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Abstract

Pose clustering is a method of object recognition that determines the trans-
formations that align hypothesized matches of groups of image and model fea-
tures: an object that appears in an image corresponds to a large cluster of
transformations in pose space close to the correct pose of the object. If there
are m model features and n image features, then there are O(m®n®) trans-
formations to consider for the case of recognition of three-dimensional objects
from feature points in two-dimensional images. I show that pose clustering
can be equally accurate when examining only O(mn) transformations, due to
correlation between the transformations, if we are given two correct matches
between model features and image features. Since we do not usually know two
correct matches in advance, this property is used with randomization to decom-
pose the pose clustering problem into O(n?) problems, each of which clusters
O(mn) transformations, for a total complexity of O(mn?®). Besides reducing
the time necessary to perform pose clustering, this method requires much less
memory and makes the use of accurate clustering algorithms less costly. Fur-
ther time reductions can be gained by using grouping to determine the initial
matches.
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PYT grant TRI-8957274 to Jitendra Malik and NSF Materials Handling grant TRI-9114446.



1 Introduction

In any effort to build a general-purpose vision system capable of recognizing an un-
restricted range of objects, model-based recognition techniques are important, since
techniques that are not model-based face limitations in their capability to discriminate
between objects [Moses and Ullman, 1992]. Typically, model-based object recognition
techniques compare sets of features extracted from an image to model features in a
database of object models. This paper describes a model-based recognition technique
that improves upon previous pose clustering methods. This work is widely applica-
ble in object recognition tasks, including the task of recognizing three-dimensional
objects from single two-dimensional images.

Pose clustering is a method to recognize objects from the hypothesized match-
ing of feature groups [Ballard, 1981, Stockman, 1987, Thompson and Mundy, 1987,
Linnainmaa et al., 1988, Grimson et al., 1992]. In this method, the transformation
parameters that align groups of model features with groups of image features are
determined. Under a rigid-body assumption, the correct transformation corresponds
to a large cluster of these transformations near the true pose of the object. Thus,
pose clustering can be used to determine objects that may be present in the image
by finding large clusters of transformations in pose space. Figures 1 and 2 show how
pose clustering works in a pictorial fashion. This clustering is usually performed by
histograming the transformation parameters in a quantized transformation space and
looking for peaks in the histogram. Unfortunately, Grimson et al. [1990, 1992] have
shown that this method will find a significant number of false positives for complex
images with substantial noise and/or occlusion. Thus, pose clustering should be used
to determine hypotheses for further verification, not as the sole means of detection.

It is well known that three matches between model points and image points is the
smallest number of matches that yield a finite number of transformations that bring
three-dimensional model points into alignment with two-dimensional image points
[Fischler and Bolles, 1981, Huttenlocher and Ullman, 1990, DeMenthon and Davis,
1992, Alter, 1992]. Thus, if m is the number of model features and n is the number
of image features then there are O(m®n?) transformations to consider. I demonstrate
that if we are given two correct matches, performing pose clustering on only the
O(mn) transformations that can be determined using these correct matches yields
equivalent accuracy to clustering all O(m®n?) transformations, due to correlations
between the transformations. Since we do not know two correct matches in advance,
we must examine O(n?) such initial matches to ensure a low probability of missing a
correct object, yielding O(mn?) total time. Additional speedup can be achieved by
using clustering or indexing to generate the initial matches.

Previous pose clustering methods have required a large amount of memory and/or
time to find clusters, due to the large number of transformations and the size of pose
space. Since we can now examine subsets of only size O(mn) at a time, we require
much less storage to perform clustering using this method. Due to the time complex-



Figure 1: There exists a transformation that aligns any three non-collinear model
points with any three image points.
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Figure 2: Correct matches between model and image point sets yield transformations
that cluster close to the correct transformation.



ity of other clustering methods, most pose clustering methods have used binning to
find large clusters in pose space. Less efficient, but more accurate, clustering meth-
ods become more feasible with this method since only O(mn) transformations are
clustered at a time, rather than O(m?®n?).

The remainder of the paper will be structured as follows. First, I'll discuss prior
work on pose clustering. In Section 3, I will discuss the time and space necessary
to perform pose clustering. T also prove that examining small subsets of the possible
transformations is adequate to determine if a cluster exists with equivalent accuracy
and discuss the implications of this result on pose clustering algorithms. Section 4
gives an analysis of the frequency of false positives using the results on the correlation
between transformations to achieve more accuracy than previous work. Section 5
discusses the time complexity necessary to implement these techniques and compares
it to other algorithms for this problem. Section 6 describes the implementation of
these ideas to recognize three-dimensional objects from single two-dimensional images.
Experiments that have been performed to demonstrate the utility of the system are
presented in Section 7. Then, Section 8 will discuss the use of hierarchical clustering
techniques rather than binning to perform pose clustering. Section 9 discusses some
interesting issues and Section 10 concludes the paper.

