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Abstract
Papyrus: A History-Based VLSI Design Process Management System
by
Tzi-cker Chiueh

Doctor of Philosophy in Electrical Engineering
and Computer Science

University of California at Berkeley

Professor Randy H. Katz

With the advent of powerful computer-aided-design (CAD) tools and increasingly
complicated VLSI systems, the notion of circuit design has evolved into managing com-
plexity rather than manipulating electronic devices. Complexity arises from enormous
amounts of design data as well as the complicated process of creating design data. An
important observation is that modern circuit designers spend more time managing the
created design data than actually running the CAD tools. The thesis of our work is: the
key to further enhance VLSI designers’ productivity is not better CAD tools but a more
responsive infrastructure. The focus of this dissertation is thus on support mechanisms
that allow composition of a set of potentially heterogeneous tools into a coherent design
system, and facilitate the integration of design data and design process management.

We develop a design process support model called the Light Weight Transaction
(LWT) model, which captures both the structured and exploratory aspects of VLSI
design. The former corresponds to the design procedures that are well-understood and
thus can be specified in advance, whereas the latter denotes the creative part of a design
process. We developed a script facility to support routine design activities and proposed
a history-based rework mechanism to allow interactive exploration of the design space.
Unlike conventional database transaction models, the LWT model is based on a data visi-
bility abstraction: users can operate on a piece of data only when it is visible to them. We



have shown how this abstraction can support both design exploration and cooperative

group work.

To demonstrate the feasibility of the LWT model, we built a prototype implementa-
tion on top of the Sprite operating system, the Tcl/Tk facility, and the Berkeley OCT
CAD tool suite. This implementation features a transparent load balancing scheme to
exploit the computation power of networked workstations, an atomicity-guarantee
mechanism to preserve the high-level task abstraction. In addition, the rework mechan-
ism depends on a single assignment update principle, which in turn could pose serious
storage overheads. Our implementation alleviates this overhead by performing a
history-based object reclamation in the background.

Based on the design operation history, we propose a novel design management
paradigm: Rather than requiring users to supply design meta-data, the system maintains
and analyzes the design history to deduce the metadata, in particular, object attributes
and inter-object relationships, according to a suite of domain-specific knowledge and
inference procedures. This paradigm can be viewed as a generalization of the approach
used in syntax-directed editors. However, we believe this to be the first attempt to apply
the idea in the context of design database management systems. Instead of using abstract
syntax trees, we use a special representation of the design history called augmented
derivation graph as the basis for design metadata inference. This paradigm opens a new
way of thinking about creating information that are interesting to the system, be that a
user, an operating system, or a database system.

i
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Chapter 1

Introduction

1.1 The Problem

After three decades’ development of computer-aided-design (CAD) tools for
integrated circuit design, modern VLSI design is characterized by extensive use of auto-
mation tools. From initial conceptual specification to low-level physical layout, almost
all design work is carried out through tool invocations. Circuit designers, once the
experts in manipulating electronic devices, now become managers of design tools and
the design data that they generated. Because of the rapid evolution of semiconductor
technology and electronic industry, state-of-the-art VLSI design is also moving towards
more and more technology-dependent, methodology-driven, and product-oriented.
Accordingly the functionality of individual design tools becomes specialized, which
leads to a proliferation of CAD tools that are usually created by different vendors with
rarely compatible interfaces. Consequently VLSI circuit designers are now facing not
only a great deal of design data but also a large number of design tools interacting with

one another in complicated ways.



With the advent of these highly automated tools, circuit design basically consists of
two types of activities: running CAD tools and managing the created design entities.
Almost all the CAD tool research in the last thirty years was focused on the former, i.e,
on how to perfect each individual step in the design process. However, just because each
such step is optimized, it doesn’t mean that the entire design process is necessarily
optimal. It has been observed in the electronic design community that a set of powerful
tools is not equivalent to a productive design environment. Why? The reason is today’s
circuit designers actually spend more time in monitoring the evolution and integration of
design data, and figuring out which tools/tool sequences to invoke, than in actually run-
ning the tools.

To further improve the productivity of VLSI designers, CAD researchers should
take one step back, examine where the bottlenecks are in the entire design process, and
strive to reduce the impact of or completely eliminate these bottlenecks. It is our thesis
that as individual CAD tools mature, helping circuit designers to use the right tools at the
right time, and to keep track of design data evolution, is the single most effective way to
achieve significant improvements in design technology. As a result, rather than concen-
trating on a specific CAD tool, we take a systems approach towards the development of
an integrated VLSI design environment. The emphasis is on the mechanisms to transform
a set of loosely-coupled tools into a coherent whole, and the abstractions to manage com-
plicated design data. This dissertation describes the design and implementation of a pro-
totype design process system called Papyrus, which is based on such an integrated

approach.

1.2 A New Dimension of Design Data Management

To put the contributions of this work in perspective, we briefly describe the evolu-
tion of VLSI design database management systems, and show where this work stands in
relation to previous research efforts. First-generation design databases [WONGT79]
[MITS80] [ROBES1] [ZINT81] [CHUS83] focused on efficient storage and manipulation

of internal design data structures such as circuit schematics and physical layouts.



Second-generation design database systems [KATZ87] [WEIS86] [BATO85] [OCT91]}
recognized the complexities of VLSI design data consisting in not only the internal
representations but also the intertwined relationships among pieces of a design, and
therefore emphasized the structural aspects of design data by providing primitives to
model the interrelationships among design components, such as version, configuration,
and equivalence relationships. In both generations, the systems only dealt with the staric
aspect of VLSI design, i.c., internal representations and the external structures of VLSI
circuits Almost no attention was paid to the dynamic aspect of VLSI design, i.e., control-

ling the design process and monitoring design data evolution.

We believe that the next evolutionary step in design database research is to provide
support to facilitate the process that creates the design data, and to integrate the manage-
ment of design data and design process. We use the term design flow management (DFM)
to refer to this new breed of design database systems. A DFM consists of two com-
ponents: a design data manager (DDM), which manages both design data and metadata,
and a design process manager (DPM), which controls the sequencing of design activities.
These two components are functionally orthogonal, but interact with each other in a syn-
ergistic way as we will show in the following chapters. This dissertation mainly focuses
on the design process management aspect of a DFM, assuming that a generic object-
oriented-like database system takes care of design data management. In our implementa-
tion, the design database is OCT [HARRS6]. A set of concrete functional requirements

that characterizes a DFM are listed in Section 1.4.

1.3 What A DFM Is Not

Because design flow management is a relatively new concept, it is also important to
understand what it is not, just to set a common ground to continue this presentation. First
of all, a DFM is not an implementation of the CAD Framework Initiative (CFI)
specification. The CFI proposal specifies standard formats for various types of VLSI
design data, and procedural interfaces for individual CAD tools and their communica-

tions. Although it does have a design methodology/flow management component, the



ideas presented in this work are completely independent of the CFI specifications, and
certainly doesn’t conform to the standard in any way.

A DFM is not just another design version control system. Although version
management systems offer a primitive way of recording design evolution in the form of
version history, a DFM not only provides more refined support for tracking design data,
but also helps designers to create the design data in the first place. On the other hand,
because a DFM manages both design data and design process, a DFM can actually com-
plement a version control system by inferring version-related metadata from the design

process, as explained in Chapter 6.

Although it is tempting to categorize a DFM as a long-term transaction system [], it
turns out that the fundamental goals of our work are very different from those of long-
term transaction systems. For example, in this work no attention is directed to crash
recovery. Also maximal concurrency is not as important as design context maintenance.
In the choice of concurrency control algorithms, conceptual simplicity dominates theoret-
ical elegance. The reason is that these mechanisms are supposed to be used directly by
circuit designers, who may not have the slightest idea of what a transaction is, not to

mention more complicated notions of nested or compensating transactions [MOLIS87].

Even though a DFM could automate some of the design steps during the design pro-
cess, it is not a high-level synthesis tool. There are two major differences. First, the
major goal of a DFM is to facilitate the designers’ interaction with the design environ-
ment. A DFM assists but doesn’t replace human designers. It is still the human designer
that makes most of the design decisions. Second, a DFM is a generic software layer that
is built on top of a set of tools and a design database system. In this sense, a DFM
assumes an open architecture that is independent of the rest of the design environment,
which is in contrast to the typically close-coupled synthesis systems whose ultimate goal

is to automate the entire design process.



1.4 Functional Requirements of A DFM

Instead of giving a precise definition of a design flow management system, it is
much more easier to describe a DFM in terms of a list of design goals for such a system.
Specifically we have the following functional requirements that have guided the design

and implementation of Papyrus.

Tool Encapsulation

Modem VLSI CAD tools typically have dozens of parametric options, each of
which typically specifies how the tools behave in a particular aspect. As the tools become
more powerful and versatile, the users tend to become confused and intimidated by the
complicated tool command interfaces. The concept of tool encapsulation separates what
a CAD tool does from how it is used. Ideally, users only need to express what needs to be
done but not how to do it. By providing a layer of indirection, users are insulated from
the invocation details of individual tools such as command options and input/output
object naming. Consequently, users only interact with a consistent and high-level
(preferably graphical) user interface. Actual invocations of CAD tools are handled by an
interpreter that is completely user-transparent. Moreover, this extra level of indirection
makes it easier to compose a set of heterogeneous tools into a coherent design environ-
ment since users are shielded from the underlying tool set. Modification on individual
tools or replacement of one tool with another functionally equivalent one would not

affect the users’ perception towards the design environment.

Tool Navigation

Because of the proliferation of CAD tools, choosing the appropriate set of tools and
applying them in the right order to achieve a given design objective is not a trivial task.
Given a goal, a DFM provides a navigation mechanism that guides users through the tool
invocation sequence which accomplishes that goal. Tool navigation facilitates routine
design work by freeing experienced circuit designers from memorizing the exact tool
sequence while leading novice users through an otherwise convoluted web of tools. Tool

navigation is essentially a by-product of raising the design abstraction one level beyond



individual CAD tools. Instead of invoking primitive tools, users think and interact with
what we call tasks. Tasks can automate pre-specified tool execution pipelines when user
intervention is not needed, and/or can enforce high-level design methodologies that are

specified in terms of constraints on tool execution sequencing.

Support for Design Exploration

Design by its very nature is a trial-and-error process. Exploration of various design
alternatives and choosing the one that fits best according to some criterion is one of the
salient characteristics of engineering design. And yet, the current design environments
provide almost no support for what we call design exploration. From the users’ stand-
point, a DFM should allow them to travel back and forth between the design states that
correspond to various design choices, and to examine the detailed design tradeoff without
having to do the bookkeeping themselves for the mapping between design alternatives
and the associated subset of design objects in the database. Design typically also involves
many iterations of an identical sequence of steps, €.g., applying the same procedure over
and over again to optimize certain property. A DFM facilitates this iterative refinement
process by automating the iteration steps, and structuring the intermediate data objects in
such a way that users can easily keep track of their correspondence relationships with the

iterations.

Recording of Design Evolution

Being conservative, engineering design database is typically version-oriented:
modifications are made on the copy of a design object rather than on the object itself.
With this so-called single-assignment update semantics concurrent development on a
design entity becomes possible when there is no need to guarantee mutual exclusion. The
notion of version history in previous design databases [CHAN89] captures a design’s his-
tory in the form of snapshots of the database. However, it is often desirable to maintain
the design history beyond the simple "which object is derived from which" relationships.
For example, the UNIX Make facility requires the knowledge of the detailed tool execu-

tion sequence that are involved in creating an object, ie., its derivation history, to



reconstruct the design object when one or more of its dependent objects are modified.
The concept of derivation history is an operation-based representation of the design his-

tory, in contrast to a version history based on snapshots.

Context Management

The notion of directory in a file system is very successful in helping users to organ-
ize files into a manageable hierarchy. Now that a DFM manages both design data and
design process, one can apply the same idea to cope with complexity. We use the term
context to refer to the set of design operations (i.e., CAD tool invocations) AND their
input/output data objects that are associated with a particular design entity, which could
be either a library cell, a circuit module, or a subsystem. Thus, a context is actually a
generalized notion of a file system directory: the latter clusters related data, and the
former clusters related data and the operations used to create these data. A context pro-
vides a focal point for circuit designers to concentrate their cognitive capacity only on
relevant data and operations. A context answers that with respect to a design entity, what
have been done? and what are the associated data objects? Contexts also offer a natural

way for data protection and consistency enforcement via partitioning of the data space.

Support for Cooperative Work

Designing a VLSI chip is almost always a group effort. Although CAD tools have
been developed that significantly enhance circuit designers’ productivity, [CHOW88] has
reported that there is still a significant portion of the overall development time spent in
phases where automation tools are mostly lacking. In particular, as design technology
matures the focus of VLSI design gradually shifts from improving individual produc-
tivity to facilitating project completion. One of the major problems is the so-called
integration problem: individual modules work just fine, but when they are put together,
something always goes wrong. This problem is especially serious when the interacting
pieces are separately developed by different designers. There are essentially two aspects
to the integration problem. The first aspect is related to version and configuration control.

When a system is to be constructed, version/configuration control systems make sure that



the right configurations of the appropriate component versions are used in the composi-
tion process. However, simply guaranteeing right versions and configurations doesn’t
necessarily result in successfully integrated designs. The problem is that the interfaces of
the interacting modules do not necessarily "fit" when integrated into a complete system.
In other words, the modules are inconsistent with respect to VLSI domain semantics
(e.g., timing/electrical characteristics). Incompatibility of interfaces may result from lack
of communication, imprecise interface specifications, or both. In VLSI design, coopera-
tion typically occurs via data sharing, for instance, a cell developed by one designer is
used by the others, or two modules interacting with each other must agree on protocols at
various levels of abstractions. A data sharing facility protects the rights of producers of
design objects by preventing security violations, and keeps consumers from using objects
that are not considered well-formed by prohibiting pre-mature access. In addition, change
management in the form of active propagation or passive notification should be provided

to maintain certain degrees of consistency.

Distributed Architecture

With the advent of powerful workstations in engineering design environments, a
DFM should be able to take advantage of this technology by transparently distributing
design data and tool execution across the network, thus making efficient use of the other-
wise wasted CPU cycles. In a distributed environment it is important to guarantee cer-
tain atomicity property so that the side effects of a pre-specified tool execution sequence
are either all or none across failures. It is also desirable to have some priority mechanism
to prioritize tool execution and to load-balance workload in the networked computing
environment. In this regard a DFM can be viewed as a specialized operating system that
extends and tailors the services provided by the operating system to the needs of VLSI

design.
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Figure 1.1  Conceptual Architecture of A Design Environment Using Papyrus

1.5  Thesis Overview

In summary, Papyrus provides the necessary hooks that glue a set of CAD tools,
which may well come from different development sources, into a consistent environment
as seen by the end users. In addition, it provides support mechanisms to facilitate generic
engineering design activities such as alternative exploration or iterative refinement.
Papyrus does not make any assumptions about the CAD tools and/or database systems.
Figure 1.1 shows the global architecture of a design environment that uses Papyrus as the
coordination entity of the design tools and design data in the system. From the user’s
standpoint, he or she only interacts with high-level abstractions such as design tasks and
activities (to be explained in later chapters). As a result, individual CAD tools and their
complicated interfaces and interactions are shielded from normal users, in this case the
circuit designers. Papyrus also provides a link between design data and design process

management. The rest of this thesis are organized as follows.

In Chapter Two, previous research efforts related to this work are surveyed. We are

primarily interested in how previous software systems support processes in various



10

domains such as office automation, software engineering, and electronic design. The sur-
vey is meant to convey novel concepts developed in these systems rather than their com-

plete descriptions.

In Chapter Three, the conceptual model that guides the design and implementation
of Papyrus is described. We call this model the light-weight transaction (LWT) model.
Tt aims to strike a balance between the rigorous control of data integrity in conventional
database transactions and the user-friendliness requirements of an interactive engineering
design environment. Rather than resorting to the notion of atomicity'l, we advocate the
concept of visibility as the central abstraction. The word light-weight is used to describe
the fact that our model doesn’t adhere to all the ACID™ requirements that characterize
database transactions, but rather chooses to relax these requirements to accommodate

creative design activities.

Chapter Four and Five describe the implementations of Papyrus’s two major com-
ponents: the Task Manager, which is essentially a parallel and distributed process control
system augmented with the capabilities of tool encapsulation and navigation, and the
Activity Manager, which transparently maintains the contexts associated with various
design alternatives, and provides a controlled data sharing mechanism to synchronize
concurrent design activities. We discuss how these two subsystems are implemented on

top of Sprite and the Tcl/Tk package, and the interaction among them.

In Chapter Six, we describe an application of the design operation history main-
tained for supporting design task and activity management. We propose a novel design
data management paradigm in which design meta-data, such as per-object attributes and
inter-object rclationships can be inferred from a design object’s derivation history, which
is automatically collected as a by-product of activity management. This approach not
only enhances the data management capability of a DFM but also relieves the designers
from the burden of explicitly computing or entering some of the meta-data, thus

indirectly improves the productivity of circuit designers.

*] A set of operations is said to be atomic if either they all occur or none of them occurs.
*2 ACID stands for Atomicity, Consistency, Isolation, and Durability.
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Chapter Seven summarizes the main research contributions of this thesis, re-
examines how the proposed mechanism satisfy the stated design goals, recapitulates the
lessons learned from this project, and provides a personal speculation on what future
VLSI design systems should look like as well as the further research issues entailed by

this vision.
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Chapter 2

Related Works

2.1  Process Support Systems

A process support system aims to facilitate the work processes of developing
artifacts, e.g., designing circuits or writing software. The notion of process support is a
relatively new concept, which only has begun to emerge in the last decade. Before then,
the consensus was that the data upon which an organization operated is the central focus
of organizational computing. Cormrespondingly the emphasis of computer support has
been placed on the database facility that allows fast and reliable access to the data. With
the advent of ever more advanced database services, organizations recognized that to
further promote their productivity, it is at least as important to improve the process of
creating data as managing the data after they are created. In some domains, the process
of generating data and the final data are both considered precious knowledge that needs
to be documented and maintained.

In this section, we review a set of representative process-support systems in elec-

tronic design, software engineering, and office automation domains. The goal of this
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survey is to understand the design issues for supporting work processes, how the pro-
posed solutions in the surveyed systems address these issues, and to make the case for
why design process management systems are needed. We make no attempt to describe
the systems in greater detail than necessary. Despite this field’s relatively young age, this
list is also not meant to be exhaustive. We have based our selections on new ideas, not an
exhaustive listing of new systems. Wherever possible, we examine and analyze the sys-
tems along the dimensions corresponding to the functional requirements outlined in the
last chapter. Because we are mainly interested in VLSI circuit design, the survey is

necessarily biased towards that particular domain.

2.2  Electronic Design Environments

2.2.1 EDA’s PowerFrame

Primitive forms of VLSI design process management products have emerged in the
last three years, €.g., the Falcon system from Mentor Graphics, the Framework system
from Cadence, and the PowerFrame system from Digital Equipment Corporation.
PowerFrame [GOLD88] was originally developed by EDA Systems and is perhaps the
earliest one among these offerings. Since the takeover of EDA by DEC, PowerFrame is
emerging as the de facto standard for design process management products in the indus-

try. As can be seen in Chapter Three, Papyrus shares many ideas with PowerFrame.

In a word, PowerFrame attempts to make it easy for end users (i.e., circuit
designers) to use the right tools on the right set of data objects. Moreover, the design
process should be automated whenever possible. PowerFrame allows routine tool execu-
tion sequences to be specified in advance, and stored in a database for later use. These
pre-defined sequences are called zemplates. Users do their design work by invoking tem-
plates. Multiple tasks can be invoked in parallel. PowerFrame instantiates templates and

navigates users through the associated tool execution sequences.

PowerFrame provides a graphical user interface in which templates are represented

as an annotated directed graph with various process and edge operators. For example, in
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Figure 2.1 Graphical Representation of PowerFrame’s Task Templates

Figure 2.1, a task P consists of six tool invocations: P12, P13, P14, P15, P16, and P17.
The sequencing among these tool invocations is specified in terms of edge operators such
as and, or, and xor. The numbers on the edges represent priorities. For example, after the
completion of P12, the xor operator indicates that only one of P13 and P14 is allowed to
execute and P13 has a higher priority. The or and and operators assume obvious seman-
tics. There are also process operators such as the Loop operator on P15, which means

that P15 will be invoked on elements of a set or a queue.

