ANALYSIS OF LONG-TERM UNIX FILE ACCESS
PATTERNS FOR APPLICATION TO AUTOMATIC FILE
MIGRATION STRATEGIES

Stephen Strange

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720

Abstract

A study of file access patterns can be useful in designing an efficient hierarchical
storage system that employs automatic file migration. This paper proposes a specific
design for such a storage system, and describes a detailed study of long-term file
access patterns on a number of UNIX filesystems in use at Berkeley. File access
traces are collected and used to drive a file migration system simulator. The results of
the study are used to support the argument that the proposed storage system design is
reasonable, and to propose file migration algorithms that might best suit the storage
system. Previous studies of this topic took similar approaches. However, they were
based on data collected ten or more years ago from systems designed very differently
than those of today. Also, because the storage capacity of memory and disks has
increased 50 to 100 times in the past ten years, there is good reason to question
whether the results of previous studies are valid for today's systems. Although the
distributed UNIX-based system we trace in this study is vastly different than the large
time-sharing systems used in previous studies, we find that some of the same types of
migration algorithms still perform well. Specifically, file replacement algorithms
based on multiplying the file size by the time since last access to obtain an ordering of
migration preference between files work well.

Table of Contents

.
1 INTOQUCHIONcuvieueeeeerneeenteteensean e saesessessesasessesassensesasssssansessensessensensensessassassasssassensessons

2 Design Assumptions for a Hierarchical Storage SyStemcccceererveueesessererseresseraraesens
2.1 Configuration OVEIVIEWccoeureecreseemrescrcsensesescsisssessssesesssssssssssssssssssssssssssesasans
2.2 Inode Structure EnhanCements...........ccccevereeeuerererereesnssenesesesesesssassesesesesssssesesenenses
2.3 Storage SyStem OPEIAtiONcceeeeeersusesererersesesssesesssssssesesesssssesssenssssesssesessseseseses
2.4 Migration Algorithms and SITateGiescccceeereeurerrreruersrereressesesesesusasssssessesenes
2.4.1 FetCh POLCIESccevevererererrirrereeserensnseressessnessssesessesesssesessssesessessssesessrens
2.4.2 Placement Policies rreeeesbe st e asesaseerasesse s aese st e srassnaeastesaras
2.4.3 Replacement POLCIEScccccevuereerrrrecurrensereerenseasiessssessesssnesessesneseesesees 8
3 The Traced Systems and Trace COLECHONccccceveerereerererereenerreenerereresesssnssssescscsssssscsesenee 10
3.1 Description of the System CONfigurationsc.ceevevererererererereerererereesnssesecresees 10
3.2 Implementation of the Trace Collection SOftWarec.cevverereeerermrrereereresnenes. 11
3.3 Problems Encountered During Trace Collection et aaeaaes vrerereenereennns 13
3.4 Drawbacks of the Trace Collection Methodology ceesressnesenessseessneessaees 14
4 Overview of the Statistics Analyzer and SIMUlator.........ccecoevvererereeeereererereererereneanas cereeeennee 15
4.1 Statistical ANALYSIS......cccecevuerrrererrerereresssrnvesseresessessssesserseseesersesessersessesessessesossoscess 19
4.1.1 File Size DiSTIDULIONScocvuerierererrrenrsrntennenenreaesensesereesessesseseessenenennas 15
4.1.2 Access Patterns Over Timec..ccceeveeceeverveeenernennnn rererereneeeaeeenaes e 16
4.1.3 File Interreference INtervalsccceeeerreveerenrereerenrenereerennne reeeseaeeaeenee 16
4.2 Simulation of a Two-Level Storage Hierarchy SRTRRRRRRORRPROIS W |
4.2.1 Simulator Operation Overviewccceveueene... SRRTERRRRTRUOOPS § .
4.2.2 Migration Algorithms st sas et et e neens ceesreeaeeeaees 19
S Results.................. ettt ettt s ate e e es e enes et veeeeeees reerteeaeesteenaaeas reeeraeenes 19
5.1 Statistical Analysis Resultscocu..n.... et e taece s areaeessnaeee s snaeaesnsaas veeenen 20
5.1.1 File Size Distributions................. ettt er e st enes creereenreraeanes veeeeen 20
5.1.2 Access Patterns Over Timecccccueevveeenecnvennenn. ettt sne e saeesas 22
5.1.3 File Interreference Intervals...........ccoevuune...... ereeeeeeae e reeeeeenaeeas 23
5.2 Simulation Results - Comparison of Migration Algorithms........................ veeveneeee 25
5.3 Comparison with Previous Published Research Results..................... rrrveeneeeenneennes 28
6 Conclusions......... ettt st st s e s as e e st e saassesaaas ereeeratenteenaennne ceeenne ceeeaeeas evereneneeeen 28
7 Further Study........ cerveeraeens veeeresseessraesraesnaenns eetersteesteesreeeae et aesrra e s aesnnnaes ceerersreeereraeennns cerneen 29
7.1 File Chunking............. vrenenes rerrer et sbe st e e e s nesnsessasstensesnaeesasessessresssesses S0
7.2 Disk-To-Archive Traffic Analysis.................. reeereteesteessesestaeaeesaensanesssesssneessnesee 30
8 References......ccceeeeeeveereneereseereenennns reereeaenee e b et se et e suasssnsssnnerasansaanssaessssesssressnons 3]
9 Further REading......cc.cceveveeeeeiincntntntereenneiesesesesesssesesesesssessesesssessessssssescsnsnssssssssessssessssess 31