2 Prior Work

Ballard [1981] showed how the Hough transform [Hough, 1962, Duda and Hart, 1975
can be generalized to detect arbitrary two-dimensional shapes undergoing translation.
First, a mapping between image space and pose space is constructed. Then, a table is
created quantizing pose space. Cells of this table that are consistent with each edge
pixel are then incremented. Peaks in the table correspond to possible instances of
the object in the image. This system can be generalized to rotations and scaling in
the plane, but since individual pixels are examined independently, a two-dimensional
surface in the quantized pose space must then be incremented for each edge pixel.
Stockman et al. [1982] describe a pose clustering system for two-dimensional ob-
jects undergoing similarity transformations. This system examines pairs of image
and model features to reduce the subset of the four-dimensional pose space consistent
with a hypothesis to a single point. Clustering is performed by conceptually moving
a box around pose space to determine if there is a position with a large number of
points inside the box and is implemented by binning. The binning is performed in a
coarse-to-fine manner to reduce the overall number of bins that must be examined.
Thompson and Mundy [1987] use ‘vertex-pairs’ in the image and model to deter-
mine the transformation aligning a three-dimensional model with the image. Each
vertex pair consists of two feature points and two angles (a1, az) at one of the fea-
ture points corresponding to the direction of edges terminating at the point. They
quantize the two-dimensional space of the possible image angles (aq,a3) and for each
model vertex-pair, they precompute some of the transformation parameters for each



of the quantized angles. At run-time, the precomputed transformation parameters
are used to quickly determine the transformation aligning each model vertex-pair
with an image vertex-pair and binning is used to determine where large clusters of
transformations lie in transformation space, which are assumed to correspond to cor-
rect transformations. In addition, Thompson and Mundy show that for objects far
enough from the camera, the scaled orthographic projection (weak-perspective) is a
good approximation to the perspective projection.

Linnainmaa et al. [1988] describe another pose clustering method for recognizing
three-dimensional objects. They first give a method of determining object pose from
matches of three image and model feature points (which they call triangle pairs.)
They cluster poses determined from such triangle pairs in a three-dimensional space
quantizing the translational portion of the pose. The rotational parameters and
geometric constraints are then used to eliminate incorrect triangle pairs from each
cluster. Optimization techniques are described that determine the pose corresponding
to each cluster accurately.

Grimson and Huttenlocher [1990] show that noise, occlusion, and clutter cause a
significant rate of false positives in pose clustering algorithms for many cases of feature
types and object recognition problems. Thus, pose clustering should be used a means
of detecting possible poses for further verification, not as the sole means of object
recognition. In addition, they show that conventional binning methods of clustering
must examine a very large number of hash buckets even when using coarse-to-fine
clustering or sequential binning in orthogonal spaces.

Grimson et al. [1992] examine the effect of noise, occlusion, and clutter for the spe-
cific case of recognizing three-dimensional objects from two-dimensional images using
point features. They determine overestimates of the range of transformations that
take a group of model points to within error bounds of hypothetically corresponding
image points. Using this analysis, they show that pose clustering for this case also
suffers from a significant rate of false positives. A positive sign for pose clustering
from the work of Grimson et al. is that the alignment method [Huttenlocher and
Ullman, 1990] produces false positives with a higher frequency than pose clustering
when both techniques use only feature points to recognize objects.

Cass [1988] describes a method similar to pose clustering that uses transformation
sampling. Instead of binning each transformation, Cass samples the pose space at
many points within the subspaces that align each hypothetical feature match to within
some error bounds. The number of features brought into alignment by each sampled
point is determined and the object’s position is determined from sample points with
maximum value. This method may miss a pose that brings many matches into align-
ment, but it ensures that the transformations found for any single sample point are
mutually compatible.

Another related technique is to decompose pose space into regions that bring the
same set of model and image features into agreement up to error bounds [Cass, 1991].
For the two-dimensional case, if each image point is localized up to an uncertainty



region described by a k-sided polygon then each of the mn possible point matches
corresponds to the intersection of & half-spaces in four-dimensions. The equivalence
classes with respect to which model and image features are brought into agreement
can be enumerated using computational geometry techniques [Edelsbrunner, 1987] in
O(k*m*n*) time. The case of three-dimensional objects and two-dimensional images
is harder since the transformations do not form a vector space. But, by embedding
the six-dimensional affine pose space in an eight-dimensional space, it can be seen that
there are O(k*m®n®) equivalence classes. Not all of these equivalence classes must
be examined to determine the regions producings the largest matches. For example,
Cass describes a method of finding the maximal match sets for two-dimensional ob-
jects undergoing similarity transformations with expected time O(n*m?) using square
uncertainty regions.

Jacobs [1991] describes a method for recognizing two-dimensional objects that
shares some conceptual similarities to ours, in that once a set of initials matches are
known (three for Jacobs’ algorithm) a small amount of time is necessary to deter-
mine the maximum set of matches that can be brought into alignment. Rather than
using pose clustering, Jacobs discretizes the six-dimensional space of possible errors
in the locations of the three image feature points and determines. Each bin in this
discretization represents small areas of locations where the three image features could
lie when projected by the correct transformation. Thus, there is a set of additional
matches which can be brought into alignment while constraining the image features to
lie in the space represented by the bin. The bin where the most matches are brought
into alignment is considered optimal.

Breuel [1992] has proposed an algorithm that recursively subdivides pose space to
find volumes where the most matches are brought into alignment. While this method
has an exponential worst case complexity, Breuel’s experiments provide evidence that
for the case of two-dimensional objects undergoing similarity transformations the
expected time complexity is O(mn) for line segment features (or O(m?n?) for point
features.) The case of three-dimensional objects and two-dimensional data is not
discussed at length, but if the expected running time remained proportional to number
of constraint regions then it would be O(m?®n?) for point features.

