
system, we present the results of experiments which show that work distribution caching can
benefit any dynamic scheduling method, at least as applied to our four benchmark applica-
tions. We modified our representative set of self-scheduling and load balancing methods to
use a cost function, maintained at runtime using the work distribution caching techniques
outlined above. For these measurements, we used the same runtime instrumentation system
that we used to implement the dynamic scheduling methods described later in this chapter
and in Chapter 4.

We modified each self-scheduling method to take advantage of the cost function by
scaling the computation of chunk sizes. For example, SS uses chunk size 1. We changed the
method so that each chunk contained p, work. We modified the load balancing methods
so that Ky, represented an amount of work rather than a number of loop iterations to
be performed before synchronization. K,,;, was similarly scaled. Further, we required
each load balancing method to initiate a transfer only if it involved more work than Ry /2p,
where p is the number of processors executing the parallel loop. In other words, if a transfer
involved less than half the average remaining work per processor, it was disallowed.

Figure 3.3 shows how the canonical self-scheduling loop executed by each processor
is changed to incorporate work distribution caching. The lines marked by an asterisk are
new; the rest are identical to those in Figure 2.18. The other load balancing methods are
modified analogously: work transfers are calculated in terms of execution times rather than
numbers of tasks. These execution times are estimated using a loop iteration cost function
built by adaptively sampling actual loop iteration execution times.

Figures 3.4 through 3.7 compare the efficiencies of some load balancing and self-
scheduling methods with and without use of a cost function. They show that, in every case,
applying a cost function to a previously proposed scheduling method improved the perfor-
mance of that method on all four example programs. From these results, we conclude that
simply applying a cost function to existing scheduling methods can substantially improve
the efficiency of these methods.

3.4 Deferred Load Balancing

In this section, we present the dynamic scheduling method used by our prototype
scheduling system: deferred load balancing. Three key ideas shaped the development of
this method. First, we designed the system to make the best possible use of cost function
information. Second, we made the assumption that any one execution instance of a parallel

CHAPTER 3. WORK DISTRIBUTION COHERENCE 33

FOR Timestep = 1 to Max
WHILE iterations remain
receive task transfer instructions
receive global mean execution time info. *
initiate task transfers, if any
compute K[i], the size of next chunk

scale K[i] using cost function *

FOR I= StartChunk to StartChunk+K[i]
if (I part of base sample) *
start execution time sampling *

if (condition on data)
perform computation 1
else perform computation 2
if (I part of base sample) *
finish execution time sampling
incorporate sample into base sample
ENDFOR
notify parent that chunk i is done
notify parent of local mean execution time *
ENDWHILE
synchronize with all other processors
ENDFOR

* *

Figure 3.3: Canonical irregular parallel loop modified to perform self-scheduling on each

processor of a distributed memory multiprocessor. Uses work distribution caching to scale
chunk sizes.

CHAPTER 3. WORK DISTRIBUTION COHERENCE 34

0.3 4

0.2+

014

0.0 -

Figure 3.4: Factoring with and without
work distribution caching on 512 proces-
sor Ncube-2 for each benchmark applica-
tion (dark bar is without caching).

0.3 o

0.2

0.1 4

0.0 -
AMR cu EMU XRY

Figure 3.6: GL1 with and without work
distribution caching on 512 processor
Ncube-2 for each benchmark application
(dark bar is without caching).

0.3 1

0.2+

0.1 4

0.0 -

Figure 3.5: GSS with and without work
distribution caching on 512 processor
Ncube-2 for each benchmark application
(dark bar is without caching).

0.3 4

0.2

0.1 4

00 -
AMR cL EMU XRY

Figure 3.7: LLB with and without work
distribution caching on Ncube-2 for each
benchmark application (dark bar is with-
out caching).

CHAPTER 3. WORK DISTRIBUTION COHERENCE 35

inner loop takes an insignificant amount of time compared to the total time required to
execute the parallel application. Hence, deferred load balancing will sometimes sacrifice
performance of a particular loop execution instance to collect work distribution information
that may improve the execution of future instances. Further, deferred load balancing will
initiate transfers of loop iterations during one execution instance, expecting that those
transfers will only take effect during future instances. In doing so, our prototype took
advantage of the Ncube-2 multiprocessor system’s capability of overlapping communication
with computation.

Finally, deferred load balancing avoids destroying communication locality by al-
ways transferring tasks along communication lines. For example, in the climate model-
ing application, communication takes place along a two-dimensional grid. Groups of loop
iterations corresponding to sections of this grid are initially assigned to each processor
(BLOCKED decomposition). As work distribution information becomes available, some
processor’s grid sections are augmented by transferring neighboring grid subsections from
other processors. Because grid sections can change shape, more total communication over-
head may be incurred. However, if the net effect of a transfer would be to delay loop
completion because of increased communication cost, it will not be initiated.

The goal of deferred load balancing is to migrate tasks gradually among processors
so that the steady-state efficiency of each parallel loop is optimized. The model underlying
this technique is that the first few execution instances of a parallel loop will be inefficient,
owing to the collection and communication of cost function information, and the use of cost
function information in initiating loop iteration transfers.

The effect of this method is that each parallel loop reaches a stable level of efficiency
called its steady-state efficiency. Regular loops and loops with strong work distribution lo-
cality (coherent loops) will have a high steady-state efficiency, and irregular loops with weak
work distribution locality (chaotic loops) will have somewhat lower steady-state efficiency.
Chapter 4 shows how to mask some of the inefficiency of chaotic loops by pipelining them
with regular or coherent loops.

3.4.1 Implementation

Deferred load balancing works (DLB) works by constantly tuning the efficiency of
a parallel loop until it reaches its steady-state efficiency. Once a loop has reached steady-
state efficiency, DLB maintains efficiency by incrementally adjusting the allocation of loop
iterations to processors. Our prototype DLB system assumes a fixed, regular communication
pattern, based either on a grid or on a graph (in the case of the circuit simulator, EMU).
The DLB system is provided with the information necessary for it to estimate the cost of
communication between any pair of loop iterations, if those loop iterations are on separate
processors. The DLB system is also provided with the information necessary for it to
estimate the cost of migrating a particular group of loop iterations from one processor to
another; this cost depends on the amount of data necessary to execute each loop iteration.

Ideally, this communication overhead information would be encoded for the run-
time system by the high-level language compiler. In our prototype system, the information
was provided manually, in the Delirium intermediate form. This intermediate form is de-
scribed in Chapter 5. For the X-ray Tomography application, this information was produced

CHAPTER 3. WORK DISTRIBUTION COHERENCE 36

by our prototype FORTRAN compiler [38]. It would be straightforward to extend our FOR-
TRAN compiler to handle the other applications as well. Once the information is specified
in Delirium, the Delirium compiler translates it into a compact form for use by the runtime
scheduling system.

The runtime scheduling system combines this communication cost information
with the cached work distribution information it has collected for each loop. Processors are
organized into a tree structure, similar to the organization described in Chapter 2. For each
parallel loop, each processor sends summary information to its parent in the tree. Chapter 4
describes a grain-size selection algorithm called TAPER that is used to decide how often
this information should be updated. Processors representing internal nodes of the tree
evaluate the current assignment of loop iterations to each of their children. Whenever new
information arrives at an internal node, it evaluates whether to initiate a transfer among
two or more of its children.

To investigate whether to initiate a transfer, each node N performs the follow-
ing decision procedure. First, it uses cost function information to estimate the amount of
work on each child; it then sorts the children by estimated work completion time. If the
completion time range among the children is greater than some constant «, then the node
considers a transfer between the first and last children on the sorted list. For the measure-
ments reported in this dissertation, we set a equal to 3% of the total estimated completion
time for the parallel loop.

Once this threshold has been exceeded, the node N calculates the expected benefit,
in improved load balance, of completing a transfer of work between the two children. This
expected benefit is quantified as follows. First, N calculates the local load balancing benefit,
B. B is defined as the percentage that the transfer would decrease the completion time of
N’s children. Second N calculates the local load balancing costs, y; and v,. We define v;
to be the sum of two one-time costs: the cost of transferring the data necessary to execute
the transferred loop iterations and the cost of the synchronization necessary to organize
the transfer. We define v, to be the sustained communication cost of the transfer; this is
the time required to perform any extra communication that results in separating some loop
iterations from their neighbors.

Some processor architectures, like the Ncube-2, allow coarse-grained overlapping
of communication with computation. Such architectures support the implementation of
deferred load balancing naturally, since much of the 7; and 75 costs are communication costs
that can be overlapped with useful computational work. We have implemented deferred load
balancing on some architectures such as the Thinking Machines CM-5. However, the lack of
support of overlapped communication and computation on that architecture cost between
ten and twenty percent in performance on the applications we tried.

For the remainder of this discussion, we assume that we can overlap communication
with computation. We believe that this feature will become nearly universal among parallel
processor architectures. In particular, the newest architectures from Thinking Machines,
Intel, and Cray all support this feature. Even more important, networks of workstations,
the fastest growing supercomputing platform, commonly support this feature.

Given the ability to overlap communication and computation, the limiting com-
munication resource becomes the available bandwidth during any given execution instance

CHAPTER 3. WORK DISTRIBUTION COHERENCE 37

of a parallel loop. As long as the communication required to support the next execution
instance can be completed during the current execution instance, then the cost of commu-
nication will have little effect on the completion time of each execution instance. This will
be true as long as the bandwidth allocated to the parallel loop is sufficient to perform the
necessary communication. In Chapter 4 we will present methods that divide communication
bandwidth and processing resources among concurrently executing parallel loops. In this
chapter, we will assume that we are dealing with a single parallel loop.

Given this assumption, the costs y; and 7y, are computed to be zero except for
two cases. First, sufficient bandwidth may not be available, in which case the completion
time of the current parallel loop execution instance will increase to accommodate the in-
creased communication overhead. Second, the data communicated between two separated
loop iterations may be generated only toward the completion of the current parallel loop
execution instance. In this case, the communication will increase the completion time of
the loop even though there is sufficient bandwidth during the entire loop to accommodate
the communication. In Chapter 4 we will present some methods for eliminating this situ-
ation, by pipelining the execution of parallel loops. However, even when the best possible
pipelining has been arranged, this situation can occur.

Once the local benefits and costs of a particular work transfer have been computed,
the tree node N performs the transfer if the local benefits exceed the local costs, and if the
local transfer is considered useful relative to the global situation. Two criteria determine
the usefulness of a local transfer. First, the change in completion time among the node’s
children must be significant relative to the overall parallel loop execution time. Second, the
communication bandwidth required by the transfer must be available; that is, not reserved
by a more important transfer taking place elsewhere in the system. If these two criteria are
met, N sends a message to both children, dictating the transfer. It also sends a message to
its parent in the tree, reserving the communication bandwidth required for the transfer.

Transfers of work may span several execution instances of a parallel loop. That
is, a transfer may be initiated during one execution instance and completed during a later
execution instance. The work transfer only takes effect when all data necessary to execute
the transferred loop iterations has arrived at the target processor, and the target processor
has acknowledged its receipt of this data to the sending processor. The runtime scheduling
system takes advantage of this asynchrony to piggyback work transfer messages with other
messages whenever possible.

3.4.2 Performance

Next, we investigate the performance of the distributed load balancing (DLB)
method. Figures 3.8 through 3.11 compare this performance with that of other scheduling
methods. Each figure gives the performance of DLB, compared with the performance of the
previously proposed scheduling method that performed best for the particular application
measured. These results demonstrate that, for our four benchmark applications, DLB can
achieve near-optimal efficiency on large numbers of processors. In addition, DLB performs
significantly better, on these problems, than any previously proposed static or dynamic
scheduling method.

The benefits of using deferred load balancing are greatest when parallelism is least

CHAPTER 3. WORK DISTRIBUTION COHERENCE 38

Efficiency
L

Figure 3.8: Performance of Deferred Figure 3.9: Performance of Deferred
Load Balancing on climate model, com- Load Balancing on AMR, compared to
pared to best previous approach. best previous approach.

Figure 3.10: Performance of Deferred Figure 3.11: Performance of Deferred
Load Balancing on EMU, compared to Load Balancing on Psirrfan, compared to

best previous approach. best previous approach.