00 0 3 Vi b W W w

bote

1 Introduction

Almost all computer systems employ a storage hierarchy such as the one depicted in
Figure 1. Lower levels of the hierarchy provide far more storage capacity, while higher
levels provide high bandwidth and low latencies. In most systems, data is moved between
all these levels automatically by the system software (virtual memory page and swap
routines) and/or hardware (cache controllers), with the exception of the mass storage level.
In the past, data to and from this level had to be moved manually, that is, with the assistance
of an operator, as tapes had to be hand-loaded. With the recent appearance of jukebox-type
storage devices on the market, this becomes unnecessazy. Optical disks or tape cartridges can
be loaded automatically by robot within tens of seconds, rather than the minutes or even

hours it could take to manually load tapes.

CPU
Registers

Cache
Mamory Increasing Bandwidth &

Increasing
Capacity / Main Memory \ Decreasing Latency
/ Magnetic Disk \
Tertiary Storage (magnetic tape,
optical disk, etc.)

Figure 1: Basic Memory Hierarchy of a Computer System.

Instead of viewing tertiary storage as simply a backup, archive, or transfer medium, as it

has been in the past, it can now be viewed as simply another level in the memory hierarchy.

Files moved between mass storage and disk can be compared to virtual memory pages moved
between disk and physical memory. The principle of locality [Denn72] suggests that the vast
majority of references to files in the storage system will not reach the bottom level of the
hierarchy. Therefore, the significant latencies in jukebox devices (on the order of ten seconds
to mount a new volume) may not pose a performance hazard to the system.

To take advantage of the principle of locality, algorithms for the movement of data
between the levels of the storage hierarchy must be developed. Which algorithms perform
best is dependent on file access patterns. Some studies of this problem have been made and
published, including [Smit81b, Lawr82], but most involved data collected more than ten
years ago. A primary motivation for this study was to determine whether typical file
reference patterns have changed over the years. There is good reason to believe that the
tremendous increase in storage capacity and processor speed over the past ten years may have
changed the way in which users use the system, which in turn may have changed file access
patterns. In addition, the system we trace is a distributed system of workstations and servers
networked together, very much unlike the large, centralized, multi-user machines studied
previously.

In this study, we analyze file reference traces collected from a number of UNIX file
systems used by Computer Science Division students, faculty, and staff. The analysis is
geared toward developing and comparing file migration algorithms (via trace-driven
simulation) for a general hierarchical storage system model. We present statistics on file
access counts and distribution of file sizes (weighted by read and write access and
unweighted). This shows how the different file systems are used and how a storage system
design can take advantage of particular patterns.

The following section describes the basic design assumptions for the proposed
hierarchical storage system. Section 3 describes our trace collection methodology, the tools
available for trace collection, and the peculiarities of the file systems traced. We also discuss

the advantages and drawbacks of this methodology, and their expected effects on the results.

