Operational Rationality through Compilation
of Anytime Algorithms

by

Shlomo Zilberstein
B.A. (Technion — Israel Institute of Technology) 1982

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in
COMPUTER SCIENCE

in the
GRADUATE DIVISION
of the
UNIVERSITY of CALIFORNIA at BERKELEY

Committee in charge:
Professor Stuart J. Russell, Chair
Professor Susan L. Graham
Professor Alice Agogino
Professor Thomas L. Dean

1993

Operational Rationality through Compilation
of Anytime Algorithms

Copyright (© 1993

by
Shlomo Zilberstein

Contents

Table of Contents

List of Figures

List of Tables
Preface
Acknowledgements
1 Introduction
1.1 Thecostof deliberation L
1.2 Rationality in artificial agents
1.2.1 The failure of classical decisiontheory
122 Operational rationality
1.3 Thesis . . . o o e e
1.3.1 Historical perspective e
132 Thesisstatement L e
1.4 Achieving operational rationality L o o
1.41 Anytime algorithms, compilation and monitoring
1.42 The main problems addressed by thiswork
1.5 Dissertation organization e e e
2 Background: Real-Time Decision Making

2.1 Reactive systemsand universal planningo
2.2 Meta-level control of computation Lo
2.3 Anytimealgorithms
2.3.1 Anytimepathplanning
2.3.2 Flexiblecomputations
2.3.3 Approximate proCessing e e e e e e e e e e e e
2.3.4 Incremental approximate planningo oo
2.3.5 Anytime query answering in relational databases
2.4 Design-to-timescheduling
2.5 Real-timeproblemsolving
2.5.1 Real-timeheuristicsearch L

vii

CONTENTS

4

252 Softreal-timeo
2.6 System support for approximate computationo L.
2.7 SUMMANY .« . o v ot e e e e e e e e e e e e e e e e e

Utility-Driven Real-Time Agents

3.1 Artificial agents L
3.2 Goals versus utility functionso L
3.2.1 Partial goal satisfaction
3.2.2 Explicitand implicitutility
3.3 Real-timeagents e e
3.3.1 Time-dependentutility
3.3.2 Thecostoftime
3.4 Evaluating utility-drivenagents
Anytime Computation
4.1 Anytimealgorithms
411 Measuringqualityofresults L
4.1.2 Interruptible versus contract algorithms L.
4.1.3 The anytime travelingsalesman
4.2 Performance profiles L
4.2.1 Categories of performance profiles oL,
4.2.2 Properties of performance profiles oo
4.2.3 Finding the performance profile of an algorithm
4.2.4 Representation of performance profiles L.
4.2.5 The library of performance profiles o L.
4.3 Modelof execution
431 Designgoals
4.3.2 Assumptions about the programming environment
4.3.3 Running elementary anytime algorithms
4.4 Programming techniques e
4.5 Theoretical aspects of approximate computation L.

Compilation of Anytime Algorithms

51 Whycompilation? e
5.1.1 Modularity and anytime computation L.
5.1.2 Minimizing the responsibility of the programmer
5.2 Thecompilationproblem
53 Compilationexamples
5.3.1 Compositionof two algorithms oo
5.3.2 Linear composition of anytime algorithms
5.3.3 Local and global compilation o
5.4 Conditional performance profiles L
5.4.1 Special cases of conditional performance profiles
5.4.2 General conditional performance profiles L.

5.5 Compilation of functional composition L oL

55

CONTENTS

551 Complexityresults.
55.2 Optimaity of local compilation
553 Additional programming operators e
554 Repeated SUD-EXPressionS oL e e
555 Compilation of unrestricted compositeexpressions
556 Compilationunder uncertainty o
5.6 Compilation of other programming structures L L.
56.1 Conditional Structures
56.2 Compilationof booleanexpressions oo
56.3 Compilationof loops L
57 SUMMANY oo e e e
6 Run-Time Monitoring of Anytime Algorithms
6.1 Theruntimesystem
6.1.1 Monitoringschemes
6.1.2 Uncertainty inrea-timesystems. o
6.1.3 Episodicproblemsolving
6.2 Monitoring contract algorithms
6.21 Redlocatingresidua time
6.22 Adjustingcontracttime Lo
6.23 A monitoringexample
6.3 Monitoringinterruptiblealgorithms Lo
6.3.1 Interruptibleanytimesystemso
6.3.2 Activemonitoring using the value of computation
6.3.3 Dynamic adjustment of performance profiles
6.34 A monitoringexample
6.4 SUMMANY o o e e e e e
7 Anytime Sensing and Anytime Action
7.1 Beyondepisodicproblemsolving
711 Thepurely computational agento
7.1.2 Computation, perceptionand action
7.2 ANYLMESENSING o o o e e e e e e
721 Sensingversuscomputationl
7.22 Passivesensinginsemi-staticenvironments. L
723 Sensingasanindependentprocess i e e e
7.24 Sensing as an information gatheringaction L.
7.3 Anytimeaction. e e
7.3.1 Elementary anytimeactions Lo
7.3.2 Peformanceprofilesof actionso Lo
7.33 Buyingtimeinred-timedomains oL

7.3.4 Controlling anytime action
7.4 Operational rationality over history

8 Application and Evaluation

68
71
74
76
78

85
85
88
93
96

CONTENTS Vi

8.1 Path planning and navigationinroboticsystems. oL L. 120
8.1.1 Theenvironment. 120

812 ANYtIMESENSING ¢ o o ot e e e e e 122

813 Anytimeabstractplanning 123

814 Compilationof sensingandplanning oL L. 129

815 Theruntimesystem L 130

8.2 Otherapplications e 131
8.2.1 Anytimepragmatic diagnosticengine o 132

822 Genegrate-and-testsearch.o 133

8.3 Modd evaluation 135
8.3.1 Congtructing elementary anytimealgorithms 135

8.3.2 Computing perfformanceprofiles. Lo oL, 136

833 Compilation 136

8.3.4 Achieving operational rationality oo 136

9 Conclusion 138
9.1 Contribution L e 138
9.2 Furtherwork o e 139
9.21 Thescopeof compilation 139

9.22 Thetheoretical framework 139
9.2.3 Programming support for anytime computation L. 140

9.3 Design, deliberationand adaptation 140
Glossary 142

Bibliography 144

List of Figures

1.1 Idedl, traditiona, and anytime decisionprocedures 5
12 Pathplanningexample e 9
1.3 Theconceptua layersof themodel L. 9
2.1 Termination condition using rational meta-reasoning L. 15
2.2 Performance profiles of tour improvement and pathplanning 17
2.3 Optimal time alocation to base-level computation. 19
24 Concord processstructure 26
31 Artificid agents e 29
3.2 Formsof compiled and uncompiledknowledge L. 30
41 Typica performanceprofiles. L 36
4.2 Performance profiles of interruptible and contract algorithms 38
4.3 The operation of randomized tour improvement L. 39
4.4 Theanytimetraveling salesmanalgorithm 39
45 Superior performance profiles L 42
4.6 Thequality mapof theTSPalgorithm 44
4.7 The expected performance profile of the TSPalgorithm 45
4.8 Typica implementation of an interruptible anytime algorithm 49
4.9 Thecontrol of anytimecomputation L 50
51 Compilationand monitoring e 56
5.2 Performance profiles of two contract algorithms 59
5.3 Conditional performance profileof aTSPalgorithm 67
5.4 Treerepresentation of aCOMPOSItEEXPreSSioN« v v v vt v b vt 72
55 Anytime composite module for speech recognition oL 76
5.6 Compositeexpressionsand straight linecode L. 77
5.7 DAG representation of COMpPOSItEEXPreSsionS« o o v v v v v v e e e e 78
5.8 Timeadlocationusing ahill-climbingsearch 79
5.9 Timealocation with pre-determined time to repeated sub-expressions 80
5.10 Learning the allocation to repeated sub-expressions 82
511 Compilationof abooleanexpression 89
5.12 Interruptible evaluation of abooleanexpression L. 93
513 Compilationof anunboundedloop o 94

Vii

FIGURES viii

6.1 Monitoring anytime computationo 99
6.2 Asequence of residual sub-systems 103
8.1 Dataflowdiagram e e 121
8.2 The performance profile of the visionmodule 122
8.3 The anytime planning algorithm 124
8.4 Thepathfinder 124
85 Optimalpath e 125
8.6 Abstract plans with perfectvision Lo 126
8.7 The performance profile of the anytime planner 127
8.8 Abstract plans with imperfectvision L o 128
8.9 The conditional performance profile of the anytime planner 129
8.10 Compilation of visionand planningo 130
8.11 Intra-frame optimization 131
8.12 Therun-timedisplay 132
8.13 Architectures for model based diagnosiso oL 133
8.14 Distribution of solutions over timefor S1-4 L oL 135

9.1 Real-timedecisionmaking 140

List of Tables

2.1 Approximate relational algebra operations

4.1 The performance distribution profile of the TSP agorithm

5.1 Optimal timealocation in boolean expressionevaluation

Preface

Since my first encounter with a computer, | was fascinated by the possibility of writing programs that could
really “think.” A few weeks after my first BASIC lesson, | remember writing programs that could play and
win simple games such as Nim and Mastermind. But those programs did not think. They were designed to
follow a winning strategy that could be calculated by a simple formula. The computer’s fast information
retrieval and speed of computation were a substitute for thinking and left open the question of how to develop
a program that could truly reason about its domain.

Years later, when I joined the Ph.D. program at Berkeley, | knew that my research was going to
be in the area of automated reasoning. Believing that the answer to this fundamental problem lay within
the realm of mathematical logic, | started a journey, in the words of Leibnitz, into “the universal algebra of
all knowledge.” Gradually however, it became apparent to me that logic, as attractive and elegant as it may
seem, cannot capture the richness of practical reasoning. Practical reasoning is approximate, is resource
bounded, and is interruptible. Logical reasoning is precise, is intractable, and is non-interruptible. 1 also
found that classical decision theory that better deals with reasoning under uncertainty does not address
adequately the problem of practical reasoning.

While at Berkeley, | became familiar with the work of Stuart Russell and Eric Wefald on principles
of meta-reasoning. Thiswork offered a new framework for automated reasoning that addressed the problem
of limited computational resources. It suggested, like 1. J. Good before, that practical reasoning should be
based on a certain kind of limited rationality that takes into account computational resources. The global
optimization problem of decision quality, as Herbert Simon claimed in the late 1950’s, should be “to find
the least-cost or best-return decision, net of computational costs.” Consequently, | started to work on the
construction of a practical model that would embody these principles. | was convinced that additional
architectural restrictions must be made before the principle could be put into efficient use.

The work of Tom Dean and his students on time dependent planning triggered my inquiry into the
possibility of building large real-time decision making systems using anytime algorithms. | suggested that
building decision systems from anytime modules could be the architectural constraint. | felt that anytime
algorithms offered the flexibility needed to construct a general and practical model of limited rationality.
Anytime algorithms, or more generally, approximate algorithms, are as old as computer programming.
However, it was not until the late 1980’s that it was suggested that decision-theoretic control of anytime
algorithms could be used for optimizing real-time problem solving. This idea, that met with considerable
initial skepticism, has now been embraced by the artificial intelligence community.

My central research goal has been to bridge the gap between the simple task of developing ele-
mentary anytime algorithms and the complex task of constructing large systems that offer a similar tradeoff
between computation time and quality of results. This effort has culminated in the construction of a model
of “operational rationality.” However, the problem of constructing programs that can really think still re-
mains. Intelligence today is still achieved largely by design, not by autonomous learning and adaptation.

PREFACE Xi

From my early naive attempts to make computers think, | have grown to appreciate the true complexity of
thistask. Now | find that it is precisely that complexity which stimulates me to continue this research.

Acknowledgements

I will always remember the years spent at Berkeley as an exciting period of personal growth as a scientist,
as ateacher and, most importantly, as an individual. With much pleasure, | take the opportunity to thank
the people who helped me through this fascinating period.

Stuart Russell, my teacher and advisor, introduced me to the enchanting world of artificial intel-
ligence and made my studies challenging and enjoyable. His demonstrations of constant confidence in the
face of research uncertainties on the one hand, and his permanent questioning of our methods on the other,
have been and always will be inspiring to me.

The members of my dissertation committee were very helpful. Susan Graham was supportive
during my entire graduate career. Alice Agogino gave me encouragement and useful advice. | am particu-
larly thankful to Tom Dean of Brown University who inspired my initial interest in anytime algorithms and
has continued to provide me with important insights and comments.

My teachers at Berkeley created a stimulating environment that | will greatly miss. In particular,
| am grateful to Jitendra Malik and Lotfi Zadeh for broadening my understanding of artificial intelligence
and to Michael Harrison and Raimund Seidel with whom | greatly enjoyed working as a teaching assistant
during my first year.

The past and present members of RUGS, with whom | had many productive and enjoyable dis-
cussions, include Francesca Barrientos, Jeff Conroy, Marie desJardins, Othar Hansson, Tim Huang, Sonia
Marx, Andrew Mayer, Ron Musick, Gary Ogasawara, Sudeshna Sarkar and the late Eric Wefald. They
listened patiently to my evolving ideas and to countless practice talks and even had the patience to provide
useful comments. My friends at Berkeley, especially Benjamin Fuchs and Yochai Konig, kept me from
being overly dedicated to my research. My lifelong friends in Israel, Ilan, Menashe, Moishe, Oded and
Oren, whom | greatly miss, always believed in my ability and encouraged mein all my endeavors.

The Computer Science Division staff was aways supportive and helpful: Ellen Boyle, Teddy
Diaz, Liza Gabato, Ani Nayman and Jean Root. Kathryn Crabtree, in particular, helped me navigate the
intricate maze of Berkeley’s bureaucracy with utmost ease.

My family always surrounded me with love and support. | wish to thank my parents, Arie and
Esther, my sister Tal and my brothers Ronen and Niv. My extended family, Barbara and Sheldon Rothblatt
and Abe and Fela Hirsch, have created for me awarm, “hamish” feeling at Berkeley. My wife, Karen, has
changed my life in so many wonderful ways. To her, | dedicate thiswork.

Xii

Chapter 1

| ntroduction

If the human brain was so simple that we could understand it, then we would be so simple that
we could not.

L. Watson

How can an artificial agent! react to a situation after performing the “right” amount of thinking? In this
dissertation | develop a theoretical framework and a new programming paradigm that provide the answer
to this question. The key component of the solution is the replacement of standard modules of a program
by more flexible computation elements that are called anytime algorithms [Dean and Boddy, 1988; Horvitz,
1987]. Inaddition, the model includes an off-line compilation process and a run-time monitoring component
that guarantee that the agent is performing the right amount of thinking in a well-defined, rigorous sense.

1.1 Thecost of deliberation

Agents must limit the amount of thinking or deliberation since thinking has a cost associated with it. The
overall performance of artificial agents can be improved by control of deliberation time. Two factors de-
termine the cost of deliberation: the resources consumed by the process, primarily computation time, and
constant change in the environment that may decrease the relevance of the outcome and hence reduce its
value. In artificial agent construction, the cost of deliberation can be drastically reduced if the agent’s re-
action to any possible situation can be calculated and stored in a table. The result is a reactive agent whose
behavior is determined by the state of the environment and a relatively fast look-up operation in a table.
As | argue in Section 2.1, this architecture is not realistic for situations in which a robot is performing any
“interesting” task in a real, physical environment. The size of the table required to guide the robot would
be enormous, too large to construct or store using any modern computer. | therefore assume that an agent
must perform some real-time problem solving and explicit deliberation, and is therefore a deliberate agent.

An important aspect of intelligence, traditionally ignored in the development of artificial agents,
is the capability of the agent to factor the cost of deliberation into the deliberation process. People do it all
the time. When one plans a trip to Japan, for example, the plan is not likely to include a specific action to be
taken in case the Shinkansen train from Tokyo to Osaka is canceled. This possibility is not part of the plan

1An agent can be thought of as a robot situated in a particular environment and capable of translating perceptual input into
actions that bring about a desired state. The notion of an artificial agent is defined and discussed in more detail in Chapter 3.

CHAPTER 1. INTRODUCTION 2

because it is very unlikely to happen given one’s prior knowledge of trains in Japan. Yet, itis notimpossible.
However the time needed to plan an alternative action can be better utilized. Obviously, a plan that includes
an alternative action for any possible problem is a better plan. It may help the agent reach the destination
faster in case of an unexpected event. However, if one tries to consider the range of all possible problems
that may occur on the trip, one would have to stay at home and plan forever. My primary research goal has
been to formalize an efficient model in which the tradeoff between continued deliberation and commitment
to action can be analyzed. Most people use common sense in order to decide on the “appropriate” amount of
deliberation. Unfortunately, common sense reasoning is not a well understood process. In order to enable
artificial agents to handle this problem, | develop in this dissertation a model that specifies the type of
knowledge and reasoning procedures that can mechanize and optimize this process.

The capability of a system to reason about its own decision-making component in order to esti-
mate the value of continued deliberation has been generally referred to as meta-reasoning [Batali, 1986;
Davis, 1980; Dean and Boddy, 1988; Doyle, 1988; Genesereth, 1983; Horvitz, 1987; Russell and Wefald,
1989b]. Meta-reasoning, or reasoning about reasoning, can be used in various ways in order to improve the
performance of a system: by selecting the most appropriate base level reasoning procedure in any given
situation, by controlling a base level search procedure, or by dynamic allocation of computational resources
to competing computation sequences. In the model developed in this dissertation, a meta-reasoning com-
ponent was developed for the purpose of controlling the deliberation time of the flexible components of the
base level.

1.2 Rationality in artificial agents

The search for a precise definition to the notion of “the right amount of thinking” leads naturally to the
theory of rational choice. The notion of rationality has been widely discussed in philosophy, economics
and artificial intelligence. In my work, | have used the decision-theoretic notion of rationality where proba-
bilistic information about the possible outcomes of actions together with knowledge on the payoffs of these
outcomes are used in order to make the best decision in terms of expected payoff. To compute the expected
payoff, decision theory uses utility functions that specify the desirability of certain configurations of the
world. The relationship between the given utility function and the behavior of the agent is the key question.
Any method used by the agent that suggests the “right action” to do, so as to maximize the utility function,
can be considered as a type of rationality. In this dissertation | show how a model based on compilation of
anytime algorithms can be used in order to successfully implement a certain kind of limited rationality. |
also show that the alternative views of rationality as a basis for agent construction are ill-defined, unrealistic,
or both.

1.2.1 The failure of classical decision theory

The notion of rationality that I use in this dissertation stems from the pioneering work of von Neumann and
Morgenstern [1947]. This work laid the foundation of what is called statistical decision theory. According
to this theory, an agent faced with a choice of performing one out of several possible actions would select
the action that maximizes the expected payoff. In other words, the agent would select the action that is most
likely to transform the state of the world into a highly desired state according to the its utility function. An
agent that performs actions that satisfy this theory is a perfectly rational agent. Since the theory allows for
uncertainty concerning the outcome of each action, a perfectly rational agent may reach undesirable states,
but in the long run, it would outperform any other agent in maximizing the utility function.

CHAPTER 1. INTRODUCTION 3

Asattractive asit may seem, classical decision theory failswhen used as the basic mechanism for
implementing an artificial agent. It suffers from the following weaknesses:

1. Ignoring the cost of deliberation. Perfect rationality requires optimal decision making in virtualy no
time since, among other reasons, the world is changing while the agent is computing its next action.
Inaction causes loss of utility. By assuming a static world that is “waiting” for the agent to make its
optimal decision, the theory ignores a major aspect of any realistic domain.

2. Exhaustive evaluation of all possible outcomes. Classical decision theory is based on exhaustive
evaluation of all the possible outcomes of all actions. Thisrequires alot of unnecessary computation.
It is enough to establish the fact that one action is superior to all others without exact evaluation of
al the dternatives. Exhaustive consideration of all the possible outcomes is not only inefficient but
computationally impossible.

3. Optimizing individual actions. Since the overall performance of the agent is important, not the out-
come of each individual action, it may be necessary to optimize over all possible sequences of actions
over a certain period of time. However, applying classical decision theory to sequences of actions
istoo complicated. The size of the decision tree grows exponentially and it cannot be completely
evaluated in any reasonable time.

4. Learning and exploration. An important aspect of any intelligent agent is the capability to improve
its performance component by learning and exploration. The utility of learning is hard to determine
in advance. Past experience can be used to estimate the effect of learning on performance. However
the objective of exploration and learning is to improve the agent and transform it into a new, better
system whose exact characteristics cannot be known in advance. The effect of learning may not be
noticeableimmediately, but rather in thelong run. Therefore, it ishard to characterize the desirability
of learning and exploration and to maintain the notion of perfect rationality.

Asaresult of these weaknesses, perfect rationality requires an agent that follows a precal culated
optimal strategy?. It also requires that the agent retrieves the appropriate decision instantaneously. Unfor-
tunately, due to the computational limits of the designer and his imperfect knowledge, the requirement to
equip the agent with a perfect strategy is too strong and unrealistic. Therefore, artificial agents cannot be
perfectly rational. They cannot manifest the best possible behavior even in relatively simple domains such
as chess playing.

Thefailure of classical decisiontheory led the statistician 1. J. Good [1971] to distinguish between
perfect rationality, which hecalled “type” rationality, and “typel1” rationality which acknowledgesthefact
that the agent must deliberate before it can act. Thistype of rationality requires that the agent maximize its
expected utility, taking into account the cost of deliberation. Similarly, referring to the problem of rational
decision making in the field of economics, Simon [1976] saysthat: “The global optimization problemisto
find the least-cost or best-return decision, net of computational costs.” But neither Good nor Simon tell us
how to achieve type Il rationality. Moreover, while type Il rationality may be a more realistic goal, it does
not offer any simplification of the problem. In away, type Il rationality is simply more general and would
produce type | rationality if the computational power available to the agent is unlimited. Hence, achieving
type Il rationality is an even harder task.

2In some competitive environmentsit can be shown that no optimal strategies exist. However we restrict the discussion to a
single agent operating in a non-competitive environment.

CHAPTER 1. INTRODUCTION 4

A number of researchers in Al have addressed the problem of deliberation cost by suggesting
various techniques that take into account the actual computational power of the agent. These techniques
are generaly referred to as “limited” or “bounded” rationality. While perfectly rational agents cannot be
constructed at all, limited rationality can be constructed in principle. Just imagine al the possible imple-
mentations of agents by programming a given machine. One of them must be superior to all the othersin
maximizing the utility function and is therefore the desired implementation. However, direct construction
of such an optimal agent isimpossible under standard computer architectures since it transfers the problem
into the design level and requires that the designer have infinite resources of computation. Consider, for
example, aprogram that can play chess better than any other computer program or human being. Isthere a
way to effectively check whether the program is or is not the best possible, given the machine capabilities?
If the program is modified so that one subroutine is running faster, is the latter program more “rational”
just because of that? The conclusion is that even bounded rationality cannot be achieved in practice or
even be verified. Beside computational power, additional architectural constraints must be assumed before
a practical approach to rationality can be devel oped.

More recently, Russell, Subramanian and Parr proposed a definition of bounded optimality as a
property of programsthat govern the behavior of an agent given a computational device and a certain envi-
ronment. To have thisproperty, the expected utility of the program running on the device in the environment
must be at least as high asthat of all other programs. For arestricted class of programs, that consists of a se-
guence of decision procedures, a construction algorithm is proved to generate a bounded optimal program.
Russell, Subramanian and Parr acknowledge that the strict notion of bounded optimality may be too strong
to alow many interesting, general resultsto be obtained. Hence they suggest, just asin complexity theory,
to replace bounded optimality by asymptotic bounded optimality. The latter case requires that the program
just needs a faster machine to be as good as the best possible program on arbitrarily hard problems.

Another approach to bounded rationality is based on a meta-reasoning that treats computations
as interna actions [Russell and Wefald, 1989b], as opposed to external actions that correspond to actual
interaction with the environment. According to this approach, the agent spends some time on estimating
the expected vaue of alternative computations. It then performs the best computation, provided that the
expected value of this computation exceeds its cost. If thereis no such computation the algorithm suggests
the current best action based on previous computations. The evaluation of aternative computationsis an
internal problem that is solved in the same way using meta-meta-reasoning. The difficulty with such a
uniform meta-level architecture isthat any attempt to maximize the expected utility of the agent leadsto an
infinite regress problem [Batali, 1986; Doyle, 1988; Russell and Wefald, 1989b]. This problem arises as a
result of optimizing a process that involves self-reference and recursive eval uation of internal computations
without any justified way to truncate this recursive process and maintain overall optimality. However,
limiting the number of meta-levels can be accepted as areasonable architectural constraint. Infact, anumber
of applications of this approach, that assume a single meta-level layer, have been devel oped.

Finally, an important technique that simplifies the control of deliberation time is based on any-
time [Dean and Boddy, 1988] or flexible [Horvitz, 1987] algorithms. To summarize its benefits, Figure 1.1
(based on [Russell and Wefald, 1991]) illustrates the differences between three alternative decision proce-
dures. It shows the decision quality as a function of time for each method. In this particular example, the
decision quality measures the effect the decision would have on the utility of the agent if applied at the
current state. An idea decision procedure yields maximal quality in no time. Hence, it isillustrated by
a step function that rises to maximal quality at ¢+ = 0. Traditional decision procedures are either quality
maximizing or time minimizing. That is, they either produce the maximal quality after a certain time or
produce an acceptable decision as fast as possible. The former case is illustrated by a step function that

CHAPTER 1. INTRODUCTION 5

- ideal
DeCISION | e sererensinnean
Quality :
anytime : traditional
anytime+
. time cost
| =
time cost Time

Figure 1.1: Idedl, traditional, and anytime decision procedures

rises to maximal quality at acertain timet > 0. Unfortunately, by that time the decision may have little
value due to change in the environment. The time cost function describes the expected loss of utility as a
function of timein the absence of a decision. In thisexample, the traditional decision procedure returnsits
result at a point where thetime cost isvery high, hence itscomprehensive valueis negative. Finally, an any-
time decision procedure can generate sub-optimal decisions whose quality improves as computation time
increases. When the value of these decisionsis combined with the cost of time, an optimal time allocation
can be determined that maximizes the comprehensive value.

It will become apparent to the reader hereinafter that the above description is somewhat oversim-
plified. The cost of timeis not so easily determined and may not be separable from the characteristics of
the decision procedure itself. However, the figure illustrates the main features of the three methods and the
motivation for anytime computation.

1.2.2 Operational rationality

In theface of theoretical and practical limitationsin implementing both Typel and Typell rationality, | sug-
gest amorerrestricted, realistic model of rationality. The model isbased on optimizing resource allocationto
anytime algorithms. In thistype of rationality, the performance components of the agent are determined by
the designer of the system and are not themsel ves subj ect to the run-time optimization process. Optimization
isonly applied at the meta-level to control the deliberation time of the base-level performance components.
Hence | propose the following definition:

Definition 1.1 An agent is said to be operationally rational if it optimizes the allocation of resources to
its performance components so as to maximize its overall expected utility in a particular domain.

Operational rationality separates two, central aspects of agent construction: the development of the perfor-
mance components and the optimization of performance. It makes algorithm development a design issue,

CHAPTER 1. INTRODUCTION 6

not a run-time issue. The principles of rationality are applied only at run-time, to control the delibera-
tion time of the performance components. In alternative approaches to rationality, these two aspects are
inseparable. As a result, the task of rational agent construction becomes too complex®.

Operational rationality still allows individual algorithms to be adaptive. The agent can learn and
improve its performance over time. However, the concrete algorithms used and the flow of information
between them are fixed and not part of the agent’s self-optimizing problem.

The definition of operational rationality does not tell us how to achieve it. Many questions are
left open. How can the deliberation time of the performance components be monitored? What types of
knowledge and reasoning procedures are necessary to control the execution of the performance components?
These questions form the core of the problem addressed by this dissertation.

1.3 Thesis

This section identifies the fundamental issues addressed by this dissertation. The main part — the thesis
statement — is presented in the form of five claims that will be validated in the remaining chapters.

1.3.1 Historical perspective

By no means was decision theory the first attempt at formalizing the rules of reasoning. The mechanization
of thought using formal systems evolved in the seventeenth century, long before the emergence of modern
computers. In 1650, the English philosopher, Thomas Hobbes, proposed the idea that thinking is a compu-
tational process, analogous to arithmetic. It was probably the philosopher Gottfried Wilhelm Leibnitz [1646
- 1716] who envisioned for the first time the complete mechanization of intelligence. Leibnitz* published
a book, Dissertio de arte combinatorica (Leipzig, 1666), in which he expressed his vision of “a universal
algebra by which all knowledge, including moral and metaphysical truths, can some day be brought within
a single deductive system.” It took another two centuries before Gottlob Frege, in what is perhaps the most
important single work ever written in logic [Frege, 1879], formulated the basis of predicate calculus. Frege
described a system of logic in which derivations are carried out exclusively according to the form of expres-
sions, an idea that became the basis of symbolic logic. Shortly after the development of the first electronic
computers in the 1940°s and 1950’s, the founders of Al wrote programs that could perform elementary
reasoning tasks, such as proving simple mathematical theorems and answering simple questions.

But, despite the fact that mathematical logic had already been well-formalized in the 1930’s, it
did not provide an effective framework for knowledge representation and reasoning in practical domains.
Problems such as the intractability of automated theorem proving, the monotonicity of logical reasoning,
and its inability to deal with uncertainty made it apparent that logic, as attractive and elegant as it may seem,
cannot capture the richness of practical reasoning.

As a result, researchers tried several remedies: limiting knowledge expressibility in order to in-
crease the efficiency of reasoning [Levesque, 1986]; formulating non-monotonic logics to overcome the
monotonicity problem [Reiter, 1987]; and adding various measures of uncertainty to knowledge [Zadeh,
1975]. Other researchers abandoned logic completely and tried to find alternative representations and rea-
soning procedures such as Bayesian Networks [Pearl, 1988]. However, regardless of the method being

3Recall that the problems of program verification and program optimization are intractable. Any type of rationality that requires
solving such problems is therefore impractical.
4See [Gardner, 1968], page 3.

CHAPTER 1. INTRODUCTION 7

used, what characterized artificial intelligence research on reasoning and planning systems over the past
three decades was the development of systems whose complexity imposed a severe barrier on the size of
the domains they could handle. From the early development of GPS and STRIPS through TWEAK and
PRODIGY and more recent planning techniques®, systems have been applied mainly to toy-worlds and
could not be scaled up beyond that to handle real-world situations.

1.3.2 Thesisstatement

Themodel that | will present in the following chapters has been primarily motivated by the observation that
many Al systems suffer from lack of control over deliberation time. The failure of artificial intelligence
to deliver expandable reasoning and planning systemsis largely due to this problem. In the past, artificial
intelligence systems had little control over the quality of their results and could not explicitly compromise
accuracy in order to perform faster deliberatiorf. Such compromise, | argue, is essential for any rational
decision making process.

Control of deliberation timeis a key aspect that ismissing in most Al systems and that
limit their applicability.

In an effort to overcome the barrier imposed by the complexity of reasoning, | have developed a model for
intelligent control of deliberation. The model has successfully validated the following five claims:

Claim 1. Existence There exists an effective alternative to traditional algorithms, namely anytime com-
putation, that offers atradeoff between deliberation time and quality of results. This claim has been
already validated by the work of Boddy and Dean, Horvitz, and Russell and Zilberstein in the area
of automated reasoning, as well as by the work of Lesser, Pavlin and Durfee, Vrbsky, Liu and Smith,
and othersin the area of approximate computation. Thiswork is presented in Chapters 2 and 4.

Claim 2. Feasibility Anytime algorithms can be efficiently constructed using standard programming tech-
niques. This claim has been partly validated by a number of applications and is further discussed in
Chapter 4.

Claim 3. Composability The principles of modularity can be applied to anytime computation. Large real-
time systems can be composed of anytime components. The problem of time allocation within such
systems can be handled by a special compilation technique. The validation of this claim constitutes
the main contribution of thiswork. It is presented in Chapter 5.

Claim 4. Operational Rationality The performance of an agent composed of anytime algorithms can be
efficiently optimizedtoyield an operationally rational agent. A meta-reasoner whose domainincludes
utility functions, domain descriptions, and performance profiles, can solvethe optimizationtask. This
claim has been partly validated by applications developed by Boddy and Dean that involve a small
number of anytime algorithms. The validity of the claim with respect to large systems composed of
anytime algorithmsis presented in Chapter 6.

SFor asurvey of artificial intelligence planning systems and techniques see [Hendler et al., 1990].
5Several exceptionswill be described in Chapter 2.

CHAPTER 1. INTRODUCTION 8

Claim 5. Effectiveness Operational rationality is a powerful model that can effectively simplify the de-
velopment of complex real-time systems. This is an immediate result of the previous claims and
the major simplification they introduce into real-time system construction. This issue is discussed in
Chapters 8 and 9.

1.4 Achieving operational rationality

This section outlines the model of operational rationality and the main problems that were raised by its
implementation.

1.4.1 Anytimealgorithms, compilation and monitoring

The fundamental property of an operationally rational agent is the capability to vary its deliberation time
according to “time pressure.” In order to achieve this capability, traditional algorithms, whose expected
run-time is normally fixed, must be replaced by more flexible computation modules, namely anytime al-
gorithms. Anytime algorithms are algorithms whose quality of results improves gradually as computation
time increases. They introduce a continuous tradeoff between deliberation time and quality of results. The
idea that such a tradeoff can be used in order to optimize the performance of real-time systems was inde-
pendently developed by Dean and Boddy [1988], by Horvitz [1987], and by Lin et al. [1987]. In order
to optimally control this degree of freedom, Boddy and Dean [1988] used performance profiles that char-
acterize the dependency of output quality on run-time. | have extended this performance description by
introducing conditional performance profiles that give a probabilistic description of the quality of the re-
sults of an algorithm as a function of run-time and input quality (or any set of input properties).

Conditional performance profiles are essential in order to project the effect of performance degra-
dation within a system. Consider, for example, an anytime hierarchical planner whose quality of results is
measured by the level of specificity of the plan. Obviously, the specificity of a plan affects its execution
time and hence has influence on the efficiency of the agent. The performance of the planner depends on
two factors: time allocation and the quality of its input, that is, the precision of the domain description. The
conditional performance profile of this algorithm describes this dependency.

Some of the first applications of anytime algorithms were introduced by Boddy and Dean [1989]
in solving a path planning problem, and by Horvitz [1987] in real-time decision making in the health care
domain. The Al community reacted to this work with considerable skepticism, partly because of the diffi-
culty of building large systems using anytime modules. In this dissertation I will introduce techniques that
extend the use of anytime algorithms to the construction of complex real-time agents. It is unlikely that a
complex system would be developed by implementing one, large, anytime algorithm. Systems are normally
built from components that are developed and tested separately. In standard algorithms, the expected quality
of the output is fixed, so composition can be implemented by a simple call-return mechanism. However,
when algorithms have resource allocation as a degree of freedom, run-time scheduling and monitoring are
required to guarantee optimal utilization of resources.

Figure 1.2 illustrates the composition of two anytime algorithms. It shows the performance profile
of an anytime path planning algorithm that receives its input from an anytime vision module. The quality
of vision is measured in terms of the precision of the domain description. The quality of path planning
is measured in terms of specificity of the suggested plan. A special compilation scheme combines these
two modules into one optimal anytime path planning algorithm that can automatically distribute any given
amount of time between the two components so as to maximize the overall quality of the results.

CHAPTER 1. INTRODUCTION 9

VISION PATH PLANNING

+ -

Figure 1.2: Path planning example

RUN-TIME MONITORING

OFF-LINE COMPILATION

ANYTIME ALGORITHMS

Figure 1.3: The conceptual layers of the model

Compilation produces contract algorithms which require the determination of the total run-time
when activated. However, some real-time domains require interruptible algorithms whose total run-timeis
unknown in advance. Thisproblem issolved by astandard technique to construct an interruptible algorithm
once a contract algorithm is compiled.

Once a complete system is compiled into one anytime algorithm, the monitoring component of
the run-time system is responsible for controlling the deliberation time of the system when operating in a
particular environment. The complete model has three conceptua layers that are illustrated in Figure 1.3:
anytime algorithms, off-line compilation that optimally combines anytime algorithms, and a run-time moni-
toring system that allocates resources to the components so asto optimizethe utility of the complete system.
These layers are described in detail in the following chapters.

Thismodel of operational rationality introduces a new methodology to design complex real-time
system. Instead of trying to design a system that would meet a specific set of time constraints, the design
problem involves two orthogonal issues. decomposition of the total system into particular performance
components and implementation of each basic component as an anytime agorithm. It will be shown in the
following chapters that this approach greatly simplifies the construction of complex real-time systems.

1.4.2 Themain problemsaddressed by thiswork

The implementation of the model of operational rationality as describe above was based on the solutionsto
the following key problems:

1. Developing anytime algorithms.

CHAPTER 1. INTRODUCTION 10

The use of anytime algorithms as basic blocks of complex systems calls for a new approach to al-
gorithm construction. In human behavior and human problem solving, amost every activity has
an anytime nature in the sense that we never commit ourselves to solving a problem without con-
stantly reconsidering our methods and interrupting our activities. Thiskind of introspection is hard
to formalize and mechanize. Existing software devel opment techniques do not address this aspect of
computation.

2. Finding the performance profile of elementary anytime algorithms.

Performance profiles form the crucial meta-level knowledge needed for implementing operational
rationality. Unfortunately, finding the performance profile of an elementary anytime algorithm’ can
be difficult and may require an extensive computation effort especially whenit isbased on simulation
of the algorithm. In some cases, such as humerical analysis algorithms, the performance profile can
be derived by direct analysis of the algorithm, but the general case is more complicated. Even more
complicated is the task of finding conditional performance profiles that capture the dependency of
output quality on run-time as well as on input quality. Finally, in most anytime algorithmsthereis a
certain degree of uncertainty regarding the actual quality of results. Characterizing and representing
this uncertainty is an important aspect of performance profiles.

3. Compiling anytime algorithms

To alow modular system development, the performance profile of complex modules must be calcu-
lated based on the performance profiles of the components. Computing the best possible performance
profile for the complete system involves solving a complex time allocation problem. Thisis a new
kind of optimization problem that the compiler has to solve. A primary goal of this work was to
mechani ze the compilation of anytime algorithms and to solveit efficiently for large programs. Since
the global optimization problem is shown to be NP-complete in the strong sense, local techniques
must be utilized to reduce complexity. Establishing the optimality of such efficient local compilation
techniques was an important part of thiswork.

4. Anytime sensing and anytime actions

Since this dissertation is concerned with the development of artificial agents, the theory of anytime
computation must be extended to deal with two additional key aspects of agent construction, namely
sensing and action. Sensing, like computation, can be viewed an an information gathering act whose
value can be modeled using similar tools. The modeling of actions as anytime interruptible activities
is more complicated. In most existing systems, actions (such as. (put on A B)) are considered
to be simple primitives, whose execution time is an insignificant constant. In practice, however, the
execution time of an action is important and in many cases 8 actions have the property of graceful
degradation of quality as afunction of execution time. In that sense, actions are similar to anytime
algorithms. The inclusion of anytime sensing and action in the model is an important step toward a
definition of an architecture for artificial agent construction.

5. Real-time scheduling and monitoring

When using anytime algorithms to control an artificial agent operating in a dynamic environment,
the time allocation mechanism must take into account two sources of uncertainty. On the one hand,

"An elementary anytime algorithm is an anytime algorithm that does not use another anytime algorithm as a component.
8For example, when a“macro” action is actually implemented by alternating between computation and “micro” actions.

CHAPTER 1. INTRODUCTION 11

there isthe uncertainty regarding the actual quality of the results produced by each component. The
performance profile provides only probabilistic information on this aspect. On the other hand, there
isthe uncertainty regarding the state of the domain. The model of the environment used by the meta-
level control isalso probabilistic and there isalways apossibility of adrastic change in time pressure.
As aresult, it is not enough to adopt a strategy of pre-determined fixed time allocation. Run-time
scheduling and monitoring are necessary.

6. Anytime algorithmsand parallel computation

Since anytime algorithms are primarily designed to deal with complex real-time problems, itisonly
natural to utilize parallel machines for their implementation. The design of anytime algorithmsusing
multi-processor systems introduces many open questions most of which deal with possible schedul-
ing schemes. One such scheduling problem is to find the best scheduling scheme of a given non-
interruptible algorithm on a machine with p processors to produce an interruptible algorithm with
the best performance profile. Another scheduling problem is defined by using a multi-processor ma-
chinein order to runin parallel two different algorithmsthat solve the same problem: one with lower
expected performance but a small possible deviation (i.e. the expected performance is amost guar-
anteed); the other with higher expected performance but a large possible deviation (i.e. the actual
performance may be much worse than expected). By running these low-performance-low-risk and
high-performance-high-risk algorithmsin parallel, one can have the high expected performance to-
gether with aguarantee of areasonable minimal performance.

1.5 Dissertation organization

Inthe following chapters| describe thedetail s of the model of operational rationality and itsimplementation.
In Chapter 2, | describe previous work on real-time decision making in the fields of artificial intelligence,
control theory, economics and engineering. Chapter 3 defines the problem of constructing utility-driven
real-time agents. In Chapter 4, | describe programming techniques to develop elementary anytime algo-
rithms and their properties. An important distinction is made between contract and interruptible anytime
algorithms. The chapter includes also the reduction theorem that shows how contract algorithms can be
made interruptible. This important result allows us to solve the compilation problem in terms of contract
algorithms and thus greatly simplify the problem. The central parts of the model are developed in Chap-
ters 5 and 6. Chapter 5 focuses on the compilation process that automates the composition of anytime
algorithms. Its main result isthe devel opment of an efficient local compilation techni que whose complexity
islinear in the size of the program. Loca compilation is proved to yield global optimality for a large set
of program structures. Chapter 6 describes the run-time monitoring component. In Chapter 7, | extend the
notion of gradual improvement of quality to sensing and action. The application of the model and its eval-
uation are discussed in Chapter 8. Finally, in Chapter 9, | summarize the results and contributions of this
work and identify three possible directions for further work. A brief glossary of specialized terminology
appears at the end of the dissertation.

Chapter 2

Background: Real-Time Decision Making

“Now! Now!” cried the Queen. “Faster! Faster!”
Lewis Carrol, Alice's Adventures in Wonderland

A considerable amount of work has been done on real-time decision making in the fields of artificial intel-
ligence, decision theory, economics and engineering. In this chapter | will examine this work and identify
the strengths and weaknesses of existing models. The focus of the analysisis on real-time decision making
as acomponent of an architecture for artificial agent construction.

How do most Al systems cope with time constraints? In a comprehensive survey of real-time
Al [Laffey et al., 1988] that covered 48 systems, the authors claimed that “ Currently, ad hoc techniques are
used for making asystem produce aresponse within a specified timeinterval.” Unfortunately, not much has
been changed since that survey was conducted. The primary method for achieving real-time performance
is based in many cases on speeding up individual algorithms in a generate-and-test manner. This method
slows down the development of real-time systems and makes them inefficient when operating in dynamic
environments. The wide variability of time pressure in dynamic environments makes it undesirable to
design systems according to the worst case scenario. With the problem of artificial agent construction in
mind, | will analyze each model concentrating on its potential to scale up and to handle successfully real-
world situations. | startin Section 2.1 with an examination of the basic assumption that explicit deliberation
and run-time problem solving are indeed necessary in real-time systems. Section 2.2 describes the work
of Russell and Wefald on decision-theoretic control of inference. In many ways, the model developed
in this dissertation is a refinement of Russell and Wefald's framework. In Section 2.3, | describe severa
applications of anytime algorithms. Most notably, | discuss the work of Boddy and Dean, Horvitz, L esser,
Pavlin and Durfee, and Jane Liu who developed independently the first applications of such algorithms
a a time when the notion of imprecise computation faced a large degree of scepticism. A closely related
approach, Garvey and L esser’sdesign-to-time scheduling, is presented in Section 2.4. Section 2.5 describes
several related resultsin the area of real-time problem solving and Section 2.6 describes some experimental
work on system support for approximate computation.

2.1 Reactive systemsand universal planning

In an attempt to address the complexity of reasoning and planning in artificial intelligence, some researchers
have proposed to limit the extent of run-time deliberation by using approaches such asreactive planning and

12

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 13

universal planning. According to these approaches, explicit reasoning, problem solving and maintaining
aworld model are too complicated to handle at run-time and should be completely abandoned. Instead,
believing that the world is its own best model, these researchers propose agents that are equipped with a
mechanism that generates actions as an immediate response to interaction with the physical world.

Reactive planning [Brooks, 1986; Agre and Chapman, 1987] is the general approach of building
systemsthat makethe“right” decision by design. Agents based on theseideas are normally built from com-
binatorial circuits plusasmall timing circuitry. The combinatorial circuitry may be adaptive, asin [Brooks,
1989], with the capability to converge on the desired behavior after a certain training period of interaction
with the environment.