3 Recognizing Objects by Clustering Poses

For the remainder of this paper, I will focus on the recognition of three-dimensional
objects undergoing unrestricted three-dimensional rotation and translation from sin-
gle two-dimensional images. To simply matters, I will assume that the only features
of use in the model and image are points, but the results here can be generalized
to other types of features. It has been shown that matching three model points to
three image points enables us to solve for the transformation that bring the points
into alignment under the perspective projection and several approximations to it (in-
cluding weak-perspective) [Fischler and Bolles, 1981, Huttenlocher and Ullman, 1990,



Figure 3: In coarse-to-fine clustering, coarse bins that contain many transformations
are examined at a finer scale.

DeMenthon and Davis, 1992, Alter, 1992]. Note that these techniques yield at most
a finite number of transformations (two or four) that bring the points into alignment.
So, a pose clustering algorithm using points can use matches of size three to determine
hypothetical poses.

Let us call a set of three model features {1, y2, ua} a model group and a set of
three image points {v,vq,v3} an image group. A hypothesized matching of a single
model feature to an image feature 7 = (p,v) will be called a point match and three
point matches of distinct image and model features v = {(u1,11), (2, v2), (3, v3)}
will be called a group match.

If there are m model features and n image features then there are 6(%3)(%) distinct
group matches (since each group of three model points may match any group of
three image points in six different ways,) each of which yields up to two or four
transformations, depending on the model of projection used. In the ideal case, we
would determine clusters by determining the exact subset of transformations space
that brings each model group into alignment with each image group up to some error
bound and determine points in transformation space where large numbers of these
subsets intersect. Of course, due to the time limitations on current algorithms, we
don’t determine these exact subspaces. Most pose clustering algorithms find clusters
less accurately by binning, with each group match represented by a single point in pose
space. Binning is carried out by discretizing the pose space and incrementing counters
for the cells that are compatible with each group match examined. Since pose space
is six-dimensional for three-dimensional rotation and translation, the discretized pose
space is enormous for the fineness of discretization necessary to perform accurate pose
clustering.

Two techniques that have been proposed to reduce this problem are coarse-to-fine
clustering [Stockman et al., 1982] and decomposing the pose space into orthogonal
subspaces in which binning can be performed sequentially [Thompson and Mundy,
1987, Linnainmaa et al., 1988]. In coarse-to-fine clustering (Figure 3,) pose space
is quantized in a coarse manner and the large clusters found in this quantization
are then clustered in a more finely quantized pose space. Pose space can also be
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Figure 4: Pose space can be decomposed into orthogonal spaces. Clustering is then be
performed in one of the decomposed spaces. Bins that contain many transformations
are examined using the other decomposed spaces.

decomposed such that clustering is performed in two or more steps, each of which
examines a projection of the transformation parameters onto a subspace of the pose
space (Figure 4.) The clusters found in a projection of the pose space are then
examined with respect to the remaining transformation parameters.

These techniques can lead to additional problems. The largest clusters in the first
clustering step do not necessarily correspond to the largest clusters in the entire pose
space. We could examine all of the bins in the first space that contain some minimum
number of transformations, but Grimson and Huttenlocher [1990] have shown that
for cluttered images, an extremely large number of bins would need to be examined
due to saturation of the coarse or decomposed table. In addition, we must either
store with each bin the group matches that contributed to a cluster there, so that
we can perform the subsequent binning steps on them, or we must reexamine all
of the group matches (and redetermine the transformations aligning them) for each
subsequent binning step. The first possibility requires an enormous amount of storage
for previous methods and the second requires considerable extra time.

Linnainmaa et al. [1988] use the heuristic that only sets of three feature points
that are connected by two consecutive edges are used to generate image and model
groups. This reduces the number of transformations that must be clustered, but this



method has two disadvantages. First, connected edges between feature points are not
easy to find due to image noise. Second, clustering performance can suffer, since a
smaller number of usable image groups will be found for an object, even when they
can be extracted reliably.

Clustering methods other than binning have been largely avoided due to their
considerable time requirement. Clustering algorithms based on nearest-neighbors
[Sibson, 1973, Defays, 1977, Day and Edelsbrunner, 1984] require O(p?) time where p

is the number of points to cluster. Since there p = O(m®n?) transformations to cluster
in previous methods this means the overall time for clustering would be O(m®n®).
We will see that all of these problems can be solved by examining only O(mn)
groups at a time, but first [ will show that this can be done without a loss of accuracy.
Let © be the space of legal poses. Each p € © can be considered a function
p: IR® — IR? that takes a model point to its correspondings image point. Each group
match v = {(p1, 1), (g2, v2), (43, v3) } determines some subset of pose space 0(v) C O
that brings each of the model points in the group match to within the error bounds of
the corresponding image point. We will assume that the feature points are localized

with error bounded by a circle of radius e. We can define 6(v) as follows:

Definition :
0(v) = {p € O :lp(ni) —will, < ¢ for 1 <7 <3}
Lemma 1:
There exist x distinct model points pq, ..., g and z distinct image points vy, ..., v,

such that for some p € O, ||p(p;) — vi]], < efor 1 < <z if and only if there exist
two point matches 7y, 73 and & — 2 group matches that contain these point matches
vi = {m1, ®2, Tiga}: 1 < i <@ — 2 such that p € 0(y;) for 1 <i <z —2.

