Interactive Object Displacement in Building Walkthrough Models

by Thurman A. Brown

Research Project

Submitted to the Department of Electrical Engineering and Computer Sciences,
University of California at Berkeley, in partial satisfaction of the requirements for

the degree of Master of Science, Plan I1.

Approval for the Report and Comprehensive Examination:
Committee:

(ot A fe/@w

Professor Carlo H. Séqu{n
Research Advisor

fececrter (8, /F92

(Date)

Ny

Pro essor Lawrence A. Rowe
Second Reader

/S Pece~ber (552

(Date)

Abstract

In the contexi of a Building Walkthrough Program, we investigate methods
for interactively placing and rearranging fumiture within the building model
while in an interactive real-time Walkthrough session. We have created a
simple 3D editor that allows the user 1o move objects, while observing some
object-dependent constraints. Different objects may have different alignment
properties. For example, desks and chairs would be given the propcny that
they will remain aligned with the floor polygons, while pictures and white
boards might be confined 1o be coplanar with the vertical walls of the building.
When objects with such alignment properties are placed or moved in the
model, the program scarches for a ncarby suitable face, and if an object comes
within a cenain distance of such a face, the object is snapped to that face.
These alignment properties can be used by our interactive editor as well as by
programs that populate the interior of a building model procedurally.

Of course, within the given alignment constraints, the user is allowed t0
rotate, scale, and duplicated objccts (operations well-known from 2D graphics
editors). A good graphical user interface with iconic handles makes such
operations casy and unambiguous in a 3D model with only the 2D mouse pad
as an input device. This editor should make it much easier for the developers
and users of a building mode! to placc fumiture and other objects into natural
positions without the nced 1o change views or 10 zoom into the space between
an object and its supporting surface. By reducing the tedium of placing
thousands of objects inside a large and complicated building model, we will
be able to populate such models to a degree that makes them look realistic and
that makes for exciting Walkthrough experiences.

Contents

1

Introduction

1.1 Problem e e

1.2 Solution e e e e

1.3 Overviewof Report« vt

User Interface

2.1 Tutorial Description from End-User’s Pointof View
2.1.1 SelectinganObject e
2.1.2 TransformationModes
2.1.3 Performing Transformations
2.14 MenuOperations oo

2.2 Discussionof ChoicesMade

22.1 A Discussionof Modalityo
2.2.2 Discussion of Object Selection

Object Selection

3.1

32

Finding the "Right" Object
3.1.1 Useof Abstraction« . . .o
3.1.2 UseofSortingo
Visual Feedback
3.2.1 Displaying the ObjectItself
3.2.2 DisplayingaHotPoint.o
3.2.3 Displaying Reference Lines

Object Properties

4.1 Two Placement Properties« . . .« . oo
42 Object GrOUPINg« o v
43 Defining Object Properties
4.4 Implementation of Propertiesl
4.4.1 Use of Property Definitions
4.42 The Object Type Table File
4.43 TheProperty TableFile
Transformations
5.1 Defining an InteractionPoint.
52 General Transformations« oo
5.3 Transformations with Specialized Handles
§31 Translation« o oo e
5§32 ROW@HONS . « o v v o oo e e e e
533 Scaling.o
5.4 Exact Transformations« o oo
5.5 ‘Transforming Multiple Objects
5.6 Constraint Based Translations

5.6.1 Handling the "ON_HORIZONTAL" constraint
5.6.2 Handling the "ON_VERTICAL" constraint

ii

W N

Qoo ~IT Wb b h

§63 BothConstraints v o v v v v
5.6.4 Additional Constraintso

6 Copyand Undo

6.1 TheCopyFunction.
62 TheUndoFunction« it i i v it oo o

7 Handling Constraints in Batch Mode

7.1 Implementationof BatchMode

8 Updating the Permanent Records
8.1 Updating the Walkthrough Database

8.2 Updating the UNIGRAFIX Master File

9 Conclusion

A APPENDIX: Runing the Program

Al Initial Files.
A.2 Running the Interactive Editoro
A3 RunninginBatchModeo

B APPENDIX: References

il

33
33
34

35
35

37
37
37

39

40
40
40
41

42

-

1 Introduction

The goal of this project is 10 credte an environment in which a user can easily
populate a large building with objects in a variety of complicated arrangements.
Reducing the tedium of this task will allow the user to create a more realistic
Walkthrough environment.

Before creating this tool, the process of placing furniture in building models
was very time consuming. The user was required to do all of the positioning of
objects in either an AutoCAD or UNIGRAFIX file. Verification of object position
was done in the Walkthrough phase, but any required positioning changes had to be
done in the original AutoCAD or UNIGRAFIX file.

Our editor program allows the user to perform all object positioning and
verification within the Walkthrough phase. The user is not required to use AutoCAD
or UNIGRAFIX, other than to initially define the objects and position them in
the scene. The user can do the final placement of the objects in the database
environment, while interactively verifying their positioning. The user is given
additional positioning help by placing constraints on objects. With the earlier
system, the user had the problem of aligning furniture exactly on the floor or of
placing white boards exactly on the walls. Needless to say, we ended up with many
floating white boards and desks sunken into the floor. These problems are removed
with the use of the editor. The user can simply walk around in the building, moving
some objects and turning others, without worrying about leaving objects floating,
thus creating a more natural looking object population within the building.

Another useful application of the editor is as a verification program. With
the use of object properties, we have created a verification program that we can run
on our building models. The program checks every object in the database. If the
program finds an object that does not conform to one of its property constraints, the
object is translated to its correct position. Thus, we can run this program on our
building model, and it will correct many of the modeling problems such as floating
picture boards and sunken chairs.

1.1 Problem

In the 3D world, most of the existing editors seem to fall into one of two realms.
In one realm are the 3D editors or CAD tools, such as AutoCAD. CAD tools are
designed 1o help the user in creating a particular type of object. For instance,
AutoCAD is designed to help the user model buildings or other objects with mostly
axial faces. Itis not a general modeler, so it would be difficult to model objects such
as plants or animals. Other CAD devices are designed to model electronic circuits.
It is impossible to model a building using a circuit design CAD tool. In the other
realm of the 3D world, there are editors and tools that focus on manipulating or
altering a particular object. There has been work at Brown University to implement
3D widgets [4). The 3D widgets they created, give the user easy access 10 2 set

1

of transformation operations that are used to manipulate individual objects. Other
environments help the user 1o create interesting 3D objects procedurally. At UC
Berkeley many tools have been created to generate or modify objects described in
the UNIGRAFIX language [3], for example, animator allows the user to display
UNIGRAFIX objects and manipulate the vertices, edges, and faces of that object,
or UGtess allows the user to tessellate an object in a variety of ways. However, no
tools exist that work on scene descriptions with large groups of diverse objects.

For the Building Walkthrough Project, we need a 3D editor that is designed
to help the user with the placement of objects within a scene and to specify how these
objects interact with each other. We need an easy way 10 COMpOse interesting and
realistic scenes. At present, the process of placing objects in the database consists
of a combination of UNIGRAFIX, CAD, and database operations. Desks, tables,
chairs, and other objects are modeled in UNIGRAFIX or by other editing sources.
Then a CAD too! is used to populate one of the offices in the building by adding
various objects. The resulting CAD file is then converted into UNIGRAFIX with
help of an AutoCAD-10-UNIGRAFIX converter [7]. The database file is created by
running various database routines on the UNIGRAFIX file. The database routine,
wkadd, creates the necessary data structures to represent the walls and other objects
in the scene [1]. By a semi-batch process of applying transformations and rotations to
an entire UNIGRAFIX office description, the remaining offices are populated. Each
office is then inspected by running the Walkthrough program and visually verifying
the position of each object in the building. When positioning problems arise, due to
irregularities in the building, such as support beams in some of the corners, individual
office files must be corrected either by changing the UNIGRAFIX text file or by
altering the CAD descriptions of the office and re-applying the CONversion process.
Then a new database file must be created and the building must be re-inspected.

This batch method of populating the building results in many objects being
positioned incorrectly and too much regularity in the building. Most of the offices in
the building have the same amount of furniture, all placed in the same manner. This
regularity diminishes the realism of our models, because, typically, no two people
organize things in the same way. Under the existing system, the only way to solve
this regularity problem is to convert each office description to its UNIGRAFIX or
CAD representation and separately edit each office file. What we need is an easier
way to populate the building, and once the building is populated, we need to be able
to reorganize the objects in any office without leaving the database representation
of that office. With this we will better be able to represent the "natural looking”
disorder of everyday life.

1.2 Solution

To solve this problem, we have created an interactive 3D object displacement
program. The goal of the program is to allow a user t0 manipulate any objects
encountered in the Walkthrough and to have the changes updated into the database
in real time. The user can define alignment constraints on types of objects in the

database. Then these constraints can be used to help with the placement of the
objects. For example, a desk ora chair could be constrained to be aligned with a
floor polygon. When moving an object with such a constraint, the user does not
have to worry about accidently leaving a desk floating in mid air. White boards
and pictures can be constrained to remain coplanar with wall polygons, preventing
them from floating away from a wall. Objects with constraints snap to other suitable
objects when they are within a certain distance of that object, similar to Eric Bier’s
Snap-dragging paradigm [5]. The user is also allowed, within the given alignment
constraints, to rotate, scale, or duplicated objects, operations well-known from 2D
graphics editors.