Universal planning [Schoppers, 1987] is a similar approach which is, in a sense, more restrictive
than reactive planning since it does not alow for emergence of the desired behavior through interaction
with the environment. Agents based on this approach determine what to do next by finding the current
situation in a large table where the best action to be taken is stored. This leads to the following definition
of auniversal plan [Ginsberg, 1989]:

Definition 2.1 Auniversal planisafunction, 7 : S — A, fromthe set of possible situations S into the set
of primitive actions A.

Both reactive planning and universal planning tend to transfer the complexity of planning to the design
phase, thusignoring the computational limits of the designer. While reactive planning can adaptively con-
verge and produce some ordinary low-level behavior, it cannot be scaled up to deal with long-term planning
in complex domains. As the complexity of the agent grows, the circuitry necessary to generate the correct
response becomes too large and too complex to learn. Isit conceivable that chess-playing, medical diag-
nosis, or even path-planning for robot navigation could be performed by interaction with the environment
alone, without any run-time deliberation? Will high-level strategic planning emerge “without reason”?

My dissertation is based on the assumption that some degree of real-time problem solving is un-
avoidable. Thisopinionisstrongly supported by many researchers. Ginsberg[1989], for example, analyzed
this problem and concluded that:

. even if the compile-time costs of the analysis are ignored, the size of the table mugt, in
general, grow exponentially with the complexity of the domain. This growth makesit unlikely
that this approach to planning will be able to deal with problems of an interesting size; one
really needs the ability to do some amount of inference at run time.”

A similar argument was presented years earlier by Herbert Simon referring to alternative views
of rationality in the fields of economics and psychology. Simon made a distinction between substantive
rationality and procedural rationality. Behavior is substantively rational if it is appropriate to the achieve-
ment of given goalsin a particular environment. Like reactive planning, given a set of goals, the behavior
is determined entirely by the characteristics of the environment. Behavior is procedurally rational when it
is the outcome of appropriate deliberation. Its procedural rationality depends on the process that generated
it. Simon! claims that:

“... there isno point in prescribing a particular substantively rational solution if there exists
no procedure for finding that solution with an acceptable amount of computing effort. So,

1See [Simon, 1982], page 428.

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 14

for example, although there exist optimal (substantively rational) solutions for combinatorial

problems of the traveling-salesman type, and although these solutions can be discovered by a
finite enumeration of alternatives, actual computation of the optimum isinfeasible for problems
of any size and complexity. The combinatorial explosion of such problems simply outracesthe
capacities of computers, present and prospective.”

Some researchers have proposed what may seem to be anatural synthesis of the two extremes: a
system that would be reactive under high time pressure and would use classical reasoning methods when
time is available. However, having to choose between the two extremes — between performing classical
planning and not performing any planning at all — does not add much power to a system. Chapman [1989],
for example, claimsthat:

“As currently understood, planning is so inherently expensive — and reactive systems so inher-
ently myopic — that even in combination they are useless.”

Previous work on anytime algorithms and the model of operational rationality presented here ex-
tend the tradeoff that is offered by a simple synthesis of traditional and reactive planning. The reactive
system and the fully deliberative one become two extreme points on a continuous scale of possible compu-
tational time offered by anytime algorithms.

2.2 Meta-level control of computation

Russell and Wefald [1989a, 1989b] developed a normative decision-theoretic approach for control of in-
ference. The agent’s objective isto maximize a given utility function defined over the states of the world:
U :Q — R. Theagent has a set, A, of possible base-level actions that transform the environment. The
outcome of a particular action, A, performed in statew isdenoted by [A, w] or smply [A] if w isthe current
state. The agent’s current default ‘intention’, typicaly the external action considered to have the highest
utility, isdenoted by «. The set S includes a sequence of computation actions that can be used to revise the
agent’s decision. At any given time, the agent has to choose whether to perform what is believed to be the
best external action «, or to perform one of the computational actions, 51, ..., Sy that affect only theinternal
state of the agent. Since computation takestime, the net value of computation isthe difference between the
utility of the state resulting from the computation and the utility of the state resulting from performing the
default external action a:

V(S)) = U(18;]) ~ U([a)) (2.)

If S; isacomplete computation, resulting in arevised assessment of the best action, a.s;, and acommitment
to perform this action, then

U([55]) = U(lews;, [S51D) (22)

where [as, , [S]] indicates the outcome of the action «s; in the state following the computation 5. In the
general case however \5; can be apartial computation affecting only the internal state but not immediately
revising the assessment of the best action. In thiscase,

U(lsi]) = >_ Pr(T)U([er, [5;-T]) (23)
T

where T' ranges over all possible complete computations following .5;, .5;.T denotes the computation cor-
responding to S; immediately followed by 7', and Pr(T') is the probability that the agent will perform the

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 15

(a) terminate (b) terminate (c) continue

Figure 2.1: Termination condition using rational meta-reasoning

computation sequence 7' subsequent to .5;. A perfectly rational agent would select the computation that
maximizes U([ar, [5;.7]], and this sequence would have probability 1. However, having limited computa-
tional resources, the agent cannot calculate the exact utilities and probabilities and must estimate them using
some computational resources. Let QS denote the agent’s estimate of quantity ¢ following a computation
S, typically based on the evidence produced by the computation. Then,

[}S~5J([Sj]) _ z:PATS.SJ(T)ﬁs.SJ([OéT7 [55.77]) (2.4)
T

where S is the total computation preceding .5;, and
85 ([ar, [55.T1) = max 73557 ([A;, [5;.7])) (2.5)

where A; ranges over all possible base-level actions in A. Then the estimated net value of computation 5,
that is used by the meta-reasoning to decide whether further deliberation is valuable, becomes:

735(5;) = T35 ((5,]) = 055 ([a) 26)

Of course, before the computation .$; is performed, V'(S;) is arandom variable. The agent cannot
know ahead of time what the exact value of V'(.5;) will be, but the agent can estimate its expectation:

E[VS5(85;)] = E[TS5([5,])] = E[0%%([a])] 2.7)

Under certain assumptions, it is possible to capture the dependence of utility on time by a sepa-
rate notion of the cost of time, so that the consideration of the quality of an action can be separated from
considerations of time pressure. In such a case, the value of an action is measured by its intrinsic utility.
The overall utility of a state is defined as the difference between the two:

U([As [S0) = Tr([A) = TC(|S1) (2.8)

where T'C' is the time cost function that depends only on |.5;], the length (in elapsed time) of 5.

Since there is a considerable uncertainty concerning the value of each action, the meta-reasoning
component must be able to select among alternative actions without knowing their exact utilities. When the
degree of uncertainty is too large to determine the best action, the meta-reasoning component may decide on

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 16

additional deliberation to improve the utility estimates. Figure 2.1 [Russell and Wefald, 1989b] illustrates
the three major situations that arise in evaluating the expected utility of two alternative actions. In case
(a), one action is clearly superior to the other hence no more deliberation is necessary. In case (b), one
action appears to be superior and the small possible difference between the utilities of the actions makesit
undesirable to continue the computation. In case (), one action appears to be superior, however the large
uncertainty makesit desirable to continue the computation.

Russell and Wefald make several assumptionsto simplify the analysis. First, they make the meta-
greedy assumption, that the agent considers only single computation steps and chooses the one that appears
to have the highest benefit. Thiscomputation may not be the optimal one considering a sequence of compu-
tation steps. Second, they make the single-step assumption that the agent will take at most one more search
step. Their third assumption isthe subtree-independence assumption, that a computational action can affect
the expected utility estimate for exactly one base-level action. Under these assumptions, severa search
algorithms were developed, most notably MGSS*, and were proved superior to the best human-designed
search agorithmsfor several games, such as Othello.

How does this model of rational meta-reasoning relate to the model of operational rationality?
Russell and Wefald propose a rather general framework for meta-level control of reasoning. Operational
rationality is more specific in terms of the type of meta-level knowledge that it uses, in terms of the char-
acteristics of the computational elements, and in terms of the optimization problem that it defines. General
meta-reasoning leaves some of these aspects to be decided in the context of the problem domain. It reasons
about computational actions that must be identified in each particular domain. To summarize, operational
rationality offers a more specific type of meta-level control of computation and one that is also easier to

apply.

2.3 Anytimealgorithms

Theterm “anytime algorithm” was coined by Tom Dean in the late 1980’ sas part of hiswork on time depen-
dent planning. There has been a considerable amount of work on designing and using algorithmsthat offer
gradual improvement of quality of results, both before and after Dean’s coining of theterm “anytime.” Nev-
ertheless, very littlework has capitalized on the additional degree of freedom offered by anytime algorithms
— freedom in the very general sense that the algorithm offers to fulfill an entire spectrum of input-output
specifications, over the full range of run-times, rather than just a single specification. In this section | de-
scribe five early applications of anytime algorithms and relate them to the model of operational rationality.
| start with a description of Dean and Boddy’s work that identify some of the fundamental elements of
my model, most notably, scheduling deliberation processes using expectations in the form of performance
profiles. In addition, their work raised many of the problems that this dissertation addresses.

2.3.1 Anytimepath planning

Boddy and Dean [1989] used anytime algorithms in order to solve a path planning problem involving a
robot courier assigned the task of delivering packages to a set of locations. The robot operates in adomain,
the gridworld, where each point is a location that may be occupied by the robot or by an obstacle. The
robot can only move on to one of the four neighbors of its current position, provided that that neighbor is
not aready occupied. The robot has a map of the world that it can use for path planning. The utility of the
robot’s performance is defined in terms of the time required to complete the entire set of deliveries.
Therobot hasto determine the order inwhich to visit thelocations, referred to asatour, and, given

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 17

A A
Travel Time Tour Length

Reduction Reduction

Time Time

a. b.

Figure 2.2: Performance profiles of tour improvement and path planning

atour, it must plan paths between consecutive locationsin the tour. To simplify the analysis, it is assumed
that the robot’s only concern istime; it seeksto minimizethe total amount of time consumed both in sitting
idle deliberating about what to do next and in actually moving about the environment. Furthermore, it is
assumed that there is no advantage to the robot in starting off in some direction until it knows the first
location to be visited on its tour, and, while the robot can deliberate about any subsequent paths while
traversing a path, it must complete the planning for agiven path before starting to traverseiit.

The two primary components of the decision making process involve generating the tour and
planning the paths between consecutive locations in the tour. The first is referred to as tour improvement
and the second as path planning. Boddy and Dean employ iterative refinement approximation routines for
solving each of these problems. For example, thea gorithm for tour improvement isbased on edge-exchange
as suggested by Lin and Kernighan [1973]. It produces toursthat are progressively closer to an optimal tour
by exchanging small sets of edges such that the length of the overall tour decreases. The mean improvement
in tour length after & exchanges can be approximated by a function of theform f(k) = 1 — ¢=**, where A
depends on the size of the tour. The performance profile of thisagorithm is derived by gathering statistics
on its performance with random test cases. The complete algorithm starts out with an initial, randomly
selected tour. Given the length of some initial tour and the expected reduction in length as a function of
time spent in tour improvement and some assumptions on the performance of path planning, the algorithm
can find exactly how much time to devote to tour improvement in order to minimize its overall time spent
in stationary deliberation and combined deliberation and traversal.

Figure 2.2.a[Boddy and Dean, 1989] shows how the expected savingsin travel timeincreases as
afunction of time spent in path planning. Figure 2.2.b shows how the expected length of the tour decreases
as a fraction of the shortest tour for a given amount of time spent in tour improvement. In this context,
Boddy and Dean introduced the term performance profile that describes the expected quality of the results
of an anytime algorithm as a function of run-time.

Boddy and Dean’s work demonstrates the applicability of anytime algorithms to solve time-
dependent planning problems. Their work has inspired my initial interest in using anytime algorithms as
the components of large rea-time systems. Their analysis, however, does not provide answers to several
important aspects of anytime computation that are essential for operational rationality, most notably, the
general issue of composition of dependent anytime components. Boddy and Dean raise this as an unsolved
problem. They admit that, in their example, “combining expectations for the two planning algorithms is
straightforward. Other problems and other decompositionswill require combining expectationsin different
ways.” Referring to the same problem, Dean and Wellman [1991] conclude that:

“thereis currently no genera theory of combining anytime algorithms. For cases in which the

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 18

decision problems are dependent, there is not a great deal that we can say.”

Composability of anytime computation is the most fundamental issue in my work. The compilation of
anytime algorithms presented in Chapter 5 addresses exactly this problem of combining dependent anytime
algorithms.

2.3.2 Flexible computations

Horvitz [1987] suggested a decision procedure that uses an anytime algorithm or what he calls flexible
computation as its main problem solver. As with anytime algorithms, the value of the results produced
using flexible computation is a function of the time spent on the computation. Horvitz separates the notion
of object-related value from the notion of comprehensive value. The former is a measure of the value of
the results apart from their particular use in the system while the latter refers to the overal utility of the
response.

Horvitz demonstrates the use of flexible computation in the health care domain. Given infor-
mation regarding a particular patient, he produces a graph that maps computation time to the precision of
the distribution for a set of possible diagnoses. The object-related value is determined by considering the
expected utility of the treatment based on inexact diagnosis of a particular quality. Using this information
together with information on the reduction of object-related value asafunction of the delay in administering
treatment, one can derive the comprehensive value of computation. The comprehensive value has a global
maximum at a particular time. Thisisthe period of time the system should spend reasoning about the di-
agnosis so as to maximize the value of its conclusion to the patient. Although spending additional time on
the problem may further increase the precision, the comprehensive value to the user will begin to decrease.

Horvitz and Breese[1990] generalized thisapproach to the problem of optimizing the performance
of an agent presented with asinglereal-time problem. Inthefollowing description of their work, | borrowed
the improved notation of [Dean and Wellman, 1991]. The value of the agent’s response is determined by
the quality of the answer and the total amount of time that it took to produce the answer, represented as:

tb‘|‘tp‘|'ts

where t;, isthe deliberation time of the base level problem solver, ¢, is the preparation time for base-level
reasoning spent on such activities as algorithm selection or problem reformulation, and ¢, is the time spent
on scheduling the base-level preparation module and base-level problem solver.

Sincet, issome small constant, the comprehensive value, V. and the object-related value, V,, are
functions of the total time spent on preparation and base-level problem solving. The cost of time associated
with thedelay in decision making, V4, isan arbitrary function depending onthedomain. The comprehensive
value issimply the difference between the object-related value and the cost of time. The meta-level control
is designed to maximize the comprehensive value finding the appropriate ¢, and ;.

max Vc(tp, tb) = max[Vo(tp, tb) — Vd(ts +1, + tb)] (2.9
tp,ty tp,tp
For example, Figure 2.3 [Horvitz and Breese, 1990] shows the comprehensive value in two cases where
the object-related value is modeled by a negative exponential function and the cost of timeismodeled by a
linear function. #; isthe optimal allocation of time to the base-level problem solver in each case.
The model of operational rationality adds a number of important features to Horvitz and Breese's
model of flexible computation. These features are summarized below:

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 19

Figure 2.3: Optimal time allocation to base-level computation

1. The modd of flexible computation does not address the general issue of composition of anytime
algorithms. Even though it separates the preparation phase from problem solving, the model does not
analyzethe case where each component isan anytime a gorithm and the possibl e effect that the quality
of preparation might have on the quality of problem solving. As| mentioned earlier, itisnot realistic
to assume that large complex systems would be constructed based on one anytime agorithm. Hence
solving the composition problem is essential for implementing any model of anytime computation.

2. The model of flexible computation assumes that the cost of delay, V,;, can be defined by a function
that is independent of the other parts of the system. It uses subjective judgment in order to select
such a function for any particular domain. This assumption ignores an important component of the
cost of delay, what economists call the opportunity cost, which is the cost of choosing one course
of action (continued deliberation in this case) over another (executing the current best action). The
model of operational rationality does not require this assumption of aseparate cost function. Its more
general approach to factoring the time pressure into the deliberation process takes into account the
opportunity cost.

3. Horvitz and Breese do not provide the run-time monitoring? mechanism that would re-evaluate the
initial resource allocation in the context of the actual state of the world. The characterization of the
object-related value of an algorithm and the cost of delay are al probabilistic and it is possible that a
dynamic environment would require afaster response than originally anticipated (for example, dueto
unexpected deterioration in the patient’s condition). It isalso possiblefor the anytime problem solver
to derive an optimal solution much faster than expected. To properly monitor resource alocation in
such cases, the model of operational rationality includes a run-time monitoring component that may
adjust resource alocation in response to such events.

2.3.3 Approximate processing

Lesser, Pavlin and Durfee [1988] proposed an approach for meeting real-time constraintsin Al systemsthat
is based on the following three observations:

2More recently, a monitoring component was added to the model by Horvitz and Rutledge [1991]. However, the monitoring
problem addressed by this dissertation is more complicated becauseit may involve alarge number of anytime components.

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 20

1. Time can be treated as a resource when making control decisions.
2. Plans can be used asways of expressing control decisions.

3. Approximate processing can be used as away of satisfying time constraints that cannot be achieved
through normal processing.

Under this approach, areal-time problem solver estimates the time required to generate solutions and their
quality. This estimate permits the system to anticipate whether the current objectives will be met in time.
The system can then take corrective actions and form lower-quality solutions within the time constraints.
These actions can involve modifying existing plans or forming different plans that utilize only rough data
characteristics and approximate knowledge to achieve the desired speedup. A decision about how to change
processing is situation dependent, based on the current state of processing and the domain-dependent solu-
tion criteria. The authors present a number of experiments that show how approximate processing helps a
vehicle-monitoring problem solver meet its deadlines.

Lesser, Pavlin and Durfee suggest a number of general approximation techniques that offer a
tradeoff between quality of results and computation time, similar to anytime algorithms. These techniques
include: approximate search strategiesthat use corroboration and competition ascriteriafor pruning inferior
aternativesinthe search space, dataapproximationthat limitthe number of processing alternatives by taking
an abstract view of data, and knowledge approximation that uses a single, less discriminating knowledge
source to summarize several sources of knowledge.

Operational rationality complementsthiswork by adding two important components: conditional
performance profiles, that allow for better predictions of performance and better treatment of uncertainty,
and efficient off-line compilation, that allows for better control of large systems. In addition, operational
rationality offersan optimization mechanism rather than a“ satisficing” criterion to measure problem-solving
success.

2.3.4 Incremental approximate planning

Elkan [1990] suggested an abductive strategy for discovering and revising plausible plans. In his approach,
candidate plans are found quickly by allowing them to depend on assumptions. His formalism makes ex-
plicit which antecedents of rules have the status of default conditions. Candidate plans are refined incremen-
tally by trying to justify the assumptions on which they depend. This model was implemented by replacing
the standard depth-first exploration strategy of Prolog with an iterative-deepening version. Theresult isan
anytime algorithm for incremental approximate planning.

Elkan's approach ishard to compare to the model of operational rationality developed here since
he does not provide any quantitative analysis of his method. Such analysis would require generating the
performance profile of the planner with respect to aspecific problem domain®. Thequality of an approximate
plan can be measured in variousways:. the probability of its correctness, the expected number of corrections
needed tofix it, the expected cost of fixing it, or the expected time needed to achieve the goal using thisplan.
However, in Elkan’s system, that uses pure logic, it is hard to deal with such quality measures. Another
problem with this approach isthe fact that candidate plansthat are found to be based on wrong assumptions

3Note that only one anytime algorithm isimplemented, that is, thetheorem prover. The performance profile of atheorem prover
isinherently hard to find sinceit depends mostly on the input (what to prove) and the background theory (the current knowledge).
A general theorem prover does not appear to be agood candidate to serve as an anytime component of a system.

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 21

Table 2.1: Approximate relational algebra operations

Approximate Operation Cr Pr

Union: R = R1U R» Cr=C1U() PT:(PlUpz)—CT

Difference: Rt = R1 — R» Cr=0C1—- Ry Pr = (Pl — Rz) U (Pz N Rl)

Select: RT = Uatt:valRl CT = Uatt:valcl PT = Uatt:valPl
Project: Ry = mau R1 Cr = 7ot C1 Pr =7, Py
Cart. Prod: Rt = R1 X R» Cr=0C1xC PTI(Rlsz)—CT

are eliminated, without any process of “debugging,” and therefore the computation time that was spent on
refining those plansis completely lost.

2.3.5 Anytimequery answering in relational databases

Smith and Liu[1989] proposed a monotone query processing algorithm which derives approximate answers
directly from relational algebra query expressions. Formally, an approximaterelation R of astandard rela-
tion S isasubset of the Cartesian product of al the domains of .5 that can be partitioned into two blocks,
the certain set ' and the possible set P such that:

(1) CCS and (2) R=CUPDS (2.10)

The agorithm assumes that the information stored in the database is complete and that the input data is
precise. Anincomplete answer to aquery isgenerated when thereis not enough timeto compl ete processing
the query, or because some relation that must be read to get the exact answer isnot accessible. Thealgorithm
works within the framework provided by a standard relational algebra query language and is based on an
approximate relational data model.

Given a set of all approximate relations of a standard relation 5, a partial order relation > can be
defined over the set as follows: the approximate relation R; = (C;, P;) is better than or equal to another
approximate relation R; = (C;, P;), denoted as R; > R;, if P, C P; and C; 2 C;. Standard relational
algebraisreplaced by approximaterelational algebrathat operatesover approximaterelations. The complete
set of operations appear in Table 2.1. In the table, the C7 and Pr columns show the certain component and
the possible component of the approximate result Rr. The operatorsin Table 2.1 are monotone, that is, the
result of the operation is better when its operands are better [Vrbsky et al., 1990].

Vrbsky and Liu haveimplemented the approximate query processing algorithm in asystem called
APPROXIMATE [Vrbsky and Liu, 1992]. The monotone query processing algorithm represents the query
as atree whose nodes represent relational operations. The operation associated with each leaf node of the
treeisan approximate-read that returns a segment of the requested relation at atime. Approximate rel ational
algebraisused in order to evauate the tree. Initially, the certain set is empty for every approximate object
and the possible set isthe complete range of values for the particular object. After each approximate-read,
abetter approximate answer to the query isproduced. The exact answer isreturned if the system isalowed

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 22

to run to completion. The latest, best avail able approximate answer isreturned if query processing must be
terminated before it is completed, hence the algorithm isinterruptible.

APPROXIMATE demonstrates how anytime algorithms can be used for information retrieval.
However, aswith Elkan’ sapproximate planning, it isdifficult to derivethe performance profile of the system
due to its dependence on the contents of the database and the complexity of the query. It isaso hard to
evauate the quality of an approximate relation and represent it quantitatively. For example, suppose that
the system is presented with the query “How many free seats are available on flight EL AL 0017’ and its
approximate answer is“4t0 8.” What is the quality of this approximate answer? Further work is required
to define appropriate quality measures that would enable the construction of the performance profile of
APPROXIMATE.

2.4 Design-to-time scheduling

Garvey and L esser [1993] have devel oped areal -time scheduling approach called design-to-time scheduling.
The methodology advocates generating the best possible solution under time pressure. In that sense, it
shares the goals of operational rationality. Design-to-time also includes a monitoring component to handle
the uncertainty regarding the actual quality of results produced sofar. Design-to-time scheduling isbased on
apredefined set of solution methodswith discrete duration and quality values, similar to the design-to-time
algorithms proposed by D’ Ambrosio [1989]. Theoverall problemisrepresented as atask structurein which
every task may have a multiple set of dependent subtasks that can be combined to solveit. Each such set
is considered as a method for solving the task. Two forms of approximate computation can be represented
by atask structure: iterative refinement, where an approximate solution is generated quickly and can be
refined through a number of iterations, and multiple methods, where a number of different algorithms are
available for atask, each of which is generating a solution of a different quality. Each task group has a
quality function associated with it that is based on the subtask relationship. Given atask structure, Garvey
and L esser devel oped a scheduling algorithm that finds execution methodsfor each task inthetask structure,
trying to maximize quality within the available time.

Design-to-time scheduling shares many of the underlying assumptions and techniques used by
operational rationality. The differences are more in emphasis than in principles: design-to-time empha
sizes a problem structure involving many different tasks and the solution is based on run-time scheduling.
Operational rationality concentrates on a single task but it seems to handle task decomposition in a more
informative manner. In particular, the use of conditional performance profiles allow for better predictions
regarding the effect of approximate results in the components on the overall quality of the task. In addition,
operational rationality solves the control problem by a combination of off-line compilation and run-time
scheduling and monitoring.

An integration of the two approaches can be achieved in a number of ways. For example, the
efficient compilation method, that will be presented in Chapter 5, can be used to derive an optimal contract
algorithm for a task represented as a composite anytime module. Then, the design-to-time scheduler can
be used with a number of alternative methods, each generated by a certain fixed allocation to the contract
algorithm. This way, the resulting system can have the advantages of both approaches. the superior han-
dling of interdependencies between modules and the efficient compilation of operational rationality, and the
superior handling of multipletaskswith distinct temporal constraints of design-to-time scheduling. Another
advantage of such integration isthe reduction, through off-line compilation, of the number of tasks handled
a run-time by the design-to-time scheduler.

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 23

2.5 Real-time problem solving

Real-time systems must not only produce correct results but also meet certain timing constraints. In tra-
ditiona real-time systems, the timing constraints impose a fixed time allocation to the problem solving
component so that the system can meet a certain deadline. For example, Laffey et al. [1988] define rea-
time systemsby the capability to “ guarantee aresponse after afixed timehas el apsed, where thefixed timeis
provided as part of the problem statement.” This conservative approach leads to inflexible systemsthat may
be under-utilized since in many domainsthere are no clear, rigid deadlines. Instead, the value of the results
drops gradually over time and is situation-dependent. Operational rationality is based on a more general
view of real-time systems, defined in Chapter 3, that is characterized by a time-dependent utility function.
In this section | summarize related work on real-time problem solving and compare it to the operational
rationality model.

2.5.1 Real-timeheuristic search

Heuristic search is a fundamental problem-solving method in artificial intelligence. A single-agent search
problem is characterized by an initial state, a set of possible actions whose application to a state generates
the successors of that state, a goal test function that determines whether a particular state matches the goal,
and a heuristic function that provides an estimate of the cost of reaching a goa state from any given state.
The best known single-agent heuristic search algorithmis A*. It is a best-first search agorithm where the
merit of anode, f(n), isthe sum of the actual cost of reaching that node from the initial state, ¢(n), and
the estimated cost of reaching a goal state from that node, 4(n). A* aways finds the optimal solutionif the
heuristic function never overestimates the actual solution cost. Iterative-Deepening-A* (IDA*) [Korf, 1985]
is a modification of A* that reduces its space complexity. Both A* and IDA*, however, take exponential
timetorunin practice. Thiscost of obtaining optimal solutionsrestrict the applicability of these algorithms.

Motivated by the observation that existing single-agent heuristic algorithms cannot be used in
large-scale, real-time applications, Korf [1987, 1988, 1990] extended the standard A* agorithm so that
its execution time can be controlled. The basic idea was to limit the search horizon so that the algorithm
can commit to action in constant time, just like the minimax procedure is used in two-player games. In the
single-agent case, thevalue of aninternal nodeinthe search treeisthe minimum of all the heuristic estimates
of itssuccessors. Korf called this back-up procedure minimin and the pruning mechanism alpha pruning by
analogy to alpha-beta pruning. The question now is how to use the minimin procedure in order to arrive at
asolution. Real-Time-A* (RTA*) solvesthe problem using the following strategy: it uses miniminto select
individual moves and backtracks to a previously visited state when the estimate of solving the problem from
that state plus the cost of returning to that state is less than the estimated cost of going forward from the
current state. RTA* is guaranteed to eventually find a solution under the following conditions:

Theorem 2.2 (Korf) Inafinite problem space with positive edge costs and finite heuristic values, in which
a goal state isreachable from every state, RTA* will find a solution.

An improved version of the algorithm, DTA*, was developed by Russell and Wefald [1991]. Both algo-
rithms, however, involve a fixed depth limit as a parameter that controls the search. The constant time of
move selection makes the agorithm react in “real-time.” However, it does not provide any information
about the quality of each step and about the time necessary to reach a solution. Therefore, real-time search
algorithms can be embedded as modules in a larger system governed by an appropriate meta-reasoning
component. Real-time search by itself does not provide any particular optimizing mechanism.

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 24

2.5.2 Soft real-time

Severa researchers have examined the scheduling problem of real-time tasks that must meet certain timing
requirements. Shih, Liu and Chung [1989, 1991] proposed a model of imprecise computation in which
each task is decomposed into a mandatory subtask and an optional subtask. The mandatory subtask must
be executed to produce results of any value; the optional subtask may be executed to increase the value of
the results. This model is sometimes referred to as “soft real-time” as opposed to “hard real-time” where
each task has arigid deadline. Shih, Liu and Chung derived scheduling algorithms for this model assuming
that the precision of the results improves either linearly or by steps through the execution of the optional
subtask.

Alexander, Lim, Liu and Zhao [1992] have examined the performance of various scheduling poli-
cies for managing transient overload in an imprecise computation system. They use the same imprecise
computation model. If the load on the computation system is low, the scheduler is designed to provide
some prescribed balance of accuracy and response time. |If the load is high, the scheduler is designed to
keep response time bounded by sacrificing accuracy. The performance of the scheduler is measured using
two metrics: normalized mean waiting time and normalized mean overload duration. This work demon-
strates how anytime computation can be used to enable a system to maintain short waiting times when
transient increase in load occurs.

Moiin and Smith [1992] generalized the imprecise computation model by allowing non-linear
functionsto describe theimprovement of precision over time. They usean arbitrary precision-valuefunction
to model the precision of the results of an agorithm as a function of time. Another function, the time-value
function, definesthe value of achieving atask asafunction of time. Moiinand Smith providea caseanalysis
of three particular functions to describe time-value (linear, quadratic and exponential decay) in conjunction
with two functions to describe precision-value (linear and exponential improvement of precision). They
give an approximate solution to the problem of finding an optimal schedule to a given set of tasks.

How does the work on soft real-time relate to the model of operational rationality? Optimal
scheduling of a given set of independent jobs, each having a mandatory part and an optional part, isasim-
ple case of anytime computation. In that sense, soft real-time addresses a small subset of the compositional
language used to combine anytime algorithms. However, itisimportant to emphasi ze that scheduling impre-
cise computation, when the computational elements themselves arrive randomly at a certain rate, isbeyond
the scope of operational rationality. In operational rationality, the anytime computational components are
part of a pre-determined program.

To summarize, here are the main advantages of operational rationality in solving the time alloca-
tion problem:

1. Objective quality measures
The proposed “precision value” functions of the imprecise computation model are subjective. They
are specified by the user and do not have a well-defined meaning. In contrast, performance profiles
measure aconcrete, well-defined aspect of thequality of theresults. They are probability distributions
calculated using concrete metrics rather than human intuition.

2. Separation of quality and utility

Inthe model of operational rationality, quality of resultsand utility are separate entities. While quality
isan objective measure of the performance of an algorithm, utility isan arbitrary subjective function.
Utility can depend on the state of the environment as well as on the quality of results. For example,
a plan for reaching a moving target has a value that depends on the new location of the target. If

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 25

the target disappears, the value of the plan drops even if it is otherwise a high-quality plan. Moiin
and Smith’s model replaces the notion of utility by a simple “overall value of a task” which is a
multiplication of thetime-value, the precision-value, and, possibly, aweighting factor. Thisapproach
does not alow the overall value to be context-dependent.

3. Composability

The imprecise computation model does not address the issue of composition of anytime modules.
Instead, it deals with individual, independent tasks. Since the problem definition imposes timing
constraints on the tasks, it allows the tasks to be temporally dependent, but it assumesthat the results
of each task and their qualities are independent. Thisis amajor simplification that cannot be made
when dealing with anytime algorithms as the components of a program to guide an artificial agent.
Thisissueis addressed in Chapter 5.

4. Run-time monitoring

The model of imprecise computation does not address the issue of uncertainty regarding the quality
of the results of each imprecise task. As aresult of this uncertainty, run-time monitoring is required
to modify the optimal schedule as a response to the actual quality of results produced so far. This
issueisaddressed in Chapter 6.

5. Sensing and action

Anytime sensing and anytime action are more complicated to analyze than anytime computation.
They require an extension of the model of task execution used by Moiin and Smith. In particular, their
model does not takeinto account the possibleinteraction between task execution and the environment.
Thisissueis addressed in Chapter 7.

6. Maximizing utility over history

Finally, further generalization of the imprecise computation model isneeded to deal with optimization
of performance over a*“history” of execution of similar tasks, not just asingle task or a given set of
tasks. The work of Alexander et al. isafirst step in this direction, however it addresses the case of
independent tasks only. Optimization over history is another reason for active run-time monitoring.
Thisissueis addressed in Chapter 7.

To summarize, soft real-time shares some of our motivation and goals. It solves a similar op-
timization problem: the problem of optimizing the execution value of a set of tasks based on subjective
knowledge on their performance. Several simplifying assumptionslimit the scope of soft real-time models.
Most restricting is probably the assumption that there is no interaction between the tasks, and between the
tasks and the environment. Asaresult, the model becomes inappropriate even when applied to the domain
suggested in [Moiin and Smith, 1992]: a command and control system for threat analysis and target assign-
ment. The radar component, designed to track objects, and the planning component, designed to perform
target assignment, are clearly interdependent: the quality of the first clearly affects the quality of the sec-
ond. The use of conditional performance profiles and dynamic scheduling seems essential for solving such
problems.

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 26

CLIENT SERVER

CALLER SUPERVISOR

| ;i
f y
HANDLER CALLEE

Figure 2.4: Concord process structure

2.6 System support for approximate computation

The wide-spread use of approximate computation will only happen when it becomesintegrated into standard
software engineering techniques. Given the importance of approximate computation in computer science
in generd, it is somewhat surprising that so little has been done to provide system support for models of
imprecise computation. This issue was raised recently in the First IEEE Workshop on Imprecise and Ap-
proximate Computation (December 1992), and attracted much attention among the real-time programming
community.

The Concord system, developed by Lin, Natarajan, Liu and Krauskopf [Lin et al., 1987], isone of
the few early attemptsto address the issue of system support for approximate computations. A description
of the system concludes this chapter.

The Concord system

Concord is a programming language that supports approximate computations. The run-time of each sub-
routine is controlled by the consumer of the results. Its development was motivated, like the model of
operational rationality, by the problem of optimizing performance given limited computational resources.
The basic assumption made by the developers of the system is that:

“It is often enough to introduce the environment as a parameter of a computation and assume
that it is unchanged throughout the computation.”

Hence, agenera parameter, F, is defined to be the subset of the environmental state which may
affect the execution of a program P. A computation C isan instantiation of P by the following transition
function:

C:IxSxE—-=0xS§8 (2.12)

where S isthe set of states of the program P, I isthe set of input values, and O isthe set of output values.

The main design issues involve the run-time environment structures needed to support flexible
procedure calls. For this purpose, two new language primitives are defined. Impresult is used by the caller
to define a handler for imprecise results and impreturn is used by the callee to return imprecise results.
Figure 2.4 shows the data flow between the main components: the client that includes the caller and the
result handler, and the server that includes the callee and its supervisor. For each procedure, a supervisor
is used to record values of the approximate results obtained to date, together with a set of error indicators.
When a procedure isterminated, itssupervisor returnsthebest result found. Intermediate resultsare handled

CHAPTER 2. BACKGROUND: REAL-TIME DECISION MAKING 27

by the caller using amechanism similar to exception handling. The handlersfor imprecise results determine
whether aresult isacceptable or not; thisdecisionislocal to the caller, rather than being made in the context
of aglobal utility function. In this sense, Concord actually performs some kind of satisficing rather than
optimization.

The Concord model has several important disadvantages compared to the model of operational
rationality. It leaves to the programmer the decision of what quality of results is acceptable; it does not
mechanize the scheduling process but only provides tools for the programmer to perform this task; and
it does not provide for simple cumulative development of more complex real-time systems. Nevertheless,
Concord represents apioneering project in the area of approximate computation. Itisoneof thefirst attempts
to develop standard programming tools to support approximate computation.

27 Summary

Using the latest technology available today, real-time systems are hard to develop. Real-time Al is even
harder. Thisview of the problem is expressed also by Laffey, Cox, Schmidt, Kao and Read [Laffey et al.,
1988] intheir comprehensive survey of real-time Al. In their closing remarks, the authors of the survey say:

“We concluded that one of the main reasons for this situation isthat expert systems developers
have often tried to apply traditional tools to applications for which they are not well suited.
Tools specifically built for real-time monitoring and control applications need to be built. An
immediate goal should be the development of high-performance inference engines that can
guarantee response times.”

These kind of tools for real-time programming and monitoring are offered by the model of op-
erational rationality that | have developed. This chapter shows that some aspects of the model, such as
individual applications of anytime algorithms and control mechanisms for imprecise computation, have
been devel oped independently. However, the survey of previous work shows also that none of these exist-
ing models attempted to put together all the aspects of operational rationality. The most central aspect of
operational rationality, the compasition of larger systems using anytime a gorithms as components, has not
been addressed at al. Thiscapability, that | will present in detail in Chapter 5, isin my view a precondition
to the wide spread use of anytime computation and to the simplification of the construction of real-time
systemsin general.

Chapter 3

Utility-Driven Real-Time Agents

Acrtificial intelligence is the discipline that is concerned with programming computers to do
clever, humanoid things — but not necessarily to do them in a humanoid way.

Herbert A. Simon, Modéels of Bounded Rationality

What makes a system intelligent? Is it its expert-level performance in a particular domain or its ability to
learn and improve its performance in any domain? Is it the system’s body of knowledge and reasoning ca-
pability? Intelligence, as is well known, is easier to recognize than to define. | adopt the view of intelligent
systems as agents whose intelligence is determined by the quality of their interaction with the environment.
This view emphasizes the quality of the behavior of the system rather than its structure and internal mech-
anisms. This is the fundamental difference between artificial intelligence and cognitive science which is
the study of the particular mechanisms of intelligent human behavior. In that sense, “artificial intelligence
is a normative science of procedural rationality [while] cognitive science is a positive study of procedural
rationality” [Simon, 1982]. My focus is therefore on the behavior of a system with respect to its goals. In-
telligence becomes an objective measure of two factors: (1) the degree to which the system is maximizing
its utility; and (2) the complexity of the environment in which the system is operating. In this chapter |
spell out the fundamental problem addressed by the model of operational rationality: the construction of
utility-driven real-time agents. | show how utility functions can be used for both guidance and evaluation
of intelligent behavior.

3.1 Artificial agents

Any system can be viewed as an abstract artificial agent making decisions and acting in some physical
or logical domain. An artificial agent is characterized by the capability to translate perceptual input into
effective action that transforms the environment into a particular desired state. The set of all possible states
of the environment in which the agent operates is designated by €2. The desired states are also referred to
as goal states. Input to the agent can be provided by an external user or it can be autonomously acquired.
In both cases, the agent cab use its sensorsin order to get information about the state of the environment.
Based on this input, and its knowledge and reasoning capabilities, the agent selects a particular course of
action that transforms the state of the environment so as to maximize the level of goal achievement.

28

CHAPTER 3. UTILITY-DRIVEN REAL-TIME AGENTS 29

PERCEPTION

GOALS

ACTIONS

Figure 3.1: Artificial agents

Agent categories

Agents can be categorized according to their structure, that is, according to the mechanism used for action
selection. If the agent follows a pre-determined strategy that states which base-level action to perform as
afunction of the state of the environment, then it is areactive agent. If the agent uses any computational
decision procedure, other than information retrieval, for selecting itsactions, it isadeliberative agent. A de-
liberative agent that considers the outcome of actions and derives a set of constraints on future states before
committing itself to an individual action is considered a planning agent. As the complexity of the domain
of operation increases, deliberation and planning become essential parts of effective agent construction.

The distinction between reactive and deliberative agents is not always easy to define. On the
borderline between the two types of agents one can find certain types of production systems that use a set
of condition-action rules to generate their behavior. The rule interpreter carries out a matching operation
to determine the next rule to be activated. When matching is fast and when it returns immediately the best
external action, the system may be considered areactive agent. The control structure of a production system
becomes lessreactive and more deliberative as matching cost grows, multiplerule matching isallowed, and
certain policies are used to resolve conflicts between rules.

Russell [1989] presentsauniform view of agent deliberation that identifies six typesof knowledge
that agents can use. These classes of knowledge range from fully declarative to fully compiled represen-
tations. Figure 3.2 [Russell, 1989] shows the six types of knowledge, denoted by: A, B,C, D, F and F.
Type A rules specify information that can be deduced about the current state. Type B rules specify infor-
mation about the results of actions and their effect on the current state. Type C' rules specify information
regarding the utility of states. Type D rules specify the best action to be taken in certain situations. Type
F rules specify utility of actions as a function of the current state. Type F rules specify the best action
to be taken based on the results of actions. In addition, the decision-theoretic principle, labeled DT, uses
knowledge of the utility of actions to conclude that one is the best. Based on the types of knowledge used
by a particular agent, one can characterize its execution architecture. For example, a production system
usestype D rules, and agoal-based system uses knowledge of type B and F'. The combination of a number
of execution architectures offers a tradeoff between execution time and decision quality [Ogasawara and
Russell, 1993].

CHAPTER 3. UTILITY-DRIVEN REAL-TIME AGENTS 30

STATE
RESULT
(UTILITY

BEST ACTION

Figure 3.2: Forms of compiled and uncompiled knowledge

3.2 Goalsversus utility functions

How can intelligence be measured or evaluated? Or to be more precise, given a particular agent, how can
the degree of goal achievement be measured? A simple approach isbased on counting the number of goals
that are satisfied. For example, suppose that the set of goalsincludesi n(box1, r oon¥) , which means
that the object named box 1 should be in the room named r oon¥. Then the goal is achieved in any state
of the environment for which the predicate is true. This has been the standard approach in early planning
systemssuch as STRIPS and many of itsdescendants. With thisapproach there can be no partial satisfaction
of agoal. An agent can either achieve a goal completely or fail to do so. Thisrigid approach is not suitable
for complex situations where partial satisfaction of goals may be sufficient and even desirable given the
cost of complete satisfaction. Consider, for example, the problem of finding a parking spot at a place one
visitsfor the first time. Theinitial goal may be to find a free, unlimited parking space that is within a short
walking distance from that place. Normally, after a short exploration period that yields no result, one settles
for partial fulfillment of this goal rather than prolonging the exploration. In general, complete satisfaction
may be either infeasible or uneconomical.

3.2.1 Partial goal satisfaction

Many reasons contribute to the fact that partial goal satisfaction might be preferred to complete satisfaction.
The following list summarizes these reasons:

1. Prablem complexity — given the agent’s computational resources, the problem complexity makes it
too hard to find the best solution.

2. Cost of time—time pressure imposed on the agent does not allow enough timeto find the best solution.

3. Uncertainty regarding the state of the environment — the agent cannot determine with absolute cer-
tainty that the goal was achieved because its perception of the environment provides only an approx-

CHAPTER 3. UTILITY-DRIVEN REAL-TIME AGENTS 31

imation of the current state.

4. Goal conflict —thedesired goal imposessevera constraintson the environment that cannot be satisfied
simultaneously.

Since complete satisfaction of goalsis not always possible, agents need a method for measuring
partial satisfaction of goals so that they can maximize the degree of goal achievement. Such measure
is provided by the use of utility functions. A utility function is a mapping from the set of states of the
environment, €2, into the set of real numbers. The utility of each state, measured in arbitrary units sometimes
called utils, is a numeric evaluation of the degree of goal achievement in that state. For example, if the
agent’s goal isto deliver packages, its utility function may be:

> Value(P,T;) (3.1
P,eDP

where T; isthe delivery time of package P;, DP isthe set of al delivered packages, and Value determines
the time-dependent delivery value of each package.

Utility functions generalize the notion of goa achievement by allowing each goal to be achieved
to acertain degree. The agent’s set of goalsisreplaced by anew single goal which isto maximizeitsutility
function. This approach solves the difficulties mentioned above, such as goal conflict, because even when
two goals cannot be achieved together, the utility function can be maximized by partial satisfaction of both.

3.2.2 Explicit and implicit utility

Utility functions express the level of goal achievement for each possible state of the environment. An
important distinction, that has been largely ignored in the past, should be made between explicit and implicit
utility which are defined below:

Definition 3.1 Anexplicit utility function over aset of states(2, U.,,, : 2 — R, isafunctionthat measures
the degree of goal achievement in a state assuming that it isa terminal state.

Definition 3.2 An implicit utility function over a set of states 2, U;,,,, : @ — R, is a function that
measures the degree of goal achievement in a state assuming that it is an intermediate state in a problem
solving episode.

To understand the difference between explicit and implicit utility functions imagine an agent whose only
goal isto get to from Berkeley to San Francisco. In theinitial state, w, the agent has $100 and a car that
has only 1/8 of a gallon of fuel. Consider the state wy in which the agent is still in Berkeley, having the
same amount of money and a map of local gas stations. The explicit utility of w; iszero, since the agent
has not advanced toward its final destination. When considered as a terminal state, «w; has no extra value
due to the fact that the agent acquired the map. However, the implicit utility of wq is high, because, having
so little fuel, the agent must go directly to a gas station before it can do anything else. When considered as
an intermediate state, w, has some extra utility due to the fact that the agent acquired the map.