On the data management side, PowerFrame provides several mechanisms for
organizing and maintaining design data. The basic abstractions are workspace, filter, and
configuration. The notion of workspace allows grouping of logically related data to form
a unit of protection and consistency. Each member of a design project can separate his
own data from others by forming a private workspace. At a higher level, a group
workspace is formed as a synchronization point for data sharing. The filter mechanism
takes a VLSI module and returns a selective part of the module. Filters allow users to
concentrate on certain aspects of design data, e.g., a specific representation of a circuit.
Configurations are aggregations that bind together components of a design entity. This is
particularly useful for maintaining VLSI design data, where complex representations and

hierarchical structures are ubiquitous.

Although PowerFrame seems to achieve the goals of tool encapsulation and naviga-

tion by providing a coherent view towards the underlying CAD tools, there is a missing
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link between its process management facilities and data management services. In particu-
lar, the design history is not maintained and therefore object versions are not tied to the
operations that create them. Moreover, the system doesn’t offer any assistance beyond
script-like automation/navigation. As interesting designs require more interactive
decision-making than running routine scripts, it is essential for a process-support system
to support higher-level design activities such as trial-and-error and/or iterative
refinement. PowerFrame also lacks the capability of exploiting the power of distributed

computing environments.

2.2.2  Automatic Design Manager -- VOV

The initial motivation of VOV [CASO90] was to assist novice VLSI designers to use
the CAD tools in the Berkeley OCT [HARRS86] environment. The central abstraction of
VOV is the trace, a history of design operations performed by circuit designers. Figure
2.2 shows an example trace, where shaded rectangular boxes represent a tool invocation
and square boxes represent files involved in a tool invocation. Design flows from top to
bottom in Figure 2.2, i.c., the files above a tool invocation are inputs while those below
are outputs. Different icons are used to represent alternative types of files, e.g., a square
with a cross represents an executable file while a square box with a circle represents a

normal UNIX file, and so on.

Traces contain the data dependency relationships between design objects and the
tool invocations involved in creating them. When an object is modified, an automatic
retracing facility consults the trace database to infer the affected set of objects. It re-runs
the associated tool execution sequences to regenerate derived objects, keeping the con-
sistency among objects that are related by the derivation relationships. During retracing,
objects are updated in place. Portions of a trace can be used as example tool execution
sequences, which novice circuit designers can imitate to accomplish certain tasks. VOV
provides various data services such as concurrency control to guard against accidental
overwrites, and measurements, which serve as the basis for validation and high-level per-

formance estimations. For example, designers can use delay measurements of a layout
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object to determine the parametric values of a place_and_route tool invocation. Finally
VOV has the capability of transparently dispatching tool executions on a network of

workstations.

bdsyn xxbds
X] )
vov_bdsyn
xx.error xx.blif script.msu misII
ORORO R

xX.TTOP xx:logic:interface

xx:logic:contents

Figure 2.2 An Example Trace of a VOV’s Session

The main drawback of VOV is that it assumes a centralized-server architecture,
where all traces of all members of a design project are collected in a flat (i.e., non-
hierarchical) database. In other words, there is no structure built into a project’s traces.
When traces grow as a project evolves, this architecture not only makes it difficult for the
system to manage traces but also discourages users from browsing traces interactively.
The philosophy of VOV is learning from examples, and VOV’s author argues against
PowerFrame’s script-like templates. The reason is the claim that no innovative designs
can come out of invoking pre-defined scripts only. However, even VOV later provides

example traces to help novice users. On the other hand, traces are little more than
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automatically-generated UNIX make files. Although retracing facilitates consistency
maintenance, it is not clear how VOV’s traces address other design process management
problems such as tool encapsulation and navigation, and support for high-level design

activities.

2.2.3  Tool Execution Control Systems at Carnegie Mellon

Groups at Carnegie Mellon University have built several generations of CAD tool
execution control systems, most of which are based on artificial intelligence techniques
such as the blackboard model. A blackboard is a global database that maintains a set of
facts against which rules can be matched and applied. An inference engine matches rules
with the facts. If there are multiple matched rules, the inference engine chooses one of
them and fire it. New facts can be added to a blackboard as a result of firing matched
rules. The goals of these projects were two-fold: automatic tool execution and tool
integration. The former aims at automating design work beyond the level of individual
CAD tools, while the latter focuses on providing a flexible framework for adding and
deleting CAD tools from a design environment without re-programming the environment

and/or disrupting the users.

The first project that came out of this group, called Ulysses [BUSH89], modeled
both CAD tools and circuit designers as knowledge sources (KS). In Ulysses, a
knowledge source can post design goals to a global database called the blackboard to
request services from other knowledge sources. On the other hand, every knowledge
source continuously monitors the blackboard and volunteers to provide services when it
detects that its capabilities match posted goals. Every knowledge source is equipped
with the following information: Precondition file match patterns, conflict resolution
parameters, and an execution method. The latter is the action performed by a knowledge
source when it is chosen to execute.

Knowledge sources are activated by the presence of data on the blackboard that
matches their preconditions. When multiple KS’s are activated, a special KS called the

scheduler ranking the capabilities of volunteering knowledge sources and chooses the
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one most qualified. The ranking is done by considering the conflict resolution parameters
of each KS such as the execution priority, required computation resources, and etc. After
a KS is selected, the system sets up inputs and parameter options for invoking the chosen
KS’s action event, which is usually one or more tool invocations, thus isolating low-level
details from the users. Because the scheduling of tool execution in Ulysses is based on
individual tool’s precondition matching mechanism, deletion or addition of CAD tools
won’t affect the rest of the environment, except the quality of the resulting designs. This
is what Ulysses claimed as the open and distributed mechanism to integrate heterogene-
ous CAD tools.

Ulysses provides a script language for describing knowledge sources, design tasks,
and consistency maintenance rules. Knowledge source specifications contain the same
information described above. A design task is intended to guide the actions of
knowledge sources and are interpreted by the scheduler. Design tasks specify procedur-
ally the sequences of actions to be performed. Some of the actions can be performed by
directly invoking tools, and the others can be posted to the blackboard as design goals for
other knowledge sources to take over. The script language allows common control con-
structs such as if-then-else, for-loop, while-loop, and etc. A task can be composed of
other subtasks.

Consistency maintenance rules serve the purposes of handling exceptions and clean-
ing undesired side effects. Specifications of consistency maintenance rules are similar to
design tasks. Whenever a tool fails to satisfy the constraints (or goals), certain con-
sistency rules are triggered to perform backtracking, make local modifications to the
design, and retry the tool. Rules can also be used to ensure consistency among design

components when local modifications made on one component affect the others.

Cadweld [DANI89] extends Ulysses by providing a class hierarchy for modeling
CAD tools. Each CAD tool is modeled as a knowledge object, which is specified in terms
of a frame body and a control body. A knowledge object’s control body is similar to a
knowledge source’s precondition file matching pattern in Ulysses, which specify the con-
ditions under which the knowledge object can be activated. A knowledge object’s frame

body contains tool invocation information such as the location of the binary file, the host
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machine, the input/output file type, etc., and corresponds to the action sequences in
Ulysses’s knowledge sources. The following is an example frame body specification.
Detailed descriptions of its semantics can be found in [DANI89].

CLASS: PROCESS-SIMULATOR
USER-NAME: "Fabricsll”
HOST: TUCANA
PATH_: "lusr/jbb/bin"
USER-INTERFCAE-TYPE: TTY
MAN-PATH: "l../maxwelllusr/eecad/man”
DESCRIPTION: None
COMPUTING-EFFORT: 90
INTERACTIVE: No
PRIORITY: 10
AGE-TYPE: STANDARD
INPUT-TYPE: " fin"
OUTPUT-TYPE: ".spin”
OUTPUT-VIEWER: None
TYPE:STATISTICAL

A tool class hierarchy allows sharing of the control body among CAD tools with similar
capabilities. Both Cadweld and Ulysses adopt a rule-matching paradigm for automatic
tool selection, which shields the impact of tool addition or deletion from the users.
High-level design-specific knowledge is embedded in scripts to control the exploration of
design space.

It is unclear how this knowledge is derived in the first place (e.g., capability ranking
of multiple volunteering CAD tools), how effective this knowledge is in real designs, and

how far this automatic design exploration paradigm can go. Furthermore, these systems
do not assume that human designers play central roles in the design process. In fact they

are treated as just another knowledge source. This is in contrast to our philosophy: we



20

believe that designers are the ultimate control of the design process, so the design system
should aim at providing a friendly environment for exploring the design space, rather

than embedding heuristic rules to control the exploration process.
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Figure 2.3 Task Schema and Task Derivation

A recent system from the same group, Hercules [BROC91], abandons the black-
board architecture and instead takes a procedural approach. Hercules proposes the con-
cept of task schema, which is another form of tool execution template. Each task schema
has a target entity, which is the intended output when the task is instantiated, and a set of
support entities, which are either inputs or executables. Figure 2.3(a) shows an example
task schema, where circuit-performance is the target entity, while circuit-simulation,

device-model, stimuli, and netlist are support entities. The relationship between target
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and support entities are represented by directed arrows from targets to supports, with
annotations that specify the nature of support entities. An "f" denotes an executable sup-
port entity while a "d" a data file. Users run tools through task instantiation, which con-
sists of four steps. The first step is called task derivation, which composes complex task
schema by connecting primitive task schema, as shown in Figure 2.3(b). In this case, a
circuit extraction task schema is combined with a circuit simulation task schema. Her-
cules provides a graphical interface for composing task schema. The second step is
resource management, which fills in actual arguments ( i.e., file names) for the entities in
the derived task schema. The third step is task execution, in which the system traverses
the derived task schema and invokes corresponding tools. The last step is storage, in
which the resulting instance of the target entity is actually stored. It seems to us that the
idea of task derivation would put unbearable burdens on the part of the users, and the
concept of task schema really didn’t offer any more modeling power than a vanilla script
language.

Another group at CMU [VIDO89] (Integrated Design Environment : IDE) used
similar blackboard models to address tool integration and management. IDE is also based
on the notion of a design task, which is specified as a set of design goals and design con-
straints. A design task is mapped into a tool execution sequence called a design process.
This mapping is either by an automatic planner or manually by circuit designers as a
fall-back mechanism. A design process is a directed graph, where nodes represent tool
invocations and arcs represent flowing data. Internal details of a design process is tran-
sparent to the users. The other feature of IDE is its emphasis on distributed and parallel
implementation. The idea is to build the entire system on top of a parallel programming
environment, harnessing the increasing horsepower of distributed computing environ-

ments.

In summary, most of the CMU systems take an "intelligence-embedding” approach
in which domain-specific and application-specific domain are exploited to help designers
beyond the design task level. Our position is that if something can be specified in
advance, either in terms of procedures or rules, it probably can also be embedded into

tasks. Moreover, there is always a limit on how much knowledge the system can exploit.
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Beyond that limit, the CMU systems are completely ineffectual. It seems to us that as far
as design process management is concerned, these systems simply address the wrong
problem because of the ignorance of the interactive nature of VLSI design. For example,
almost no effort is spent in coupling design data and process management. To be fair,
the CMU systems should be better viewed as descendants from their high-level synthesis

systems, rather than a true standalone design process management system.

2.2.4 Distributed Design Methodology Management

Microelectronics and Computer Corporation’s (MCC) CAD Framework Methodol-
ogy Management System (MMS) [ALLE90] provides users with a task abstraction and a
distributed tool execution mechanism. A task is a sequence of tool executions written in
LISP functions. Therefore it can take advantage of all the language features of LISP.
Circuit designers interact with tasks rather than individual tools. A task engine interprets
the specifications in the invoked task templates and communicates with the Process Con-
trol Server (PCS) facility to determine initial process placement for load balancing.
Moreover MMS provides specialized communication services on top of the Remote Pro-
cedure Call facilities offered by the underlying operating system. Processes on any sup-
ported host, enabling multiple processes to cooperate in a distributed manner while being
isolated from the underlying network transport mechanism. This facility makes it easy to

develop parallel programs on a heterogeneous computer network.

Like PowerFrame, MMS doesn’t provide any support for high-level design activi-
ties. The coupling between design data and design process management appears to be
weak. In addition, because MMS only provides initial process placement as opposed to
process migration, long-running tool executions could still occupy a machine even when
its owner returns and wants to reclaim the machine. In this case, either the tool execution

is aborted or the machine’s owner is forced to tolerate degraded performance.
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2.2.5 IDEAS

AT&T Bell laboratories developed an electronic design framework called IDEAS
[MEHM87] [TAYLS87], which provides mechanisms for description, control, documenta-
tion, and automation of a design process. IDEAS consists of two components: a design
data tracking module (DDT) and a design methodology management module (DMM).
DDT in turn is built on two abstractions: design state and design file tracking. Design
states allow designers to have a comprehensive view of design versions and data manage-
ment. The design file tracking mechanism records tool invocations and their
inputs/outputs to keep track of the derivation relationship among design files and the
associated tool executions. Facilities are provided to allow designers to query the design

process history and the dependency relationships among design files.

The design methodology management system provides a hierarchy of process
abstractions to describe various granularities of a design activity. In particular, a design
thread is a description of a generic methodology for accomplishing a certain goal, just as
a task in previous systems. A run-time facility, called the process specification agent,
takes design thread specifications and guides users to customize design threads to the

requirements of specific designs.

IDEAS is probably the closest work to Papyrus in terms of its mechanisms and
software architecture. The only defect of IDEAS is the lack of a clean conceptual model,
which makes IDEAS more a set of loosely-coupled mechanisms than an integrated
environment. In addition, it doesn’t address the issues of group work and distributed

computation.

2.2.6  Petri Net-based Systems

Because of their superior capability for describing parallel and concurrent activities,
Petri Nets have been used in several systems as the central formalism for design task
description. Among these systems, Monitor [JANNS5] is probably the earliest work. A
Petri Net is basically a bipartite graph, as shown in Figure 2.4, with two types of nodes:

places and transitions. Tokens flow on the nodes via the following rule: A transition T is
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Figure 2.4 Generic Petri Net Formalism

enabled if and only if all input places to the transition hold one token and all output
places hold no tokens. Monitor shows how this formalism can capture the data depen-
dency relationships among tool executions that constitute a high-level task. It also pro-
vides a graphical user interface for users to specify and interact with the Petri-Net design
process specifications. Another system [BRET90], developed at Siemens uses a more
refined version of Petri Net called Predicate-Transition Petri Nets. In this formalism
tokens can assume arbitrary types in the form of n-tuples over values from n domains
(most frequently used domains are strings, integers, reals, etc.). Typed tokens allow a
generic Petri Net to be used in different instances that share an identical structure but dif-
ferent types of data objects. Combining this formalism with rules, the system is able to
make complex decisions based on the current state of the design. As a result, both static
data dependencies in the form of tool sequencing, and dynamic decision-making in the

form of backtracking and conflict resolution, are supported within a single framework.

The drawback of these systems is that they are pre-occupied with abstract models

for representing CAD tool invocations and neglect the fact that there is more to design
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than invoking tools such as managing design data. In addition these systems implicitly
assume that all the operation sequences involved in a design process can be specified in
advance. Consequently the templates in these systems are generally flat, and no compo-
sition operators are provided that could be used to organize design operations to reflect a
particular design’s development process. And again, no effort is spent in integrating

design data and process management.

2.3  Software Engineering Environments

2.3.1  Process Programming

Process programming paradigm [OSTE87] advocates that software engineering
activities, such as code development and maintenance, should be viewed as systematic
processes that themselves should be described thoroughly and rigorously in program-like
notations. In other words, programming itself can be described as a program. With this
model, a run-time support system executes process programs by guiding programmers
through the software development lifecycle according to the specifications. An important
part of this paradigm distinguishes the activities performed by humans from those by
automatic tools, and orchestrates the actions of humans, the support system, and tools.
Activities involved in a software development lifecycle are neither completely mechani-
cal and automatable, nor completely spontaneous and undefinable. Rather they are a
mixture of these. It is believed [TBOWS7] that this mixture can best be specified and
communicated to the users by expressing it in a concrete form such as a process program.
Unfortunately so far there has not been any significant systems that have been built and
tested based on this paradigm. As a result, process programming remains an intriguing

academic curiosity whose advocated advantages are still left to be validated.
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2.3.2  Hewlett Packard’s Tool Encapsulator

HP’s SoftBench [FROMO90] is an integrated software development environment in
which a set of software tools such as editors, compilers and debuggers are integrated
under a single framework. HP encapsulator is the tool integration and process
specification facility of SoftBench. There are two mechanisms of HP encapsulator that
are particularly interesting. Encapsulator Description Language (EDL) is a specification
language that allows integration of non-native tools into SoftBench, and provides inter-
faces for encapsulated tools to make use of certain systems facilities in SoftBench such
as the broadcast message server, which provides a multicast service to registered
processes. A tool trigger represents cause-effect relationships between tools. A trigger
occurs when a notification message is sent from one tool to its destination tool(s). Then
one or more tools respond to that notification by taking certain actions. A trigger is actu-
ally an event-action pair that is specified in EDL. Therefore EDL not only allows cus-
tomization of the appearance of each individual tool (e.g., the user interface part), but
also supports tailorable project-specific management policies via trigger specifications.
In summary, tool encapsulation consists of two tasks: interface customization and trigger
specification, and they are both written in EDL. There is no process support mechanisms

beyond tool encapsulation.

2.3.3 IBM’s Programming Process Architecture
Programming Process Architecture (PPA) [RADI85] [HOFF85] [CHRO90] prom-

ises a framework for formally describing software development processes. In this frame-
work, a software development process is decomposed into primitive process stages called
activities, which represent one or more tool invocations. For each activity, the following
are defined: (1) a list of Entry criteria that should be satisfied before starting the activity,
(2) a set of Task descriptions that indicate what is to be accomplished, (3) a Validation
procedure to verify the quality of the work items in the task specifications, (4) a checklist
of eXit criteria that should be satisfied before the activity is considered completed. Based

on this so called ETVX paradigm, the system provides process management operations
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that capture and analyze product/process data in each process stage and give immediate
feedbacks to the programmers. Early corrective measures, such as specifications

modification, could be taken if errors are detected.
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Figure 2.5 Architecture of the PPA System

As shown in Figure 2.5, the system consists of two components: a process mechan-
ism (PM) and a common tool service (CTS). CTS presents a uniform data model and
offers data access services to the tools in a development environment. It also includes a
well-defined interface to the underlying operating systems. Tools built on top of this
interface are independent of the underlying operating system and thus are portable across
different platforms. A key feature of PPA is the separation of the design process from
the products developed using the process. The PM provides a process management
language for users to define the sequencing among activities. The PM encodes this pro-
cess definition as a set of life-cycle control rules. During process execution, the PM

accepts user requests for data and development tasks to be performed, and records
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actions taken for later analysis. It accesses the process rules to determine if a request
should be granted, based on whether the actions and conditions specified in the process as
prerequisites to this request have been satisfied. If so, the PM either invokes appropriate
tools through a tool management interface, to satisfy the request, or notifies the user to
carry out the task. One implementation of this model is AD/Cycle [CHRO90].

Because PPA is really a software life-cycle support system, the proposed process
model is too large-grained to be directly applicable to a VLSI design environment. For
example, there is no support for choosing the right tools to accomplish a certain task.
Also, the model as it stands, is heavily oriented towards pre-specified scripts for high-
level management operations only, which doesn’t necessarily ease low-level tool

selection/invocation.

2.4 Office Automation Environments

24.1 POISE

POISE [CROF84] is an earlier system that aimed to reduce the overhead of office
information flow by providing hierarchies of task descriptions. Task descriptions specify
the steps in a task, the corresponding tool invocations, and their goals. POISE acts as an
intelligent interface between users and tools in an office. Three types of information are
used by POISE: the procedure library contains task descriptions; the semantic database
contains the objects operated on by tools, and the tools themselves. A particular user’s
state includes partial instantiation of a task, parameters derived from user actions, as well

as the objects involved.

POISE provides an Event Description Language to express a task’s sequence of
actions in a procedure. The language also allow specifications of preconditions for a task
to start. Tasks can be nested to an arbitrary depth. The lowest level in this hierarchy
corresponds to an individual office tool execution. Data is modeled in a semantic data-
base model, which is based on a frame-based representation language. A frame is a

named collection of attribute-value pairs called frame slots. Objects are mapped to
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frames, with their attributes corresponding to frame slots. Composite objects are
described via sets of frames. POISE can work in two different modes -- interpretation or
planning. In the interpretation mode, users posted goals and POISE attempts to match the
user’s goals with task descriptions in the procedural library. Once a match is found, the
corresponding sequence of tools are invoked. In the planning mode, users invoke pro-
cedures directly and POISE automates as much of that procedure as possible. By provid-
ing both a goal-based and a procedure-based descriptions of a task, POISE automates the
operations within a task as well as provides navigation among task invocations. Unfor-
tunately, the variety of operations and data representations in an office environment are
relatively simple compared to those in VLSI design. As a result, the issue of highly com-
plex tool sequencing and data control is not really stressed in POISE.