Section 4 describes the statistics analyzer and the simulator used to generate the results of the
study. The results are discussed in Section 5. Graphs of the results are shown in Appendix

A

2 Design Assumptions for a Hierarchical Storage System

To have useful traces to apply to the analysis of a hierarchical storage system, a basic,
somewhat detailed design of the system must be proposed. System design assumptions affect
what information is needed in the traces, how the traces will be collected, and at what
intervals the system should be traced. The system design also dictates how the traces should
be analyzed, and, of course, how the storage system should be simulated in software. The
following subsections describe the system design in detail, including the overall
configuration, UNIX file system enhancements, day-to-day operations, and migration

strategies.

2.1 Configuration Overview

The storage system consists of a collection of magnetic disks and one or more magneto-
optical jukeboxes or tape robots. For brevity, the magnetic disks will henceforth be referred
to as simply disk, and the optical disk or tape device(s) will be referred to as archive. The
disk serves as a write-back cache for the archive - files are automatically migrated between
disk and archive by the system. The primary goal is to provide users with the high storage
capacity of the archive with the performance characteristics of the disk. UNIX directory files
are never migrated — the entire inode structure of each disk is kept on the disk, only the
“leaves” of the directory tree are migrated.

We assume that the archive has at least twice the storage capacity of the disks, and could

have over ten times the capacity. Although supercomputer installations often have much

higher archive-to-disk ratios!, an initial analysis of our results suggests that it is unreasonable
to expect overall performance to approximate pure magnetic disk with these ratios in our
UNIX environment. The archive-to-disk ratio is based on a tradeoff between performance
and hardware cost — a high ratio results in lower cost per megabyte of storage, while a
smaller ratio generally results in better performance in terms of shorter latencies and greater
bandwidth. One goal of this study is to investigate how this ratio affects performance. ¢
To make further discussion clear, we'll define the following operations that can be

performed on each file:

» Migln - The copying of a file from archive to disk. The copy on archive remains
intact.

» WriteOut — The copying of a file from disk to archive. The disk copy remains
intact, but the dirry bit is cleared (the dirty bit is described in the following
section).

* MigOut — The moving of a file from disk to archive. The disk copy of the file is
removed, but the inode structure for the file remains on disk. The resident bit is
cleared (see the following section).

» Delete — The removal of a file from disk. The inode structure remains intact, and
the resident bit is cleared, as in migOut.

* Scratch — The removal of a file and its inode structure from disk, and the removal
of the archive copy of the file, if one exists. (Note: We consider scratch to be a
system-level definition that does not necessarily correspond to the action taken
when a user uses the rm command. For example, a “trashcan” feature to protect
the user from himself would be implemented between the implementation levels
of rm and scratch.)

In addition to these operations, we define a file hit and a file miss to be the results of file

requests on residentv and non-resident files, respectively.

2.2 Inode Structure Enhancements
To maintain the additional information needed to keep track of the status of files in the

storage system, a number of elements are added to the standard UNIX inode structure. These

elements include the following:

10ne Cray-based installation we know of consists of 45 GB of on-line disk storage, 1.2 TB near-line, and well
over 10 TB off-line.

» A “resident” bit — This flag indicates whether the file is currently resident on disk,
or has been removed from disk to make room for other files.

» A “dirty” bit — This bit is set if the copy of the file on disk is “dirty,” and clear if
the file is “clean.” A file which has been updated (modified or overwritten) or
created on disk more recently than the last migOut or writeOut of the file is
considered dirty. (All files are dirty when first created, since no copy yet resides
on the archive). Conversely, a file that has not been written since its last migOut
is clean. A clean disk file has an identical copy on the archive, and therefore can
be removed from disk without losing data.

 An archive address field — This field contains an address that points to the location
of the file on the archive. For example, it could consist of a platter ID and an
inode number for the file if the storage device were an optical jukebox with each
platter formatted as a separate UNIX file system. The archive address field could
also be an index into a database stored on disk, with each database entry
containing the file's location on the archive. This latter arrangement would
consume more storage space, but would be potentially more maintainable, as
independent utilities could access and update the database to perform media
replacement or archive defragmentation. This field is set to zero when a file is

first created, and is later updated when a migOut or writeOut first occurs on the
file.