While explicit utility can be determined by a simple evaluation of certain, immediate features
of the domain, such as the distance to San Francisco, implicit utility is hard to estimate. Implicit utility
depends not only on the environment but also on the agent’s capabilities and intentions. For example, the
value of the map of local gas stations depends on the agent’s capability to read a map and on its intention

CHAPTER 3. UTILITY-DRIVEN REAL-TIME AGENTS 32

to get fuel before heading to San Francisco. Therefore, estimating the implicit utility of a given state may
regquire complex planning and problem solving. | assume that normally only the explicit utility function is
given as part of the problem definition. Computing the implicit utility is regarded as part of the problem
solving process, not the problem definition.

Implicit utility is, in principle, a derivative of the explicit utility. For each intermediate state, the
agent has expectationsregarding thetiming of the termination of the task and the level of goal achievement.
Theexplicit utility of that expected termination state definestheimplicit utility of anintermediate state. The
utility of a particular action at any given time can also be estimated by the net effect it has on the implicit
utility of the resulting state. Having made the distinction between implicit and explicit utility, | can now
define the notion of a utility-driven agent.

Definition 3.3 A utility-driven agent is an agent whose behavior is designed to maximize a given explicit
utility function.

Given an explicit utility function, as long as the agent has the capability to compute the possible effects
of each action, the optimization of a single action is relatively simple. However, in order to optimize the
agent’s behavior over a certain segment of time, implicit utility must be computed and the task becomes
more complicated. In the next chapter | will show how conditional performance profiles can simplify the
task of projecting the quality of certain courses of action. Therest of thischapter discussestherole of utility
functionsin both guidance and eval uation of intelligent agents. Unless otherwise mentioned, theterm utility
will be used to indicate explicit utility.

3.3 Real-time agents

Having established a framework that evaluates intelligent agents using utility functions, | now turn to the
notion of real-time agents. The classical definition of real-time systems emphasizes the capability of a
system to produce itsresults after afixed time has elapsed. In thiswork | have adopted a more genera view
of real-time systemsthat is based on the notion of time-dependent utility functions.

3.3.1 Time-dependent utility

Utility functions can be used as a rich language to describe the level of “time pressure” and its dependence
on the situation. For example, a deadline can be imposed on the run-time of a system by having a sharp
drop in utility at a certain point of time. If the value of aresult » of a system in state s of the environment
isdefined by the function V'(r, s), and itsfixed deadline is at 7o, then the following utility function can be
used to capture both aspects:

) Vi(rs) ift< Ty
Ulr,s.t) = { —00 otherwise

In addition to the capability to capture the notion of a deadline, utility functions allow for other types of
time pressure to be described. Moreover, they alow for gradual decrease in the value of the results as a
function of time. To describe this property, the following definition is used:

(3.2)

Definition 3.4 A utility function U(r, s, t), that measures the value of a result » in Situation s at time ¢, is
said to be time-dependent if
dr, s, t1,t2 U(r,8,t1) # U(r,s,t2)

CHAPTER 3. UTILITY-DRIVEN REAL-TIME AGENTS 33

Time-dependent utility generalizes the traditional notion of a deadline and is sometimes referred to as a
soft deadline. This approach has been used by several investigators [Horvitz, 1987; Boddy and Dean,
1989; Russell and Wefald, 1989b]. In some cases the utility function evaluates actions rather than states.
For example, Horvitz and Rutledge [1991] introduce a system, Protos, to solve time-pressured medical
problems. Protos can suggest atreatment by propagating observations about a patient’s symptomsthrough
abelief network. A time-dependent utility function, «(A;H;,t), is used to specify the value of action A;
taken at time ¢ when state 4 ; is true. Horvitz and Rutledge use linear and exponential functions to model
the utility change over time:
U(AZ'H]‘, 1) = U(AZ'H]‘, to)e_k“t

U(AiH]‘,t) = U(AiH]‘,to) — ¢pt

where k, and ¢, are parameter constants derived through fitting a series of assessmentsto afunctional form
or through direct assessment. The use of time-dependent utility leadsto the following definition of real-time
agents:

Definition 3.5 A utility-driven agent issaid to be a real-time agent if its utility function is time-dependent.

Thisdefinition unifiesthe analysis of all the systems operating under any type of time constraints, both with
or without strict deadlines. Time-dependent utility providesagood mechanism to describe thetime pressure
in many computational tasks, for example, the computation of the next move in chess, path planning for
robot control, reentry navigation for a space shuttle, financial planning and trading, and medical diagnosis
in an intensive care unit. In many real-time domains there is no fixed deadline that should be imposed on
the system. A traditional programming approach to real-time problem solving, that imposes on the system a
strict deadline, must use a deadline that covers the worst case. But in many Al problem solving techniques
there is a wide variance in computational effort between the best case and the worst case. For example, a
medical diagnosis system may need to respond within 30 seconds when the patient isin critical condition
but the same system may have 30 minutesif the patient condition is stabilized. Deadlines that are defined
based on the worst case impose unnecessary constraints on such systems. Replacing deadlines by utility
functions thus eliminates this deficiency.

3.3.2 Thecost of time

An important aspect in real-time agent control isthe cost of time [Russell and Wefald, 1989b]. It reflects
the loss of utility due to deliberation and delay in action. The cost of time is determined by several factors:
the agent’s reasoning capabilities, the state of the environment, and the time-dependent utility function of
the agent. In other words, the cost of time is not just the cost of computational time — it also reflects the
expected utility gain due to the agent’s deliberation and the expected utility |oss due to the dynamics of the
environment. Suppose that the function U (r, s, t) isthe utility of result r in Situation s at time¢. And let r,
be the result at time ¢ and s; be the state of the environment at time ¢. Then the cost of time is defined as
follows:

Definition 3.6 Given a utility function U(r, s,), the cost of time, C(?), is:
C(t) = U(re, 50,0) = U(re, 54,1)

In other words, the cost of time is the difference between the value of aresult, assuming that it is available
a the current state, and its value at the time it is actually produced by the system. Obviously there is a

CHAPTER 3. UTILITY-DRIVEN REAL-TIME AGENTS 34

large degree of uncertainty regarding the state of the environment and the actual result generated by the
system. Thisuncertainty is characterized respectively by the model of the environment and the conditional
performance profile of the system. Hence, the expected cost of time can be estimated.

In many domainsitiseasier to estimatethe cost of timedirectly rather than to construct acomplete
model of the environment. In such domains, the utility of the agent in a future state can be expressed by:

U(Ttv Sty t) = U(Ttv 50, 0) - C(t) (33)

Hence, direct estimation of the cost of time can greatly simplify the meta-reasoning component. Thisissue
isfurther discussed in Chapter 6.

3.4 Evaluating utility-driven agents

Utility functions are not only the key mechanism to define the desired behavior of an agent, but also the
metric used to evaluate the quality of its actual behavior. Consider an agent A that is presented with an
individual problem instance taken from a certain domain. Each problem instance includes a description
of the initial state of the environment, w;. The agent transforms the environment, through a sequence of
actions, into afinal state, wy. | assume that if the utility function depends on time, the necessary temporal
information is included in the state. A medical diagnosis program is an example of such an agent. The
quality of the behavior is determined in this case by the expected utility of the final state over al possible

problem instances:
Q(A) = ZPT(I(%'))ZPT(F(Wf)u(Wi))U(Wf) (3.4)

where I(w) indicates that w is the initial state and F'(w) indicates that w is the final state. U(w) is the
explicit utility of w. Note that this formula does not provide an effective method for agent evaluation.
Further analysisisrequired to evaluate the probabilities that appear in the formula.

Theabove approach is useful when eval uating an agent based on asingle problem solvinginstance.
In many cases, however, itismore interesting to measure the performance of the agent over alonger period.
Suppose that an agent is required to solve a sequence of problems. The total utility gain over a set of
problemsisimportant, not the utility gain from each individual problem instance. A robot performing local
path planning as it navigates toward a certain destination is an example of such an agent. Another example
isan agent that has along term task, such as “to keep the room clean and organized.” Evaluating the agent
on asingleaction basis may not be theright thing to do. Finally, consider an agent that operatesin aninfinite
loop or an agent whose operation timeis unlimited in principle. A robot that delivers packages to different
clientsin abuilding is an example of such agent. Since packages are added to the delivery list all thetime,
the robot does not finish its job at any particular point. Assuming that the utility function depends on the
value and urgency of each package, the quality of the behavior in this case can be measured by the average
utility gain per time unit. A unifying approach to handle these cases is based on the definition of the utility
over “histories’ that describe the state of the environment over a particular period of time. The value of the
agent depends then on its effect on the history of the environment. This approach to evaluate utility-driven
agentsisfurther discussed in Chapters 6 and 7.

In conclusion, this chapter shows how utility functions can replace simple goalsin specifying the
desired behavior of an agent. Furthermore, utility functions can be used to capture the time pressure in any
domain and to evaluate the quality of the behavior produced by a particular agent.

Chapter 4

Anytime Computation

Intelligence is not to make no mistakes but quickly to see how to make them good.
Bertolt Brecht, The Measures Taken

Anytime algorithms expand upon the traditional view of a computational procedure as they offer to fulfill
an entire spectrum of input-output specifications, over the full range of run-times, rather than just asingle
specification. Normally, the quality of the results of an anytime algorithm grows as computation time
increases, hence anytime computation offers a tradeoff between resource consumption and output quality.
This tradeoff plays a central role in the model of operational rationality. In this chapter | show how to
develop anytime agorithms, how to calculate and represent the relationship between time allocation and
quality of results, and how to actually execute them on a standard computer.

4.1 Anytimealgorithms

Anytime algorithms generalize the standard call-return mechanism in computer programming. A standard
procedure can be viewed as an implementation of a mapping from a set of inputsinto a set of outputs. For
each input that specifies a problem instance there isa particular element in the output set that is considered
the correct solution to be returned by the procedure. Anytime algorithms can be viewed as an implementa-
tion of amapping from a set of inputsand time allocation into a set of outputs. For each input that specifies
a problem instance there is a set of possible solutions, each associated with a particular time allocation.
The advantage of thisgeneralization isthat the computation can beinterrupted at any time and still produce
results of a certain quality, hence the name “anytime algorithm.” The notion of interrupted computationis
almost as old as computation itself. However, in the past, interruption was used primarily for two purposes:
aborting the execution of an algorithm whose results are no longer necessary, or suspending the execution
of an algorithm for a short time because a computation of higher priority must be performed. Anytime
algorithms offer athird type of interruption: interruption of the execution of an algorithm whose results are
considered “good enough” by their consumer.

Although the results produced by an anytime algorithm may be very useful, they are not con-
sidered “correct” in the traditional sense. The binary property of correctness must be replaced by a more
flexible measure that characterizes the quality of each result.

4.1.1 Measuring quality of results

35

CHAPTER 4. ANYTIME COMPUTATION 36

v
v

v

(@) (b) ©

Figure 4.1: Typical performance profiles

The quality of the results produced by an anytime algorithm is characterized by its performance profilel,
which describes how the quality of the results depends on run-time. Any algorithm — both standard and
anytime—has aperformance profile. Figure4.1 showsatypical performance profile of an anytimealgorithm
(a) and of astandard algorithm (b). The performance profile of the anytime algorithm showsthat the quality
of the resultsimproves gradually over time, while with the standard al gorithm, no results are available until
its termination at which point the exact result is returned. Obvioudly, this example represents an ideal
situation. In practice, the improvement in quality of an anytime algorithm may look like a step function, as
inFigure 4.1 (c), rather than asmooth curve. In addition, there may be some uncertainty regarding the actual
quality of the results for any particular time allocation. These issues and other aspects of representation of
performance profiles are discussed in Section 4.2.

In order to draw performance profiles, objective metrics for measuring the quality of the output
must be defined. Such quality measures specify the difference between the approximate result and the exact
result. They are “objective’ in the sense that they are a property of the algorithm itself, independent of its
possible applications. Objective quality measures should not be confused with subjective utility functions
that are also used in our model. The former are used to characterize the performance of an algorithm in
absolute terms and the latter are used to define the desirability of the output of the complete system with
respect to its design goals. Since the results of one anytime algorithm can be used as the input of another
algorithm, the same quality measures that are attached to the results are used to characterize the possible
variability in input quality.

From apragmatic point of view, it may seem useful to define asingletype of quality measure to be
applied to al anytime algorithms. Such a unifying approach may simplify the meta-level control. However,
in practice, different types of anytime algorithms tend to approach the exact result in completely different
ways. Quality measures must match the nature of the algorithm they describe. As aresult, the model of
operational rationality allows arbitrary quality metricsto be used. In particular, the following three metrics
where found useful:

1. Certainty — Thismetric reflects the degree of certainty that aresult iscorrect. The degree of certainty
can be expressed using probabilities, fuzzy set membership, or any other method of expressing uncer-
tainty. For example, consider an anytime diagnosis algorithm that is based on combining more and
more evidence as computation time increases. The certainty that the diagnosis is correct increases
as afunction of run-time. With thistype of anytime algorithms, there is always a possibility that the
correct results are completely different from the ones generated by the algorithm.

2. Accuracy — This metric reflects the degree of accuracy or how close is the approximate result to

1An exact definition of performance profileswill be given later in this chapter.

CHAPTER 4. ANYTIME COMPUTATION 37

the exact answer. Normally with such algorithms, high quality provides a guarantee that the error is
below a certain small upper bound. For example, Taylor series can be used for calculating the value
of acertain function. The basic idea is to approximate the function by a polynomial in such a way
that the resulting error iswithin some specified tolerance. Lagrange’s remainder formulacan be used
to determine an upper bound on the error as a function of the iteration number. This error estimate
determines the quality of the results.

3. Specificity — This metric reflects the level of detail of the result. In this case, the anytime algorithm
always produces correct results, but the level of detail isincreased over time. For example, consider
ahierarchical planning algorithm that first returns ahigh level abstract plan. Each step in the abstract
planisa“macro” step that needs to be refined by further planning. As computation time increases,
the level of detail in increased until the plan is composed of base-level steps only that can be easily
followed. A detailed plan can be executed faster than an abstract plan and has higher quality.

When aparticular anytime algorithmis constructed, it is often hard to classify uniquely itsquality
measure. Accuracy istypically used to measure quality in numerical domains and specificity in symbolic
domains, but the former can be seen as a specia case of the latter; an inaccurate numerical solution is
very specific but incorrect, and could be mapped to an equally useful, correct statement that the solution
lieswithin a certain interval. In addition, anytime algorithms can have multidimensional quality measures.
For example, PAC agorithms for inductive learning are characterized by an uncertainty measure, 6, and a
precision measure, €. The advantage of the use of conditional performance profiles, as described in the next
chapter, is that they allow for a uniform treatment of anytime algorithms, regardless of the particular type
of their quality measure.

4.1.2 Interruptibleversus contract algorithms

An important distinction should be made between two types of anytimealgorithms: interruptiblealgorithms
and contract algorithms. Interruptible algorithms produce results of the “advertised quality” even when
interrupted unexpectedly; whereas contract algorithms, although capabl e of producing resultswhose quality
varies with time allocation, must be given aparticular time alocation in advance. If acontract algorithmis
interrupted at any time shorter than the contract time, it may yield no useful results. Both interruptible and
contract algorithms have been used in the past. Dean and Boddy’s[1988] definition of anytime algorithms
refers to the interruptible case. Korf’'s RTA* [1988] performs a depth-first or best-first search within a
predetermined search horizon that is computed from the time allocation provided, and can therefore be
considered a contract algorithm. Although thisalgorithm can produce resultsfor any given time allocation,
if it isinterrupted before the expiration of the allocation, it may yield no results.

In general, every interruptible algorithm is trivially a contract algorithm, but the converse is not
true. Intuitively, one tends to think about anytime algorithms as interruptible, whereas the greater freedom
of design makesit easier to construct contract algorithms than interruptible ones. In the case of functional
composition, for example, the construction of optimal contract algorithms can be solved by an efficient
compilation process, while the construction of interruptible algorithms is much harder. Since in many do-
mainswith high time pressure the main decision component of an agent must be interruptible, the following
reduction theorem is essential for the model of operational rationality. The reduction theorem allows for
the construction of contract algorithms as an intermediate step, before the system is made interruptible.

Theorem 4.1 (Reduction) For any contract algorithm.4, an interruptible algorithm 3 can be constructed
such that for any particular input ¢z(4t) > qa(t).

CHAPTER 4. ANYTIME COMPUTATION 38

A
quality

—

time

Figure 4.2: Performance profiles of interruptible and contract algorithms

Proof: Construct B by running.A repeatedly with exponentially increasing timelimits. If interrupted, return
the best result generated so far. Let the sequence of run-time segmentsbe 7, 27, ..., 27, ..., and assume that
thetime overhead of the code required to control thisloop can beignored. Notealso that -7} 2/ = 2" — 1.
Theworst case situation occurs when B isinterrupted after almost (2" — 1)7 time units, just before the last
iteration terminates and the returned result isbased on the previous iteration with arun-time of 2"~2r time

units. Since 2;:;21 < 4, the factor of 4 results. If one replaces the multiplier of time intervals by «, one

getsatimeratio of: #}ln—z The lower bound of thisexpressionis4, for a = 2, hence 2 isthe optimal
multiplier under this strategy. O

Note that = may be arbitrarily small and should be in general the shortest run-time for which
there isany improvement in the quality of the results of .A. Note also that the reduction theorem makes no
assumption about the timing of the interrupt. When such information is available, for example if run-time
isevenly distributed between 5 and 15 seconds, then a different scheduling scheme might be better.

Figure 4.2 showsatypical performance profilefor the contract algorithm A, and the corresponding
performance profile for the constructed interruptible algorithm B, reduced aong the time axis by a factor
of 4.

As an example, consider the application of this construction method to Korf’s RTA*, a contract
algorithm. Asthe time allocation isincreased exponentially, the algorithm will increase its depth bound by
a constant; the construction therefore generates an iterative deepening search automatically.

4.1.3 Theanytimetraveling salesman

I now turn to an example of aparticular anytime algorithm for solving awell-known combinatorial problem.
Thetraveling salesman problem(TSP) involvesasalesman that must visit » cities. If the problemismodeled
as a complete graph with » vertices, the solution becomes a tour, or Hamiltonian cycle, visiting each city
exactly once, starting and finishing at the same city. The cost function, Cost(i, j), defines the cost of
traveling directly from city 7 to city j. The problem isto find an optimal tour, that is, a tour with minimal
total cost. The TSPisknown to be NP-complete [Garey and Johnson, 1979]. Sinceall theknown algorithms
for solving this problem require exponential time in the worst case, it isimpossibleto find an optimal tour
when the problem includes a large number of cities. Severa efficient approximate algorithms have been
devel oped for the TSP. Some, based on finding aminimum spanning tree, do not have the property of gradual
improvement. Others are based on iterative gradual improvement. Such an interruptible anytime algorithm
is described below.

The anytime traveling salesman algorithm is arandomized algorithm that repeatedly tries to per-
form a tour improvement step [Lin and Kernighan, 1973; Lawler et al., 1987]. In the general case of tour

CHAPTER 4. ANYTIME COMPUTATION

@) (b)

Figure 4.3: The operation of randomized tour improvement

ANYTIME-TSP(V, iter)
Tour — INITIAL-TOUR(V)
cost < Cosr(Tour)
REGISTER-RESULT(Tour)
for i — 1toiter
e1 — RANDOM-EDGE(Tour)
€2 — RANDOM-EDGE(Tour)
6 — CosTt(Tour) — CosT(SWITCH(Tour, e1, €2))
if 6 > Othen
Tour < SwiTCH(Tour, e1, €2)
cost — cost — 4
REGISTER-RESULT(Tour)
SIGNAL(TERMINATION)
HALT

OoOo~NOOOTh WNPE

o
WN PO

Figure 4.4: The anytime traveling salesman algorithm

39

CHAPTER 4. ANYTIME COMPUTATION 40

improvement procedures, » edgesin a feasible tour are exchanged for r edges not in that solution as long
as the result remains a tour and the cost of that tour is less than the cost of the previous tour. | have im-
plemented the algorithm for the case where » = 2. Figure 4.3 demonstrates one step of tour improvement.
An existing tour, shown in part (a), visitsthe vertices in the following order: a, b, c, d, g, f. The algorithm
selects two random edges of the graph, (b, ¢) and (f, a) in this example, and checks whether the following
condition holds:

Cost(a,c)+ Cost(f,b) < Cost(b,c) + Cost(f,a) 4.0

If this condition holds, the existing tour isreplaced by the new tour, shown in part (b), a, ¢, d, e, f, b, a. The
improvement condition guarantees that the new path has alower cost. The agorithm starts with arandom
tour that is generated by simply taking a random ordering of the cities. Then the algorithm tries to reduce
the cost by a sequence of random improvements. The result isan interruptible anytime algorithm shown in
Figure 4.4. The performance profile of thisagorithm will be presented in the following section.

4.2 Performance profiles

Performance profiles providethecrucial meta-level knowledgeinthe model of operational rationality. When
an anytime algorithm is activated with a particular time allocation, the quality of its result falls within a
certain range of possible values. The main reason for the uncertainty concerning the quality of the results,

especially with deterministic algorithms, isthefact that the particular input to thea gorithmisunknown. The

performance profile specifies the quality distributionfor any given time alocation. This quality distribution

should always be interpreted with respect to a particular probability distribution of input instances. An

algorithm may have several performance profiles, each characterizing its performance when operating in a
different environment. For example, a particular path planning algorithm may have different performance
profiles when applied to the corridors of a hospital and to a section of a warehouse. This section defines
three types of performance profiles and discusses methodsfor their calculation and representation.

4.2.1 Categoriesof performance profiles

Given an anytime algorithm A, let ¢ 4(z,t) be the quality of results produced by .4 with input 2 and com-
putation time ¢; let ¢ 4(¢) be the expected quality of results with computation time ¢; and let p 4 .(¢) be
the probability (density function in the continuous case) that .A with computation time ¢ produces results of
quality ¢. Themostinformativetype of performance profile used in thiswork isthe performance distribution
profile defined below:

Definition 4.2 The performance distribution profile (PDP), of analgorithm A isafunction D4 : Rt —
Pr(R) that maps computation time to a probability distribution of the quality of the results.

It may happen that the summation over all possible inputs produces too wide arange of qualitiesin which
case the information provided by the performance profile is too general. In that case, one can use a con-
ditional performance profile by partitioning the input domain into classes and storing a separate profile
for each input class. The partitioning can be done using any attribute of the input that may influence per-
formance, such as size or a complexity measure. Input classes of similar performance can aso be derived
automatically using Bayesian statistics by programs such as Autoclass [Cheeseman et al., 1988]. Additional
types of conditional performance profiles, used for compilation purposes, are discussed in Chapter 5.

CHAPTER 4. ANYTIME COMPUTATION 41

Definition 4.3 The expected performance profile (EPP), of analgorithm A isafunction £4 : RT™ — R
that maps computation time to the expected quality of the results.

An expected performance profile is the most compact representation of performance information. It isthe
kind of performance information that was used by Boddy and Dean [1989] and by Horvitz [1987]. Note

that:
EA(t) = parlq)g=>_ Pr(z)qa(z,1) (4.2

Expected performance profiles are especially useful when the variance of the quality distribution is small.
In such case,
f(E(q1), E(q2)) = E(f(q1.42)) (4.3)

hence expectations can be combined with high accuracy using expected performance profiles. Inthe special
case where the variance of the distribution is zero (or infinitesimal), the anytime algorithm is said to has
a fixed performance. For such agorithms, an expected performance profile offers a complete, accurate
description of performance.

Definition 4.4 Theperformanceinterval profile(PIP), ofanalgorithmAisafunctionZ4 : Rt — RxR
that maps computation time to the upper and lower bounds of the quality of the results.

Notethat if 74(t) = [L, U] then:
Vo 1L < qa(z,t) <U (4.4)

Performance interval profiles offer a representation that is both compact and easy to manipulate. From the
lower bounds on the qualities of the results of two agorithms, one can normally find a lower bound on
the quality of their combined result. The sameis not true of expected performance profiles. Hence, when
a compact representation is preferred and the variance of the distribution is wide, performance interval
profiles are useful.

4.2.2 Propertiesof performance profiles
I now turn to the definition of some basic properties of anytime algorithms and their performance profiles.

Definition 4.5 The completion time of an anytime algorithm A ist,, if #. isthe minimal time for which:
VaVt:it>1t, — qa(z,t) = qala,t.)

Note that while the quality of results advertised by an expected performance profile is not guaranteed in
generd, it is guaranteed at completion time. This is an immediate consequence of the definition. It aso
reflects the intuitive notion of the completion of a computation. If ¢ isthe run-time for which the expected
quality is maximal, then a time allocation of ¢ + ¢ isrequired in order to guarantee that quality, where 6
depends on the performance distribution of thealgorithm. Noteal so that the quality of resultsachieved by an
algorithm at its completion timeis not necessarily equivalent to the quality of an optimal solution. Anytime
algorithms are not required to return optimal solutions for a large, even infinite, time allocation. In many
cases the flexibility offered by the algorithm is achieved at the expense of termination with sub-optimal
results. For any given decidable problem, it is possible to “fix” an anytime algorithm so that it returns
an optimal result in the limit. This can be achieved by simply switching from the anytime algorithm to a
standard optimal algorithm after its termination (or at an earlier point). However, convergence to optimal
resultsin the limit has very limited relevance to the construction of real-time systems.

CHAPTER 4. ANYTIME COMPUTATION 42

A : a
q 5 b
: Cc

5 -

t* t
Figure 4.5: Superior performance profiles

Definition 4.6 An anytime algorithm .4 is said to be pathological if its expected quality of resultsis not a
monotonic non-decreasing function. That is,

ity dto ity < tr A EA(tl) > EA(tz)

Unless otherwise mentioned, | assumethat an algorithmisnot pathological. Pathology in anytime computa-
tion can be easily removed when the quality of theresultsissimpleto calculate. 1n such cases, the algorithm
can be modified to return the best result generated so far instead of the most recent one. This modification
clearly makes the algorithm non-pathological. For example, consider a path planning algorithm in which
the quality of a generated path is determined by its length. Since the quality is simple to compute, it is
easy to guarantee that the algorithm is not pathological. However, in chess playing programs, the quality
of amoveisnot easily recognizable. That isexactly why extensive search is necessary to evaluate possible
moves. In such cases fixing a pathological algorithm is much harder [Nau, 1983].

Definition 4.7 A quality function is said to be normalized if the quality of an optimal result is 1 and:
VeVt :0< ga(z,t) <1

When the quality of results measures uncertainty using standard probabilities, the performance profile is
trivially normalized. Error bounds can be normalized using a relative rather than an absolute measure.
Levelsof specificity can be normalized by measuring their relative contribution to the quality of the optimal
(i.e. most specific) solution. Normalization of quality is sometimes useful for theorem proving purposes.
However, in practice there is normally no need to limit an application to normalized performance profiles.

Definition 4.8 Let A and B be two anytime algorithms that solve the same problem, then 5 is said to be
superior to A if for every input = and every time allocation :

Vo Ve qs(z.t) > qa(z,1)

The relationship of superiority between anytime algorithmsisapartial order. Given two anytime algorithms
that solve a certain problem, it is possible that neither of them is superior to the other. For example, in
Figure 4.5, both performance profiles « and b are superior to ¢, but neither is a superior to b nor isb superior
to a. To decide which one is “better,” more knowledge on the distribution of time allocation is required.
Given such information, one can compute the expected quality over all possible allocations and use that
figure as a basis for comparison. Suppose that in a particular environment the function f(¢) is the density

CHAPTER 4. ANYTIME COMPUTATION 43

function for time allocations. That is,

Prn <<= [fn (45)
T

Given such adensity function, any two performance profiles can be compared:

Definition 4.9 Let A and B be two anytime algorithms that solve the same problem, then 5 is said to be
stochastically superior to A over thetimeinterval [T7, T3] if:

T2 T2
[rwasdr> [pwaatna
T1 Tl

Definition 4.10 Let A and 5 be two anytime algorithms that solve the same problem, then 5 is said to be
e-superior to A if for every input » and every time allocation :

Va Vt i gp(z,t+€) > qa(z,t)

Definition 4.11 Let A and B be two anytime algorithms that solve the same problem, then 5 is said to be
equivalent to A, denoted 5 ~ A, if there exists a small constant ¢ > 0 such that A is e-superior to 5 and
B ise-superior to A.

Proposition 4.12 Let A and B be two anytime algorithms that solve the same problem with fixed perfor-
mance. If neither algorithmissuperior to the other, then there exists a contract anytime algorithm(that is
e-superior to both A and B. C iscalled the merger of .4 and B.

Proof: Construct C asfollows:

(z)
t — GET-TIME-LIMIT
if ga(t) > gs(1)
then AT(A(z), CONTRACT,t)
else AT(B(z), CONTRACT,t)

rWNEO

The merger algorithm C checks first which algorithm produces a better result for the particular contract time.
This decision is made based on the expected performance profiles of A and B. Then it simply activates the
better algorithm for that particular allocation. Since both A and 5 have fixed performances, C is guaranteed
to produce results superior to both. O

Note that A and B can be either contract or interruptible algorithms since they are activated by C
in contract mode. The reason why C is only e-superior to A and 5 is because of the short additional time
necessary to determine which algorithm should be activated.

4.2.3 Findingthe performance profile of an algorithm

Suppose that a certain anytime algorithm isimplemented on a certain machine. How can one determine its
performance profile? In some cases, the performance profile can be calculated by performing a structural
analysis of the algorithm. For example, in many iterative algorithms, such as Newton’s method, the error

CHAPTER 4. ANYTIME COMPUTATION 44

quality x 10°3

600.00 — rnd-map

550.00 —| S e

500.00 —

450.00 —

400.00 —

350.00 —

300.00 —

250.00 —

200.00 —

150.00 —

100.00

50.00

0.00

| | | | | | timex 103
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Figure 4.6: The quality map of the TSP algorithm

in the result is bounded by a function that depends on the number of iterations. In such cases, the perfor-
mance profile can be calculated once the run-time of a single iteration is determined. In general, however,
such structural analysis of the code is hard because the improvement in quality in each iteration and its
run-time may be unpredictable. The randomized tour improvement algorithm from the previous section
illustrates this problem. To overcome this difficulty, a general simulation method can be used. It is based
on gathering statistics on the performance of the algorithm in many representative cases’. A third adaptive
method combines ssimulation and learning. The system starts with an approximate performance profile that
is determined using simulation with alimited number of examples. Then, as the system interacts with the
environment, it updates the performance profile based on its experience. The advantage of this method
isthat it is automatically biased to measure the performance of the algorithm in the context of the actual
application domain and using real input instances.

A quality map of an anytime algorithm summarizes the results of running the algorithm with
randomly generated input instances. For example, Figure 4.6 showsthe quality map of the randomized TSP
algorithm. Each point (¢, ¢) represents an instance for which quality ¢ was achieved with run-time ¢. The
quality of resultsin this experiment measures the percentage of tour length reduction with respect to the
initial tour.

These statistics form the basis for the construction of the performance profile of the agorithm.
The resulting expected performance profileisshownin Figure4.7. Table4.1 showsatabular representation
of the probability distribution profile of the algorithm.

4.2.4 Representation of performance profiles

Performance profiles can be represented either by a closed formula or as a table of discrete entries. This
section discusses the two alternative representations.

2Representative problem instances are randomly generated based on prior knowledge of the problem domain.

CHAPTER 4. ANYTIME COMPUTATION 45

quality

0.50

0.40 /
0.30 /

0.20 /
0.10 /

0.00

0.0 0.5 1.0 1.5 2.0 2.5 time

Figure 4.7: The expected performance profile of the TSP algorithm

Closed formula representation

Since performance profiles are normally monotone functions of time, they can be approximated using a
certain family of functions. Once the quality map is known, the performance information can be derived
by various curve fitting techniques. For example, Boddy and Dean [1989] used the function: Q(¢) =
1 — ¢~ to model the expected performance of their anytime planner. Performance distribution profiles
can be approximated using a similar method by using a certain family of distributions. For example, if the
normal distribution is used, one can apply the same curve fitting techniques to approximate the mean and
variance of the distribution as a function of time.

The advantage of using a closed formula representation of performance profilesis that symboalic
compilation can be performed once a parametric representation of each profile is given. The result of such
compilation can be used each time members of that family are compiled.

Closed formula representation has two major disadvantages:

1. It introduces error in performance information that is caused by the bias toward a certain family of
functions.

2. Itishard to maintain closure under the compilation operation.

The problem of closure under compilation is especially important. The closure property requires that the
result of compilation of two (or more) performance profiles that belong to a certain family would be a
member of the same family (or at least it could be approximated by afunction in that family). For example,
when compiling two linear performance profiles one gets a non-linear performance profile and a linear
approximation may not be sufficient (see Chapter 5). Hence, linear performance profiles are not closed
under compilation. As aresult of the disadvantages of closed formula representation, | prefer the use of the
more flexible, discrete representation.

Discrete representation

The discrete representation of performance profilesis based on atable that specifies the discrete probability
distribution of quality for certain possibletimeallocations. For thispurpose, the complete range of qualities

CHAPTER 4. ANYTIME COMPUTATION 46

Table 4.1: The performance distribution profile of the TSP algorithm

quality
time | .025 | .075 | .125 | .175 | .225 | .275 | .325 | .375 | .425 | .475 | 525 | 575
0.0 | 1.00
02 | 002|030 048 0.6 0.04
0.4 0.04 | 012 024 0.36 | 0.24
0.6 0.04 | 010 030 | 0.34| 0.22
0.8 002 | 0.16 0.34 0.30 | 0.14 | 0.04
1.0 002 | 018 0.38 | 0.26 | 0.16
12 0.06 | 0.24 | 0.40 | 0.28 | 0.02
14 0.10 | 0.40 | 0.42 | 0.08
16 0.04 | 0.30 | 0.44 | 0.20 | 0.02
18 0.10 | 054 | 0.32 | 0.04
2.0 0.44 | 0.48 | 0.08
2.2 0.28 | 0.52 | 0.18 | 0.02
24 0.16 | 0.50 | 0.30 | 0.04

hasto bedividedinto discretequalitiesqs, ..., ¢,. Theentry ¢, j inthetable representsthe discrete probability
that with time allocation ¢; the actual output quality ¢ would be in the range [¢; — ¢, ¢; + ¢]. The size of
the tableisa system parameter that controls the accuracy of performance information. Linear interpolation
is used to find the quality when the run-time does not match exactly one of the table entries. For example,
Table 4.1 shows the performance distribution profile of the randomized TSP algorithm.

4.25 Thelibrary of performance profiles

The development of an anytime algorithm is not considered complete before its performance profile is
calculated and stored in the anytime library. This library keeps the meta-level information that is essential
both for off-line compilation and for run-time monitoring. The construction of a standard anytime package
that comeswith alibrary of performance profilesis an important first step toward the integration of anytime
computation into standard software engineering techniques. Behind such alibrary liesavision of the wide-
spread use of standard anytime algorithms for essentially every basic computational problem from sorting
and searching to graph algorithms. The anytime library offers aset of reusable real-time programs, anaction
that is almost self-contradictory with respect to current methodologies of developing real-time systems.
Together with automatic compilation and monitoring, such alibrary can greatly simplify and accelerate the
development of real-time systems.

Severa important implementation issues regarding the construction of the anytime library have
been ignored in the prototype implementation of the model. These issues include naming conventions
and interface specification. Proper naming conventions are needed so that performance profiles are easily
matched with the algorithms that they describe. Performance profiles in the library should be machine
independent. They should specify performance with respect to a standard virtual machine. The library
must also include information about relative performance of various computer systems so that the generic
performance profile from the library can be stretched to describe the actual performance on a particular

CHAPTER 4. ANYTIME COMPUTATION 47

system. In addition, a standard set of interface operations should be defined for modification, information
retrieval, and display of the entries of the library. The particular details of the implementation depend on
the programming environment used and are beyond the scope of this dissertation.

4.3 Modd of execution

How can an anytime algorithm be executed on astandard computer with minimal programmer intervention?
In thissection | define amodel of execution for anytime computation that solves this problem. The crucial
part of the model is the capability to communicate with a running algorithm, examine the quality of its
results, and control its run-time accordingly. | limit the discussion to the execution of elementary anytime
algorithmsthat do not include anytime agorithms as components. The treatment of compound algorithms
is based on compilation and monitoring methods that are described in the following chapters.

4.3.1 Design goals

The model of execution was developed with the following design goals:

1. Anytime programs should include a minimal amount of “special code” to support the model. Such
special code may be necessary in order to have access to the status and results of an algorithm whileit
isrunning, to activate an algorithm with a particular time allocation, to interrupt an algorithm and use
its best result, or to find the performance profile. The minimal extra code should not make anytime
programs hard to read and understand. Whenever possible, code to support specia operations should
be inserted automatically when an anytime algorithm is defined.

2. The programmer should not be responsible for inserting the code for time measurements or timeallo-
cation. All measurements should be performed automatically by the system. The responsibility of the
programmer should be limited to qualitative aspects of algorithm devel opment while the quantitative
aspects of control and performance evaluation would be automatic.

3. The programmer should have to develop only one version of the program. None of the operations
mentioned above, such asfinding the performance profile of an el ementary anytime algorithm, should
require the programmer to alter the source code. Such modifications of code should be performed,
whenever necessary, by automatic tools.

4. Theprogrammer should be able to test individual anytime algorithmswithout activating the compl ete
system. The run-time monitor devel oped to control the complete system should also be ableto control
individual algorithms. Thismay require the programmer to define an appropriate context that includes
autility function and a degenerate environment. Thisissue will be discussed in Chapter 6.

4.3.2 Assumptions about the programming environment

Themodel that is presented here can berealized in any programming environment that satisfiesthefollowing
requirements:

1. Theunderlying programming language, P £, must support the following features:

(@ Functions are first class objects.

CHAPTER 4. ANYTIME COMPUTATION 48

(b) Functions can take optional and keyword arguments.

(c) Execution is deterministic over time. That is, the run-time of any deterministic function is
consistent over repeated activations with the same inpui.

2. The programming environment must include a real-time operating system, OS, that supports the
following operations:

(&) A program can create processes and control their execution.

(b) The scheduling of processesis based on priorities. At each point of time the process with the
highest priority among all the ready processes is running.

(c) Thesystem maintains areal-time clock.

(d) A process can sleep until a certain event occurs. The process becomes ready immediately when
the event occurs.

(e) Eventscan be triggered by any process or by the real-time clock.
3. The scheduler of processes must have the following properties:

(& Itisan event-driven scheduler. If no event occurs, the process with highest priority remains
active. If two ready processes have the same priority, one of them is randomly selected for
execution.

(b) When aprocessisrunning and a process with higher priority becomes ready, the latter becomes
immediately active.

(c) Theeffect of theoverhead of the scheduler on the performance profiles of the running algorithms
isnegligible.

Note that while the simulated prototype of the model wasimplemented in Allegro Common Lisp, the actual
model cannot be implemented in that language because it fails to satisfy the following assumptions: 1.c,
2.b, 2.d, 3.3, and 3.b. Obviously, the built-in garbage collection mechanism of Lisp makes it difficult to
use that language for time-critical applications. Severa existing programming environments, such as the
Spring kernel [Stankovic and Ramamritham, 1989], that were especially designed for real-time applications,
satisfy the requirements listed above.

4.3.3 Running elementary anytime algorithms

I now turn to a description of the model of execution with respect to the development of elementary anytime
algorithms. As| mentioned earlier, the discussion hereis limited to elementary anytime algorithms defined
asfollows:

Definition 4.13 An elementary anytime algorithm is an anytime algorithm whose implementation does
not use any other anytime algorithm as a component. A non-elementary anytime algorithmisalso called a
compound algorithm.

Elementary anytime agorithms are standard programsin P £. What makes them anytime algorithmsis the
mode of activation and the use of the special function: REGISTER-RESULT(Result) whenever anew result
isgenerated. Thisfunction recordsthe new result so that it becomes availablein case of interruption. It also

CHAPTER 4. ANYTIME COMPUTATION 49

Foo(Input)

Result < INITIALIZATION-STEP(I nput)

REGISTER-RESULT(Result)

while CONTINUATION-CONDITION do
Result < IMPROVEMENT-STEP(Result)
REGISTER-RESULT(Result)

SIGNAL(TERMINATION)

HALT

No o~ owWwDNPRE

Figure 4.8: Typical implementation of an interruptible anytime algorithm

updates the status of the anytime algorithm. The registration operation is a fast atomic (non-interruptible)
operation since interruption may create an inconsistent situation in which only part of the new result has
been copied.

Practical experience shows that most elementary anytime algorithms are developed using a gen-
eral interruptible scheme. Figure 4.8 showsthetypical structure of such algorithms. After performing some
initial computation, the algorithm register the first result. Then it enters aloop that repeatedly improvesthe
result. At the end of each iteration, the algorithm updates the result. Once the algorithm terminates, and
assuming it was not aborted earlier because of timeout or interrupt, it signalsthe fact that the computation
is done.

Elementary contract algorithms have a different structure. In principle, they need to register a
result just once, before the expiration of the contract. In order to guarantee that they generate aresult before
the expiration of the contract, these algorithms start with a call to INIT-CONTROL-PARAMS. This procedure
sets up the values of certain local parameters that determine the execution time of the algorithm. The
parameters must be identified by the programmer and can limit, for example, the number of iterations, the
search horizon, or the depth of graph exploration. How doesa contract algorithm compute the mapping from
contract timeto these control parameters? The desired situation would be to use an automatic programming
tool to perform thistask, although no such tool is currently available.

Activation

While the programmer normally activates an elementary anytime algorithm just as if it were a standard
algorithm, the model includes a special function that is actually used to control the execution time. Every
activation of an elementary anytime algorithmin aprogram isreplaced by the compiler (see Chapter 5) with
acall to the following special function:

AT (anytime-function-call,
activation-mode,
time-limit,
desired-quality)
where anytime-function-call is the original function to be activated (including its arguments), activation-
mode iseither CONTRACT or INTERRUPTIBLE, time-limit is the amount of time allocated (i.e. the con-

CHAPTER 4. ANYTIME COMPUTATION 50

AT (anytime-function-call, activation-mode, time-limit, desired-quality)
PID «— CREATE-PROCESS (anytime-function-call, AT-PRIORITY)
SET-DESIRED-QUALITY(PID, desired-quality)
INITIALIZE-TIMER(RT, time-limit)
if activation-mode = INTERRUPTIBLE then
ENABLE(EXT-INTERRUPT)
wait for event in [EXT-INTERRUPT or RT-EXPIRED or
QUAL-ACHIEVED or TERMINATION]
Result — CURRENT-BEST-RESULT(PID)
kill PID
return Result

Uk WN PR

O 0

Figure 4.9: The control of anytime computation

tract time for a contract algorithm or a certain run-time limit for an interruptible algorithm), and desired-
guality is the quality of results that is considered satisfactory by the consumer and, when reached, should
cause the termination of the computation. Both time-limit and desired-quality are optional parameters.

Figure 4.9 shows the implementation of the AT function. It creates a process that runs the actual
anytimealgorithmand remains active as a control mechanism until the termination of the anytimealgorithm.
The termination can be signaled by any one of the following events: an external interrupt, expiration of the
contract time, reaching the desired quality of results, or by a natural termination of the anytime algorithm.

To summarize, here is an example of an activation of a TSP agorithm as a contract algorithm
with time limit of 1000 msec and desired quality of 0.78. The input to the algorithm is a random map of
200 cities:

MAP — CREATE-MAP(size = 200)

AT(ANYTIME-TSP(MAP,
activation-mode = CONTRACT,
time-limit = 1000,
desired-quality = 0.78)

4.4 Programming techniques

Since elementary anytime algorithms serve as the basic blocks of the model of operational rationality, the
success of the model largely depends on the capability to develop a large number of anytime algorithms
that solve a wide range of problems. But, does anytime computation require aradical change in program
design? Doesit require a completely new set of programming techniques? | suggest that alarge number of
existing programming techniques offer a good basis for anytime computation.

To conclude this chapter, | show how several existing programming techniques can be used to de-
velop anytime algorithms. | characterize these techniques as indirect programming techniques in the sense
that they produce a sequence of approximate results rather than directly calculating the exact answer. Tra-

CHAPTER 4. ANYTIME COMPUTATION 51

ditionally, such indirect programming techniques were motivated primarily by the fact that some problems
do not have a closed form solution. In order to solve such problems, search and other indirect techniques
must be used. The main difference between indirect computation in general and anytime computationisthe
emphasis of the latter on the value of producing a sequence of results, not asa meansto reaching a satisfying
solution, but as an end in itself. This difference in motivation means that some minor modifications might
be necessary when using existing programming techniques to make it possible for intermediate results to
become the final results of the computation.