2.5  Summary of Previous Systems

Judging from the systems surveyed so far, we can safely conclude that the need of
computer support for processes in addition to data is emerging as a major component of
future interactive computer systems, in particular the VLSI design systems. This further
confirms our assertion in Chapter One that next-generation VLSI design database sys-
tems should focus on the support for design processes as well as the interaction between

design data and processes.

From these systems, we draw the following observations concerning the design

issues of software systems that support processes.

e  The first component of process support is a high-level abstraction that encapsulates
primitive steps provided by the underlying environment, e.g., CAD tools in VLSI
design. In most systems, this abstraction is called a task. Tasks address the issues of

tool encapsulation and tool navigation at the same time.

e Beyond the task level, it is desirable to provide a facility that could allow domain-
specific expert knowledge to be exploited in process support systems, thus offering
scenario-dependent assistance beyond script-oriented tasks. The systems surveyed

implemented this facility through mechanisms ranging from blackboard rules,



S

predicate-transition Petri Nets, to goal-driven template matching.

e  Since most future software systems, if not now, will be based on a group of comput-
ers connected through a local area network, it is essential to effectively exploit the
computational resources in this type of environment. For computation-intensive

engineering design environments, this issue will assume increasing importance.

e  One serious drawback of all the systems surveyed, except IDEAS [MEHM87], is
the level of integration between processes and data. After all, to invoke an opera-
tion requires selection of the right tools AND the right data subset. To genuinely
facilitate tool execution, a process support system should help users track the evolu-

tion of data as well.

In Table I, we summarize the systems reviewed according to the functional require-
ments listed in Chapter One. Papyrus, as a process support facility for VLSI design,
fulfills all the functional requirements and can be viewed as a meta-tool for making more
efficient use of the CAD tools. Early on in the project, we decided that user-friendliness
is the predominant concern. As a result, rather than drawing various complex mechan-
isms that handle specific scenarios, we put simplicity as the first consideration in the
design of the conceptual model that guides the implementation of Papyrus. In the next
chapter, we introduce Papyrus’s conceptual model. It combines some of the mechanisms
of previous systems with several new ideas to form a coherent substrate for supporting

VLSI design process model.
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Characteristics Summary of Process Support Systems

System Tool Tool Design Data Context |Cooperative| Distributed

Name Encapsulation|Navigation|Exploration | Evolution | Management Work  |Architecture
Powerframe Yes Yes No No Yes No No
VOV Yes No No No No Yes Yes
Ulysses Yes Yes Yes No No No No
Cadweld Yes Yes Yes No No No No
Hercules Yes Yes No No No No No
IDE Yes Yes Some No No No Yes
MMS Yes Yes No Yes No No Yes
IDEAS Yes Yes No Yes Yes No No
Monitor Yes Yes No No No No No
Siemens Yes Yes Some No No No No
SoftBench Yes Yes Some No Yes No No
PPA Yes Yes No No No No No
POISE Yes Yes Some No No No No
Papyrus Yes Yes Yes Yes Yes Yes Yes

Table I Comparison of Process Support Systems
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Chapter 3

The Conceptual Model

3.1 Introduction

Engineering design is generally characterized by two types of activities: exploration
and cooperation. Designers usually explore various alternatives before settling down a
particular design decision. Design exploration typically takes the form of creating ver-
sions of objects, and choosing the best subset of object versions according to certain cri-
terion. As the design complexity increases, keeping track of the correspondence between
object versions and design decisions, which we call version mapping, becomes a difficult
problem in practice. To address the version mapping problem, the system should main-
tain a separate "context" for each design decision, and allows users to visit these contexts
without being confused. For conceptual clarity, the notion of context should be tied to
the processes that create contexts.

Engineering design is also almost always a group effort. Designers cooperate by
sharing data, e.g., they assemble components and reuse common modules. Uncontrolled

data sharing could lead to inconsistency due to un-coordinated updates to shared objects.
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There is a consensus in the database research community that two —phase locking' is
inadequate because of the long lifetime of these so-called long-lived transactions (as dis-
tinguished from database transactions in commercial data processing, whose lifetime is
relatively short.), and hence the degraded concurrency. A better approach, particularly in
an interactive design environment, is to take an optimistic concurrency control approach

and to make it relatively easy to resolve conflicts when they arise.

If one models a CAD tool invocation (called a design step hereafter) as an indivisi-
ble operation against a shared database (e.g., a file system), then it is natural to model a
sequence of design steps as a conventional database transaction. Various models
[BANC86] [KAIS90] [PUKA90] [WIDYS86] have been proposed that either provide
complicated transaction structures or relax serializability 2, with a view to enhancing con-
currency among long-lived transactions. However, a closer examination reveals that cer-
tain properties of engineering design activities simply preclude the application of data-
base transactions. Notable among them are inferactivity, which implies that it is impossi-
ble to confine a designer’s data access behavior to a particular pattern, €.g., locking
objects in two phases, and open-endedness, which means that there is no commit opera-

tion as in database transactions.

In the course of developing a process model to support engineering design, it gradu-
ally becomes clear that the model should stand at a higher level of abstraction than data-
base transactions. Rather than maintaining data integrity and enhancing concurrent data
access, the design process model is supposed to support design exploration and coopera-
tive work. For that matter, even long-lived transaction models are not appropriate. On
the other hand, we find that the concept of data visibility can adequately support both
design context maintenance and cooperative data sharing. Data visibility is the abstrac-
tion that controls whether a piece of data is visible to the outside world. Based on this

abstraction, we develop a so-called light-weight transaction model (LWT), which

1. In a two-phase locking scheme, a transaction can’t acquire more locks after it starts to release
locks.

2. An execution schedule of concurrent transactions is serializable if the effect on the database is
as if these transactions are executed in some serial order.
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provides a set of operational constructs for users to manage the visibility of the data
objects interactively and dynamically. Just as a light-weight process doesn’t carry as
much state as a normal process, a light-weight transaction doesn’t provide as much
integrity guarantee as a normal transaction. Specifically the light-weight transaction
model provides constructs for controlling data visibility rather than guaranteeing data
integrity. Moreover, a system based on the LWT model is built on top of a conventional
database transaction facility that enforces all-or-nothing atomicity at the physical storage
level. In our case, since a design step, which corresponds to a UNIX process, is modeled
as an indivisible operation, the LWT system delegates the concurrenCy control and error
recovery issues within a tool execution to the underlying design database management
system, i.e., OCT. As shown in Figure 3.1, concurrent accesses to the design database are
controlled by OCT, while users interact with a light-weight transaction system to manage

their design process.

3.2  Basic Assumptions

An object is a uniquely identified piece of data, whose identifier is known to the
users. An object can contain other objects. Updates to an object follows a single assign-
ment semantics. Modifications to an object are not performed in place, but made to a
copy of the original object, thus creating a new version of the object. Version numbers
are managed by the system, which automatically provides a new version number when-
ever a new object version is created. Under the semantics of single assignment update,
an update can be viewed as a transformation, with the old version as the input and the
new one as the output.

The fundamental principle of the LWT model is that visibility dictates accessibility.
Users can only access those objects that are visible to them, and visibility can change
depending on the context from which a design operation is issued. The system enforces
access control by properly managing the data visibility to individual users. When an
object is accessed, the system verifies whether that object is visible to the user that issues

the access operation.
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Figure 3.1 Relationship Between a Light Transaction System and Its Underlying

Database Management System

3.3  Light Weight Transaction Model
As in previously proposed models, our Light Weight Transaction (LWT) model pro-

vides a hierarchy of operational constructs for users to manage their design process. As
shown in Figure 3.2, there are three levels in this hierarchy, each of which is intended for
a specific purpose and provides a different set of visibility control operations. Papyrus is
an implementation of the LWT model. Briefly, a design step corresponds to an indivi-
dual CAD tool invocation. A design task provides users with a higher-level abstraction
than primitive CAD tool executions, thus serving the purpose of tool navigation, automa-
tion, and encapsulation. A design thread, consisting of a set of design tasks and the data
objects involved in the tasks, is meant to be the focal point for collecting the design
operations and objects related to a logical design entity, e.g., an arithmetic logic unit

(ALU). Design tasks automate routine design work while design threads support
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Level 1 Design Thread
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Figure 3.2 The Light Weight Transaction Hierarchy

interactive exploration of design space.

3.3.1 Design Step

The lowest level in the hierarchy is called a design step, which corresponds to a
VLSI CAD tool invocation, e.g., an execution of a Boolean logic minimizer that optim-
izes combinational logic circuits. A design step is the most primitive unit of action.
Although there may be many database operations within a tool invocation, it is assumed
that the underlying design database system could guarantee concurrency and failure
atomicity. By separating the management of physical database transactions from that of
design processes, both systems implementation and user conceptualization are greatly
simplified. In addition, because of single assignment update semantics, the output of a
design step is a new version of the output object. Moreover, a completed design step can
be aborted by deleting the corresponding output versions. Using the data visibility
abstraction, Papyrus "deletes” objects by making them invisible. A garbage collector is
running in the background to reclaim "deleted" objects that haven’t been "undeleted" for
a specific time period, at which time the objects are physically deleted.
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3.3.2 Design Task
The next level up in the LWT hierarchy is called a design task. Intuitively, a design

task is a parallel shell script that provides an atomicity guarantee. We develop a Task
Description Language based on Ousterhout’s Tool Command Language (Tcl) [OUST90],
whose syntax will be described in Chapter Four. This language allows composition of a
high-level abstraction from primitive CAD tools.

The Task Description Language has two features that distinguish it from other script
languages. First, it provides linguistic constructs for expressing parallel tool executions.
Second, the language allows specifications of the abort semantics tailored to an indivi-
dual task. When a design task is aborted on a particular design step, it doesn’t neces-
sarily mean that the side effects of the entire task have to be removed. Instead users can
specify a default resumed task state for each abortable design step in the task.

Specifications written in the Task Description Language are called task templates,
which are usually specified by expert circuit designers or systems managers. In other
words, most circuit designers don’t need to write task templates. A graphical representa-
tion of an example task template is shown in Figure 3.3(a). A fork at a means that both
stepl-step2 and step3-step4 sequences could be executed concurrently after step0. A
join at d means that both stepl-step2 and step3-step4 sequences must be completed

before stepS could start, i.e., a barrier synchronization.

The design steps in a task template can be either batch-oriented, e.g., a two-level
logic minimizer, or interactive, e.g., a schematic editor. Users are committed to follow
the execution order specified in a task template once they invoke the task. Design tasks
serve the dual purposes of tool encapsulation and tool navigation. Casual users only need
to interact with task-level abstractions, and the system can lead them through the detailed
execution sequences. Low-level invocation details are completely shielded from the
users, including transparently dispatching concurrent tool execution in parallel. Design
tasks are also useful in enforcing high-level design methodologies that a design group or

company wants to impose on the design process.

Papyrus maintains a detailed design history down to individual design steps. An

instantiation of a design task leaves a history trace of the form shown in Figure 3.3(b).
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Figure 3.3 A Task Template and Its Corresponding History Traces

The linear ordering of design step invocations in a history trace is determined by their
"completion" times. Therefore although more than one step can run simultaneously, they
can be still ordered according to their completion times. Different invocations of the
same task template may leave different traces as shown in Figure 3.3(b) and Figure
3.3(c), both of which are legal with respect to the template in Figure 3.3(a). Between two
consecutive design steps in a task’s history trace marks a fask state, which is defined by
the set of design objects that are referenced as inputs and created as outputs from the start
of the trace up to that task state.

A design task is said to commit when every design step of the task completes suc-
cessfully. However, users don’t need to explicitly issue commit operations. Only the
specified input and output objects of a committed task invocation are made visible to the

enclosing environment. The other objects created during a task instantiation are treated
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as temporaries and discarded after commit. A task can be aborted by the users or by an
error from the environment. If a design task is aborted at a particular design step, the task
is restarted from the step’s corresponding resumed task state. If the design step doesn’t
have an associated resumed task state, the task is restarted from the beginning by default,
which is the abort semantics for normal database transactions. With this construct,
Papyrus allows users to preserve useful work by exploiting the semantics of the design

task in question.

11

Floor Planner 1
2
v
Placement 1
3
v
Global Router 1
4
v

Detailed Router 3

Figure 3.4 The Concept of Resumed Task State

For example, consider a long-running multi-step VLSI placement and routing task
that consists of a floor-planning step, a placement step, a global-routing step, and a
detailed routing step, as shown in Figure 3.4. The labels on the arrows identify particular
task states, while those next to the design steps designate their corresponding resumed
task states. Suppose this task is aborted at the detailed-routing step because of insufficient
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routing channels. Further assume that routing channels are assigned by the global-
routing step. In this example, the resumed task state of the detailed-routing step is the
state right after the placement step, but before the global-routing step. When the task is
restarted after aborting on the detailed-routing step, the work performed before the
global-routing design step are preserved, and users can try different parameters with the

global-routing step to avoid breakdown of the following detail router.

A design step S’s resumed task state is specified by its resumed step, from which the
resumed task state of S immediately follows. For example, in Figure 3.4, the resumed
step of the detailed-routing step is the placement step, whose following task state is the
detailed-routing step’s resumed task state. Note that the abort semantics of a design step
may depend on the run-time conditions. In Figure 3.3.(a), the effects of both stepl and
step3 have to be undone (by deleting the objects they created), although the latter does
not interact with step2. Had the task history trace been Figure 3.3(c) rather than Figure
3.3(b), only stepl needs to be undone. In any case, Papyrus restarts a task in a manner

completely transparent to the users.

According to the task restart semantics, not every design step is qualified as a
resumed step for an arbitrary design step in the same task. A design step §, is eligible to
be the resumed step of S, if and only if S, is a logical predecessor of S,. A step §,isa
logical predecessor of S, if there is a directed path from S, to S,. For example, stepl is
the logical predecessor of step2 but step3 is not. The Task Description Language also
allows specifications of dynamic resumed task states, which are not specified in terms of
a resumed step. A typical example specifies the most recent task state as the resumed
task state, which corresponds to the abort semantics of the nested transaction model if
one views a design step as an atomic transaction. Because of the potential parallelism
within a design task, the latest task state is a run-time variable and cannot be determined
statically.

In summary, users instantiate task templates to carry out design procedures that are
well-defined and can be pre-specified in advance. To support high-level task abstractions,
internal side effects of a task instantiation should be completely transparent to the users,

even when a task is aborted. If a design step is aborted, the enclosing task is restarted
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from the step’s corresponding resumed task state. Before restart, the side effects of the
steps that are both the logical successors of the resumed step and the logical predecessors
of the aborted step are undone by deleting the objects created by these steps. Other steps
are also aborted whenever at least one of their logical predecessor is aborted. This undo
process iterates until it converges, at which point the task is ready to proceed.

3.3.3  Design Thread

Organization of A Thread

Just as every UNIX tool is invoked with respect to a particular file directory (the
current directory), a design task is instantiated with respect to a particular design thread.
A design thread consists of a set of design tasks that are instantiated in the thread, and the
data objects involved in task instantiations. While design steps and design tasks are pre-
specified, design threads are open-ended in that users create and manipulate them interac-
tively and dynamically. Users instantiate design tasks in any desired order, and Papyrus
maintains the history of task instantiations according to their temporal completion order.
A design thread is not just another level in the LWT model hierarchy. It is introduced
specifically to embody the notion of a design entity’s context. While design steps and
design tasks facilitate tool invocations, design threads make it easy to find the right

design objects to operate on.

Three state elements are associated with a design thread: a thread workspace, a con-
trol stream, and a set of frontier cursors. A thread workspace consists of the set of
objects referenced as inputs and created as outputs in the design thread. Because of the
single assignment update semantics, the thread workspace grows with the progression of
a design thread. The control stream of a design thread refers to the structure and
sequencing of already committed design tasks. Figure 3.5 illustrates the control stream
for a typical design thread, where each vertical bar denotes a history record, which
encapsulates the history of a committed design task, including the invoking details of the
task’s design steps and the input/output arguments. Note that a design thread’s control
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stream can have a branching structure.

Each committed task in a thread defines a design point, denoted as an arrow in Fig-
ure 3.5, e.g., design point 2 is associated with the second history record. A design point
has an associated thread state, which is defined as the set of objects referenced as inputs
and created as outputs from the initial state of a design thread up to the completion of the
record’s corresponding task. The frontier cursors of a design thread are the set of design
points that don’t have a following history record. In Figure 3.5, both design point 3 and
12 are frontier cursors. The union of the thread states of a design thread’s frontier cur-
sors constitutes the thread’s thread workspace. One of the frontier cursors is called the
current cursor, which is the default design point to which the records for newly commit-
ted tasks are attached. The current cursor automatically advances when a new history
record is appended to the control stream. The visibility rule dictates that every invoked
task can only access the objects in the thread state associated with the current cursor.
Intuitively the current cursor’s thread state forms a default view into the database, much

like the notion of current directory in a file system.

sk : The Current Cursor

HR : History Record
HR3 HR4 HRS HR6

3 | 4 } s | s
—_— | — | | —

HR1 HR2
¢ 1 2
—_— | —
HR10 HR11 HRI2 %
1 12

7 8 9 10

HR7 HR8 HR9

Figure 3.5 A Design Thread That Has Branching Structure
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The Rework Mechanism

An interesting feature of the LWT model is the notion of rework. The rework
mechanism allows users to move the current cursor to any existing design point in a
design thread. Without rework, the committed tasks in a design thread are organized as a
linear sequence, and the current cursor is by default the lastest design point. Rework
allows users to override this temporal order by moving the current cursor to arbitrary
existing design points and proceeding from there. Because by definition new tasks are
invoked with respect to the current cursor’s thread state, moving the current cursor to a
previous design point effectively rolls the thread back to a previous state. This is similar
to changing the default context in a file system by changing the current directory. When
the current cursor is moved to an existing design point and subsequent tasks are instan-
tiated, a new branch of the control stream is formed. This branch is conceptually
independent of the existing branches: Objects created in the other branches won’t be visi-

ble in this new branch, and vice versa.

Papyrus also allows users to selectively erase existing branches (and therefore their
associated objects) as a side effect of the rework operation. For example, suppose Figure
3.6(a) is the original control stream, and a user moves the current cursor from design
point 6 to design point 2 and chooses to erase the intermediate committed tasks, then a
control stream of the form Figure 3.6(b) accrues. From the new current cursor, the user
can start a new development path and construct a control stream shown in Figure 3.6(c).
Had the user moved the current cursor to design point 2 without erasing the intermittent
effects and started the same development path, the final control stream would have been
Figure 3.5.

The rework mechanism is particularly useful for interactive design exploration, ie.,
experimenting with different alternatives before committing to a design decision. Typi-
cally designers use this mechanism to roll back the status of a design to a previous state
by moving the current cursor to the corresponding design point, and then experiment
with different procedures or parameters. Consequently different branches of a control
stream correspond to different approaches explored. Users can examine the results of

these approaches by positioning themselves on the appropriate design points. The system



8k . the current cursor

HR : History Record

HRI1 HR2 HR3 HR4 HRS HR6
0 1 2 3 4 5 6
()
HR1 HR2
0 1 2
—_— | — >
HR1 HR2 HR7 HR8 HR9 HR 10 HR11 HRI12
0 1 2 7 8 9 10 1 12 *
—_—r ]} _— | — —_r | —
(c)

Figure 3.6 The Rework Mechanism

maintains multiple non-interfering possible worlds and takes care of the mapping

between an explored alternative and its related set of objects.

Figure 3.7 shows a snapshot of the control stream of a design thread whose goal is
to synthesize a shifter. The numbers on the arrows identify particular design points and
also signify their temporal sequencing. Initially the designer created a thread with a
descriptive name, such as Shifter-synthesis. The thread state of the initial design point is
empty. To create an ALU’s logic description, the designer invoked a design task called
create logic description, which actually consists of two steps: enter-logic (Edit) and for-
mat transformation (BDSYN). Then the designer was lead through the task’s operation
sequence step by step and only needed to specify proper parameters and inputs/outputs.



45

Once the create-logic-description task completed, the designer invoked another task
logic simulator to verify the design’s logic behavior. Next the designer invoked the
standard-cell-place-and-route task, followed by the place-pads task to generate a partic-

ular design. At this point the current cursor is at design point 5.
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Figure 3.7 A Shifter-synthesis Design Thread

Suppose the designer was not satisfied with the result of the standard-cell approach
and wished to explore another alternative, such as an implementation in a PLA design
style. He could reposition the current cursor to design point 3, and invoked the PLA-
generation task followed again by place-pads. Changing the current cursor restores the
context back to the thread state associated with design point 3, which is the state before
the standard-cell approach was explored. In other words, the designer can start with an
identical context and explore different design procedures. Moreover, because objects

created along one branch is independent of the others, the set of objects associated with a
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particular alternative, e.g., the standard-cell approach in Figure 3.7, can be isolated and
identified.