CHAPTER 3. WORK DISTRIBUTION COHERENCE 39

abundant. This is because, as the number of processors applied to a given loop increases, the
danger of thrashing toward completion of the loop increases correspondingly. By amortizing
task transfer costs across multiple parallel loop execution instances, and by using cached
work distributions to guide scheduling decisions, DLB achieves high efficiency.

40

Chapter 4

Scheduling

The previous chapter described our main techniques for adaptively scheduling
irregular parallel programs: work distribution caching and deferred load balancing. In this
chapter, we describe two other techniques that play important supporting roles in achieving
efficient execution of irregular parallel programs. First, we describe probabilistic grain size
selection, a method for determining how much work each processor should perform before
synchronizing with other processors. Second, we present techniques for orchestrating the
interactions among concurrently executing parallel loops.

4.1 Tapering Methods

We present a probabilistic method called TAPER for choosing an appropriate grain
size at which to schedule chunks (groups) of tasks in a parallel program. TAPER can be
used as a shared memory self-scheduling algorithm, similar to GSS or SS, and it can be
extended to distributed memory using the techniques described in Chapter 2. Our deferred
load balancing method uses TAPER to determine how often processors should exchange
execution information about a particular loop. In this context, each processor uses TAPER
to select a chunk size. It then executes the number of loop iterations in the chunk before
updating its parent processor with information about the number of loop iterations that
remain and the changes to the cost function.

The remainder of the discussion will be in terms of groups of tasks that can ex-
ecute in parallel. The typical source for such a group of tasks is a parallel loop; each
loop iteration is considered a separate task. TAPER is a method for selecting a chunk
size K;, given the number of remaining tasks R;, number of processors p, and work dis-
tribution parameters(p,0). The method selects K; using an expression of the form K; =
max (Kmm, f(i—, Koin, %, h)), where K, is the minimum chunk size and f is a function
we will derive below. This expression yields GSS as a special case when o = 0.

The goal of any grain size selection technique is to achieve optimally even finishing
times while scheduling the smallest possible number of chunks. When scheduling the 7
chunk, we would like to pick the largest possible number of tasks K such that our expected
maximum finishing time does not increase. To estimate K;, we define finish;; to be the
time at which processor j has finished with any chunks numbered less than or equal to

CHAPTER 4. SCHEDULING _ 41

Processor 1

Processor 2

1000

£inish(5,2)

Processor 3

fmax(5)

Figure 4.1: A Scheduling Scenario

t. We let fmaz; = max;(finish;;), and lag; = 3°;(fmaz; — finish; ;) (lago is the initial
unevenness in processor start times). If we schedule n chunks then fmaz, is the finishing
time of the computation, and lag, measures the total amount of processor idle time (the
inefficiency) during the computation (see Figure 4.1 for an example).

4.1.1 The Fill Lemma

Using these definitions, we can derive a grain-size selection algorithm that pro-
vides a near-optimal choice for K;. To support this derivation, we introduce a lemma that
illustrates a key property of the first available rule. The first available rule states that the
next group of tasks to be scheduled will be assigned to the first processor available. The
goal of the Fill Lemma is to show how lag;4; depends on lag;. That is, given a particular
unevenness in finishing times after scheduling chunk i, the lemma, tells whether the schedul-
ing of chunk ¢ + 1 will cause smoothing or increase unevenness, and by how much. In the
following, cost; denotes the execution time of chunk ¢ (note that the size of all chunks could
be 1, so this lemma applies to the scheduling of individual tasks).

Lemma 1 If fmaz;1, = fmaz; then lag;+1 = lag; — cost; 1. Otherwise, lagi+1 <
(p— 1)cost;y1.

Proof. Case I: fmaz;y; = fmaz;:
The condition for this case states that the maximum finishing time does not increase as a
result of the scheduling of chunk ¢ 4 1. But, if this is true, there is some processor j such
that finish;i1; = finish; ; + cost;y1 and finishiyq ; < fmaz;. If chunk ¢ + 1 is assigned
to processor j then for k # j, finish;1qr = finish; k. Thus,

lagiv1i = Yyu;(fmaz; — finish;x)+
fmaz; — (finish; j + costiyy)
= lag; — cost;yq |

CHAPTER 4. SCHEDULING _ 42

Case II: fmaz;41 > fmaz;:

When the maximum finishing time, fmaz;+; does increase, then there is some processor
g such that finished;, = min;(finished; ;) and finished;y1,, = finished;, + cost;y; =
fmaz;yy. Since finished; g is the minimum finishing time after chunk 7 and only processor
¢’s finish time changes as a result of the scheduling of chunk 741, > (fmaziiy— finish; ;) <
(p — 1)cost;41 0.

We call Case I the fill-in rule, and Case II the excess rule. The point of this lemma
is that, whenever the excess rule applies (i.e. fmaz;y1 > fmaz;), we can bound lag;y;
independent of lag;.

Corollary 1 Let [be the index of the last chunk for which fmaz; > fmaz;_;.
Then we can bound lag, independent of lag;j;;. Further,

n
lag, = lag; — E cost;
g=l+1

Corollary 1 suggests that our analysis need only consider the state of the computation from
the last time the excess rule applies. Corollary 2 gives us a procedure for deciding when a
chunk can be the last chunk for which the excess rule applies.

Corollary 2 If (lag; — 3_7_;,, cost;) < 0 then chunk i can not be the last chunk
for which the excess rule applies.

4.1.2 Probabilistic Tapering

We can use the fill lemma as the basis for a probabilistic tapering method. Given
execution time variance, we cannot know the exact time necessary to execute any task
or group of tasks. Therefore, given a bound b that expresses the maximum allowable
inefficiency, we seek a scheduling method that makes lag, < b with high probability. We will
express the new scheduling method as a rule for computing a set of chunk sizes K, ..., K,
such that, if tasks are handed out with these chunk sizes, lag, < b with high probability.

We denote as fill; the term 3°7_,; cost; in Corollary 2 and assert a final corollary
to Lemma 1. This corollary is what makes a probabilistic analysis of tapering methods
tractable.

Corollary 3 lag, < max;((p — 1)cost; — fill;)

We can use this expression to limit the effect of each chunk K; on lag, such that
lag, is less than the given bound b (b is the maximum allowable inefficiency) with high
probability. Suppose that at time ¢, there are R; tasks remaining and that our tapering
method chooses to schedule a chunk containing K; tasks. Then we can rewrite corollary
3 as lag, < max;((p — 1)t(K;) — t(Riy1)), where t(K;) and #(R;41) are random variables
representing the actual time taken to execute K; and R;;; tasks, respectively. In other
words, we assume that the tasks are chosen arbitrarily and that their execution time varies
according to some distribution ¢.

Let Z; = (p— 1)t(K;) — t(Ri41). We would like to find the largest value of K; such
that Pr[Z; > b] < € for a given bound b and probability €. Using Chebychev’s inequality we

CHAPTER 4. SCHEDULING : 43

find Pr[Z; — £(Z;) > a] < 0%, /a?, where 0%_is the variance of Z; and 5(;) is the expected
value of Z;. If we let a = b— &£(Z;), then we have Pr[Z; > b] < 0%./(b— £(Z;))% Let
Pr[Z; > b] = ¢. To obtain an expression in terms of the original scheduling parameters,
we eliminate Z; from our derived inequality by substituting 5 (Z;) = (pK; — R;)p (using
Rit1 = R; — K;) and 0% = 0%(((p—1)? — 1)K; + R;) (where 02 and p are the variance and
mean of the original task cost distribution). This substitution yields

e<a*(((p-1? - 1)K; + R;)/(b— (pK; — R;)p)? (4.1)

The partial derivative of (4.1)’s right hand side with respect to K; is always posi-
tive. Thus, if we set € equal to the expression on the right-hand side of equation (4.1) and
solve for K;, we will find the largest K; such that ((p— 1)cost; — fill;) < b with probability
at least 1 —e.

A Practical Algorithm Chebychev’s inequality is valid for all distributions. In practice,
this means that it yields a needlessly conservative value for K;. Note that both t(K;) and
t(Riy1) are sums of individual task costs. By the Central Limit Theorem, the sum of K
independent variates approaches a normal distribution as K increases. For the distribu-
tions found in irregular programs (normal, multinomial, uniform, exponential) a normal
distribution is a very good approximation, even for small values of K .

Our current runtime system uses the following method for choosing K, based on
the assumption that the distribution of Z; is normal. Using a table we can find a value o
such that P1[Z; — £(Z;) > aoz] < € for a given value of €. Put simply, we are guessing that
Z; will not exceed its expected value by more that o standard deviations. Since we want
Pr[Z; > b] < € for some bound b, we have &(Z;) + aoz, = b. Substituting for £(Z;) and o,
as before and letting b = 0 we have

(R; — pKi)p = aa\/ ((p—1)2=-1)K; + R; (4.2)

Let T; = R;/p, and vy = ao/pu. Then (4.2) becomes T; — K; = va\/wl + 7
Intuitively, K; is less than T; = R;/p by an amount related to the variance of the work
distribution. If we approximate ((p—1)? —1)/p? as 1 and R;/p® as 0 (since the other term
under the radical, K;, will be close to R;/p and hence much larger), then solving for K

yields
2
K; = ’VTZ'-I-%—va\/QT,'-I-vg/LI‘} (4.3)

Figure 4.2 shows how equation (4.3) maintains the invariant Pr[Z; > 0] < €. Z;
is the difference between two random variables (p — 1)t(K;) and ¢(R;11). Expression (4.3)
sets the distance between the means of these two variables to be some number of standard
deviations, specifically . When ¢ = 0 then the expression sets the means to be the same
value: (p — 1)R;/p (like GSS). As the variance increases the relationship of equation (4.3)
increases the distance between the means to maintain the invariant.

Thus, for a given scheduling event 7, we can ensure that Pr[Z; > 0] < € for any ¢
by selecting the corresponding number of standard deviations, a, from a table. However,

CHAPTER 4. SCHEDULING _ 44

(p- DH(K[i])

t(R[i+1])

(p— DUK[i]) t(R[i+1])

variance = 1 variance=4

Figure 4.2: Hlustration of K; selection.

100%

25 :
80% - .
[y .
8 :
2 .
& 12 :
60% .

62/\/\&
40% 31 .

1 1] 1 . 1 1 1

00 04 08 12 16 20 24

alpha

Figure 4.3: Effect of a. Lines labeled with N/p.

we would like to derive a single value of a for the entire parallel operation. To do this we
require an expression that, given ¢, yields Pr[max;(Z;) > b]. It is an open question whether
such an expression can be found; without it, determining the best value for « is analytically
intractable.

In practice, it is possible to discover a sufficiently accurate value for o empirically.
Two parameters, the scheduling overhead (h) and the ratio of tasks to processors (N/p)
can affect the optimum value of a. Using a normal distribution, we measured the optimum
value of o over the entire possible range of both parameters, varying A from 0 to oo and
N/p from 1 to co. Figure 4.3 summarizes the results for some typical values of N/p and
with A = 1. Over all combinations of h and N/p, we found that the value o = 1.3 was
within 3% of optimum. All of the performance results reported in this paper were obtained
using this single value for a.

Figure 4.3 also indicates that a scheduling method using equation (4.3) can with-
stand considerable inaccuracy in the value of %, since v, in equation (4.3) is just the scaled

CHAPTER 4. SCHEDULING , 45

coefficient of variation af. For example, we found that simply using equation (4.3) and
setting v, = 3 yielded better performance than the other scheduling methods tested. In all
cases, runtime measurement of % further improved performance.

Incorporating Overhead Equation (4.3) implicitly addresses overhead by selecting the
largest number of tasks K; that meets the constraint Pr[Z; > 0] < e. If we explicitly account
for scheduling overhead, we can improve our value for K;. We represent overhead through
the parameter K,;;,, the minimum chunk size. To determine K,,;,, we use two additional
parameters: Kpgng and Koopeq.