Sear ch algorithms

Search is the genera problem solving technique that is based on systematic exploration of the space of
possible solutions until a satisfying solutionis reached. Search procedures differ in the order in which they
explore the search space. Aslong as the search space is small, existing search procedures, such as A*,
can find an optimal solution. However, in most practical problems the search space istoo large for finding
optimal solutions. Thus, when using search as a basic mechanism for agent construction, the purpose of the
search procedure becomes gathering information. Such information can be used in order to make a good
selection of actions in a process that eventually converges on a solution. The run-time of each step can
be controlled by limiting the search horizon. In principle, this forms the basis for an anytime agorithm
since the more time is available for each step, the more information can be gathered before an action is
selected and executed. However, monotonic increasing quality of results as a function of search effort is
not guaranteed with many popular search procedures®. The RTA* algorithm presented in Section 2.5 is an
example of a search procedure that guarantees improved quality of results as a function of run-time when
the quality is measured in terms of error bounds.

Randomized algorithms

In awide range of applications, randomization offers an extremely important tool for the construction of
algorithms [Karp, 1990]. There are two principal types of advantages that randomized algorithms often
have. First, their execution time and space requirement can be smaller than that of the best deterministic
algorithm known for the problem. But even more strikingly, they are simpleto understand and implement.
Many existing randomization techniques can be used to construct anytime algorithms whose quality of
resultsimprovesin terms of degree of certainty.

A general randomized technique that has this property is sometimes called abundance of wit-
nesses. It involves deciding whether the input data possesses a certain property: for example, whether an
integer can be factored. Often, it is possible to establish the property by finding a certain object called a
witness. While it may be hard to find a witness deterministicaly, it is often possible to show that witnesses
are quite abundant in a certain probability space, and thus one can search efficiently for awitness by repeat-
edly sampling from the probability space. If the property holds, then awitnessis very likely to be found
within afew trials; thus, the failure of the algorithm to find a witnessin along series of trials gives strong
evidence that the input does not have the required property. Two important types of algorithms fall under
this category. A Las Vegas algorithm provides a solution with probability greater than 0.5 and never gives
an incorrect solution. A weaker type of algorithm, known as Monte Carlo algorithm, can be used for situa-
tionswhere the algorithm makes a decision, and its output is either yes or no. A Monte Carlo algorithmisa

3The problem of decreased quality of resultsin spite of increased search effort has been studied by Nau [1985] and others. It is
frequently referred to as pathology of search procedures.

CHAPTER 4. ANYTIME COMPUTATION 52

randomized algorithm such that, if the answer is yes, the agorithm confirms it with probability larger than
0.5, but if the answer isno, it smply remains silent. Thus, on an input for which the answer isno, the algo-
rithm will never give a definitive result. An anytime algorithm can be constructed in this case by repeating
the activation of the trial phase. For example, there are severa Monte Carlo algorithms for problems such
astesting whether a giveninteger is composite, testing polynomial identities, or testing whether agraph has
a perfect matching.

Another randomized programming technique that can be used to construct anytime algorithmsis
fingerprinting. Thisisatechnique for representing alarge data object by a short “fingerprint” computed for
it. Under certain conditions, the fact that two objects have the same fingerprint is strong evidence that they
areinfact identical. Thiscan be used to solve pattern matching problemswhere the anytime algorithm uses
several different fingerprints. As more and more fingerprints are generated and compared, the probability
that the objects are identical increases.

Automated reasoning algorithms

Many useful algorithms for automated reasoning are based on accumulation of evidence. Such algorithms
calculate the support of each candidate hypothesi sbased on observed evidence. Thelevel of support replaces
amorerigid binary truth value. This approach alows a system to accumulate evidence to support or reject
a hypothesisin an incremental manner.

One approach, called bounded conditioning, is presented in Horvitz et al. [1989a]. Bounded con-
ditioning monotonically refines the bounds on posterior probabilitiesin a belief network with computation
and converges on final probabilities of interest. The approach allows areasoner to exchange computational
resources for incremental gainsininference quality. The algorithm solves a probabilistic inference problem
in complex belief networks by breaking the problem into aset of mutually exclusive, tractable subproblems
and ordering their solutions by the expected effect that each subproblem will have on the final answer.

Another approach, variable precision logic [Michalski and Winston, 1986], is concerned with
problemsof reasoning with incompleteinformation and resource constraints. Variable precisionlogic offers
mechanisms for handling trade-offs between the precision of inferences and the computational efficiency
of deriving them. Michalski and Winston address primarily the issue of variable certainty level and employ
censored production rulesas an underlying representational and computational mechanism. These censored
production rules are created by augmenting ordinary production rules with an exception condition and are
written in the form “if A then B unless C,” where C is the exception condition. Systems using censored
production rules are free to ignore the exception conditions when resources are tight. Given more time,
the exception conditions are examined, lending credibility to high-speed answers or changing them. Some
degree of quantitative analysisis added by augmenting censored rules with two parameters that indicate the
certainty of the implication “if A then B.” The parameter ¢ represents the certainty when the truth value of
Cisunknown, while v is the certainty when C is known to be false.

| terative approximation methods

The category of iterative methods includes a large number of approximation algorithms that are based on
computing aseries of resultsthat get closer to the exact answer. These agorithmsare obviously interruptible
and in many cases the error (or quality) is directly related to the number of iterations. A classical example
is Newton’s method for finding the roots of an equation. Many basic iterative approximation methods can
be found in standard texts in numerical analysis such asin Ralston and Rabinowitz [1978].

CHAPTER 4. ANYTIME COMPUTATION 53

4.5 Theoretical aspects of approximate computation

The notion of approximate a gorithms has been extensively analyzed by the theoretical computer science
community. In this section | will discuss several interesting results in thisfield and their implications for
the model of operational rationality. It should be emphasized that the following theoretical results refer
to NP-complete problems only. They are motivated by the fact that NP-compl ete problems require super-
polynomial time to solve and hence an approximation scheme may be the only alternative when the input
sizeislarge. The model of operational rationality, on the other hand, recognizes the fact that even with
problems of polynomial complexity, it may be beneficial to use an anytime agorithm in order to build a
more responsive real-time system. Hence, the applicability of the model goes far beyond the capability to
deal with NP-completeness and intractability of computation. Nevertheless, theoretical results identify a
sub-class of NP-complete problemsfor which areasonabl e approximation scheme can produce high quality
resultsin polynomial time.

A standard theoretical metric for the quality of an approximation algorithm isits worst-case ra-
tio [Johnson, 1992]. The nearness to optimality of a given solution can be expressed as aratio of its value
to that of an optimal solution. The worst-case ratio for an approximation algorithm indicates just how far
from 1 that ratio can be for a solution it generates. It is normally assumed that the numerator of theratiois
awaysthe larger of the two solution values, so that worst-case ratios are always greater than or equal to 1
in both minimization and maximization problems. For many optimization problems, algorithms with small
worst-case ratioswere found, for example, a3/2 worst-case ratio for the Traveling Salesman problem under
the triangle inequality [Christofides, 1976]. The approximation algorithm is based on solving a minimum
weight perfect matching problem whose complexity is O(n3). A worst-case ratio of 2 is guaranteed by a
faster approximation algorithm that is based on solving a minimum spanning tree problem whose complex-
ity isO(nlogn). For other problems, intractability results were obtained. If the triangle inequality is not
assumed in the Traveling Salesman problem, for example, then guaranteeing a worst-case ratio of ¢ for any
constant ¢ isjust as hard as finding an optimal solution [Sahni and Gonzalez, 1976].

More recently, additional results regarding approximation algorithmswere derived based on their
connection to multiple provers [Johnson, 1992]. An interesting question to ask is what is the best possible
ratio that can be guaranteed for a particular NP-complete problem in polynomial time, assuming that P #
N P. There are two possible answers to this question. Either there is an approximation threshold ¢ > 1
such that no polynomial time algorithm can guarantee a solution of quality ¢ unless P = N P, or for every
¢ > 1there existsapolynomial time approximation algorithm with worst-case ratio ¢. In the later case, the
problemissaid to have apolynomial timeapproximation scheme. There are many examplesof problemsthat
have such schemes, for instance the KNAPSACK problem and the restriction of the maximum independent
set problem to planar graphs.

Discussion

The relationship between these theoretical results and anytime computation is anal ogous to the relationship
between NP-completeness results and traditional computation. Theory can tell us that some problems can
be hard to approximate while others may have good polynomial approximation schemes. However, such
resultstell usvery little about the actual capability to develop a good anytime algorithm to solve a problem.
One deficiency of these theoretical results is their reliance on the worst-case ratio as a quality metric. In
practice, the average-case quality with respect to a concrete probability distribution of input instancesis
much more important. The average-case quality is unfortunately much harder to derive using analytical

CHAPTER 4. ANYTIME COMPUTATION 54

tools and has not been much studied. Another deficiency of the theoretical analysis relates to the choice
of quality measures. As defined in section 4.1, the quality measure of the results of an anytime algorithm
reflects some important aspect of the output. Quality measures should directly relate to the usefulness of
the results. The theoretical analysis allows a rather arbitrary measure. Therefore, a worst-case ratio of ¢
may trangate into a much better or much worse ratio when amore informative quality measure is sel ected.
To summarize, when dealing with NP-complete problems, atheoretical analysis of approximate algorithms
can save some work by indicating, for example, that a fixed worst-case ratio for a certain algorithm cannot
be achieved using a polynomial time algorithm. But this kind of analysisis of very limited utility when
the actual performance of an anytime algorithm needs to be characterized. It offers no aternatives to the
statistical methodsthat | suggested earlier in constructing the performance profile of an algorithm.

Chapter 5

Compilation of Anytime Algorithms

For the things we have to learn before we can do them, we learn by doing them.
Aristotle, Nicomachean Ethics

I now turn from the examination of individual anytime algorithmsto the problem of building large systems
using anytime algorithms as components. Throughout this chapter, individual anytime algorithms will be
treated as black boxes, characterized only by their performance profiles. The compilation process plays a
central rolein making operational rationality amodular model of anytime computation. Itisthe processthat
takes a module — composed of several elementary anytime algorithms — and makes it an optimal anytime
algorithm. Thisprocessisillustrated in Figure 5.1. Theinput to the compiler includes acompound anytime
module, that is, a module composed of several elementary anytime algorithms that does not include time
allocation code and hence is not readily executable. In addition, the input includesthe performance profiles
of the elementary algorithms. The result of the compilation process is an executable anytime module that
consists of acompiled version of the original module, a pre-defined run-time monitor, and the performance
profile of the system that may include some auxiliary time allocation information. The compiled version
includes some additional code to control the activation of the elementary components with an appropriate
time allocation. Optimal scheduling of the elementary components may also require run-time monitoring.
In fact, the complexity of the compilation task islargely determined by the choice of arun-time monitoring
scheme. Thisrelationship between compilationand monitoring isfurther examined in the following chapter.

| begin with an explanation of the need for compilation followed by a section categorizing the
compilation problem. | then present a number of simple cases of compilation and their solutions. The no-
tion of local compilation, that is performed on a single program fragment at atime, is introduced as a key
mechanism to reduce the complexity of compilation of large programs. The complexity of the compilation
of arich compositional language is analyzed and proved to be NP-complete in the strong sense. However,
local compilation, whose complexity islinear in the program size, is shown to be both efficient and optimal
for alarge class of programs that satisfy three basic assumptions. A number of approximate time alloca-
tion algorithms are shown to solve the compilation problem efficiently in the general case of functional
composition. Finally, a number of extensionsto the programming language are analyzed.

51 Why compilation?

Why is the compilation process so important in any model of anytime computation? The key issue ad-
dressed by the compilation process is the problem of allocating resources to the elementary components of

55

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 56

PERFORMANCE COMPOUND
PROFILE x ANYTIME
LIBRARY MODULE

SYSTEM COMPILED
PERFORMANCE ANYTIME
PROFILE MODULE

Figure 5.1: Compilation and monitoring

amodule so asto optimizeits behavior as an anytime algorithm. Unlike the traditional use of compilationin
programming languages, the compilation of anytime algorithmsisnot used just as a translation mechanism.
It fills in the gap created by introducing time allocation as a degree of freedom in computation. The rest of
this section explains the importance of the compilation process and its design goals.

5.1.1 Modularity and anytime computation

Modularity is widely recognized as an important issue in system design and implementation. It allows the
designer to decompose a large system into small, well-defined modules that can be developed and tested
individually. Modularity also allows a separation between different aspects of the problem complexity, thus
simplifying the task of each development group and allowing different parts of a system to be developed
independently. Individual modules can be re-used in other systems to shorten the development time and
reduce the costs.

The very idea of using anytime algorithms introduces a new kind of modularity into real-time
system development. The modularity introduced by anytime algorithmsis based on the separation between
the development of the performance components and the optimization of their performance. In traditional
design of real-time systems, the performance components must meet certain time constraintsthat are not al-
ways known at design time!. The result isa hand-tuning process that, hopefully, culminateswith aworking
system. Anytime computation offers an alternative to this approach. By developing performance compo-
nents that are responsive to a wide range of time allocations, one avoids the commitment to a particular
performance level that might fail the system.

The main problem with modular system development is the integration of the components into
one working system that meetsits design goals. Thisintegration problem is especially complex when deal -

IWhile thetime constraints of the complete system are normally specified at designtime, it isnormally hard to derivefrom them
appropriate time constraints for the components of the system.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 57

ing with anytime computation. In standard algorithms, the expected quality of the output of each moduleis
fixed, so composition can be implemented by a simple call-return mechanism. However, when agorithms
have resource alocation as a degree of freedom, there arises the question of how to construct, for exam-
ple, the optima composition of two anytime agorithms, one of which feeds its output to the other. By
solving mechanically thisintegration problem, the compilation process extends the principle of procedural
abstraction and modularity to anytime computation.

5.1.2 Minimizingtheresponsibility of the programmer

Without the compilation process, thetask of programming with anytime algorithmswould have added anew
difficulty to system devel opment. The problem involvesthe activation and interruption of the componentsso
as to optimizethe performance of the complete system, or at least to make it executable. Animportant goal
of the compilation process isto minimize the responsibility of the programmer regarding this optimization
problem. Ideally, the programmer would be able to use elementary anytime algorithms as if they were
standard algorithms, with all aspects of the scheduling problem solved by the compilation and monitoring
components. In this respect, my model is different from existing systems for imprecise computation, such
as Concord [Lin et al., 1987], in the sense that the programmer does not have to determine what quality of
resultsis desired in each situation or to schedul e the components to achieve that quality.

5.2 The compilation problem

In thissection | will characterize more precisely the compilation problem and its complexity. What aspects
of anytime computation determine the complexity of compilation? To what extent can the compilation
process be discussed inisolation? As Figure 5.1 shows, the resulting compiled anytime module may include
amonitoring component. In fact, run-time monitoring is essential in many cases in order to guarantee the
optimal quality of results as advertised by the compiled performance profile. However, throughout this
chapter, | will examine the compilation process only, apart from the rest of the system. This separation
between compilation and monitoringisonly possibleunder certain assumptions. Inthissection | identify the
various factors that affect the complexity of the compilation problem. Then, a certain class of compilation
problemsis defined that allowsto defer the discussion of monitoring until the next chapter.

1. Program structur e—Thestructure of acompound anytime moduleisaprimary factor that determines
the complexity of compilation and monitoring. Some programming structures, such as sequencing,
are easier to handle. Other structures, such as recursive function calls, are quite difficult to compile
and monitor. Aswith elementary anytime algorithms, thedesign goal isto minimizethe programmer’s
responsibilitiesand duties. Asaresult, an effort ismade to define compilation methodsthat depend on
the semantics of the programming structure rather than on user provided information. This principle
serves as a magjor guideline throughout this chapter.

2. Type of performance profile — The type of performance profile and its representation largely in-
fluence the compilation process. Highly informative performance profiles, such as the performance
distribution profile, are more difficult to compile and manipulate. The complexity of the compila-
tion isincreased due to the complexity of the representation and the requirement that the resulting
performance profile provides the same level of information. Simple performance profiles, such as
the expected performance profile, are easier to handle but do not always have the closure property
under compilation. The closure property guarantees that the performance profile provides enough

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 58

information to derive the same type of performance profile for a composed module. An expected
performance profile, for example, does not have the closure property since, manipulation of a set of
expected values does not yield, in general, the expected value of the result. In this respect, condi-
tional performance profiles provide a useful, modular representation that simplifies the compilation
problem.

3. Type of anytime algorithm — The type of agorithm used as input to the compiler and the desired
type of the resulting algorithm have a direct effect on the compilation process. Contract algorithms
are normally easier to construct both as elementary and as compound algorithms. Interruptible algo-
rithms are more complicated. One can, of course, construct first a contract algorithm and then use
the result of Theorem 4.1 to make it interruptible. However, with some programming structuresitis
advantageous to generate an interruptible algorithm directly and avoid the constant slowdown of the
reduction theorem.

4. Quality of intermediate results —With both interruptible and contract anytime algorithms, the mon-
itor can, in principle, examine the quality of intermediate resultsin order to modify the allocation of
the remaining time. However, thisrequires a capability to determine the actual quality of intermedi-
ate results. The quality of intermediate results may be a simple aspect that can be quickly calculated.
For example, in the case of a bin packing program whose quality function is the proportion of the
container space filled with packages, the quality of an intermediate result can be easily calculated. In
other cases, such asachess playing program, the quality of arecommended moveisnot apparent from
the moveitself. Hence, the capability to determine the quality of intermediate results is an important
factor in compilation and monitoring.

Depending on these factors, different typesof compilationand monitoring strategies are needed. Tosimplify
the discussion in this chapter, | will concentrate on compilation and discuss monitoring in the following
chapter. However, compilation and monitoring have already been shown to be interdependent processes.
In order to discuss them separately, the following distinction is made between two types of compilation
Processes:

Definition 5.1 Compilation of anytime algorithms — Type | is the process of deriving an optimal per-
formance profile and related scheduling information for a compound anytime module assuming passive
monitoring.

Passive monitoring means that meta-level time allocation decisions are made before the activation of the
anytime algorithms. Elementary algorithms are activated as contract algorithms only and allocation is not
reconsidered before the termination of the contract or even by the termination of each subcontract. Obvi-
ously, the assumption of passive monitoring limits the capability to optimize the performance profile but it
also simplifies the problem and allows us to consider compilation as an isolated issue. In the next chapter,
I will expand the monitoring capability to allow active monitoring?.

Definition 5.2 Compilation of anytime algorithms — Type 11 is the process of deriving an optimal per-
formance profileand related scheduling information for a compound anytime modul e assuming active mon-
itoring.

2Both passive and active monitoring are defined more formally in the next chapter.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 59

y

Time t=x
(@) linear performance profiles
QA QA
1 K """"""""" S s
| - | SS
Time Time

t—x
(b) exponentia performance profiles

Figure 5.2: Performance profiles of two contract algorithms

The rest of this chapter concentrates on Type | Compilation. Throughout the chapter, the term compila-
tion refers to Type | only. | begin with an introductory analysis of simple compilation problems. Type |
compilation will be addressed in the next chapter.

5.3 Compilation examples

Before analyzing the general compilation problem, some basic examples will be examined. Starting with
the composition of two agorithms, | will analyze the basic principles of compilation. Finally, an important
component of thiswork, the notion of local compilation, will be introduced.

5.3.1 Composition of two algorithms

To begin, consider the composition of two anytime algorithms. Suppose that one a gorithm takes the input
and produces an intermediate result. Thisresult isthen used asinput to another anytime algorithm which, in
turn, producesthe final result. Many systems can be implemented by a composition of a sequence of two or
more algorithms. For example, an automated repair system can be composed of two algorithms: diagnosis
and treatment. This can be represented in general by the following expression:

Output — Ax(A1(Input))

Suppose that the expression is composed of two contract anytime algorithms, A; and .A,, whose perfor-
mance profiles are shown in Figure 5.2. Thefigure includes two sets of performance profiles that represent
two separate cases. | start the analysis with the assumption that the performance profiles are fixed, that is,

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 60

there is no uncertainty regarding the quality of the output for any given time allocation.

Case 1: Linear performance profiles

Figure 5.2(a) shows a set of two linear performance profiles. They start with an arbitrary initia quality ¢
(that may be zero) and reach the maximal quality of 1 at time T;. Hence they can be represented by:

Qit)=q+ait QoAt)=q+ ast

Assumethat theoutput quality reflects the probability of producing correct resultsand that the success/failure
of each module is independent of the success/failure of the other. Hence, the overall quality is the multi-
plication of the quality of .4, and the quality of A,. Since a contract algorithm is sought, the compilation
process has to create the mapping:

T:RY — R" x RT (5.1

and
PP:RT —[0,1] (5.2)

The first mapping specifies for each total allocation the amount of time that should be allocated to each
algorithm so as to maximize the output quality®. The second mapping is the performance profile of the
composed algorithm based on optimal time allocation.

For each total alocation, ¢, the compiler hasto find the optimal allocation, z, to thefirst algorithm
(which impliesalocation ¢t — z to the second algorithm) such that the overall quality (=) ismaximal.

Theorem 5.3 Given the performance profiles of .4; and A5, the optimal time allocation mapping is:

1 no, g, 1 n Q@
: R (e .
Ti— (G- 24 2) cay o2y, 53
Proof: Since the overall output quality is:
Q) = —aqanz? + (a0t — qra2 + qeon)z + qrg2 + qroot (5.9
the maximal quality is achieved when 22 = 0.
In other words:
— 201001 + ajaot — qrao + goay = 0 (5.5

The solution of thisequation yieldsthe above alocation. O
It should be noted that boundary conditionswereignoredinthisanalysis. Thefollowing correction
istherefore necessary to cover all cases:

1. If, as aresult of the above mapping function, an agorithm gets more run-time than necessary for
completion, the extratime should be all ocated to the other algorithm (or ignored when both algorithms
terminate).

2. If thetime alocation to one algorithm is negative, al available time should go to the other algorithm
and the allocation to that algorithm should be zero.

30nly the appropriate allocation to the first component is really necessary because the allocation to the second is simply the
remaining time.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 61

It isinteresting to note also that in the special case where ¢; = 0 (i.e. initia quality is zero), the optimal
mapping allocates exactly half of the total time to each module regardlessof «1 and a).
Case 2: Exponential performance profiles

Figure 5.2(b) shows a set of two exponentia performance profiles. These performance profiles are defined
by:
Ql(t) =1-—e M Qz(t) =1—¢ M

Assume that the output quality is the sum of the quality of .4, and the quality of A,. Asin case 1, the
compilation process has to create the optimal time allocation mapping and performance profile.

Theorem 5.4 Given the performance profiles of .4; and A5, the optimal time allocation mapping is:

INA1 —InXo 4+ Xot Indo—InAy 4+ At

Tt , 5.6
= A1+ A2 A1+ A2) (56)
Proof: Since the overall output quality is:
Q(z) =1— e M7 41— g7 e(t=2) (5.7)
the maximal quality is achieved when 22 = 0.
In other words:
A7 — Npe~tel=7) = 0 (5.8)

The solution of thisequation yieldsthe above alocation. O

The other task of the compiler isto insert code in the original expression for proper activation
of A; and A, as contract algorithms with the appropriate time allocation. This is done by replacing the
simple function call by an anytime function call as explained in the previous chapter. The time allocation
is determined by the total allocation and the compiled time allocation mapping. In the future, 1 will not
always distinguish between the two mappings generated by the compilation process but will refer to both
as the compiled performance profile. In practice, the two mappings are both calculated and stored together.

Summary

The compilation of a simple example — the composition of two modules — has been analyzed. This example
demonstrates several general issuesin compilation. To summarize these issues, two aspects of compilation
that are related to the representation of performance profiles are discussed below:

1. When performance profiles are represented using acertain formula, asin the above example, the com-
pilation problem involves solving adifferential equation. The complexity of the equation, in terms of
both size and number of variables, grows as a function of the number of elementary algorithms that
are compiled. If a different representation is used, such as tabular discrete approximation, then the
compilation problem becomes a search problem in a discrete domain whose size grows exponential ly
with the number of modules. The problem of exponential growth in the compilation complexity is
addressed in the following section.

2. When performance profiles are represented using formulas, it is advantageous to use a homogeneous
representation by using one family of functions for representing the performance profiles of all the

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 62

elementary algorithms. If a homogeneous representation is used, the compilation problem can be
solved once for that family, thus accel erating the implementation. This raisesthe question of whether
the chosen family is closed under compilation, that is, whether the quality of acompiled moduleisa
function of the samefamily. The answer to thisquestion depends not only on the family used, but also
on the programming construct and the way quality is combined. In the example above, for instance,
linear performance profiles produced a compiled non-linear (quadratic) profile. So, the family of
linear functions is not closed under compilation when multiplicative quality combination is used.
But the family of polynomials (of unbounded degree) is obviously closed under compilation when
any polynomial is used as the quality combination function.

5.3.2 Linear composition of anytime algorithms

I now turn to an extension of the previous example where the program consists of a composition of n steps
Ai, ..., A,. Each step isan anytime contract algorithm whose performance profile isgiven. The goal of the
compiler isto derive an optimal contract algorithm for the compl ete expression:

Output — A, (...A2(A1(Input)))

Now, the time alocation problem is to find, for each total alocation of time ¢, the alocations. 1, ..., t,,
(t1+ ... + t,, =) that maximize the quality of the output.

If one assumes, like in the previous example, that the performance profiles are represented by
a certain family of functions, one can use calculusin order to find the optimal alocation. But, instead of
finding the global maximaof aquality function of one variable, asinthe two module case, one must handlea
quality function of n — 1 variables. The optimal allocation can be derived by solving a system of differential
equations of the form:

09 _ 0 00 _ 0

aitl — e 8tn_1 —

The alocation problem becomes more complicated in the general case where a discrete tabular represen-
tation is used for performance profiles. In that case, | assume that time alocation is also discrete. The
optimization problem becomes the problem of finding the best way to distribute ¢ time units between n
modules so as to maximize the overall quality function. The number of different possible time allocations
to be considered is:

(t4+n—1)!
t(n — 1)1

which is exponential in both » and 7. It istherefore important to find ways to reduce the complexity of the
global optimization problem, while preserving global optimality whenever possible. A key mechanism for
achieving thisgoal islocal compilation. It is presented in the following section.

Several extensions of this linear composition example can be similarly analyzed. Consider, for
example, the case where there is some uncertainty regarding the actual quality of results of each algorithm,
however, the performance profiles express only the expected quality as a function of time. In this case,
the above compilation scheme remains valid only when certain conditions are met. These conditions will
be examined later in this chapter. In addition, more general compilation and monitoring strategies will be
described in the next chapter.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 63

5.3.3 Local and global compilation

The compilation examples presented so far in this section demonstrate a fundamental problem of compila
tion, that is, the complexity of the optimization problem tends to grow exponentially with the size of the
program. Inorder to overcomethisdifficulty, | proposeto replace the global optimization problem with a set
of local optimization problems whose complexity is polynomial or even constant. The number of simpler
optimization problems grows linearly with the size of the program being compiled, hence the total amount
of work becomes polynomial.

Definition 5.5 Local compilation is the process of optimizing the quality of the output of each program-
ming construct by considering only the performance profiles of itsimmediate sub-components.

Local compilation solves the same problem as global compilation except for the fact that its scopeislimited
to one programming structure at atime. While global compilation derives the best time allocation to the
elementary components, local compilation treats the immediate sub-components asif they were elementary
anytime algorithms. If these components are not elementary, their performance profiles are derived using
local compilation as well.

Since local compilation is much more efficient than global compilation, and since the number
of times it needs to be performed is proportional to the size of the program, it offers a major reduction in
the complexity of compilation in general. In fact, it makes the whole concept of compilation of anytime
algorithmsrealistic for large programs. It also raises the question of how the resulting performance profile
compares to the globally optimal performance profile.

Definition 5.6 Local compilation is said to be optimal with respect to a particular program structureiif it
always achieves a globally optimal expected performance.

Preserving global optimality is a non-trivial property of local compilation. The following theorem asserts
the global optimality of local compilation with respect to thelinear composition structure that was examined
earlier in thissection.

Theorem 5.7 Optimality of local compilation of linear composition: Let .A be alinear composition of
the anytime algorithms. A1, ..., A,,, such that for any timeallocationt = ¢1 + ... + t,,:

Qa(t) = Qu(t1) o (Q2(t2) 0 (- 0 Qn(tn)))

where o is an arbitrary non-decreasing binary operation, then the performance profile derived by a series
of local compilationsis globally optimal.

Proof: Let Q[Cin] (t) be the performance profile derived by global compilation of the algorithms A;, ..., A,..

Similarly, let Q{;m] (t) be the performance profile derived by local compilation. For global compilation, the
performance profiles of al the elementary components are considered. For local compilation, the only two
performance profiles that are considered are the performance profile of the additional algorithm, @Q;_1(%),
and the compiled performance profile of the rest, Q{;m].

Using this notation, the theorem asserts that:

Qfn(t) = Qf (1) (5.9

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 64

The proof is by induction on the number of algorithms. For one algorithm the claim is trivially
true. For two agorithms, local compilation isidentical to global compilation and hence the claim is aso
true. Now, assume that the claim istrue for compilation of » — 1 algorithms and consider the compilation
of n agorithms.

Let ¢ be thetotal allocation and let 74, ..., ¢,, be the allocations to the components based on global
compilation. Let r = #, + ... + t,, bethe total alocation to all the algorithms except the first, then by
definition of the quality function:

Qfim(t) = Q(t1) o (Qat2) 0 (.0 Qu(tn))) (5.10)

By monotonicity of o:

< Qu(t1) 0 QF 4(r) (5.12)
By theinduction hypothesis:

= Qi(t1)o Q{é’n](r) (5.12)
By local compilation:

< Qfin® (5.13)
By global compilation:

< Qff) (5.14)

Hence Qf; ,1(1) = Qff (1) and the theorem is proved. O

Later in this chapter | will prove a stronger version of this theorem for tree-structured programs.
However, it isimportant to emphasize that even when local compilation is non-optimal, it hardly has any
aternative. For large programs, the global optimization problem becomes exceedingly hard to solve. This
fact necessitates the use of non-optimal time allocation techniques such as local compilation.

5.4 Conditional performance profiles

Do performance profiles provide all the necessary information for the compilation process? | suggest that
for some programming structures the dependency of performance on time alocation alone is insufficient.
In order to be able to properly combine anytime algorithms in general, one has to take into account that
the quality of the results of an algorithm depends not only on time allocation but also on input quality.
In other words, by reducing the alocation of time to a certain module, one affects not only the quality of
the result of that module but also the quality of the output of any module that uses that result as input.
When standard programming operators are analyzed, this dependency could be automatically determined
by the semantics of the operator. But when user defined algorithms are used, the dependency may only
be determined empirically, based on an analysis of test cases. For example, a planning algorithm would
produce a better plan (in terms of reliability, correctness, and execution efficiency) if itsinput, the domain
description, ismoreaccurate or moredetailed. Ingeneral, many input propertiesother than quality can affect
the quality of the results. For example, the quality of a plan is affected by the complexity of the domain,
even when aperfect domain description is assumed. Nevertheless, in the development of thismodel, | have
concentrated on the dependency on input quality since this property of the input is typically determined by
the time allocation to other algorithms. Hence, it isdirectly controlled by the compilation process.

In this section, | introduce the notion of a conditional performance profile that is used to capture

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 65

the dependency of performance on input quality. The knowledge provided by conditional performance
profiles makesit possible to analyze the cumulative effect of time allocation to a certain component on the
performance of the complete system.

A conditional performance profile consists of a mapping from input quality and run-timeto prob-
ability distribution of output quality (or any other probabilistic characterization of the quality of the output,
asin the ssmple performance profile case):

CPP : Qin x T — Pr(Qout) (5.15)

It should be noted that when an algorithm takes several inputs with varying quality, then) ;,, isrepresented
as a vector of qualities, each corresponding to one input. A simplified form of conditiona performance
profile may assume a single input quality measure regardless of the number of inputs. In such a case, the
single quality measure can relate to a certain function of the vector of qualities, for example their geometric
average. The judtification of using one quality measure only, besides compact representation, is that the
purpose of the compiler isto alocate timeto the components so asto balance their qualitiesand contributions
to the performance of the system. This means that under time pressure all the components “suffer” to a
similar extent. Therefore, one indication of input quality may be sufficient.

5.4.1 Special cases of conditional performance profiles

By definition, a conditional performance profile is a two dimensional mapping. However, it can be rep-
resented in some cases using a projection of a simple (one dimensional) performance profile that depends
on time allocation only. Thisrepresentation simplifies the construction and use of conditional performance
profiles. The rest of this section describes several such cases.

Homogeneous algorithms

Definition 5.8 An anytime algorithmis said to be homogeneous if its output is represented the same way
asitsinpuit.

Homogeneous algorithms can take their output as an input. The quality of the output generated in one run
becomes theinput quality for asuccessiverun. If it isassumed that the quality of the output isaways higher
than the quality of the input, the following property can be proved for homogeneous algorithms:

Theorem 5.9 Let A be a homogeneous algorithmand let PP 4(t) be the performance profile of A when
fed with input whose quality is minimal. Then the conditional performance profile of A can be expressed
by:

CPPa(g.1) = PPA(PPLHq) +1) (5.16)

Proof: Any problem with initial input quality ¢ can be considered as the output of A generated for the
same problem with minimal initial input quality* and time allocation PP (¢). Note that since PP 4(q)
isadtrictly increasing function, itsinverse is well defined. Therefore, the equivalent of activating .A with
initial quality ¢ and time allocation ¢ is activating the same algorithm with minimal initial quality but with
increased time allocation to bring it first to quality ¢. Hence the property holds. O

4Minimal initial input quality dependson the particular domain and on the quality measure that is used. It is normally zero.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 66

Here are some examples of homogeneous anytime algorithms for which the theorem above can
be used to capture the dependency on input quality:

Example 1: Anytime sorting

Consider an anytime sorting algorithm that is based on the standard quicksort algorithm. Initially the input
is represented as one segment of unsorted elements. The anytime algorithm performs repeatedly the fol-
lowing step. It takes the largest unsorted segment and splitsit into two segments such that all the elements
in the first are smaller than al the elementsin the second. Suppose that the quality of aresultis1 — (k/n)
where k£ isthe total number of elementsin all unordered segments and » is the total number of elements
to be sorted. The initial input is an unordered array. Its quality according to the above definition is zero.
However, one may want to allow a situation where the input is already divided into several segments, some
of which are aready ordered. Clearly, a simple performance profile with the theorem above is sufficient to
construct the conditional performance profile of the algorithm.

Example 2: Anytime hierarchical planning

Consider an anytime algorithm that starts with a high level abstract plan. In each iteration, the algorithm
selects the worst segment of the plan and replaces it with two segments planned at alower level of abstrac-
tion whose concatenation is a refinement of the original plan. Suppose that the quality of an abstract plan
corresponds to the abstraction level of all itsparts. The result is a homogeneous planning algorithm.

Example 3: Anytime iterative approximation

Consider an algorithm that computes an approximation of a certain mathematical operation by repeatedly
performing a computation step that reduces the error in the result: for instance, Newton’smethod for finding
the simple roots of real equations. This method starts with an approximation =1 to the root of F(z) = 0,
and calculates successively better approximations by the following formula:

_ Flan)
Fi(an)

Tpntl = T

In genera, z,+1 has more correct digitsthan z,, has. If one uses the number of consecutive correct digits
(from the | eft) as the quality, one gets a homogeneous anytime algorithm.

Multiplicative performance profiles

Definition 5.10 Let .4 be an anytime algorithmand let PP 4 () be the performance profile of .4 when fed
with input whose quality is maximal. Then A is said to have a multiplicative conditional performance
profileif its conditional performance profile can be expressed by the following product:

CPPA(q,t) = qPPa(t) (5.17)

Example 1: Probabilistic reasoning:

Supposethat an algorithmisfed with ahypothesiswhose quality measuresthe probability that the hypothesis
istrue. The anytime algorithm computes an action based on the assumption that the hypothesisis correct.
The performance profile of the algorithm expresses the value of the action as a function of time (assume
that the action has no value if the hypothesisis wrong and that the value of the action as a function of time

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 67

quality
0.50 ————"=] 10=020
IQ =0.15
EER 1Q =0.10
I i IQ = 0.05
0.40 T IQ = 0.00
0.30 S e
020~
010 |+
0.00
0.0 0.5 1.0 1.5 2.0 2.5 time (sec)

Figure 5.3: Conditional performance profile of a TSP algorithm

isindependent of the hypothesis). In this case, the conditional performance profile is multiplicative since:

CPPalg:t) = qPPA(t) + (1 - q)0 = ¢PPa(t) (5.18)

5.4.2 General conditional performance profiles

Unfortunately, most anytime algorithms are neither homogeneous nor do they have a multiplicative condi-
tional performance profile. The dependency of output quality on input quality israther arbitrary and cannot
be analyzed by looking at the code of the algorithm. The only alternative left isto capture the dependency
using statistical methods similar to the methods used in order to capture the dependency on run-time in
constructing regular performance profiles.

Figure 5.3 shows the conditional performance profile of the ANYTIME-TSP agorithm that was
introduced in Section 4.1.3. Each curve describes the expected quality of the result as a function of run-
timefor a particular initial input quality. Input with a particular desired initial quality was generated using
a different TSP algorithm (“sequentia tour improvement”). Hence, the example is not an instance of a
homogeneous algorithm. Had | used the same algorithm to generate problems of arbitrary initial quality, the
performance profile for initial quality zero could be used to represent the general conditional performance
profile and it would become atypical example of a homogeneous a gorithm.

5.5 Compilation of functional composition

Having defined the nation of a conditional performance profile, | can now turn to the general compilation
problem of functional composition. In functional composition, each expression to be compiled is com-
posed of an anytime function whose arguments may be either the result of functional composition or input
variables. The compilation task involves finding for each total allocation ¢, the best way to schedule the
components so as to optimize the expected quality of the result of the complete expression.

Let F be aset of anytime functions. Assumethat al function parameters are passed by value and

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 68

that functions have no side-effects (as in pure functional programming). Let 7 be a set of input variables.
Then, the notion of a composite expression is defined as follows:

Definition 5.11 A composite expression over F withinput 7 is:

1. Anexpression f(i1,...,1,) Where f € F isafunction of » argumentsand i1, ..., 4, € 7.

2. An expression f(¢a,...,9,) Where f € F isa function of » arguments and each ¢; is a composite
expression or an input variable.

Suppose that each function f € F has a conditional performance profile associated with it that specifies
the quality of its output as a function of time allocation to that function and the qualities of itsinputs. | will

later show that the following results apply to a more general definition of composite expressions in which
some of the functions are actually programming operators. The only requirement isthat each operator has
a “standard” conditional performance profile associated with it that describes the dependency of output
quality ontime allocation and input quality. But, for the simplicity of the discussion, | will first restrict it to
simple composite expressions. | start this section with an analysis of the complexity of the time alocation
problem.

55.1 Complexity results

The purpose of this section isto examine the computational complexity of compilation of composite expres-
sions. | will show that the general problem (i.e. when evaluation of repeated sub-expressions is optimized)
isNP-complete in the strong sense. Thisfact justifiesthe use of the approximate all ocation techniques of the
previous section. The efficiency of local compilation and its global optimality do not contradict this result
sinceloca compilationonly appliesto tree-structured expressions. In that case, the strong NP-compl eteness
result does not hold but a similar transformation to another problem shows that the compilation problem
remains NP-complete but pseudo-polynomial. In fact, |1 show that the local compilation technique is a
dynamic program that solves the global optimization problem for tree-structured expressions.

Strong NP-completeness

| start withashort review of related definitionsfrom computational complexity (for acomplete discussion of
these terms see [Garey and Johnson, 1979]). Given adecision problem I1, let length() denote the number
of symbolsused to describe an instance I of 11 under areasonable encoding scheme, and let max (1) denote
the largest number in 7. An algorithm that solves I is said to be pseudo-polynomial if itstime complexity
function isbounded by apolynomial function of length(1) and maz(1). Pseudo-polynomial algorithmsare
very useful sincethey display “exponential behavior” only when the input instancesinclude “ exponentially
large” numbers. Otherwise, they may serve almost as well as polynomial time algorithms.

Givenapolynomial p (over theintegers), let I1,, denote the subproblem of II obtained by restricting
IT to only those instances [that satisfy maz(1) < p(length(I)). If 1I,, is NP-complete than II is NP-
completein the strong sense. If 1T is NP-complete in the strong sense, then it cannot be solved by a pseudo-
polynomial time algorithm unless P = N P.

Compilation asa decision problem

The compilation problem is normally defined as an optimization problem, that is, a problem of finding a
schedule of a set of components that would yield maximal output quality. But, in order to prove the NP-

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 69

completeness results, it is more convenient to refer to the decision problem variant of the contract compila
tion problem. Given acomposite expression e, the conditional performance profiles of its components, and
atotal allocation B, the decision problem is whether there exists a schedule of the components that yields
output quality greater than or equal to K. To begin, consider the general problem of global compilation of
composite expressions, or GCCE. The first result asserts the following property:

Theorem 5.12 The GCCE problemis NP-complete in the strong sense.

Proof: The GCCE problemisclearly NP since, given a particular allocation to the components, itiseasy to
determinein linear time the output quality of the expression. Hence, the verification problem is polynomial
and thedecision problemisNP. Therest of the proof isby transformation from the PARTIALLY ORDERED
KNAPSACK problem, an NP-complete problem in the strong sense [Garey and Johnson, 1979] defined as
follows:

INSTANCE: Finiteset U, partial order < on U, for eachu € U asizes(u) € ZT andavauev(u) € ZT,
and positiveintegers B and K.
QUESTION: Isthereasubset U/ C U suchthat if u € U’ and v’ < u, then ' € U’, and such that

ZuEU’ S(U) <B and ZuEU’ v(u) 2 K?

An instance of the PARTIALLY ORDERED KNAPSACK problem will be directly transformed
into a DAG representation of a composite expression. To define the construction of the DAG, the notion of
amaximal element in a partially ordered set must be defined:

Definition 5.13 An dement v € U isa maximal element of U if thereis no other element ' € U such
that v < u’'.

The notion of aminimal element is defined in an analogous way. Every partially ordered set has
a least one maximal element and at least one minimal element. Now, the construction of the DAG can be
defined. For each v € U the DAG will contain a corresponding computational node. A direct arc goes
from uq to uy if and only if 7 isamaximal element of the set {u|u < wuy} of al elements smaller than
up. In addition, the DAG has a“root” node r with a directed arc from every other node v € U tor. The
conditional performance profile of anode v € U is:

ift> s(u)andVi:gqg >0

otherwise (519)

Qult, g1,y gn) = { g(u)

where ¢4, ..., ¢, are the qualities of the nodes that have a directed arc to . If there isno such node, that is,
uisaminimal element of U/, then its performance profile is simpler:

0 otherwise

Qu(t) = { v(u) ift>s(u) (5.20)

The conditional performance profile of » then becomes the following:

k

QT(t7QI7 7f]k) = Z% (521)

=1

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 70

The overall output quality @) ,..; isthe quality of the root node r.

It is easy to see that the construction of the DAG can be accomplished in polynomial time. All
that isleft to show isthat the answer to the PARTIALLY ORDERED KNAPSACK problemis“yes’ if and
only if the answer to the corresponding GCCE problem is“yes.”

If the answer to the GCCE problem is positive (with contract time B and minimal output quality
K), than define U’ as the set of nodes v’ € U whose “output quality” in the DAG is positive. The sum of
the output qualities of all the modules, except the root, must be at least /. Each module can only contribute
its value to the output quality (when its allocation is at least its size). In addition, the output quality of
an internal node of the DAG is “enabled” only when al its inputs have positive quality, that is, al the
elements smaller than it are included. Therefore the condition that «* € U’ whenu € U’ and v’ < u is
satisfied. Finally, since the total allocation is B, 3,y s(u) < B, and since the output quality is at |east
K, e v(u) > K, theanswer to the PARTIALLY ORDERED KNAPSACK problem is also positive.

If the answer to the PARTIALLY ORDERED KNAPSACK problem is positive (with knapsack
size B and minimal value K), then simply allocate to each computational node »’ € U/’ an amount of time
equal to itssize. The definition of the PARTIALLY ORDERED KNAPSACK problem and the transfor-
mation to the DAG guarantee that the output quality of each «’ would be equal to itsvalue s(«’). Hence a
minimal output quality of K is guaranteed and the answer to the GCCE problem is also positive.

Now, since the PARTIALLY ORDERED KNAPSACK problem is NP-complete in the strong
sense, and since the above transformation is polynomial, the GCCE problem is NP-complete in the strong
sense. O

Note that the strong NP-complete result implies that the general compilation problem is not
pseudo-polynomial. Hence the approximate timeallocation algorithmsthat | will present later in thissection
are necessary to solve the general compilation problem.

I now turnto the analysisof thetree-structured case of the compilation problem, referred to astree-
structured GCCE. In this case, the graph representation of a composite expression isrestricted to a directed
tree. Thisrestriction does not allow any repetition of sub-expressions since any such repetition changes the
representation from a directed tree to adirected acyclic graph. | will show that the tree-structured GCCE is
NP-complete.