Note that the PLA generation task consists of three steps: two-level minimization
(Espresso), PLA folding (Pleasure), and array layout (Panda). The dotted line from
Panda to Espresso indicates that when Panda fails due to, say, a violation of the area con-
straint, the design task should restart from the state after the completion of Espresso, i.e.,
Pleasure should be re-executed. By providing programmable abort facilities, useful

work, in this case the execution of Espresso, won’t be wasted.

Using the rework mechanism, designers don’t need to keep track of design versions
at different design points: the mapping is automatically maintained. Moving the current
cursor to explore alternative states of a design is conceptually simple and yet semanti-
cally powerful, especially when designers can browse the control stream and change the
current cursor with a mouse-like direct-manipulation device. Most of all, it allows users
to interactively change the course of a design development process without pre-planning

the whole process in advance.

An alternative way to understand the rework mechanism is to view it as a snapshot-
taking operation, as in temporal/historical databases. However, the rework mechanism is
more general in the following senses. First, the history structure assumed by most tem-
poral databases is a linear temporal order, whereas the control stream of a design thread
can have arbitrary branching structures. That is, under user discretion the structure ofa
thread’s control stream could be made to reflect the causal order of a design’s develop-
ment rather than a simple temporal order. Second, most temporal databases use "time
points” as the access index (e.g., 7:00 PM in 9/1 1/91), while we use "design points" as
the main access method. Coupled with a graphical interface, we believe the latter pro-
vides a powerful paradigm for traveling back and forth among various possible states of a
design. Users are shown graphically the control stream of a design thread and allowed to
move the current cursor around with a mouse. Just as desktop computing offers a spatial
metaphor for structuring an office workspace, the "cursor" paradigm suggests an intuitive
temporal metaphor for organizing a design activity. On the other hand, Papyrus does

provide time-point oriented query interface for "long-range" time travel. For example,
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users could request a design point corresponding to 4 PM, October 15, 1992. Third, with
the rework mechanism users can go back to arbitrary previous states without pre-
planning the snapshots, which again is a crucial advantage when designers are exploring
the design space without concrete plans in mind. In the LWT model, since data objects
never get deleted, taking a snapshot is a matter of maintaining associations between data

objects and design points.

3.3.4 Interaction Among Design Threads

Design thread associates a context with a design entity, e.g., an ALU module. A
designer is allowed to have multiple design threads active simultaneously, e.g., one for
an ALU module and one for a register-file module, etc. These design threads evolve con-
currently in an open-ended way. At the same time, other designers can have their own
sets of design threads as well. In this section, the operations provided by the LWT model

for manipulating individual threads and synchronizing concurrent threads are discussed.

3.3.4.1 Thread Manipulation

The LWT model provides a set of operations for users to manipulate a design thread
as a first-class object. These operations are useful in re-organizing the structure of a
design thread. In particular, they are designed to support the bottom-up design methodol-
ogy: small-granularity design threads are combined to form larger ones as submodules
are completed and integrated into a larger entity. With these combination operators, the
granularity of a design thread can be arbitrarily small. For example, a design thread can
be dedicated to the design of a register cell or a NAND gate. Thread combination opera-
tions in the LWT model are:

Cascade: The control streams of two design threads can be cascaded into one, as

show n in Figure 3.8.
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Figure 3.8  Cascading Two Threads Into One

Join: The control streams of two design threads can be joined at the head or at the

end, as shown in Figure 3.9.

Fork: A new design thread can be created with its initial thread workspace inherit-

ing from another design thread.

When a thread is created, its control stream, thread workspace, and frontier cursors
are null. A thread can inherit its initial thread workspace from an empty set (the default),
from a particular thread state or the entire thread workspace of another design thread.
Semantically the newly created thread evolves completely independently of the inherited
thread. Updates made to a shared object in the inheriting thread won’t be visible to the

inherited thread and vice versa.

The semantics of a thread combination operator is defined in terms of its effect on
the thread’s thread workspace, control stream and frontier cursors. Merging two design

threads (both cascade and join) unions the two thread workspaces to form the resulting



<

JOIN
at the beginning

49

Thread 1

Thread 2

JOIN
at the end

m : connector point

Figure 3.9  Joining Two Threads Into One

thread’s workspace. Since it is a set-union process, duplicates are eliminated automati-

cally. Because each control stream could have a branching structure, connector design

points of two control streams from which merging takes place need to be specified by the

users. Only frontier cursors can be used as connector design points. In the case of a cas-

cade, only the connector point of the trailing thread requires specification, the connector

point for the leading thread is its initial design point. The resulting thread’s frontier cur-

sors are the union of the frontier cursors of the two cascading threads except the connec-

tor point of the trailing thread. In the case of a join, connector design points of both

threads need to be specified and they are combined into a new design point. The result-

ing thread’s frontier cursors are the union of the frontier cursors of the two threads except

the two connector design points.
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These thread manipulation operations are useful for associating data objects with
their derivation contexts. For example, suppose designer A is taking a long leave and
designer B is supposed to take over A’s unfinished work, simply making visible what A
has been doing is usually not good enough. It is also necessary for B to understand how

A has gotten to where he is now in order to continue A’s work.

ALU Thread

Shifter Thread

e
<< << \
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—
Arithmetic-Unit Thread
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M : connector point

Figure 3.10 Merging Two Threads into One Thread

As an example for thread joins, suppose one designer is working on a shifter and
another on an arithmetic unit. When both the arithmetic unit and the shifter are com-
pleted, these two efforts are to be merged and continued by one of the designers. As
shown in Figure 3.10, these two threads can be joined at the end and form a new thread
called the ALU thread. The control streams of these two threads are combined at the
specified connector points. The workspaces associated with the two threads are unioned.
Moreover, this combined thread works as if it had been created from the scratch. In par-
ticular, the designer can roll back to any design point in this new thread and modify the
control stream in any way as desired. This capability of combining small threads into
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larger ones supports the hierarchical bottom-up design methodology and facilitates
cooperative team work. Note also that after merging, the original threads can continue
independently of the new thread. Any modifications made on one thread won’t be seen

by the other, and vice versa.

3.3.4.2 Thread Synchronization

A design thread is an abstraction that integrates the concepts of file directory and
operation history. Each thread workspace provides a name space that is protected against
other threads. In other words, the objects in a thread are not visible to and therefore can-
not be operated on by other users than the thread’s owner. The LWT model does not
provide explicit thread commit operations for two reasons. First, because design threads
are meant to support open-ended and exploratory activities, commit operations are rarely
used in practice. The second reason is that it is not clear what the effect of a commit
operation should be in long-lived transactions. For database transactions, all objects
updated or created by a transaction is made visible to the outside world at the commit
time. In a long-lived transaction, this kind of commit semantics is inadequate because
most of the objects created during the transaction are simply intermediates. Making
everything visible only clutters the global database. The only sensible "commit" seman-
tics for long-lived transactions is to allow users to make visible to the outside world
selective portions of the thread workspace at selective times. The effect of a commit,
which traditionally takes place at a particular time point for all objects created in a data-
base transaction, is now distributed in time and is completely under users’ interactive

control.

Like a workspace, a synchronization data space (SDS) is a shared data repository
that serves as a synchronization point for the threads that register with the SDS. With
respect to a SDS, only the registered threads can contribute/retrieve objects to/from the
SDS. A SDS’s set of registered threads can be dynamically changing, so can new SDS’s
be created to accommodate an evolving development project. A thread can participate in

multiple synchronization data spaces. The objects in a SDS never get updated; only new



52

versions are added. Objects belonging to a thread workspace will not be visible to the
outside world until they are moved to a SDS. That is, data sharing can occur in SDS’s.
Note that it is a design thread that is the basic unit in thread synchronization rather than
the user who owns the thread. This allows a finer granularity of control over data shar-

ing, and makes the notification mechanism discussed later more contextually focused.

Transferring data objects between synchronization data spaces and/or thread

workspaces is accomplished with a move operation, with a syntax of the following:

MOVE Object—ID, Source—space, Destination —space, Notification—flag , Predicate —set

A move of an object entails two operations: (1) physical copy from the source to the des-
tination space; (2) if the source space is a SDS and the destination is a thread workspace,
a notification flag is left behind. This is used to notify the corresponding thread when a
new version of the object is added to the SDS. Users can choose to disable this flag when
appropriate.

Because serializability is not an adequate criterion for concurrency control in a
cooperative environment, there is no locking on objects in the synchronization data
spaces to allow maximal concurrency. Instead, when a conflict arises, a notification
mechanism sends a message to the associated threads and leaves the conflict resolution
decision to the users who own the notified threads. Note that the destination of a
notification message is a thread rather than a designer. This makes it easier for a
designer to identify the conflict when he owns multiple active threads. To filter out
unnecessary notifications, a set of predicates can be attached to a notification flag to
describe the situation when a notification message should be issued. This predicate set
overrides the default, i.e., when a new version of the moved object is put to the SDS, and
is used to reduce the number of notification messages by imposing more specific
notification-triggering conditions. For example, one can specify that notification is

needed only when a new version is checked in and it is faster than the old one.

In the LWT model interaction among threads occurs via moving objects between
synchronization data spaces and threads. To simplify shared data management, no direct

data sharing among threads is allowed. Sometimes sharing data only through
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Figure 3.11  The Relationships Between Threads and SDS

synchronization data spaces could be cumbersome. For example, for a small group of
designers collaborating intimately on a piece of design, requiring a member to explicitly
move an object to a SDS just to let the other member skim through it, is simply too awk-
ward. In this situation, members are assumed to communicate with one another fre-
quently enough that potential inconsistency can be resolved through face-to-face interac-
tion. Therefore, the LWT model offers a thread import mechanism to address the above
problem. The idea is that designer A can import a design thread from designer B, and
then A can continuously monitor the evolution of the imported thread but won’t be able
to participate in the imported thread. In other words, an imported design thread is a
read-only thread to the importing user. Note that an imported thread is not a snapshot at
the import time, but a continuous reflection of the original thread. Thread import is a
unidirectional operation: Designer A may import B’s thread but not necessarily vice

versa. With the thread import mechanism, close collaboration won’t be hampered by
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restrictions imposed by the SDS paradigm.

Figure 3.11 shows a example configuration of the relationships among design
threads, synchronization data spaces, and the thread import mechanism. Each shaded
rectangle represents an evolving design thread, each circle represents a synchronization
data space, and double headed arrows mean that the associated design thread can contri-
bute /retrieve objects to/from the corresponding SDS. Numbers in each rectangle denote
thread ID’s while character strings beside rectangles are users who owns the threads.
Characters inside each circle represent synchronization data space ID’s. For example,
Thread One, Two, and Three owned by Randy, Mary, and John, respectively, can access
objects in the SDS A, but the fourth thread cannot. Single-headed arrows indicate the
directions of thread import operations. For example, the third thread, which belongs to
John, is exported to Randy, but Randy’s threads are not exported to John.

3.4 Summary

A design process model called the light weight transaction (LWT) model is
presented in this chapter. Because the model is targeted for an interactive VLSI design
environment, flexibility is the pre-dominant design consideration. As a result, the LWT
model differs from conventional database transaction models in significant ways. Con-
currency control and error recovery at the physical storage level are not the focus of the
LWT model and assumed to be handled by a underlying design database system.
Specifically accesses to design data by concurrent CAD tool executions are controlled by
a conventional database transaction system. The emphasis of the LWT model is on sim-

plifying tool invocation, facilitating design exploration, and supporting cooperative work.

To simplify tool invocations, we take a semi-structured view towards the VLSI
design processes. Two fundamentally different types of design activities are identified:
routine and creative. Routine design activities refer to those whose solution procedures
are well-understood and therefore can be specified in advance. For example, generating a
PLA-style physical layout from a high-level behavioral specification. Under the single
assignment update semantics, the LWT model provides a design step construct to
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encapsulate individual CAD tool invocations as atomic operations against the design data
space. To facilitate routine design activities, A higher-level abstraction than primitive
CAD tool invocation called the design task is introduced in the LWT model. Design
tasks either automate or navigate users through the operation sequences in the task tem-
plates. To maintain design tasks as a high-level abstraction, the internal side effects of a
task abstraction must be hidden from the users. In particular, the LWT model ensures the
atomicity property of a design task across voluntary or forced aborts.

However, interesting designs are always beyond routine design activities. Creative
design activities denote those parts of a design process that are hardly understood and
thus can not be specified beforehand. Most researchers who intend to help designers
beyond routine design choose to use Artificial Intelligence techniques such as rule-based
approaches. The basic tactic is to pattern-match the design scenarios to a knowledge
base, from which to uncover the best fit design procedure. If such a procedure doesn’t
exist, human designers still have to step in and take control. So far this approach meets
only limited success in special design domains. In our opinion, this approach is wrong
because it ignores the fact that an innovative design is unique not only in its final product
but also its solution process. Since the process is unique, it is by definition beyond auto-

mation.

Recognizing this fundamental fact, we take an approach based on assistance rather
than automation. Creative design may proceed in a unique path, but there is a distin-
guishable pattern essential in this process: a creative design process always involves
countless iterations of trial-and-error, i.e., creating and evaluating various alternatives in
the design space. Instead of attempting to automating the generation and evaluation of
design alternatives, as previous Al-oriented systems did, the LWT model aims at facili-
tating the management of the contexts associated with design alternatives. In particular,
the LWT model provides the design threads construct to cluster the related data objects
and design operations associated with a design entity such as an ALU module. Moreover,
within a design thread, a rework mechanism is developed for users to refine and examine
various design alternatives without having to keep track of the mapping between high-

level design decisions and associated data objects, greatly simplifying design space
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exploration. It is our belief that the key to support creative design is to reduce this book-
keeping overhead rather than to generate the so-called intelligent design plans.

The fundamental issue in supporting cooperative work in VLSI design is to make an
optimal tradeoff between sharing and protection. The thread workspace concept general-
izes the notion of private workspace [CHAN89] in that it clusters data objects that are
related to a logical design entity. It also permits a finer-granularity control over the visi-
bility of data objects, i.e., enforcing the notion of context. Synchronization data space
generalizes the public workspace concept in previous works [CHANS9]. Its structure is
more dynamic since the set of associated threads can evolve over time , and it is active
because concurrency control can be effectuated through a predicate-controlled selective

change notification mechanism.
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Figure 3.12  Software Architecture of Papyrus

As it turns out, visibility is a unified abstraction to conceptualize the support
mechanisms for design exploration and cooperative work. The movement of the current
cursor within a thread basically allows users to control their view of the thread

workspace by limiting the data visibility. The movement of data objects among thread
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workspaces and synchronization data spaces confines the visibility of immature or tem-
porary data objects to their owner and forces shared data to be visible only to those who

have the access.

In Papyrus, the LWT model is implemented in two software subsystems: a task
manager and an activity manager. The software architecture is shown in Figure 3.12.
The task manager interprets task templates, helps users to choose CAD tool execution
options, and takes care of low-level invocation details. The activity manager maintains
the states of design threads, performs the mapping from design points and thread states,
supports thread manipulation operations, and garbage-collecting unactive data objects to
reduce the storage overhead due to single assignment update semantics. The interface
between these two components are the task invocations from the activity manager to the
task manager, and the history records from the task manager to the activity manager.
Task invocations specify the name of the tasks to be invoked and their input/output argu-
ments. History records encapsulate the history of design task instantiations, including the
options of each design step in the tasks. These two subsystems are described in Chapter

Four and Five, respectively.
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Chapter 4

Design Task Management

4.1 Introduction

In Papyrus, users invoke a task under the control of the design activity manager.
Once they invoke a design task, users are required to supply the names of the task’s
inputs and outputs. The activity manager first maps the given names to physical objects
and then spawns an instance of the design task manager as a child process to act on its
behalf, with the invoked task’s template and input/output objects passed to the task
manager. When a task is completed successfully, the task manager packages the
detailed operation history associated with a task invocation into a history record, and
reports it back to the activity manager. If a task invocation is aborted by the user, the
task manager simply exits after removing all intermediate side effects induced by the
aborted task. No history record is created in this case.

A task template is a specification of the design steps (i.e., individual tool invoca-
tions) and their sequencing order to accomplish a well-defined design objective. We

define a language to specify task templates, which we call Task Description Language
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(TDL). An earlier implementation [KING89] of the design task manager adopted a
LISP-like syntax for task specifications, and stored the parsed task templates in a design
database. We choose to take an interpretive apprcach. Task specifications are themselves
task templates and are dynamically interpreted by the design task manager. In particular,
TDL is built top of the Tool Command Language (Tcl, pronounced "tickle") developed
by John Ousterhout [OUST90]. There are several reasons to choose this software archi-
tecture. First, because task specifications are just ASCII files, it is easier to add or delete
task templates. There is no need to go through the design database when modifications
are made to task templates. As a result, the task manager can be implemented indepen-
dently of the underlying database system. Second, because Tcl is designed as a command
language to be embedded into general applications, TDL can augment Tcl’s intra-tool
control capability by providing inter-tool sequencing coordination. Moreover, if newer
CAD tools are written with Tcl as the common embedded command interface, a Tcl-
based task description language could facilitate the integration of these presumably
separately developed CAD tools. Third, because Tcl inherently provides an interpreter,
developing a Tcl-based TDL is greatly simplified. In particular, most of the syntactic
constructs in Tcl are readily available to TDL, and the implementation of TDL is res-
tricted to the extension constructs that are added to Tcl.

In the next two sections, we will describe the details of the task description

language and its prototype implementation.

4.2  The Task Description Language

In this section, the task description language is presented in two layers. The base is
Tcl and the second layer are the extensions we have developed for controlling the
sequencing and execution of design steps with a task. Because TDL uses the same parser
as Tcl, all Tcl constructs are a part of TDL, except for a few exceptions as noted below.
Since the detailed syntax of Tcl is available from other sources [OUST90], we will only

present its general outline here.
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Tcl only supports one data type: the string. Depending on the context, a string can
be a command, an expression, or a list. The basic syntax of 2 Tcl command is a set of
fields separated by while space. The first field of a command is the name of the com-
mand. The other fields are arguments to the command. Commands are separated by

semi-colons or newlines. For example,

set a 27; set b test.C

are two commands that set a and b to 27 and test.C. As mentioned before, the values of
a and b are strings, not numbers as in the case of 27. T» accommodate strings that con-
tain white space, double-quotes or braces can be used to group a set of arguments into a
compound argument. However, the actual arguments that are passed to the command

don’t include the braces and double-quotes. For example,

set a "This is a single operand"
set b {xyz {b c d}}

set a and b to This is a single operand and xyz {b c d}.

When an argument of a command contains the $ character, the characters following
the $, up to the first character that is not a number, letter, or underscore, are treated as a
variable name and these characters are replaced by the variable’s current value. This is
called variable substitution. Alternatively a pair of braces can be used to enclose a vari-

able name after "$" to avoid ambiguity. For example,

set a 100
set b fg
set ¢ Zs${a}d$b

sets ¢ to Zs100dfg.

The second way of interpreting a string is to treat it as an expression. Several Tcl
built-in commands such as expr, for, and if, view some of their arguments as expressions
and call the Tcl expression to evaluate them. Expression strings consist of arguments and

operators. Operators can be arithmetic (€.g., +, - * /) or logical (e.g., and, or, not). A Tcl
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expression has C-like syntax and evaluates to an integer result. The arguments to a Tel
expression must assume integer string values after command or variable substitution.
There is no need for explicit data type conversion. The expression processor takes care of
string-integer conversion automatically. Parentheses can be used for grouping. For exam-

ple,

4*2)>17
($a + 3) <= [set a]

The third interpretation of Tcl strings is as lists. Lists consist of fields separated by
white space, just like command strings, except that a newline character in a list is treated
as a field separator rather than a list separator. Special commands such as concat, index

length, and list allow users to list-related operations. For example,
ab&c dd {a book {now is}}

is a list with three elements: ab&c, dd, and a book {now is}.

Tcl also provides various C-like control structures such as case, if-then-else, for-
loop, foreach-loop, and proc for various flow control purposes. These constructs are

actually commands themselves. For example,
if {$a > 1} {set b 1} {set b 0}

is an if command that takes three arguments: $a > 1, set b 1, and set b 0. The if com-
mand first evaluates its first argument, and chooses the second or the third argument to
evaluate depending on the evaluation result of the first argument. In this section we only
describe those language features of Tcl that are relevant to TDL. Other syntax details and

built-in commands can be found in [Tcl Manual].