Proof :

If 41,...,7:—2 exist as above, then the = point matches #y,..., 7, that comprise
these group matches must have ||p(y;) — v;i||, < € by the definition of (7).

If we have x point matches my = (p1,11),..., 7 = (U, V) comprised of distinct
image and model points such that for some p € O, ||p(pi) —vil], < efor 1 <i <z
then choose basis matches m; and 7,. Each of the group matches v; = {m, 73, Ti12}:
1 <1 <2 —2 must have p € 6(+;) by the definition of 6(y). O

So, the problem of finding = distinct point matches that can be aligned to within
error bounds by a single transformation has been reduced to the problem of finding
x — 2 group matches, each containing the same basis of two point matches, such that
there is a point aligning each of the group matches to within error bounds. Using
this the following theorem can be proven:



Theorem 1:

There exist ¢ = (%) distinet group matches 71, ...,v, and p € © such that p € 0(~;)
for 1 <1 < g if and only if there exist two point matches 7; and 7, and  — 2 group
matches vy,1i = {1, mo, g2} 1 <0 <2 — 2 such that p € 0(v,4;) for 1 <7 <a—2.

Proof :

I ~g41s s Yg4a—2 and p exist as described above then there exist = distinct model
points {1, ..., iz} and @ distinet image points {vy, ..., v, } such that for some p € 0,
llp(pi) — vil|l, < efor 1 <i <2 by Lemma 1. Any group match 4 composed of any
three of these point matches has p € () by the definition of #(v). Since we can
choose (%) distinct group matches in this manner, there are (%) distinct group matches
v such that p € 0(~).

If ¢ = (%) distinct group matches 1, ...,7, and p € O exist such that p € §(;) for
1 < < g then there must be at least @ point matches (u1,11), ..., (ftz, v) such that
llp(pi) — vil|l, < efor 1 < <z, since otherwise we could not choose ¢ distinct group
matches fulfilling p € 6(7;). Since we have these & point matches, Lemma 1 says we
must have x — 2 group matches as described in the theorem.

This implies that clustering is equally as accurate when we examine these small
subsets of the group matches, if we assume that we have an idealized clustering system
that is able to determine exactly the clusters of matches that can be aligned up to
the error bounds. Of course, we do not have such a system, but experiments show
that an approximation can perform well (see Section 7.)

So, instead of finding a cluster of size (§) out of all of the group matches, we simply
need to find a cluster of size ¥ — 2 within any set of group matches that all share the
same basis of two point matches. For a single basis, there are (n—2)(m—2) = O(mn)
group matches such that no feature is used more than once. Of course, examining
just one image basis will not be sufficient to rule out the appearance of an object
in an image. We could simply examine all 2(35)(%') possible pairs of basis matches,
but we will see in Section 5 that using randomization we can examine O(n?) pairs of
matches and achieve as much accuracy as desired.

4 Frequency of False Positives

The analysis above deals only with the size of clusters expected for correct objects.
It is also necessary to analyze the size of clusters likely to be formed by random
combinations of matches so that the likelihood of a false positive occurring can be
determined. If f is the fraction of model features that appear in the image, then the
size of the correct clusters has been cut by a factor of

(5 (fmy
fm—2 6
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since the clusters were originally of size (f;)n) and now the clusters are of size fm — 2.
We have cut the number of transformations that may potentially contribute to a false
positive by a factor of

n—2 6

The potential size of the false negative has been cut more than the expected size
of a correct cluster since n > fm. This provides hope that the accuracy of clustering
is also improved by these techniques. Unfortunately, if the Bose-Einstein occupancy
model accurately describes the distribution of the incorrect transformations (as exper-
iments by Grimson and Huttenlocher [1991] indicate), the accuracy is slightly worse
than indicated by previous work [Grimson et al., 1992], if both analyses assume an
idealized pose clustering system.

Grimson et al. analyze the pose clustering approach to examine the probability of
a false match having a large peak in transformation space for the case of recognition
of three-dimensional objects from two-dimensional images using the Bose-Einstein
occupancy model. This analysis assumes independence in the locations of the trans-
formations, which we have seen is not completely accurate. When we examine group
matches that vary in only one point match, then the transformations have only two
degrees of freedom. If we assume that the locations of spurious image points are
independent, then the transformations are independent on these degrees of freedom.
I shall modify the analysis of Grimson et al. to account for the correlation between
transformations to obtain a more accurate result. First, I'll summarize their results.
The Bose-Einstein occupancy model yields the following approximation of the prob-
ability that a bin will receive [ or votes due to random accumulation:

)\l
PN
In this equation, A is the expected number of votes in a single bin (including
redundancy due to uncertainty in the image.) For their analysis A = 6b(%)(5) ~

bn’m?

, where b is the average fraction of bins each group match votes for (called the
redundancy factor,) n is the number of image features, and m is the number of model
features.

Grimson et al. have determined overestimates of the size of the redundancy factor
b necessary to ensure that the correct bin is among those voted for by an image group
for various noise levels using a bounded error model. In the bounded error model, the
location of each image feature is known to be within some distance ¢ of the measured
location.