Theorem 5.14 The tree-structured GCCE problemis NP-complete.

Proof: The tree-structured GCCE problem is clearly NP since, given a particular allocation to the compo-
nents, it is easy to determinein linear time the output quality of the expression. The verification problemis
polynomial and hence the problem is NP. The rest of the NP-completeness proof is by transformation from
the KNAPSACK problem [Garey and Johnson, 1979; Karp, 1972], defined as follows:

INSTANCE: Finiteset U, foreachu € U asizes(u) € Z+ and avaue v(u) € Z*, and positive integers
Band K.
QUESTION: Isthereasubset U’ C U suchthat 3", ¢ s(u) < Band y, e v(u) > K?

An instance of the KNAPSACK problem will be transformed into a tree-structured GCCE prob-
lem by constructing a binary tree whose leaves are the elements of /. Each element « € U corresponds to
one leaf of the tree (one can add leaf nodes of zero size and value to make the number of leaves an exact

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 71

power of 2). The performance profile of each leaf nodeis:

Qul(t) = { v(u) ift>s(u) (5.22)

0 otherwise

Now, O(|U|) internal nodes are added to construct a complete binary tree. The conditional performance
profile of each internal node w isthe sum of the qualities of itsleft and right branches:

Qu(t 01, 92) = 1+ a2 (5.23)

Note that internal nodes of the tree do not consume any computation time. The output quality @ . isthe
guality of theroot node whichisactually the sum of values of all the elementsof I/ whose allocation exceeds
their size.

It is easy to see that the construction of the tree can be accomplished in polynomia time. To
compl ete the proof, one needs to show that the answer to the KNAPSACK problemis“yes’ if and only if
the answer to the corresponding tree-structured GCCE problemis“yes.” Thisistrivially true when one sets
the contract timeto B and the minimal output quality to K. The exact proof isvery similar to the previous
one. Hence the tree-structured GCCE problem is NP-complete. O

The KNAPSACK problem itself is pseudo-polynomial. In fact, the problem can be solved by a
simple dynamic programming algorithm. This raises the question of whether the compilation problem of
tree-structured expressions is also pseudo-polynomial. The answer to this question is positive under the
following two assumptions:

1. The bounded degree assumption:
The tree has a bounded degree. In other words, the number of inputsto each function is bounded.

2. Input monotonicity assumption:
Each conditional performance profile isamonotonic non-decreasing function of input quality. Inother
words, if Q(t, q) isaconditional performance profile, thenforany t and g >> ¢, Q(t,q) > Q(t,¢).

These assumptions lead to the following result:

Theorem 5.15 The tree-structured GCCE problem is pseudo-polynomial under the bounded degree and
the input monotonicity assumptions.

Proof: The problem remains NP-complete since the bounded degree and the input monotonicity assump-
tions were not violated by the transformation of the NP-completeness proof. The rest of the proof is based
on the introduction of an efficient local compilation algorithm that solves the time allocation problem for
this case in polynomial time. The algorithm and the proof of its optimality are presented in the following
section. O

5.5.2 Optimality of local compilation

My goal inthis section isto prove the optimality of local compilation of tree-structured functional programs
under the bounded degree and the input monotonicity assumptions. Without limiting the generality of the
discussion, | will consider binary functions only and assume that the composite expression is a complete
binary tree. The leaves of thetree are functionsthat take input variables asinputs and the internal nodes are
functions that take composite expressions as inputs.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 72

Figure 5.4: Tree representation of acomposite expression

Let f; ; denote the j function on the i*" level of the tree. The root node is denoted accordingly
by foo. If thetreeis of depth », then the nodes corresponding to f,,. o, ..., fn,2n—1 a@e leaf nodes whose
inputs are input variables. For any other node f; ;, 0< i <n—1, 0< j < 2" — 1, theinputsare: fiy12;
and f;11,2j+1 asshownin Figure 5.4.

Corresponding to each node of the binary tree is a conditional performance profile @Q; ;(¢1, g2, 1)
which characterizes the output quality for that node as a function of itsinput qualities, ¢; and ¢,, and time
allocation ¢.

Given a composite expression e of depth », and a particular input quality, the global compilation
problemisto find the optimal time allocation to al the nodes of the tree that would maximize the quality of
the output of the root node:

QF(1) =argmaxQoo(-), 3 > =1 (5.24)

0<i<n 0<j<2i—1

where Qo,o(.) denotes the result of replacing (in the expression ¢) every function by its conditional perfor-
mance profile and every input variable by its quality.

What is the complexity of global compilation? The previous complexity results imply that the
problem is NP-complete. But no particular algorithm for solving the problem has been considered yet. To
define such an algorithm, assume a discrete tabular representation of performance profiles. This represen-
tation reduces the compilation problem to the problem of calculating al the entries of a particular table.
The indices of the table range over time allocation and input quality®. The size of the table is a system
parameter that controls the error in quality calculation. The complexity of global compilation is therefore
determined by the amount of work needed to compute each entry of the table, that is, the complexity of
solving Equation 5.24 above. If 7 isthe number of discrete time unitsto be allocated and if the size of the
expression (i.e. the number of nodesin the tree) is x, then the number of different possible time allocations
to be considered is:

(14 r-=1)!
(k= 1)!

For each allocation the output quality has to be calculated in time O(x). The overall work for each entry
of the table is therefore exponential in both 7 and . Hence a naive approach to global compilation is not

SInput quality here refers to the systeminput. In most problemsit correspondsto a single quality measure although in principle
it may be avector of values each corresponding to asingle input variable.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 73

reaistic for large composite expressions.

Given aparticular composite expression e of depth », alocal compilation scheme for ¢ is defined
by induction on its structure. For aleaf node, the locally compiled performance profile is the conditional
performance profile associated with that node:

QL (1) = Qnj(Gnj1sGnj2rt), 0<j<2 -1 (5.25)

where ¢,, ;1 and ¢,, ; » are the qualities of the two inputs of the particular function. For each internal node,
the locally compiled performance profile is defined using the performance profiles of itsimmediate inputs:

{J,j(t) =arg QT??{QM(QZLH,%(H)’ QZ'L+1,2;;+1(752)715 —t1—12)} (5.26)
Finally, the performance profile of e (asaresult of local compilation) isdenoted by the following expression:

QL (1) = QFo(t) (5.27)

Note that the external input quality was deliberately omitted in this notation since the focus is on the result
of local compilation for agiven input quality.

What isthe complexity of local compilation? Using the discrete representation described above,
local compilation requires O(72) work per (internal) node of the tree. Hence the total amount of work
is O(kr?) (for each given input quality). In terms of space requirements, even though local compilation
requires O() separate performance profiles (one for each internal node of the tree), itstotal space require-
ment is only a constant factor more than the space requirement of global compilation. The reason isthat a
compiled global performance profile needsto specify the allocation to each node of thetree (i.e. « elements)
for each total allocation while a compiled local performance profile needs to specify only the alocation to
the immediate successors of each node and to the node itself (i.e. three elements). To summarize, local
compilation has the same space requirements as global compilation but it reduces the time complexity of
the optimization problem from exponential to polynomial. Moreover, the complexity islinear in the size of
the program.

How does the quality produced by local compilation compares with the quality of global compi-
lation? The following theorem guarantees that the final result of both compilation schemes is the same:

Theorem 5.16 Optimality of local compilation of composite expressions: Let ¢ be a composite expres-
sion of an arbitrary depth » whose conditional performance profiles satisfy the input monotonicity assump-
tion, then for any input and total time allocation ¢:

QL(t) = QY(1)

Proof: By induction on the depth of the tree. For trees of depth 1 the claim istrivialy true because both
compilation schemes solve the same optimization problem. Suppose that the claimistrue for trees of depth
n — 1 or less. Let e be an expression of depth n, and let ¢; ; be the alocations to f; ; based on global
compilation and resulting in a global optimum. Let ¢; and ¢, be respectively the total allocation to the left
and right subtrees of the root node:

7—1

1
t; ; (5.28)
0

n 2
7 = Z
=1

j:

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 74

n

2i-1
t, = Z Z t; ; (5.29)

=1 =2i—1
t = i+t +100 (5.30)
Then:
Qr(t) =
By definition and monotonicity:
= Qoo(QFo(t1), @ 1(tr).t0,0) (5.31)
By the induction hypothesis:
= Qoo(Qo(t1), @1 1(t:), t00) (5.32)
By local compilation:
< Qgo(t) (5.33)
By definition:
= QL) (5.34)
By global compilation:
< QY1) (5.35)

Hence Q1 (1) = Q (1) O

Note that the input monotonicity assumptionis required to guarantee the optimality of local com-
pilation. The bounded degree assumption, on the other hand, is only used to guarantee that the complexity
of local compilation of each internal node is polynomial in ¢, and hence shows that the problem is pseudo-
polynomial. Both the bounded degree and the input monotonicity of performance profiles are not only
reasonable assumptions but also desirable from a methodol ogical point of view. The bounded degree as-
sumption limits the number of inputs to each algorithm by a certain constant, a principle that has been
long recognized as a good programming practice in the development of modular systems. The input mono-
tonicity of performance profiles is a desirable property in general. It supports the selection of performance
metrics that correlate with the intuitive notion of quality rather than being random features of the results.

5.5.3 Additional programming operators

The optimality of local compilation of composite expressions makesit an attractive programming construct.

But, can the result be extended to include additional programming operators? To begin, | examine the pos-
sibility of replacing some of the functions in a composite expression by standard programming operators.

Thevalidity of the theorem will be preserved if each new operator isdefined asaregular functionin acom-
posite expression. In other words, each language operator, ¢, must produce a result whose quality depends
on the qualities of its inputs and time allocation to the evaluation of the operator itself, €. Several useful

operators have this property. Their evaluation timeisnormally a small constant time that can beignored in
some applications. Their conditional performance profiles are normally represented as step functions. Here
are some examples:

1. The operator one-of is defined as follows: its output is the result of its single component with the
highest quality and its quality is the quality of that component. The conditional performance profile

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 75

of one-of is;

Qoneof(‘ﬂv e qn,t) - { gba$((Z17 ...7(]n) gt;;eiv\;(;geof (5.36)
Thismodels a situation in which several alternative methods can be used to solve the same problem.
For example, suppose that one needs to transport » identical packages using a certain container. The
components of one-of might be several aternative bin packing algorithms. The quality of each al-
gorithm is measured by the percentage of packages that can be packed in the given container as a
function of computation time and the total volume of the packages. Obvioudly, the total number of
packages that can be transported is proportional to the maximal quality among al the individual bin
packing algorithms.

2. Theoperator all is defined asfollows: itsoutput isthe result of its single component with the lowest
guality and its quality is the quality of that component. The conditional performance profile of all is:

) s (n) ifE>
Qall(QIv "'7Q717t) = { ?ln(qj_ 1) OtherV\flg (537)

This models a situation in which several sub-problems must be solved and all the solutions are es-
sential in order to solve the original problem. Moreover, the quality of the worst solution imposes an
upper bound on the total performance. For example, suppose that one needs to transport » identical
packages using, sequentialy, & different containers. The components of all might be & bin packing
algorithms, one for each container type. The quality of each component is measured as in the previ-
ous example by the percentage of the number of packages that can be packed in the corresponding
container. Obviously, the total number of packages that can be transported (in a single shipment) is
proportional to the minimal quality among all the bin packing agorithms.

3. The operator dac (divide and conguer) is defined as follows: its output isthe result of RC' F applied
to the results of its components and its quality is the result of QC'F applied to the qualities of the
components. The conditional performance profile of dac is:

Qdac(DaRCFaQCFa 71, ---,(]n,t) — { QCF((]L ...7(]n) if ¢t > €dac

0 otherwise (5:38)

This models a situation in which a problem is solved by dividing the input problem into several

simpler sub-problems, solving each sub-problem, and generating the output from the results of the
sub-problems. The function D is used to divide the input problem into sub-problems; the function
RC'F (Result Combination Function) is used to determine the overall result based on theresults of the
components; and the function @ C' F' (Quality Combination Function) isused to determine the overall

quality based on the qualities of the solutionsto the sub-problems. ¢4, is(normally) a constant time
necessary in order to generate the sub-problems and in order to combine their results. For example,
a path planning algorithm that has to find a path between P; and P, in an environment with random
obstacles can determine a third position P3 between the start and goal position and find paths from
Py to P3 and from P5 to P,. Assuming that the quality of each component isi,,/! (i.e. the length of
the optimal path divided by the length of the calculated path), then RC F is a simple concatenation

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 76

speech recognizer

classify speaker recognize utterance linguistic validity
gender accent one-—of seq
one-of one—of keyword meaning

NN

Figure 5.5: Anytime composite module for speech recognition

syntax

operation and:
2
QFC(q1.q2) = k12 (5.39)
Q-+ q2

where ¢1 and ¢, are the qualities of the componentsand 0 < & < 1isafactor that determines the
effect of the choice of P53 on the quality of the complete path.

Tosummarize, the optimality of local compilation providesa powerful tool to compilelarge com-
posite expressions that may include avariety of standard programming operatorsin addition to user-defined
elementary anytime algorithms. Figure 5.5 shows an example of such a program. It is an anytime module
for speech recognition whose elementary components are anytime algorithms. The program has three main
components: amodul ethat classifiesthe speaker, amodulethat generates possible symbolic representations
of the utterance, and amodulethat checksthelinguistic validity of these representations. Each of the one-of
operators represents a set of aternative methods of implementation for a particular function, for example,
aneural network implementation versus a knowledge base implementation.

5.5.4 Repeated sub-expressions

The analysis of functional composition so far has not taken into account the possibility that a composite
expression may have a sub-expression that appears several times. Such asub-expressioniscalled arepeated
sub-expression. Using the tree representation, a repeated sub-expression corresponds to a sub-tree that
appears severa times. The tree-structured analysisis based on the assumption that all the nodes of the tree
are evaluated while, with repeated sub-expressions, one should allocate time only once in order to evaluate
all the copies of a repeated sub-expression®. For example, consider the following composite expression:

SEvery sub-expression of arepeated sub-expressionis obviously arepeated sub-expression aswell. To remove any ambiguity, |
will usetheterm “repeated sub-expression” only with respect to maximal repeated sub-expression, that is, repeated sub-expressions

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 77

F(x)

1 a — A(x)
2 b — B(a)

3 ¢ — C(a)

4 d — D(b,)
5 e — E(d)

6 returne

(a) Definition of F using straight line code

F(z)
1 return E(D(B(A(z)),C(A(2))))

(b) Definition of F using functional composition

Figure 5.6: Composite expressions and straight line code

E(D(B(A(x)),C(A(2))))
The sub-expression A(z) appears twice and an efficient compiler should not allocate time to both copies.
Functional composition with repeated sub-expressions can be represented efficiently as astraight
line program with anytime algorithms as basic operations. A straight line program is a sequence of expres-
sions of the following form:
u— F(vi,...,v5)

where u isa new local variable and each »; is either an input variable or an existing local variable. The
last local variable defined by the sequence is considered to be the result of the sequence. There isa one-to-
one mapping between composite expressions and straight line code. Given a composite expression e, the
corresponding straight line code is defined by induction on the structure of e:

1. Aninput variable corresponds to an empty program.

2. Anexpression of theform F(gz, ..., 9), where each ¢; isacomposite expression or an input variable,
corresponds to the program that is composed of the concatenation of the programs corresponding to
g1, ---, g fOllowed by

w— F(ry,...,mm)

where v isanew local variable and ; isthe result of the program corresponding to ¢;, or ¢; itself if
itisaninput variable.

The inverse transformation is straightforward. A straight line program records all the intermediate results
and hence can reuse the result of a sub-expression when it appears several times.

For example, Figure 5.6 shows a definition of afunction, F, both as a straight line program, (a),
and asacompositeexpression, (b). Every straight line program hasa corresponding Directed Acyclic Graph

that are not proper sub-expressionsof alarger repeated sub-expression.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 78

input

output

Figure 5.7: DAG representation of composite expressions

(DAG) representation where each node corresponds to one assignment of a value to a new local variable.
A directed arc goes from node v; to node v; if the assignment expression of »; usesthe local variable v; as
an argument. Figure 5.7 shows the DA G representation of F.

Asinthetree-structured case, the purpose of the compilation isto compute atime allocation map-
ping that would specify for each input quality and total allocation of time the best apportionment of time
to the components so as to maximize the expected quality of the output. However, the DAG representation
makesit hard to apply local compilation. The problem arises since local compilation isonly possible when
one can repeatedly break aprogram into sub-programswhose execution intervalsare digoint, so that all ocat-
ing acertain amount of timeto one sub-program does not affect in any way the evaluation and quality of the
other sub-programs. While this claim istrue about tree-structured programs, it is not a property of DAGs.
Consider, for example, the expression represented by Figure 5.7. Although B and C are the ancestors of
D, their time alocations cannot be considered independently since they both use the same sub-expression,
A(z). Thisproblemis addressed by the following section.

5.5.5 Compilation of unrestricted composite expressions

An efficient representation of a composite expression corresponds to a DAG rather than to atree. Unfor-
tunately, the DAG representation imposes a severe restriction on the capability to apply local compilation.
In this section | will present three time allocation methods that solve this problem. The first method is
based on an efficient algorithm that finds a solution to the global compilation problem directly, but does not
guarantee global optimality. The second method is based on determining first the allocation to the repeated
sub-expressions and then using standard local compilation to determine the allocation to the other compo-
nents. Thethird methodisbased on learning the allocation to the repeated sub-expression based on repeated
application of standard local compilation. Finally, the complexity and optimality of the three methods will
be contrasted.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 79

1 for each @);,, € QUALS TABLE do

2 for each T" € TIME-TABLE do

3 s «— INITIAL-RESOLUTION(T)

4 ti—T/n ¥i:1<i<n

5 repeat

6 while 34, j such that
E(Qout(Qin,t1, ...t — s, ety + 8, s tn)) >
E(Qout(@inatla 7tn))

7 let 7, j be the ones that maximize E(C P Pay)

8 t; —1;, — S

9 t]‘ — t]‘ + s

10 §—s/2

11 until s < €

12 T[Qin,T) — (1, ey tn)

Figure 5.8: Timeallocation using a hill-climbing search

Method 1: Timeallocation using a hill-climbing search

While local compilation cannot be applied to DAGs directly, global compilation works exactly the same
way asit workswithtrees. For each particular sequence of timeallocationsto all the components of aDAG,
the quality of the output can be computed using the conditional performance profiles of the components.
This can be donein linear time in the size of the graph. However, the number of possible allocationsto the
components grows exponentially. This difficulty can be removed by limiting the search space.

Consider again the definition of the function F. Given a total allocation ¢, the compiler has to
determine the suballocationst 4, tg, tc, tp andtg (t4 + it + tc +tp + tp = t) tothemodules A, B, C,
D and E respectively that maximize the expected quality of the output. For each given alocation of time,
the expected quality of the output can be calculated based on the DAG representation and the conditional
performance profiles of the elementary anytime functions. In order to find an optimal alocation, | have
implemented the following search algorithm.

The time allocation algorithm shown in Figure 5.8 is based on a hill-climbing search. It starts
with an equal amount of time allocated to each component of the DAG. Then it considers trading s time
units between two modules so as to increase the expected quality of the output. Aslong as it can improve
the expected quality, it trades s time units between the two modules that have maximal effect on output
quality. When no such improvement is possible with the current value of s, it divides s by 2 until s reaches
acertain minimal value, . At that point, it reaches alocal maximum and returns the best time allocation it
found. Aswith any hill-climbing algorithm, it suffersfrom the problem of converging on alocal maximum.
An analysis of the algorithm shows that simple properties of the conditional performance profiles of the
components, such as monatonicity, are not sufficient to guarantee global optimality.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 80

for each @);,, € QUALS TABLE do
for each T' € TIME-TABLE do
Qmax -0
Tmaz < 0
for r — Oto T step ¢
t—T—r
ADJIUST-PP(r)
APPLY-LOCAL-COMPILATION(e, t)
Q — Qout(@inv (T|t17 7tn))
if Q@ > Qe then do
Qmaz — €
Aopt — (7‘|t1, ...,tn)
T[QWMT] — Aopt

OO ~NOOULDWNPE

o
WN PO

Figure 5.9: Time allocation with pre-determined time to repeated sub-expressions

Complexity

As in the earlier analysis of local and global compilation, | assume a discrete tabular representation and
look at the complexity of computing each entry in the table representing the compiled performance profile.
Again, let thetotal number of modulesbe x, and let the maximal number of discretetime unitsto beallocated
be T = T4 /€. The complexity of the algorithm is then:

O(k3logT)

This is due to the fact that for each search resolution s, the algorithm needs to find the optimal pair of
modulesfor trading time. Thisisdonein O(?) by considering every possible pair. Thisstep repeatsonly a
constant number of times. Finding the expected quality of the output is performed in O () and the number
of time resolution measures is O(log 7). Hence we get the above overall complexity.

Method 2: Pre-determined allocation to repeated sub-expressions

The second method is based on fixing the alocation to each repeated sub-expression before computing the
alocation to the other components. The allocation to the other componentsis determined based on standard
local compilation. Time allocation is made only once to all the copies of each repeated sub-expression.
Once that alocation is decided, the complete expression is treated as a tree rather than a DAG and the
efficient local compilation scheme is used.

Let ¢ be a composite expression. To begin, assume that ¢ has only one repeated sub-expression
¢’ that appears m > 1timesine. The copies of ¢’ are denoted by €], ..., e!.. Figure 5.9 shows the time
allocation agorithm. Its central ideais to reserve a certain amount of time r, out of the total allocation ¢,
for evaluating a single copy of the repeated sub-expression ¢’. All the other copies may “enjoy for free”
the result of this evaluation. The fact that » time units are reserved for ¢ is communicated to the local
compilation process by adjusting the performance profile of ¢/. The new performance profile is a step

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 81

function that returns quality @)..(r) at zero time and provides no further improvement of quality. Since no
improvement of quality is possible, an optimal schedule would not allocate any time to any of the copies
and hence standard local compilation is guaranteed to allocate the remaining time optimally to the other
components. The algorithm performs a search to find the best pre-determined reserved time r for which the
output quality is maximal.

I now show that if the conditional performance profiles of all the components are monotonic, then
any optimal schedule has the following property:

Lemma 5.17 Any optimal schedule for the evaluation of ¢ allocates time to a single copy of e’.

Proof: Suppose that there is an optimal schedule in which more than one copy of ¢ is evaluated. Let
r1, ..., ' Dethe alocations to the m copies, and let » = 5 r;. By the monotonicity of the performance
profile of ¢/, the quality achieved by alocating » time units to a single copy is greater than any of the
qualitiesachieved with alocations 1, ..., ,,,. Hence, by substituting the result of that single copy for all the
copies without changing the allocation to the other components, and by the monotonicity of the conditional
performance profiles, it is apparent that the output quality would increase. This contradicts the optimality
of the original schedule. Therefore, time must be allocated to a single copy only. O

Having established the fact that any optimal schedule must activate ¢’ only once with some allo-
cation r, | define atwo phase optimization problem. Thefirst phase determinesthe optimal » and the second
finds the optimal allocation to the other components. The optimality of method 2 can then be established:

Theorem 5.18 Optimality of Method 2: Let ¢ be a composite expression with a single repeated sub-
expression ¢’, then method 2 returns a globally optimal time allocation schedule for evaluating e.

Proof: By Lemmab.17, any global schedule allocates r timeunitsto asingle copy of ¢’. Sincethealgorithm
performs search over the complete range of r, and since local compilation yields optimal results for trees,
Method 2 is guaranteed to find the globally optimal schedule. O

Complexity

Assuming the same discrete representation asin method 1, | now look at the complexity of computing each
entry in the table representing the compiled performance profile. Again, let the total number of modules be
 and let the maximal number of discrete time unitsto be allocated be 7 = T},,4,:/¢. The complexity of the
algorithmisthen:

O(k3)

This is due to the fact that the complexity of the search for the optimal value of r is O(r) and the most
complicated step inside the loop isthe local compilation step with complexity O(x72).

To extend this method to work with p different repeated sub-expressions, the algorithm must
consider any possible pre-determined allocation to (single copies of) the repeated sub-expressions. The
complexity of this step becomes » when p < 7. And, the overall complexity becomes

O(kr(P+2)

Method 3: Learning the allocation to repeated sub-expressions

Thethird method isbased on learning the all ocation to repeated sub-expressionsthrough standard local com-
pilation. To be able to apply local compilation, the algorithm first ignores the repetition of sub-expressions

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 82

for each @);,, € QUALS TABLE do
for each T' € TIME-TABLE do
r—0
repeat
t—T—r
SHIFT-PP(r)
APPLY-LOCAL-COMPILATION(e, t)
Letrq,...,r, bethedlocationsto ey, ..., €,
7 — 1+ max{r;}
until >, =0
T[Qin, T — (r|t1y ..y)

OO ~NOOULDWNPE

[
o

Figure 5.10: Learning the allocation to repeated sub-expressions

and uses standard local compilation. Then, it applies a series of performance profile adjustments that con-
verge on a single allocation to each repeated sub-expression.

Again, let e be a composite expression. As with method 2, | consider first the case where e has
only one repeated sub-expression ¢’ withcopiese’, ..., e,,. Figure 5.10 showsthe timeallocation algorithm.
It learnstheallocation r to asingle copy of ¢’. Starting with» = 0, the algorithm repeatedly increases r until
local compilation allocates no additional timeto the copies of ¢’. In each iteration, the current value of r is
used to determine how much timeto reserve for evaluating ¢’. Thefact that » time unitsare reserved for ¢’ is
communicated to the local compilation process by adjusting the performance profile of ¢’. Thetime origin
of the performance profile is shifted » unitsto the right. Standard local compilation isthen applied and the
optimal alocation to all the components is computed. Suppose that, based on the adjusted performance
profile, the allocations to the m copies of ¢’ are rq, ..., 7, Then, the maximal allocation among those is
used to increase the value of r. This process is repeated until no additional time is allocated to any of the
copies beyond the reserved time allocation r.

At first look, Method 3 may seem to converge on an optimal schedule, however the following
theorem shows that it may not.

Theorem 5.19 Let ¢ be a composite expression with a single repeated sub-expression ¢’, then Method 3
does not necessarily returnsa globally optimal time allocation schedule for evaluating e.
Proof: By example. Let e be the following expression:
e = B(A(z), A(z))
where the unconditional performance profile of A isthe step function:

00 IfoO<t<«1
ga(t)=% 05 if 1<t <2 (5.40)
10 if 2<1¢

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 83

and the conditional performance profile of B isthe step function:

00 if (1<1) V (q1<05) V (g2<05)
- 05 if (l§t<2) A (0.5§q1,q2<1)
501821 =\ 08 it (2<1) A (05< g1 < 1)
10 if (1<4) A (=1 A (=1)

For atotal alocationof ¢ = 3, if A gets2timeunitsand B gets 1 unit, then the output quality is1.0. Since 1.0
is the maximum output quality, it is obvious that the above schedule is optimal. How would the above time
alocation algorithm behave in this case? The algorithm will first allocate 1 unit to each module resulting in
output quality of 0.5. In the next iteration it will reserve » = 1 time unit for A and allocate optimally the 2
remaining time units. Allocating the complete remaining time to the two copies of A would leave notime
for B and result in an output quality of zero. At the same time, allocating less than one unit to either copy
would yield no improvement in the output quality. Therefore, the 2 remaining time units will be allocated
to B, resulting in an improved quality of 0.8. Since the allocation to both copies of A is zero, the algorithm
terminates at this point with a sub-optimal schedule. O

Notethat this example has someimplicationsfor the capability toimprove Method 2. It may seem
natural to try to determine the optimal » in Method 2 using a more guided search, such as a binary search.
But this example shows that it may be hard to determine whether r is too small or too big. In particular,
the fact that additional timeis allocated by local compilation to the components, beyond the reserved time,
shows that » istoo small. But, if no additional timeis allocated to the components, » may be either too big
or too small.

What are the conditions that would guarantee the optimality of Method 3 and would alow the
use of binary search in Method 2? Thisis left as an open question at this point. A good direction toward
establishing such conditionsisto investigate the situation in which conditional performance profiles are all
convex. That is, their second derivative is continuous and negative. This assumption may be sufficient to
show that r isoptimal if and only if it is the minimal alocation for which local compilation allocates no
additional time to the copies of ¢’. Such property would both guarantee the optimality of Method 3 and
simplify Method 2.

(5.41)

Complexity

Finaly, | determine the complexity of computing each entry in the table representing the compiled perfor-
mance profile. Again, let the total number of modules be «, and let the maximal number of discrete time
unitsto be allocated be 7 = T,,,/¢. The complexity of the algorithmisthen

O(m'?’)

Thisisdueto thefact that the complexity of the searchfor 7 isO(1) (Sincer may beincremented by 1 unit of
timein each iteration). The most complicated step inside the loop is the local compilation with complexity
O(x72?). Note that in practice the convergence of the search for r is much faster than O(7).

The extension to multiple repeated expressions is straightforward. The algorithm needs to main-
tain a sequence of reserved allocations for each repeated sub-expression. The rest of the algorithm is the
same. The advantage of method 3 is that its complexity remains the same with any number of repeated
sub-expressions. Thisisdue to the fact that asingleloop is used to update all the reserved allocationsto the
repeated sub-expressions and the worst case complexity of that loop remains O().

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 84

Summary

I have examined three time all ocation algorithms designed to cope with the difficulty of compiling DAGs.
The first algorithm has a complexity O(x3log) but finds only local optimum. The second algorithm has
complexity O(x7(*+2) and the third O(x73). Since » < 7 the first algorithm is the most efficient one.
Method 2 is superior since it guarantees optimality, but its complexity grows exponentially as the number
of different repeated sub-expressions grows. To address this problem, the last method can be used. Its
complexity remains the same for any number of repeated sub-expressions but it does not guarantee global
optimality. However, since it uses local compilation to determine the allocation to the rest of the compo-
nents, it has a better chance of getting closer to the global optimum than the first method.

55.6 Compilation under uncertainty

The discussion of compilation in this chapter was restricted to “Type I” where no active monitoring is
assumed. That is, the compilation was restricted to the problem of finding an optimal static schedulefor the
componentsthat would maximize the expected quality of the output. However, in the analysis of functional
composition so far, | used fixed conditiona performance profiles only. These performance profiles allow
no uncertainty regarding the quality of the output, once the quality of the inputs and the time allocation
are determined. This analysis remains valid in cases where the output quality variance is narrow. But in
general, the compilation scheme has to be extended to work with probability distribution profiles.

Let e be acomposite expression of sizen. Consider aparticular timeallocation (11, ..., t,), where
t; is the time alocation to module i. What is the probabilistic description of the quality of the output
given this particular time allocation? When fixed conditional performance profiles are used, the answer
to this question can be computed by using an expression similar to e where each function is replaced by
its conditional performance profile and each input variable is replaced by its quality. With performance
distribution profiles (pdps), the answer to this question becomes more complicated. Before answering it, |
need to discuss the representation of pdps.

Torepresent apdp, an extension of the discrete tabular representation of fixed performance profiles
can be used. Assume that all quality measures are normalized to be in the interval [0, 1]. The interval is
dividedinto ¢ discretequalities, g1...q¢. A resultisof quality ¢; = (2i—1)/2¢if itsactual quality measureqis
intherange: (i —1)/¢ < q < i/{. Now, aconditional pdp isamapping from input quality and run-timeinto
a (standardized) discrete probability distribution over qualities. Let A be afunction of one argument and et
q represent the quality of itsinput. Using the previous notation, () 4(¢, t) becomes a vector of probabilities
instead of a scalar. Let Q4(q,1)[4] be the i*" entry of this vector which expresses the probability of the
output quality being ¢;.

Now, consider the smple case of composition represented by the following expression:

C(A(z), B(2))

where the conditional pdps of A, B and C' are given. For any particular alocation to the components,
the probability distribution of the output quality can be derived using marginalization over al the possible
output qualities of A and B. That is, for a given total allocation ¢, with sub-allocation of ¢4 to module
A, tg tomodule B, and #~ to module C', the probability distribution of the output can be computed in the

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 85
following way:

J2
Qout(q, (tast, te))[k] =D~ Qale, ta)[1QB(¢, tB)F1Qc(4is 4j» 1o)] (542)

1i=15=1

This approach can be extended to any expression of any size. To compute the probability of a
particular output quality, one need to marginalize over all the possible qualities of intermediate results.
The time complexity of generating the table representing the probability distribution of the output for ¢ is
O((7), where p isthe number of modules. The complexity of the same task with fixed performance profiles
isO(p). This exponential growth means that it may be impractical to apply this computation globally to
a large expression. However, similar to local compilation, the probability distribution of the output can
be computed for each node based on its immediate inputs. For binary trees the total complexity becomes
O(pl3).

It should be noted that when searching for optimal apportionment of time to the components, one
has to compare two possible probability distributions of the output quality rather than two scalar output
gualities. This comparison is not as straightforward as it may seem. One can, of course, compare the
expected qualities. However, recall that the quality of the result of adecision method is used in conjunction
with a description of the environment and a utility function to determine its actual value. The better the
guality the better the value, but a better expected quality doesnot necessarily correspond to abetter expected
utility. In some cases, a distribution of qualities with a dlightly lower expected value may be preferred
because it guarantees a narrow variance and possibly a higher expected utility. To overcome this difficulty,
the utility function of the system and atypical description of the environment can be used at compiletime
so that quality distributions are compared based on their resulting utility rather than on their quality.

5.6 Compilation of other programming structures

In thissection | will examine the compilation of additional programming structures. Thefirst part analyzes
conditional structures. The second part examines the compilation of boolean expressions. Finaly, the last
part of this section analyzes the compilation of loops.

5.6.1 Conditional structures

Conditional execution of codeisafundamental structurein programming. | start thissectionwithan analysis
of several typesof conditionals. To begin, consider amodification of straight line programsthat allows each
assignment in the program to be of the form,

uw — if C' then F(v1,...,v,) else G(w1, ..., w,,)

Even this most basic conditional statement raises several guestions regarding the anytime nature of the
components:

1. Isthe condition C' an anytime algorithm?
2. DoesC return atruth value or a probability?

3. What is the quality of the result generated by the wrong branch of the structure (e.g. the result of ¥
when C' isfalse)?

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 86

4. Do we only evaluate one branch or both?

Depending on the answers to these questions, one can design an appropriate compilation scheme. Consider
the following cases:

Case 1: Fixed-time correct-answer

In this case, the evaluation of the condition takes constant time (¢) after which it returns the correct truth
value. When the valueistrue, the quality of the result isthe quality of F'. Otherwise, itisthe quality of G.
No special assumption is made about the utility of the wrong branch’ since, when conditional expressions
are evaluated correctly, the right branches are always selected. For example, consider the problem of bin
packing with a given set of n packages. The condition determines whether the packages are convex, in
which case algorithm F’ solvesthe problem, or non-convex, in which case algorithm ' solvesthe problem.
Since the condition cannot be evaluated at compiletime, assume that the prior probability that the
conditionistrue, P, isknown. The expected performance profile of the if structure isthen,
out = { oAt e e
Given its performance profile, the conditional assignment can be treated just as any other assignment in a

straight line program. Based on this performance profile one can use the efficient compilation methods for
DAGs presented in the previous section.

Case 2: Fixed-time probabilistic-answer

In this case, the evaluation of the condition takes constant time (¢) after which it returns the probability,
p, that the answer is“true.” The correct truth value cannot be determined by the program. | assumethat in
thiscase F' and G can generate useful results both when the correct condition is true and when it is false.
The performance profiles however are different in each case. Qr,..(f) characterizes the quality of I
when the condition istrue, and @ r r.15-(t) Specifies the quality when the condition is false. For example,
consider the bin packing example of the previous case. Assume that the bin packing algorithm for convex
packages can still handle non-convex packages (by computing their convex hull) but its performance in
that case isinferior to the performance of the specialized algorithm. Similarly, the bin packing algorithm
for non-convex packages can, obviously, handle convex packages but not as efficiently as the specialized
algorithm.

If thetotal allocationis? and the returned probability of the condition being trueisp, the algorithm
decides at run time whether to allocate the remaining time to F' or to G based on comparing their expected
values. When F'isactivated (and ¢ >) the expected quality of theresultsis:

pQF,tTue(t - tC) + (1 - p)QF,false(t - tC) (544)
When G isactivated (and ¢ >) the expected quality of theresultsis:

PQG true(t —tc) + (1= p)Qa, fatse(t — tc) (5.45)

"However, it isatrivial property of any “good” program that the right branch has a higher utility than any wrong branch.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 87

Based on the branch that has the higher expected utility, the run-time system can determine which method
should be activated. If one knows the probability distribution of the returned value of the condition, p,
one can construct the performance profile of the if structure and then use one of the standard compilation
methods for DAGsasin case 1.

Case 3: Anytime conditional

In this case, the condition €' itself isan anytime algorithm that returns atruth value. Its performance profile
describes the probability of correctness as a function of time and truth val ue:

Qo true(t) = p(Correct Answer = true | C' = true) (5.46)
Qo false(t) = p(Correct Answer = false | C' = false) (5.47)

Again, | assume that the correct truth value cannot be determined by the program and that the the quality
of the result is the quality of F' when the correct condition value istrue, and the quality of G otherwise. |
also assume that the result of the wrong branch has zero quality and that the algorithm executes F* when C
returns true and that it executes G otherwise. For example, suppose that the condition is used to select the
correct speech recognition procedure for aparticular person based on a certain classification. The condition
in this case is an anytime algorithm that determines the membership in one out of two possible classes
(male or female, for instance). Once the utterance is classified, an appropriate anytime speech recognition
procedure is used. Assume that if the classification is wrong, then the speech recognition procedure fails.
Otherwise, its probability of successis determined by its performance profile.

Let Po(t) be the prior probability that the condition returns true with time allocation ¢. Then,
for each total allocation ¢, the optimal allocation z to the conditional part can be determined by solving the
following equation:

arg Orgfé(t{PC(x)QC,true(w)QF(t —)+ (1= Po(2))Qc, faise(2)Qc(t — 2)} (5.48)

Oncethebest allocation to the conditionisdetermined, local compilation of theif structure can be completed
and its performance profile can be determined. Then, the standard compilation methods for DAGs can be
used as in the previous cases.

Summary

Severa aternative conditional structures have been analyzed. The analysis shows that the compilation
of DAGs can be applied by first deriving the performance profile of the conditional structure, using local
compilation techniques, and then treating it as astandard component of the DAG. Thisresult can be extended
to include multi-case conditional structures such as the following case construct:

u— caseCof {v1:F1; va:Fo; ... v, F,}

Although all the cases that were considered above can be applied to this construct, the first case seems to
be the most useful one. It would allow F4, ..., F,, to be anytime algorithms while C' must be an expression
whose evaluation returns the exact answer within a fixed run-time.

8This kind of performance profiles and their compilation are discussed at length in the following part on boolean expressions.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 88

Multiple versions of conditional constructs raise an important methodological question: How
would the programmer indicate the version of conditional structure that isused. One approach isto limitthe
semantics of al if structuresin a program to only one case depending on the application. Another approach
isto use different keywords for different types of conditional structures. Finally, it should be noted that the
last case, where the conditional part is an anytime agorithm, could be automatically recognized since the
compiler has information in the anytime library on al the anytime components.

5.6.2 Compilation of boolean expressions

This section examines the compilation of boolean expressions which are composed of anytime boolean
functions defined as follows:

Definition 5.20 An anytime boolean function is a function that returns either T (true) or F (false). Its
performance profile determines the probability that the answer is correct as a function of the returned truth
value and time.

Let f be an anytime boolean function that takes input 7 and calculates the truth value of the relation (7).
For any possibletime alocation, ¢, the performance profile of f specifies:

Qi(T,t)=p(r(I)=T|f=T)

Q(Ft) = p(r(I) = F|f = F)
obvioudly,
1-QuT,t)=p(r(I)=F|f =T)

1-QF) =pr()=T|f=F)

Note also that the performance profile has to satisfy the property that @) ;(7",0) = 1 — @ ¢(F’, 0) since with
zero alocation the algorithm has no chance to produce any result other than a default answer. The default
answer should be the most likely answer based on the prior probability distribution. However, for any
t > 0, itispossiblethat:) ;(T,t) # 1 — Q¢(F,1).

The definition alows performance profiles to depend on the results themselves since such de-
pendency exists in many general techniques for implementing anytime boolean functions. For example,
when a Monte Carlo algorithm returns a positive answer, it must be correct (i.e. Q¢(7',t) = 1). However,
when the answer is negative, it is only because the algorithm remains silent. Its failure to give a positive
answer inaseries of trialsgives evidence that the correct answer isnegative. Therefore the only meaningful
performance profileis for the case in which the algorithm returns F (i.e. Q¢(F’, 1)).

Note that the fact that the performance profile of each elementary algorithm depends on time as
well as on the result produced by the algorithm makes the compilation task more complicated. Normally,
the result of amoduleis a function of the results of the elementary components (only!) and the quality is
afunction of the qualities (only!). However, thiskind of separability is not simple to achieve with boolean
expressions, even if one assumes that the elementary performance profiles are independent of the results.
For example, consider the following expression:

e=(fiNfoA f3)

Suppose that the results of the functions are independent, that each function returns the same truth value
and that the probability of correctnessisp = 0.7 for al three functions. If theanswer isF, then p(e = F') =

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 89

AN
A F1~F2

Q" o —

F1 F2
> pr={0.8,02} Pr={0.3,0.7}

Y

t

Figure 5.11: Compilation of a boolean expression

0.973 and the answer for the total expression should be the standard result of (F' A F' A F'). However, if
the answer is T, then p(e = T') = 0.343and p(e = F') = 0.657. Hence, the more likely answer to the total
expression is F which isthe negation of the standard result of (7" AT A T'). In conclusion, both the result of
a boolean expression and its quality are defined as afunction of the results and qualities of the elementary
components. For the purpose of analyzing the compilation of boolean expressions, the following definition
isused:

Definition 5.21 A boolean expression over a set, S, of elementary anytime boolean functionsis:

1. Any elementary anytime boolean functione € S.
2. The expression —e where e is a boolean expression.
3. Theexpression (e1 A e2) Wheree; and e, are boolean expressions.

4. Theexpression (e1 V ez) where e; and e, are boolean expressions.

Anytime evaluation of boolean expressions

Given a boolean expression over a set { f1, ..., f,,} of elementary boolean functions, two methods will be
shown for time allocation to the components. Both methods are based on the following assumptions:

1. The truth values returned by the elementary boolean functions are independent, that is, p(fi|f;) =
p(fi)-

2. The time needed to compute the truth value of each function is much longer than the time needed to
compute the value of the expression once the truth values of all the functions are known.

The first assumption simplifies the combination of probabilities. The second assumption allows us to allo-
cate al the available time to the anytime components since the evaluation time of the boolean expression
itself isnegligible.

Method 1:

The first method produces a contract algorithm. It is based on a compilation process that produces the
allocation to the components for each given total alocation. Consider first the simple example shown in
Figure 5.11. Given the expression,

€= (Fl A Fg) (549)

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 90

Table5.1: Optimal time allocation in boolean expression evaluation

Total Time [#1 | 1> | E(Quality) |

1 0 |1 |0.7498
4 0 4 | 07694
7 0 7 | 07891
10 0 | 10 | 0.8088
13 0 | 13| 0.8285
16 0 | 16 | 0.8482
19 0 | 19 | 0.8678
22 2 | 20 | 0.8881
25 3 | 22 | 0.9093
28 5 | 2309315
31 6 | 25 | 0.9547
34 6 | 28 | 09783
37 7 | 30 | 1.0000

where the qualities of of F} and F» are described by the following functions:

@1(t) = min{0.8+ 0.03¢,1} (5.50)
Q2(t) = min{0.7 + 0.01¢, 1} (5.51)

the compilation problemisto find for each total allocation the best way to allocate time to the components
S0 as to maximize the expected confidence level in the result of the whole expression. In order to find
the best allocation for any given total time ¢, we can use a search method similar to methods used in the
previous section. The only difference is the way in which the expected quality of the whole expression
is calculated for each particular alocation to the components. While in functional composition one could
computethe quality of the output based on the qualities of the components only, here the particul ar results of
the components are needed as well. The result of each component is, of course, unknown at compile time.
However, based on the prior probability distribution of each component, the joint probability distribution
can be derived. The new confidence level of each component is known from the performance profiles of
the components. Hence, for each possible set of results of /3 and F», one can compute the new probability
distribution (or confidence level) of the result and, accordingly, the new output quality. Finally, the expected
guality of the whole expression can be computed based on the joint probability distribution of the results of
the components. Table 5.1 shows the time allocation that was computed using this compilation technique.
A tabular representation of the compiled performance profile is a refinement of this table along the time
axis.