It would be nice if the user had the power to manipulate the walls and floors
of the building as well. For instance, the user might want to see what a larger
or smaller room might look like or what would happen is he/she removed one of
the walls in an office. But to remove walls and floors in the Walkthrough model
requires many calculations. Visibility and subdivision precomputations have to be
re-calculated. These calculations are done in batch mode, before the creation of the
database, to allow us to display the Walkthrough model in real time [2]. For large
building models, these pre-calculations take many hours. We would thus need to
find a way to perform these pre-calculations incrementally. This problem is beyond
the scope of this work. Thus, currently the editor does not allow the user to perform
transformations on the wall and floor polygons of the model. (see Transformations
section for details on constraints).

With our editor, the user can easily place and add objects in a scene. Each
user can arrange the objects in i way that feels comfortable to him/her. Once many
users are allowed to modify different rooms to their preference, the building model
will be a step closer to reaching the desired realism.

1.3 Overview of Report

The remainder of the report discusses various features of the editor and their imple-
mentation. The following section is a tutorial on how to use the editor. It explains
the editor both from the user’s and from the system operator’s point of view. Then
there is a discussion on the integration of the editor’s user interface with the rest of
the Walkthrough program. Next, the paper goes on 10 discuss the issues involved
with selecting objects in the Walkthrough environment and displaying them while
they are being manipulated interactively. Section 4 explains object properties. It
begins by discussing the properties that are available in the current version and
discusses the effects that these properties have on the placement of objects. It de-
tails what is required to define these properties both from the user’s and from the
system operator’s perspective. Section 8 discusses how the editor handles object
transformations and constraints in the interactive mode and in the batch mode. The
final two sections discuss some suggested extensions 10 the editor system and the
conclusions reached from this project.

2 User Interface

This section gives a description of how to use the editor and what options are
available to the user. The first sub-section is designed for the novice user. Itis a
tutorial on how to access the features of the editor and some examples of how to use
the editor. The second sub-section is a discussion of the decisions made in creating
the user interface for the editor.

2.1 Tutorial Description from End-User’s Point of View

For this section, it is assumed that the user is running the Walkthrough program with
the editor operations properly installed. It is also assumed that the current database
mode] contains at least one object instance of any type of object that might be placed
by the user.

2.1.1 Selecting an Object

Holding down the shift key puts the system into editing mode and activates dynamic
highlighting. With the shift key pressed, the object thatis currently under the cursor
position is highlighted by displaying its bounding box in white. Pressing the left
mouse button while holding down the shift key will perform static selection. The
object that is currently highlighted by dynamic selection (a white bounding box)
will now be highlighted by a black bounding box. If the user releases the mouse
button, while continuing to press the shift key, then the white bounding box will
continue to dynamically highlight the object under the current cursor position while
the black bounding box will remain with the statically selected object. (NOTE: For
the remainder of this section when I refer 10 pressing one of the mouse buttons I am
implying that the shift key should also be pressed, unless otherwise stated.) To
statically select a different object, the cursor is moved over the new object, using
dynamic highlighting if desired, and the left mouse button is pressed. This will
unselect the first object and select the new object, represented by moving the black
bounding box from the previously selected object and to the newly selected object.

To select multiple objects, the ALT key is pressed during the selection. If
no objects are currently selected, the multiple select has the same effect as the
normal select. It will select the object that is currently being dynamically selected.
If other objects were previously selected, a new object can be selected without
unselecting these objects by using the ALT key. This is represented by displaying
a black bounding box around each of the selected objects. (Note: Transformations
done with multiple selection are done with respect 1o the last object selected (see
Transformation section for more details). A previously selected object is unselected
by re-selecting the object with the multiple select function. The static select function
(without the ALT key) overrides multiple selection. If the user has multiple objects
selected, but wants to select only the new object, the new object is selected with

static selection. This results in the new object being selected and all other objects
being unselected.

2.1.2 Transformation Modes

In the editor, there is a general transformations mode as well as three constrained
transformation modes. In the general mode, the user can easily translate or rotate
an object. In the constrained modes, the user is given interaction handles that allow
him/her to perform more specialized transformations (including scaling). The
editor starts in the general transformation mode. In this mode, the user can use the
left mouse 1o translate an object, and the middle mouse to rotate the object. The
right mouse button is used to change transformation modes. When the user presses
the right mouse button for the first time, the program changes into the constrained
translation mode. In this mode, a triad of translation handles (see transformation
section) are displayed with the selected object. Pressing the right button again,
changes the program into the constrained rotation mode. In this mode, the great
circles and handles for rotation are displayed with the object. Pressing the right
mouse button a third time changes the program into the constrained scaling mode,
provided that scaling has been enabled in the dialog window. In this mode, the
eight scaling handles are displayed along with the object. Each mode displays the
bounding box in a different color to help the user distinguish the modes. Pressing
the button a fourth time restores the program to the default transformation mode.

2.1.3 Performing Transformations

Once an object is selected, the left and middle mouse buttons are used to interact
with the object. When the user selects an object with the left mouse button, it is
highlighted by a black bounding box. By selecting the object again with the left
mouse button, the user grabs the object for a translation within its defined constraints.
By grabbing the object with the middle mouse the user can rotate the object, within
any object placement constraints, based on the crystal ball paradigm used in many
interactive viewers.

If the user desires to use one of the more specialized ransformations, he/she
presses the right mouse button to enter the desired mode. In the translation mode,
the object is displayed with the triad of handles used for translation. To move the
object in the XY-plane, the user positions the cursor over the handle that represents
movement in the XY-plane. He/she then presses and holds the left mouse button to
select this handle. As long as the user holds down the left button the object will be
dragged around in the XY-plane. When the user releases the left button, the object
will be dropped in its new position. Similar actions are required to interact with the
scaling or rotation handles.

2.1.4 Menu Operations

The user is given additional editing options in a dialog menu. The dialog menu
consist of a number of option windows and buttons that give the user some control
over the currently allowable options and the current mode of the editor. The
following parameters can be specified (Figure 1 and 2):

e Current Viewing mode. This option allows the user to toggle in and out
of birds-eye-view. The birds-eye-view transformation is controlled by a
combination of the control key and the mouse buttons. Control key and left
button are used to scale, control key and middle button are used to rotate,
and control key and right button are used to translate. For the birds-eye-view
operations, the shift key must be released.

e Object selection mode. This allows the user to switch between performing
object selection by searching for face intersections with the ray created from
the cursor position and performing object selection by searching just for
bounding box intersections. The later mode is advised only when speed of
the face intersection mode becomes intolerable slow.

o How to display the selected object (or objects) during interactive manipula-
tion. The choices are: "transparent”, "wire frame", "normal”, or "bounding
box only". Simply selecting the desired option, propagates the changes to the

display.

¢ How to handle object property constraints. The user has the choice of: "No
constraints”, in which the constraints have no effect on the motion of the
object; "Near Constraints”, in which an object only snaps t0 a suitable face if
it is within a certain distance of that face, i.e. half the distance of a bounding
box dimension; and "ALL Constraint”, in which an object can snap to any
face in the same room, regardless of its distance from that face.

e How to draw hint lines. These are the axial lines drawn from the interaction
point 1o make positioning in 3D easier. Hint lines are only used in the
translation mode. The user has the option to not draw the lines at all, to draw
the lines to the extent of the object’s bounding box, or to draw the lines to the
extent of the database.

e Enable Scaling. This options enables or disables scaling to protect the user
from unintentionally doing hard-to-correct damage to the database. When
scaling is enabled, the scaling mode will appear as one of the transformation
modes accessed by using the right mouse button.

e The Transformation button. Pressing this button pops up a dialog menu that
is used to perform exact ransformation of objects. There are three buttons:
a translations button, 4 rotation button, and a scaling button. Under each
button there are three input fields that allow the user 1o enter the desired X, Y,
and Z values for the respective transformations. In order to perform an exact

6

transformation, the user selects the desired object or objects, enters the X, Y
and Z values for the corresponding transformation, and then presses the button.
For example, if the user wants to move a picture exactly 5 inches up, he/she
would first select the picture. Then he/she would press the transformation
button in the main dialog menu. Next the user would enter 5 in the Z field
above the translation button, making sure the the X and Y values are set to
0. Then the user presses the translation button and the picture is moved up 5
inches in the Z direction.

e The UNDO button. The UNDO button allows the user to UNDO the last
transformation.

o The COPY button. The COPY button produces a duplicate of all objects
that are currently selected. (Note: The duplicated object is not added to the
database until the original object is moved. This prevenis the introduction of
multiple objects in the exact same position.)

Figure 1: Top half of main dialog menu and exact transformation menu.

2.2 Discussion of Choices Made

When designing the editor for the Walkthrough, our goal was to create a simple yet
powerful user interface to casually arrange the objects within the building without
creating lots of physically non-sensible situations such as objects floating in mid
air. The two main concerns of the interface were to make a few operations very
simple and to intergrate all commands harmoniously into the large Walkthrough

9

{ewing Mode.

[Doirors e viee

. sﬁé;iéf}”-?éai' :

Figure 2: Bottom half of main dialog menu and exact transformation menu.

system. The following sections describes some of the decisions made about the user
interface.

2.2.1 A Discussion of Modality

The two extremes of a modal user interface are a "completely modal” interface and
a "non-modal” interface. In a completely modal interface, the user only has access
to the operations related to the current mode. This type of interface is usually the
simplest to use but limits the power of the system. In a non-modal interface, the
user has access to all operations of the system at all times. This type of interface is
generally more powerful, i.e., it takes fewer key strokes to achieve a desired effect,
but it is also more complicated to use. For our editor, we decided to implement a
semni-modal interface to get the best of both extremes.