Using this redundancy factor, Grimson et al. determine the maximum number of
image features that can be tolerated without surpassing a given error rate 6. Each
correct object is expected to have (fgl) Y ﬁf—?ﬁ correct transformations, since each
distinct group of model features will include the correct bin among those it votes for.

11



The probability that an incorrect point match will have a cluster of at least this size
is:

Um)?
T\
Setting ¢ < 6 and solving for n, they get:
S

3bhﬂ%

nmax ~

:

As noted above, this analysis can be made more accurate by considering the cor-
relations between the transformations. Theorem 1 and Lemma 1 together imply that
there exist (fff) group matches and some point p in transformation space that brings
each of the model points in each of the group matches into alignment if and only if
there are fm point matches that p brings into alignment. So, we must determine the
likelihood that there exists a point in transformation space that brings into alignment
fm of the nm point matches. To do this we first determine the fraction of transfor-
mation space that brings a single point match into alignment (which I'll call b,.) Note
that for any rotation and scaling, there is set of translations of area w¢* that brings
the point into alignment up to the error bounds. So, if we assume that all transforma-
tions computed take each model point to somewhere within the image boundaries it

2

can be seen that the redundancy is T where dy and dy are the height and width of
the image. Note that this is the same as the translational redundancy in [Grimson et
al., 1992]. This assumption is not completely correct, but since each transformation
aligns three model points with three points within the image boundaries, most of the
other model points should be transformed to lie within the image boundaries. In any
case, this assumption provides us with an overestimate of the necessary redundancy.

If we otherwise follow the analysis of Grimson et al. we get:

B b,mn fm
pP= 1+ b,mn

We can set p < ¢ and solve for n as follows:

1 1
f - > —
mIn (1 bpmn) In )

Using the approximation In(1 + o) ~ « for small a we get:

fm > hql
b,mn )
n < f

~ b,In %



Note that this is not very different from the result derived by Grimson et al. since

b, = /b if the redundancy necessary for each match can be determined exactly. The
primary difference is a change from a factor of \3/11(17% to In %, which means that the
new estimate of the allowable number of image features before a given rate of false
positives is produced is lower than that obtained by Grimson et al. for the same
system.

It should be noted that this result is a fundamental limitation of all object recog-
nition systems that use only point features to recognize objects, not of this system
alone. Any time there exists a transformation that brings fm model points into align-
ment with image points, a system dealing only with feature points must recognize this
as a possible instance of the object. Two possible solutions to this problem present
themselves. First, we could use more descriptive features. The results presented here,
are easily generalized to encompass features conveying more information, such as line
segments or oriented points. Another solution is to examine subregions of complex
images. Since most complex images will not have objects that span their entire range,
regions of these images can be examined separately to determine objects present in
each region. This solutions runs the risk of an large object being split among sev-
eral regions, but segmentation algorithms can be used to help prevent this, and most
algorithms can recognize objects despite missing some features.

The primary implication of the above analysis on the techniques presented here
is that unless we are limited to simple images or use more descriptive features than
points to determine the transformations, we must still use pose clustering as a method
of find likely hypotheses for further verification, not as the sole means of recognition.

5 Complexity

This section discusses the time complexity necessary to perform pose clustering using
techniques that exploit the analysis described above. We can use a randomization
technique proposed by Fischler and Bolles [1981] and also used by Lamdan et al. [1988]
and Cass [1991] to limit the number of pairs of matches that must be examined. A
random pair of image points is chosen to examine as the image basis points. All basis
matches using these image points are examined and if one of them leads to recognition
of the object then we may stop. Otherwise, we continue choosing image basis points
at random until we have reached a sufficient probability of recognizing the object if
it is present in the image. If we randomly pick image basis points in this manner and
we require fm model points to be present in the image to ensure recognition, the
probability of not choosing a correct image basis in k tries is:

N
p= (1 - (f—m) )
n
If we require the probability of a false negative to be less than 6 we get:

13



. (1 _n(f_m)2> =0 (%>

n

(To a first-order approximation: ki, = (JZZ)Q In {)

For each image basis, we must examine each of the 2(5') = O(m?) permutations of
model points which may match them. So, in total we must examine O(Z—z) -0(m?) =
O(n?) basis matches to achieve accuracy 1 — §, assuming that picking a correct image
basis results in identification of the object. Since we examine O(mn) group matches
for each basis, our method requires O(mn?) time per object in the database, where
previously O(m®n?) was required. A comparison against other object recognition
algorithms for this problem may be useful.

Lowe does not analyze the complexity of the SCERPO system [Lowe, 1987], but
there are O(m®n?) possible initial matches that may be used in his system. The system
iteratively adds additional matches by examining possible matching image features
for each unmatched image feature. Since this step is O(mlogn) and this step may be
repeated O(m) times if the model is present in the image, the entire system appears
to be O(m°n®logn), although Lowe uses grouping to considerably reduce the number
of initial matches examined. The use of a randomization technique similar to the one
described here (and elsewhere) would reduce this to O(m?*n®logn).

The alignment method [Huttenlocher and Ullman, 1990] examines each of the
O(m?>n?) matches between three model points and three image points and determines
the transformation that aligns each of them. An O(mlogn) verification step is per-
formed for each match for a total of O(m*n”®logn). If the randomization technique is
used to limit the number of group matches examined, the running time of the align-
ment method can be reduced to O(mn®logn). Huttenlocher and Ullman use virtual
points from directional information at the feature points to reduce the complexity
when this information is available to O(m®n?logn) without randomization, and it
can be further reduced to O(mn*logn) with randomization. When this directional
information is available we can use it to generate virtual points for our algorithm as
well, reducing the complexity to O(mn?).