» MigVal — This value represents the file’s preference for migration. It is set and
used by the nightly migration run described in Section 2.3.

2.3 Storage System Operation

The operation of the hierarchical storage system is based on a daily cycle. It is assumed
that the bulk of interactive system activity occurs during normal working hours, and that
there are few if any interactive users late at night. This gives the system a chance to “clean
up” each night in preparation for the following day’s activity. The primary goal of this
nightly activity is to clear enough disk space that users will not run out of high-speed storage.
“Enough” is defined by a per-file system parameter, a migration watermark, that is set based
on previous experience.

If enough disk space is not provided, performance could be severely degraded as the
system scrambles to migOut files during periods of high interactive activity. Performing
migOuts during active periods should be avoided except as a last resort to avoid data loss.
Clearing too much space on disk might cause performance problems, as reducing the number

of resident files is likely to lead to a higher file miss rate. However, this latter problem can

be avoided by performing writeOuts on files that are candidates for removal, leaving the
“non-dirty” file on disk until the space is actually needed. At that time, the disk copy of the
file can be deleted quickly. Thus the migration watermark specifies the maximum amount of
space on disk that can be occupied by dirty files. Given this approach, it may appear that the
best strategy would be to perform writeOuts on every file on disk each night. Problems with
this approach include excessive fragmentation of write-in-place devices such as optical
jukeboxes, and the amount of time required to copy every file to archive. As we shall see
later, many files, particularly small ones, need never be written to archive to maintain good
performance.

A major motivation for this research is to determine what a “reasonable” migration
watermark is for a given hardware configuration and usage patterns. What is defined as
“reasonable” will depend on the level of performance required, and the ratio of disk to
archive space (which is directly related to cost). Also, the approach of performing writeOuts
without deleting files from disk will be used in simulation to determine what hit rate can be
achieved by using various migration algorithms.

The nightly migration run involves the following steps performed for each file system:

* Generate a list of files on disk in order of their preference for migration. This
preference is expressed as an integer value in migVal, an element of the inode
structure for each file. This value is determined by a file replacement algorithm.
Higher values represent a higher preference for migration.

* If the amount of data stored on disk exceeds the migration watermark, perform
writeOuts on files starting at the top of the migration preference list. Continue
down the list until the migration watermark goal is reached. The migration
preference list is maintained in a disk file for use during the active daytime period,
so that files can be deleted from disk as needed in the same order they were
written out to archive.

When a file is accessed (typically via a file open call), the storage system checks to see if

the file is currently residing on disk. If so, the request is handled in the normal fashion. If
not, the file is located on the archive, and a migln is performed. If a migIn would cause the

disk to become too full, files are deleted from disk. A maxResident watermark determines

the maximum amount of space allowed to be used by the disk before files are deleted to make

space. This watermark would typically be set close to the capacity of the disk, but low
enough that the daemon handling deletions can keep up with other processes’ writing of new
data. Files are deleted in the migration preference order established during the previous

night’s migration run, except that any files with their dirty bits set are skipped.

2.4 Migration Algorithms and Strategies

In general, a migration policy consists of three separate but related policies: a ferch
policy, which determines when a migln should be performed, a placement policy, which
determines where on disk or archive a file should be placed, and a replacement policy, which
determines how and when disk files are chosen to be removed to keep sufficient free working
space on disk. This project concentrates on the invesﬁgation of replacement algorithms, but
because all three should be considered in a storage system design, they are all discussed

briefly in the following sections.

24.1 Fetch Policies

The most straightforward fetch policy is simply fetching on demand. This policy dictates
that when a non-resident file is requested, a migln is immediately performed, blocking the
requesting process until the file (or at least the first block of the file) has been copied to disk.
Under certain circumstances, it might be best to allow the requesting process to access the
file directly from archive. For example, performing a migln on a very large file might force
migOuts on many other files, causing long queueing delays on the archive. For purposes of
this study, however, we will assume all files are demand-fetched.

In addition to demand fetching, it might be beneficial to preferch files, before they are
actually referenced. Prefetching might be based on user id or directory placement. For
example, if one file in a directory is referenced, we might assume it is likely that other files in
the same directory with the same user id will be referenced in the near future, and that

prefetching them might reduce average latencies.