The main reason for not implementing a completely modal interface is its
limited power. If the interface for our editor were completely modal, the user would
not have access to the Walkthrough and birds-eye-view operations while in the editor
mode. The user would have to toggle between the editor and Walkthrough modes to
perform many common sequences of operations. For example, if the user wanted to
select an object, change his/her position, and then move the object, he/she would be
required to switch in and out of editor mode at least twice. When performing multiple

editing operations, this switching of modes becomes very tedious and reduces user
productivity. With a semi-modal interface, this switching is not required. While in
the editor mode, the user still has access to all of the moving operations, so he/she
does not loose much of the power associated with a non-modal interface. Some
power is lost since the user cannot access the operations of the other modes while
editing, but it is not clear why the user, for example, would want to edit the scene
and view the cell subdivision at the same time. '

To implement the semi-modal interface, we developed a core set of oper-
ations that remain consistent throughout all Walkthrough modes. The non-modal
core operations, which are always available to the user of the system, consist of the
operations that the user performs on a regular bases: the standard walking, turning,
and birds-eye-view operations of the existing Walkthrough system [1]. All opera-
tions not included in the core operations are mode dependent. When the user enters
a mode, for example editor mode, he/she will have access to the core operations
plus the operations associated with that mode. When the user enters another mode,
visibility mode for example, the user will have access 1o the core operations and to
the visibility operations, but not to the editing operations.

A problem with a non-modal interface approach is that the complexity of key
combinations needed to access the operations of the system grows rapidly. Since
the user can access any operation at any time, all key combinations used to access
operations must be unique. With a modal interface, only the key combinations
for operations in a particular mode need to be unique, so they do not become as
complex. With our semi-modal interface, the key combinations used in a particular
mode must be unique from each other and from the key combinations used for the
core operations. Thus the key combinations needed for the semi-modal interface
are more complex than those needed in a completely modal approach, but simplier
than those needed in a non-modal interface.

Another issue concerning the choice of key combinations, is maintaining
consistency of operations associated with them throughout different modes. It is
confusing 10 the user to have a key combination perform one operation in one mode
and perform a completely unrelated operation in another mode. With our interface,
the operations associated with the key combinations used for the core operations are
inherently "consistent” across the different modes. These are the most important
operations, since they are the most often used. The key combinations used for the
modal operations have been careful designed so that the operations associated with
them are as consistent as possible in each mode.

The semi-modal approach to the user interface will also make it easy in the
future to develop an on-line help system. The Walkthrough program will always
know the present mode of the user. This information can be used to display context
sensitive help files discussing the operations and key combination available in the
current mode.

2.2.2 Discussion of Object Selection

In implementing our user interface, we have decided to follow the culture exempli-
fied by programs such as MacDraw whenever possible. Performing object selection
with the left mouse button and performing multiple selection with the addition of
a modifier key are examples of this culture. The dynamic highlighting operation
was added to give the user the necessary interactive feedback during the sclection
process in a cluttered 3D scene. Without dynamic highlighting, it is difficult for the
user to select small objects or 1o select an object from a group of many objects. It
is a process of trial and error to position the cursor correctly in order to select the
desired object. With dynamic highlighting, the user simple moves the cursor around
until the bounding box of the desired object is displayed, then presses the select
button. This interface is more user friendly, since the user knows before he/she
presses the select button which object is going to be selected. One possible problem
with dynamic highlighting is that situations could occur in which this feedback
would be intolerably slow. Such a situation arises if there exists a large number of
very complex objects with intersecting bounding boxes. For such a case, the user is
given the option 1o perform the selection process by bounding box intersection test
instead of face intersection test.

10

3 Object Selection

To perform object selection we need to: find the "right” object quickly, give the
user some visual feedback, and give some assistance in making the new placement
easier.

3.1 Finding the "Right" Object

The process of object selection requires mapping the cursor position to a 3D line in
the scene and finding the intersection of this "pointing" line with the object closest
to the user.

The cursor position is mapped to a 3D line with the help of the function
map2d which was created at Silicon Graphics. This function uses the cursor’s
current x and y position and the current system viewing matrix to create a line, which
originates at the observers eye position and projects through the cursor position into
the scene. The "right” object is found by processing the objects in the building model
1o find the one closest to the observer and intersected by this line. With thousands
of objects in our database, it is not feasible to simple intersect every face of every
object with the "pointing” line to find the "right"” object. To implement this selection
in real time, we take advantage of visibility and subdivision precomputations that
have been calculated for the building [2). The visibility precomputations allow
the Walkthrough program to know which objects are visible to the observer, from
his/her current position in the building. The Walkthrough maintains a list of these
objects. We can restrict the selection test to this small subset of all objects and
greatly increase the speed of our selection.

3.1.1 Use of Abstraction

Additional speedup in the selection process can be achieved by using various types
of object abstractions to speed up the intersection test. Object bounding boxes are
used to trivially reject some of the objects without performing any face intersection
test. When face intersection tests are required, they can be done with objects
represented at lower "levels of detail”. "Levels of detail” is an object abstraction
maintained by the database, which contains muluple descriptions of objects each
with decreasing amounts of detail. These descriptions are created by removing
some vertices and faces from the original object description. Object at lower "levels
of detail” have fewer faces and may be slightly smaller than the original object.
Performing the selection process by intersecting the "pointing" line with the faces
of objects at a lower "level of detail” increases the speed of the process since it
requires fewer intersection test. But, when using lower "levels of detail”, there is
a slight possibility of missing objects during the selection, because of the smaller
size of the object’s description. Thus when doing face intersection, it is possible
that an object, which could have been selected based on its full description, will not

11

get selected. But since the selection is dynamic this situation is easily corrected by
a slight movement of the mouse.

3.1.2 Use of Sorting

Sorting plays an important role in computer graphics. We investigated whether
an appropriate use of sorting can speed up the determinations of the "right” object
along the "pointing” line. Afier rejecting some of the objects based on bounding
box test, face intersections must be performed on the remaining objects in order to
determine the "right” object. If the remaining objects are not sorted, the only way
to determine the "right" object is to intersect the "pointing” line with every face
of every object and select the object with the closest face intersection point. With
sorting, the "right" object can be determine by starting the face intersection test on
the closest object, then testing each object until a face intersection is found that is
closer to the user than the closest face of the next object. The object with this face
intersection then becomes the selected object.

Sorting with Every New Mouse Position

It was determined to be most efficient to sort the objects remaining after
the bounding box test every time a new static or dynamic selection occurs. Thus
every time the dynamic or static selection routine is called, the bounding box test
is performed and the remaining objects are sorted based on their distance from
the observer’s eye. Next, the face intersection test is performed on each object
in this list, starting with the object closest to the user. When a face intersection
point is found, it is checked against the bounding box of the next object in the
list. If the intersection point is closer to the user than that bounding box, the test is
complete. We can be sure that no other objects have face intersection points closer
than the present one. With this algorithm, there is a small overhead cost to sort
the list of objects with bounding boxes intersected by the "position” line every time
the position line is moved. But this overhead time is smaller than the overhead
encountered in other approaches considered and briefly discussed below. In those
approaches, the sorting algorithm has to be performed on all visible objects, before
the bounding box test, and in some cases, it has to be performed more than once for
a selection.

Sorting by Observer’s Viewing Direction

In order to take advantage of the locality of the user, we considered an ap-
proach to sort the objects based on the users current position. In many situations,
the user will remain in one position while performing a sequence of editing oper-
ations. The program can sort the objects based on the users current position and
major viewing direction. So, when the user initiates an editing operations, the list
of visible objects is sorted by the distance of each object from the user’s eye in
the major viewing direction. Then all selections performed from the users current
position and viewing direction are performed on this sorted list. If the user moves,
the list is recalculated for the next selection. This approach would pay off if many

12

selections are performed for the current position.

The problem with this approach is that it does not guarantee 10 the correct
result. It is possible for the user’s viewing frustum, the angle between the maximum
direction that the user can see to his/her right and the maximum direction the user
can see to his/her left, to be as large as 180 degrees. In such cases, the users major
viewing direction could be along the x-axis while the direction in which he/she is
selecting an object could be along the y-axis. One could imagine a situation where
the users is looking straight ahead, at something on the wall, but wants to select the
chair that is to his/her right. Because of the user’s viewing direction, the objects are
sorted along the x-axis, but the user’s selection is occurring along the y-axis. The
object closest to the user along the x-axis is not necessarily the object that is closest
to the user along the y-axis.

Presorting in X, Y, and Z directions

It is clear that sorting the objects based on the observer’s viewing direction
is not adequate for selection, since the "pointing" line is based on the cursor position
as well as the user’s position. In a further attempt to take advantage of the user’s
locality, we considered an algorithm to presort all visible objects along each of the
major axes. Thus, when the user initiates a selection operation, the program sorts
the visible objects for the six directions: one each for the positive and negative
directions of each major axis. (NOTE: The sorted lists could be created in a
preprocessing phase and stored with each cell description.) The program must
maintain separate list for the positive and negative directions since the list for the
positive direction is not always the inverse of the list for the negative direction due
to the different sizes of the bounding boxes. Next, the selection routine determines
the major direction of the "pointing” line and performs the selection algorithm with
the sorted list corresponding most closely to that direction. The same sorted list is
used for all selections in a particular direction within a cell.

The problem with this algorithm is that it requires a lot of overhead every
time the user moves into a different cell, which happens quite often in a building
model, or it requires a lot a space to store six sorted list for each cell, if preprocessing
is used. Furthermore, since a sorted list contains all objects visible from a cell, even
the ones behind the observer, after any movement within a cell, the user’s position
relative 1o the objects in the list must be calculated. This is required so that only the
objects which are in front of the user will be used in the intersection test.