The basic language features of Tcl is very similar to UNIX shell command
languages like the C-shell or Bourne-shell. However, rather than coordinating batch-
style commands, Tcl is designed to be embedded into an application and provides a com-
mand interface for users of that application. Because the Tcl interpreter is provided as a
user-level library, rather than a self-contained program, applications can link to this

library to obtain a command interpreter for free.
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Figure 4.1  Software Structure of a Tcl-based Application

The software structure of a typical Tcl-based application is shown in Figure 4.1. In
addition to the built-in commands provided by Tcl, applications can register new com-
mands with the Tcl Interpreter. When registering a new command, the application needs
to supply a command name and a function that implements that command. Registration
of new commands and initialization of a Tcl interpreter occurs during the Init phase of a
Tcl-based application. At run time, the application collects user-entered commands and
passes to the parser provided by the Tcl library. When a new command is invoked, the
Tcl interpreter will redirect the command to the registered function, together with any
arguments. It is this dynamic binding capability that distinguishes Tcl from other com-
mand languages. An important reason for Tcl’s success is that it provides a readily avail-
able interpreter as a library, which facilitates the acceptance of Tcl as an embedded com-

mand language. In addition, this interpreter includes an extension interface that may be
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used to extend the language’s basic command set. As shown in Figure 4.1, an applica-
tion developer implements application-specific commands, indicated by shady boxes, and
links with the Tcl library, which supplies a parser and low-level utility procedures, to
form a complete Tcl-based application. The utilities include procedures for parsing and
manipulating strings. TDL assumes exactly the same software architecture as described
above, with several extension commands for describing and sequencing CAD tool execu-

tions.

4.2.2 Extensions

Because Tcl provides all the control constructs that is needed to describe the flow of
design steps in a task, the Task Description Language only needs to focus on the descrip-
tion of individual CAD tools. In particular, TDL provides the following five new com-
mands: task, step, subtask, abort, and attribute. In the subsequent syntax discussion,
bold-face characters represent language reserved words, while Italics characters represent
strings that can be replaced by users for their purposes. The strings enclosed by a pair of
braces are optional. That is, they don’t have to appear when the command isused in a
task specification. This should not be confused with the brace constructs described in the

last section.

Each task template is stored as a UNIX file. The task command declares the begin-
ning of a task specification, and is always the first command. The command has the fol-

lowing syntax:
task Task _Name {Task_Input} {Task_Output}

where Task_Name is the name of the task, and Task_Input and Task_Output denote the
list of input and output objects to the task. Objects in a list are separated by white space.
Depending on the database model, the object names may assume a particular format such
as the cell:viewfacet:version format in OCT, or just plain ASCII file names. The task
command serves two purposes. First, it sets up and initializes the data structure for the
interpretation of the following task template. Second, the input and output lists in the
task command are to be matched with the subtask commands appearing in other task
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The subtask command allows one task template to include other task templates as
subtasks. This allows the construction of complex tasks out of more primitive tasks. The

command has an almost identical syntax as the task command:

[StepID:] subtask Task_Name {Task_Input} {Task_Output}

The SteplD field is an optional integer argument that identifies the current step in a task
template. This identifier is useful for specifying control dependencies and restart after
aborts. If the input or output lists in a subtask command are not matched with their coun-
terparts of the task command in the corresponding task template, an error occurs and the
task containing the subtask command is forced to be aborted. Otherwise, the template of
the subtask is expanded in-line, and is interpreted as other commands in the invoking

task template. There is no limit on the nesting depth of task composition.

The step commands describe individual CAD tool invocations. In addition to how a
tool is to be invoked, it is also necessary to specify when a tool can be started, and what

to do when a design step is aborted. The command assumes the following form:

[StepID:] step {Step_Name} {Input_List} {Output_List} {Invocation_Details}
[{NonMigrate}] [{ResumedStep N}]
[{ControlDependency StepID1 StepID2 ... StepIDm}]

The StepID field is identical to that in the subtask command. The Step_Name, Input_List,
and Output List fields denote the step’s name, inputs, and outputs, respectively. The
Invocation_Details field contains the details of invoking a CAD tool, including the tool
name, its options, parameters, and inputs/outputs. Normally this field specifies how the

tool should be invoked, unless users choose to override this default behavior at run time.

The above four fields are mandatory, while the following three are optional. These
optional fields do not have to appear in a particular order. They are self-identified by the
first suiﬁg. If the first string is "NonMigrate", that means that the current step is non-
migratable. Because Papyrus supports independent CAD tool invocations in parallel on
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a network of workstations, by default every step is migratable. However, in some cases
users may choose to run a CAD tool on his home machine, for example, running interac-
tive tools or tools that heavily rely on files on local disks. If the first string is
"ResumedStep”, the following string is an integer that designates the resumed step when
the current step is aborted during a task invocation. If not specified, the default resumed
step ID of a step is zero. This means that if the current step is aborted, the containing task
is restarted from scratch. By specifying appropriate resumed steps, useful work can be

preserved as explained in Chapter Three.

If the first string is "ControlDependency,” it may be followed by one or more
integer strings. These denote the steps on which the current step is control-dependent.
The semantics are that the current step can be initiated only when all the steps on which
it is control-dependent have completed successfully. This construct is introduced for
users to impose on the steps a non-data dependent task ordering constraints. For exam-
ple, after a place_and_route step, a circuit simulator can simulate the resulting layout
withoﬁt the design_rule checker verifying it first. However, if a design group wants to
impose a design methodology that no circuit simulation should be performed on an
unverified layout, then in the task specification, the circuit_simulation step can be made

to be control-dependent on the design_rule_check step.

We introduce the attribute command to extract the properties of a design object.
Most script languages provide control constructs to change the design flow according to
the results of predicate evaluation. The predicates are typically based on simple variables
and rarely involve the objects that are manipulated. With the attribute command, the
design flow can now be based on a design object’s attribute values, which could even be

evaluated at run time. The syntax of the attribute command is

attribute Object Name Attribute_Name

This retrieves the attribute_name attribute from the object object_name. The list of attri-
butes that can be retrieved from a object depend on the type of the object, and also vary
with the implementation of the attribute server as described in the next section. The

language itself doesn’t impose any limits.
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The abort command aborts a step in a task. Depending on the resumed-step
specification of the aborted step, a task may restart from a different state. The command’s

syntax is
abort [Step_Identifier]

where Step_Identifier can be either a step ID or a step symbolic name. If the
step_identifier field is not specified, then the entire task is aborted. In that case, the task

manager cleans up the intermediate side effects associated with the current task and exits.

4.2.3 Examples

A task template can be as simple as an encapsulation of a single CAD tool. For
example, the following is a task template that contains a single tool, padplace, a place-

ment tool that puts pads on a chip.

task Padp {Incell} {Outcell}
step Pads_Placement {Incell} {Outcell} {padplace-c -0 Outcell Incell}

Here the Padp task contains a single step called Pads_Placement. The last field of the
Pads_Placement step is in a separate line and specifies the default way the step is to be
invoked. Users can override these default options through a graphical interface, as
described in the next section. The following example is more complicated and illustrates
a generic synthesis sequence from a structure-level description down to a physical layout,

including the bounding pads.

The graphical representation of this task is shown in Figure 4.2 From the user’s
standpoint, only the task inputs and outputs, in this case, Incell, Musa_Command,
Outcell, and Cell_Statistics, are visible. Other objects in the task are intermediates,

whose naming and allocation/deallocation are handled by the task manager transparently.
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task Structure_Synthesis {Incell Musa_Command} {Outcell Cell_Statistics}
/* translate a high-level description to a multi-level logic network */
step NetlistCompile {Incell} {cell.blif} {bdsyn -0 cell.blif Incell}
/* optimize a multi-level logic network */
step Logic_Synthesis {cell.blif} {cell.logic}
{mislII -f script.msu -T oct -o cell.logic cell.blif}
/* place pads */
subtask Padp {cell.logic} {cell.padp}
/* place and route to obtain a physical layout */
step {1 Place_and_Route} {cell.padp} {Outcell}
{wolfe -f -r 2 -0 Outcell cell.padp}
/* perform a multi-level simulation */
step Simulate {celllogic Musa_Command} {}
{musa -i Musa_Command cell.logic} {ControlDependency 1}
/* collect performance statistics */
step Chip_Statistics_Collection {Outcell} {Cell_Statistics}
{chipstats Outcell > Cell_Statistics}

are handled by the task manager transparently. Note also that the Structure_Synthesis
task contains the Padp task as a subtask, which is expanded in-line in the graphical
representation and becomes Pads_Placement. In this task, the Simulate step and the
Place_and_Route step could have been performed in parallel because there is no data
dependency among them. However, since the Simulate step designates the
Place_and_Route step as its control dependency, the Simulate step can only start after the
completion of the Place_and_Route step. Data and control dependencies are represented

as arrows except that the latter are in bold arrows.

The next example illustrates some of the control mechanisms provided by TDL, and
the utility of programmable abort constructs. The example is a macro-cell placement and

routing tool sequence called Mosaico in the OCT tool suite.

The graphical representation of Mosaico is shown in Figure 4.3. The control flow in
the Mosaico task is mostly in the form of a linear pipeline. Therefore only limited
process-level parallelism can be exploited. Unlike other steps, an IF is represented by a
diamond-shaped polygon rather than a rectangle. The status variable in the IF test is a
global variable automatically returned by the task manager. This variable designates the
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task Mosaico {Incell} {Outcell Cell_statistics}
/* define the channel ares */
step Channel_Definition {Incell} {cdOutput} {atlas «i -z -0 cdOutput Incell}
/* perform a global routing */
step Global _Routing {cdOutput} {grOutput} {mosaicoGR cdOutput -r -ov grOutput}
/* calculate the power and ground currents */
step {1 Power/Ground_Current_Calculation} {grOutput} {pgOutput}
{PGcurrent grOutput > pgOutput}
/* perform a channel routing */
step Channel_Routing {grOutput} {crOutput}
{mosaicoDR -d -0 crOutput -r YACR grQOutput}
/* format transformation */
step Oct_Symbolic_Flattening_1 {grOutput} {fiOutputl}
{octflatten -r grOutput -o flOutput crOutput}
/* minimizing the via areas */
step Via_Minimization {filOutputl} {vmOutput} {mizer -o vmOutput flOutputl}
{ControlDependency 1}
/* another format transformation */
step Oct_Symbolic_Flattening_2 {Incell vmOutput} {fiOutput2}
{ octflatten -r Incell -0 fiOutput2 vimmOutput}
/* place pads */
step Place_Pads {fiOutput2} {ppOutput} {padplace -f -S -0 ppOutput flOutput2}
/* compact the layout starting with the horizontal direction */
step Horizontal Compaction {ppOutput} {Outcelll}
{sparcs -t -w NWEL -w PWEL -w PLACE -o0 Outcelll ppOutput}
/* if not successful, compact the layout starting with the vertical direction */
if {$status} {step Vertical Compaction {ppOutput} {Outcelll}
{sparcs -v -t -w NWEL -w PWEL -w PLACE -0 Outcelll ppOutput}
{ResumedStep 1}}
/* create a protection frame as a high-level abstraction */
step Create_Abstraction_View {Outcelll} {Outcell} { vulcan Outcelll -0 Outcell }
/* Check for routing completeness */
step Routing_Checks {Outcell} {} {mosaicoRC -m 20 -c Incell Outcell}
/¥ collect performance statistics */
step Statistics_Calculation {Outcelll} {Cell_statistics}
{ chipstats Outcelil |& tee Cell_statistics }

exit status of the most recent completed design step. One can decide a task’s control
flow based on the value of the status variable, as shown in the case where vertical-

direction-first compaction is used when horizontal-direction-first compaction fails. Also
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note that when both compaction methods fail, the task can be restarted from the state
right after the completion of the Power/Ground_Current_Calculation step, as specified in
the ResumedStep field of the Vertical Compaction step. All the side effects from the
Channel_Routing step up to the Vertical Compaction step are removed. Consequently
the work performed by the first three design steps are preserved when compaction fails.
After restart users can try different parameters for the following design steps to avoid

subsequent compaction failures.

4.3 Implementation

The task manager’s implementation is divided into two parts: the interface and the
execution engine. The interface part deals with the interactions with the users and is
described in the next subsection. The execution engine, described in the rest of the fol-
lowing subsections, controls the execution of a task across a local workstation network

and performs necessary bookkeeping to record a task’s operation history.

4.3.1 Tool Navigation/Encapsulation

One of the major functions of the design task manager is to navigate circuit
designers through a complicated design environment. It shields them from the peculiari-
ties of individual CAD tools. Papyrus achieves this goal by informing the users about the
status of individual steps and the progress of a task. Most tools are invoked with a set of
default options specified in the task template. Users can override these default options by
entering their chosen parameters. Figure 4.4 shows a snapshot of the graphical interface
presented by the task manager. This interface is built with the Tk toolkit, a Tcl-based X-
window toolkit. The top window shows the progress of the current task. Each rectangle
represents a step. Different colors are used to indicate the execution status of these steps.
Originally the blocks are in white, green stands for completed steps, and red stands for

currently-running steps.
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Figure 4.4 A Typical Snapshot of the Task Manager’s Interface
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DESCRIPTION
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routing to generate a macro-cell in a standard-cell design
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Whenever a step is ready to start, i.., all its data and control dependencies are
satisfied, the entries below the task status display window will show the name of the
design, the inputs, the outputs, and its current command option. In this case, it is the
Simulate step that is to be executed next. Users can override the default setting by enter-
ing their choices in the space following "New Options:". If users need to consult with the
man page to set the options, they can click the "Show Man Page” button. A man page
corresponding to the current tool, such as Figure 4.3, will appear. Users can search for
keywords when browsing the man page. When users feel that everything is set, they can
press the "Go" button to tell the task manager to dispatch this step. The bottomn window
is a message window, where information related to the current status of the task is
presented. In particular, the actual command options to run a design step are listed here.
In converting the task template’s textual description to a graphical form, we perform a
topological sort based on the control and data dependencies among design steps. This is
followed by a level-by-level greedy placement and route algorithm to calculate the

geometrical positions of the nodes and arrows.

4.3.2 Parallelism Extraction

One of the distinguishing features of Papyrus’s task manager is its ability to harness
the computation power of a set of networked workstations without user intervention.
Moreover, transparency is maintained at both the operating system and the language lev-
els. In other words, users don’t need to locate idle machines and explicitly dispatch tool
invocations to remote nodes. Neither do users need to specify in a task template the steps
that are independent of one another and therefore parallelizable. Because the Task
Description Language assumes a sequential computation model, the task manager is
responsible for extracting the parallelism from the task specifications. In addition, since
commands in a task template are interpreted one after another, the task manager has to

adopt a dynamic scheduling approach.

The scheduling unit in a task template is a step (or a CAD tool invocation), there-

fore the task manager can only exploit the process-level parallelism. A step is said to be
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ready when both its data and control dependencies are satisfied. Three data structures are
involved in extracting the parallelism within tasks: Active, Suspending, and Result lists.
When the task manager reads in a design step, it first checks if the step’s data and control
dependencies are satisfied. This check is performed by verifying whether each of the
step’s inputs is already on the Result list, and whether each of its control dependencies is
one of the steps that creates the objects on the Result list. If they are, the task manager
finds an idle workstation, forks a copy of itself to invoke the step’s corresponding CAD
tool on that node, and puts this step on the Active list. Otherwise, the set of dependencies
that are not yet satisfied are recorded and the step is put on the Suspending list. In either
case, the task manager can immediately begin to interpret the next design step in the task

template. Essentially the task manager supports out-of-order issuing of design steps.

When a step is completed, it catches the attention of the task manager through the
UNIX signal mechanism. Since different steps in a task could overlap and execute for
different amounts of time, the completion of the steps may not be the same as their
dispatch order. That is, the task manager also allows out-of-order execution. Because a
completed process can only return a limited amount of information, such as its process
ID, the task manager must consult the Active list to find the step’s associated data struc-
ture, and then puts each of the step’s outputs on the Result list. Each Result list entry also
includes the ID of the output’s creating step. A step might be waiting for the completion
of a currently executing step. The task manager needs to re-activate those steps in the
Suspending list that are data-dependent or control-dependent on this completed step. By
examining each entry in the Suspending list, the task manager marks those dependencies
that are satisfied by the completion of the current step. After this procedure, if a previ-
ously suspended step’s data and control dependencies are all satisfied, the task manager
deletes the step from the Suspending list, finds an idle workstation to execute the step,
and puts it on the Active list. Then the task manager waits in a loop for the arrival of the
next child process completion signal. The loop is terminated only when the Active list
becomes empty.

Papyrus is built on top of Sprite [OUST89], an experimental network operating sys-

tem that supports a kernel-level process migration facility. As a result, exploitation of
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process-level parallelism becomes relatively straightforward. Sprite provides systems
calls to locate idle workstations, execute a process on a designated node, and move a
currently running process from one node to the other. Once the parallelism in a task tem-
plate is identified, running independent design steps in parallel involves nothing more
than appropriately packaging parameters and calling adequate systems services. The fact
that Sprite supports a network-wide global file system name space, which is different
from a conventional NFS-based system, also greatly simplifies both process migration
and the implementation of Papyrus. Because every node in the network shares an identi-
cal view of the file system, location transparency follows naturally. This naming unifor-
mity also makes it easier to control the visibility of design data space by appropriately

restricting views against the file system.

4.3.3 Re-Migration

Sprite’s process migration mechanism places a higher priority on the autonomy of
individual workstations than on load balancing. As a result, only idle nodes, which are
defined as nodes that don’t receive inputs from mouse/keyboards for a period of time, can
accept migrated processes. In other words, even if an node is only slightly loaded by an
interactive user, that node is not considered to be qualified. As a result, not all requests
for idle nodes could obtain one. If no idle nodes are available when a step is to be
dispatched, the task manager simply executes the step locally. On the other hand, Sprite
also supports the notion of eviction, which occurs when the owner of the previously idle
workstation returns, reclaiming his/her machine by touching the mouse or keyboard. In

this case, the foreign processes in that node are migrated back to their home nodes.

To more efficiently exploit a network of workstations, a more dynamic migration
mechanism is needed, both for the processes that can’t secure an idle node when they
request one and for those that are evicted from foreign back to home nodes. This
mechanism is called re-migration. The current implementation of Sprite does not sup-
port re-migration. The only design issue of implementing re-migration is how to identify

those children processes that are migratable and yet still execute on the local node. In
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our implementation, the task manager periodically examines the local kernel’s process
control blocks to locate those currently-executing processes whose parent process is the
task manager itself. Sprite provides the following system call for querying process states.
Proc_GetPCBInfo(0, NUM_PCBS-1, Hid, sizeof(Proc_PCBInfo),
infos, argStrings, & pcbsUsed);
From these processes, the task manager can find the migratable processes by checking
their migrate flags. When such a process is found, the task manager attempts to dispatch
it using the same procedure as described above. Of course, there is no guarantee that the
process will be migrated successfully. In that case, the process has to wait for the next
round. Fortunately, re-migration takes place while the task manager is waiting for the
completion of its active children processes. As a result re-migration is almost continu-
ously performed. Eventually a migratable process should be able to be successfully

migrated to an idle node.

43.4 Programmable Abort Semantics

The other important feature of Papyrus’s task manager is that it supports the con-
cept of programmable abort. Compulsory aborts can be issued by the task manager
when it detects that the execution status of a design step is in error, or controlled by the
users through an explicit abort command. Our mechanism is not designed to address
serious failures such as client or server crashes. Each step in a task template can specify a
so-called resumed step, whose following state is the restart state when the former is
aborted. Because the Task Description language assumes a sequential execution seman-
tics, it is relatively easy to identify such a state. However, because the task manager
allows out-of-order issue and out-of-order execution, some bookkeeping must be main-
tained to allow reconstruction of a particular state. Because the notion of state is tied to

how object names are managed, we first discuss the issue of name management.
When invoking a task, users are required to supply the names of the task’s input and

output objects. The names of the intermediate objects are generated by the task manager

automatically. Because there can be multiple instances of the same task active
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simultaneously, the name of an intermediate must be unique across multiple invocations
of the same task to avoid interference. Our strategy is to append the process ID of the
task manager to the formal names of the intermediates specified in the task templates.
Because each task invocation is controlled by a different instance of the task manager,
this scheme guarantees that intermediates’ names in different invocations won’t conflict
with each other. Because modifications to intermediates of a task template also observe
the single assignment update semantics, restoring a state is equivalent to removing the

associated objects.