24.2 Placement Policies

To obtain reasonable performance from an archival storage device, data should be placed
according to a policy based on the locality inherent in the file access patterns. Jukebox-type
devices usually consist of tens or hundreds of physical volumes, each with a fixed and
limited storage capacity. The goal in placement is to maximize repeated references to the
same physical volume, or a small set of physical volumes, in a given time period. This not
only minimizes access latencies, but also reduces device busy time during which subsequent
requests must wait. Data placement policies can also be influenced by other concems, such
as grouping data of a particular type or owner together for the purposes of archiving or data
exchange. We do not study the placement problem, but assume a reasonable approach is

taken.

24.3 Replacement Policies

The replacement policy specifies which files are to be copied to archive and removed
from disk. These removals make room for newly-created files or the migIn of non-resident
files referenced in the near future. As in cache line or virtual memory page replacement
policies, the goal here is to remove the data that is least likely to be accessed in the near
future. One simple, effective strategy used in caches and VM is least-recently used (LRU).
In file migration, this translates into using the time-since-last-reference of the file, which can
be computed from the file access time stored in the UNIX inode structure.

Because the data units here are files of various sizes (unlike in caches or VM where lines
and pages are fixed-size), the size of the file could have some effect on replacement
decisions. To see this, consider a case in which one large file takes as much space as 100
small files. If we assume all 101 files are equally likely to be accessed in the near future,
removing the large file instead of the many small files will result in a lower file miss ratio in
future accesses. This in turn means better performance, as the bottleneck in jukebox-type

devices is often access latency per file rather than bandwidth. So clearly file size should be

considered, but it is not clear how it should fit in with an expected-time-to-next-reference
strategy to maximize performance. The strategies simulated here will be discussed in a later
section.

It should be noted here that a decision was made to migrate files rather than fixed-size
blocks between archive and disk. Some of the motivations for this decision are as follows:

* The inode structure in UNIX already has fields for file size and access time. If a
block-oriented system were implemented, new data structures would have to be
developed on a per-block basis, in addition to the per-file structures already there.
This fact also makes trace-driven simulation much easier, as traces can be
collected from a running UNIX system by simply reading inode fields.

* Studies of short-term UNIX file access patterns show that there is a very high
degree of locality of access within the blocks of a file. Over 70% of file accesses
(reads and writes combined) result in the entire file being read or written, and over
20% of the remaining accesses are block-sequential after an initial reposition
operation [Oust85]. It seems intuitively wrong to throw this locality advantage
away by treating all blocks independently.

* Migrating whole files means that the archive device can be set up as simply
another UNIX file system which could be mounted on other systems. Additional
text header information, such as file owner, dates, etc., could be written to each
archived file, making error recovery easier. Block-based migration would lead to
an archive on which some blocks of a given file will be dirty, some clean, and
some non-existent (if they hadn’t been written out from disk yet). Archive media
would not easily be transferrable between systems, and severe error recovery
would prove very difficult.

There are some advantages to a block-oriented approach, such as handling very large files
like databases, where seeks and in-place writes are common. This problem could be solved
by allowing large files to be broken up into chunks, and treating each chunk as a unit that can
be migrated. This strategy maintains a high degree of transparency to applications, while
improving the performance of the underlying storage system. Another solution is to change
the way the application program stores data to reduce file size. For example, individual
database records could be stored as independent files, rather than as a single, large database
file. This strategy has a beneficial effect similar to file chunking, except that data is more
finely split up according to actual access patterns, rather than fixed-sized chunks. This leads

to a potentially higher hit rate, because less unnecessary data is migrated in along with

requested data. We choose not to consider the large-file problem, particularly because

database-like accesses are rarely seen on the systems traced in this study.

3 The Traced Systems and Trace Collection

The method used for trace collection and the format of the trace records are based on the
configuration of the systems traced, the resources available, and a perception of what da:a
would yield the most interesting results. The following sections describe the configuration of
the systems, the design of the trace collection software, the problems encountered during

trace collection, and the advantages and drawbacks of the approach taken.