3.2 Visual Feedback

Once an object is selected, it must be displayed in a way that allows the user to
easily interact with it and to move it around quickly. The bounding box of the object
will always be displayed as a first level of highlighting. Displaying the bounding
box is an inexpensive operation that effectively highlights an object. It also gives
the user information about the positioning of the object relative to other objects and
about the overall size of the object. We have had much debate about what other

13

information should be displayed along with the object. Our goal was to display
enough information to enhance the users interaction with the object but not so much
information that the users view of the object will be obscured (Figure 3).

3.2.1 Displaying the Object Itself

An object can be displayed on the screen in many different ways. Some ways better
highlight the object and other ways allow for better manipulation of the object.
An object can be displayed as it normally appears in the Walkthrough, usually as
a shaded solid object. This allows for easy manipulation of the object. The user
knows exactly how the object looks in its new position. Also, displaying the object
in this manner better emphasizes depth cues, created by the change in the object’s
color due to the lighting model, than other drawing options, for example wire frame.
The disadvantages of displaying the shaded object is that the object can hide other
objects or reference lines that the user might want to use 10 perform a precise
transformation. For example, if the user is trying to place a trash can flush against
the leg of a desk, displaying the trash can in its normal form may hide the desk leg
from the user. The user may then have difficulties performing this operation without
selecting a new viewing direction.

An object can be displayed semi-transparently. The advantage of trans-
parency is that the object does not hide any information that is behind or under it.
In the situation discussed above, the user will be able t0 see when the trash can is
being pushed into the desk leg by observing the disappearance of some portions of
the semi-transparent back surface of the can. The user still has a good idea of how
the object looks in relation to other objects in the scene. Furthermore, the user can
still see some of the depth cues from shadding of the object when it is displayed
transparently. Unfortunately, not all workstations have hardware support for trans-
parency and software implementation of transparency is too slow for interactive
manipulation.

Displaying an object as a wire frame has the advantage that it does not hide
any information below or behind the object. The user has to use some imagination
to see exactly what the object looks like, but with most objects this is not very
difficult. Wire frame has the problem that the depth perception of the viewer could
be distorted if the object is composed of a few large faces. Also, the depth and
positioning cues generated by a lighting model for a wire frame object are not as
helpful as those generated from shading an object in normal or even transparent
mode. The advantage of a wire frame display is that it is easy to implement and can
be manipulated quickly on almost all machines.

For very complex objects, such as a tree with thousands of leaves, the user
may not want to display the whole object. Interactivity and speed may be more
important than accuracy of placement. Bounding box mode allows the user to
manipulate the tree based solely on its bounding box. In the Walkthrough world,
many objects have a topology that is mainly rectangular, resulting in bounding boxes

14

that give a reasonable representation of the object. Not displaying the object at all
obviously does not hide any information, but the user has to use a lot of imagination
to visualize the object in its new position. In general it is difficult for the user
to interact with only the bounding box of an object. However, ofter some initial
placement, the user can quickly de-select the object and see it fully rendered in its
new position. One or two more selections and position adjustments will typically
lead 1o the desired placement.

In the editor the user is given the option to display the object in any of the
ways discussed above, since in different situations different options will be most
appropriate. The defaultis to display the object transparently. Upon implementation
and inspection, we have determined that transparency gives the user the most
information. If the machine does not support transparency, then the program will
change the default setting to wire frame display.

3.2.2 Displaying a Hot Point

Besides displaying the object, the program can display additional information to
assist the user in manipulating the object. We decided to add the idea of a hot point.
This is a highlighted interaction point on the selected object where the "pointing”
line first intersects the object. Displaying a hot point gives the user extra feedback
of what has been selected.

The debate about where exactly this point should be displayed originally
concentrated on three options. The first option considered was to place the hot point
at the intersection of the "pointing" line with either the floor or the wall polygon
that the object is placed on. The advantages of placing the hot point in this location
is that it can give the user feedback about the intended placement of the object. For
example, when moving an object aligned on a floor polygon, displaying this hot
point gives information of the objects location relative to other object on the floor.
A problem is encountered if the object is being displayed normally (see above): the
hot point will typically be obscured by the object, and is then of no use to the user.
Furthermore, if the selection line is close to horizontal, then the intersection of the
"pointing" line and the floor polygon may be far away from the object that is being
manipulated. Worse, if the "pointing” line has an upward slope the intersection
point will lie behind the sight of the user and will not be visible. Since situations
like these occur fairly often in our Walkthrough, this type of hot point did not seem
suitable for our program.

The second option is to display the hot point at the intersection of the
"pointing" line and the first intersection of the bounding box of the object (front or
back face). This position has the advantage that it is easy to calculate and will never
be behind the observers position. The disadvantage of displaying the hot point at
this location is that it will not always be intuitive to the user how this point relates
1o the object. Some object have a very large bounding box in relationship to the
actual size of the object. Selecting such an object could resultin a hot point that is

15

far away from the actual surface of the object. It will appear to the user that the hot
point is just floating somewhere in space, making the relationship between the hot
point and the object unclear.

For our Walkthrough program, we decided that the best place to display
the hot point is on the face of the selected object. We place the hot point at the
intersection of the "pointing” line and the face of the object that was used to select
the object. This point has already been calculated during the selection routine. The
advantage of this approach is that the hot point will always be located on the surface
of the object and will always be visible. Itis the actual point that was used to select
the object, so the user’s attention is already focused on this position. The hot point
is drawn as an octahedron, thus part of it may be drawn inside of the object giving
additional hints about the contour of the object.

Implementation and experimentation with all three approaches proved that
the face intersection point was the most consistent and intuitive location to place the
hot point. Thus, by default, the hot point will be displayed at the face intersection
point, but if the user selects the option to perform object selection by bounding
boxes, then the hot point will be displayed at the bounding box intersection point
and not at the face intersection point.

3.2.3 Displaving Reference Lines

The editor gives the user the option to display refence lines to provide additional
information about how the object is related to the things around it. Reference lines
are axial lines originating at the hot point and extending out some distance. The
reference lines can give the user information about the size of the object, its distance
relative to other objects, or its distance from the nearby floors and walls of the
building. We have given the user three options of how 10 display these lines, in
an attempt to find a simple configuration that gives the user the most information.
The user has the option of not displaying the reference lines at all, of displaying
the reference lines from the hot point 10 the extent of the object’s bounding box, or
of displaying the reference lines from the hot point through the entire database. In
each case, these lines exist as real 3D lines appropriately obscured by other objects.

The option of not displaying the reference lines at all, is useful when the user
is manipulating small objects. Sometimes it is more important not to obstruct the
user’s view than it is 1o give the user additional information. The option of drawing
the reference lines only to the extent of the object’s bounding box is useful when
the user is trying to place an object so that it abuts or sits on another object. For
example, if the user was trying 1o position a desk in the corner of a room, he/she
would manipulate the desk so that the end points of the reference lines are flush with
the walls of the corner. Octahedrons are drawn at the ends of the reference lines to
give the user an indication when they are touching another object. If a reference
line is not touching a wall, then the desk is too far away, and if a reference line goes
through a wall, then the desk is 100 close. The options of displaying the reference

16

lines to the extent of the database are helpful when the user is doing some type
of global positioning. They allow the user to register an object with other objects
which might even be in other rooms. Also, these extended lines help to find an
object that might have snapped out of sight.

Before making the final decision on reference lines, we considered other
options for drawing the reference lines. For example, we considered drawing axial
lines from the hot point to the point where the line intersects the objects bounding
box and then drawing additional perpendicular lines from these new intersection
points to the points of intersection between the line and the nearest wall or floor
polygon. The reference lines can also be draw axial from the hot point to the
point where the line intersects another object, but this is functionally equivalent to
drawing the lines through the entire database. We decided that the three choices
given to the user, discussed above, are an adequate subset of the many possible
reference lines that could be drawn. By switching between the three modes, the
user can obtain most of the desired effects that might be obtained from the other
approaches considered.

Figure 3: Selected object displayed with highlighting information.

17

LS

4 Object Properties

Object properties are a way for the user to specify placement constraints for some
objects in his/her model. For example, desks can be given the property that they
must stand on the floor. It would be strange to walk into an office and sec a desk
floating a few inches above the ground. The property definitions simplify the user’s
interaction with the editor. If an object has the property that it is suppose to be on
the floor, then the program can place the object on the floor and the user does not
have to worry about getting the object at exactly the correct height, which is not a
wrivial task. Also when translating the object, the editor knows that the object only
needs 1o be moved in the XY-plane, thus the editor can implement translation of
that object in a 2D space rather than a 3D space. If the object did not have such a
property, the editor would have to find 2 way to allow the user to move the object
anywhere in a 3D space with a 2D pointing device.

Placement properties also form the basis for grouping of objects. This is
useful if the user wants to move an object such as a desk with many other objects on
top of it. Ideally the user only has to select and move the desk and all of the objects
on the desk will move as well.

Property definitions could be used to define many other object character-
istics, and future editors may well incorporate many of these new properties (see
Conclusion section). The following sub-sections discuss: the available prototype
object properties, how a user defines object properties, and what is required by the
system operator to implement new properties.

4.1 Two Placement Properties

For our prototype editor we have implemented two properties, "ON -HORIZONTAL"
and "ON_VERTICAL". Giving an object the "ON_HORIZONTAL" property, tells
the editor that the object should rest on a floor or another horizontal surface. Forex-
ample, if the user places a desk into the model, which has the "ON_HORIZONTAL"
property and is positioned within a reasonable distance of a horizontal floor polygon,
the desk will snap to the correct position on the floor. The editor then constrains
object’s with this property, which have been successfully bound to a suitable surface,
to move only in the XY-plane as long as it remains above that surface.