We noted in Chapter 3 that the compiler computes the minimum chunk size, Kyqpnq,
necessary to ensure that communication between processors containing logically adjacent
chunks does not exceed the bandwidth requirements of the machine (Kpand s set to zero on
shared memory multiprocessors). The other parameter, K cheq, is smallest chunk size such
that the mean time to execute Kcheq tasks exceeds h, the overhead of scheduling a chunk.
We set Ko = min(Kpand, Ksched, N/p). If we are using TAPER to compute chunk sizes
for deferred load balancing, we set Kjq,q4 to zero, because communication overhead is taken
into account by the higher-level scheduling decision algorithm. Hence, the only interesting
parameter is K cpeq the cost of updating scheduling information upon the completion of a
group of tasks.

When K, = N/p, we can’t improve on a static schedule for the parallel oper-
ation. However, we can modify equation (4.3) such that it yields a dynamic scheduling
method that outperforms static scheduling whenever K,,;, < N/p. We know that if all
chunks contain K, or more tasks, the average value for lag, will be at least K, ;pu /2.
Hence, there is no reason to require Z; < 0 and therefore the bound on acceptable lag,
b = 0 in the derivation above. If we set b = Kp,;,pp/2, then equation (4.3) still holds,
provided we set T; = % + Kpmin/2. Our final expression for computing K; becomes

2
K; = max (I(minv [Ti + % — va\/QTi + ’02/4.1) (4.4)

Combining our techniques for selecting a and K,,i, with equation (4.4) we have
an algorithm for dynamic scheduling. We call the algorithm TAPER. Figures 4.4 through
4.6 compare the performance of TAPER with guided self-scheduling (GSS), self-scheduling
(SS), and static assignment (SA) for some synthetic work distributions.

Even Starting Times The derivation and simulation results given above demonstrate
that TAPER yields a near-optimal schedule assuming only lago < N (i.e. processors can
start at different times) and that task costs are independent random variables. Further,
TAPER is stateless. Adding tasks only increases fill;; removing processors only decreases
(p — DUKS).

If the scheduling algorithm is given additional information about processor starting
times, it can do better. For example, suppose we know that p processors will execute the
entire parallel operation and that all processors start at the same time. We can use this
information to choose larger chunk sizes than TAPER. Let s; be the time at which the 7%

CHAPTER 4. SCHEDULING , 46

100% L TAPER

o Gss
T
80% - ya S
o
/.
g 60% |- 4"/'/’7 TS
5 —=" /7
= ya
40% | / /
7
20% :/
0% 1 1 1
100 10! 102 103 104
N/p

Figure 4.4: Binomial Distribution Pr[60000]=0.1, Pr[200]=0.9

chunk is assigned. Let D; = ¥ — % D; is the distance in tasks between s; and the expected
finishing time of the computation. Taking into account the variance in possible finishing
times yields K; = max(Knin, [D;i — vav/D;5)).

We call this method for selecting K; the DISTANCE method. The difference
between DISTANCE and TAPER is greatest for the first p chunks scheduled. Further, it is
expensive to maintain globally meaningful values for s;. For these reasons, we use a hybrid
method (called EVENSTART) in situations where all processors begin simultaneously. This
method uses DISTANCE for the first p chunks and TAPER thereafter. Figure 4.7 illustrates
how EVENSTART maintains a small unevenness in chunk finish times throughout a parallel
operation.

Determining the Distribution When profiling information is not sufficient to provide
values for u and o, we need to discover these values at runtime. This is done by having
each processor randomly select a few tasks from its large initial chunk and measure the
execution times for these tasks. This information is accumulated as processors request later
chunks. We therefore need a method to pick the first p chunk sizes. One technique is to
use K; = N/2p for the first p chunks, since TAPER will always allocate more than half the
work in the first p chunks. Hummel and Shoenberg have proposed a similar scheduling rule
based on a different analysis [30]. This method is excessively conservative for large N/p. We
chose instead to estimate that £ = 3. This ad hoc technique works well in practice because
the estimate is quickly updated on each processor as sampling information accumulates.

4.2 Orchestrating Interactions Among Parallel Computa-
tions

Finally, we describe our methodology for orchestrating interactions among paral-
lel computations. Many parallel programs contain multiple sub-computations, each with
distinct communication and load balancing requirements. The traditional approach to

CHAPTER 4. SCHEDULING _ 47

100% | I
/o;‘j/ /v/"
/o ° v/v SA
<SS
z 80% | / /
(5} o v
3 K GSS
& TAPER /
o /) v v—v—v—v
:/'/ SS
60% |- / y
a
40% 1 1 1
10° 10! 102 103 10*
N/p

Figure 4.5: Uniform Distribution on [0,10]. Overhead = 0.5u.

100% -
0\0
DA\~ TAPER
80% | ——
v © v v * GSS

Efficiency

SA
60%

40% |- ~.,
~_SS

20% 1 1 1 Il il
-0.5 00 0.5 1.0 1.5 2.0 25

Overhead (in Tasks)

Figure 4.6: Performance on Pr[10] = 0.9, Pr[1] = 0.1 for different overheads.

compiling such programs is to impose a processor synchronization barrier between sub-
computations, optimizing each as a separate entity. In this section, we describe a method-
ology for managing the interactions among sub-computations, avoiding strict synchroniza-
tion where concurrent or pipelined relationships are possible. Several application studies
[21, 41, 55] have identified such interactions as a key target for manual optimization. The
contribution of this dissertation is to automate the runtime support for these optimizations.

For example, suppose we have two loop nests with the potential to execute con-
currently. If each computation is handled independently, with synchronization between the
two loop nests, efficiency of CPU usage is limited by the less regular of the two. One possi-
ble remedy is to use loop fusion, coalescing the two loops into one. However, the resulting
parallelization is incomplete, since fusion discards information about the more regular com-
ponent of the new loop. With the computations separated, a runtime system can use the
additional parallelism from the more regular loop nest to smooth the load balance of the

CHAPTER 4. SCHEDULING _ 48

80%

L]
60% - GSS
o
TAPER
= 40% -
=
3 SA
20% \
v L]
I =y
0% ’ Even St:'an)
1 1 1 1 1 1 1

0 20 40 60 80 100 120 140 160

i

Figure 4.7: As chunks are scheduled, lag; decreases. SA denotes static assignment of tasks
to processors.

computation as a whole.

Our research into the runtime optimization of loop nest interactions was done
in the context of a FORTRAN 77 compiler being developed by the Berkeley Coordination
project. On the PSIRRFAN program, we used this compiler to expose interactions among
parallel loop nests.

To expose this type of interaction automatically, we use a new method for data
access summarization called a symbolic data descriptor [24]. We use symbolic data de-
scriptors to implement a key transformation, called split, which reduces synchronization
constraints by sub-dividing computations. We have incorporated split into our compiler,
which outputs FORTRAN 77 augmented with both calls to library routines written in C and
a coarse-grained dataflow graph summarizing the exposed parallelism.

The compiler encodes symbolic information such as loop bounds and data sizes.
The runtime system uses this information, as well as information gathered from the running
program, to guide two key scheduling decisions: grain-size selection and processor allocation.
The grain-size selection algorithm is detailed elsewhere [38]. In this section, we present the
runtime processor allocation algorithm, which uses sub-computation finishing time estimates
to ration processing resources correctly among concurrently executing sub-computations.

4.2.1 Example Interaction

Figure 4.8 shows interaction among sub-computations. It is a loop whose induction
variable col iterates over the columns of a data array q. If the associated element of the
array mask is non-zero, the iteration performs the computation A. A reads all of q and
modifies column col. After the loop is completed, B computes the array output from q.

Because of the conditional in A, the compiler cannot determine an efficient schedule
for A statically. Depending on the values in that array, adaptive techniques may find an
efficient schedule. However, on large numbers of processors, efficiency may still be poor if
there is not enough parallelism (i.e. too few mask elements are non-zero) or if the time to

CHAPTER 4. SCHEDULING _ 49

integer mask([1..n], col, i, j
float result{l..n], q[l..n,1..n], output[l..n,1..n]

Data Behavior of Loop:

T do col = I,n where (mask[col] <> 0)

A mask 0000111001)]
doi=1n

compute result[i] from d /// //

i’th column of q
doi=1n
qlicoll = result(i] / /
%

N write read

Y. 904

doi=1In
doj=1n
output[j,i] = f(q[j.i])

Figure 4.8: Code Before Split

process each column varies too widely.

Our approach is to transform the code to expose further concurrency; there are
three sources that our strategy can reveal. The first of these is to divide B into three pieces,
Br, Bp, and Bjps, where By processes the columns of q which are not touched by any of
the instances of A and Bp processes the rest. Bps merges the results into a single output
array. In Figure 4.9, we show the effect of applying this transformation.

The notation is equivalent to
do ... where <expr> do ...
loop body if (<expr>)
loop body

For clarity, we show an explicit merge of the two output arrays in Bys. In practice,
merging can often be handled implicitly by the runtime system during data communication.

The second transformation we can apply is to pipeline one iteration of the col
loop with subsequent iterations. We show the code with this further optimization in Figure
4.10. The body of the loop has been converted into three computations Ap, Ay, and Apy.
Ap represents the code that is dependent on the previous iteration of the loop; the runtime
system waits for the previous iteration to complete before scheduling Ap. Aj, on the
other hand, is independent of the previous iteration and can be scheduled concurrently. By
weakening the synchronization constraint between iterations, we are able to pipeline them.

A computes the result vector for all but the missing column of q that comes from
the previous iteration; Ap computes the one missing element into the variable prev_val.
Apr takes the almost complete vector and the missing value and combines them into a single
vector. Again, this kind of merge can often be done implicitly. Note that we use the form
do var=<range> and <range> to denote a discontinuous sequence of values, rather than

CHAPTER 4. SCHEDULING

integer mask[1..n], col, i, j

float

result[1..n], q[1..n,1..n], output[1..n,1..n]
ouputl{l..n,1..n}, output2[1..n,1..n]

™ do col = 1,n where (mask[col] <> 0)

doi=1n
compute result[i] from
i’th column of q
doi=1n
qfi,col] = result[i]

do i = 1,n where (mask[i] = 0)

oj=1n
output1[j,i] = f(q[j,i])

do i = 1,n where (mask[i] < 0)
doj=1n
output2[j,i] = f(q[j,i])

.

doi=1ln
if (maskli] = 0)
doj=1ln

else
doj=1n

output(j,i] = outputl[j,i]

outputfj,i] = output2[j,i]

Figure 4.9: Code After Split

50

CHAPTER 4. SCHEDULING

integer mask[1..n], col, i, j

float result[1..n], q[1..n,1..n], output[l..n,1..n],
resultl[1..n], outputl{l..n,1..n}, output2[l..n,1..n], prev_val

do col = 1,n where (mask[col] < 0)
do i = 1,n where (mask[i] = 0)

Ap Apl| doj=tn
compute prev_val do i = 1,col-2 and col,n outputlj.il = f(q(j.ih)
from column compute resultl[i] from
(col-1) of q i’th column of q
\ / A
M
do j = l,col-2 and col,n A

qlj.col] = resultl[i]
q[col-1,col] = prev_val

BD
do i=1,n where (mask[i] < 0)
doj=1n
output2[j,i] = f(q[j,i])
BM
doi=1n
if (mask[i] = 0)
doj=1n
output[j,i] = outputlfj,i]
else
doj=1n
output[j,i] = output2[j,i]

Figure 4.10: Code After Split and Pipeline

CHAPTER 4. SCHEDULING _ 52

duplicating the entire loop for both ranges.

The third transformation which we could perform is to pipeline iterations of A
with corresponding iterations of Bp, exposing a further source of concurrency.

The form of pipelining described in these last two transformations is different from
loop pipelining optimizations defined elsewhere. Previous approaches fall into two classes.
The first is software pipelining [35], which seeks to reduce overhead by reorganizing the code.
The transformed loop performs fewer iterations but has a larger body that handles more
than one of the original loop’s iterations at once. This strategy works well in improving
performance of a regular loop nest. The second approach, suggested by Balasundaran and
Kennedy [9], uses post and wait primitives to allow more than one loop iteration to execute
concurrently. Since this strategy imposes a fixed synchronization discipline, it does not
admit adaptive scheduling techniques.