Since Thompson and Mundy [1987] examine pairs of image features, they have
only O(m?*n?) initial matches that must be examined. Their system assumes that
directional information from edges can be reliably determined at each of the feature
points. Our system can by easily modified to use the same features as used by
Thompson and Mundy, when they are available. This would reduce the complexity

14



of our algorithm to O(mn?) in the case where directional information at the feature
points is reliably determined.

The system of Linnainmaa et al. [1988] would be O(m?®n?) if all possible feature
groups were examined. The use of the heuristic that only the feature points connected
by consecutive edges are considered as groups reduces the complexity, but this method
will suffer from problems if edges can not be reliably extracted. Even when edges are
reliably extracted, objects may have a small number of such groups present in an
image, making them extremely difficult to recognize.

6 Implementation

It would be too time consuming to determine exactly which bins in pose space intersect
the set of poses that bring each match into alignment up to the error bounds at the
resolution necessary to limit false positives. Determining overestimates of the subset
of transformation space that bring each group into alignment as done by Grimson
et al. [1992] requires considerable extra time and they find that their overestimates
are approximately 1000 times larger than the true redundancy. A transformation
sampling [Cass, 1988] approach could be used, but this method requires explicitly
examining each possible match for each sampled point to determine if it is brought
into alignment.

My system follows previous pose clustering algorithms in that transformations are
represented by a single point in pose space. Overlapping bins that are large enough to
contain most, if not all, of the transformations consistent with the bounded error are
used. My implementation uses overlapping bins such that 3% = 729 bins may contain
a single transformation. This method should be able to find almost all of the correct
transformations without having as much redundancy as the method of Grimson et
al., but it does not have optimal accuracy. False positives may be a problem for this
system for complex or noisy images. For such images, we may want to find clusters
using a slower method, such as sampling transformation space and determining which
matches are brought into alignment by each sampled point (similar to Cass [1988].)
This alternative will find no cases where the transformations in a cluster are not
mutually consistent, at the risk of missing a cluster due to the sampling rate.

[ will now describe a simple, space-efficient, and fast method of performing binning
in the complete pose space. The method of Huttenlocher and Ullman [1990] is used
to determine the transformation parameters that bring the three model points into
alignment with three image points in the weak-perspective imaging model. Varying
image noise levels are accounted for in this implementation by varying the size of the
bins used in the binning procedure.

Since binning is used to find clusters, either coarse-to-fine clustering or decom-
position of the pose space is required, since the six-dimensional pose space is quite
large. Pose space can be decomposed into the six orthogonal spaces corresponding to
each of the transformation parameters. To solve the clustering problem, binning can
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be performed recursively using a single transformational parameter at a time. In the
first step, all of the transformations are binned in a one-dimensional array, using just

L is re-

the first parameter. Fach bin that contains more than fm — 2 transformations
tained for further examination, where f is now some predetermined fraction of model
features that must be present in the image for us to recognize the object. Each of
these bins is recursively clustered by binning the transformations held in each of them
separately, using the remaining parameters. Since this procedure continues until all
six parameters have been examined, the bins in the final step contain transformations
that agree closely in all six of the transformational parameters and thus form a cluster
in the complete pose space.

This method can be viewed as a variant of depth-first tree search. The root of
the tree corresponds to the entire pose space, each node corresponds to some volume
of the pose space, and the leaves correspond to the individual bins in the discretized,
six-dimensional pose space. Fach level of the tree corresponds to examining the
transformations in the bins corresponding to the nodes at the previous level of the tree
using a previously unexamined transformation parameter. Thus, the tree has height
six. At each level, we can prune every node of the tree that does not correspond to
a volume of transformation space containing at least fm — 2 transformations.

Figure 5 gives an outline of this algorithm. If each of the parameters has been
examined on some branch of the tree (i.e. we are at a leaf,) then we output a cluster
if the leaf corresponds to volume of pose space containing at least fm — 2 trans-
formations. Otherwise, we bin the transformations using a previously unexamined
transformation parameter. Each of the bins that contains at least fm — 2 transfor-
mations is then clustered recursively using the remaining transformation parameters.
Nodes corresponding to bins containing less than fm — 2 transformations are pruned.

Although, this decomposition of the binning problem has not previously been
formulated as a tree search, Grimson and Huttenlocher’s analysis [1990] implies that
previous pose clustering methods saturate such decomposed transformation spaces at
the levels of the tree near the root, due to the large number of transformations that
needed to be clustered.

The following analysis may give some intuition into why this is the case. If r is
the maximum number of bins that can overlap at a single point (and thus contain
a single transformation,) then there could be O(GL;) bins that hold as many as (YJ")
transformations at each level of the tree for previous pose clustering methods, since
there are O(m®n?) transformations. Using the techniques presented here, we can have
no more than % bins that contain as many as fm transformations, since there are
less than nm transformations clustered at a time.