Because the interpretive approach used in Papyrus, we have to make the following
assumptions. First, although a command in TDL can contain arbitrary numbers of steps,
for example by separating them via semicolons, the resumed steps must be steps at the
top level. In other words, a step cannot specify an embedded step as its resumed step.
Moreover, all the steps contained in a top-level command share an internal ID. For

example, suppose a top-level command is

if {$a > 5} then {step_A; step_B}
else {if {$a > 1} then {step_C} else {step_D}; step_E}

Then step_A, step_B, step_C, step_D, and step_E share the same internal ID as the top-
level if command. Second, by the same token, the steps within a subtask cannot be
designated as a resumed step from the task enclosing the subtask. Because subtasks are
expanded in-line, the steps within a subtask can specify their own resumed steps and the

system can handle this case without difficulty.

The only complication arises when there is a conflict between the step ID’s used in
a subtask and the subtask’s containing task. Since subtasks can be nested to arbitrary
depth, a more general naming scheme is needed. Our solution is that for each subtask in
a task templates, an internal ID determined by concatenating the subtask’s invocation
position in the enclosing task and its nesting depth is formed, ‘and every step ID con-
tained within a subtask is prepended with the subtask’s internal ID. At the top level, the

nesting depth is zero.
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With these assumptions, each top-level command has an internal ID, which is essen-
tially the sequential program ordering of the top-level commands in a task template.
When a step is aborted, the task manager first examines its resumed step ID. If the ID is
zero, then the entire task is to be restarted. In this case, the objects in the Result list are
removed, all the processes in the Active list are killed, the three lists are reset, and the
task manager starts to interpret the task template from the beginning. If the resumed step
ID is non-zero, the task manager maps this step ID to its corresponding internal ID.
Given the resumed step’s internal ID, J, the Result list’s objects that are created by steps
whose internal ID’s are larger than J are removed, and all the processes in the Active list
that have a larger internal ID than J are killed. The entries of the Active and Suspending
lists are deleted if they correspond to steps that have a larger internal ID than J. Finally
the task manager restarts the task by starting to interpret the (J+1)-th top-level command.

4.3.5 History Recording

After all the steps in a task are completed, the task manager needs to do two things.
First, the intermediate objects created during a task invocation are to be removed. Since
tasks are supposed to be a high-level abstraction that shields the details of individual
CAD tool invocations from the users, we feel it is important to maintain this abstraction
by hiding the distributed nature of the underlying computation environment and the fact
that individual steps may be aborted. Consequently it is imperative to remove hidden side
effects when appropriate, i.e., removing the intermediate objects. The task manager
recognizes intermediate objects by scanning the Result list and excluding the task out-

puts.

The second thing the task manager does is to package the operation history of the
steps of a task into a history record, and passes it back to the activity manager. The
operation history of a task invocation is a linear sequence of the steps that are actually
executed, ordered by their completion time. Associated with each step is its parameter
options and input/output objects. Since a task manager is spawned by the activity

manager, the history record information is returned to the activity manager through a file
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given by the activity manager. In other words, the task manager controlling a task invo-
cation writes out the history record to the designated file before termination, which in
turn, via a signal, notifies the activity manager to load that file to its maintained design
history data structure.

4.3.6  Attribute Management

Objects and attributes are stored separately. There is a central attribute database
associated with each thread workspace. The implementation of this attribute database is
described in Chapter Five. Attribute values are either retrieved directly or dynamically
computed. An object’s attribute consists of three parts: attribute name, attribute value,
and attribute computation tool. For those attributes that need to be computed dynami-
cally, the specified tools are used to compute the values of these attributes. The task
manager interacts with the attribute database through a UNIX db library. If there isa
need to compute attribute values dynamically, it spawns a child process to do it.

Unlike the execution of design steps, the computation of attributes is synchronous,
i.e, the task manager waits for the return of attribute values before moving on to the next
command. This design decision is made on the observation that attribute computations
are usually embedded within if commands. Therefore, the attribute values must be avail-
able for if commands to proceed. Upon return, the task manager caches the computed
results in the corresponding entries in the attribute database. It is possible to optimize the

computation and storage of attributes. These mechanisms are described in Chapter Six.

4.4  Summary

In this chapter, we introduce the task description language (TDL) and its implemen-
tation. The language is based on Tcl with a set of extensions for describing and sequenc-
ing VLSI CAD tool executions. Because of this, most of the facilities of Tcl are readily
available to the TDL. The extensions to Tcl are implemented as procedures that can be

called by the Tcl Interpreter. The features of TDL includes the support of conditional
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design flows, programmable aborts, and a limited class of While-loops. TDL assumes a
sequential semantics for two reasons. First, users are not required to express parallelism
explicitly; they can be extracted by the task manager automatically. Second, a sequential
execution semantics entails a well-defined task execution state, which makes error restart
easier. The task manager can exploit the process-level parallelism in a task by running
independent steps in parallel on a network of workstations. This is made possible by the
kernel-level process migration mechanism provided by Sprite. In addition, we describe
in detail how the task manager implements parallelism extraction, re-migration, and
atomicity guarantees. The task manager also records the operation history of an indivi-
dual task. When a task is completed, its history record is passed to the activity manager,
which maintains the history records in such a way that the context of a design entity is
preserved. In the next chapter, we will describe the implementation details of the design

activity manager.
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Chapter S

Design Activity Management

5.1 Introduction

The design activity management subsystem maintains the design threads’ history
and supports the rework mechanism by resolving object names in appropriate contexts.
The design activity manager and the design task manager are implemented as two
separate UNIX processes. Users invoke a new instance of the activity manager when they
start a new activity. They interact with the design activity manager to invoke a task, at
which time they are required to supply the object names of the invoked task’s arguments.
If the version number of an input object is not specified, the design activity manager will
match the object name against the data scope, that is, the thread state of the current cur-
sor, and returns the most recent version of that object in the data scope. In the case of an
output object, the design activity manager returns the next version number of the object
and preserves the single assignment update semantics. When the versions of input/output
objects are resolved, the design activity manager instantiates an instance of the invoked
task by forking a child process to run the design task manager with the given task and its

inputs/outputs. In the interim, the design task manager navigates the users through the
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task templates and coordinates the execution of individual steps within a task, as dis-
cussed in Chapter Four. When a task is completed, the design task manager packages the
invocation history associated with the task into a history record, and sends an exit signal
to notify the design activity manager of the history record. With a simple interface and
modular software architecture, the development of these two subsystems can be kept rea-
sonably independent. In fact, to make Papyrus entirely Tcl-based, the current version of
the design task manager completely re-implements the one originally described in
[KING89]; the design activity manager is largely unaffected by this decision.

In this chapter, we will present the software architecture and the data structures used
in the implementation of the design activity manager. In Section 5.2, the design and
implementation of the activity manager’s graphical interface are presented. In Section
5.3, the algorithms for managing the design history and computing the data scope are
explained in detail. Storage management techniques to reduce the storage overhead asso-
ciated with the single assignment update semantics are discussed in Section 5.4. Section
5.5 concludes this chapter with a summary of major design issues and solutions in imple-

menting the design activity manager.

5.2 User Interface

Most of the efforts associated with the activity manager’s user interface are devoted
to the graphical presentation of the design history, specifically the control streams of
design threads. A typical snapshot of the activity manager’s window is shown in Figure
5.1. Each oval block denotes the history record of a completed design task, with the
task’s name attached under the oval block. The arrows represent the temporal order of
the completion of the tasks. When a task is completed, the activity manager receives a
history record from the corresponding task manager and appends a block at the appropri-
ate place of the thread’s control stream. For simplicity, the prototype implementation
assumes that the display is decomposed into a set of square grid cells. Each oval block is
assigned a grid cell, whose lower-left comner uniquely determines the placement of this

oval block.
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To invoke a new task, users click the Invoke A Task button. A list of task templates
is displayed, as shown in Figure 5.2, from which users select a task to invoke by double-
clicking the desired entry. Users are then required to enter the object names of the argu-
ments to the invoked task, as shown in Figure 5.3. These names take the following three
forms: an hierarchical file-system path name, such as Juser/chiueh/Multiplier; a plain
object name concatenated with a version number, such as ALU.logic@1; or a plain file
name, such as ALU.logic. A @’ character separates the object names from their version
numbers. Input objects to a task can assume the above three formats while output objects
typically take only the third form.

The first format is used when the object in question is not currently in the thread
workspace. As a result, the task manager needs to physically copy the object into the
thread workspace, and updates the workspace’s directory accordingly. This is similar to
the check-in operation in version management systems except that in this case check-in is
implicit. The second format is used when users want to bypass the default version resolu-
tion mechanism. For example, although the most recent version of an object is the third
version, it might so happen that users insist to use the first version. Users can explicitly
use this naming format to get at the desired version. The third format is the most com-
mon. In the case of input objects, the most recent version of that object in the data scope
is returned. In the case of output objects, a new version is created to preserve the single

assignment update semantics.

The stagger sign in Figure 5.1 represents the current cursor, whose thread state,
called the data scope, is the default context in which the inputs/outputs names of the next
invoked task are resolved. Users can move the current cursor by clicking the Move Cur-
sor button first and then clicking on the history record to which the current cursor intends
to move. By controlling the position of the current cursor, users control the context in
which new tasks are invoked, or the portion of the thread workspace that is visible.
Before invoking a task, users may want to browse the thread state associated with the
current cursor. This can be done by clicking the Show Data Scope button. An example of
the data scope is shown in Figure 5.4. In this case the current cursor is at a

"Structure_Synthesis" task. The number beside the current cursor is its recording time.
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This is used to distinguish different instances of the same task. Alternatively users could
view the set of all objects associated with the design thread, in this case, ALU Design, by
clicking on the Show Thread Workspace button. To get a better perspective when choos-
ing the new current cursor, users could browse the control stream by panning the display

in up/down and right/left directions, and/or zoom in/out.

As in the design task manager, the graphical user interface of the activity manager is
built on top of the Tcl/Tk library. Because this library provide rather high-level interfaces
for common user-interface widgets, the implementation of the activity manager’s graphi-
cal interface is made easy. Unfortunately, the support for structural graphics in the
current version of Tcl/Tk, such as those needed for presenting the design history, is rela-
tively limited. In particular, there is no facility to query the geometrical coordinates of
an graphic item on a canvas widget ! which is designed to implement structural graphics.
One consequence of this lack of support is that the applications need to keep track of
these items’ coordinates when they are being panned and zoomed. In our prototype, pans
and zooms are implemented as modifications to the physical coordinates of the graphical
items. Therefore, when new graphical items are to be inserted and displayed in the can-
vas, the activity manager must have the coordinates of existing items to present themin a
harmonious fashion. Unfortunately maintaining these geometrical information in the
applications could lead to performance problems when there are a lot of history records
in the control stream (and therefore a lot of graphical items), because each pan/zoom will

cause a complete traversal of the existing history records.

Our solution is to log the changes due to pans/zooms in an intelligent way and lazily
apply these changes when new history records are to be appended. Let’s use an example
to illustrate this idea. Suppose a sequence of pans and zooms produce the following

sequence:

[50, 0] {2} {2} [100, 0] {0.5} [-20, 0] [0, 50]

1. A canvas widget is a graphical area on which structured graphics items such as polygons, lines,
and text strings can be displayed.



where a brace encloses a magnification factor, while a bracket contains a pair of numbers

denoting a 2-D translation vector. Instead of applying them one at a time, we combine

them and apply the resulting effect only when new history records are added. The central

observations are the following:

[1] Consecutive translations and magnifications can be merged by addition and multi-
plication, respectively.

[2] Magnifications that are separated by translations can still be merged through multi-
plication.

[3] Translations that are separated by magnifications can be merged only when the
translation vectors are normalized by the inverse of the accumulated magnification

factors.

Consequently the above sequence can be decomposed into a translation and a

magnification sequence as follows:
[50, 0] [25, 0] [-10, 0] [0, 25] {2} {2} {0.5}

For example, the third translation vector, [-10, 0], is obtained by multiplying the original,
[20, 0], by the inverse of the accumulated magnification factor, ?*_21*—3? By applying

the first observation, these two sequences could be further compressed into [65, 25] and
{2} respectively. When a new history record is to be appended, the coordinates of the
corresponding oval block is first translated by the compressed translated vector and then
magnified by the accumulated magnification factor. With this method, new history
records can be intermixed with existing history records in a graphically consistent
fashion. This is accomplished without explicitly keeping track of the physical coordinates

of their associated oval blocks.

In addition to pans/zooms, the design activity manager also provides a random
access facility to access the design history. In particular, users can access specific history
records based on time and/or annotation. When a history record is appended, the current
time is also recorded. An example time-based access query is "Go to the design point as
of 4:PM 9/17/92". However, for efficiency reasons, the resolution of temporal access is

restricted on an hour-by-hour basis. In other words, a new history record is inserted in the



Random Access
Time[ _
Annotation[The Start of PLA Approach
By Annotation| By Time| Quit|

Figure 5.5 Random Access to Design Points

91



92

temporal index only when its recording time is at least an hour away from that of the last
entry in the index. As a result, given a designated hour, the first history record within that
hour is returned, ir one exists; otherwise the next closest history record after that hour is
returned instead. Users can also annotate history records with textual strings such as
"The Start of PLA Approach". With annotation attachments, it becomes possible to
access specific history records using annotations. Figure 5.5 shows an example
annotation-based query that accesses the history record with an annotation attachment
"The Start of PLA Approach." A random access interface allows users to move the

current cursor to the desired history record without extensive browsing.

5.3  History Management

There are three data structures associated with the history records of a design
thread’s control stream. The first is for the graphical display of history records. The
second maintains the structure of a control stream in main memory and computes the
thread state of the current cursor. The third is a persistent version of the second data
structure, for inter-process communication and crash recovery. The first and second

design history data structures and their related operations are discussed in this section.

The main memory data structure for maintaining the control stream of a design
thread mimics their graphical structure, i.e., a tree. However, there are two complica-
tions. First, a control stream becomes a graph when two control streams are merged, as
discussed in Chapter Three. Second, even if a control stream is a tree, the structure of
this tree is dynamically changing. In particular, the number of children of a tree node is
not statically fixed because users can create an arbitrary number of branches while they
explore the design space. In other words, the data structure for history records must
accommodate a variable number of children AND parents. We use the following data

structure to represent history records.
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struct HistoryRecord {
int HRNumber;
boolean CacheFlag;
char *TaskName;
int X;
intY;
long Time;
char *Input;
char *Output;
int ParentCount;
union Previous {
struct Entry *ParentChain;
struct HistoryRecord *Parent;
5
int ChildCount;
union Next {
struct Entry *ChildChain;
struct HistoryRecord *Child;
JH
5
struct Entry {
int path;
struct HistoryRecord *hrPtr;
struct Entry *Next;
5
The HRNumber field is a unique identifier for each history record. The X and Y fields are
the coordinates of the lower-left corner of the history record’s enclosing grid cell. The
Time field records the time at which the history record is appended to the control stream.
Input and Output fields store lists of names for input and output objects, respectively.
When the ParentCount field is one, the Previous field contains a pointer to the record’s
parent. Otherwise, the Previous field contains a pointer to a chain of pointers to the his-

tory record’s parent nodes. Similar interpretations are true for the ChildCount and Next
fields.

When a new history record is appended, the Next and Previous fields of the associ-
ated history records are manipulated accordingly. However, there is the question of
where in the control stream should the new history record be appended. Because history

records are appended to the control stream after the corresponding tasks are completed, it
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is not possible to determine the "appending” point when a task is first invoked. The com-
plication arises from the fact that while a task is being executed, users may change the
current cursor to another design point of the control stream to invoke new tasks, or other
tasks might be completed during this period, which advance the current cursor. Conse-
quently, the current cursor at the time when a task is invoked is not necessarily the same
as the one when this task is completed. Therefore it is not correct to append a new history

record wherever the current cursor is located.

We solve this problem by imposing the following convention: a history record
should be appended to the logical path of the current cursor at the time when the
corresponding task is invoked. Consequently we can represent the appending point of a
task’s history record with a pointer to the current cursor when the task is invoked (called
the invocation cursor), and a path number. When a new history record is to be appended,
the activity manager traverses the control stream starting from the invocation cursor until
reaching the end of the path denoted by the path number, to which the new history record
is appended. If, during the traversal, a branch is encountered, the history record is
instead inserted before the branching history record. As shown in Figure 5.6, the newly
completed history record is inserted into the control stream at the design point marked
the insertion point. The rationale of the latter design decision is that there should not be

branches between where a history record is actually inserted and its invocation cursor.

An important service provided by the design activity manager is rework. Users
move the current cursor to existing design points to experiment with different design
operation sequences against a particular snapshot of the design database. Because of the
single assignment update semantics, implementation of the rework mechanism is reduced
to a name management facility, specifically a mapping from object names to their most

recent versions in the data scope, the thread state of the current cursor.

The data scope could change either because a new history record is added or
because users move the current cursor. When a history record is added to the control
stream, its inputs and outputs are added to the data scope if the current cursor is the same
as its insertion point. Otherwise some cache entries may need to be updated, as discussed

below. When users move the current cursor, the new data scope can be computed by a
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Figure 5.6 Inserting a Completed History Record

simple backward traversal of the control stream starting from the new current cursor.
During this traversal, if a node has more than one parent (because of thread merges), all
of them need to be visited. On visiting each. history record, the inputs and outputs of the
history record are collected and ordered according to the lexical order of their names and

version numbers.

The activity manager optimizes the computation of the data scope by caching the
thread states of certain design points in the control stream. As a result, the computation
of new data scopes can stop as soon as the backward traversal of the control stream
reaches a design point whose thread state has been cached. New history records can
attach to a design point that is a logical predecessor of another design point whose thread
state has been cached. Consequently the insertion of new history records may lead to
modifications of the cached thread states. If a design point’s thread state is cached, the
CacheFlag field of the associated history record is turned on. Thus, when a new history
record is inserted, rather than appended, to the control stream, the activity manager must

traverse the following history records. It must update the cached thread states when it
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finds history records whose CacheFlag is on. Updating the cached thread states involves

inserting the output objects of the new history record.

One important feature that distinguishes Papyrus from other design management
systems such as VOV is that it provides facilities for users to manipulate design threads as
first class objects. With this capability, users are free to choose the granularity of a
design thread based on specific needs. The semantics of forking a new thread from an
existing thread is to copy the latter’s thread workspace, control stream, and frontier cur-
sor set to the former. Since these data structures are stored persistently, implementation
of forking is relatively straightforward. A special case of forking is to only copy the
thread state of a particular design point in another design thread. In this case, only the
portion of the control stream involved in the computation of the design point’s thread

state is copied and the specified design point is the current cursor.

To join (or cascade) two threads to form a new one, the thread workspaces of the
original threads are unioned and copied. The control streams of the original threads are
duplicated and connected at the specified connector design points. Because connector
design points are required to be frontier cursors, cached thread states from the original
threads are still valid even in the merged new thread. Therefore they can be reused. This
is not true when cascading two threads. In this case the cached thread states of the fol-
Jowing thread must be recomputed by incorporating the thread state of the connector
design point of the preceding thread. In both cases, the new frontier set is obtained by

unioning the original threads’ frontier cursor sets minus the connector design points.

5.4  Storage Management

One fundamental assumption made by Papyrus is the single assignment update
semantics: updates to an object are not performed in place but rather create new versions.
Although this assumption simplifies the conceptual model and many implementation
issues related to the rework mechanism, it drastically increases the storage overhead if
appropriate measures are not taken. We call the techniques used in Papyrus to address

this problem object reclamation. This is provided by a process independent of the
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activity manager. It communicates with the activity manager through the persistent ver-

sion of the design history.

The idea of reclamation is that the entire thread workspace is treated as a /tmp file
system in UNIX. Intuitively, the disk space of versions of design objects are reclaimed if
they are not accessed for a specified period of time. By "reclaimed,” we mean object ver-
sions are either deleted or archived to a tertiary storage subsystem such as a tape device.
The current implementation simply deletes the reclaimed versions. But the interface is
general enough so that automatic archiving is possible when a tertiary storage device
becomes available. On the other hand, Papyrus doesn’t base the reclamation decision
solely on a single last-time-to-access attribute. Instead it analyzes the design history
maintained by the activity manager and attempts to reclaim those object versions that are

least likely to be needed in the future.

Because users are allowed to move the current cursor, there are conflicting con-
siderations as far as version reclamation is concerned. On the one hand, the system
should allow users to move the current cursor to arbitrary design points in a design
thread. On the other, to provide more focused contextual information to designers and to
make efficient use of the available storage space, it is necessary to prune away unneeded
or useless history records and their associated object versions whenever possible. The
issue then is how to maintain the balance between keeping the most relevant portion of a
design thread’s history and supporting "meaningful" reworks. In the following, design
points in a design thread that can create branches in the control stream are said to be
reworkable. Currently we use three mechanisms in Papyrus: filtering, aging, and gar-

bage collection.