4.2.2 The Runtime Algorithm

Consider a runtime scenario in which the transformed parallel operations A and
By from Figure 4.10 are executing simultaneously. A begins executing first and has partially
completed when By begins executing. The runtime system must decide how many processors
to reallocate. If we change the example so that all processors must synchronize upon
completion of A and By, an ideal processor allocation would minimize the expected finishing
time of these two parallel operations.

The expected finishing time of a parallel operation is a function of the number of
tasks that make up the operation (IV), the number of processors cooperating to execute the
operation (p), the variance in task execution times, and the overhead of scheduling [34, 38].
Thus, approximating the ideal processor allocation requires information available only at
runtime.

For this reason, we extended adaptive algorithms developed for single irregular
parallel operations to manage interactions among multiple, simultaneously executing paral-
lel operations. There are three main extensions. First, we developed a method for improving
the accuracy of estimated finishing times that works for a wide range of scheduling algo-
rithms. Second, we applied this method to the runtime processor allocation problem, using
an iterative algorithm to equalize finishing time estimates. Finally, we combined finish-
ing time estimates with runtime communication cost estimates to choose communication
granularity for pairs of pipelined parallel operations.

Now, we return to our runtime scenario in which the parallel operations A and Bj
are executing concurrently. When B; begins executing, the runtime system must reallocate
some of the p processors executing A. To accomplish this, the runtime system uses the
following iterative algorithm:

epsilon = 5%
pl=p/2,p2 =p—pl, count =0
eA = finish_estimate(A, pl), eB = finish_estimate(B, p2)
while ((count < maz_count) and (|eA — eB| > epsilon))
if (eA > eB)
pl = pl+ f(p2)

CHAPTER 4. SCHEDULING , 53

p2=p-pl

else
p2 = p2+ f(pl)
pl = p— p2

eA = finish_estimate(4, p1)
eB = finish_estimate(B, p2)
count = count 4 1

We limit the number of iterations to control the amount of overhead imposed. In
practice, using a maz_count of four has been sufficient.
In estimating finishing time, the runtime system uses the expression:

finish = setup + compute + lag + comm + sched (4.5)

setup is the maximum of the time to contract the data required by A onto p;
processors and the time to expand the data required by By onto ps processors. compute is
the expected mean time to perform a portion of the computation: Np/p’ (where p’ = p; for
A and p' = p; for By). lag is the expected maximum finishing time to perform a portion of
the computation; it is related to the distribution of task execution times for the computation
(u,0) [38]. comm represents the communication overhead of executing the given parallel
operation on p’ processors.

To estimate comm at runtime, we use an algorithm like that suggested by Sarkar
and Hennessy [53], which performs a weighted sum of dataflow graph edges that cross pro-
cessor boundaries. Rather than perform this computation statically, the Delirium compiler
generates code blocks that perform the estimate given runtime parameters such as N and
y.

Finally, we must estimate the scheduling overhead (sched). To do so, we need to
predict, at runtime, the number of chunks that will be scheduled for the parallel operation
(hence the number of epochs in the distributed algorithm given above). The method for
predicting this parameter is discussed elsewhere [38]; it applies to TAPER and many other
algorithms for generating chunk sizes [29, 49, 58].

By balancing the estimated finishing times of A and By, the runtime system uses
the extra concurrency from By to compensate for A’s irregular execution behavior.

54

Chapter 5

System Support

This chapter outlines the system support that we used to implement our adaptive
scheduling techniques. We first describe Delirium, a coordination language that we used
as a compiler intermediate form. Delirium includes constructs designed to simplify the
expression of data parallelism. We used Delirium in two ways. For the Climate, AVM, and
EMU examples, we hand-compiled the programs, creating two forms of output: a set of
ForTRAN and C computational functions, and a Delirium “glue” program to coordinate
the execution of these functions. For PSIRRFAN we produced the same type of output, but
used an optimizing FORTRAN compiler that we designed and implemented for this purpose.
We believe that the compilation of our other examples can also be automated and have
described algorithms for doing so elsewhere [24]. Many of the transformations required have
already been incorporated into our FORTRAN compiler. Some of the information used by our
runtime system for the performance measurements given in this dissertation was gathered
by compilation. For example, information about communication costs and patterns are
gathered by the FORTRAN compiler and stored as thunks in the resulting program. The
runtime system evaluates these thunks, using runtime parameters such as loop bounds, to
include information about communication locality and cost in its load balancing decisions.

The second part of this chapter describes the design and implementation of our
runtime scheduling system. The core functionality of this system is implemented using
Tarmac [39], a library that supports replication and location-independent modification of
distributed state.

5.1 The Compiler Intermediate Form

Our compiler intermediate form consists of a simple language called Delirium.
Using Delirium, our FORTRAN compiler can express the division of a program into sub-
computations; it can also express any concurrency that might be possible among sub-
computations. Finally, to support the organization of communication on distributed mem-
ory multiprocessors Delirium expresses how data will flow between sub-computations.

Delirium is designed to concisely express the multi-dimensional dataflow that can
exist in parallel computations. Multi-dimensional dataflow arises out of data parallel oper-
ations. For example, in our climate modeling application, the hydrodynamics of the atmo-

CHAPTER 5. SYSTEM SUPPORT _ 55

Figure 5.1: Coordination Structure for Mergesort.

sphere are computed using a 3-dimensional pattern of neighboring grid points. To compute
the new value of quantities such as temperature and pressure at a particular point, the
neighbors of that point are sampled.

Delirium’s support for concise expression of data parallelism is based on coor-
dination structures. A coordination structure is a (structured) collection of coordination
items. Coordination items can be understood as individual ordering dependencies within a
program [42]. Imagine the dataflow graph for the following expression:

let x = f(<expri>)
in g(x)

In a normal strict functional language, x is a name that corresponds to the result
of evaluating the application of £ to <expri>. A different way to understand x, however, is
that it expresses an ordering dependency. To evaluate the application of g, one must first
have evaluated the application of £. Think of x as a pipe that connects an application of £
to an application of g, through which data can flow. Each such pipe is a coordination item.

A parallel computation can be expressed as a multi-stage pipeline of coordination
structures. At each stage in the pipeline, a function is applied to the data flowing through
each member in the collection of data pipes. Following a function application, the order
of items (data pipes) within the coordination structure may be permuted to create the
appropriate data organization for the next stage of the pipeline.

For example, a useful primitive for many parallel algorithms is binary reduction.
A binary reduction takes N data items and applies some associative binary operation to
successive pairs, yielding a group of N/2 results. The same operation is performed repeat-
edly until there is only one value left. Many algorithms are based on binary reduction,
including, for example, merge sort. The pipeline for merge sort is shown in Figure 5.1 and

CHAPTER 5. SYSTEM SUPPORT _ 56

consists of log(V) applications of the merge operator. If the original N values flow into the
pipeline as a vector of pipes, the first step is to divide the pipes into N/2 pairs. Next, the
program applies an instance of the merge operator to each of these pairs in parallel. One
pipe flows out of each merge operator, so the cross section of the pipeline has been reduced
to N/2 coordination items. The grouping and function application are done repeatedly,
until at the end only a single pipe flows out of the pipeline and it contains the sorted list.

It is important to note that the coordination structure of the application as a whole
looks like a tree, even though the data that moves through the pipes is probably organized
into an entirely different data structure (like a list). We believe that an algorithm is much
clearer if the coordination structure is linguistically decoupled from the underlying data
structure. A binary reduction always looks like a tree, regardless of whether the structure
being operated on is a set, a list, a tree, or an array.

Section 5.1.3 describes an application with a complex coordination structure and
shows a Delirium realization of this structure. Many classes of algorithms have good syn-
chronous solutions which can be expressed as coordination structures. A few examples are:
wavefront algorithms (including many types of dynamic programming), algorithms based on
communication over trees (including the Delirium compiler [54]), and algorithms based on
convolutions over grids (including Laplace’s equation and successive over-relaxation [50]).
A significant proportion of numerical scientific programs fall into one of these categories [5].

Because coordination structures directly support data parallel operations, they
encourage a programming style that incorporates techniques found in SIMD programs.
However, SIMD architectures impose synchronization requirements that narrow their ap-
plication domain.

5.1.1 Delirium

Existing coordination languages, such as Linda [14] and Sloop [37], are embedded;
they consist of a set of asynchronous coordination primitives that are accessed through
statements scattered throughout a host language program.

Delirium is the first example of an embedding coordination language [41]. We call it
an embedding language because a Delirium program specifies a framework for accomplishing
a task in parallel; sequential sub-computations called operators are embedded within that
framework. To guarantee that a Delirium program will execute deterministically, one need
only ensure that operators do not maintain state across invocations.

We believe that embedding coordination languages such as Delirium offer signif-
icant advantages for the expression of parallelism. One can express all the glue necessary
to coordinate a mid-sized application on a single page of Delirium. This organizing princi-
ple makes parallelization easier. Instead of scattering coordination throughout a program,
creating a set of ill-defined sub-computations, the compiler front-end precisely defines se-
quential operators and embeds these operators within a coordination framework.

Each of these operators is callable directly from Delirium with the same syntax
as a function invocation. Operators can be written in any language, including traditional
imperative languages like C or FORTRAN. This allows the compiler to take advantage of
existing libraries.

CHAPTER 5. SYSTEM SUPPORT ‘ 57

main()
let board = empty-board()
in show-solutions(do-it(board,1))

do-it(board,column)

let hl = try(board,column,1)
h2 = try(board,column,?2)
h3 = try(board,column,3)
h4 = try(board,column,4)
h5 = try(board,column,5)
h6 = try(board,column,6)
h7 = try(board,column,7)
h8 = try(board,column,8)

in merge(hi,h2,h3,h4,h5,h6,h7,h8)

try(board,column,row)
let new-board = add-queen(board,column,row)
in if is-valid(new_board)
then if is-equal(column,8)
then new-board
else do-it(new-board,incr(column))
else O

Figure 5.2: Eight-queens problem in Delirium.

Basic Delirium

At heart, Delirium is a straight-forward functional language which supports first
class functions, recursion, iteration, let-bindings, and conditional expressions. All functions
are evaluated strictly. There are no computation primitives in the language; all real work
is accomplished within operators that are defined in a different language.

Figure 5.2 contains a sample Delirium program which solves the eight queens
problem, expressing backtracking directly:

Thecodelmestheopennorsis-equal,is-valid,add-queen,show-solutions,
and empty-board. Because each of these does not involve much computation, the overhead
for expressing all the backtracking in parallel is significant’. A simple solution to reducing
overhead is to express only two levels of the recursion in Delirium, calling a recursive C
operator to descend the rest of the search tree. The modified version redefines try to be:

try(board,column,row)
let new-board = add-queen(board,column,row)
in if is-valid-op(new-board) then

10n twelve processors, this version took three seconds versus five seconds for the sequential
version.

CHAPTER 5. SYSTEM SUPPORT _ 58

if is-equal(column,2) then

do-it-op(new-board,incr(column))
else do-it(new-board,incr(column))
else O

This version, run on eight Sequent processors, is seven times faster than a sequen-
tial C program.

Support for Coordination Structures

This section describes how one can build coordination structures using Delirium
transforms. Each application of a transform creates a structure which connects two succes-
sive stages in a pipelined computation.

Names in Delirium refer to either integers, functions, transforms or n-dimensional
arrays of untyped values. A transform is a rule which replaces a set of input arrays by a
result array; the result array represents some permutation (with possible copying) of the
values in the input arrays. Transforms have two parts, a reshape statement and a set of
wiring rules. The wiring rules describe how the transform will permute its input arrays.
The reshape statement determines the shape of the transform’s result. It also requires that
the shapes of the transform’s input arrays conform to an input pattern. Application of
a transform to an array that does not match the transform’s input pattern results in a
runtime error.