An object’s constraint can be interactively changed while in the editor,
to allow arbitrary movement and positioning. While moving an object with
the "ON_HORIZONTAL" property in the scene, the editor will snap the object
to the closest suitable surface below the object’s current position. (Note: the
"ON_HORIZONTAL" property is currently the default object property used by the
editor for all objects that do not have another positioning constraint specified.)

Giving an object the "ON_VERTICAL" property, tells the editor that the
object should rest on a wall or another vertical surface. This property is useful for

18

objects such as pictures and white boards. With this property, object movement is
constrained 1o a plane parallel to the Z-axis. To determine which plane the object is
to be moved in, the editor chooses the surface that the object is currently snapped
to, or, if the object is still unattached, looks for a suitable surface nearest to the
object. This movement plane will change as the object is moved from one wall to
the next. Again, the user can interactively override an object’s constraints to allow
movement and positioning in a horizontal plane. For a discussion on how the editor
constrains the user’s transformations of object that have the "ON._HORIZONTAL"
or the "ON_VERTICAL" property, see the section on Transformations.

4.2 Object Grouping

Grouping of objects is useful when the user wants 10 move an object and all objects
that are related to that object. For example if the user wants to move a desk, then
the objects on the desk are the related objects, and they should move with the desk.
Without object grouping, the user would first have to select every object on the
desk, then grab and move the desk. With this approach there is the possibility that
the user might miss an object. Then he/she would have to go back, grab the missed
object and try to correctly re-position that object on the desk.

To bind an object to another object, the user has to place an object so that its
property constraint is satisfied by snapping 10 the desired object. For example, if a
user defines books to have the "ON_HORIZONTAL" property, then such a book that
has snapped onto a desktop will be related to that desk. When the desk is moved,
the book will move with it.

4.3 Defining Object Properties

Object property definitions are created by the user in a separate text file. In a
future system, property definitions may be integrated directly into an extended
UNIGRAFIX file, but for the present system, we decided it would cost too much
time to modify the UNIGRAFIX structures. In this user-created text file, the
property file, the user can define object properties and assign these properties t0
object types. The name of an object type is equivalent to the name used to create
the object definition in the UNIGRAFIX file.

Property definitions are defined by user-specified object property sets. The
user defines object property sets to contain all of the properties that characterize an
object type. Object property sets are enclosed between the key words def prop and
end; and consist of the property set name and a list of the properties that make up the
desired set. The property list can include the prototype placement properties cur-
rently supplied by the editor system, "ON _HORIZONTAL" and "ON_VERTICAL",
as well as properties related to the other aspects of the object, such as rendering. For
example, there could be a "ROUNDED" property to specify that the object should
be rendered as a rounded surface. A property definition can be used by any number

19

of object types. The syntax for object property set definition follows the convention
used in UNIGRAFIX for object type definition:

def prop property_name
property;

end;

Object property sets are bound to specific object types by a user-defined
assignment statement. The user can use the assignment statements 10 bind an object
property set to any number of object types. Object property sets must be bound to
an object type before they have any effect on the objects of that type. The keyword
give is used to define a property assignment statement. This key word is followed
by the name of the object type then the name of the object property set. The syntax
of the assignment statement is a follows:

give object_type property_name;

In the following example, there are three object property set definitions and
four bindings of those properties sets to object types. Notice that in the second
object property set definition, the user has defined two properties to be used for the
Cupprop property set.

Property Definition File: office.pr

{ Definitions of office properties. }

def prop deskprop;
ON_HORIZONTAL;
end;

def prop cupprop;
ON_HORIZONTAL,;
ROUNDED;

end;

def prop pictureprop;
ON_VERTICAL;
end;

{ Assignment of properties to object. }

give desk deskprop;
give cup cupprop;

20

give picture pictureprop;
give white_board pictureprop;

In the first two object property sets the "ON_HORIZONTAL" property is used. Any
object type bound to use the property set deskprop, will have the properties exhibited
by "ON_HORIZONTAL". The property set cupprop has an addition property,
"ROUNDED", so any object bound to cupprop will have the properties characteristic
of "ON_HORIZONTAL" as well as those characteristic of "ROUNDED". The third
property set only contains the "ON_VERTICAL" property. In the four assignment
statements the various object types are bound to the various property sets. For
example, objects of type desk are bound to the properties defined by deskprop.
Notice that the picture board and the white_board use the same property set.

4.4 Implementation of Properties

In order for the editor to use object properties, certain files need to exist. There are
three files required: the property set definition file discussed above, which contains
the object property set definitions and the "give" assignment statements, the object
rvpe 1able file, which contains the names of all available object types and is created
by the database routine, and the property table file, which contains the name of the
available properties and is created by the editor routine. The system operator needs
to ensure that the property set definition file is properly created. The type table file
and the property table file can be used by the system operator to verify naming of
object types and property types if needed.

4.4.1 Use of Property Definitions

When manipulating a selected object, the editor uses database information stored for
that object along with the current state of the editor to determine which movement
constraint property the object should satisfy. Procedures that define the properties
are built into the editor program. The editor uses the property table file and the type
table file (discussed below) to create lookup tables for internal property names and
for object type names. When the property set definition file is loaded, each property
definition set is given a unique id value, and a property set table is create containing
this id value, and a list of property id values, which are obtained by replacing the
property names with their corresponding id values in the property name lookup
table. Another lookup table is created for the assignment statements. This lookup
table contains the id value of the object type, obtained from the object type name
lookup table, and the newly created id value of its assigned object property set.
When the editor performs a transformation of an object, the object’s id value is
obtained from the object’s stored database information. Then the object property
set id value is found, by finding the corresponding type id value in the assignment
lookup table. With the property set id, the associated property id is found from the

21

property set table, and then the proper handling routine is called (see Transformation
section for handling properties).

4.4.2 The Object Type Table File

In the Walkthrough program, integers are used as identifiers for objects and other
constructs. The table files are used to create lookup tables that map the ascii object
and property names in the property set definition file to integer identifiers. These
files were made external to insure consistent use of id values throughout the various
phases of the Walkthrough program. A large database model can be created in parts,
so objects of the same type can be added into the database at different times. With
external mapping files, we can ensure that objects loaded by different routines at
different times will obtain the same id value.

The database routine uses the type table file to set an object’s type id value
whenever a new object is added into the database. The same type table file is used by
the editor to load the id values for object names in the property set definition table.
This ensures that an object type id value stored in the database is the same as an id
value of the same object type used by the editor. The object type table file contains
a list of available object type names and their corresponding id value. This file is
created by wkadd when the database is first created. Wkadd is a database routine
that creates the necessary object data structures and adds the object descriptions into
the database. When an object is added, its type id is set to the id value in the type file
corresponding to that object type. If there is no entry yet in the file corresponding to
that object type, then a new entry is created with a unique id value. When an object
is selected in the editor, the program retrieves this type id value and uses the type
table to determine which type of object was selected. Following is an example of a
type table file:

Tvpe file: buildingX.ty

DESK 1
TABLE 2
PICTURE 3
SPHERE 5
CUP 6

4.4.3 The Property Table File

The property table file contains the names and corresponding id values of all prop-
erties available in the current version of the editor program. In the present system,
the property table file could be internal, but it was made external because in future
implementations, when the property definitions are in a UNIGRAFIX file, this table

22

file might be needed. The property table file is used by the editor to replace property
names in the property definition file with unique id values. Following is an example
of the currently used property table file:

Property definition table file: editor92.pr

ON_HORIZONTAL 1
ON_VERTICAL 2

23

a*x

§ Transformations

Translating and rotating objects is the main use of the editor. Therefore it should be
casy for the user to access and perform these operations. To implement translation,
we had to solve the well known problem of moving an object unambiguously in
3D with a 2D mouse. We took advantage of the object properties that constrain
the positions and thus the movements of objects. For example, if an object is
constrained to be on a horizontal surface, in general, it can only be moved in the
XY-plane. With these constraints, object movements are typically limited to a 2D
space. The user has the ability to override these constraints whenever necessary.
We also give the user access to other translation features that give him/her more
control over an object’s movement.

Rotation around a preferred axis is also a commonly used function when
rearranging furniture. A simple rotation function, typically constrained to lie within
a plane defined by the object’s plucement property, is easily accessible by the user.
Again the user can access an extensive rotation function if desired. We have also
implemented some absolute keyboard-controlled transformation functions, to allow
the user to do things such as rotate an object by exactly 90 degrees.

Scaling, on the other hand, is an operation that the user does not have easy
access to. We do not want to make it t0o easy to scale objects, since the objects have
typically been created at the correct scale. Once the user scales an object, we can
no longer guarantee that our model is realistic. (We could have giant pencils laying
all over the place!) But again, the user can gain access 10 the scaling operation if
necessary.

5.1 Defining an Interaction Point

An interaction point is a reference point for performing a transformation. For
example, when rotating an object, the interaction point is the point that the object
is rotated around. In our editor, we define an interaction point for cach type of
transformation. If the user were required to define the interaction point, it would
greatly reduce his/her productivity. For translation, the position of the interaction
point does not affect the result of the translation, so we use the hot point as the
interaction point. For rotations, the interaction point is defined as the center of the
object’s bounding box. If the rotation interaction point is not at the center of the
object’s bounding box, then the object will be translated as well as rotated during
the rotation. This side effect, while useful in some situations, is not the general
rotation we desire. For the exact scaling mode, the interaction point is the center of
the objects bounding box. For scaling with specialized handles, we give the user
some control over the interaction point. The interaction point is determined by the
interaction handle the user grabs and is the corner of the object’s bounding box
opposite from the handle selected.