The above compilation method can be extended to a global compilation scheme for boolean ex-
pressions. Its complexity, however, grows exponentially with the size of the expression. Local compilation
can only be applied under certain assumptions. When compiling a single boolean function, it is sufficient
to assume that the results of the individual components are independent. But, when one tries to extend the
above method to DAGs, the results of internal nodes may be dependent. Therefore, to apply local com-
pilation one must assume subtree independence. This assumption restricts the structure of the expression

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 91

to a tree and requires that the truth values of any two digoint subtrees are independent. In other words,
the subsets of elementary anytime functions used by any two sub-expressions must be digoint. For such
expressions, the following local compilation scheme is applicable.

To formalize local compilation of boolean expressions, the following notation is needed. Let
v; represent a possible truth value of a boolean expression ¢;, that isv; € {T', F'}. A binary probability
distributionis denoted by apair: {p, 1— p} where thefirst component isthe probability of T and the second
the probability of F. The function Dist(wv;, ¢;) isabinary probability distribution such that p(e; = v;) = ¢;.
For example, Dist(T,0.8)is{0.8,0.2} and Dist(F,0.9)is{0.1, 0.9}. The boolean operators are extended
to probability distributionsrather than truth values in the following way:

~{p1,1-p1} = {1-p1,p} (5.52)
{p1, L=pi} AM{p2,1—p2} = {pp2,1— pip2} (5.53)
1,1 =p1}V{p2,1=p2} = {1-(1-p1)(1-p2),(1=p1)(1-p2)} (5.54)

The quality of a probability distributionissimply Qual({p,1— p}) = max(p,1— p).

Local compilation is defined by induction on the structure of the boolean expression. | assume
that aprior probability distributionfor the elementary functionsisknown. The prior probability distribution
of each node can be easily calculated. Local compilation works as follows:

1. If the expression is an elementary anytime boolean function, then its performance profile is given.
Hence no compilation is necessary.

2. If the expression isof theform —e, then its performance profile isthe same as the performance profile
of e.

3. If the expression is of the form (e1 A e2), then for each total allocation ¢, the best quality of resultis
achieved by solving the equation:

arg MaX {QA(Q1(x), Q2t —)} (5.55)

0<z<t

where ()1 and), are the (possibly compiled) performance profiles of ¢; and e, respectively. The
equation also defines the best time alocation to the components. The function @) » is defined as
follows:

Aq1, 42) Z Z ple = v2)Qual(Dist(v1, q1) A Dist(vz,q2)) (5.56)
v=T,F vo=T,F

4. If the expression is of the form (e1 V e2), then for each total allocation ¢, the best quality of resultis
achieved by solving a similar equation:

arg 08K {Qu(Qu(r). Qalt)} (5.57)
where () is defined as follows:

v(q1, q2) Z Z pler = v1)p(ez2 = v2)Qual(Dist(vi, q1) V Dist(vz, q2)) (5.58)
v=T,F vo=T,F

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 92

Definition 5.22 A local compilation scheme is said to be consistent with respect to a certain equivalence
relation, if it yields the same performance profile for all the members of each equivalence class.

Consistency of local compilation isan important property. It guarantees that compilation is not sensitiveto
trivial representation changes. Consider, for example, the equivalence relation over boolean expressionsthat
holds for certain expressionsif one can be derived from the other using the commutative, associative, and
distributive rules. Islocal compilation of boolean expressions consistent with respect to this equivalence
class? Empirical results suggest that the answer is positive. For example, local compilation of the two
expressions (F1 A F») A Fzand F1 A (F2 A F3) yieldsthe same allocation to al three components for each
total allocation. However, both the consistency of local compilation and its global optimality are yet to be
proved. Note that optimality of local compilation implies consistency, but the converse is not true.

Finally, as with composite expressions, global compilation is impractical for large expressions.
Therefore, when the subtree independence assumption does not hold, local compilation should still be used
as an approximate compilation method.

Method 2;

The second method for evaluating an anytime boolean expression is based on direct construction of an
interruptible algorithm. Any boolean expression over fi, ..., f,, can be represented as a DAG. The method
is based on a greedy algorithm that repeatedly selects a single leaf node whose computational effect on the
guality of the expression ismaximal and allocates a fixed amount of time to that node.

How does the agorithm select the leaf node with maximal effect? It simply considers every
aternative. For each candidate, the new expected quality of the expression can be calculated based on the
current probability distribution associated with the leaf nodes and the performance profile of the candidate.
The output of the candidate node is unknown but the current distribution associated with it can be used
to compute the expected quality of the whole expression. The interruptible greedy algorithm is similar to
global compilation with a fixed time allocation, equal to the time quota of each iteration. What simplifies
the search problem is the restriction that only one component gets the whole allocation in each iteration.

Aninteresting variation of thisgreedy algorithmisthe special case where the performance profiles
of al the elementary components are step functions. That is, the components themselves are not anytime
algorithms. By allocating acertain fixed amount of timeto each component, one can get the exact truth value
of that node. Inthisparticular case, thegreedy algorithm creates an ordering of the components so that early
ones have greater effect on the quality of the result. The ordering can be calculated once in advance or the
next candidate can be picked at run-time based on the actual truth values of the other components.

For example, consider the following expression:

Fiv (F2 A Fg)

Figure 5.12 shows the corresponding graph and the prior probability distributions of the leaf nodes and the
internal nodes. Suppose that, by allocating one unit of time, the exact truth value of any leaf node can be
computed. Which node should get the first time unit? The initial quality of the root node is 0.875. The
greedy algorithm would simply consider the new expected quality as a result of evaluating each possible
node:

1. If Fyisevaluated first, the expected quality is:

Expected Quality = 0.8- 1.0+ 0.2- 0.625 = 0.925

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 93

{0.875,0.125}

{0.8,0.2} {0.375,0.625)

{0.5,0.5} {0.75,0.25}

Figure 5.12: Interruptible evaluation of a boolean expression

2. If F,isevauated first, then the expected quality is:
Expected Quality = 0.5-0.95+ 0.5- 0.8 = 0.875
3. If F3isevauated first, then the expected quality is:

Expected Quality = 0.75- 0.9+ 0.25- 0.8 = 0.875

Therefore the algorithm would select F; for evaluation in thefirst iteration. If theresult of F; isT, then the
result of the expression is T with probability 1 and the computation terminates. Otherwise, the algorithm
will have to select between evaluation of F, and F3. Theinitial quality becomes 0.625 and the expected
gualities of the computations are as follows:

1. If F,isevaluated first, the expected quality is:
Expected Quality = 0.5-0.75+ 0.5- 1.0 = 0.875
2. If F5isevauated first, the expected quality is:

Expected Quality = 0.75- 0.5+ 0.25- 1.0 = 0.625

Therefore the algorithm would select F> for evaluation. If the result is F, then the computation terminates.
Otherwise the last function would be evaluated. Note that in this particular example, the optimal order of
evauationis Fy, F», Fzinal cases, thusthe order can be determined by an off-line computation.

The compilation of boolean expressions raises many interesting questions. How does the perfor-
mance profile of the contract method relate to the performance profile produced by the interruptible evalua-
tion? What isthe effect of reducing the time step of the interruptible eval uation on the performance profile?
Note that the time necessary to select the next component for allocation isconsidered to be negligible. This
assumption becomes invalid as the time step becomes infinitesimal.

5.6.3 Compilation of loops

The compilation of loops is more complicated than the compilation of other programming structures. As
with the previous structures, the key question is the relationship between the quality of the loop and the

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 94

Figure 5.13: Compilation of an unbounded loop

quality of its components, that is, the body and exit condition. | will generally assume that the body of
the loop is an anytime agorithm whose performance profile is given. Severa loop structures are analyzed
below.

Unbounded loops

Any system that repeatedly performs a complex task can be implemented using aloop through a sequential
anytime process. Examples include operating systems, part-picking robots, and network communication
servers. In these cases, an unbounded loop is an adequate mode!:

loop S

Assuming that . is an anytime algorithm whose performance profile is given and that utility (or quality) is
additive over repeated activation of .5, time allocation should maximize the utility gain per time unit, that
is, at each iteration = is selected such that

Jmax {Qs(x)/} (5:59)
where Q) 5(z) isthe performance profile of thebody of theloop. Thisamountsto stopping the sequence when
it reaches the point of contact of the stegpest tangent to the performance profile as shown in Figure 5.13.

What happensif the result of each iterationis part of theinput to the next one? Obvioudly, quality
isnot additive any longer and the optimization problem is much more complicated. Supposethat @ s(q,1)is
the conditional performance profile of the body of the loop. For any fixed number of iterations, », the loop
can be viewed as a simple linear composition of a single function duplicated » times. Since the optimality
of local compilation is guaranteed for such cases (by Theorem 5.16), a sequence of performance profiles,
®Q%(q,t), can be defined such that each element is the result of local compilation of the previous one and
@ s(q,t). For any given input quality ¢ and total alocation ¢, the best number of iterations is determined
by:

max{Q%(q.1)} (5.60)

Once n is determined, the particular sequence of allocations can be derived by local compilation of the n
duplicates.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 95

Fixed length loops

Fixed length loops are loops that are executed a fixed number of times, although the number of times may
be determined at run-time. Their genera structureis

for i =1 to n do S(i)

I will consider the case where such loops are used for applying a certain operation to all the members of
acertain set or array. The total quality is additive and the qualities of individual iterations are similar. In
addition, | assume that the performance profile of each iteration grows faster at early stages of execution.
Based on these assumptions, al iterations must be performed and time should be divided equally between
them. If acontract algorithmisconstructed, then the total time allocation should be divided equally between
theiterations. If aninterruptible algorithmis constructed, then the best strategy isto allocate small amounts
of time increments to the evaluation of each 5().

The above description israther general, but it does not cover all the cases. Itisalso possible, for
example, that afixed length loop would apply each iteration to the results of the previous one. In that case,
the local compilation scheme described previously for unbounded loops would apply. In fact, the case of
fixed length loopsis less complicated since the number of iterationsis known at activation time.

Conditional loops

Finally, consider the compilation of conditional loops. In particular, consider the following structure:
while C(e) do S

There are many possible ways to define the behavior of such anytime structures. The conditional part may
be an anytime algorithm and its returned value may be a probability rather than atruth value. The execution
of the body of theloop may have a negative effect when the condition does not hold or it may have no effect
in that case. The quality of the whole structure may be additive over individual iterations or each iteration
may contribute to the overal quality in a more complex way. As aresult, the compilation of loops of this
kind ishard to perform in general. Instead, | describe some particular examples that show how compilation
might be implemented.

1. One possible use of conditiona loops is in situations where the condition determines whether any
input is ready to be processed and the body implements a certain processing step. For example,

while not EMPTY (Query-Queue) do
ProOCESS(Por(Query-Queue))

Typically in such situations the utility is additive over the individual queries. Assume that the time
necessary to evaluate the condition is negligible. In such a case, it seems that the control of the
execution of the loop becomes a dynamic monitoring problem. The monitor, using a model of the
environment, could determine the time pressure when a new query arrives. The length of the queue
can be used as an additional factor to determine the time pressure. Then, a particular contract time
can be derived using the performance profile of the body of the loop. Hence, off-line compilation
does not seem to be useful in this case.

CHAPTER 5. COMPILATION OF ANYTIME ALGORITHMS 96

2. Another possible use of conditional loopsisin situationswhere the condition enables the operation of
the body of the loop. The run-time system may have some control over the status of the condition. In
the context of anytime computation, both the condition and the body may consume variabl e resources.
For example,

while (IDENTIFY-TARGET(T) A NOT-REACHABLE(T)) do
MoVE-TOWARDS-TARGET(T)

In such a situation, the performance profile of the body may express the probability of reaching the
target as afunction of distance and time assuming that the target is static. The performance profile of
the condition may express the probahility of keeping track of the target as afunction of tracking time.
In this case, compilation is possible. It will result in a certain degradation in the performance profile
of the body due to the need for constant tracking. In addition, thistype of compilation requires active
monitoring.

3. Finally, conditional loops can be trand ated into the following representation:

loop
if C(e) then Selse exit

The advantage of this representation is that the compilation of conditional loops is transformed into
atwo-step compilation process. Thefirst step is the compilation of the conditional structure and the
second is the compilation of the unbounded loop.

To summarize, thereisawide range of possible loop constructs, some of which can be efficiently
compiled. The control of other structures becomes a run-time monitoring problem. Practical experience
showsthat the open ended types of loops, that are more difficult to compile, are useful at the very top level of
an anytime computation system. | will further examinethetop level of anytime systemsand their activation
in the next two chapters.

5.7 Summary

This chapter examined the possibility of producing the performance profile of large programs based on
the performance profiles of their components. Such an off-line compilation process is crucia for the effi-
cient implementation of the meta-level control that supports operational rationality. The global compilation
problemiswell defined for many programming structures, but its solution can be rather expensive. ltstime
complexity tendsto grow exponentially with the size of the program. To cope with thisexponential growth,
| have developed local compilation methods that are performed on one program structure at a time. Local
compilation is not only more efficient but also supports modular development of anytime algorithms. In
addition, the global optimality of local compilation has been established for the general case of functional
composition without repeated sub-expressions.

Chapter 6

Run-Time Monitoring of Anytime
Algorithms

What is actual isactual only for onetime
And only for one place.

T. S. Eliot, Ash Wednesday

Monitoring plays a central rolein anytime computation because it complements anytime algorithmswith a
mechanism that determinestheir run-time. Without such amechanism, the anytime components of a system
are worthless. The last two chapters concentrated on the construction of anytime performance components
and on their compilation. Inthischapter | examine the monitoring problem and develop several monitoring
strategies. In particular, | show that for a certain class of problemsit is sufficient to make all the monitoring
decisions when the system is activated. In other domains, active monitoring, a more complex mechanism,
is essential to guarantee operational rationality in the face of uncertainty.

6.1 Therun-time system

The run-time system complements anytime algorithms with a monitoring mechanism that determines their
run-time. Inthissection | define the general notion of a monitoring scheme and distingui sh between passive
and active monitoring. Then | analyze the conditions under which active monitoring is necessary. Finaly,
| determine the temporal scope and goal of the monitoring system.

6.1.1 Monitoring schemes

Given a compound anytime program, P, whose elementary anytime componentsare £ = {A, ..., A, }, a
monitoring scheme is defined as a mapping that determines a certain time allocation for each activation of
an elementary component.

Definition 6.1 A monitoring scheme for a program P isa mapping:
M E x 7t - Rt

where F isthe set of elementary components of P.

97

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 98

In other words, M i, j) is the time allocation to the j** activation of the i** component. A monitoring
scheme supplies the necessary information to make a compound anytime program executable in a well
defined way. It fixes the degree of freedom associated with anytime algorithms.

Much of this chapter is dedicated to the development of various monitoring schemes and to the
analysis of their properties. An important distinction is made between passive and active monitoring.

Definition 6.2 A monitoring scheme is said to be passive if the corresponding time allocation mapping is
compl etely determined prior to the activation of the system.

Definition 6.3 A monitoring scheme is said to be activeif it isnot passive. That is, the corresponding time
allocation mapping is partially determined while the systemis active.

Under active monitoring, some scheduling decisions are made at run-time. Such decisions are based on the
actual quality of results produced by the anytime components and based on the actual change that occurred
in the environment. It should be emphasized that compilation of anytime algorithms remains as essential
in active monitoring as it is necessary in passive monitoring. The run-time scheduling decisions are made
using compiled performance profiles both in order to determine an initial time-all ocation to each component
and in order to determine whether time allocation should be revised.

Figure 6.1 shows the general structure of the run-time system and the data flow between itsmain
components. The monitor isthe central component that makes run-time scheduling decisions. It represents
the implementation of a particular monitoring scheme. An independent process is used in order to update
the state of the environment based on sensory input. This process is performed in parallel to the execution
of the main decision procedure, but it does not consume the same computational resources. The state of
the environment, or more precisely, a set of high-level features of the environment, is used together with
a model of the environment, the current best results, and the performance profile of the main decision
procedure in order to determine the value of continued computation. The value of continued computation
can be estimated for the complete system or for individual modules. In the former case, the monitor may
decide to stop the execution of the main decision procedure and return the current best result. In the latter
case, the monitor may decide to transfer control to another anytime component or it may interrupt the
execution of the complete system. Specific examples of monitoring policies are presented in the following
sections.

The main reason why complicated active monitoring isnecessary in control of anytime algorithms
is the problem of uncertainty. In an entirely deterministic world, passive monitoring can yield optimal
performance and hence satisfy the operational rationality criterion. However, in unpredictable domains
there is much to be gained in performance by introducing an active monitoring component. In the next
section, the two main sources of uncertainty in real-time systems are described.

6.1.2 Uncertainty in real-time systems

Two primary sources of uncertainty affect the operation of real-time systems. The first source isinternal to
the system. Itis caused by the unpredictable behavior of the systemitself. The second sourceisexternal. It
is caused by unpredictable changes in the environment. Obviously, each source may contribute a variable
degree of uncertainty depending on the problem domain and the implementation of the system.

1. Uncertainty regarding the performance of the system

Inthe general case of an anytime algorithm, the quality of theresults may vary for any fixed timeallo-
cation. A performance distribution profile describes the distribution of quality for any time all ocation.

Decision Procedure

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS

Control

Anytime Physical

Environment

y

Y

Current Best Results Anytime Library Sensors

[\ \ \

Sensor Data
Processing

Value of
Computation

Model of Physical
Environment

Action Effectors
Interface

/ &

Control of
Decision Procedure

Action Effectors

Figure 6.1: Monitoring anytime computation

99

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 100

In situationswhere the variance of the distributionis small or where the actual quality isbounded by
asmall 6 around the expected quality, this uncertainty may have little effect on meta-level control of
computation. However, with alarge variance there is much to be gained by using active monitoring.
A monitor may use the quality of the actual result to correct the time allocation to the components of
the system.

2. Uncertainty regarding the environment

The desired run-time of a system is determined by its performance profile as well as by the time
pressure and by the characteristics of the environment in which it operates. The source of the time
pressure is change in the environment that may render the result of the computation useless. Change
in the environment creates time pressure but does not always bring about uncertainty. The source
of uncertainty is either the presence of stochastic events or the use of approximate models of the
environment. An agent that provides a certain service, such as package delivery, in an environment
where requests for the service arrive at anon-deterministic rate, operatesin a stochastic environment.
An agent that performs medical diagnosisoperates in an environment that has an approximate model.
In both cases, there is uncertainty regarding the future states of the environment and, as aresult, any
initial contract time may need to be revised. In some situations, an interruptible algorithm must be
used due to gresat variability in time pressure. Active monitoring, however, may be used to control
anytime computation in such environments.

The two sources of uncertainty mentioned above are characterized by two separate knowledge
sources. Uncertainty regarding the performance of the system is characterized by the performance distri-
bution profile of the system. Uncertainty regarding the future state of the environment is characterized by
the model of the environment. Active monitoring is required in the presence of any one of these sources of
uncertainty. However, the type of monitoring may vary as a function of the source of uncertainty and the
degree of uncertainty.

6.1.3 Episodic problem solving

Operational rationality has been defined as an optimization problem whose ultimate goal is to generate a
utility maximizing behavior. However, the time segment over which the agent’s behavior is optimized has
not been clearly specified. In some cases, the answer to this question is obvious. The agent is presented
with a single task and the time segment is the period of time required by the agent to achieve that task.
For example, consider a robot that delivers packages and whose utility function is the sum of the time-
dependent delivery values of the packages. The behavior of the robot is optimized over a single instance
of the problem. That is, the robot is presented with a map, a set of packages to be delivered and their time-
dependent delivery values. Operational rationality is achieved by optimizing resource alocation to the
computational components so as to maximize the utility function. When solving the optimization problem,
the input task is considered in isolation. The fact that the same agent may be involved in a completely
different activity which may be more beneficial is not considered. Moreover, the fact that another batch of
packages may bewaiting in aqueuefor delivery isignored aswell. | call the situation where the achievement
of asingletask isoptimized, episodic problemsolving. Note that the task may bearbitrarily complicated and
may include a number of sub-tasks. What makes a problem solving process episodic is not the simplicity
of the task, but the fact that the complete task is specified as input to the system and the optimization is
performed over that task only.

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 101

In episodic problem solving, the alternative use of the agent isignored. In particular, itsavail abil-
ity for solving further problemsimmediately after accomplishing the current task isdisregarded. Inthe rest
of this chapter | will focus mainly on monitoring of episodic problem solving. Optimizing behavior over
a larger time segments requires to extend the framework of anytime computation to the other components
of the agent, namely sensing and action. This extension is examined in the following chapter. It should be
noted that, to some extent, the possibility of using the agent for solving other tasks can be factored into the
model using a modified utility function. Such a modification must increase the cost of time as afunction of
the contents of the queue of waiting tasks.

The notions of passive and active monitoring have been defined and the tempora scope of the
monitoring component has been restricted to episodic problem solving. The rest of this chapter examines
several monitoring schemes. It isdivided into two main parts according to the type of system being moni-
tored — contract or interruptible.

6.2 Monitoring contract algorithms

It is easier to construct contract algorithms than interruptible ones, both as elementary and as compound
algorithms. Therefore, | will examine first the monitoring problem assuming that the complete system is
presented as a contract algorithm, A. The conditional performance profile of the systemisQ 4(¢,t) where
q isthe input quality and ¢ is the time alocation. Recall that () 4(q,t) represents, in the general case, a
probability distribution. When a discrete representation is used, @ (¢, t)[¢:;] denotes the probability of
output quality ¢;.

Let 5o be the current state of the domain and let S; represent the state of the domain at time ¢,
let ¢, represent the quality of the result of the contract anytime algorithm at time¢. U4(.5, 1, ¢) represents
the utility of a result of quality ¢ in state S at time ¢. This utility function is given as part of the problem
description. The purpose of the monitor isto maximize the expected utility of the result, that is, tofind for
which U 4(S4, 1, q;) is maximal. Contract algorithms are especially useful in a particular type of domains
which is defined as follows:

Definition 6.4 Adomainissaidto have predictable utility if U4(5:,, ¢) can be determined for any future
time, ¢, and quality of results, ¢, once the current state of the domain, 5o, is known.

The notion of predictable utility is a property of domains. The same utility function can be predictable in
one domain and unpredictable in another. What makes a domain predictable is the capability to determine
the exact value of results of a particular quality at any future time. Hence, the state of the domain may
change, even in an unpredictable way, and utility may still be predictable. To explain thissituation, | define
afunction, f(.9), that isolates the features of a state that determineits utility. In other words,

V51,52 f(S1) = f(52) = Ua(S1,t,q) = Ua(S2,1,q) (6.1)

Consider the domain of traffic on a particular road. The state of the domain is defined by the location and
velocity of each vehicleand f(.5') may be, for example, the traffic density. Using the function f, itiseasy to
show that a domain with predictable utility isa domain for which f(.5;) can be determined once the current
state, So, isknown. In general, three typical cases of such domains can be identified:

1. A static domain is obviously predictable since S; = S and f(5:) = f(50). For example, the game
of chess constitutes a static domain.

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 102

2. A domainthat has a deterministic model is predictable since future states can be uniquely determined
and hence f(.5;) can be determined. For example, a domain that includes moving objects has a
deterministic model when the velocity of each object is constant.

3. A domain for which there is a deterministic model to compute f(.5;), once the current stateis known,
ispredictable. Notethat thisdoesnot require adeterministic model of thedomainitself. Animportant
sub-classisall thedomainsfor which f(.5') = 0, that is, domainsin which the utility function depends
only on time.

Theinitial contract time

Thefirst step in monitoring of contract algorithms involvesthe calculation of theinitial contract time. Due
to uncertainty concerning the quality of the result of the algorithm, the expected utility of the result at time
t isrepresented by:

Uu(St,t) ZQA ¢, Dlq:]Ua(St: 1, 4:) (6.2)

The probability distribution of future output quality isprovided by the performance profile of the algorithm.
Hence, aninitial contract time, ¢.., can be determined before the system is activated by solving the following
equation:

te = argmax{U4(Sy.1)} (6.3)

Passive monitoring meansthat thisinitial contract timeisused to determine, using the compiled performance
profile of the system, the ultimate allocation to each component.
In somecases, itispossibleto separate the value of theresultsfrom thetime used to generate them.
In such cases, one can express the comprehensive utility function, U (.5, t, ¢) asthe difference between two
functions:
Ua(St,t,q) = Va(So,q) — Cost(S50,1) (6.4)

where V4(.9, ¢) isthe value of aresult of quality ¢ in a particular state S (termed intrinsic utility [Russell
and Wefald, 1989b]) and C'ost(.5, t) isthe cost of ¢ time units provided that the current stateis S. Similar
to the expected utility, the expected intrinsic utility for any allocation of time can be calculated using the
performance profile of the algorithm:

V.A S t ZQ.A Q7 (ZZ VA(S %) (65)

Finally, theinitial contract time can be determined by solving the following equation:
t. = arg m?X{VA(SO, t) — Cost(So,1)} (6.6)

Once an initia contract timeis determined, several monitoring policies can be applied. The most
trivial one isthe fixed-contract strategy that leads to a passive monitoring scheme. Under this strategy, the
initial contract time and the compiled performance profile of the system are used to determine the allocation
to the components. This allocation remains constant until the termination of the problem solving episode.
The fixed-contract policy is optimal under the following conditions:

Theorem 6.5 Optimality of monitoring of contract algorithms. The fixed-contract monitoring strategy
is optimal when the domain has predictable utility and the system has a fixed performance profile.

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 103

S1 S2 S3
—_— q{&ﬂ
S4 S5

Figure 6.2: A sequence of residual sub-systems

Proof: Thisresult is rather trivial since, when the domain has predictable utility and the system’s perfor-
mance profileisfixed, utility of results at any future time can be determined. The initial contract time, that
maximizesthe comprehensive utility, remainsthe same during the computation and no additional scheduling
decision can improve the performance of the system. O.

Theimplication of thistheorem isthat operational rationality can be achieved in certain domains
using a smple, passive monitoring scheme. More interestingly, however, is the applicability of this moni-
toring method in situations that approximately meet the conditions of the theorem. For example, the fixed-
contract approach is efficient when the performance profile of the system is not fixed but the performance
variance issmall.

The rest of this section discusses two extensions to the fixed-contract policy for cases with high
degree of uncertainty regarding the quality of the results. In such cases, the initial contract time must be
altered by an active monitoring component.

6.2.1 Re-allocatingresidual time

Thefirst type of active monitoring that | analyze involvesreall ocation of residual time among the remaining
anytime algorithms. Suppose that a system, composed of several elementary contract algorithms, is com-
piled into an optimal compound contract algorithm. Since the results of the elementary contract algorithms
are not available during their execution, the only point of time where active monitoring can take place is
between activations of the elementary components. Based on the structure of the system, an execution or-
der can be defined for the elementary components. The execution of any elementary component can be
viewed as a transformation of a node in the graph representing the program from a computational node
to an external “input” of a certain quality. This transformation is shown in Figure 6.2. The quality of the
new input is only known when the corresponding elementary component terminates. Based on the actual

quality, the remaining time (with respect to the global contract) can be reallocated among the remaining
computational components to yield a performance improvement with respect to allocation that was based
on the probabilistic knowledge of quality of intermediate results.

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 104

In order to be able to alocate time optimally to each component, the monitor needs to access
not only the performance profile of the complete system, but also the performance profiles of the residua
sub-systems. The compilation problem has to be solved for each residua system. For example, for the
system modeled by Figure 6.2, five performance profiles must be calculated. These performance profiles
can be derived using the standard local compilationtechnique. The only difference isthat the compiler does
not need to store the alocation to all the components but only the allocation to the next component in the
activation order. Thismulti-compilation and monitoring scheme will be demonstrated by an example at the
end of this section.

6.2.2 Adjusting contract time

The second type of active monitoring for contract algorithms involves adjustments to the original contract
time. Asbefore, once an el ementary component terminates, the monitor can consider itsoutput asan input to
asmaller residual system composed of the remaining anytime algorithms. By solving the previous equation
that determines the contract timefor the residual system, a better contract time can be determined that takes
into account the actual quality of the intermediate results generated so far.

If the elementary components are interruptible, the contract time can be adjusted while an elemen-
tary component isrunning. Giventhe quality of theresults generated by that component and its performance
profilel, a new contract may be determined. In that case, the new contract may affect the termination time
of the currently active module in addition to affecting the run-time of future modules.

Note that in domainswith predictable utility, the only factor that may affect the execution time of
amodule isthe actual qualities produced by previous modules and the module itself. But, once a module
terminates, there is no need to consider reactivating it with larger time allocation. This fact simplifies the
scheduling of anytime computation in such domains.

6.2.3 A monitoring example

The following example demonstrates how the two principles of active monitoring, re-allocating residual
time and adjusting contract time, can be used in practice. Suppose that a speech recognition system is
composed of two anytime modules. The first module classifies the speaker and the second module uses the
classification in order to set up the initial parameters of the recognition phase. The better the classification,
the faster the recognition system converges on the correct sequence of words. The system’stop level can
be represented by the following expression:

RecocGNIze(Utterance, CLASS(Utterance))

The system must operate in rea-time with only a small constant delay allowed between the utterance and
itscomputed word representation. The overall utility is determined by the delay in computing the represen-
tation of an utterance and the probability that the representation is correct.

A standard compilation technigque looks at the compl ete system and determinesfor each total allo-
cation the allocation to each component that maximizesthe overall expected utility. If passive monitoringis
used, an optimal fixed contract is determined by the monitor and the components are activated accordingly.
No further scheduling decisions take place.

With active monitoring, time is only alocated to the first component, the classifier. When it
terminates, the recognition step does not receive the remaining contract time. Instead, it is viewed by the

1The performance profile may require some dynamic adjustments aswell. Such adjustments are discussed later in this chapter.

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 105

monitor as a residual sub-system whose inputs include both the utterance and the speaker’s classification.
Each input now has aparticular quality that the monitor can usein order to derive anew contract time. Since
the conditional performance profile of the recognition phase depends on the quality of itsinputs, the new
information regarding the actual quality of the classification can result in either an increase or decrease in
the time allocation to that module. The actual effect is determined by cal culating the new optimal contract
timefor the residual system.

To summarize, when the performance profile of a system has awide range of possible qualities, a
performance improvement can be achieved by active monitoring. Two techniques of active monitoring of
contract algorithmswere introduced: re-allocating residual time and adjusting contract time. To implement
these techniques, the monitor must calculate a new contract time before activating each component. In
other words, the process that is normally performed once in the fixed-contract case must be repeated. For
this purpose, the monitor needs a set of performance profiles, one for each residua sub-system. These
performance profiles are derived by standard compilation of each residual sub-system according to a pre-
determined evaluation order.

6.3 Monitoring interruptible algorithms

Now | turn to the problem of monitoring interruptible anytime computation. The use of interruptible algo-
rithms is necessary in domains whose utility function is not predictable and cannot be approximated by a
predictable utility function. Such domains are characterized by non-deterministic rapid change. Medical
diagnosisin an intensive care unit, trading in the stock exchange market, and vehicle control on a highway
are examples of such domains. Many possible events can change the state of such domains and the timing
of their occurrence isessentially unpredictable. Consequently, accurate projection into the far futureisvery
limited and the previous fixed-contract approach fails. Such domains require interruptible decision making.
| start this section with alook at the construction of interruptible systems.

6.3.1 Interruptibleanytime systems

Thequestion of generating interruptibleanytime systemsmust be addressed before | can proceed to the mon-
itoring part. Obvioudly, elementary anytime algorithms that are interruptible can be constructed using the
programming techniques described in Chapter 4. However, when non-elementary modules are considered,
one needs to apply one of the following two approaches:

1. Generate a contract algorithm first and use the construction of Theorem 4.1. The compilation of
contract algorithms, a much easier task, has been extensively analyzed in the previous chapter. By
compiling the main decision procedure as a contract algorithm and then running it with exponentially
increasing time limits (as described in the proof of Theorem 4.1), one can create an interruptible
system. This genera approach suffers from a constant slowdown because of the reduction from
contract to interruptible algorithm.

2. Use specia compilation methodsthat directly result in an interruptible system. Direct compilation of
interruptible algorithmsis only possible with certain types of programming constructs. In the general
case of functional composition, or even in the case of linear composition, interruptible algorithms
require that the elementary components be activated and interrupted many times. Thisis due to the
fact that only one module, the root of the DAG, produces the output of the system. If that module
is not activated early on and the system is interrupted, no result is available. If it is activated early

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 106

on and the system is not interrupted, then execution must return to earlier modules to produce higher
quality. When repeated activation of modules is necessary, the contract-to-interruptible reduction
seems to be a good implementation. However, in some particular cases, better performance can be
achieved by re-using results generated by previous contracts. In such cases, direct compilation might
be beneficial.

Direct compilation of interruptible algorithms

A number of programming structures allow the use of special compilation methodsthat yield aninterruptible
algorithm directly. Here isa brief summary of these structures.

1. Pipelining of resultsin composite expressions.

Someinterruptibleanytime algorithms, such asimage processing al gorithms, accept large data objects
as input. The quality of the output may correspond to the percentage of input data that has been
completely processed. When a composition of such algorithms is given, it is easy to construct an
interruptible algorithm by simply allocating time to the components in an incremental way, using
pipelinesto transfer partial output of onemoduletoitsconsumers. If theoriginal performance profiles
are Q1(t), Q2(1), ..., Q,(1), then the compiled performance profile is determined by the equation:

Q) = Q1(t1) = Qatz) = ... = Qultn) | t=t1+t2+ ...+ 1, (6.7)

Matching the output qualities guarantees optimal balancing of input/output sizes. The equation can
be solved efficiently by a binary search for the value of ¢)(¢) when the performance profiles of the
elementary components are not pathological

2. Compilation of a set of interruptible independent jobs.

A set of interruptible independent jobsis a set of interruptible jobs for which the quality of each job
depends on time allocation only. The overal utility is the sum of the qualities of al the jobs. An
interruptible system that executes these jobs can be constructed by scheduling the components ac-
cording to the derivatives of their performance profiles. The algorithm with the steepest performance
gain should be selected for execution until the derivative of its performance profile falls below the
derivative of another task. The resulting performance profile and the corresponding schedule can be
calculated by an off-line compilation process. This performance profile is optimal when 9Q);(t)dt is
amonotone non-increasing function.

3. Compilation of production systems.

Russell and Subramanian [1993] studied the compilation problem of a special case of production
systemsin which production rules are matched in afixed sequence. Each rule has associated with it a
match time and a quality which corresponds to the utility of the rule's recommended action when the
match succeeds. Thisarchitecture issimilar to the compilation of a one-of structure where each one
of the individual methods is a conditional statement. Russell and Subramanian analyze both fixed
and stochastic deadlines. For the latter case, they provide a dynamic programming algorithm for
obtaining an optimal sequence of decision rules and thus produce the best interruptible algorithm for
any given stochastic deadline distribution.

4. Compilation of loops asinterruptible algorithms.

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 107

Certain types of iterative structures, in which each iteration gradually improves the quality of the
result, offer a simple basis for the construction of interruptible algorithms. If the body of the loop
reguires a constant time, then the construction of the interruptible algorithm istrivial. Otherwise, the
time allocation to each iteration has to be determined based on its conditional performance profile
and the stochastic deadline distribution.

To summarize, in several specia cases one can construct interruptible algorithms using direct
compilation methods. In all other cases, the reduction theorem can be used to construct interruptible algo-
rithms from contract ones. Both direct compilation techniques and the contract-to-interruptible reduction
regquire some type of monitoring to construct the interruptible algorithm. The type of active monitoring
discussed below is applied after the basic interruptible algorithm is constructed.

6.3.2 Active monitoring using the value of computation

Consider a system whose main decision component is an interruptible anytime algorithm, .A. The condi-
tional probabilistic performance profile of the algorithmis Q (¢,) where ¢ istheinput quality and ¢ isthe
timeallocation. Asbefore, Q 4(q,t) isaprobability distributionand @ (¢, t)[¢:] denotes the probability of
output quality ¢;.

Let S be the current state of the domain. Let \S; be the state of the domain at timet. And, let ¢;
represent the quality of the result of theinterruptible anytime algorithm at time¢. U 4(9,7, ¢) representsthe
utility of aresult of quality ¢ in state S’ at time¢. The purpose of the monitor isto maximize the expected
utility by interrupting the main decision procedure at the “right” time. Due to the high level of uncertainty
in rapidly changing domains, the monitor must constantly assess the value of continued computation by
calculating the net expected gain from continued computation given the current best results and the current
state of the domain. Thisisdone in the following way:

Due to the uncertainty concerning the quality of the result of the algorithm, the expected utility
of theresult in agiven future state .S; at some future time is represented by:

U.A Stv ZQA q,t (ZZ U.A(Stvtv%) (6.8)

The probability distribution of future output quality isprovided by the performance profile of the algorithm.
Due to the uncertainty concerning the future state of the domain, the expected utility of the results at some
future timet isrepresented by:

Z p(Sy = SYU4(S,1) (6.9)

The probability distribution of the future state of the domain is provided by the model of the environment.
Finally, the condition for continuing the computation at time ¢ for an additional At time unitsis

therefore VOC > O where:
VOC = Uj(t + At) — Ui(t) (6.10)

Similar to monitoring of contract algorithms, monitoring of interruptible systemscan be simplified
when it is possible to separate the value of the results from the time used to generate them. In such cases,
one can express the comprehensive utility function, U 4(.5, t, q), as the difference between two functions:

U.A(Stvtv Q) = VA(Sv Q) - CO‘St([tmt]) (611)

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 108

where V4(.59, q) istheintrinsic utility function, S isthe current state, .. isthe current time, and C'ost([t., t])
isthe cost of thetimeinterval [¢., ¢]. Under this separability assumption, the intrinsic value of allocating a
certain amount of time ¢ to the interruptible system (resulting in domain state 5) is:

Vi(S,1) ZQA .)[a]Va(S,) (6.12)

Hence, theintrinsic value of allocating a certain timet in the current state is.

Z p(S: = SHV4(S,1) (6.13)

Andthe conditionfor continuing the computation at time+ for an additional At timeunitsisagainVOC > 0
where:
VOC = Vi(t+ At) — V4(t) — Cost([t,t + At]) (6.14)

Discussion

A control mechanism has been developed for interruptible algorithms that is based on the estimation of the
current value of computation. Note that the condition for termination is“temporally local” in the sense that
the value of computation might be negative for a small amount of computation time, At, and yet larger
computation time might have positive net value. In highly unpredictable domains, it might be justified to
make time all ocation decisions based only on predictions of theimmediate future. But in more stable situa-
tions, the monitor should consider several values of At before terminating the computation. The following
theorem asserts the optimality of the above monitoring policy under certain assumptions about the intrinsic
value and time cost functions.

Theorem 6.6 Optimality of monitoring of interruptible algorithms. Monitoring interruptible algo-
rithms using the value of computation criterion is optimal when At — 0 and when the intrinsic value
function is monotonically increasing and concave down and the time cost function is monotonically in-
creasing and concave up.

Proof: A function ¢ iscalled concave up on agiveninterval I if it is continuous, piecewise differentiable,
and Vz,y € I for which ¢/(z) and ¢/(y) exist, (z < y) = (¢'(z) < ¢'(y)). Itiscaled concave down
if Yo,y € I for which ¢/(z) and ¢/(y) exist, (z < y) = (¢'(z) > ¢'(y)). Note that the assumption of
monotonically increasing and concave down intrinsic value function isidentical to the assumption of Dean
and Wellman? that performance profiles have the property of diminishing returns.

Now, suppose that the current timeis¢; and that

VOC =Vi(t1+ At) = VJ(t1) — Cost([t1, 11+ At]) <0 (6.15)
Since the intrinsic value function is concave down, it is guaranteed that for any future timet, > #1:

VA(ta + At) = VY(t2) < VAt + At) — Vi(t1) (6.16)

2See [Dean and Wellman, 1991], Chapter 8, page 364

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 109

Since the time cost function is concave up, it is guaranteed that for any futuretime, > #4:
Cost([ta, t2 + At]) > Cost([t1,11 + At]) (6.17)
Hence, it is guaranteed that for any future time t,:
VOC =Vi(ta 4+ At) = VY(t2) — Cost([t2, 12+ At]) <0 (6.18)

And therefore termination at the current timeis an optimal decision. O

How redlistic are the assumptions of a concave down intrinsic value and a concave up time-
cost? | suggest that these assumptions are valid in many real domains because of the nature of anytime
computation. First, itisquite normal for asystem to have more significant gainsin quality in the beginning
of the computation with gradually decreasing improvement rate towards its completion time. Second, the
cost of timetypically grows at aslow rate at the beginning of the computation and at afaster rate asthetime
approaches the “hard deadline” of the application.

6.3.3 Dynamic adjustment of performance profiles

A single performance profile has been used until now in the analysis of monitoring interruptible algorithms.

This performance profile specified for any future timet afixed quality distribution, regardless of the history
of results aready generated by the algorithm. Obviously, the history of results generated so far may pro-

vide strong evidence regarding future results. Therefore, a more informative characterization of the future
performance of an interruptible algorithm may be captured by the following mapping:

CPP* :Qin x Q" XT — Pr(Qout) (6.19)

where ();,, isameasure of theinput quality, Q* isasequence of qualities of the results produced so far, and
T isthe remaining execution time.

Although the above mapping isamoreinformative representation, it isunrealistic sinceit requires
that all the past qualities be stored and taken into account. Fortunately, the dependency of future resultson
the results generated so far can be captured in a far more efficient way in many domains. In others, the
problem may not be relevant at all since the actual quality of previous results cannot be measured directly.
The following list summarizes four typical situations:

1. The actual quality of the resultsis unknown.

Inthiscase @* issimply unavailable and one must rely on a standard performance profile. For exam-
ple, consider an interruptible randomized algorithm for primality testing, or Monte Carlo algorithms
in general. By the nature of such algorithms the quality of results is a function of the number of
iterations (or time) and cannot be adjusted since the answer produced by a single run of the algorithm
does not have a measurable objective quality.

2. The actual quality of the resultsis known but has no effect on the quality of future results.

In thiscase Q* isirrelevant and a standard performance profile may be used. For example, consider
an interruptible algorithm whose implementation isbased on activating several independent methods.
The methods are ordered according to their expected quality and time requirements. The actual
quality of a method, as much as it may deviate from the expected value for that method, has no
influence on the future quality of successive methods. It should be noted that while the expected

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 110

performance of future methods remains the same, the best result generated rather than the last one
can bereturned by such algorithm. Hence, the dynamic performance profile at each point is composed
of the maximum of the quality of the best result so far and the original performance profile. Thisminor
correction does not require that ()* be saved.

3. The quality of previous results has some effect on the quality of future results, but the dependency is
on the best result only.

In thiscase, @* isnot needed. Instead, a single number representing the best result so far has to be
stored. Therefore, the representation of the performance profile is not radically more complicated.
For example, consider iterative approximation methods (e.g. Newton’s method). In such methods,
the quality isareflection of the error or distance from the correct result. The error reduction in each
iteration is bounded by an expression that depends on the previous error bound. This case has two
interesting sub-cases:

(& When homogeneous algorithms are used, that is, algorithms whose input and output have the
same representation, a standard conditional performance profile is sufficient to capture the de-
pendence on the quality of intermediate results. The correction of the performance profile can
be implemented by a horizontal shift of the performance profile each time anew result is gener-
ated. For example, consider the traveling salesman algorithm of Chapter 4 where the problem
isarandom path and a solution is an improved, shorter path represented in the same way.

(b) When non-homogeneous algorithmsare used, it is still possiblethat the dependency on the best
result so far can be captured by a simple shift of the origin of the performance profile to the
point (¢, Q)(t)) where Q(t) isthe quality of the best result so far.

4. The quality of previous results offers some evidence regarding the quality of future results. The de-
pendency can be summarized by a function of the slope of the actual performance profile.

The dope of the actual performance profile can be computed based on the sequence of qualities.
It does not require that the entire sequence be saved. For example, consider a speech recognition
program whose overall quality relates to the probability of correct representation of an utterance as
afunction of computation time. Obvioudly, the slower the speaker, the less data the system needsto
process per time unit. Hence, performance isimproved with slow speakers. The effect of the speaker
on the performance profile is linear and can be determined based on the actual performance of the
system over previous utterances of the same speaker.

In addition to the above situations, there isa class of algorithmsfor which the quality of previous
results has some effect on the quality of future results, but the dependency can beignored since thedeviation
from the expected performance is negligible. In other words, the performance of the algorithmis strongly
dependent on time allocation with small deviation. In such cases, the quality of future results is highly
predictable based on aregular performance profile and no adjustment is necessary.

6.3.4 A monitoring example

Suppose that arobot is performing automatic diagnosis and repair of machines in a factory. Once a ma-
chine is malfunctioning, it is shut down automatically and reported to the robot technician. The robot then
performs hierarchical diagnosisto determinethe defective component of the machine. The smallest compo-
nents of the machine that can be identified as defective by the robot are called the elementary components.