This means that there can be at most % bins that are not pruned at each level of
the tree, for this system, containing no more than rmn total transformations. Thus,
O(n) bins are examined and O(mn) total time is required. In addition, O(mn) space

'If fm model points are present in the image, a single basis will yield fm — 2 correct
transformations
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function find-clusters(input: transformation-set,parameter-set)
if (cardinality(parameter-set)==0) then
if (cardinality(transformation-set)> fm — 2) then
output-cluster(transformation-set);
else
choose some p Eparameter-set;
bin-array=bin-transformations(transformation-set,p);
for b = 1 to array-length(bin-array)
if (cardinality(bin-array[b])> fm — 2) then
cluster(bin-array[b],parameter-set—p);
end

Figure 5: Recursive binning algorithm.

is required to execute this algorithm.

Once clusters are found we use a method similar to that of Huttenlocher and
Cass [1992] to determine an estimate of the number of consistent matches. They
argue that the number of matches in a cluster is not necessarily a good measure of
the quality of the cluster, since different matches in the cluster may match the same
image point to multiple model points, or vice versa, which we do not wish to allow.
Huttenlocher and Cass recommend counting the number of distinct model points or
image points matched in the cluster, since it can be determined quickly (as a opposed
to the maximal bipartite matching) and is reasonably accurate.

7 Results

I have performed several experiments to verify the usefulness of techniques described
above. Experiments have been performed on two systems, the first uses the con-
ventional pose clustering technique of clustering all of the possible transformation
simultaneously, but otherwise was implemented as described above. The second im-
plements all of the ideas discussed in this paper.

Models and images have been generated for these experiments using the following
methodology:

1. Model points were determined randomly from a cube with side length 200 units,
such that no two model points were with 10 units of each other.

2. The model was transformed by a random rotation and translation and was
projected using the perspective projection onto the image plane.

3. Bounded noise (¢ = 1.0) was added to each image point.
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System 1 System 2
m | optimal  average % | optimal average %
10 120 95.5 .796 8 6.64 .831
20 1140 882.2 774 18 15.02 .834
30 4060 3046.9 .750 28 23.23  .830
40 9880  7400.78 .749 38 30.79 810
50 19600 14569.93 .743 48 40.47 843

Table 1: Performance finding correct clusters. m: number of object points; optimal:
size of optimal cluster: (5) for System 1 and p — 2 for System 2; average: the average
size of cluster found; %: the average fraction of optimal cluster found.

4. If any two image points were within 4 pixels of each other, steps 2 and 3 were
repeated.

5. In some experiments, additional random image points were added such that no
two image points were within 4 pixels of each other.

Table 1 shows the performance of these two systems at finding correct clusters.
The first system finds much larger clusters, of course, since it clusters many more
correct transformations, but the size of the false clusters is expected to be rise at
approximately the same rate (see the analysis in Sections 3 and 4.) The new tech-
niques actually find a larger percentage of the optimal size clusters. This is because
these clusters have smaller extent; when using a basis set of two matches, the noise
associated with those two image points stays constant over the entire cluster. This
noise moves the cluster from the true location, but does not increase the size of the
cluster, as it does when we do not use a basis set. For System 1, the noise inherent
in varying all three of the matches comes into play, increasing the size of the clus-
ters. This demonstrates an advantage the new pose clustering techniques have over
previous methods that is not reflected in the analysis of previous sections.

Table 2 shows the size of incorrect clusters found by the second system for models
of 20 random model points for various image complexities. Shown are the average
size of the largest cluster found for each image basis, the standard deviation among
these, and the size of the largest cluster over all of the image bases. Since the system
found clusters of average size 15.02 for models of twenty points that appear in the
image, these levels of complexity will not cause a large number of false positives to
be found.

Table 3 shows the results of experiments determining the number of trials nec-
essary to recognize objects in the presence of random extraneous image points. A
cluster is required to be 80% of the optimal size (14 for models of size 20.) FEven
though clusters of suboptimal size are allowed, these experiments assume f = 1.0
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n | average std. dev. maximum
20 3.79 0.81 6
40 5.32 1.20 10
60 6.35 1.49 12
80 7.23 1.66 12
100 7.91 1.86 13
120 8.22 2.02 14
140 8.51 2.14 14
160 8.68 2.19 15

Table 2: Size of false negative clusters found by System 2 for objects with 20 feature
points. n: number of image points; average: average size of largest cluster for each
image basis; std. dev.: the standard deviation among the size of the largest cluster
for each image basis; maximum: the largest cluster found for any image basis.

since each model point appears in each image. We cannot assume that each correct
basis will result the algorithm finding a clustering cluster of even 80% of the opti-
mal size. If we estimate that in pathological models and/or images, only 50% of the
correct bases will result in a sufficiently large cluster, then we have:

Iné

kimi =
T (1))

For each value of n, Table 3 shows kj;,,,i¢ for 6 = 0.01, the average number of trials

necessary to recognize the object, the maximum number necessary, and the number
of objects (out of 100) that required more than ki, trials. For each case, at least
98 of the 100 objects were recognized within ky.;; trials. Overall, 99.3 percent of
the objects were recognized within ki, trials, with the expectation of recognizing
1 — 6 =99.0 percent of the objects.

To summarize the experimental results, the new pose clustering method has been
determined to find a larger fraction of the optimal cluster than previous methods and
result in very few false negatives for non-complex images. In addition, the number
of basis matches we must examined to recognize objects has been confirmed experi-
mentally to be O(n?), making the total time required O(mn?).