The following grammar describes the syntax of transforms:

transform ::= heading reshape-stmt
[wiring-rules] [fill-constant]

heading ::= identifier ‘C identifier-list *)’

wdentifier-list ::= identifier ¢,’ identifier-list

| identifier

reshape-stmt ::= result-shape ‘<=’ input-pattern
input-pattern ::= subscript-ezpr
result-shape ::= subscript-expr
wiring-rules := ‘with’ wiring-rule-list
wiring-rule-list ::= wiring-rule wiring-rule-list

| wiring-rule
wiring-rule ::= lsubscript-expr ‘=" rsubscript-expr
fill-constant ::= ‘£ill’ number
lsubscript-expr := identifier ‘[’ simple-expr-list ‘1’
simple-expr-list ::= simple-expr ¢, simple-expr-list

| simple-ezpr
simple-ezpr ::= number | identifier

CHAPTER 5. SYSTEM SUPPORT , 59

rsubscript-expr 1= subscript-ezpr | number
subscript-expr ::= identifier ‘[’ indez-expr-list ‘]’
indez-expr-list ::= indez-expr ¢,’ indez-expr-list
| indez-expr
index-expr = expr
ezpr = any Delirium expression (should yield
an integer at runtime)

The operator ‘=’ in a wiring rule is read “depends on”. Each wiring rule specifies
how a section of the transform’s result depends on its input?. For example, the transform
shown below groups into pairs adjacent elements of a one-dimensional input array:

adjacent (P)
C[n,2]<-P[n]
with

Cl[i,jl=P[i+j]

The reshape statement, C[n,2]<-P[n], contains the input pattern P[n]. This
pattern matches any one-dimensional array, binding the name P to that array. The reshape
statement declares that the result of the transform will be a two-dimensional array, C.

The single wiring rule of this transform maps successive (overlapping) pairs of
adjacent elements from P into the corresponding columns of C. In general, the left-hand side
(lhs) of the wiring rule specifies some elements of the transform’s result. Array subscripts
appearing on the lhs must be either index variables or constants. An index variable is
an identifier which represents the entire range (with zero origin) of index values along a
particular dimension of the result array. Index variables must be unique within a wiring
rule and consistent within a transform’s set of wiring rules. To be consistent, a given index
variable must always refer to the same dimension of the result.

The right-hand side (rhs) of a wiring rule must be either a constant or a selection
of some elements from one of the transform’s input arrays. Array subscripts appearing on
the rhs can contain arbitrary arithmetic expressions. Index variables bound on the lhs of
a wiring rule can appear in its rhs. If an rhs subscript expression does not specify a valid
index of the input array, the value of the entire rhs expression is determined by the fill
constant of the transform. When defining transforms containing such rhs expressions, the
programmer must explicitly specify a fill constant.

The semantics of a set of wiring rules are captured by the following algorithm:

for each wiring rule
for each value in the range of each index variable
compute the lhs expression
if the indicated element of the result has
already been specified

2For wiring rules in which the left and right subscript expressions refer to different arrays, ‘=’ is
semantically equivalent to an assignment. At present, this is the only kind of rule permitted in a
transform.

CHAPTER 5. SYSTEM SUPPORT , 60

then report error
else assign the value of the rhs expression
to this element

To understand how transforms work, imagine the dataflow graph of a computation
to be a set of ribbon cables. These cables have a male and a female plug, both n-dimensional,
and wires which connect each input of the female plug to one or more outputs of the male
plug. The male plugs correspond to Delirium arrays. Female plugs correspond to the input
patterns of transforms; they determine what shapes of input arrays can “plug into” the
transform. The wiring rules of the transform constitute a schematic for creating a new
male plug.

A computation is just a series of transformations, applied to the program’s input
“wires”. For completeness, we should generalize the ribbon cable analogy so that, at any
point, one can bifurcate a cable such that it has two male ends (since a program may copy
an array).

The only thing that remains is to specify how actual work gets done. To do
this, we introduce the primitive map, which applies a function to groups of elements in
Delirium arrays. Depending on how it is applied, map groups array elements in different
ways; this flexibility is necessary to support functions with multiple array arguments and
multiple return values. The simplest way to use map is to apply a single argument, single
return value function to one array. The result is an array of the same shape as the input
array, where each element in the new array is computed by applying the function to the
corresponding element of the original one.

If map applies a function that returns r results, the dimensionality of the output
array is correspondingly increased. An n x m array, for example, would be transformed into
an n X m X r array. Element (8,10,2) is the third return value of the function when it is
applied to element (8, 10) of the input array.

There are two ways to use map with multiple argument functions. The first is to
apply an n argument function to n arguments. All the arguments must conform, meaning
that they must either be arrays with the same shape, or scalars, which are automatically
replicated (and coerced into the array type). For example, if a four argument single return
value function is applied to two m X ¢ arrays and two scalars, the result would be an m X ¢
array where each element is computed by applying the function to the two scalars and the
two corresponding array elements.

The other way to handle multiple inputs is to get them all from a single dependency
array. In this case, the programmer applies an n-element function to an array whose lowest-
numbered dimension is n. If the function has r return values, the map operation will change
the size of the array’s lowest-numbered dimension from n to r. For example, if a three
argument, two return value function is applied to a 20 x 3 dependency array, the result
array will be of shape 20 x 2. The two elements in row ten of the result array are the two
values returned by the function when it is applied to the three elements in row ten of the
original array.

To summarize, map can apply a function to either one or n dependency arrays. In
the first case, the input arity of the function must match the lowest-numbered dimension
of the input array. In the second case, the input arity must be n. The lowest-numbered

CHAPTER 5. SYSTEM SUPPORT , 61

dimension of the output array will be the output arity of the function.

Note that the reshaping effect of map can be described as a transformation. The
full semantics of map cannot be expressed in a transform, however, because transforms can
only build coordination structures. They are not able to apply functions to data flowing
through a coordination structure. With this restriction, Delirium linguistically enforces a
decoupling between coordination and computation. Normal transforms create patterns of
dataflow. The map transform applies a function across a pattern.

To demonstrate how map is used in practice, here is Delirium code that applies a
function of two arguments to each pair of adjacent elements in a vector. The first step is to
transform the vector into a two-dimensional array where each two-element column contains
adjacent elements from the vector. Once the intermediate array is constructed, a simple
map operation performs the computation:

adjacent(group,P)
C[n,groupl<-P[n]
with
Cli,jl=Pli+j]

f(a,b)
op(a,b)

f-on-adjacent(vector)
map(f,adjacent(2,vector))

This example generalizes the definition of adjacent to group by an arbitrary number
(rather than just by pairs). In the example, vector is a one-dimensional array, f and
f-on-adjacent are functions, and adjacent is a transform. The identifier op refers to a
functional operator defined in a computational language (see the above description of basic
Delirium). Note that adjacent makes use of an integer argument group. If a program
passes an array in this argument position, it will generate a runtime type error.

5.1.2 Multi-Stage Transforms

While the current transform mechanism is sufficient for the specification of any
coordination structure, it is oriented toward building these structures one pipeline stage
at a time. Coordination structures built this way are easy to understand and manipulate
because they can be represented as relationships among n-dimensional arrays. To repre-
sent a general coordination structure, we need a much more flexible data structure, such
as a directed graph. Some coordination structures, such as wavefront computations, can
be embedded in arrays. For such structures, it is useful in practice to support both views.
Transforms expecting arrays should be able to take array-embedded coordination struc-
tures as arguments. In other contexts, programmers need to be able to express a direct
modification to the array-embedded graph.

We are developing multi-stage transforms which provide this flexibility. Multi-
stage transforms include a notion of recurrence. Recurrence relations are resolved into

CHAPTER 5. SYSTEM SUPPORT , 62

hydro-stencil(P)

C[n,m,5]<-P[n,m]

with
cli,j,ol=P[i-1,j-1]
C[i,j,11=P[i-1,j+1]
cli,j,2]=P[i,]j]
C[i,j,3]=P[i+1,j-1]
Cli,j,4]=P[i+1,j+1]

hydro-update(current-grid)
let

new-grid=map (hydro-point,hydro-stencil(current-grid))
in new-grid

Figure 5.3: Hydrodynamics update from climate model expressed in Delirium.

coordination structures that can be manipulated explicitly or implicitly (as array-embedded
graphs) by transforms.

Most current Delirium applications use a different strategy for expressing recur-
rences. Prior to the development of multi-stage transforms, we provided a recurrence no-
tation similar to Crystal [16] which programmers could use as an alternative to writing
recurrences as iterations over transforms. Crystal is a system that converts computations
expressed as recurrence equations into a systolic architecture. At an intermediate step in
this conversion, the Crystal compiler derives a set of linear combinations that express the
communication inherent in the given recurrence. There is a straightforward mapping from
such sets to Delirium transforms.

5.1.3 A Delirium Example

This section presents a part of the climate modeling application expressed in Delir-
ium. It represents the hydrodynamics computation, the part of the climate model that
computes how air will flow during a simulation timestep. The Delirium compiler uses this
code to determine which processors will need to exchange data. The dataflow expressed in
this example has been simplified; the actual code uses a more complex, three-dimensional
pattern of neighboring points.

The code shown in Figure 5.3 a classic 5-point stencil, a pattern of how data is read
from neighboring points to update a particular point. This stencil is an analogue of the one
actually used by our climate modeling benchmark. The Delirium transform hydro-stencil
expresses all the dependencies among grid-points in the computation. It transforms an n
by m grid of data points into an n by m by 5 matrix, where the last dimension reflects a
grouping of all the neighboring points needed to update the value at point (n,m) in the
original grid.

CHAPTER 5. SYSTEM SUPPORT ‘ 63

The Delirium function hydro-update performs an update on the grid by first
grouping the data by applying the hydro-stencil transform, and then mapping the func-
tion hydro-point across the grouped data. hydro-point takes its 5 arguments and com-
bines them to yield an updated grid-point value.

5.1.4 Related Work
Functional Languages

One can achieve the organizing effects of coordination structures using higher-order
functions. For example, one could write a function that groups pairs of adjacent elements
in a vector:

AP . Af.
construct array A
with range ¢ = 0 to length(P) — 1
such that A[i] = f(P[¢], P[i +1])

To realize the same degree of parallelism as the equivalent Delirium transform,
this higher-order function must be implemented in a functional language which has lazy
aggregate construction and strict function applications. By lazy aggregate construction,
we mean that an array can be used before all its elements are computed. Combining this
property with strict function application, a functional language could realize the multi-
dimensional, pipelined communication pattern created by Delirium transforms.

Strict Functional Languages

Most dataflow languages, including VAL [43] and SISAL [44], are evaluated strictly.
These languages have strict aggregate construction, and so they can not implement Delirium
transforms. The language ParALFL [27], though not a dataflow language, also has strict
arrays; however, one could implement coordination structures inefficiently in ParALFL using
its lazy lists.

Lazy Functional Languages

Some dataflow languages, such as Id [6, 45], have lazy aggregate construction as
well as lazy function application. To realize the parallelism of Delirium transforms, a coor-
dination structure built in Id would require strict evaluation of function applications within
lazy arrays. This un-intuitive evaluation strategy could be arranged by a compiler that
was designed to recognize coordination structures as a stylized idiom. In contrast, Delir-
ium adds the transform mechanism to an otherwise strict language; using this mechanism,
programmers directly express the desired evaluation behavior.

CHAPTER 5. SYSTEM SUPPORT _ 64

Array Comprehensions

Anderson and Hudak discuss the construction of “lazy arrays within a strict con-
text” using a functional syntax called array comprehensions [5]. One can use such array
comprehensions to implement coordination structures. However, array comprehensions can
conveniently express only those coordination structures which can be embedded in arrays.

Like multi-stage transforms, array comprehensions can express recurrences. We
will provide a detailed comparison between array comprehensions and multi-stage trans-
forms in a future report. We have found that the complexity of compiling the Delirium
recurrence notation into iterations over transforms is similar to the complexity of compiling
Haskell [28] array comprehensions for sequential machines.