Filtering

Users can specify a set of tasks to be monitored by the activity manager. In other words,
any task invocations not in the set will not be maintained by the activity manager. For
these, the history records passed from the task manager are simply discarded. Example
tasks not typically maintained by the activity manager include "facility” tasks, such as

printing or displaying something on the screen. These usually have no influence on the
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design. Since they are not an integral part of the design process, the activity manager can

get away with maintaining them in the design history.
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Figure 5.7 The Effect of Vertical Aging

Aging

From the user’s standpoint, it is generally true that the relevance of history records to the
current design context decreases with their age. Old history records should be abstracted
away so that only sufficient historical details are preserved. There are two ways to exploit
the aging mechanism to reduce the amount of historical information: vertical and hor-
izontal. Vertical aging refers to level compaction based on the ages of task invocations.
In particular, the details of past task invocations can be progressively "forgotten” as they
get older. For example, in Figure 5.7, both Netlist and Place_Pads are composite tasks
that contain subtasks. As they become old, their internal details are abstracted away as
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shown in the other side of the arrow. Horizontal aging refers to the process of reclaiming
the part of the design history that are too far back in time. For example, in Figure 5.8,
Netlist and Place_Pads are are pruned away from the design history when they get old.
The "*" sign shows that there are history records before that point but they have been
reclaimed by the design activity manager. All of these "forgetting" operations (vertical or
horizontal) involve deleting intermediate data objects and the associated history records.
Currently the way the design activity manager "forgets" the history is by actively remind-
ing users that some part of the design history will to be pruned away. Only when users

approve the activity manager perform the pruning operations.
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Figure 5.8 The Effect of Horizontal Aging

Garbage Collection

The term garbage collection, as used here, refers to a general procedure for finding
"abandoned" history items. There are two possible types of abandoned history items. In
an iterative refinement process, a sequence of task invocations is iterated several times.
Typically only the results of a small subset of the iterations are used later. The garbage
collector abstracts the entire iterative process with the small subset that is actually used,

and eliminates the history elements associated with the remaining iterations. The current
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implementation of Papyrus is not intelligent enough to discover iterative processes from
the history. The user must provide explicit hints identify sequences of task invocations
corresponding to iterative processes. For each such iterative sequence, the garbage col-
lector finds all iterations (typically only one) whose outputs are used by later task invoca-
tions. Other iterations are pruned away. In Figure 5.9, refinement of a layout object by
iterative layout edits and circuit simulation is abstracted as a representative round (the
third round in this case). The numbers below the history records denote the round
numbers. They are shown only for the purpose of illustration.
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Figure 5.9  Abstraction of An Iterative Process

The other type of abandoned history elements is related to dead-end branches. A
design thread typically has branching structures that represent alternative development
paths. Some of these are no longer needed because the corresponding design alternative
is found to be inadequate. The garbage collector recognizes these kinds of branches by
maintaining a list of branches that contain at least one of the frontier cursors, together
with their last access time. A frontier branch is marked as a dead-end when the difference
between the last access time and the current time exceeds a certain threshold. Again, for

safety reasons the activity manager will actively ask for users’ approval when attempting
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to eliminate these abandoned history elements.

5.5 Summary

In this chapter, we described the implementation issues of the design activity
manager and the solutions developed in Papyrus are described. The design activity
manager has to present a graphical view of the control stream of design threads for users
to manipulate the design history. In particular, both browsing and query mechanisms are
provided to examine the design history and to access specific design points. It also needs
to maintain the internal structure of the design history and computes the data scope to
support the rework mechanism. The computation of data scope is facilitated by caching
intermediate thread states, which in turn lead to cache consistency problems when new
history branches are created. Lastly, through object reclamation, the design activity
manager attempts to reduce the storage overhead due to the single assignment update
semantics. Because the history of design threads are stored persistently, it is possible to
apply the design history information for other purposes than supporting rework. In the
next chapter, we will describe a particular application of design history: automatic infer-

ence of design metadata.
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Chapter 6

Automatic Metadata Inference
Based on Design History

6.1 Introduction

Engineering design data is comprised of internal and external structures. Internal
structure are the data structures and data formats used to represent design objects, e.g.,
ASCII texts for source codes and graphs for VLSI layout. External structure denotes the
abstract attributes extracted from internal representations, and the interrelationships
among design objects. First-generation engineering design databases [HARRS86] focused
on the storage and retrieval of the internal structures of design objects while second-
generation design databases [CHAN89] provided a richer set of primitives to define,
create, and manipulate inter-relationships among design objects. The next evolutionary
step along this line has been called object management systems (OMS). The central
notion of an OMS is an object abstraction, whose granularity is independent of files in a

file system. Objects are logical entities as seen from the applications while files are
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physical storage units. Users or applications access objects through access interfaces pro-
vided by an OMS rather than traditional file system calls.

Two central data structures supported by an OMS are type and relationship. A type
system allows categorization of object behavior, and provides certain degrees of protec-
tion depending on how "strong" the typing mechanism is. The type of an engineering
object is an intrinsic property of that object and typically can be determined at its crea-
tion time. For example, a layout object, when created from an automatic placement and
route tool, is an object of type "layout”, which in turn implies that only a specific set of
tools can be applied to it. A relationship management system of an OMS treats inter-
object relationships as first-class objects and manipulates them directly, rather than
indirectly through objects involved in the relationships. First-class relationship objects
offer more powerful modeling capabilities than previous systems, as well as opportuni-
ties for physical storage optimization, such as object clustering [CHAN89]. In summary,
typing is a powerful mechanism to abstract the semantics of individual objects and rela-

tionships are particularly useful in capturing the interaction among objects.

Current object management systems [CLEM85] [SKAR86] [HUDS88] [DUEX90]
[KIM90] support these two concepts to a varying extent, with the assumption that object
types and inter-object relationships have somehow been established. However, it is not
clear how type and relationship information are created in the first place. We use the
term meta-data to refer to object types, per-object attributes, and inter-object relation-
ships. Users of the above systems are required to supply meta-data themselves, which
seems to be both disruptive and error-prone [CHAN89]. To solve this problem, we pro-
pose a novel design data management paradigm based on a design’s history, from which

design meta-data can be deduced and maintained in a completely transparent fashion.

This approach can be seen as a generalization of the recent trend in data manage-
ment systems development: more and more application-specific semantics associated
with data are captured and exploited by the system. In VLSI design, most work is per-
formed through invoking CAD tools. Accordingly VLSI design database systems evolve
to manage both design data and design processes. As a result it becomes possible for the

underlying object management system to provide better services by exploiting the
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semantics of data objects and design tool executions. We build on this observation and
propose an automatic approach of building up design metadata by capturing and exploit-

ing how design objects are created and manipulated.

The rest of this chapter is organized as follows. Previous research efforts that are
related to this work are reviewed in the second section. Section 6.3 introduces two dif-
ferent approaches towards representing design history, and sets up the stage for explain-
ing meta-data construction algorithms. The algorithms for constructing design meta-data
based on this framework are presented in Section 6.4. Examples will be shown to illus-
trate the power of the proposed paradigm. Section 6.5 concludes this Chapter with a sum-

mary of major research developments.

6.2 Related Works

In this section, we summarize some previous attempts at building up meta-data
automatically. Xerox’s Cedar [SWIN86] has an automatic make facility called MakeDo
that can determine the dependencies among source code objects by examining the files
contents. In other words, the makefile for a software system can be transparently syn-
thesized according to the internal references among software modules. Morcover, Mak-
eDo has a limited capability of inferring the re-build procedure from the dependency
relationships among design objects. IDEAS [MEHMB87][TAYLS87] offers a design file
tracking mechanism in which the system records a set of attributes during creation of a
design object. Among these are the type, the source, and destination attributes. The
source attribute records the input files and the operations involved in creating the object,
thus implicitly constructing a re-build procedure for this object. The destination attribute
maintains where the object is used, thus providing information about all the downstream
objects that will be affected by a change of this object. By combining these two attri-
butes, the system can locate all objects affected by a modification and automatically re-
builds them transparently. VOV [CASS90] is an automatic design manager that is based
on the concept of design traces, which are operation records left by circuit designers. By

recording design operations in a bipartite acyclic graph, a "retracing” facility can re-
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execute portions of recorded operations when a modification is made, thus bringing
related design configurations into a consistent state. A design trace is basically a data
dependency graph, augmented with the operations that are involved in creating these
dependencies. These three systems aim at maintaining the consistency among design
modules across modifications by tracking dependency relationships. No other meta-data
are built automatically.

Language-directed editing environments like the Cornell Synthesizer Generator
[REPS83] incrementally construct the internal structures of a program. The central for-
malism used in syntax-directed editing is artribute grammar, which captures language-
specific semantics through semantic equations associated with context-free grammar
rules. The internal representation of language-directed editors is an annotated program
parse tree. An optimal attribute evaluation algorithm [REPS83] was developed to incre-
mentally update the attribute values associated with the nodes of a parse trees that are
affected by a modification. Cactis [HUDS88] allows specifications of attribute evaluation
rules in terms of local attributes within an object and remote attributes carried through
inter-object relationships. The system implements an incremental evaluation algorithm

for handling the attribute evaluation dependency graph

In essence, our work applies the same idea used in syntax-directed editors at a
higher level of abstraction to incrementally build up useful information for design
objects. Because the meta-data inference algorithm is based on the notion of design his-
tory, the history representation model will be discussed first in the next section.

6.3  Models of Design History Representation

Recording what users did in a form of history has been known to be a useful
mechanism for providing operation REDO/UNDO and other services [LEE92]. Some
command interpreters provide some sort of history mechanism for reusing earlier actions,
possibly with some modifications, e.g., the history facility in C-shell. Unfortunately the
power of the history mechanism is not fully explored in these systems. One of the major

contributions of this chapter is to show that it is possible to infer useful meta-data from
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recorded design operation history. In this section, two representation models of design
operation history --- operation-oriented and data-oriented --- are presented and com-

pared.
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Figure 6.1 The Operation-oriented Design History Representation

The operation-oriented model focuses on the performed design operations, the
records of which form the control stream of a design thread. C-shell’s history facility is
an example, but it only allows linear control streams, where commands are ordered by
temporal sequencing of the operations. As shown in Figure 6.1, a thread’s control stream
(for a session of VLSI design) consists of an sequence of interleaved history records
(rectangle) and design points (arrow). A history record corresponds to a design operation
including the tool name and its execution options. Because of the rework mechanism
explained in Chapter Three, a thread control stream can actually have a branching struc-
ture. Consequently history records in the operation-oriented representation model are
normally stored in the temporal order in which their corresponding design operations are
executed. Users can override that order by moving the current cursor to create branches.

Temporally adjacent design operations in a thread don’t imply data dependency
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relationships among them, although they usually do. This history representation
preserves high-level design development patterns as branching design operation
sequences. More importantly, it supports the idea that a design can be rolled back to an

earlier state, providing a powerful mechanism for exploring the design space.
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Figure 6.2 The Data-oriented Design History Representation

The data-oriented design history focuses on the use and used-by relationships, i.e.,
data dependency relationships, among design objects, supplemented by the design opera-
tions involved in creating these data dependencies. The data-oriented history representa-
tion is independent of the temporal order of their execution. We call the data-oriented
history representation an augmented derivation graph (ADG). Figure 6.2(a) is the
corresponding ADG of the activity control thread in Figure 1. Each circle inan ADGis a
design object and each arrow represents an instance of a CAD-tool invocation, which

includes the control parameters and auxiliary files. It is a graph because an object can
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have more than one input and it itself can be used as an input in more than one place.
Figure 6.2(b) shows the graphical representation of the case when a design operation
requires more than one input. VOV’s design trace [CASS90] is an expiicit form of ADG
while IDEAS’s source/destination attributes [MEHMS87] implicitly contain all the infor-

mation in an ADG.

In contrast to most history database systems, these two representation models are
based on operation logging rather than on snapshots of previous database states. We
believe that the paradigm of capturing and analyzing operation history is much more
powerful than simply maintaining history snapshots. This is particularly true in situa-
tions where the semantics of operations can be precisely characterized, as in a VLSI

design environment.

It is interesting to contrast these two design history representations with data/control
flow graphs used in language compilers. Thread control streams exhibit high-level
development patterns just as control flow graph shows how control is passed around in a
program. Augmented derivation graphs maintain data dependency relationships among
design objects as data flow graphs, plus the operations creating the dependencies. It
should be emphasized that activity control threads and augmented derivation graphs are
really separate logical concepts, although they can be implemented in one physical data
structure. Both are essential from a design management system point of view. the proper-
ties and usage of thread control streams have been examined in Chapter Three. In the
next section we will focus on how meta-data can be inferenced from the augmented

derivation graph of a design’s history.

6.4 Incremental Meta-data Construction

Building the external structure of design objects while users create and manipulate
them has been pioneered by language-directed program editors [REPS83], in which
abstract program representations are computed as users edit the program sources. This
immediate computation paradigm not only eliminates unnecessary declaration and mani-

pulation on the part of users, but also makes efficient use of the otherwise unused
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hardware cycles. Based on the same idea, we propose a new design data management
paradigm. Instead of requiring users to explicitly supply meta-data, the system observes
what users did and automatically infers meta-data without user intervention. Underiying
this new paradigm is the augmented derivation graph of a design’s history. Our approach
infers and constructs meta-data incrementally from an ADG, taking into account such

domain knowledge as the semantics of design objects and CAD tool executions.

One can draw an analogy between an augmented derivation graph and an annotated
parse tree representation of a program, with each tool execution corresponding to an
instantiation of a grammar rule, and the outputs and inputs of a tool execution to the left-
hand-side and right-hand-side of a grammar rule, respectively. In Figure 6.3(a), b, C, and
d are syntactic elements that are aggregated into A when the grammar rule is instan-
tiated; in Figure 6.3(b) the tool execution takes three input objects, b, C, and d, and pro-
duces an output object A. Just as the semantics of a language are encoded in the semantic
equations associated with attribute grammar rules, the semantics of tool executions are
captured in terms of how abstract information about design objects are evaluated as a
side effect of tool executions. In language-based editors, attributes are evaluated as a
result of the instantiation of grammar rules during the incremental parsing process. In our
approach, meta-data such as attributes and relationships, are established as a by-product

of CAD tool executions.

e
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Figure 6.3 The Analogy Between A Tool Application and A Grammar Rule
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6.41  Type Inference and Attribute Evaluation

The first kind of information about a newly-created design object is its zype. In
VLSI design, an object’s type can usually be inferred from the tool that creates the
object. For example, the output of a behavior-to-logic translator is an object of type logic.
With the type information, the system can detect incompatible tool applications, e.g.,
invoking a layout compaction tool on a logic object. Specifications of the type of a tool’s
output are encapsulated in a data structure associated with each CAD tool, which we call
the tool semantics description (TSD). An object of a certain type typically has a specific
set of attributes that are useful in abstracting the object’s behavior. For example, an
object of type layout can have attributes such as the critical path delay and area, and a
logic object can have attributes such as the number of minterms and worst-case delay.
These type-specific attributes of an object provide a concise representation for that
object.

For practical purposes, there are three kinds of attributes: administrative, intrinsic,
and propagated. Administrative attributes refer to those attributes that are conventionally
supported by the file system such as the owner, time of last modification and access con-
trol information. We won’t consider these attributes any further in this chapter. Intrinsic
attributes refer to those attributes whose values are evaluated by applying some measure-
ment tools, e.g., the power consumption of a layout object, the area used by a logic object
implemented in Programmable Logic Arrays (PLA). These attributes are intrinsic
because their values depend only on the object itself. The values of propagated attri-
butes, in the most general form, depend on both the object itself and other objects that
have certain relationships with the original object. A typical example is the area attribute
of a composite layout (an object has other objects as submodules) is the sum of the areas

of contained objects and that of its own, including the interconnections.

When an object is created (it is called the triggering object hereafter), the system
examines the TSD of the creating tool to determine the object’s type. By consulting with
the type specification associated with the object’s type, a set of attributes are automati-
cally artached to the object. The type specification also contains the procedures to com-

pute intrinsic attributes. These procedures are deposited into the object when the
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attributes are attached. In our system, the values of intrinsic attributes can be either
evaluated explicitly using the measurement tools or inherited from the inputs used in
creating the triggering object. For example, running a two-level logic minimizer on a
logic object implemented in PLA form could change the number of minterms (the length
of PLA) but not the number of inputs and outputs (the width of PLA). Included in each
tool’s TSD is an inherit list, which specifies the set of attributes that can be propagated
from inputs to outputs through the tool execution.

Values of the intrinsic attributes that are not in the inherit list of the creating tool’s
TSD need to be re-computed. Computation of these non-inheritable attributes are com-
pletely transparent to users and can take place either lazily or immediately. Lazy evalua-
tion means demand-driven, i.e., attribute values are computed only when they are actu-
ally needed. This mechanism is useful because attribute computation could consume
substantial resources and therefore should be performed only when absolutely necessary.
Immediate evaluation means data-driven, i.e., attribute values are computed when data
arguments becomes available. This is typically used in constraint attributes, where con-
straint violation should be detected as early as possible, or in index attributes, whose
values are needed to put the triggering object in the index. The computation mode of
intrinsic attributes is part of the type specification.

Figure 6.4 shows the Tool Semantics Description for the two-level logic minimizer
espresso. This TSD declares that the output of espresso can be either a logic object of
algebraic equation format or a logic object of PLA format, depending on the parameter
setting when the tool is invoked. The inherit list enumerates the attributes that won’t be
affected by this tool, i.e., they can be propagated from inputs to outputs. In this example,
the number of inputs and outputs won’t be affected. The composition tool flag indicates
whether or not this tool is a composition tool. The execution semantics vector specifies
the transformation semantics of this tool. We will discuss composition tool flags and exe-
cution semantics vectors next.

Values of propagated attributes depend on local (attributes of the triggering object)

as well as remote (attributes of other objects) attributes. Typically remote attributes
belong to objects that are related to the triggering object through certain relationships. In
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composition tool flag : NO

execution semantics vector :

behavioral : 1
logic : 0
physical : 0

output object type/format :
-0 eqntott: logic/equation

-0 pleasure: logic/PLA
inherit list:
number of inputs

number of outputs

Figure 6.4 Tool Semantics Description of espresso

practice, propagated attributes are almost always used to propagate semantic information
up and down the configuration hierarchy. In other words, the remote objects on which an
object’s propagated attribute depends either contain as components, or are components of
the latter. An example of propagating information up the design hierarchy is that the
power consumption of a composite layout object is the sum of those of the component
objects, plus its own. An example of propagating information down the design hierarchy
is that the I/O specification (e.g. pin mask layer) of a component should conform to part
of the I/O specification of its composite object.

Unlike Cactis [HUDS88], where propagated attribute evaluation rules are encapsu-
lated with design objects (Figure 6.5(a)), our model associates propagated attribute
evaluation rules with the relationships, as shown in Figure 6.5(b), where the bold arrow
indicates that it is the evaluation rules associated with the physical type that are triggered.

That is, each relationship can have a default set of semantic equations that evaluate the
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propagated attribute values of the objects that are involved in this relationship. More-
over, the evaluation rules are tailored to the type of objects involved in the relationship.
For example, a configuration relationship among layout objects may have a different set

of evaluation rules than those of configuration relationships among logic objects.
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Figure 6.5 Encapsulating Evaluation Rules with (a) Individual Objects, or (b) Relationships

Encapsulating evaluation rules within relationships objects rather than within design
objects has the following advantages. First, specifications of evaluation rules can be
shared among all objects that have the same kind of relationship with others. Second, it
becomes possible to transparently compute propagated attributes without the user’s regis-
tration of evaluation routines because there is always a default set of evaluation rules
available. Third, by keeping evaluation rules with relationships, one can essentially treat
a design configuration hierarchy as a program parse tree, with each configuration rela-

tionship corresponding to a derivation step in syntax-driven editors. Consequently, the
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incremental attribute evaluation algorithm developed in [REPS83] becomes readily
applicable to re-compute the attribute values in response to modifications to design
objects. The disadvantage of this approach is that the evaluation rules can not accommo-
date object-specific attribute evaluation rules, and thus is less expressive. However,
those attributes probably should be managed by individual CAD tools anyway, rather
than by the underlying object management system.