CHAPTER 6. RUN-TIME MONITORING OF ANYTIME ALGORITHMS 111

When an elementary component is identified as defective, the robot simply replaces that component. The
robot can also replace larger assemblies that include defective components. The time and cost of replacing
apart are known in advance and depend on the defective part only. The machine has a hierarchical structure
in which each component has several sub-components. The diagnosis algorithm can be interrupted at any
time to yield the identification of the sub-system that contains the defective part. The more time that is
available for diagnosis, the more specific the diagnosis will be.

Each machine has an associated function that determines the loss of production as a result of
delay in repair. The function may be non-linear since there may be complex dependencies among various
machines in the factory. In addition, the function depends on the current operational needs of the factory
which change constantly. As aresult, the robot technician operates under rapidly changing time pressurein
adomain with unpredictable utility. Therefore, interruptible algorithms must be used.

With active monitoring, timeis allocated to the diagnosis module based on the value of compu-
tation criterion. At each point of time, the most specific defective sub-component identified so far, .5;, and
its replacement time and cost are known to the monitor. The monitor needs to determine whether to alow
continued deliberation by calculating the value of computation. The value of computation in this case is
the difference between the expected saving in repair costs due to a more specific diagnosis and the cost of
further delay in making the machine operational.

Comparison to contract algorithms

The above example could be handled also using a contract algorithm. The greater efficiency of active
monitoring of interruptible algorithms becomes significant in unpredictabl e situations with great variability

in algorithm performance and in the time cost. With respect to the above example, while the level of
specificity of a diagnosis may be arelatively stable function of time, the more relevant aspect is the actual

cost of replacing the defective part. Thiscost can vary over alarge range of values. For example, amemory
component may be much cheaper than a processing component, even if both are characterized by similar
specificity levels. In addition, this domain is characterized by great variability in time cost. Hence, by
constantly re-evaluating the value of computation based on the actual defective part and the current time
cost, the performance of the robot is better optimized.

6.4 Summary

The monitoring problem has been examined in two types of domains. One type is characterized by the
predictability of utility change over time. High predictability of utility allows an efficient use of contract al-
gorithmsmodified by various strategiesfor contract adjustment. The second type of domain is characterized
by rapid change and a high level of uncertainty. In such domains, monitoring must be based on the use of
interruptible algorithms and the value of computation criterion. But, how should one handle domains with
moderate change and some degree of predictability of future utility? The monitoring approach that is based
on contract algorithms does not generalize beyond predictable domains. Fortunately, the use of interruptible
algorithmsisgeneral enough to cover al typesof domains. The only problem with interruptible algorithms
is the performance degradation as a result of converting contract algorithms into interruptible ones. This
performance degradation can be minimized by scheduling contract algorithms on a parallel machine, even
one with asmall number of processors. Another approach isto try to integrate the two monitoring schemes
and to use prior information about the distribution of stochastic deadlines in the particular problem domain.

Chapter 7

Anytime Sensing and Anytime Action

| have striven not to laugh at human actions, not to weep at them, nor to hate them, but to
understand them.

Baruch Spinoza, Tractatus Politicus

In this chapter | return to the fundamental question posed in the introduction: how can an artificial agent
react to a situation after performing the right amount of thinking? In the previous chapters | developed a
formal definition of the notion of the “right amount of thinking” in terms of the value of computation. |

showed how anytime algorithms, together with an appropriate compilation and monitoring scheme, can be
used to optimize the agent’s decision procedure. However, until now the decision making component of the
agent was studied in isolation. In practice, two additional processes define the quality of the behavior of an
agent, namely sensing and action. Sensing involves gathering information about the state of the domain and
action involves applying the results of computation to the domain and changing itsstate in order to achieve
aset of goals. In this chapter, | will extend the notion of gradual improvement to sensing and action and
will show how to integrate them into the model of operational rationality.

7.1 Beyond episodic problem solving

The main reason for incorporating sensing and action into the model isin order to extend its scope beyond
episodic problem solving. To achieve thisgoal, the principles of operational rationality must be extended to
larger fragments of the life time of an agent. But, as one tries to solve the utility optimization problem over
larger segments of time, or histories, once must address additional aspects of agent construction, namely
sensing and action. To understand the effects of sensing and action on the control of deliberation, it isuseful
to distinguish between purely computational agents and other, more general agents.

7.1.1 The purely computational agent

A purely computational agent isan agent that performs a certain computational service (i.e. solving apartic-
ular problem) and whose utility functionisdefined directly in terms of the time-dependent quality of that ser-
vice. For example, the kernel of an operating system, a standard compiler, and a automatic text-translation
systemare al purely computational agents. A purely computational agent must present itsresults by writing
them on a certain output device and, in a sense, this constitutes an action rather than a computation. Yet, it

112

CHAPTER 7. ANYTIME SENSING AND ANYTIME ACTION 113

isuseful tolook at these agents as purely computational in a sense that their task terminates when they out-
put the results. With purely computational agents, operational rationality can be achieved without knowing
exactly how the results are used and in what ways they affect the world. The utility function relates to the
results themselves, not to the results in the context of a particular state of a certain domain. For this kind
of agents, compilation and monitoring, as they were described so far, are sufficient even when alargetime
segment isconsidered. A purely computational agent that operates on a sequence of independent problems
can be simply monitored as atype of loop as discussed earlier.

7.1.2 Computation, perception and action

The construction of ageneral artificial agent requiresamodel that extends beyond the purely computational

agent boundary. A robot that performs a certain task in a given environment, such as package delivery
in an office building, cannot be analyzed based on its planning capability or decision quality alone. The
capability of the robot to carry out its plans is as important as its planning capability. The degree of task
achievement isthe ultimate measure of performance, not the quality of “thinking” (although there may be a
strong correlation between thetwo). The additional aspects of therobot’sbehavior, sensing and action, affect
its operational rationality. The rest of this chapter gradually expands the model of operational rationality
to include certain types of sensing and action. The complete analysis of perception and action is hard and
requires the solution of several open questions. This dissertation does not include complete answers to all

the questions, but it discusses the problems and outlines some directions toward their solutions.

7.2 Anytime sensing

Sensing meansthat someinformation about the current state of the domain of operation is gathered and used
by the agent after itsinitial activation point. | start with the analysis of anytime sensing since it appears
to be much closer than action to anytime computation. Sensing is essential in agent construction for three
primary reasons:

1. Changeinthe environment that may affect the immediate goal, the time pressure and the desirability
of continued computation.

2. Uncertainty about the actual state of the environment due to past sensory measurement errors.
3. Uncertainty about the actual state of the environment due to inexact environment modeling.

The notion of anytime sensing is a natural extension of traditional sensing. The quality of a sensing pro-
cedure can be measured in a similar way to the quality of computation: in terms of certainty regarding the
domain description that it produces, in terms of accuracy of the domain description, or in terms of level
of specificity. Gradual improvement in sensing quality can be achieved by varying the amount of data col-
lected about the domain or by using anytime algorithmsto extract the domain description from the raw data.
The amount of sampled data can be controlled by varying the sampling resolution or by varying the number
of sampled features. For example, a vision module can produce a varying quality description of a scene
by changing the resolution of the gray level samples, by selecting a certain set of features to construct the
intrinsic image (i.e. illumination and depth but not reflection or orientation), or by applying a certain set of
analysis methods (i.e. visual line analysis and texture analysis but not motion analysis or stereo disparity
analysis). Hence, it seems that elementary anytime sensing algorithms can be constructed in a similar way

CHAPTER 7. ANYTIME SENSING AND ANYTIME ACTION 114

to the construction of elementary anytime algorithms. In thissection | will examine the effect of integrating
anytime sensing into the model of operational rationality and will show several methods of controlling the
tradeoff offered by anytime sensing.

7.2.1 Sensing versus computation

To some extent, sensing issimilar to computation and can be similarly compiled and controlled. Both com-
putation and sensing can be viewed as information gathering activities. The former provides information
based on manipulating knowledge already availableto the agent, while thelatter providesinformation based
on activation of sensory devices. The performance profiles of both activitiesare similar in nature. They both
describe the probability distribution of quality of the results as a function of time— computation time in the
first and sensing time in the second. Sensing time isthe total amount of time consumed by the sensing de-
vice including the computation time needed to trandl ate the raw data into a more meaningful representation
of the state of the domain.

Despite thisfundamental similarity, there are several significant differences between computation
and sensing. First, the results of a computation have a fixed objective quality which is a measure of the
distance between the approximate result and the exact result. This quality remains the same as time passes.
The question of whether the results of a computation are used immediately or not does not affect their
objective quality since it is defined with respect to a static problem description. In that respect sensing
quality is different since it is defined with respect to a potentially dynamic environment that it describes.
Sensing provides information whose accuracy in describing the current state of the domain depends on
sensing time as well as the time the results are used. Since the state of the domain may change, the validity
and quality of sensory information deteriorates over time. For example, a map of objects in front of a
moving car becomesirrelevant afew seconds|ater asthe car passes these abjects or hitsthem. Itistruethat
computation may suffer aswell from a similar problem. The quality of a plan for achieving a certain goal
may deteriorate as computation time increases, since the facts on which the planning process is based may
become invalid. But the quality of planning can be measured with respect to a given domain description
and the deterioration of its utility can be described by a different component of the model. This separation
cannot be applied to sensing since sensing quality is alwayswith respect to the current state of the domain.

Another important difference between sensing and computation is the fact that computations do
not change the environment. Sensing sometimes does. Ideally, sensing devices could be used for infor-
mation gathering only. However, some types of sensors interact with the environment and change the
environment, possibly in an undesirable way. For example, in medical diagnosis, some tests may affect the
condition of the patient or even endanger the patient’slife.

To summarize, while sensing may seem very similar to computation, itsinherent quality deterio-
ration and its possible effect on the state of the domain make it harder to analyze and control. The rest of
this section describes several approaches to sensing and their monitoring schemes.

7.2.2 Passive sensing in semi-static environments

The analysis and control of anytime sensing can be simplified by making two assumptions that eliminate
the differences between sensing and computation. The first assumption is that sensing is passive, that is,
sensing has no effect on the state of the domain. For example, visual sensors, such as sonars, have no
significant effect on the state of the domain. The second assumption isthat the environment is semi-static,
that is, during asingle problem solving episode the state of the environment can be considered static. Under
these two assumptions sensing can be treated as computation and incorporated into the model of operational

CHAPTER 7. ANYTIME SENSING AND ANYTIME ACTION 115

rationality. The compilation and monitoring techniques that were introduced in the previous chapters can
handle thistype of anytime sensing.

In Chapter 8, | will describe an application of the model in which an anytime vision module is
used as part of a mobile robot navigation system. Since the vision module and the environment satisfy
the two assumptions above, standard compilation is applied in order to combine the vision module with an
anytime abstract planning module.

7.2.3 Sensing as an independent process

Another approach to sensing is to isolate the process and to assume that it is performed independently and
in parallel to the computational decision component. This approach is justified by the fact that sensing
normally uses a specialized type of hardware, such as a camera, and a specialized type of computation ele-
ments, such as signal processors or neural networks. Asaresult, it may not be realistic to expect any kind of
resource sharing between sensing and computation. Once such resource sharing isexcluded, operational ra-
tionality can be achieved assuming an independent sensing process whose only goal isto maintain a current
description of the state of the environment. Thisisin fact the assumption used in the analysis of monitoring
in the previous chapter, where timeis alocated only to computation. To control the computational task, the
monitor may use the description of the current state of the domain.

Suppose that the state of the environment is used whenever the main decision procedure is acti-
vated with a certain contract time. The conditional performance profile of the main decision procedure is
represented by @ out(Gsensing » t) Where ¢ser,iny iSthe quality of the sensing processand ¢ isthe time alloca-
tion. Suppose also that the performance profile of the sensing process is represented by Qsesing (). Then,
when sensing is performed in parallel, the unconditional performance profile of the decision procedure is
simply:

/out(t) = Qout(@sensmg(t)v t) (71)

The control of the anytime sensing process israther simple. Based on the desired contract time for the next
cycle of the decision procedure, the sensing monitor has to alocate time to the sensing module.

The assumption of an independent sensing process is useful as long as the sensing component
does not require any guidance, for example, when the sensor consists of a camerathat overlooks the entire
domain from above and produces acomplete domain descriptionin each cycle. However, if asensor consists
of a camera mounted on a mobile robot with alimited field of view, sensing cannot remain an independent
process since the camera needs to be aimed at a particular direction based on the immediate plan of the
robot. Since the information gathered by such sensors is limited to a certain section of the domain, they
must be coordinated so that the sensory input covers the most relevant section of the domain. Such sensing
activity isdiscussed in the following section.

7.24 Sensing as an information gathering action

The most general view of sensing is as atype of action whose primary goal is information gathering but
whose potential effect on the domain must be analyzed in a similar way to the analysis of actions. Op-
timization of the agent’s behavior requires intelligent use of the sensing devices so that the information
gathered has higher value and relevance to the situation. For example, a mobile robot operating in an office
environment may need to move some boxes just in order to determine whether a certain package islocated
behind these boxes. Asaresult, there may be a complex relationship, and sometimesinterference, between
standard actionsand sensing actions. So, rather than being an independent component, general sensing must

CHAPTER 7. ANYTIME SENSING AND ANYTIME ACTION 116

be analyzed as an integral part of the planning problem. This type of sensing is much closer to action and
will thus be analyzed in the following section.

To summarize, the fundamental goal of sensing processes isto gather information, much likein
the case of computational processes. In fact, in some situations anytime sensing modules can be controlled
just as any computational modules. However, more general sensing must be viewed as a type of action
whose control is more complicated.

7.3 Anytime action

Action is much more difficult than computation or perception when analyzed as an anytime process. While
computation and perception has no intentional effect on the state of the domain, actions are designed to
transform the state of the domain. While useless computation paths may be simply abandoned, useless
actionsmay be destructive and sometimesirreversible. Asaresult, someanytime programming methodsand
monitoring techniques cannot apply directly to anytime action. The contract-to-interruptible conversion,
for example, cannot apply to actions since re-initiating an action may result in different effects because of
the changed initial state. As an example of this difficulty, consider gem polishing with increasingly fine
abrasives. Once afine abrasive is used, it is normally undesired to return to a coarse abrasive even if more
timeisavailable for the action. Asaresult, the extension of the principle of operational rationality to action
requires significant modification of the model. The purpose of this section is to introduce the notion of
anytime action and show how it could be integrated into the model of operational rationality.

7.3.1 Elementary anytime actions

The quality of an actionistypically defined by the expected degree of goal achievement. The degree of goal
achievement can be measured, just asin the case of anytime computation, in terms of certainty, accuracy or
specificity. Elementary anytime actions can be constructed using several standard paradigms:

1. Aloop of corrective actions

Many types of actions can be implemented as a sequence of corrective actions that are designed to
achievea certain goal. Consider the class of actionsin which the accuracy of goal achievement relates
tothe accuracy of positioning acertain physical object. Typically, theerror inthe positionis (bounded
by) a function of the movement size and speed. For example, the angular error in a camera rotation
may depend on the angle of rotation and on the speed of rotation. In such cases, it is common to
reduce error by a series of corrective actions, each composed of a smaller movement size at a slower
speed. As aresult, the position error is constantly reduced. This process is repeated until a certain
minimal error isreached or until the process is interrupted.

2. Aloop of refinement actions

Similar to the previous case, gradually improving quality can be achieved in actions by repeatedly
applying the same action with more refined setup to increase the accuracy of the outcome. The gem
polishing exampl e of the previous sectionisagood example. 1n gem polishing, itiscommon to repeat
the polishing procedure with increasingly fine abrasives. In such cases, the quality of the action is
adirect function of the refinement level. By limiting each phase to a fixed amount of time, a fixed
performance profile can be easily derived.

CHAPTER 7. ANYTIME SENSING AND ANYTIME ACTION 117

3. A sequence of low-level actions

Actions are sometimes implemented by a sequence of low-level steps or motor movements, and the
degree of goal achievement depends on the compl etion of all the necessary phases. Gradual improve-
ment over time can be achieved by performing a subset of the low-level steps. For example, when a
robot needsto get closer to an object in order to better identify it, the motion toward the object can be
interrupted at any time and the remaining distance can be used to calculate the quality of the action.

Another example is the initialization process of an autonomous vehicle. Certain steps, such as self-

testing and instrument calibration, may be omitted under time preassure, allowing the construction of

an anytime action.

4. Multiple methods

Asin the case of computation, anytime actions can be sometimes implemented using a set of ater-
native methods that offer a different execution time and performance constraints. For example, in an
intensive care unit, severa different methods can be normally used to stablize the condition of the
patient. A life endangering, but fast procedure may be preferred under extreme time presure. An
important difference between action and computation is that in the case of action, once a particular
method is applied, it may restrict the future application of alternative methods. For example, the
prescription of a certain drug to a patient normally restricts the application other possible treatments,
because the combination of the associated drugs may have a dangerous effect.

To summarize, four general methods to construct anytime actions were described. Elementary
anytime actions tend to be interruptible. A loop of corrective actions and a loop of refinement actions
are always interruptible, but a sequence of low-level actions or a set of aternative methods may not be
interruptible. For example, if gradual improvement is achieved by skipping non-critical low-level actions
without being able to return to steps that were omitted, then the outcome may be a contract agorithm that
cannot be converted to an interruptible one.

7.3.2 Performance profiles of actions

Performance profiles of elementary anytime actions describe the probability distribution of quality as a
function of time. The notion of conditional performance profile is as useful as with anytime computation
and is defined in the same way. The construction of performance profiles for anytime actions, however,
appears to be more complicated for several reasons:

1. Gathering statistics, when necessary, ismore difficult. While the performance of an algorithm can be
observed by activating it with many input instances, actions need to be performed in a certain domain.
To learn the performance profile of an action, it must be performed many timesin areal or simulated
domain. Asit seems unlikely that the real domain would be used for this purpose, the construction
of the performance profile requires the development of a smulated environment in addition to the
implementation of the procedure that performs the action itself.

2. Objective quality measures are hard to identify. While accuracy in computation is directly related to
deviation from the correct answer, it is harder to measure the accuracy of action. The main reason is
the fact that the quality of an action isrelated to the degree of goal achievement and hence the same
action can have different qualities with respect to different goals. While this problem may arise in
computation as well, it is not as common since a computation has a well defined goal (of solving

CHAPTER 7. ANYTIME SENSING AND ANYTIME ACTION 118

particular problem). But a small set of actions is normally used in order to achieve a large set of
possible goals. For example, when an agent moves toward a target, its goal may be to get a better
view of the target or to grasp the target. The quality of the action is different depending on the actual
goal. One way to dea with thisdifficulty isto use a different quality measures for different goals.

3. Actionsin many cases can be performed at avariable speed, where higher speed may reduce the time
segment of the action but it may also increase the energy consumption®. For example, when moving
toward a target position, a mobile robot has to accelerate, move at a certain speed, and slow down.
The acceleration rate and speed of movement at any point can be controlled to vary the timing and
quality of goal achievement. In many cases the speed of execution and its effect on the performance
profile are important and must be determined by the meta-level control. Therefore, a performance
profile that is conditioned on the speed of execution must be used.

Standard conditional performance profiles can be used to characterize the behavior of anytime
actions. But several unique aspects of actions make it more difficult to construct their performance profiles.

7.3.3 Buyingtimein real-timedomains

An interesting aspect of action, that has no paralel in computation, is the capability to change the degree
of time pressure or to “buy time.” In many domainsit is possible to perform a certain action whose main
or only value is to buy time for further planning. For example, in dialogues, any action which keeps the
other agents from speaking will give the agent more planning time. In an intensive care unit, temporary
treatment that is intended to stabilize the condition of the patient is common prior to complete diagnosis.
Similarly, in an air traffic control situation, placing some aircraft in a holding pattern to allow more time
for safe scheduling is commonly used. So, in addition to global goal achievement, action can be used to
modify the domain so as to reduce time pressure. The question is, how do thisand other specia aspects of
action affect its monitoring? This question is addressed in the following section.

7.3.4 Controlling anytime action

Operational rationality deliberately reducesthe meta-level control of an agent to aresource allocation prob-
lem. Thisgoal is maintained as the framework is expanded to include sensing and action. In other words,
the problem of action selection is considered a planning problem, not subject to the optimization process
performed by the model of operational rationality. This optimization problem is only responsibleto deter-
minethe amount of timethat should be allocated to elementary anytime modulesbased on their performance
profiles. So, when the possibility of using an action to buy timeisconsidered, the purpose of the meta-level
control islimited to alocating the optimal amount of time to this action but not to selecting the action over
other possible actions. The meta-level control does not solve the planning problem of the agent.

How does the agent select actions? The most natural way to extend the model is by performing
action selection in an analogousway to computation selection. That is, by explicit programming. According
to this approach, each anytime action is actually implemented as a procedure embedded in the complete
program that generates the agent’s behavior. For example, consider the following high level program to
control arobot that collects empty cans:

Lvariable action speed is somewhat anal ogousto variable computation speed achieved by varying the computational resources
used (e.g. the number of processors). However, parallelizing anytime algorithms isa non-trivial issue that has not been includedin
the model.

CHAPTER 7. ANYTIME SENSING AND ANYTIME ACTION 119

X «— LocATE-OBJECT(Can)
if REACHABLE-OBJECT(X) then
while not GRASPABLE-OBJECT(X) do
MoVE-TOWARD-OBJECT(X)
GRASP-OBJECT(X)

Under this approach, compilation is used separately on homogeneous program fragments, that is,
on computation, on sensing, and on action. Each one of them is considered an instance of a generalized
action and a candidate module for execution. Such generalized action may be an internal action in the
form of a computation, an information gathering sensing action, or an externa action. Each generalized
actions may be an anytime module whose (possibly compiled) conditional performance profile isknown to
the monitor. A relatively simple monitoring scheme can be implemented by scheduling the execution of a
single selected action at atime. For this purpose, the monitor needs to determine the context of execution,
which is aset of aspects of the current state of the domain that affect the resource alocation to the selected
generalized action. Then, execution is monitored following the episodic problem solving approach.

An extension of this monitoring strategy allows the generalized action to be selected by a meta-
level planning component rather than being a component of a fixed program. The planner itself may be
an anytime algorithm in which case a multi-level monitoring scheme may be required: one for allocating
time to the planner based on its performance profile and the state of the domain and another for allocating
time to the selected generalized action. These monitoring techniques optimize the allocation of time to a
single generalized action at atime. The question of how to optimize the agent’s behavior over alonger time
segment remains open.

7.4 Operational rationality over history

The notion of bounded optimality or operational rationality over along time segment, or history, is yet to
be defined and solved. The ultimate goal isto extend the theoretical framework of operational rationality to
allow building agents whose decisions are made using anytime computation, whose perception is based on
anytime sensing, and whose interaction with the environment is implemented as anytime actions. Thislong
term goal presents a number of difficulties. One difficulty with implementing operational rationality over
histories is the estimation of the utility of learning and domain exploration. Learning may have negative
effect on performance in the short run but, it has very high utility in the long run. Estimating the utility
of learning is much harder than estimating the quality of results of a given algorithm. By their nature,
learning and exploration lead to failures and false generalizations. It ishard to select performance metrics
for learning activities, let alone characterize them quantitatively.

Another difficulty is due to the need to make predictions regarding the state of the domain far
into the future. In the face of uncertainty regarding the current state of the domain and the performance of
the system, it is hard to make such predictions. The exponential growth of the number of possible states
makes such prediction even harder. Abstraction seemsto be a possible mechanism to handle this difficulty.
That is, by making predictions that correspond to alarge set of possible states, rather than reasoning about
individual states, one can reduce the complexity of the problem. | will return to these problems in the
concluding chapter.

Chapter 8

Application and Evaluation

Rationalism is an adventure in the clarification of thought.
Alfred North Whitehead, Process and Reality

This chapter describes severa applications of the model of anytime computation. In each application, the
implementation of the key processes, compilation and monitoring, will be examined. Of special interest
is the representation and learning of performance profiles and the use of conditional performance profiles.
Section 8.1 describes my own experience in using the model to implement a navigation system for amobile
robot. In Section 8.2, | describe two additional applicationsthat were devel oped by Anita Pos[1992, 1993]
and by Coulon et al. [1992]. Finally, in Section 8.3, | evaluate the model based on the results of these
experiments. The purpose of this evaluation is to examine the basic assumptions of the model and its

applicability.

8.1 Path planning and navigation in robotic systems

In order to demonstrate the model of anytime computation, | have selected one of the fundamental problems
facing any autonomous mobile robot: the capability to plan its own motion with noisy sensors. For this
purpose, | have implemented a simulated environment and a system composed of anytime sensing and
planning modules. Figure 8.1 shows the data flow between the main components of the navigation system.
Sensory input is used to update the description of the environment. This description is used both as input
to the anytime planner and as one of the factors that determine the allocation of time by the monitor. The
other factors are the compiled performance profiles of sensing and planning, the model of the environment,
and the quality of the current best plan.

| start with adescription of the environment and the anytime sensing and planning modules. Then,
| explain how the compilation process was used to optimally integrate the components of the navigation
system. Finally, | describe the run-time monitor and experimental results.

8.1.1 Theenvironment

A robot is situated in a simulated, two dimensional environment with random rectangular obstacles. The
robot does not have an exact map of the environment, but it has avision capability that allowsit to create an
approximate map. The accuracy of the domain description, produced by the vision mechanism, depends on

120

CHAPTER 8. APPLICATION AND EVALUATION 121

PHYSICAL
ENVIRONMENT

ANYTIME LIBRARY ANYTIME SENSING

DESCRIPTION OF
ENVIRONMENT

MODEL OF
ENVIRONMENT ANYTIME PLANNING

CURRENT BEST PLAN

PLAN EXECUTION \‘

Figure 8.1: Data flow diagram

CHAPTER 8. APPLICATION AND EVALUATION 122

0.0

Ta Tb time
0.0

Figure 8.2: The performance profile of the vision module

thetimeallocated to the vision module. The environment isrepresented by amatrix of elementary positions.
The robot can move between adjacent cells of the matrix at varying speeds which affect the execution time
of the plan aswell as the energy consumption. Since both sensing and planning are imprecise, itispossible
that a plan would lead the robot through a position that is actually blocked by an obstacle. | assume that
the robot has a capability to detect this situation using an alternative sensing capability (i.e. sonar) when it
is close to the blocked position. In that case, the robot has to modify the plan at run-timein order to avoid
hitting the obstacle.

When the simulation starts, the robot is presented with a certain task that requiresit to moveto a
particular positionand perform a specific job. Associated with each task isareward function that determines
the value of the task as a function of completion time. The system is designed to control the movement of
the robot, that is, to determine its direction and speed at each point of time while maximizing the overall
utility. The overall utility depends on the value of the task (a time dependent function) and on the amount
of energy consumed in order to completeit.

To simplify the discussion, | assume first that the description of the environment is produced by
a global sensing module, that is, the vision module has access to the complete environment (i.e. using a
camera that is watching the domain from above). However, in amore realistic situation, sensing islimited
to a small, local segment of the complete environment. That situation will be examined later, when the
run-time system is described. At that point, the sensing and planning modules will be applied repeatedly
to segments of alarger domain. The monitor has to determine at each point how much time to allocate to
vision and path-planning based on factors such as the current location of the robot, the estimated distance
to the goal position, the urgency of the task, and the quality of the plan produced so far.

8.1.2 Anytimesensing

A primary goal of this application has been to extend the notion of gradual improvement of quality to
sensing. The supposition that sensors produce a perfect domain description, as much as the assumption of
perfect planning and plan execution, constitutes a major disadvantage in any model for real-world robot

CHAPTER 8. APPLICATION AND EVALUATION 123

control. In my model, the presence of sensory errors is not only acceptable, but is considered the normal
situation. Moreover, in order to optimally control the quality of sensing, the model includes a quantitative
evaluation of its effect on the quality and performance of the other components of the system.

This section describes the module of anytime sensing that | implemented. It produces a domain
description whose quality expresses the probability that an elementary (base level) position is wrongly
identified, that is, identified as free space while actually blocked by an obstacle or vice versa. It is assumed
that within the area in which the sensors are effective, the quality of sensing is not affected by the robot’s
position. The general model, however, does not require this assumption.

Figure 8.2 shows the performance profile of the vision module. It is characterized by several
parameters: Ty, Ty, Q4, Q». T, is the minimal amount of time needed for the sensor to produce an initial
domain description with quality ¢ ,. Given a shorter run-time, the sensor does not produce any description
of the domain. For a run-time ¢, 7, < t < T, the quality of vision improves from @), to the maximal
quality @), which is 1.00 in this example.

Notice that when a sensor is interrupted at any time shorter than T,, it is still possible for the
system to operate using prior knowledge. For example, it may assume that every position is free in a region
with scarce obstacles.

8.1.3 Anytimeabstract planning

Path planning is performed using a variant of the coarse-to-fine search algorithm [Lozano-Pérez and Brooks,
1984] that allows for unresolved path segments. In order to make this algorithm interruptible, a hierarchy of
abstraction levels of the domain description is used. This allows the algorithm to find quickly a low quality
plan and then repeatedly refine it by replanning a segment of the plan in more detail. The rest of this section
describes the algorithm and its performance profile.

Abstract description of the domain

In a hierarchical (quad-trees) representation, the n*" level of abstraction corresponds to a certain coarse
grid in which every position, (z, 7), is an abstraction of a 2" x 2" matrix of base-level positions. Each high
level position has a certain degree of “obstacleness” associated with it which is simply the proportion of the
matrix that is covered by obstacles.

A general position in this two dimensional domain has therefore three components: (z y 1):
where 2 and y are the coordinates and ! is the level of abstraction. The position (3 3 1), for example,
corresponds to the following set of base level positions: (6 6 0) (6 7 0) (7 6 0) (7 7 0). If one of
these positions is blocked by an obstacle and the rest are free, then the “obstacleness” of (3 3 1) is0.25.

The anytime planning algorithm

The interruptible anytime planner (ATP) constructs a series of plans whose quality improves over time.
It starts with a plan generated by performing best-first search at the highest level of abstraction. Then, it
repeatedly refines the plan created so far by selecting the worst segment of the plan, dividing it into two
segments (of identical length), and replacing each one of those segments by more detailed plans at a lower
abstraction level. The worst segment of the plan is selected according to the degree to which the segment
is blocked by obstacles and according to its abstraction level. A special data structure, called a multi-path,
is used in order to keep intermediate results. It is a list of successive path segments of arbitrary abstraction
level. The algorithm is shown in Figure 8.3.

CHAPTER 8. APPLICATION AND EVALUATION 124

ATP(start, goal, domain-description)
1 multi-path < [SEGMENTIZE(start),
PATH-FINDER(PROJECT (start, ,,,,.), PROJECT(goal, L,,q.:), domain-description),
SEGMENTIZE(goal)]
REGISTER-RESULT(multi-path)
while REFINABLE(multi-path) do
REFINE(WORST-SEGMENT(multi-path), domain-description)
REGISTER-RESUL T(multi-path)
SIGNAL(TERMINATION)
HALT

No oh~hwN

Figure 8.3: The anytime planning algorithm

PATH-FINDER(Start, goal, domain-description)

level — LEVEL-OF(start)

size — ACTUAL-DOMAIN-SIZE/2!vel

domain < NTH-ABSTRACTION-LEVEL (level, domain-description)
close — UNvISITED(domain)

open — [MAKE-STATE(start)]

best-path — best-fir st-sear ch(domain, open, close, goal)

return [start | best-path]

No o~ WNPRE

Figure 8.4: The path finder

Notethat start and goal arethe start and goal positions, and 7., .- isthe maximal abstraction level.
The length of each segment of an intermediate plan isinvariant. It depends only on the length of theinitial
path at the highest level of abstraction. Asaresult, the run-time of the refinement step is approximately the
same for any segment of the plan regardless of itslevel of abstraction.

The PATH-FINDER is a search procedure that returns the best path between any two positionsin
the same abstraction level. The path is represented as a list of positions at the same abstraction level as
the start and goal positions. A base-level path must be obstacle-free and hence, it is a route that the robot
can follow. A path at a higher level of abstraction, on the other hand, isthe result of a best-first search that
minimizes the length as well as the obstacleness of the result. It does not correspond to a particular list of
base-level positions that the robot can follow. The particular positions are determined at execution time.
The algorithm is shown in Figure 8.4.

Plan execution

In order to follow an abstract path, the robot must use an obstacle avoidance procedure that controls its
movement whenever the planned route is blocked. The robot can sense that the planned route is blocked

CHAPTER 8. APPLICATION AND EVALUATION 125

Length of shortest path is: 133

Figure 8.5: Optimal path

asit reaches an obstacle (using a different kind of sensing method). Navigation using obstacle avoidance
alone is not efficient and may lengthen the route. In this implementation, as long as there exists a path
that connects the start and goal positions, the obstacle avoidance procedure alone can bring the robot to its
destination. Therefore, any abstract planis executable. Obstacle avoidanceisclearly not a smart navigation
method, but it can always substitute for missing details in an abstract plan. The quality of an abstract plan

P isdefined as follows:
route-length(P,,)

Quality(P) = route-length(P)

where route-length(P) is the length of the route generated when the robot is guided by the plan P, and
P+ isthe optimal plan. Note that the higher the level of abstraction, the lower the quality of the plan. At
the sametime, high-level abstract planning reduces the search space and hence it is performed much faster.

The notion of executable abstract plans — regardiess of their level of detail — is made possible
by using plans as suggestions that direct the base level execution mechanism but do not impel a particular
behavior. Thisideawas promoted by Agre and Chapman [1990] and was experimentally supported by Gat
[1992]. Uncertainty alone makes it impossibleto use plans except as a guidance mechanism.

Performance with perfect vision

What isthe performance of the abstract planner? First, | will examine the performance under the assumption
of perfect domain description. Then, | will examine the effect of degradation in vision on the quality of
planning.

Figure 8.5 shows the path found by the path finder when activated with start and goal positions
being the lower left and upper right positions respectively. The search level is zero (base level) hence the
path shown isoptimal (i.e. it is a shortest path).

CHAPTER 8. APPLICATION AND EVALUATION 126

Path Quality = 0.826 Path Quality = 0.847

(@) Level 3 plan (b) Level 2 plan

Path Quality = 0.905 Path Quality = 0.985

(c) Level 2/1 plan (d) Level /0 plan

Figure 8.6: Abstract plans with perfect vision

CHAPTER 8. APPLICATION AND EVALUATION 127

quality

0.90 /

0.80

0.70

0.60

0.50

0.40

0.0 5.0 10.0 15.0 20.0 time (sec)

Figure 8.7: The performance profile of the anytime planner

Figure 8.6 shows the paths generated by the path finder when activated with the same start and
goal positions but starting at the highest abstraction level. The upper-left frame (@) shows (by the large
sguares drawn in broken line) an abstract plan at level 3. The quality of the plan, 0.826, is determined by
the length of the route the robot would have followed if guided by this plan (shown in the figure by a heavy
broken line) compared to the length of the shortest route. The upper-right frame (b) shows a more precise
abstract plan with segments at level 2. Itsquality is0.847. The lower-left frame (c) shows an abstract plan
with segments at levels 2 and 1. Quality reaches 0.905. Finally, the lower-right frame (d) shows a detailed
plan with segments at levels 1 and 0. Although further refinement is possible, it has no effect on the quality
of the planin this particular example. Notice that the quality of the plan reached 0.985 — almost as good as
the quality of the shortest path.

The typical performance of the planner is summarized by its performance profile in Figure 8.7.
The graph shows the expected quality of the plan asafunction of run-time. When run to completion, the ex-
pected quality of the plan produced by the abstract planner is0.93. At the sametime, itsexpected run-timeis
only 27% of the the expected run-time needed to compute the optimal path using the standard .A* agorithm.
These figures show that anytime algorithms offer both more flexibility and a better cost/performance ratio.

Performance with imperfect vision

I now examine the effect of vision errors on the quality of planning. Suppose, for example, that the quality
of the domain description is 0.96. Thisfigure is a measure of the sensor’s noise level as described in the
previous section. The physical domain isidentical to the one used in the previous example. However, the
map constructed by the vision moduleis erroneous.

Figure 8.8 shows snapshots of the plans generated by the algorithm and their qualities. Notice
that as a result of lower quality of sensing, the quality of the initial plan is only 0.760 compared to 0.826
with perfect vision. In thisparticular example, the planner completed its execution with a plan of the same
quality as in the perfect vision case, but it took more time. The lower-right frame (d) shows a plan of the

CHAPTER 8. APPLICATION AND EVALUATION

Path Quality = 0,760

Path Quality = 0,836

(@) Level 3 plan

(b) Level 2 plan

— - E:f.f.f.f.f.f.f.f.'.

I; L I L I I. —
.I..* u ' _. - u
—— .-_ .* r u

o el

Path Quality = 0,893

Path Quality = 0,985

(c) Level 2/1 plan

(d) Level /0 plan

Figure 8.8: Abstract plans with imperfect vision

128

CHAPTER 8. APPLICATION AND EVALUATION 129

quality 1Q 100
| 1Q 98
oceco—|— ———— ———————————F — Q96
I 1Q 94
- 1Qoz
1Q90
- 1Q 88
0.80 Q86
0.70
0.60
0.50
0.40
0.0 5.0 10.0 15.0 20.0 time (sec)

Figure 8.9: The conditional performance profile of the anytime planner

same quality (0.985) as in the perfect vision case, but one can see that in order to reach this quality, the
abstract planner had to refine the plan until it was amost entirely in level 0. To summarize, as a result of
the error in the domain description, the planner terminates, on average, with a plan of lower quality.

Based on statisticsgathered by running the planning algorithm many times on randomly generated
domains, its conditional performance profile can be derived. The conditional performance profile describes
the expected quality of a plan based on the quality of the domain description and run-time. Figure 8.9
shows the conditional performance profile of the abstract planner. Each curve corresponds to a particular
guality of vision and shows the expected plan quality as a function of run-time. The use of the conditional
performance profile in order to determine optimal time allocation is further discussed bel ow.

8.1.4 Compilation of sensing and planning

The composition of planning and sensing is a simple example of a compilation of astraight line program as
discussed in Section 5.5:

ATP(start, goal, DOMAIN-DESCRIPTION(Sensor))

For optimizing time allocation, | implemented the hill-climbing a gorithm described in Section 5.5.

Figure 8.10 shows the performance profile that was produced by compiling the sensing and plan-
ning modules. Alsoshown inthat figure (for comparison) are the performance profiles of two other modules:
MIN, that allocates to vision a minimal amount of time, T',, and MAX, that alocates to vision a maximal
amount of time, T;. The compiled performance profile is superior to both. It is closer to MIN with small
alocations of time and is closer to MAX in the limit.

CHAPTER 8. APPLICATION AND EVALUATION 130

qualit _
CompP
0.90 e MIN
MAX
0.80
0.70 -
0.60
0.0 5.0 10.0 15.0 20.0 25.0 time (sec)

Figure 8.10: Compilation of vision and planning

8.1.5 Therun-timesystem

Systems composed of anytime a gorithms require constant monitoring. The compilation process provides
the necessary meta-level information to make the run-time monitoring more efficient, but itisnot asubstitute
for monitoring. Inthissection I explain how the run-time system controls the time all ocation to the anytime
modules.

The optimization of the long-term behavior of the robot is performed by dividing a complex task
into a series of small sensing, planning and plan execution episodes called frames. For each episode, the
anytime sensing and planning modules that were described earlier are used. Since, in many cases, sensing
capability islimited to a small, local segment of the environment, it is only natural to break the navigation
problem into small episodes. Each episode is monitored using dynamic readjustment of contract time as
described in Chapter 6.

Thetask of the meta-level control isto determine the optimal initial contract time for each frame.
This decision —inter-frame optimization —is made in the following way: et ¢ be the current time (real-time
since the beginning of the execution of the task), let f; be the (estimated) number of frames left at time ¢
for planning and execution, let . be the contract time for the next cycle of planning and execution, and let
e; be the energy used so far for plan execution. Then:

to = argmax; {VOT(t, f;,t;) — COE(ey, f1,1;)}

where VOT isthe expected value of the task and C'O F is the expected cost of energy. Note that both the
performance profile of the system and amodel of the environment are necessary in order to compute these
functions.

Onceaninitial contract timeisdetermined, the system starts all ocating resources to sensing, plan-
ning and plan execution. At the sametime, it continues to monitor the performance of the anytime modules.
This constant monitoring is necessary because of the uncertainty concerning the actual quality of plansand

CHAPTER 8. APPLICATION AND EVALUATION 131

Plan
Execution

DECREASE | . NOCHANGE
- +
_ n Planning
NO CHANGE ~ INCREASE

Figure 8.11: Intra-frame optimization

the actual time necessary to execute them. The purpose of the meta-level control in this phase is to reach an
optimal plan quality for the next frame while executing a previously derived plan. For this purpose, it can
modify the initial contract time. This decision — intra-frame optimization — is made in the following way:

The monitor determines at each point whether planning is ahead of or behind expectations by com-
paring the (estimated) plan quality to the quality advertised by the performance profile. It also determines
whether plan execution is ahead of or behind expectations by comparing the (estimated) execution time to
the frame contract time. Figure 8.11 shows how the resource allocation decision is made. In this figure, +
represents a process that advanced faster than initially expected and — represents a process whose perfor-
mance is below expectations. If planning is ahead of expectations and plan execution is behind, the monitor
accelerates plan execution by allocating more resources (energy) to plan execution. If planning is ahead
and plan execution is behind, the monitor slows down plan execution by reducing resource consumption.

This monitoring strategy can be modified in various ways. For example, one can consider planning
more than one frame ahead when plan execution is slow. Another possibility in this case is to replan part of
the plan to accelerate its execution. However, experiments with the above domain show that the monitoring
strategy that was implemented is sufficient in order to achieve (within 4% error) the optimal task value that
the system computes when presented with the task.

Figure 8.12 shows the display of the run-time system. The left frame shows an intermediate state
of sensing and planning and includes the best plan so far, its expected quality, the contract time, frame time,
sensing time and its quality. The right frame shows the plan execution (at the same time) and includes the
path followed by the robot, the current time and the energy consumed so far. It also shows the expected
task completion time and value.

8.2 Other applications

In this section | describe two additional applications of the model of anytime computation. Both applications
were influenced by Russell and Zilberstein’s [1991] paper on the composition of real-time systems. The
first project involves the construction of a diagnostic system by Anita Pos and René Bakker from the Uni-
versity of Twente, The Netherlands. The second project involves the analysis of anytime generate-and-test
algorithms by a research group at the German National Research Institute for Computer Science (GMD).

CHAPTER 8. APPLICATION AND EVALUATION 132

ANYTIME VISION & PLANNING ANYTIME PLAN EXECUTION

CONTRACT UISION PLANNING FRAHE Tiwe=00:10.450 Tiwe=00:23.000
Time=07.000 Tiwe=01.400 Tiwe=02.050 Tiwe=03.450 HOW: Energy= 4.30 COHPLETION: Energy= 26.82
Qual=0.7293 HQual=0.9232 Qual=0.6368 Oual=0.6363 Speed= 25 Value= 53.18

Figure 8.12: The run-time display

8.21 Anytime pragmatic diagnostic engine

M odel-based diagnostic methods [Davis and Hamscher, 1988] identify defective components in a techni-
cal system by a guided series of tests and probes. Advice on informative probes and testsis given using
diagnostic hypotheses that are based on observations and amodel of the system. The goal of model-based
diagnosisisto locate the defective components using a small number of probes and tests.

The General Diagnostic Engine[de Kleer and Williams, 1987] (GDE) isabasic method for model -
based diagnostic reasoning. In GDE, observations and a model of a system are used in order to derive
conflicts. These conflicts are transformed to diagnoses?. The process of observing, conflict generation,
transformation to diagnoses, and probe advice is repeated until the defective components are identified.
This process is shown in Figure 8.13(a).

GDE has a high computational complexity —O(2"), where n isthe number of components. Asa
result, its applicability is limited to small-scale applications [de Kleer, 1991]. To overcome this difficulty,
Bakker and Bourseau [1992] have devel oped amodel -based diagnostic method, called Pragmatic Diagnostic
Engine (PDE), whose computational complexity is O(n2). PDE issimilar to GDE, except for omitting the
stage of generating all diagnoses before determining the best measurement-point. Probe advice isgiven on
the basis of the most relevant conflicts, called obvious and semi-obvious conflicts®. This processis shown
in Figure 8.13(b).

In order to construct areal-time diagnostic system, AnitaPos[Pos, 1992] has applied the model of
compilation of anytime algorithms to the PDE architecture. PDE can be analyzed as a composition of two
(anytime) modules. In thefirst module, a subset of all conflicts is determined. Posimplements this module

A conflict isaset of componentsof which at least one has to be defective.
2A diagnosisisaset of defective componentsthat might explain the deviating behavior of the system.
3An obvious (semi-obvious) conflict is aconflict that is computed using no more than one (two) observed outputs.

CHAPTER 8. APPLICATION AND EVALUATION 133

OBSERVATIONS ALL CONFLICTS ALL DIAGNOSES PROBE ADVICE

(a) The GDE architecture

MOST RELEVANT SOME LIKELY
OBSERVATIONS CONFLICTS SUB-DIAGNOSES PROBE ADVICE
(b) The PDE architecture

Figure 8.13: Architectures for model based diagnosis

by a contract form of breadth-first search. The second module consists of a repeated loop that determines
which measurement should be taken next, takes that measurement and assimilates the new information into
the current set of conflicts. Finally, the resulting diagnoses are reported.