5.1.5 Aggregate Primitives
Early Aggregate Languages

Delirium transformations have been heavily influenced by APL [32], which in-
troduced the idea of a pipeline of functional transformations that modify an aggregate
structure. This idea was significantly elaborated by FP [7], which provides a rich set of
functional operators for creating new transformations. APL does not have first class func-
tions, and so can’t express coordination structures. FP’s functional operators are similar
to Delirium transforms, but operate on a data object that must model memory as well as
coordination, and are thus difficult to implement efficiently. Water’s series expressions [61]
also create pipelined computations; however, like FP and APL, they provide a fixed set of
operators for modifying dataflow through the pipeline. In contrast, Delirium transforms
are a general mechanism for creating dataflow modification operators.

5.1.6 Summary of Delirium

We have proposed a compiler intermediate form which supports the creation and
manipulation of multi-dimensional dataflow graphs. We have used this intermediate form
explicitly to construct concise and efficient implementations for several applications. We
have also used it to express the communication and loop interaction information necessary
to efficiently schedule the four main benchmark applications of this dissertation.

5.2 Runtime System Implementation

5.2.1 Tarmac

Our runtime system is designed to adaptively move sub-computations among pro-
cessors. To keep track of these sub-computations, and the data objects that they require,
we built a distributed shared memory toolkit called Tarmac. Tarmac is a language system
substrate on which systems for distributed parallel programming can be built. The basic
unit of state in Tarmac can be viewed as both 1) a block of memory that can be directly ac-
cessed by machine instructions, and 2) a logical entity with a globally unique name that may

CHAPTER 5. SYSTEM SUPPORT . 65

be efficiently located, copied and moved. To support higher-level synchronization models,
the movement of a memory unit may optionally enable computations.

Tarmac is more flexible than models such as distributed virtual memory, shared
tuple space, or distributed objects. It avoids the limitations of fixed page size, fixed data
placement policy, and type-system or language dependence. This flexibility allows Tarmac
to support a wide range of parallel programming models efficiently

Tarmac is designed to support adaptive parallel programming on a network of
computers (uniprocessors, multiprocessors, or both). A variety of possible models exist
for this type of programming, each with its own advantages: functional, object-oriented,
and dataflow languages, parallelizing compilers for sequential languages such as FORTRAN,
parallel database systems, and so on. Our main goal was to identify the functionality
common to these models, and implement it in a single system layer, thereby facilitating the
implementation (and interaction) of different models. While these models differ in many
important ways, they all provide some form of “state” that is shared and communicated
among the parts of the computation. The resulting system, Tarmac, is a toolkit for building
systems that incorporate shared state.

Examples of systems for distributed parallel programming include Amber [15],
Linda [22], and Ivy [36]. These systems represent different models, but they have two im-
portant and desirable properties in common: 1) global shared state is encapsulated and
explicitly managed by the underlying system (language, runtime system, and operating
system); 2) the system handles the movement of parts of the shared state between com-
putational nodes. These properties eliminate the need for the programmer to design and
program message-passing protocols for maintaining and replicating shared state.

The above systems, however, have properties that limit their range of applicability.
Shared virtual memory systems such as Ivy have page granularity. Entire pages must
be moved between nodes even if only single bytes are referenced, and some global access
patterns may cause thrashing. Implementations of the Linda system have embedded policies
for tuple transmission and placement.

The goal of Tarmac is to provide a facility for managing shared state with the
beneficial features of existing systems (encapsulation of small and large state units, mobil-
ity, global reference and location, and replication), but without language dependence and
system-enforced data placement policies. One of Tarmac’s central contributions is that it
supports a dual view of state units. Clients can view state both as “black boxes” that
can be named and moved, and as virtual memory segments that can be manipulated by
statements in arbitrary programming languages.

With this goal in mind, we designed a model of shared state that we call mobile
memory. In this model, clients can create, access, move and copy arbitrary-size memory
units. Tarmac provides only mobile memory; any notion of “type”, as well as policies for
data location, movement, and concurrent access, are left up to the client. Tarmac’s level of
abstraction is high enough to hide details of communication and allocation (thus simplifying
language system development) yet low enough so that few restrictions are made on these
systems.

CHAPTER 5. SYSTEM SUPPORT , 66

Mobile Memory

Tarmac is designed around a mobile memory abstraction. Mobile memory is a
model of the communication and storage resources available in a distributed computing
network. The model involves the following types of entities:

e memory unit (MU): a region of memory.
o habitat: a set of memory units (generally an address space)
o label: a tag, attached to MUs, with client-determined interpretation

Tarmac uses unique identifiers (UIDs) to identify all of these entities. UIDs have an im-
mutable part, used to establish object identity, and a location hint part. UIDs are always
passed by reference to Tarmac, so that Tarmac can update their hint part whenever they
are used.

A memory unit (MU) is a region of memory with a definite size. MUs can contain
code or data; there is no Tarmac-defined notion of type. Tarmac provides the following
interface for creating MUs:

UID-1list = create_memory_units(number_of_units, size);
make_immutable(UID);

Labels A labelis a client-defined tag for MUs.

label_UID = create_label();
bind_label(label_UID, UID);

One can associate zero or more labels with a particular MU. Applications can
use labels to represent MU types or other information. Copies of the same application on
separate hosts must agree, by some higher level mechanism, on the interpretation of label
UIDs. The location hint part of a label’s UID refers to the location of an arbitrary MU that
has been bound to that label, so that clients can access MUs associatively through labels.

Habitats represent the physical location of a MU. A habitat may be a virtual ad-
dress space on a particular host, or a file system (only address space habitats are supported
in the current design). Processes running in a habitat can also interact with the local oper-
ating system to create non-shared data structures. Every MU has a single current location
which is a habitat. MUs can be moved or copied from one habitat to another, using

move(UID, target_UID);
copy(UID, target_UID);
virtual_move(UID, target_UID);
virtual_copy(UID, target_UID);

An MU A can be moved to any other MU B, after which A’s current location becomes B’s
habitat. If the MU has been designated immutable, Tarmac may maintain a copy of the
MU in both the source and destination habitats, for more efficient access. Copy creates a
new MU and then behaves like move. UIDs act as capabilities to MUs; any MU A which
knows the UID for an MU B can specify B as a target for a move.

CHAPTER 5. SYSTEM SUPPORT _ 67

MUs located in the same habitat can reference each other directly, using memory
addresses. The memory address of an MU is made available when it is first moved to a
habitat (see Section 2.3). If an MU containing direct references to other MUs is moved, it
is the responsibility of the language system to patch up its references.

Tarmac supports an alignment facility, similar in intent to Emerald’s notion of
attached objects [12]. If A and B are aligned, and A moves to a new habitat, Tarmac will
move B to join A. Furthermore, the relative addresses of A and B will remain the same. Taz-
mac tries to place aligned MUs in the same physical page, increasing the efficiency of moves
involving large numbers of small, aligned MUs. The interface for alignment specification is

align(UID1, UID2);

As an example of the use of alignment, if a user-level computation creates a binary tree in
which all nodes are aligned with their parent, a move of any node will cause the subtree
rooted at that node to move.

Events MU motions can trigger computations in the source or destination habitats. For
example, an MU move could correspond to an RPC request. Tarmac clients may indicate
which MU moves are to trigger computations by registering events.

event_UID = add_event(target_UID, label_UID, ...);
remove_event(target_UID, label_UID, ...);

An event is an ordered tuple of one or more UIDs. The first field in the tuple
names a move target T. The remaining fields are labels. For an MU move to generate an
event FE, the move target 7 must match the first field in E and each of the remaining fields
of £ must be a member of the moved MU’s set of label UIDs. The first field of an event
can be the special label "*’, which matches any move target.

Events are transferred to the Tarmac client either through a queue in the habitat
or through a software interrupt. In either case, an event descriptor is passed to the client.
Event descriptors contain the event_UID of the event, the virtual address of the MU in the
source and destination habitats, and the UIDs of both habitats.

Language systems can base decisions to suspend and resume processes on these
asynchronous events. The event mechanism is sufficient to support any currently popular
technique for synchronization.

For example, object-oriented systems can use events and MU motion to implement
the invocation of operations on objects. A simple system would define an operation object
type as an appropriately labeled MU. Moving an operation object O to an MU T would
denote invocation of the operation represented by O on the object represented by 7. The
state of an operation object could include information such as the type of the target object
and an operation number for that type. The language’s runtime system would define an
event (*, operation), where operation is an agreed upon label for MUs representing opera-
tions. Occurrences of this event could then trigger the local invocation of the represented
operation (plain RPC would work similarly). We have to implemented a version of the
object-oriented language Sloop [37] using this general strategy.

CHAPTER 5. SYSTEM SUPPORT _ 68

5.2.2 Tarmac Implementation

The Tarmac implementation is divided between a Tarmac server (one per host)
and a runtime library present in each habitat. The server can reside in the operating
system kernel or run as a user process. To implement virtual move and virtual copy the
server requires notification whenever a page fault occurs in a local habitat.

Habitats are generally implemented as virtual address spaces loaded by a local
mechanism. Through the runtime library, the application registers with its local Tarmac
server and can begin interacting with the global mobile memory network. For efficiency, the
runtime library handles MU allocation without contacting the Tarmac server. Each copy
of the library maintains the mapping between UIDs and virtual addresses for its habitat.
Library code can request multiple UIDs from the Tarmac server, so that it does not have
to make such a request for every MU allocated.

The Tarmac library matches incoming MUs against a set of currently active event
types. The library uses either a software interrupt or a special queue to transmit events to
processes running in the habitat.

Tarmac maintains information that allows it to recognize when multiple aligned
MUs exist in a contiguous region of memory (part or all of a physical page). When it recog-
nizes this situation, it can transfer the region directly to the destination host. Otherwise it
packs the aligned objects into a new page and sends that page. The receiving server always
tries to allocate contiguous memory for the aligned MUs.

Tarmac assumes that given a UID, a language system (or Tarmac itself) may need
to locate an MU’s host from among thousands of hosts on a network. When an MU M
moves from habitat HI to habitat H2, Tarmac holds a forwarding address for M on H1’s
host. When the system attempts to move another MU to M at its old location, the kernel
forwards the move to M’s new location, and updates the host initiating the errant move.
The details of the forwarding algorithm, such as when to update backward hosts along a
chain of forwarding addresses, are essentially identical to those of the Sloop [37] forwarding
algorithm.

5.2.3 Related Work

In this section we contrast Tarmac with other systems that support manipulation
of distributed shared state. We evaluate these other system in terms of Tarmac’s goals:
those of providing a language-system substrate for parallel distributed computation in a
variety of programming models. The limitations we point out in these systems are relative
to this goal, and are not intended as criticisms of the systems in general.

The key property of Tarmac is that it allows a memory unit to be viewed as both
1) an abstract entity that can be named, moved, copied, etc., and 2) an array of bytes that
can be directly manipulated by statements of an arbitrary programming language. Other
systems do not afford this flexibility.

Distributed Virtual Memory Distributed virtual memory provides the abstraction of
a consistent virtual address space shared by processes running on separate hosts. A protocol
similar to the cache consistency protocols used in shared-memory multiprocessors governs

CHAPTER 5. SYSTEM SUPPORT : 69

page movement and replication. Examples of systems providing distributed virtual memory
include Ivy [36].

The distributed virtual memory model has several possible drawbacks as a general
substrate. First, because the resolution of page-table mapping is that of a fixed-size page
(typically 8KB to 32KB on current machines) the granularity of state operations (movement
and replication) is fixed. For programs that put many small data items on a single page, this
granularity may be too large, causing increased contention and excessive data movement.
Second, the model’s concurrency control mechanism (single-writer, multiple-reader) dictates
the data movement policy. Clients have no direct control over data, movement, and it may be
difficult to prevent “data thrashing” (situations in which a shared data structure is moved
frequently between clients, each of which accesses it only briefly). Finally, distributed
virtual memory is not scalable. The system cannot keep track of pointers within a page to
other pages, so when a non-resident page is accessed the request must, in some cases, be
broadcast.

Shared Tuple Space Linda [22] is a system based on the abstraction of tuple space
shared among multiple concurrent processes. Its goals are similar to those of Tarmac:
to provide a multiple-language substrate for parallel computing. The Linda model has
the following limitations. First, the client has no direct control over tuple placement or
communication pattern. Each Linda kernel implementation dictates a particular policy,
determined by when and where in() and out() messages are sent. A language system
substrate should not dictate policy, since a fixed policy cannot work well for all possible
applications.