An interaction handle is used to distinguish between the actions of selecting

24

an object and of grabbing an object to perform a transformation. If the user grabs
an interaction handle, the program assume that he/she wants to perform a transfor-
mation on the object, otherwise the program assumes that he/she wants to select
the object. For the general transformations, translation and rotation, the interaction
handle is simply the selected object. If the user grabs an object that is already se-
lected, the program assumes that he/she wants to transform that object. For the more
constrained transformations, the program displays explicit handles. These handles
represent different transformations and, depending on the handle selected, the user
can perform these specific transformations (see Transformations with Specialized
Handles).

5.2 General Transformations

In the general transformation mode, the user can perform translation and rotation
operations with litile overhead. The user simply selects an object, then grabs it with
the correct mouse button to translate or rotate the object. Object transformations
are constrained by the object properties, as mentioned above. If the object does
not have a constraining property or if the editor cannot find a suitable face for the
object, then the object is translated in a plane perpendicular to the "pointing" line.
For the general translation, the handle is the object itself, so the user simply selects
any point on the object, and that point becomes the handle as well as the hot point
(or interaction point). The user can then drag the object around in the scene by
this handle. The handle for the general rotation is the same as for the translation.
However, the interaction point for the general rotation is always the center of the
object’s bounding box. So the user grabs an object at any point, and the object will
be rotated around its center as the user moves the cursor around.

5.3 Transformations with Specialized Handles

When performing the more constrained transformations, the user is given specific
handles to interact with. These handles are displayed as cubes and have visual aids
attached to them to help clarify their function. Different ransformation will be
performed depending on which handle is selected.

§.3.1 Translation

For translation, the hot point is replaced by three interaction handles. The position
of the handles are determined just as the position of the hot point was determined
above (see Displaying a Hot Point). Using the hot point location has the advantage
that the mouse is already located at this position, so the user does not have to move
the mouse very far to grab a handle. To grab a handle, the user places the mouse over
the handle, then presses and holds the left mouse button. With the handle grabbed,
the user can drag the object around the scene. The three handles are located at some

25

offset from the hot point location. The size and distance of the offset are determined
by the size of the selected object’s bounding box. Thus larger objects have larger
handles and smaller objects have smaller handles (Figure 4). This is similar to real
life in that you would not put a large handle on a pencil in order to help you move
it more easily. Varying the handle size has the effect that the user must be closer
to smaller objects in order to perform the more constrained transformations. For
example, we do not want the user to be able to move a pencil around on the desk
from two rooms away because he might not be able to see if he stuck the pencil
partly into a cup.

Each handle is used to move the object in a particular plane and has a larger
flat square connected to it, which is parallel to one of the three major planes: one
parallel to the XY-plane, one to the XZ-plane and one to the YZ-plane. To move
an object in a particular plane, the user grabs the handle that has the square parallel
to that plane attached to it. As long as the user holds down the left mouse button,
the object will be dragged in the desired plane. For example, if the user grabs the
handle that is connected to the square parallel to the XY-plane, he/she will be able to
move the object around in the XY-plane only. Thus the problem of moving objects
in a 3D space with a 2D mouse is reduced to moving objects only in a 2D space
which can be done conveniently with a mouse.

Figure 4: Specialized translation handles.

26

§.3.2 Rotations

There are six rotation interaction handles. They are located at the intersections of
the three great circles, originating at the center of the object’s bounding box with a
radius equal to the distance from the center of the bounding box to the center of the
furthest edges. To help the user visualize what is happening, the three great circles
are also drawn (Figure 5). The handles lie at the crossings of these circles. When
the user selects one of the handles, he/she is allowed to rotate the object in either of
the directions represented by the two circles intersecting that handle. The rotation
is performed by dragging the handle in the plane of the desired circle. Once again,
the problem of moving an object in 3D space with a 2D mouse is simplified to a
sequence of 2D operations.

Figure 5: Specialized rotation handles.

5.3.3 Scaling

For scaling, there are eight interaction handles Jocated at the corners of the object’s
bounding box (Figure 6). When a users selects one of these handles, the object is
uniformly scaled around the opposite corner of the bounding box. For example,
assume that the user is looking at the the face of the cube that is in the XZ plane
and he/she grabs the handle on the front, upper right corner of the bounding box.
Dragging the cube to the right will uniformly enlarge the object relative to the
distance that the handle is moved. Dragging the handle to the left will uniformly
shrink the object in a similar fashion. During either of these operations, the handle
at the back, bottom left corner of the cube will remain stationary. This is similar
to scaling operations in existing editors such as MacDraw. Non-uniform scaling

27

of objects can only be achieved by the use of the exact transformation operations
discussed below.

s;&lind’ ‘Bandles:

Figure 6: Specialized scaling handles.

5.4 Exact Transformations

The user must use the dialog menu to perform exact, numerically defined, trans-
formations of objects. The user presses the Transformation button on the dialog
menu to bring forward a new menu that allows keyboard entry of distances, rotation
angles, and scaling factors (see Tutorial section for details). When the user presses
one of the transformation buttons, the selected object is transformed by the current
values for that ransformation. For example, in order for the user to rotate an object
by exactly 90 degrees around the Z axis, he/she first selects the desired object. Then
the user sets the Z rotation value in the transformation dialog to 90, and presses the
7-rotation button. This rotates the object by 90 degrees around the Z axis. The same
type of actions are performed to rotate around the X or Y-axis. To non-uniformly
stretch an object by a factor of 2.5 in the X-direction only, the user would set the
X-scale factor in the dialog menu to 2.5 and set the Y and Z-scale factors to 1.0 (the
default value), then press the scale button.

5.5 Transforming Multiple Objects

Even when multiple objects have been selected, the user only interacts with one
of them. In the general transformation mode, this is the one that the user grabs to

28

execute the transformation. In one of the constrained transformation modes, it is
the last object selected. The interaction handles associated with the present mode
will move from object to object as the user adds new objects to the selection.

There are two possible ways to perform transformations on multiple objects.
The program could either transform each object around its own interaction point
or transform all objects around one common interaction point. When performing
translations, there is no distinction between the results of the two implementations.

For rotations, we chose to implement the latter of the two methods. The
common rotation point will be the center of the bounding box of the last object
selected. To implement this type of rotation, we perform: a translation of each
object by the -X, -Y and -Z values of the interaction point, a rotation operation
relative to the user’s mouse movement, and then another translation by +X, +Y and
+Z. This is useful for rotating groups of object, since it will result in all selected
objects rotating jointly around the one last-selected object. In the other approach,
rotating multiple objects would result in each object staying in place and rotating
around the center of its own bounding box, which could lead to interference among
them.

For scaling, we have chosen to implement the former of the two. When
scaling multiple objects with our editor, each object will scale by the same factor,
but one corner of each object will remain stationary. The stationary corner for each
object is the object’s bounding box corner that is in the same relative position as
the corner opposite from the selected handle. To implement this, we perform: a
translation of each object by the -X, -Y and -Z values of the object’s stationary
corner, a uniform scaling based on the users mouse movement, and a translation
by +X, +Y and +Z. If we were 10 implement the other method of transformation,
each object would be scaled around the same common point, possible resulting in
substantial translations for some objects.

56 Constraint Based Translations

We have created the first implementation of a constraint based placement system
for use in our editor. The constraint system will affect how objects are moved
and positioned in the scene. This first implementation is a prototype for a future
extension to UNIGRAFIX that will allow objects to have many properties (see
Future section). The properties that the editor knows how to handle are stored in the
system file editor92 pr (see Property Definitions section). For this prototype, we
have implemented two properties "ON_HORIZONTAL" and "ON_VERTICAL",
thus allowing objects in our system to have one of two possible properties.

29

5.6.1 Handling the "ON_HORIZONTAL" constraint

The first constraint "ON_HORIZONTAL", is inteded for use by pieces of furniture
and objects that lie on top of desks, shelves, or tables. This property informs the
program that an object should be positioned with respect to a horizontal surface.
This property is considered whenever an object is manipulated by a user with the
editor or when an object is placed in the database by some batch program. To
enforce the constraint, the editor creates a search line parallel to the Z-axis, that
extends directly below the object. In interactive mode, the line starts at the hot point
of the selected object. If the editor is being called by a batch program, then the line
starts at the center of the object’s bounding box. A suitable snapping face is the
face closest to the object that is intersected by the search line and is parallel to the
XY-plane.

If the object comes within a certain distance of a suitable face, then the object
is snapped to that face. The distance, to determine whether or not an object snaps,
is dependent on the snapping mode. There are two available snapping modes: local
mode, in which an object only snaps if it is within the distance of half its bounding
box to a suitable surface, and global mode, in which an object will snap if any
suitable face can be found inside the room that the object is currently in. The
snapping is done by translating the object in the Z direction so that the bottom of
the object’s bounding box is moved to the point of intersection between the search
line and the suitable surface (Figure 7) (see [5] for more information on snapping).

During a transformation of multiple objects, only the constraint of the object
that was grabbed will be enforced. When the user ends the transformation, the
program will check the constraints of the other objects and reposition them if
necessary.