To represent the performance information, Pos uses a combination of expected performance pro-
file and performance interval profile (defined in Section 4.2). The combined performance profile is named
Statistical Performance Profile or PSP. It records not only upper and lower bounds but also the mean of the
sample set. For the purpose of decision making, the mean is used instead of the center of the interval.

The quality combination function (set multiplication) maps the mean of each sub-process to the
mean of the complete process, so that the resulting performance profile isagain a PSP. An interesting result
of the above decompositionisthat interaction with the user, who hasto actually take measurements, hasto be
considered in determining the performance profile of the second sub-process. Thisis achieved using expert
knowledge and statistical experiments to determine the average time necessary to take each measurement.
This knowledge is then incorporated into the performance profile.

Two versions of the diagnostic system have been implemented: one by constructing a contract
algorithm and the other by making the contract system interruptible using Theorem 4.1. The actual slow
down factor of the interruptible system was approximately 2, much better than the worst case theoretical
ratio of 4.

8.2.2 Generate-and-test search

Coulon et al. [1992] have analyzed several control strategies to perform a generate-and-test search at any
time. One of their goalsisto examine the applicability of the model of anytime computation to the compo-
sition of generate-and-test modules. The data flow of information is as follows:

input == GENERATE = hypotheses = TEST = solutions

The problem definition includes a stopping criterion for the system. The stopping criterion is a digunction
of alower bound on the number of solutions, sol,,;,,, and an upper bound on time alocation, #,,,,... Given a
stopping criterion, the goal of the systemisto maximizethe number of solutions.s and minimize computation
time?. The expected utility is defined asfollows:

U(s,t)=s/t

CHAPTER 8. APPLICATION AND EVALUATION 134

Tosimplify the analysis, the following four assumptions are made: (A1) all generated hypotheses
are tested before a new set may be generated; (A2) a non-trivial constant time, #,.,:.1 /2, is required for
switching from the generate module to testing and vice versa; (A3) generating a hypothesis and testing it
require constant times (¢,.,, and ¢;.s; respectively) for al hypotheses; and (A4) solutions are distributed
uniformly among the hypotheses. Four possible control strategies are presented and analyzed:

Strategy 1—directly generate the right number of hypotheses

If one knowsthe probability p that a generated hypothesis becomes a solution, one can estimate the number
of hypotheses needed to obtain sol,,,;, solutions. The authors use p in order to define a control strategy that
does not require switching back from testing to hypothesis generation. It performs only one iteration that
generates sol,,,;, /p hypotheses and tests them. The paper claims that this strategy is optimal. However,
since it does not satisfy the stop criterion mentioned above nor does it guarantee termination with sol
solutions, the claim of optimality isinaccurate.

Strategy 2 — eager generation

This strategy first generates all the possible hypotheses and then tests them, producing al the solutions
(whose number is sol,,;;). Aswith Strategy 1, it also has the “ advantage” of not switching back from test to
generate. Since areadlistic domain may have avery large, sometimesinfinite, hypothesis set, the generation
of all hypotheses seems impractical.

Strategy 3 —lazy generation
This strategy generates one hypothesis at atime, tests it and switches back to generate. The expected time
to compute sol ., hypothesesis:

S0l in

p

[

—‘(tgen + Ltest + tswitch)
where [-] isthe ceiling function. Obviously, if ¢, = O, thisstrategy isoptimal.

Strategy 4 — generate the number of missing solutions
This strategy generates in each iteration as many hypotheses as the number of missing solutions.

The authors compare the strategies based on their performance as shown in Figure 8.14. Their
final analysisidentifies two cases of termination: by reaching sol > sol,,;, and by reaching ¢ < #,,,.. In
the first case, the choice of strategy depends on the proportion of solution p, the ratio between t,,;;., and
tgen + tiest, @nd the ratio between sol,y; and sol,,;,,. When p is known, the authors claim that Strategy
1is optimal. In the second case, the authors claim that the methods have different properties in terms
of risk and performance and that the last strategy represents a compromise that offers high-payoff/high-
risk in the beginning and gradually becomes low-payoff/low-risk. The authors say that this behavior is
advantageous since the chance of running into ¢,,,,. increases over time. The last conclusion confuses the
problem definition with the notion of interruptibility. When a stopping criterion is given (specifying the
maximal time allocation), the meaning of high-risk (or low-risk) isunclear. The problem definition is based
on satisfying a stopping criterion rather than on a stochastic deadline.

Coulonet al. conclude that only when the probability p of a hypothesisbeing asolutionisknown,
isan optimal strategy (based on compilation) possible. When p is unknown, it means that the performance

CHAPTER 8. APPLICATION AND EVALUATION 135

s1 solaq s2

S0l min

time time

S3 S4

S0l min solmin

time time

Figure 8.14: Distribution of solutionsover timefor S1-4

profile is unknown and hence compilation is obviously impossible. This presents an interesting question
of how to utilize systems composed of anytime a gorithms when the performance profiles are not given. A
reasonable approach would be to learn the performance profile while the system isworking and adjust the
time allocation to reflect changes in the performance profile. Aninitial estimate of the performance profile
is needed.

8.3 Mode evaluation

| conclude this chapter with a summary of the experience that | had with the development and application
of the model of operational rationality. Most of my conclusions relate to my own work on the mobile
robot navigation system. An extensive theoretical analysis of the model and its capabilities appears in the
previous chapters. The purpose of this section isto assess the potential of operational rationality to become
a practical method capable of both simplifying the development of real-time systems and optimizing their
behavior.

8.3.1 Constructing elementary anytime algorithms

The construction of elementary anytime al gorithmshas been found to be as simple as standard programming.
It does not impose any new limitations on the programmer beyond the simple requirement of registering
intermediate results. Standard programming methods, some of which were surveyed in Chapter 4, extend
naturally to anytime computation.

Another important aspect of anytime computation that seems to pose no difficulty isthe selection
of an appropriate quality measure to characterize the performance of the algorithm. Although more exten-
sive research and many more applications are needed to examine this aspect, preliminary experience shows

CHAPTER 8. APPLICATION AND EVALUATION 136

that anytime algorithms have “natural” quality measures. In optimization problems, such as minimal cost
path finding, the natural quality measure of any given path is the ratio between its length and the length of
an optimal solution. This approach has been used successfully in the mobile robot navigation system. A
possible difficulty may arise when the optimal solution is too hard to compute, even by an off-line simula
tion program. In such a case one, can use the ratio between the length of the path and the distance between
the start and goal positions as areasonable quality measure.

8.3.2 Computing performance profiles

The computation of performance profilesis, at the moment, a somewhat tedious task. Many decisions re-
garding the representation of the performance profile are made by the programmer. These decisionsinclude
the selection of therange of timeallocation, the resol ution of time and quality, and the choice of an appropri-
aterange of initial input qualitiesfor the construction of the conditional performance profile. My experience
shows that in the prototype system the single aspect that has the highest effect on the development cycle
is the computation of the performance profiles. It takes hours to gather the essential statistics to build the
guality map and construct the performance profile, even after determining the parameters of the representa-
tion. Thisprocess, which is completely automated, cannot be avoided when using anytime algorithms. The
system however can be debugged at the same time using an older (or an approximate) performance profile.
Inaccurate performance profiles affect only the performance of the system but not itslogical operation.

Another interesting difficulty that was observed by Anita Pos relates to the construction of per-
formance profiles when interaction with a user is part of the main line of the algorithm. For example, in
the second phase of her diagnostic system, the anytime algorithm consists of aloop that determines which
measurement should be taken next, takes that measurement and assimilates the new information into the
current set of conflicts. Measurements are actually taken by the user. To construct the performance profile,
Pos used the knowledge of an expert and statistical experiments to determine the average time necessary
for manual measurements.

8.3.3 Compilation

Local compilation of anytime algorithmsis, in fact, asimple, fast process. The relatively small size of the
application that | developed made it possible to apply both globally optimal and approximate compilation
methods. In fact, | have compared the efficient hill-climbing time allocation algorithm and the algorithm
that uses compl ete search to guarantee optimality. | found that the resultswere practically the same interms
of the allocation to the components and the overall quality. Only one entry in the tables representing the
performance profiles was slightly different. More experience is needed, however, to test the performance
of the hill-climbing allocation algorithm and to determine how closeit isto the optimal output quality.

8.3.4 Achieving operational rationality

The applications developed so far show that operational rationality can be achieved in practical domains.
Thisisan important result of thisdissertation since the very principle of operational rationality and anytime
computation offer, by their nature, a performance improvement over traditional approaches to real-time
system development.

Recall, however, that the performance of the agent is optimized given a certain set of performance
components and a system design that are decided by the developer. Therefore, one cannot immediately
conclude that the performance achieved by an operationally rational agent is best in absolute terms. But

CHAPTER 8. APPLICATION AND EVALUATION 137

itis clearly an efficient tool to achieve superior performance with respect to agents whose components are
based on producing output of fixed expected quality.

Severa fundamental aspects of the model of operational rationality are still hard to evaluate.
These aspects can be evaluated only after alarge number of applications are developed. Thisleaves some
open questions regarding the potential of the model. For example, to what degree could one create a large,
general purpose library of anytime algorithms? To what degree would anytime computation and automatic
compilation simplify the development of real-time systems? | will return to these questionsin my conclud-
ing remarks.

Chapter 9

Conclusion

Civilization advances by extending the number of important operations which we can perform
without thinking about them.

Alfred North Whitehead, An Introduction to Mathematics

| have examined the problem of real-time decision making by intelligent agents. The result of this exam-
ination has been the development of an efficient model of bounded optimality that is based on anytime
computation, off-line compilation, and run-time monitoring. In this chapter | will summarize the contribu-
tion of thiswork and identify the main aspects of the model to be studied and refined in the future.

9.1 Contribution

The model of operational rationality offers both a methodological and a practical contribution to the field
of real-time decision making and to artificial intelligence in general. The main aspects of this contribution
are summarized below:

Design of complex real-time systems

Operational rationality offers a modular approach to the design of complex real-time systems. Separating
the design of the system from the optimization of its performance introduces anew type of modularity and a
large degree of smplification. Many researchersin the real -time community believe that the devel opment of
real-time systems is incompatible with the principles of abstraction since abstraction emphasizes the func-
tional requirements but ignores the timing constraints of the system. The model of operational rationality
shows how the two aspects can be addressed independently and hence it encourages the use of abstraction
in real-time system design.

Foundations of anytime computation

Operational rationality is largely based on anytime computation. The optimal scheduling and control of
anytime algorithms forms the center of the model. The utility of approximate computation has been long
appreciated by the computer science community. However, it has also been recognized that amajor obstacle
to the wide spread use of approximate computation isitsincompatibility with standard software engineering
principles. The principal problems have involved the estimation of the cumulative effect of error in the

138

CHAPTER 9. CONCLUSON 139

system, the control of approximate computation, and the great degree of unpredictability associated with
approximate computation. By introducing modularity into anytime computation and by mechanizing the
scheduling task, operational rationality constitutes an important step toward the complete integration of
approximate computation into standard system development methodologies. Performance profiles give
the designer a high degree of performance predictability and the standard library of anytime agorithms
encourages sharing and re-using anytime modules among different applications.

Resour ce bounded reasoning

The problem of optimal decision making with limited resources has been recognized as a hard problem in
artificial intelligence, in engineering, in economics and in philosophy. This dissertation presents a general
approach to solving this problem in two steps. First, certain structural constraints on the agent are estab-
lished. Then, and only then, the question of optimal decision making can be considered in the context of
those structural constraints. Since the chosen architecture can be arbitrarily restricted, the corresponding
optimization problem can be arbitrarily simple. The general trend should be to investigate the solutions one
obtains as the constraints on the agent’ s architecture are relaxed. Operational rationality offers a solutionto
the problem of resource bounded reasoning that fits this framework. Its structural premiseisthat the agent
is designed by composing anytime algorithms.

Machine independent real-time systems

Finally, operational rationality defines real-time systems by atime-dependent utility function. The dynamic
monitoring and the use of anytime computation make it possible to construct machine independent real-
time systems, a concept that has been considered a self-contradiction in the past. When an anytime system
isinstalled on a slower machine, it would automatically adjust the time allocation to its components to
maximizeits utility. In response to a reduction in computational power, such systems offer a corresponding
reduction in performance rather than failing to produce results at al.

9.2 Further work

Further work is required to generalize the components of the model of operational rationality and to further
validate its effectiveness. This section identifies the three major directions such work could take.

9.2.1 The scope of compilation

While the compilation process has been developed and theoretically analyzed for large programs, its prac-
tical use has been limited to small programs. Larger applications of the model need to be examined in order
to validate the vital role of local compilation. In addition, the scope of compilation needs to be extended to
include more programming structures. The compilation of recursive anytime functions, for example, isyet
to be redlized.

9.2.2 Thetheoretical framework

The theoretical framework of anytime computation has to be further extended to include anytime sensing
and anytime action. To fully integrate the notion of action into the optimization problem, one needs to

CHAPTER 9. CONCLUSON 140

|

REAL-TIME
DECISION

/MAKING\

BY
ADAPTATION

BY
DELIBERATION

Figure 9.1: Real-time decision making

examine the optimal behavior of agents over histories. This requires the development of mechanisms to
handle the exponential complexity of projection into the far future.

9.2.3 Programming support for anytime computation

Anytime computation requires a number of aspects of system development to be re-defined. One important
aspect is algorithm specification. In traditional programming, algorithm specification is based on binary
truth criteria that determine when an answer is correct, independent of its computation time. This kind
of specification is no longer useful with anytime computation. A performance profile seems to be a more
adequate mechanism for algorithm specification. But, as erroneous results become permissiblein program
development, a distinction must be drawn between an inefficient anytime agorithm and a programming
bug. This distinction can be based on a minimal performance profile that sets up a lower bound on the
performance of an acceptable algorithm.

Another aspect is the integration of all aspects of anytime programming into the programming
environment. The Concord system of Chapter 2 represents a preliminary step in this direction, but many
questions are still left open. How would the performance profiles in the library be linked to the algorithms
they describe? How would the programmer indicate the type of compilation method to be used? What
degree of control would the programmer have over the modification of the library to better match a partic-
ular problem domain? Further work and experience with anytime computation are needed to answer these
guestions.

Finally, debugging and testing toolsfor anytime algorithms must be devel oped that would address
the special characteristics of these algorithms.

9.3 Design, deliberation and adaptation
The problem of real-time decision making has been addressed by many researchers over the years. Three

basic mechanisms to solve this problem can be identified [Russell and Wefald, 1989b], as shown in Fig-
ure9.1.

CHAPTER 9. CONCLUSON 141

1. Real-time decision making by design —in which the designer possesses the computational and infor-
mational resources required to find optimal solutions and uses them in order to build a system that
“does the right thing.”

2. Real-time decision making by deliberation — in which the agent itself performs explicit deliberation
in order to make decisions, possibly using compilation to improve its reactivity over time.

3. Real-time decision making by adaptation —in which the agent is equipped with amechanism to adjust
itsbehavior in response to feedback from the environment so that the quality of itsdecisionsimproves
over time.

The challenge of artificial intelligence, | would argue, is to reduce the burden on the designer by moving
primary system construction mechanismsfrom thefirst category into the other two. However, in the current
state of artificial intelligence, sophisticated tasks are achieved largely by design. Explicit deliberation and
adaptation techniques are simply not fast enough to implement intelligent agents, | et alone real-time agents.
In that respect, operational rationality offers a significant new direction. Operational rationality is based
on a combination of the three mechanisms: the outline of the system and its performance components are
solved by design; the resource alocation problem to the componentsis solved by meta-level deliberation;
and the information regarding the performance of the elementary componentsis constructed by adaptation
in the context of a particular problem domain.

The field of artificial intelligence has been at a crossroads in recent years. Classical techniques,
that have been proven inadequate, are being gradually replaced by techniques that better address the prob-
lems of uncertainty, incomplete information and bounded computational resources. The model of opera-
tional rationality addresses these issues. Further research in this area will contribute to our understanding
of thellimitsand capabilities of intelligent agents.

Glossary

Many of the basic concepts and terms in the area of anytime computation are defined for the first time in
this dissertation. Other terms have been used in the past but still lack a generally accepted definition. For
this reason, | have included the following short summary of specialized terminology. The definitions here
areinformal and are intended for clarification purposes only. Exact definitions can be found in the body of
this dissertation.

anytime action An external action of an agent whose degree of goal achievement improves gradually as
execution time increases.

anytime algorithm An agorithm whose quality of results improves gradually as computation time in-
Ccreases.

anytime computation A model of computation that allows using anytime algorithms as basic components
and includes mechanisms for automatic scheduling the components so as to maximize a certain ob-
jective function.

anytime sensing A sensing procedure whose quality of domain description improves gradually as sensing
time increases.

compilation of anytime algorithms An off-line process that inserts time allocation code in a compound
anytime algorithm and prepares auxiliary meta-level information for efficient scheduling of the com-
ponents. The meta-level performance information iscomputed by the compiler using the performance
profiles of the elementary anytime components.

completion time of an anytime algorithm. The minimal amount of time required by an anytime algorithm
to guarantee that output quality reachesitsmaximal value and that no further computation canimprove
the quality of the output.

compound anytime algorithm An anytime algorithm composed of one of more elementary anytime ago-
rithms using certain program composition operator.

comprehensive value of a computation The net value of the information produced by a computation.

Sometimes represented as the difference between the intrinsic value of the information and the cost
of resources consumed by the computation.

142

GLOS=ARY 143

conditional performance profile of an anytime algorithm. A mapping that determines the probabilistic
characterization of the quality of the output of an anytime algorithm as a function of run-time and a
set of input attributes, usually the quality of the input.

contract anytime algorithm An anytimealgorithm that returns results as characterized by its performance
profile when the time allocation is determined in advance, before activating the agorithm, and is
known to the algorithm itself.

deliberation value of an interruptible anytime decision system. The marginal value of continued compu-
tation. The difference between the comprehensive value of taking an action in the future based on
further deliberation and the comprehensive value of taking immediate action based on the current
results. A negative value indicates that deliberation should be interrupted and the current best results
should be used.

episodic problem solving A problem solving approach in which the complete description of a problem
instance is introduced to the problem solver as input and no further input is considered before the
termination of the problem solving process.

generalized action A common reference to any aspect of the behavior of an agent as an action: computa-
tionsare internal actions, base-level actionsare external, and sensing activity isinformation gathering
action.

intrinsic value of a computation The value of the results of a computation with respect to a fixed pre-
determined problem description, regardless of the time consumed by the computation and the possi-
bility that the problem description may not remain accurate as the environment changes.

interruptible anytime algorithm An anytime algorithm that returns results as characterized by its perfor-
mance profile when interrupted at an arbitrary point after its activation.

local compilation method A compilation method that is performed by considering only one program con-
struct at atime and using only the performance profiles of itsimmediate components. Theimmediate
components are treated as if they are elementary anytime a gorithms.

operational rationality The theory of scheduling anytime computation so as to maximize the degree of
goal achievement determined by a certain utility function.

pathological anytime algorithm An anytime algorithm whose quality of resultsis not a non-decreasing
function of time.

performance profile of an anytime algorithm. A mapping that determines the probabilistic characteriza-
tion of the quality of the output of an anytime algorithm as a function of run-time.

performance profile library A database wherethe (conditional) performance profilesof al the elementary
anytime algorithms are originally stored and where the compiler stores the (conditional) performance
profiles of compound anytime algorithms.

qguality map of an anytime agorithm. A set of pairs each indicating a particular quality of resultsthat was
achieved by running the algorithm with a particular time allocation. Quality map is always defined
with respect to a particular distribution of input instances and a particular input quality. Used to
construct the conditional performance profile of an anytime algorithm.

Bibliography

[Agogino et al., 1988] A. M. Agogino, S. Srinivasand K. M. Schneider. Multiple sensor expert system for
diagnostic reasoning, monitoring and control of mechanical systems. In Mechanical Systems and Signal
Processing, 2:165-185, 1988.

[Agogino, 1989] A. M. Agogino. Real-time reasoning about time constraints and mode! precisionin com-
plex, distributed mechanical systems. In Proceedings of the AAAI Spring Symposium on Al and Limited
Rationality, Stanford, California, 1989.

[Agre and Chapman, 1987] P. E. Agre and D. Chapman. Pengi: An implementation of a theory of activ-
ity. In Proceedings of the Sixth National Conference on Artificial Intelligence, pp. 268-272, Sesttle,
Washington, 1987.

[Agre and Chapman, 1990] P. E. Agre and D. Chapman. What are plansfor? In Robotics and Autonomous
Systems, 6:17—-34, 1990.

[Alexander et al., 1992] P.D. Alexander, C. C.Lim,J. W. S. Liuand W. Zhao. Managing transient overload
in an imprecise computation system. In Proceedings of the IEEE Workshop on Imprecise and Approxi-
mate Computation, pp. 1-5, Phoenix, Arizona, 1992.

[Bacchus, 1988] F. Bacchus. Representing and Reasoning with Probabilistic Knowledge. Research Report
CS-88-31, Department of Computer Science, University of Alberta, Edmonton, Alberta 1988.

[Bakker and Bourseau, 1992] R. R. Bakker and M. Bourseau. Pragmatic reasoning in model-based diag-
nosis. In proceedings of The 10th European Conference on Artificial Intelligence, pp. 734—738, Vienna,
Austria, 1992.

[Batali, 1986] J. Batali. Reasoning about control in software meta-level architectures. In Proceedings of
the First Workshop on Meta-Architectures and Reflection, Sardinia, 1986.

[Boddy and Dean, 1989] M. Boddy and T. L. Dean. Solving time-dependent planning problems. In Pro-
ceedings of the Eleventh International Joint Conference on Artificial Intelligence, pp. 979-984, Detroit,
Michigan, 1989.

[Boddy, 1991] M. Boddy. Anytime problem solving using dynamic programming. In Proceedings of the
Ninth National Conference on Artificial Intelligence, pp. 738-743, Anaheim, California, 1991.

144

BIBLIOGRAPHY 145

[Bresina and Drummond, 1990] J. Bresinaand M. Drummond. Integrating planning and reaction. In Pro-
ceedings of the AAAI Soring Symposiumon Planning in Uncertain Environments, Palo Alto, California,
1990.

[Brooks, 1986] R. A. Brooks. A robust, layered control system for a mobile robot. IEEE Journal of
Robotics and Automation,2(1):14-23, 1986.

[Brooks, 1989] R. A. Brooks. A robot that walks: Emergent behavior from a carefully evolved network.
Neural Computation,1(2):253-262, 1989.

[Brooks, 1991] R. A.Brooks. Intelligence without reason. Computer and Thought Lecture. In Proceedings
of the Twelfth International Joint Conference on Artificial Intelligence, pp. 569-595, Sydney, Australia,
1991.

[Bylander, 1992] T. Bylander. Complexity results for extended planning. In Proceedings of the First
International Conference on Al Planning Systems, pp. 20-27, College Park, Maryland, 1992.

[Chapman, 1989] D. Chapman. Penguins can make cake. Al magazine 10(4):45-50, Winter 1989.

[Charniak and McDermott, 1985] E. Charniak and D. McDermott. Introduction to Artificial Intelligence.
Reading, Massachusetts: Addison-Wesley, 1985.

[Cheeseman et al., 1988] P. Cheeseman, J. Kelly, M. Self, J. Stutz, W. Taylor and D. Freeman. Autoclass:
a Bayesian classification system. In Proceedings of the Fifth International Conference on Machine
Learning, 1988.

[Cherniak, 1986] C. Cherniak. Minimal Rationality. Cambridge, Massachusetts: MIT Press, 1986.

[Christofides, 1976] N. Christofides. Worst-case analysis of a new heuristic for the traveling salesman
problem. Technical Report, Graduate School of Industrial Administration, Carnehie-Mellon University,
Pittsburgh, Pennsylvania, 1976.

[Chung et al., 1990] JY. Chung, J. W. S. Liu and K-J. Lin. Scheduling periodic jobs that allow imprecise
results. |EEE Transactions on Computers, 39(9):1156-1174, 1990.

[Conroy, 1991] J. M. Conroy. Decision-theoretic control of search in probabilistic domains. MS Report,
Computer Science Division, University of California, Berkeley, 1991.

[Coulonetal., 1992] C. H. Coulon, F. van Harmelen, W. Karbach and A. Vob. Controlling generate &
test in any time. In proceedings of The ECAI-92 Workshop on Advances in Real-Time Expert System
Technologies, Vienna, Austria, 1992.

[D’Ambrosio, 1989] B. D’ Ambrosio. Resource bounded agentsin an uncertain world. In Proceedings of
the Workshop on Real-Time Artificial Intelligence Problems, (IJCAI-89), Detroit, Michigan, 1989.

[Davis, 1980] R. Davis. Meta-rules. Reasoning about control. Artificial Intelligence 15:179-222, 1980.

[Davis and Hamscher, 1988] R. Davis and W. Hamscher. Model-Based Reasoning: Troubleshooting. In
Shrobe, H. E. (Ed.), Exploring Artificial Intelligence, pp. 297-346, San Mateo, California: Morgan K auf-
mann, 1988.

BIBLIOGRAPHY 146

[Dean, 1987] T.L.Dean. Intractability and time-dependent planning. In Proceedings of the 1986 Workshop
on Reasoning about Actions and Plans, M. P. Georgeff and A. L. Lansky (eds.), Los Altos, California:
Morgan Kaufmann, 1987.

[Dean and Boddy, 1988] T. L. Dean and M. Boddy. An analysis of time-dependent planning. In Proceed-
ings of the Seventh National Conference on Artificial Intelligence, pp. 49-54, Minneapolis, Minnesota,
1988.

[Dean and Wellman, 1991] T. L. Dean and M. P. Wellman. Planning and Control. San Mateo, California:
Morgan Kaufmann, 1991.

[Deanetal., 1993] T. L. Dean, L. Kaelbling, J. Kirman and A. Nicholson. Planning with deadlines in
stochastic domains. To appear in Proceedings of the Eleventh National Conference on Artificial Intelli-
gence, Washington, D.C., 1993.

[Decker et al., 1990] K. S. Decker, V. R. Lesser and R. C. Whitehair. Extending a blackboard architecture
for approximate processing. In Journal of Real-Time Systems, 2(1/2):47-79, 1990.

[de Kleer and Williams, 1987] J. de Kleer and B. C. Williams. Diagnosing multiplefaults. Artificial Intel-
ligence 32: 97-130, 1987.

[de Kleer, 1991] J. de Kleer. Focusing on probable diagnoses. In Proceedings of the Ninth National Con-
ference on Artificial Intelligence, pp. 842—848, Anaheim, California, 1991.

[Doyle, 1988] J. Doyle. Atrtificial intelligence and rational self-government. Technical Report CMU-CS-
88-124, Computer Science Department, Carnegie-Mellon University, Pittsburgh, Pennsylvania, 1988.

[Doyle, 1990] J. Doyle. Rationality and its roles in reasoning. In Proceedings of the Eighth National
Conference on Artificial Intelligence, pp. 1093-1100, Boston, M assachusetts, 1990.

[Elkan, 1990] C. Elkan. Incremental, approximate planning: Abductive default reasoning. In Proceedings
of the AAAI Spring Symposium on Planning in Uncertain Environments, Palo Alto, California, 1990.

[Fehling and Russell, 1989] M. Fehling and S. J. Russell (eds.). Proceedings of the AAAI Spring Sympo-
sium on Limited Rationality. Stanford, California, 1989.

[Frege, 1879] G. Frege. Begriffsschrift, a formula language modeled upon that of arithmetic, for pure
thought. in van Heijenoort, J. (Ed.), Frege and Gddel: Two Fundamental Texts in Mathematical logic,
pp. 1-82, Cambridge, Massachusetts: Harvard University Press, 1970.

[Gardner, 1968] M. Gardner. Logic Machines, Diagrams and Boolean Algebra. New York: Dover Publi-
cations, Inc., 1968.

[Garey and Johnson, 1979] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the
Theory of NP-Completeness. San Francisco, Californiaz W. H. Freeman and Company, 1979.

[Garvey and Lesser, 1992] A. Garvey and V. Lesser. Scheduling satisficing tasks with a focus on design-
to-time scheduling. In Proceedings of the IEEE Workshop on Imprecise and Approximate Computation,
pp. 25-29, Phoenix, Arizona, 1992.

BIBLIOGRAPHY 147

[Garvey and Lesser, 1993] A. Garvey and V. Lesser. Design-to-time real-time scheduling. To appear in
|EEE Transactions on Systems, Man and Cybernetics, 1993.

[Gat, 1992] E. Gat. Integrating planning and reacting in a heterogeneous asynchronous architecture for
controlling real-world mobile robots. In Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 809-815, San Jose, California, 1992.

[Ginsberg, 1989] M. L. Ginsberg. Universa planning: An (almost) universally bad idea. Al magazine
10(4):40-44, Winter 1989.

[Genesereth, 1983] M. R. Genesereth. An overview of metalevel architectures. In Proceedingsof the Third
National Conference on Artificial Intelligence, pp. 119-123, Washington, D.C., 1983.

[Genesereth and Nilsson, 1987] M. R. Genesereth and N. J. Nilsson. Logical foundation of artificial intel-
ligence. Los Altos, Californiaz Morgan Kaufmann, 1987.

[Good, 1971] 1. J. Good. Twenty-seven principles of rationality. In Foundations of Satistical Inference,
V. P. Godambe and D. A. Sprott (eds.), Toronto: Holt, Rinehart and Winston, 1971.

[Haussler, 1990] D. Haussler. Probably approximately correct learning. In Proceedings of the Eighth
National Conference on Artificial Intelligence, pp. 1101-1108, Boston, Massachusetts, 1990.

[Hayes-Roth et al., 1989] B. Hayes-Roth, R. Washington, R. Hewett, M. Hewett and A. Siever. Intelligent
monitoring and control. In Proceedings of the Eleventh International Joint Conference on Artificial
Intelligence, pp. 243-249, Detroit, Michigan, 1989.

[Hendler, 1989] J. A. Hendler. Real-time planning. In Proceedings of the AAAI Spring Symposium on
Planning and Search, Stanford, California, 1989.

[Hendler et al., 1990] J. A. Hendler, A. Tateand M. Drummond. Al planning: Systems and techniques. Al
Magazine 11(2):61-77, Summer 1990.

[Horvitz, 1987] E. J. Horvitz. Reasoning about beliefs and actions under computational resource con-
straints. In Proceedings of the 1987 Workshop on Uncertainty in Artificial Intelligence, Seattle, Wash-
ington, 1987.

[Horvitz et al., 19894] E. J. Horvitz, H. J. Suermondt and G. F. Cooper. Bounded conditioning: Flexible
inference for decision under scarce resources. In Proceedings of the 1989 Workshop on Uncertainty in
Artificial Intelligence, pp. 182-193, Windsor, Ontario, 1989.

[Horvitz et al., 1989b] E. J.Horvitz, G. F. Cooper and D. E. Heckerman. Reflection and action under scarce
resources. Theoretical principlesand empirical study. In Proceedings of the Eleventh International Joint
Conference on Artificial Intelligence, pp. 1121-1127, Detroit, Michigan, 1989.

[Horvitz and Breese, 1990] E. J. Horvitz and J. S. Breese. Ideal partition of resources for metareasoning.
Technical Report KSL-90-26, Stanford Knowledge Systems Laboratory, Stanford, California, 1990.

[Horvitz and Rutledge, 1991] E. J. Horvitz and G. Rutledge. Time-dependent utility and action under un-
certainty. In Proceedings of Seventh Conference on Uncertainty in Artificial Intelligence, pp. 151-158,
Los Angeles, Cdifornia, 1991.

BIBLIOGRAPHY 148

[Howard, 1966] R. A. Howard. Information value theory. |EEE Transactions on Systems Science and
Cybernetics, SSC-2(1):22—26, 1966.

[Johnson, 1992] D. S. Johnson. The NP-completeness column: An ongoing guide. To appear in J. Algo-
rithms, 1993.

[Karp, 1972] R. M. Karp. Reducibility anong combinatorial problems. In Complexity of Computer Com-
putations, R. E. Miller and J. W. Thatcher (eds.), pp. 85103, New York: Plenum Press, 1972.

[Karp, 1990] R. M. Karp. An Introduction to Randomized Algorithms. Technical Report TR-90-024, In-
ternational Computer Science Institute, Berkeley, California, 1990.

[Korf, 1985] R. E. Korf. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
Intelligence 27: 97-109, 1985.

[Korf, 1987] R. E. Korf. Real-time heuristic search: First results. In Proceedings of the Sxth National
Conference on Artificial Intelligence, pp. 133-138, Seattle, Washington, 1987.

[Korf, 1988] R. E. Korf. Real-time heuristic search: New results. In Proceedings of the Seventh National
Conference on Artificial Intelligence, pp. 139-144, Minneapolis, Minnesota, 1988.

[Korf, 1990] R. E. Korf. Real-time heuristic search. Artificial Intelligence 42(3): 189-212, 1990.

[Kutlukan et al., 1992] E. Kutlukan, S. N. Danaand V. S. Subrahmanian. When is planning decidable? In
Proceedings of the First International Conference on Al Planning Systems, pp. 222-227, College Park,
Maryland, 1992.

[Laffey et al., 1988] T.J. Laffey, P. A. Cox, J. L. Schmidt, S. M. Kao and J. Y. Read. Real-time knowledge
based systems. Al Magazine 9(1):27-45, Spring 1988.

[Latombe, 1991] J. Latombe. Robot Motion Planning. Boston: Kluwer Academic, 1991.

[Lawler etal., 1987] E. L. Lawler et al. (eds.). The traveling salesman problem: a guided tour of combi-
natorial optimization. New York: Wiley, 1987.

[Lesser et al., 1988] V. Lesser, J. Pavlin and E. Durfee. Approximate processing in real-time problem-
solving. Al Magazine 9(1):49-61, Spring 1988.

[Levesgue, 1986] H. J. Levesgue. Making believers out of computers. Artificial Intelligence, 30(1):81—
108, 1986.

[Levesgue, 1989] H. J. Levesque. Logic and the complexity of reasoning. Technical Report KRR-TR-89-2,
Department of Computer Science, University of Toronto, Toronto, Ontario, 1989.

[Linand Kernighan, 1973] S. Linand B. W. Kernighan. An effective heuristic algorithm for the Traveling
Salesman problem. Operation Research 21:498-516, 1973.

[Linetal. 1987] K.J. Lin, S. Natargjan, J. W. S. Liu and T. Krauskopf. Concord: A system of imprecise
computations. In Proceedings of COMPSAC ' 87, pp. 75-81, Tokyo, Japan, 1987.

[Liuetal., 1991] J W. S. Liu, K. J. Lin, W. K. Shih, A. C. Yu, J. Y. Chung and W. Zhao. Algorithms for
scheduling imprecise computations. In |[EEE Computer, 24:58-68, 1991.

BIBLIOGRAPHY 149

[Lipman, 1989] B. Lipman. How to decide how to decide how to ... Limited rationality in decisions and
games. In Proceedings of AAAI Symposium on Al and Limited Rationality, Stanford, California, 1989.

[Lozano-Pérez and Brooks, 1984] T. Lozano-Pérez and R. A. Brooks. In Solid Modeling by Computers,
M. S. Pickett and J. W. Boyse (eds.), pp. 293-327, Plenum Press, New York, 1984.

[McDermott, 1992] D. McDermott. Robot planning. Al magazine 13(2), Summer 1992.

[Michalski and Winston, 1986] R. S. Michalski and P. H. Winston. Variable precision logic. Artificial
Intelligence 29(2):121-146, 1986.

[Mitchell, 1990] T. Mitchell. Becoming increasingly reactive. In Proceedings of the Eighth National Con-
ference on Artificial Intelligence, pp. 1051-1058, Boston, Massachusetts, 1990.

[Moiin and Smith, 1992] H. Moiin and P. M. M. Smith. Better late than never. Department of Electrical
and Computer Engineering, University of California, Santa Barbara, (personal communication).

[Nau, 1983] D. S. Nau. Pathology in game trees revisited and an alternative to minimaxing. Artificial
Intelligence, 21:221-244, 1983.

[Nilsson, 1991] N. J. Nilsson. Logic and artificial intelligence. Artificial Intelligence 45:31-56, 1991.

[Ogasawara and Russell, 1993] G. H. Ogasawara and S. J. Russell. Planning using multiple execution
architectures. To appear in Proceedings of the Thirteenth International Joint Conference on Artificial
Intelligence, Chambery, France, 1993.

[Parr et al., 1992] R. Parr, S. J. Russell and M. Malone. The RALPH System. Computer Science Division,
University of California, Berkeley, (unpublished manuscript).

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference.
Los Altos, California: Morgan-Kaufmann, 1988.

[Pos, 1992] A. Pos. Anytime Pragmatic Diagnostic Engine. Department of Computer Science, University
of Twente, The Netherlands, (personal communication).

[Pos, 1993] A. Pos. Time-Constrained Model-Based Diagnosis. Master Thesis, Department of Computer
Science, University of Twente, The Netherlands, 1993.

[Raiffa and Schlaifer, 1961] H. Raiffa and R. Schlaifer. Applied Satistical Decision Theory. Harvard
University Press, 1961.

[Ralston and Rabinowitz, 1978] A. Ralston and P. Rabinowitz. A first course in numerical analysis. 2nd
ed., New York: McGraw-Hill, 1978.

[Reiter, 1987] R. Reiter. Nonmonotonic reasoning. Annual Review of Computer Science, 2:147-186, Palo
Alto, California: Annual Reviews Inc, 1987.

[Robert, 1986] F. Robert. Discrete Iterations. A Metric Sudy. New York: Springer-Verlag, 1986.

[Russell, 1989] S. J. Russell. Execution architectures and compilation. In Proceedings of the Eleventh
International Joint Conference on Artificial Intelligence, Detroit, Michigan, 1989.

BIBLIOGRAPHY 150

[Russell and Wefald, 1989a] S. J. Russell and E. H. Wefald. On optimal game-tree search using rational
meta-reasoning. In Proceedings of the Eleventh International Joint Conference on Artificial Intelligence,
pp. 334-340, Detroit, Michigan, 1989.

[Russell and Wefad, 1989b] S. J. Russell and E. H. Wefald. Principles of metareasoning. In Proceed-
ings of the First International Conference on Principles of Knowledge Representation and Reasoning,
R.J. Brachman et al. (eds.), San Mateo, California: Morgan Kaufmann, 1989.

[Russell, 1991] S. J. Russell. An architecture for bounded rationality. In Proceedings of the AAAI Spring
Symposium on Integrated Architecturesfor Intelligent Agents, Stanford, California, 1991.

[Russell and Wefald, 1991] S. J. Russell and E. H. Wefald. Do the Right Thing: Studiesin limited ratio-
nality. Cambridge, Massachusetts: MIT Press, 1991.

[Russell and Zilberstein, 1991] S. J. Russell and S. Zilberstein. Composing real-time systems. In Pro-
ceedings of the Twelfth International Joint Conference on Artificial Intelligence, pp. 212-217, Sydney,
Australia, 1991.

[Russell and Subramanian, 1993] S. J. Russell and D. Subramanian. On provably RALPHSs. In E. Baum
(Ed.) Computational Learning and Cognition: Proceedings of the Third NEC Research Symposium,
SIAM Press, 1993.

[Russell et al., 1993] S. J. Russell, D. Subramanian and R. Parr. Provably bounded optimal agents. To
appear in Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, Cham-
bery, France, 1993.

[Sacerdoti, 1974] E. Sacerdoti. Planning in a hierarchy of abstraction spaces. Artificial Intelligence 5,
1974,

[Sahni and Gonzalez, 1976] S. Sahni and T. Gonzalez. P-complete approximation problems. J. Assoc.
Comput. Mach. 23:555-565, 1976.

[Schoppers, 1987] M. Schoppers. Universal plans for reactive robots in unpredictable environments. In
Proceedings of the Tenth I nter national Joint Conferenceon Artificial Intelligence, pp. 1039-1046, Milan,
[taly, 1987.

[Schoppers, 1989] M. J. Schoppers. In defense of reaction plans as caches. Al magazine 10(4):51-60,
Winter 1989.

[Shihetal., 1989] W-K. Shih, J. W. S. Liu and JY. Chung. Fast algorithms for scheduling imprecise
computations. In Proceedings of the Real-Time Systems Symposium, pp. 12-19, |EEE, 1989.

[Shihetal., 1991] W-K. Shih, J. W. S. Liu and JY. Chung. Algorithms for scheduling imprecise compu-
tations with timing constraints. SAM Journal on Computing, 20(3):537-552, 1991.

[Shoham, 1989] Y. Shoham. Timefor action: On the relation between time, knowledge and action. In Pro-
ceedings of the Eleventh International Joint Conference on Artificial Intelligence, pp. 954-959, Detroit,
Michigan, 1989.

[Simon, 1955] H. A. Simon. A behaviora model of rational choice. Quarterly Journal of Economics,
69:99-118, 1955.

BIBLIOGRAPHY 151

[Simon, 1976] H. A. Simon. On how to decide what to do. In [Simon, 1982].

[Simon, 1982] H. A. Simon. Models of bounded rationality, Volume 2. Cambridge, Massachusetts: MIT
Press, 1982.

[Smith, 1986] B. C. Smith. Varieties of self-reference. In Halpern, J. (Ed.) Theoretical Aspects of Reason-
ing about Knowledge. Los Altos, California: Morgan Kaufmann, 1986.

[Smith and Liu, 1989] K. P. Smith and J. W. S. Liu. Monotonically improving approximate answers to
relational algebra queries. COMPSAC-89, Orlando, Florida, 1989.

[Stankovic and Ramamritham, 1989] J. A. Stankovic and K. Ramamritham. The Spring Kernel: A new
paradigm for real-time operating systems. ACM Operating Systems Review, 23(3):54—71, 1989.

[Vdiant, 1984] L.G. Valiant. A Theory of theLearnable. Communicationsof the ACM, 27(11):1134-1142,
1984,

[von Neumann and Morgenstern, 1947] J. von Neumann and O. Morgenstern. Theory of Games and Eco-
nomic Behavior. Princeton, New Jersey: Princeton University Press, 1947.

[Vrbsky et al., 1990] S. V. Vrbsky, J. W. S. Liu and K. P. Smith. An object-oriented query processor that
returns monotonically improving approximate answers. Technical Report UITUCDCS-R-90-1568, Uni-
versity of lllinoisat Urbana-Champaign, 1990.

[Vrbsky and Liu, 1992] S. V. Vrbsky and J. W. S. Liu. Producing monotonically improving approximate
answers to database queries. In Proceedings of the | EEE Workshop on Imprecise and Approximate Com-
putation, pp. 72—76, Phoenix, Arizona, 1992.

[Wellman and Doyle, 1991] M. P. Wellman and J. Doyle. Preferential semanticsfor goals. In Proceedings
of the Ninth National Conference on Artificial Intelligence, Anaheim, California, 1991.

[Zadeh, 1975] L. A. Zadeh. Fuzzy logic and approximate reasoning. Synthese 30:407-428, 1975.

[Zilberstein, 1991] S. Zilberstein. Integrating hybrid reasoners through compilation of anytimealgorithms.
In Proceedings of the AAAI Fall Symposium on Principles of Hybrid Reasoning, pp. 143-147, Pacific
Grove, Cdlifornia, 1991.

[Zilberstein and Russell, 1992a] S. Zilberstein and S. J. Russell. Efficient resource-bounded reasoning in
AT-RALPH. In Proceedingsof the First I nternational Conference on Al Planning Systems, pp. 260—266,
College Park, Maryland, 1992.

[Zilberstein and Russell, 1992b] S. Zilberstein and S. J. Russell. Reasoning about optimal time allocation
using conditional performance profiles. In Proceedings of the AAAI-92 Workshop on Implementation of
Temporal Reasoning, pp. 191-197, San Jose, California, 1992.

[Zilberstein and Russell, 1992¢] S. Zilberstein and S. J. Russell. Control of mobile robots using anytime
computation. In Proceedings of the AAAI Fall Symposium on Applications of Artificial Intelligence to
Real -World Autonomous Mobile Rabots, pp. 200-207, Cambridge, Massachusetts, 1992.

BIBLIOGRAPHY 152

[Zilberstein and Russell, 1992d] S. Zilberstein and S. J. Russell. Constructing utility-driven real-time sys-
tems using anytime algorithms. In Proceedings of the IEEE Workshop on Imprecise and Approximate
Computation, pp. 610, Phoenix, Arizona, 1992.

[Zilberstein and Russell, 1993] S. Zilberstein and S. J. Russell. Anytime sensing, planning and action:
A practical model for robot control. To appear in Proceedings of the Thirteenth International Joint
Conference on Artificial Intelligence, Chambery, France, 1993.