Second, the Linda model requires all shared state to be encoding into tuples. This
imposes extra work on some applications. Finally, the model does not scale well in all cases.
Linda kernels must resort in the worst case to either broadcast or centralization.

Master/Slave Systems In the master/slave model, a single master process generates
and accepts asynchronous function calls that are performed in parallel on a set of slave
processors. There is no communication between the slaves. Marionette [57] is an example
of such a system. Marionette provides shared global state that is read/write by master and
read-only to slaves. Because the master processor is a bottleneck, the master /slave model
has a limited range of values of the (grain-size, number of slaves) pair in which it performs
well.

Object-Oriented Systems Many system have used the object model for parallel dis-
tributed computation. Some of these systems, such as Matchmaker, [33] and the Apollo
Network Computing Architecture (NCA) [46], are intended as a structuring mechanism
for permanent storage and client/server interactions, They provide an interface description
language to specify both halves of what is essentially an RPC connection.

We focus our attention, therefore, on systems that support small objects, efficient
access to both local and remote objects, and object mobility. Examples include Emerald
[12], Amber [15] and Sloop [37]. These systems suffer from several drawbacks relative to
the goals of Tarmac:

CHAPTER 5. SYSTEM SUPPORT _ 70

Parallel object models have difficulty accommodating typical numerical data struc-
tures such as arrays. Is one expresses the array as a single object, than all operations on
the array must pass through a single processor, which is likely to become a bottleneck in
communication or computation. If each of the array elements is a separate object, the
latency of individual operations increases. In addition, most object-oriented systems are
coupled to a fixed type system, and usually to a single programming language.

The Tarmac location hint forwarding scheme is similar to the Hermes [56] location
independent invocation mechanism, with two important exceptions. First, the Hermes sys-
tem fits object location into an operation invocation mechanism with a fixed request /reply
protocol. This precludes higher level systems from expressing higher level requests, such as
a search for a whole group of objects or for any member from a group. Tarmac supports
such requests. For example, one can use a label_UID to specify the target of a move. The
moved MU will end up in the habitat of some object labeled with the label_UID.

Second, the Hermes system requires the program to explicitly specify, for each ob-
Ject T, all other objects to which T holds references. Hermes uses this interobject reference
information to maintain a cache of location hints at each host. The cache contains a hint for
each object for which a local object holds a reference. Hermes, however, does not make full
use of the interobject reference information. References to objects may be either UIDs or
virtual addresses. The latter occurs because objects can share an address space. However,
when an object T moves from address space A1 to address space A2, objects in A1 holding
virtual address references to 7 will have to replace these references with UIDs (the reverse
for reference holders in A2). Hermes does not do this reference patching, because its design-
ers wanted to make it a language independent facility. At the same time, it is dependent
on higher level language support in that it requires interobject reference information for its
location independent invocation mechanism.

Tarmac avoids this dichotomy by keeping a location hint with each UID. This ap-
proach makes UIDs larger and causes memory units to contain possibly redundant location
hint information. However, it releases language systems from the need to specify anything
about a memory unit’s internal structure. This makes memory unit creation more efficient,
and decouples Tarmac from the type systems of its clients. Further, using this approach
does not increase network traffic because each Tarmac server maintains a cache of hint
updates.

71

Chapter 6

Summary

In this chapter, we summarize why we believe our work will be widely applica-
ble. We then outline the main contributions of the dissertation. Finally, we discuss some
directions for future work.

6.1 Applicability

Most of the success that we were able to achieve with our four benchmark programs
hinges on a single property that those programs share: temporal work distribution locality.
For the work reported in Chapter 3 of this dissertation to be widely applicable, there will
have to be a large class of parallel applications that exhibit this locality property.

We have direct experience with about a dozen parallel applications. Some pro-
grams, especially those that use Monte-Carlo methods[60] do not exhibit this property.
However, we have observed this property in most of the applications we have examined.

Among scientific programs, there is a powerful reason to expect that parallel loops
within these programs will exhibit work distribution locality. Many scientific programs
simulate the physical world using explicit methods. Explicit methods are so called because
each relevant physical quantity is explicitly updated for every spatial grid point in the
simulated space, and for every timestep of the simulation. Updates at a particular point in
space are computed to be some function of neighboring points in space.

To retain physical stability, explicit methods can only transfer physical quantities
locally in any given timestep. For example, suppose you hold a lighted match at one end of a
metal plate. Heat radiates outward from the match, progressing a finite distance with each
simulation timestep. Now, we further suppose that, where the plate reaches a temperature
greater than some constant K, we wish to simulate the air turbulence above the plate.
A parallel program simulating this scenario will be irregular. Grid points at temperature
greater than K will require more computation than the other grid points. If the program
uses an explicit method, it must also exhibit work distribution locality, in order to remain
numerically stable. If it were possible for a large proportion of the grid points to jump from
temperatures less than K to temperatures greater than K in only one timestep, then the
program’s simulation timestep would be too large.

More concretely, consider the extreme case. In one timestep, heat can not travel

CHAPTER 6. SUMMARY _ 72

from one edge of the metal plate to the other edge, because explicit methods only consider
the interactions among neighboring points in space. The program will have to execute a
number of timesteps that is proportional to the size of the metal plate. Hence, when the
computational cost of a grid point is determined by the physical quantities it represents
there is a good chance that, as in our heat diffusion example, the work distribution of the
program will evolve slowly relative to the duration of the program.

6.2 Contributions

The most important contribution of this dissertation is its identification and ex-
ploitation of work distribution locality properties. Previous work on irregular parallel pro-
gram scheduling unearthed the following dilemma: compilers can not predict work distri-
bution accurately enough to schedule programs efficiently; however, runtime load balancing
solutions, while more accurate, incur prohibitive overhead. This dissertation shows how
to avoid this dilemma whenever irregular loops within parallel programs have work distri-
bution locality, that is, when a loop retains a similar distribution of individual iteration
execution times from one execution instance to the next. An execution instance is simply
an execution of the entire loop, possibly in parallel.

Where this common case arises, we exploit it through work distribution caching:
guessing the work distribution of a loop execution instance based on earlier measurements.
We also exploit work distribution locality through deferred load balancing: reducing com-
munication overhead and thrashing potential of load balancing algorithms by applying them
across multiple execution instances of a loop.

Chapter 3 described work distribution caching and showed that it could be ap-
plied to any dynamic scheduling method. Chapter 3 then described the dynamic scheduling
method used by our prototype scheduling system: deferred load balancing. In Chapter 4,
we described two other techniques that play important supporting roles in achieving effi-
cient execution of irregular parallel programs. First, we described probabilistic grain size
selection, a method for determining how much work each processor should perform before
synchronizing with other processors. Second, we presented techniques for orchestrating the
interactions among concurrently executing parallel loops. Finally, we outlined the Delirium
intermediate form and the Tarmac distributed shared memory toolkit, two key systems we
developed to support adaptive parallel programming.

Figures 6.1 through 6.4 summarize the performance results of this dissertation.
Each figure compares dynamic load balancing, augmented with the techniques described
in Chapter 4, with the best previously proposed scheduling method. The results demon-
strate that, for these applications, the techniques described in this dissertation achieve
near-optimal efficiency on large numbers of processors. In addition, they perform signifi-
cantly better, on these problems, than any previously proposed static or dynamic scheduling
method.

CHAPTER 6. SUMMARY , 73

Figure 6.1: Performance of Deferred Load Balancing on climate model, compared to best
previous approach.

Figure 6.2: Performance of Deferred Load Balancing on AMR, compared to best previous
approach.

CHAPTER 6. SUMMARY : 74

Figure 6.3: Performance of Deferred Load Balancing on EMU, compared to best previous
approach.

0.3 A

0.2 4

0.1 4

0.0 -

Figure 6.4: Performance of Deferred Load Balancing on Psirrfan, compared to best previous
approach.

CHAPTER 6. SUMMARY , 75

6.3 Future Directions

To expand upon this work, we are currently pursuing several avenues of research.
First, we are applying the Tarmac system to the support of object-oriented parallel lan-
guages. Second, we are investigating the phenomenon of work distribution coherence. We
are measuring several dozen parallel applications to determine how frequently successive
execution instances of parallel loops within these applications exhibit closely similar work
distributions. Finally, we are investigating how well the scheduling methods developed in
this dissertation can be applied to parallel applications that have irregular communication
patterns as well as irregular distributions of loop iteration execution times.

76

Bibliography

[1]
2]

[3]

[4]

(10]
[11]

[12]

Bryan Ackland, Steven Lucco, Tom London, and Eric DeBenedictis. “CEMU: A Parallel Circuit
Simulator,”. In Proceedings of the International Conference on Computer Design, October 1986.

Frances E. Allen, Michael Burke, Philippe Charles, Ron Cytron, and Jeanne Ferrante. “An
Overview of the PTRAN Analysis System for Multiprocessing,”. Journal of Parallel and Dis-
tributed Computing, 5(5):617-640, October 1988.

Randy Allen, Donn Baumgartner, Ken Kennedy, and Allen Porterfield. “PTOOL: A Semi-
Automatic Parallel Programming Assistant,”. In K. Hwang, S. M. Jacobs, and E. E. Swart-
zlander, editors, Proceedings of the International Conference on Parallel Processing (ICPP),
pages 164-170, St. Charles, Illinois, August 1986. IEEE Computer Society Press, Washington,
D.C.

Ann Almgren. A Fast Adaptive Vortex Method Using Local Corrections. PhD thesis, Center for
Pure and Applied Mathematics, UC/Berkeley, 1991.

Steven Anderson and Paul Hudak. “Compilation of Haskell Array Comprehensions for Scientific
Computing,”. In Proceedings of the SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), pages 137-149, White Plains, New York, June 1990. ACM Press,
New York.

Arvind and Kim P. Gostelow. “An Asynchronous Programming Language and Computing
Machine,”. Technical Report TR114a, Department of Information and Computer Science,
University of California, Irvine, December 1978.

J. Backus. “Can Programming Be Liberated From the Von Neumann Style? A Functional Style
and Its Algebra of Programs,”. Communications of the ACM, 21(8), August 1978.

Scott B. Baden. “Programming Abstractions for Dynamically Partitioning and Coordinating
Localized Scientific Calculations Running on Multiprocessors,”. SIAM Journal of Scientific and
Statistical Computing, 12(1):145-157, January 1991.

Vasanth Balasundaram. “A Mechanism for Keeping Useful Internal Information in Parallel Pro-
gramming Tools: The Data Access Descriptor,”. Journal of Parallel and Distributed Computing,
9(2):154-170, June 1990.

A. Barak and A. Shiloh. “A Distributed Load Balancing Policy for a Multicomputer,”. Software
Practice and Ezperience, page 901, September 1985.

M. J. Berger and P. Colella. “Local adaptive mesh refinement for shock hydrodynamics,”.
Journal of Computational Physics, 82(1):64-84, May 1989.

A. Black, N. Hutchinson, E. Jul, H. Levy, and L. Carter. “Distribution and Abstract Types in
Emerald,”. IEEE Transactions on Software Engineering, 13(1):65-76, January 1987.

BIBLIOGRAPHY : 77

(13]

[14]

(15]

(16]

[17]

(18]

(19]

(20]

[21]

[22]
(23]

[24]

[25]

[26]

David Callahan, Keith Cooper, Ken Kennedy, and Linda Torczon. “Interprocedural Constant
Propagation,”. In Proceedings of the SIGPLAN Symposium on Compiler Construction, pages
152-161, Palo Alto, California, June 1986. ACM Press, New York.

N. Carriero, D. Gelernter, and J. Leichter. “Distributed Data Structures in Linda,”. In Pro-
ceedings of the Thirteenth Annual ACM Symposium on Principles of Programming Languages
(POPL), St. Petersburg Beach, Florida, January 1986. ACM Press, New York.

Jeffery S. Chase, Franz G. Amador, Edward D. Lazowska, Henry M. Levy, and Richard J.
Littlefield. “The Amber System: Parallel Programming on a Network of Multiprocessors,”. In
Proceedings of the Twelfth Symposium on Operating Systems Principles (SOSP), pages 147-158,
Litchfield Park, Arizona, December 1989. ACM Press, New York.