8 Hierarchical Clustering

Due to the number of transformations that were clustered in previous pose cluster-
ing methods, binning had an enormous time advantage over other clustering tech-
niques. For example, many hierarchical agglomerative clustering techniques have
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n kiimi¢ average max over
20 6.65 1.51 11
40 34.52 5.28 20
60 30.65 14.50 165
80 | 145.20 25.24 270
100 | 228.19 33.39 223
120 | 329.61 51.70 412
140 | 449.47 55.86 280
160 | 587.77 109.97 2321
180 | 744.51 113.31 556
200 | 919.69 145.95 697

OO = O = O~ NO DN

Table 3: Number of trials to find objects with 20 points. n: image points; ki
number of trials the analysis says is necessary for 6 = 1.0; average: the average
number of trials necessary to recognize the object; max: the maximum number of
trials necessary to recognize the object; over: number of objects (out of 100) that
required more than kj;,;; trials to recognize.

been proposed that operate in O(p?) time (where p is the number of points to clus-
ter.) These algorithms use the pairwise distances between points and find nearest
neighbors to determine which points to agglomerate (e.g. [Sibson, 1973, Defays, 1977,
Day and Edelsbrunner, 1984].) Some results are summarized by Murtagh [1983].

The basic structure of these methods is as follows: At the beginning each point is
considered a cluster by itself. A matrix of intercluster distances using some distance
metric (upon which some restrictions may be placed depending upon the algorithm
used) is determined. Some pair of mutual nearest neighbors are then combined into
a single cluster and the distances to the new cluster are updated. This process is
repeated until all of the points belong to a single hierarchical cluster. Such algorithms
require O(p?) time when the updating can be performed efficiently.

The result of hierarchical clustering algorithms is a structure called a dendrogram,
which is a representation that records which clusters were linked at each step (see
Figure 6.) This single hierarchical cluster can be easily decomposed into clusters with
less than some maximum radius by recursively subdividing clusters that are too large
into the two clusters that were linked to form each of them.

Since previous pose clustering algorithms required the clustering of O(m®n?)
points, the use of these clustering methods would have required far too much time.
Now that the pose clustering problem has been reduced to subproblems of size O(mn),
these clustering methods are less costly. In particular, since clustering is performed

O(n?*) times and clustering using hierarchical clustering techniques takes O(m?n?)

time, the overall time bound becomes O(m?*n*) when hierarchical clustering is used
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Figure 6: A dendrogram shows how the clusters are merged hierarchically.
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instead of binning. This may be acceptable for small problem sizes or on paral-
lel networks, where p points can be clustered O(plog p) time [Li and Fang, 1989,
Olson and Ranade, 1993]. Clustering p points using hierarchical clustering can be
performed using O(p) space for many algorithms. Since O(mn) transformations are
clustered at a time, this means O(mn) space is required to cluster the transformations.

Grimson and Huttenlocher [1990] note that partitional clustering could be used
(i.e. the k-means clustering method,) but do not consider hierarchical clustering.
The k-means method is not acceptable for pose clustering for two reasons. First, the
number of clusters into which the points are partitioned must be known in advance.
Second, each point is placed in one of the partitions. Since most of the transformations
clustered in pose clustering are spurious, forcing them into a cluster will not yield
good results, in general.

9 Discussion

The techniques described in this paper can be used with recognition strategies other
the pose clustering, if these strategies examine pose space to determine where the
transformations aligning several groups of points lie. For example, Breuel [1992]
recursively subdivides pose space to find volumes that intersect the most consistent
matches. These volumes are found by intersecting the subdivisions of pose space
with bounded constraint regions arising from hypothesized matches between sets of
model and image features. The expected time was found to be linear in the number
of constraint regions. To recognize three-dimensional objects from two-dimensional
images using point features, matches of three points are necessary to generate bounded
constraint regions. Thus, there are O(m®n®) such constraint regions for this case.

Theorem 1 (in Section 3) implies that Breuel’s algorithm will still find the best
match if it examines only the O(mn) constraint regions associated with a given basis
of two correct matches of feature points. Since we don’t know two correct matches in
advance, we must examine O(n?) of them (using the randomization technique from
Section 5,) yielding a total time of O(mn?), as with our pose clustering algorithm.

These results can be generalized to the case of features other than points. For ex-
ample, Breuel examines features that are line segments (with unoccluded end points.)
For the case of two-dimensional objects undergoing similarity transformations, only
one match of a model line segment to an image line segment is necessary to determine
a bounded constraint region. Since any possible basis match will contain all of the
information necessary to determine the transformation, the techniques presented in
this paper will not be useful. For the case of three-dimensional objects, more than
one match will be necessary. So, for this case we can realize a significant speedup
using these techniques.
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10 Conclusion

I have shown that pose clustering for the case of three-dimensional object recognition
from two-dimensional objects does not require the clustering of O(m?®n?) transforma-
tions. Pose clustering with the same accuracy can be achieved by clustering O(mn)
transformations, if two correct point matches are given to us. In the case where we do
not know two correct point matches, O(n?) initial point matches must be examined
to achieve a negligible probability of a false negative, for a total time requirement of
O(mn?). Since far fewer transformations are clustered at a time, this method requires
much less memory and accurate clustering methods become more feasible with its use.
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