5.6.2 Handling the "ON_VERTICAL" constraint

The "ON_VERTICAL" property is intended for use by objects such as white boards
and wall pictures. This constraint will be enforced in a similar fashion as the
"ON_HORIZONTAL" constraint discussed above. The difference is that the search
line for the suitable face will be drawn in the XY plane. The line will start at
the hot point, or at the center of the object’s bounding box for batch programs,
and will extend in the same (X,Y) direction as the "pointing" line (defined in the
object selection section). When handling this constraint in batch mode, there is no
“pointing" line, so we create two search lines: one parallel to the X-axis and one
parallel to the Y-axis, and then we use the search line that results in the closest
suitable face. The snapping of the object will occur by a translation of the object in
both the X and the Y directions. The distance of the translation is the distance from
the intersection point of the search line with the suitable face to the intersection of
the search line with the object’s bounding box face that is closest to the suitable face

(Figure 8).

30

.

Figure 7: Handling the ON_HORIZONTAL property.

“Suitable Face:
-

- Observer:

' Selection

Figure 8: Handling the ON_VERTICAL property.

31

We encountered additional problems in implementing the "ON VERTICAL”
constraint that we did not have to worry about with the "ON_HORIZONTAL"
constraint. When a relatively flat object snaps from one wall to an adjacent wall, a
common occurrence in building models, the object will be oriented incorrectly on
the new wall. The flat face or back of the object will not be planar with the wall,
resulting in part of the object sticking into the wall and part of the object projecting
into the room. For example, if the user is sliding a picture along a wall and it snaps
to a perpendicular wall, the picture will be oriented incorrectly. The back of the
picture will be perpendicular to the new wall. In this situation, the user would want
the object to be rotated by 90 degrees so that it remains correctly oriented on the
wall. In general, an object with the "ON_VERTICAL" property should always be
rotated so that the back of the object is coplanar with its suitable surface. In the
Walkthrough database, we do not have the information to determine the back of the
object, so we assume that the object is initially positioned with the correct orientation
close enough 10 a suitable face. To handle this problem, we added an additional
check to the "ON_VERTICAL" constraint handler. Whenever an object with the
"ON_VERTICAL" property is selected for manipulation, the program checks to see
whether or not the object is within snapping distance of a suitable face. If so, the
program keeps track of the normal of this face. Then whenever the object snaps to a
face with a normal different from the previous normal, we rotate the object around
the Z-axis. The rotation is around the center of object’s bounding box by the angle
corresponding to the difference of the two face normals. With this solution, the
object will only stick into the wall when the user positions it close to a corner, but
since the editor is an interactive system, the user can easily notice and correct this
situation.

5.6.3 Both Constraints

Particular types of furniture are characterized to exhibit both of the positioning con-
straints defined for the "ON_HORIZONTAL" and the "ON_VERTICAL" properties.
For example, bookshelves should be placed on a floor as well as against a wall. To
handle objects with both properties, we have implemented a greedy algorithm that
simple handles each of the properties in the order that they appear. So, if book-
shelves are defined to have the "ON_HORIZONTAL" and the "ON_VERTICAL"
properties, in that order, the program first snaps a bookshelf to a horizontal suitable
surface, if one can be found, then snaps it to a vertical suitable surface, if one can
be found from the new location.

§.6.4 Additional Constraints

Besides the user defined constraints, we have implemented an additional constraint
which prevents the user from moving an object inadvertently through a wall or floor
polygon. This means that the user cannot grab an object in one room and push it
through the wall to into another room. Thus, in general, if the user wants to move

32

an object from one office to another, he/she is required to drag it through the doors
of each office. However, in some cases, there may be a quicker way, if the object
is large enough (e.g., a desk) and the walls are thin enough. The user could push
the desk partly through the wall (the hot point is not allowed to go through a wall)
then go into the other room, reselect the desk and pull it into the new room. The
reason for enforcing this constraint is to prevent the user from accidently misplacing
an object. If the program allowed objects to be moved through walls freely, the
user would be able to move an object into a position where it could not be seen
and then he/she could only guess about its location and orientation. Also, if the
user accidently moved an object through a wall and released the selection button,
the object would be removed from the users current visible object list and could no
longer be selected from the users current position. The user would be required to
search for the object in the other rooms of the model in order to re-select it; and
worse yet, if the entire object is inside of a wall, it might be permanently lost.

6 Copy and Undo

In the editor we have also implemented the commonly used copy and undo oper-
ations. The copy operation allows the user to populate the building model more
easily. By simply selecting an object and pressing the copy button, a new object is
added into the database. The undo operation will undo the user’s last transforma-
tion. This allows the user to move an object back to its original position if he/she
makes a mistake or does not like the new position of the object.

6.1 The Copy Function

The copy operation is used to add an object into the database. When the user selects
one or more objects, the editor maintains a copy of these objects. To perform the
copy operation, the editor creates a new object in the database by calling a database
routine to add a new object. This routine takes the object definition and creates the
new pointers and identifiers necessary for a database object. When a new object is
added into the database, the cell-to-object visibility of all cells visible from the cell
the object was inserted into are updated to determine whether or not the new object
is visible to them. In order to prevent the user from accidently making multiple
copies of an object in the exact same position, the new object is not actually created
until the original object is moved. This is done by setting a copy flag, then creating
the new object after a transformation has been completed.

Before implementation of the editor, a copy operation consisted of creatinga
new instance of the object, either by editing the text UNIGRAFIX file or by using a
CAD tool. Then the desired transformations were applied to the object again either
with UNIGRAFIX or a CAD tool. Next, the new object was added to the database
by using a batch program, which creates the object structure, sets the correct pointers
and performs the visibility calculation. Finally the the new object was inspected by

33

running the Walkthrough program. The copy function provides a way to increase
the furniture density in a building model much more quickly.

6.2 The Undo Function

We have implemented a one-level undo for the editor. At the end of every trans-
formation, marked by the selection of a new object, the editor updates its undo
structure. The undo structure contains an object definition, a transformation matrix,
an undo flag and X, Y, and Z variables for rotation, translation and scaling to keep
wrack of the current transformation. The transformation matrix is a composite matrix
of all transformations that have been applied to the currently selected object. This
matrix is created by keeping track of the user’s mouse movements and the current
type of transformation. For example, if the user is currently in the translation mode,
the undo structure keeps track of the delta X, delta Y and delta Z between the
object’s original position and the object’s new position. These values are used to
create a translation matrix which is multiplied into the undo transformation matrix.
When the undo button is pressed, the undo flag is toggled between true and false.
If the undo flag is false, then all selected objects are first ransformed by the matrix
in their undo structure and then drawn. If the undo flag is true, then the objects
are not transformed by their undo transformation matrix, they are drawn at their
original database position. This has the effect of undoing any transformations that
have occurred since the object was selected. If a new object is selected while the
undo flag is true, then it is not required to update the position of the old object
in the database. Once the user selects a new object, the previous transformations
can no-longer be undone. Before the user "accidently” looses the current object
selection, when trying to grab the object from a new interaction point, he/she would
see the white highlighted bounding box of another object to indicate that on clicking
the mouse a different object would be selected.

34

7 Handling Constraints in Batch Mode

The batch version of the editor is a pre-processing program that can be used on a
building model to verify that objects satisfy their property constraints. An object that
does not satisfy its property constraints is translated, if possible, toa suitable surface
so that it does. This batch program is especially useful on large building models.
In order to perform the same function without the batch program, the user would
have to walk through the entire model and select every object. Each object selected
would then snap to a suitable face and satisfy its property constraints. With large
building models, this would be very time consuming. The user would need to keep
track of which object have already been selected and which rooms have already been
verified. With batch mode constraint processing, the user simple runs the program
which checks every object in the model. The batch program produces an output file
which contains the original and final positions of all transformed objects and a list
of objects that have placement constraints but were not close enough to a suitable
face to be translated. This file can be used by another utility (not yet implemented)
to update the UNIGRAFIX files for later models (See Updating the UNIGRAFIX
Master File).

7.1 Implementation of Batch Mode

Handling constraints in the batch program is implemented in much the same way as
in the interactive program. To verify an object’s placement constraints, the program
must know all objects visible to that object. The database does not maintain
object-to-object visibility information, but it does maintain cell-to-object visibility
information. To take advantage of this information, the batch program processes
the database in a cell by cell mode, trying to satisfy the constraints of all objects
"centered in" a cell before moving to a new cell. An object is defined to be "centered
in" a cell if the center of its bounding box is in that cell. With this method, the same
list of visible objects can be used for all objects centered in a cell.

After finding an object centered in the current cell, the program defines
its search line. In the interactive editor, the search line is defined to start at the
user selected hot point, but since there is no user input in batch mode, the program
defines the search line to start at the center of the object’s bounding box. Thus for the
"ON_HORIZONTAL" property, the search line is defined as the line starting at the
center of the object’s bounding box and going in the negative Z direction. Defining
the search line for the "ON_VERTICAL" property is slightly more complicated,
since the editor does not know which face of the object is suppose to be against a
wall. The editor defines four search rays in the plus and minus X and Y directions,
originating at the center of the object’s bounding box. The intersection test for a
suitable face is performed along the search line or lines. The suitable face selected
for snapping the object to is the closest face to the object intersected by the search
line(s). If no suitable face is found, the program writes the object’s id and an
indicator that the object has no suitable face 10 the output file. If a suitable face is

35

found, but is too far away for the object to snap, the program writes to the output
file the object’s id and the distance to the suitable face. (Note: This occurs when
the program is run with the local snapping option. With this option, the object will
only snap if it is within a distance equal 10 half the width of its bounding box in the
direction perpendicular 1o the suitable face). 1f the program finds a suitable face
that is close enough to snap to, the object is translated so that its bounding box is
moved to the intersection point of the suitable face and the search line.