Marina Chen. “A Parallel Language and Its Compilation to Multiprocessor Machines or VLSI,”.
In Proceedings of the Thirteenth Annual ACM Symposium on Principles of Programming Lan-
guages (POPL), pages 131-139, St. Petersburg Beach, Florida, January 1986. ACM Press, New
York.

George Cybenko. “Dynamic Load Balancing for Distributed Memory Multiprocessors,”. Journal
of Parallel and Distributed Computing, 7(2):279-301, October 1989.

Ron Cytron. “Limited Processor Scheduling of Doacross Loops,”. In Sartaj K. Sahni, editor,
Proceedings of the International Conference on Parallel Processing (ICPP), pages 226234,
University Park, Pennsylvania, August 1987. Pennsylvania State University Press.

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and Kenneth Zadeck. “An
Efficient Method of Computing Static Single Assignment Form,”. In Proceedings of the Siz-
teenth Annual ACM Symposium on Principles of Programming Languages (POPL), pages 25—
35, Austin, Texas, January 1989. ACM Press, New York.

Zhixi Fang, Pen-Chung Yew, Peiyi Tang, and Chuan-Qi Zhu. “Dynamic Processor Self-
Scheduling for General Parallel Nested Loops,”. In Sartaj K. Sahni, editor, Proceedings of the
International Conference on Parallel Processing (ICPP), pages 1-10, University Park, Penn-
sylvania, August 1987. Pennsylvania State University Press.

Geoffrey C. Fox. “Domain Decomposition in Distributed and Shared Memory Environments,”.
In E. N. Houstis, T. S. Papatheodorou, and C. D. Polychronopoulos, editors, Proceedings of
the First International Conference on Supercomputing, pages 1042-1073, Athens, Greece, June
1987. Springer Verlag, Berlin, Germany.

David Gelernter. “Parallel Programming in Linda,”. In Proceedings of the International Con-
ference on Parallel Processing, pages 255-263, August 1985.

Milind Girkar and Constantine Polychronopoulos. “Partitioning Programs for Parallel Execu-
tion,”. 1988 International Conference on Supercomputing (ICS), pages 217-229, July 1988.

Susan L. Graham, Steven Lucco, and Oliver J. Sharp. “Orchestrating Interactions Among Par-
allel Computations,”. In Proceedings of the SIGPLAN Conference on Programming Language
Design and Implementation (PLDI), pages 100-111, Albuquerque, New Mexico, June 1993.
ACM Press, New York.

O. Hanson and A. Mayer. “Heuristic Search as Evidential Reasoning,”. In Proceedings of the
Fifth Workshop on Uncertainty in AI, August 1989.

Kaarlo Heiskanen. Tomography with Limited Data in Fan Beam Geometry. PhD thesis,
UC/Berkeley, 1990.

BIBLIOGRAPHY A 78

[27]

(30]

(31]

[32]

(33]

(34]

[35]

(37]

(38]

[39]

[40]

Paul Hudak and Lauren Smith. “Para-functional Programming: A Paradigm for Program-
ming Multiprocessor Systems,”. In Proceedings of the Thirteenth Annual ACM Symposium on
Principles of Programming Languages (POPL), pages 243-254, St. Petersburg Beach, Florida,
January 1986. ACM Press, New York.

Paul Hudak and P. Wadler. “Report on the Programming Language Haskell,”. Technical Report
YALU/DCS/RR666, Computer Science Department, Yale University, November 1988.

Susan Hummel, Edith Schonberg, and Lawrence Flynn. “Factoring: A Practical and Robust
Method for Scheduling Parallel Loops,”. In Proceedings of Supercomputing ’91, pages 610-

619, Albuquerque, New Mexico, November 1991. IEEE Computer Society Press, Los Alamitos,
California.

Susan Hummel, Edith Schonberg, and Lawrence Flynn. “Factoring: A Practical and Robust
Method for Scheduling Parallel Loops,”. Communications of the ACM, 35(8):90-101, August
1992.

M. Ashraf Igbal, Joel H. Saltz, and Shahid H. Bokhari. “A Comparative Analysis of Static and
Dynamic Load Balancing Strategies,”. In K. Hwang, S. M. Jacobs, and E. E. Swartzlander,
editors, Proceedings of the International Conference on Parallel Processing (ICPP), pages 1040-
1047, St. Charles, Illinois, August 1986. IEEE Computer Society Press, Washington, D.C.

Kenneth E. Iverson. A Programming Language. John Wiley and Sons, New York, New York,
1962.

Michael B. Jones and Richard F. Rashid. “Mach and Matchmaker: Kernel and Language Sup-
port for Object-Oriented Distributed Systems,”. Technical Report CMU-CS-87-150, Carnegie-
Mellon University, September 1986.

C. Kruskal and A. Weiss. “Allocating Independent Subtasks on Parallel Processors,”. IEEE
Transactions on Software Engineering, SE-11, October 1985.

Monica S. Lam. “Software Pipelining: An Effective Scheduling Technique for VLIW Ma-
chines,”. In Proceedings of the SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 318-328, Atlanta, Georgia, June 1988. ACM Press, New York.

K. Li and P. Hudak. “Memory Coherence in Shared Virtual Memory Systems,”. In Proceedings
of the Fifth Annual ACM Symposium on Principles of Distributed Computing, pages 229-239,
1986.

Steven Lucco. “Parallel Programming in a Virtual Object Space,”. In Proceedings of the
1987 ACM Conference on Object Oriented Programming Systems, Languages, and Applications
(OOPSLA), Orlando, Florida, October 1987. ACM Press, New York.

Steven Lucco. “A Dynamic Scheduling Method for Irregular Parallel Programs,”. In Proceedings
of the SIGPLAN Conference on Programming Language Design and Implementation (PLDI),
pages 200-211, San Francisco, California, June 1992. ACM Press, New York.

Steven Lucco and David Anderson. “Tarmac: A Language System Substrate Based on Mobile
Memory,”. In Proceedings of the Tenth International Conference on Distributed Computing
Systems. IEEE Computer Society Press, Los Alamitos, California, 1990.

Steven Lucco and Kathleen Nichols. “A Performance Analysis of Two Parallel Programming
Methodologies in the Context of MOS Timing Simulation,”. In Digest of Papers: IEEE Com-
pcon, pages 205-210, 1987.

BIBLIOGRAPHY _ » 79

[41] Steven Lucco and Oliver Sharp. “Delirium: An Embedding Coordination Language,”. In
Proceedings of Supercomputing 90, pages 515-524, New York, New York, November 1990.
IEEE Computer Society Press, Los Alamitos, California.

[42] Steven Lucco and Oliver Sharp. “Parallel Programming With Coordination Structures,”. In
Proceedings of the Eighteenth Annual ACM Symposium on Principles of Programming Lan-
guages (POPL), Orlando, Florida, January 1991. ACM Press, New York.

[43] James R. McGraw. “The VAL Language: Description and Analysis,”. ACM Transactions on
Programming Languages and Systems, 4(1):44-82, January 1982.

[44] James R. McGraw. “SISAL: Streams and Iteration in a Single Assignment Language,”. Tech-
nical Report M-146, Lawrence Livermore National Laboratory, March 1985.

[45] Rishiyur S. Nikhil. “ID Reference Manual, version 88.0,”. Technical Report 284, Laboratory
for Computer Science, Massachussets Institute of Technology, 1988.

[46] M. Ferhan Pekergrin. “Parallel Computing Optimization in the Apollo Domain Network,”.
IEEE Transactions on Software Engineering, 18(4):296-303, April 1992.

[47] Constantine D. Polychronopoulos and Utpal Banerjee. “Speedup Bounds and Processor Al-
location for Parallel Programs on a Multiprocessor,”. Proceedings of the 1986 International
Conference on Parallel Processing, pages 961-968, August 1986.

[48] Constantine D. Polychronopoulos, Milind Girkar, Mohammad Reza Haghighat, Chia Ling Lee,
Bruce Leung, and Dale Schouten. “Parafrase-2: An Environment for Parallelizing, Partitioning,
Synchronizing, and Scheduling Programs on Multiprocessors,”. In Proceedings of the Interna-
tional Conference on Parallel Processing (ICPP), volume II, pages 39-48, University Park,
Pennsylvania, August 1989. Pennsylvania State University Press.

[49] Constantine D. Polychronopoulos and David J. Kuck. “Guided Self-Scheduling: A Practi-
cal Scheduling Scheme for Parallel Supercomputers,”. IEEE Transactions on Computers, C-
36(12):1425-1439, December 1987.

[50] William H. Press, Brian P. Flannery, Saul A. Teukolsky, and William T. Vetterling. Numerical
Recipes in C: The Art of Scientific Computation. Cambridge University Press, Cambridge,
England, 1988.

[51] L. Rudolph, M. Slivkin-Allalouf, and E. Upfal. “A Simple Load Balancing Scheme for Task
Allocation in Parallel Machines,”. In Proceedings of the ACM Symposium on Parallel Algorithms
and Architectures, 1991.

[62] Vivek Sarkar. “Determining Average Program Execution Times and Their Variance,”. In Pro-
ceedings of the SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 298-312, Portland, Oregon, June 1989. ACM Press, New York.

[53] Vivek Sarkar and John Hennessey. “Partitioning Parallel Programs for Macro Dataflow,”. In
Proceedings of the 1986 ACM Conference on LISP and Functional Programming, pages 202-211,
Cambridge, Massachussetts, August 1986. ACM Press, New York.

[64] Oliver Sharp. “Pythia: A Parallel Compiler for Delirium,”. Master’s thesis, Computer Science
Division, University of California, Berkeley, 1990.

[55] Jaswinder Pal Singh, C. Holt, Takashi Totsuka, Anoop Gupta, and John L. Hennessy. “Load
Balancing and Data Locality in Hierarchical N-body Methods,”. Technical Report CSL-TR-
92-505, Computer Science Department, Stanford University, January 1992.

BIBLIOGRAPHY _ 80

[56]

[57]

[58]

[59]

[60]
(61]

(62]

Robert E. Strom, David F. Bacon, Arthur Goldberg, Andy Lowry, Daniel Yellin, and
Shaula Alexander Yemini. Hermes: A Language for Distributed Computing. Series in Innovative
Technology. Prentice-Hall, Englewood Cliffs, New Jersey, 1991.

Mark Sullivan and David Anderson. “Marionette: a System for Parallel Distributed Program-
ming using a Master/Slave Model,”. In Proceedings of the Ninth International Conference on
Distributed Computing Systems. IEEE Computer Society Press, Los Alamitos, California, June
1989.

Peiyi Tang and Pen-Chung Yew. “Dynamic Processor Self-Scheduling for General Parallel
Nested Loops,”. IEEE Transactions on Computers, C-39(7):919-929, July 1990.

Peiyi Tang and Pen-Chung Yew. “Processor Self-Scheduling for Multiple Nested Parallel
Loops,”. Proceedings of the 1986 International Conference on Parallel Processing, pages 528~
535, August 1986.

S. Ulam and N. Metropolis. “The Monte Carlo Method,”. Journal of the American Statistics
Association, 44:335fF, 1949.

Richard Waters. “Appendix A: Series,”. In Guy L. Steele Jr., editor, Common LISP: The
Language, 2nd edition. Digital Press, Bedford, Massachussetts, 1990.

Michael E. Wolf and Monica S. Lam. “A Loop Transformation Theory and an Algorithm to
Maximize Parallelism,”. IEEE Transactions on Parallel and Distributed Systems, 2(4):452-471,
October 1991.

Michael J. Wolfe. “More Iteration Space Tiling,”. In Proceedings of Supercomputing '89, pages
655-664, Reno, Nevada, November 1989. ACM Press, New York.

Michael J. Wolfe. Optimizing Supercompilers for Supercomputers. Research Monographs in
Parallel and Distributed Computing. MIT Press, Cambridge, Massachussetts, October 1989.
Based on the author’s Ph.D. thesis at the University of Illinois at Urbana-Champaign, 1982.