In summary, when an object is created, the object’s type is determined based on the
creating tool’s TSD. The set of attributes associated with that type are then attached to
the object. Values of intrinsic attributes are evaluated in the background, either lazily or
eagerly. Propagated attribute values are evaluated only after the object’s relationships
with other objects have been established. Once established, the rclatiohships together
with the object’s type determine the appropriate set of evaluation rules for computing the
propagated attributes. The important point is that all these computations take place com-
pletely transparently to the users. From the user’s standpoint, once an object is created,
s/he can assume that its type information and associated attributes are automatically esta-
blished.

6.4.2  Relationship Establishment
The Version Server [CHANS9], developed at U.C. Berkeley, supports the creation

and maintenance of three kinds of relationships: version, configuration, and equivalence.
Unfortunately these relationships must be made known to the system by users through
procedural interfaces or interactive commands [CHANB89]. Because it is the user’s
responsibility for relationship declarations, the design process tends to be interrupted by
these bookkeeping operations when new objects are created. Moreover explicit relation-
ships declaration has the disadvantage of being error-prone because users may forget to
declare these relationships. Therefore an automatic way of establishing inter-object rela-
tionships is very desirable. In this section, we show how these relationships can automati-
cally be inferred from the augmented derivation graph of a design’s history when supple-

mented with tool semantics descriptions.
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Let us define the meanings of version, equivalence, and configuration relationships
as used in this context. As in the Version Server, we assume an object’s name is of the
form Entity_Name.Representation_Format.Version_Number, e.g., ALU.logic.1. How-
ever, our algorithm applies to other naming formats. Version numbers are automatically
generated by the system when an object is created. Version relationships relate ancestors
and descendents. An object is a descendent (ancestor)version of the other if the former is
derived from the latter (or vice versa), and they are of the same entity-name and
representation. Two objects are equivalent if they are just different representations of the
same logical entity and one is directly derived from the other. For example, a behavior
description of a circuit module is equivalent to a logic equation description of the same
module that is derived from it, e.g., ALU.logic.1 and ALU.layout.2. The difference
between version and equivalence relationships lies in whether the transformation that
relates two objects changes the underlying data representation. For example, an object
created by applying logic minimization on a logic equation object is a version of the
latter, whereas an object created by applying a PLA layout generator on a logic equation
object is an equivalence. Note that version is a non-associative relationship while
equivalence is an associative relationship. Configuration relationships express is-a-
component-of and is-composed-of relations among design objects. For example, a

register-file object is composed of a decoder object and an array of register objects.

The goal is that when a new object is created, the version, equivalence and
configuration relationships in which this object participates are automatically extracted
from the augmented derivation graph. For equivalence and version relationships, the
basic algorithm, shown in Figure 6.6, performs a backward breadth-first-search traversal
of the augmented derivation graph starting from the triggering object. When visiting each
node, the algorithm checks whether this object has the same name and representation as
the triggering object. If so, the algorithm finds the triggering object’s immediate ancestor
version, establishes a version relationship between this object and the triggering object,
and stops. If the visited object has the same name but with a different representation,
then this object is an equivalence of the triggering object. The algorithm stops in the fol-

lowing situations:



[1]

(2]

(3]

116

Start_Breadth_First_Traversal(Triggering_Node);
While (Not Stop_Criterion()) {
Node = Next_Breadth_First_Traversal();

Check_For_Version(Node, Triggering_Node);

Check_For_Equivalence(Node, Triggering_Node);

If (Exist (Anode = Ancestor(Triggering_Node))

Establish_Inherited_Equivalence(

Anode, Triggering_Node);

Figure 6.6 Version and Equivalence Relationships Algorithm

When the algorithm reaches an arrow of the ADG that doesn’t have inputs. This
means that the tool represented by the arrow doesn’t have inputs, e.g., an object

created from an editor from scratch.

When the immediate ancestor version is found, then there is no need to perform
further traversal. Depending on the execution semantics of the tool execution
sequences between the triggering object and its immediate ancestor, the former may

be able to inherit some of the equivalence relationships from the latter.

When an arrow has multiple inputs, i.e., the tool executes a "composition” opera-
tion. For example, a layout module can be constructed from several submodules
through a macro-cell placement and route tool. In this case, the algorithm stops,
knowing that the triggering object does not have an immediate ancestor because it is

composed from lower-level modules.
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Note that the inheritance mechanism used in [2] is more general than those pro-
posed in [CHANS9] because it takes the tool execution semantics taken into account. As
shown in Figure 6.4, the execution semantics of a tool execution is represented as a vec-
tor, with each bit corresponding to a particular type of representation in the system. In
our system, only three types behavioral, logic, and physical are supported. The algo-
rithm described below, however, is applicable irrespective of the type system. The execu-
tion semantics vector of a CAD tool specifies whether this tool changes the semantics in
the respective representation. For example, a logic minimizer "espresso” will not change
the behavioral-level semantics, but will change the logic-level and physical-level seman-
tics. Therefore, its execution semantics vector is 100. In general, the execution seman-

tics of a tool execution sequence S that contains Ty, Ty, .. , T, iS defined as
i=n
ESV(S)= A'N1D ESV (i)
i=

where ESV(i) and ESV(S) are the execution semantic vectors of the i-th tool and the
whole tool execution sequence, respectively. A 1 entry in an ESV means that the tool
execution sequence preserves the semantics along the corresponding representation
between two objects, and therefore allows equivalence relationship inheritance in that
representation. Given that the ESV of the tool execution sequence between the triggering
object and its immediate ancestor, the triggering object can inherit the equivalence rela-
tionships of its ancestor for those types whose corresponding bits in ESV are 1. In our
example, assuming that ESV(S) is 100, then the triggering object can inherit its
ancestor’s equivalence relationships along the behavioral domain, but not logic or physi-

cal domains.

For practical reasons, it is possible to selectively trigger the relationships establish-
ment procedure. Users can customize their environment by declaring beforehand that the
relationships establishment procedure will be initiated only when the newly created
object’s data format belongs to a particular set. The same idea can be used to reduce the
number of equivalence relationships associated with an objects. That is, only certain
kinds of objects can have equivalence relationships with others. This selectivity mechan-

ism is important in a VLSI design environment, where a great variety of data formats are
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used and most of them are intermediate temporaries, so it is not necessary to keep track

of their relationships.

Simply examining the augmented derivation graph is not enough to infer the
configuration relationships. The problem is that in addition to the class of "composition”
tools, interactive editors can also include submodules, which are not observable from the
augmented derivation graph. The system uses the following approaches to establish

configuration relationships.

[1] If the creating tool is a "composition” tool, i.e., the compositional tool flag is set to
g p
"yes," then a configuration structure object is created with the inputs to this tool as

components.

[2] If the creating tool can potentially build up configuration relationships, e.g., an edi-
tor, then the system will actively ask users to explicitly specify the component
objects included during the editing session. This is the only place in our system
where user intervention is needed to build up meta-data. Configuration relation-
ships need not be built up all at once. They can be constructed incrementally as the

corresponding design object evolves.

As an illustration of relationships establishment, Figure 6.7 shows part of the meta-
data constructed out of the augmented derivation graph shown in Figure 6.2. Note that
the equivalence relationship is transitive except when the objects in question have the
same name and representation. Therefore CRTL.pla.1 is equivalent to CRTL.bds.1, but
CTRL.pla.1 and CTRL.pla.2 are not equivalent. Also note that CTRL.layout.2 inherits
the equivalence relationship from its immediate ancestor CTRL.layout.1 because the
ESV of the compaction tool “sparcs” is 110, meaning that it is legal to inherit the
equivalence relationships along the behavioral and logic domains. CTRL.layout.3 and
CTRL.layout.4 form a separate version derivation path because they are completely
independent of the path formed by CTRL.layout.1 and CTRL.layout.2. Other relation-
ships can be similarly deduced.

In summary, when an object is created, the system consults with the creating tool’s
TSD to establish the associated configuration relationship, and a backward traversal of
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Figure 6.7 Established Relationships for ADG in Figure 6.2

the augmented derivation graph starting from the triggering object is initiated. During the
traversal, associated version and equivalence relationships are created by checking each
visited node. Finally, the equivalence relationships that could be inherited from the
triggering object’s immediate ancestor, if any, are located and established.

6.4.3 Discussion

In a broader sense, the idea of using history information to predict systems behavior
has been around for a long time. The various virtual memory replacement policies such
as least-recently-used and FIFO are just an example. Except in those cases, the history of
the objects in question is compressed in a form that can speed up the processing, perhaps
at the expense of prediction accuracy. In our case, since we need to maintain the design

history for rework and reuse anyway, the additional effort to reap the benefit of
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extracting useful information from design history is considered well justified.

On the down side, one of the limitations of this paradigm is that the system has vir-
tually no knowledge of the behavior of interactive CAD tools because of the difficulty of
specifying the semantics and of tracing the I/O behavior of interactive tools. However, as
VLSI design evolves towards higher levels of abstraction, this limitation is expected to
be less of a problem. Alternatively, one can use the so-called embedded tool encapsula-
tion [KRAF91] technique to intercept the interactions between interactive tools and the
file system, and records the data dependency relationships among design objects. How-
ever, this technique requires modifications to the operating system kernel, and is thus less

portable.

The other criticism about this approach is that the system needs extra knowledge to
analyze the design history. In our case, they are tool semantic descriptions and data type
specifications. However, as we indicate earlier, there seems to be a trend to endow on
the data management system more and more domain-specific semantic knowledge. It
seems to us that the question is really how easily this knowledge can be embedded into
the system, rather than how much. That is, it is more of an interface issue than an archi-
tectural one. We also found that this paradigm can be applied to solve some of the old
problems encountered before. For example, based on the history information, a version
management system can make a more intelligent decision when it needs to restrict the
extent of constraint and change propagation, e.g., by analyzing their dependency relation-
ships. As another example, automatic integrity validation can be performed on a design
object that is to be checked into an archive, based on the object’s derivation history. It
would be interesting to explore the possibility of structuring the history mechanism in a
more modular architecture so that it can serve as a unified framework for various high-

level design management services.
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6.5 Conclusion

Because of extensive usage of CAD tools in VLSI design, it is possible for the
design management system to record the design history and infer useful information from
it, taking into account the tool execution semantics. We show that there are two kinds of
design history representation: thread control stream and augmented derivation graph,
and argue that both are essential for high-level design management. The activity control
thread offers a clean conceptual model for users to manage the design process. The aug-
mented derivation graph provides a unified framework from which useful meta-data can
be inferred. We apply the immediate computation paradigm as advocated by language-
directed editor researchers to engineering object management systems by treating each
tool execution as an editor command and the whole object base as an interrelated net-
work of objects. Based on this idea we are able to infer the meta-data of design objects
both incrementally and automatically. We examined three kinds of relationships sup-
ported by the Version Server in greater detail. The semantics of design operations, cap-
tured by ool semantic specifications, are used to determine the type of a tool’s outputs,
the set of attributes that can be inherited from the inputs by the outputs, to infer the
existence of configuration relationships, and to decide whether equivalence relationships

can be inherited from the ancestor by the descendent version.

In conclusion, in this chapter we have described an interesting application of design
history information. This approach offers a novel design data management paradigm:
Instead of requiring users to tell the system what meta-data are, the system simply looks
at what the users did and infer meta-data from the recorded history. During the inference
process, domain knowledge in the form of tool execution semantics are taken into
account to resolve potential ambiguities. To the author’s knowledge, this is the first
attempt at exploiting history information in ways other than providing operation
REDO/UNDO. The power of this paradigm scales with the amount of tool/object seman-
tics that can be specified in advance. As more refined semantic specifications of tools
and/or objects are made known to the system, we believe the proposed approach could

build up more varieties of sophisticated meta-data in an automatic fashion.
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Chapter 7

Conclusion and Future Works

7.1 Research Contributions

With the advent of powerful computer-aided-design tools and increasing complica-
tion of VLSI systems, the notion of circuit design evolves towards managing complexity
rather than manipulating electronic devices. The complexity in question includes those
inherent in design data as well as in the process of creating the design data. The latter is
attributed to the growing variety of CAD tools that are optimized for specific technolo-
gies and design methodologies, and may very well come from distinct developers with
different interface styles. Based on the belief that the key to further enhancing the
designer productivity does not lie in better CAD tools but a more responsive infrastruc-
ture, this thesis represents the first attempt at alleviating the design complexity associated
with design data and processes from an environment perspective. Therefore this thesis is
not about specific CAD tools that can optimize a specific aspect of VLSI design. It is
about support mechanisms that allow composition of a set of potentially heterogeneous
tools into a coherent design system, and that facilitate the integration of design data and

process management.
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From the very beginning of the project, we have recognized the fact that there is a
fundamental tradeoff between design generality and degree of design automation. This is
evidenced by the history of high-level synthesis research, where significant success can
only be secured by focusing on a specific class of design applications. As a result, we
adopt an assistance approach to solve the design complexity problem. That is, the system
helps circuit designers to accomplish certain design tasks, but it is the circuit designers
who have to decide what these tasks are. The rationale of this decision is the belief that
deciding what to do is what creativity is all about and cannot be delegated to machines in
the foreseeable future; however, automating or facilitating the how-do-do process is

where computers are superior to humans.

For circuit designers, the design complexity manifests itself in two forms: which
tools are most adequate to achieve a given objective, and what data objects are relevant
to a given task. The first problem is exacerbated by the unfortunate fact that a CAD tool
typically has dozens of command options that allow customization of a specific aspect of
the tool’s behavior. This makes correctly invoking a CAD tool a non-trivial matter. The
second problem is related to version management, but in a different light. The issue is
how to identify a set of object versions (or a configuration) during exploration of the
design space, or more specifically, how to relate configurations to the high-level design

alternatives they embody.

To address these two problems simultaneously, we take a semi-structured view
towards the VLSI design process: There are portions of a design process that are well-
understood and therefore can be specified in advance, and then there are the other por-
tions of a design process that involves exploration and refinement of various design alter-
natives. Based on this design process model, a set of support mechanisms and an imple-
mentation of these mechanisms are described in thesis. More concretely, the research

contributions of this thesis are:

e We developed a design process support model called the Light Weight Transaction
(LWT) model. A design task construct is devised to automate or to navigate the
users through the well-understood parts of the design process. A design thread
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construct reinforces the notion of contexts and provides the basis for exploring the
design space. The central notion of LWT is data visibility: users can operate on a
data object only when it is visible. By controlling the portion of the design data
space that is visible, this model provides a unified conceptual abstraction for explor-

ing the design space and for coordinating group work.

We proposed a conceptually intuitive and semantically powerful history mechanism
to organize VLSI design processes. The unique feature of this approach is that the
structure of the design history need not be linear; it can have branches. Operations
are provided for users to organize their design history in such a way that reflects the
high-level development patterns of various design alternatives. This history
mechanism adds a new dimension to design process management in particular, and
graphical user interface in general. Just as the desktop serves as a spatial metaphor
for organizing graphic objects on the workstation display, the branching history
offers an interesting temporal metaphor for users to manage their computation
activities.

We demonstrated the ideas proposed in the Light Weight Transaction model with a
prototype implementation that is built on top of the Sprite operating system, the
Tcl/Tk facility, and the Berkeley OCT CAD tool suite. This implementation
features an transparent load balancing scheme to exploit the computation power of
networked workstations, an atomicity-guarantee mechanism to preserve the high-
level abstraction of the design task construct, and a set of storage management tech-

niques for supporting the single assignment update semantics.

Based on the design history, we proposed a novel design management paradigm.
Rather than requiring users to supply design meta-data, the system maintains and
analyzes the design history to deduce the metadata, in particular, object attributes
and inter-object relationships, according to a suite of domain-specific knowledge
and inference procedures. This paradigm actually represents a generalization of the
approach used in syntax-directed editors. However, we apply the idea in the context
of design database management systems. Instead of using abstract syntax trees, a

special representation of design history called augmented derivation graph is used
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as the basis for design metadata inference. This paradigm opens a new way of
thinking about creating information that are interesting to the system, be that a user,
an operating system or a database system. The difference lies only in the suite of
domain knowledge and inference algorithms.

Although the idea of using history as a unified mechanism in Papyrus is unique
among contemporary systems that intend to address the same problem, in retrospect it
seems to be just a simple combination of C-shell history facilities, version management,
and the generalization of history-based prediction techniques (e.g.. LRU). Taken
together, however, it presents a clean abstraction to the users and a useful mechanism for
the system to perform metadata inference. Of course, it is foolish to claim that a single
piece of research such as this can address all the problems in managing design complex-
ity. Some advancements have been made, but there is still work to be done. The follow-
ing section documents some personal thoughts about how a future VLSI design system

will evolve and other lines of research inspired by this work.

7.2 Future Directions

7.21  What’s Next in VLSI Design Systems?

If one is to review the history of electronic design systems, there is a distinct pat-
tern: VLSI CAD systems is always one generation behind what is available in software
engineering environments. From storing design objects, managing versions, to supporting
processes, computer-aided software engineering systems seem to be invariantly one or
two steps ahead than their electronic contemporaries. Therefore the natural thing to do
when speculating the next generation of electronic CAD systems is to see what are the
research issues in today’s software engineering environments.

Until recently, most of the CAD systems research focused on the design aspect of
the problem. After all this is where the D in CAD comes from. But if one takes a life-

cycle view about an electronic product, it becomes clear that design is only one phase of

the cycle. There are also other phases such as maintenance and improvement. Whereas
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supporting design activities emphasizes the management of data and processes, mainte-
nance and improvement stress how to make it easier to understand a design. And that
calls for an electronic design system to provide support for documentation. To provide
documentation support is to help users create and to view documents. In the broadest
sense, design objects are themselves documents. The process of documentation involves
creating documents and associating them in such a way that it is possible to traverse
from one to the other and vice versa. The process of viewing documents involves choos-
ing a particular presentation order out of the set of related documents. Recent develop-
ments in hypertext systems have provided the necessary technology to make it possible
to embed a documentation system into a VLSI design environment. Initial research in
this direction has been reported in [SILV92]. A related issue to documentation is about
design library and archive management. Once facilities for documenting designs become
available, it is natural to apply these facilities to increase the possibility of reuse at vari-

ous granularities, i.e., from cells to macro-blocks to chips.

The other possibility is to focus on the managerial aspect of VLSI design, i.e., tools
and techniques developed to facilitate the management of a VLSI project rather than to
design circuits. In principle there is no difference between managing a VLSI design pro-
ject and other technology-oriented development projects. In practice, however, there are
two differences. First, most VLSI design teams are relatively small, i.e., less than ten
members. This implies a flat management hierarchy, e.g., only one level deep. Also most
teams tend to be self-managing. Computer support becomes more effective in this
environment because there is a close interaction between managers and team members.
Second, in VLSI design most of the work is carried out by running CAD tools. The pro-
ject progress is much easier to monitor and predict. In particular, the design history
mechanism can serve as an monitor aid for keeping track of current projects, and as a
useful hint for similar projects in the future. Although project management tools are
commercially available, there are few, if any, that actually exploit these two characteris-

tics.
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7.2.2 Other Lines of Research

One of the most important design decisions made in the Light Weight Transaction
model is the single assignment update principle: No updates are performed in-place; new
versions of the given object are created instead. While most researchers view this
approach as an expensive way of spending disk storage, it is actually rather feasible con-
sidering a 4 GByte helical scan tape only costs about $10 and a tape drive costs less than
$2000. This assumes an automatic migration daemon that keeps only the most recent
version of data objects on the disks. With this approach come a set of interesting possi-
bilities, for example, time travel between different states, automatic versioning, and log-
structured storage layout. There is no need for doing separate backup. The entire disk is
just a cache of the tertiary system based on tapes. This concept in essence requires the
file system to provide versions as first-class objects. There is another reason for support-
ing first-class versions. In environments where clients are not connected to the file server
all the time, e.g., portable computers without wireless connections, creating new versions
is the only logical alternative to allow continuous operations. The systems-supported
versioning mechanism is actually available in earlier systems such as TENEX and VMS.

The difference, though, is that these systems do not perform automatic migration.

The other interesting system research direction is to explore exactly how useful
operation history is and how expensive to maintain them inside the kernel. As we dis-
cussed earlier, operation history contains potential information that may be useful for
various parts of an operating system. Moreover, if user applications also need to access
operation history for various reasons as outlined in [LEE92], it seems more reasonable
for the operating system to provide history as a built-in service, rather than to let each
application duplicate the effort. The main thrust of this research direction is to explore
the potential ways in which operation history can be productively put to use, and to dev-
ise a flexible interface to a history mechanism supported directly by the operating system.
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7.3 Final Words

A piece of PhD-thesis research is about a vision. The vision underlying this work is
that it is possible to use a simple script and history mechanism to help circuit designers
manage their design process. As all visions that are worthwhile, it is almost impossible
to completely embody a new vision in one dissertation. I hope this work reported here

represents a new beginning of an exciting research endeavor.
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