Whenever an object is moved by snapping, to maintain object grouping, all
objects that are constrained to that object must also be moved. Thus for each object
that is to be snapped, the program must determine which objects are constrained to
that object. Since, at the current time, it was considered impractical to change the
database to accommodate the links describing the grouping of objects, groups are
formed dynamically by a recursive process which determines the suitable surface
for each of the visible objects, just as above, then creates a temporary "group”
list (a list of the objects whose suitable surface is a face of the original snapping
object.) If the created group list is not empty, the routine creates a new group list
by processing the visible objects to determine if any object, not already in the group
list, is constrained to any of the objects in the group list. This process is repeated
with the newly created group list until the newly created group list is empty. Object
grouping is maintained by snapping the original object and translating the objects
in the group lists by a distance equal to the snapping distance.

36

8 Updating the Permanent Records

In our Walkthrough system, building models are represented in two forms: a UN-
IGRAFIX text description and a Walkthrough database format. When the editor
is used to make changes to the building model, the changes have to be updated
in the files representing the above mentioned formats. The Walkthrough database
file is required to be updated, so that, any changes to the building model made
in a Walkthrough session or batch routine will be reflected in later Walkthrough
sessions of the model. The UNIGRAFIX file is required to be updated, so that, if
new UNIGRAFIX object descriptions are to be added to the building model, they
can be added to an UNIGRAFIX file that has been modified to represent the edited
version of the building model.

8.1 Updating the Walkthrough Database

When the user selects an object for manipulation, a copy of the object is maintained
by the editor. All transformations, highlighting, and drawing of the object is handled
by the editor. The editor keeps track of the current user operations. When the user
ends his/her current sequence of transformations, marked by the selection of another
object, the transformations are updated into the database. To do this the editor uses
the current 4x4 transformation matrix created from the user’s actions. This matrix
and the object definition are passed to the database which applies the transformation
matrix to the matrix associated with its current copy of the object.

After transformation of an object, the database checks to see in which cell
the object is now located, so that the cell information can be updated. If the object
remains in its original cell, the cell-to-object visibility of all cells visible from that
cell must be updated, since movement within a cell can resultin an object becoming
visible to some cells and not-visible to others. If the object has moved into a different
cell, the cell-to-object visibilities of all cells visible from the object’s original cell,
as well as the cell-to-object visibilities of all cells visible from the object’s new cell
must be updated. This additional update is required because the object first has to
be removed from any cell-to-object visibility lists that it was previously in and then
added 10 the cell-to-object list of any of the new cells that it is visible to (See [1] for
more information).

8.2 Updating the UNIGRAFIX Master File

The UNIGRAFIX Update file is a file that represents the difference between the
UNIGRAFIX Master file, the original building model descriptions, and the edited
building model. The Update file contains a list of all changes, in UNIGRAFIX
format, that have been made to the building model by the editor. This file is updated
by both the batch program and by the interactive editor. The file is composed of a
list of tuples that contain the identifier of the object that was transformed and the

37

transformation matrix that was applied. The batch program writes a tuple to the
file whenever it snaps an object to a suitable face or moves an object because of
a grouping constraint. The interactive mode writes a tuple to the file whenever a
sequence of transformations have been completed. The UNIGRAFIX update file
can be used by a post-processing routine to Update the original UNIGRAFIX Master
file.

38

9 Conclusion

As the time test of our editor, we used two existing building models, fully populated
with different amounts of office furniture. Some of the furniture was floating or
sunken throughout the various rooms. First we ran the batch verification program
on the smaller model to correctly position it’s objects. 63 objects out of a total
of 546 objects were adjusted in 18.96 seconds. Casual visual inspection showed
no obviously misplaced objects. Then we repeated the above procedure on the
larger model. 1296 objects out of a total of 19209 objects were adjusted in 1767.80
seconds (29 minutes). Without the batch verification program it would take a user
many hours of interactive editing to go through the entire model and verify that each
object is properly positioned.

This report describes the first implementation of an interactive editor for
the Walkthrough program. The whole notion of object properties will require
additional research. The property mechanism can be a very powerful tool, with
many uses. Eventually the property definition structure should be added to the
UNIGRAFIX data structures and handled by the UNIGRAFIX parser. Future
Walkthrough editors will need enhancements to increase a user’s editing power and
to aid in the development of new Walkthrough features. For example, the editor
might need features to enhance interaction with animated objects or to specify a
time dependent transformation for a particular piece of a movable object. Below are
a few remarks on extensions to the idea of placement properties; they are a result
of our experience with implementing the two properties ON_.HORIZONTAL and
ON_VERTICAL.

There are additional properties that seem desirable from a user’s point of
view. There should be a position property that allows the user to specify that a
specific object should be on another specific object, for example, cup A should
be on top of table B, instead of simply specifying a cup should be placed on a
horizontal surface. We would like a property that allows the user to specify that an
object should abuts another object, for example a desk should abuts a wall. It would
also be useful to allow the user to define the interaction point of an object, so that
the user can define the point around which an object should be rotated.

Of course, the idea of properties goes beyond the specification of placement
constraints. As one example, properties could be used to affect the rendering style
of objects, i.c., whether the object should be rounded or left in its polyhedral form.
Also, it would be useful to be able to make more complex property definitions, such
as "picture A should be on a wall and five feet above the floor.”

The interactive mode of the editor makes it ease to significantly modify the
furniture layout in the various rooms of a large building model. As a result we feel
that the editor is a valuable addition to the Walkthrough project. The interaction
gives the user more of a feeling that he/she is actually in the building. The editor
allows the user to add much needed disorganization to the building in order to create
a mode] that better simulates every day life.

39

A APPENDIX: Runing the Program

This section is intended for the system operator whose purpose is to install the
editor to run with the Walkthrough program. It explains the files needed to initialize
the editor and the commands used to run the editor. This section assumes that the
operator is familiar with the routines used to create the database.

A.1 [Initial Files.

A number of files must exist in order to initialize the program and to assign properties
1o object types. The property set file is created by the user, while the other files are
for internal use by the system and are generated automatically.

e Property set file (user created). To use the property constraints the user must
create a property set file name.pr which contains the property set definitions
and the necessary assignments (See Property Definitions section for more
details).

o Property file (automatically created). This file contains a list of the properties
that the editor knows how 1o handle. This file should already exist and should
be named property.pr (See section on Property Definitions for more details).

e Object type file (automatically created). This file contains the names of
the available object types. lts default name is databasename.ty . This file
is created by the wkadd routine (See section Properry Definitions for more
details).

e Database file (automatically created). The database file describes the poly-
gons that compose the building and contains at least one of every type of object
that the user wants to have in the final building description /see Funkhouser
for more information of creating the database file].

A.2 Running the Interactive Editor

To start the program, the user types "wkedit database file |-p property file] [-t rype
file). This opens on the screen the normal GL window used for the Walkthrough
program. Along the top of this window is the menu bar which allows the user to
open up the various dialogue boxes. In the remainder of the window will appear
the objects of the scene visible from the user’s current position. The Walkthrough
features are accessed in the same way as in the normal Walkthrough program. To
activate the editor capabilities, the user selects the toggle button "editor" from the
file menu at the top of the screen. When in editing mode, the user can access the
Walkthrough operations by the same key and mouse combinations as before. All
of the editing operations are accessed either by a combination of the shift key and a
mouse button or from the editor menu.

40

A.3 Running in Batch Mode

To run the batch program, the user types "wkcheck.edit database file [-p property
definition file] |-t property] |-local] [-global]. Notice that the same files that are
needed 10 run the interactive program are used to run the batch program. The -local
or -global options, allow the system operator to specify whether objects can snap to
a local face or 1o a global face. Setting snapping to a local face prevents an object
from snapping through more than a distance equal to the size of its bounding box in
the corresponding direction.

4]

-

B APPENDIX: References

References

(1] Funkhouser, Thomas A., $quin, Carlo H. and Teller, Seth J. Management
of Large Amounts of Daia in Interactive Building Walkthroughs. ACM SIG-
GRAPH Special Issue on 1992 Symposium on Interactive 3D Graphics, 11-20.

[2] Teller, Seth J. and Squin, Carlo H. Visibility Preprocessing For Interactive
Walkihroughs. Computer Graphics (Proc. SIGGRAPH '91), volume 25(4),
(August 1991), 61-69.

[3] Séquin, Carlo H. Introduction to the Berkeley UNIGRAFIX Tools (Version
3.0). Technical Report UCB/CSD 91/606, Computer Science Department,
U.C.Berkeley, 1991.

[4] Conner, D. Brookshire, Snibbe, Scott S, Herndon, Robbins, Daniel C,
Zeleznik, Robert C. and van Dam, Andries. Three-Dimensional Widgets. Com-
puter Graphics (Proc. SIGGRAPH *92) Computer Science Department, Brown
University, Providence, R1.

[5] Bier, Eric A. Snap-dragging in three dimensions. Computer Graphics (Proc.
SIGGRAPH ’90), volume 24(4), (March 1990), 193-204.

[6] Strauss, Paul S. and Carey, Rikk. An Object-Oriented 3D Graphics Toolkit
Computer Graphics (Proc. SIGGRAPH ’92), volume 26(2), (July 1992), Sili-
con Graphics Computer System, Mountain View, CA.

[7] Khorramabadi, Delnaz A. A Walk through the Planned CS Building. Mas-
ters Thesis UCB/CSD 91/652, Computer Science Department, U.C.Berkeley,
1991.

42