3.1 Description of the System Configurations

The Sprite and Ginger file servers are actively used by about 50 faculty members, staff
members, and graduate students in the CS division of UC Berkeley. Most users work on
their own workstations, which are networked via ethernet to the file servers. Activity on the
system includes mail, news, editing, small and large compilation jobs (including operating
system kemel development), CAD, trace collection activities, nightly backups, and CPU-
intensive batch-like jobs, such as simulations.

The Sprite configuration consists of two Sun 4 fileservers and one DECstation 5000
fileserver serving 35 diskless workstations (6 DECstation 3100s, 12 DECstation 5000s, 7 Sun
3s, and 10 Sun Sparcstations) networked with a 10 Mbit/s ethernet. All the workstations and
servers form a distributed system running the Sprite experimental operating system. The
three fileservers provide access to about 14 file systems, including “user” disks (containing
mainly users’ home directories and subdirectories), disks dedicated to operating system
kernel sources and builds, disks containing system command executables and windowing
system binaries, and experimental RAID file systems. We chose to analyze six of the Sprite

file systems. Some of the file systems that were not chosen were eliminated because of

10

extremely low activity levels, and others were eliminated simply to reduce the number of
time-consuming simulations required.

The Ginger configuration is similar to Sprite’s, however, it is running a commercial
operating system — SunOS. It too consists of a Sun fileserver, along with about 25 Sun
workstations (Sun 3s and Sparcstations) connected via NFS. The Ginger fileserver has
considerably less total storage space than Sprite’s servers. We chose to trace only one of
Ginger’s file systems, the primary “user” disk. We felt it was important to include at least
one file system from a server outside the Sprite environment to serve as an experimental
“control.” If the results from this file system are similar, we can be more sure that any
peculiarities of the Sprite environment did not interfere with the data gathering process (see

Section 3.3).

3.2 Implementation of the Trace Collection Software

The primary considerations in designing a trace collection scheme for investigating long-

term file reference patterns were:

» Simple Implementation — Trace collection needed to be implemented as a set of
utility routines independent from the file system and operating system code.
Although Sprite file system source code is available here at Berkeley, the logistics
of implementing and testing trace collection code in the file system itself, while
file system development on Sprite went on in parallel, were prohibitive. On
Ginger, the option did not even exist, as it runs a proprietary commercial file
system (SunOS). In addition, time constraints made simple implementation
essential.

» Compact Trace Files — The trace files generated needed to be small enough that 3

months worth of traces on over ten file systems2 would not exceed the disk space
available (about 200 Mbytes).

» Minimal Resource Consumption — The trace collector could not be allowed to
interfere with normal system operation, or degrade the performance of the system
in a perceptible way.

e Accurate Tracing — Whatever scheme was chosen, it was essential that the data
collected in the traces truly represented the activity on the system.

2Although only six file systems were eventually chosen for analysis, nearly all the file systems available were
traced.

11

The trace collection scheme chosen involves running a modified version of the UNIX
find command, called sfind, once on each file system every night at midnight, when system
usage is very light. Sfind is directed to find all files (except directory files) that have been
accessed during the previous day. Each line generated by sfind corresponds to a single file,

and consists of the following ascii, space-separated fields:

* <inode_num> - Disk inode number for the file.
* <Kbytes> — Size of the file in kilobytes.

* <numlinks> — Number of links to this file.

* <userid> - User ID of file owner.

* <mtime> — Time this file was last modified, in integer format (seconds since
midnight, 1/1/70).

* <atime> — Time this file was last accessed, in integer format (seconds since
midnight, 1/1/70).

<pathname> — Full UNIX pathname for the file.

The output of sfind is directed to a file named with the current date, and placed in a
directory named for the file system from which the trace was taken. Each file is also given a
header, containing the file system name, the trace collection start time, and the trace time
window size3, and a footer, containing the trace collection completion time. Sfind is run on
each file system sequentially via a cshell script, which automatically names the trace files,
places them in the proper directory, and appends status messages to a log file. The script is
activated via the crontab utility built into Sprite and SunOS (on Ginger) each night at

midnight. Sfind is executed on the fileserver that serves the file systems being traced to

minimize network traffic.
In addition to the traces taken every night throughout the trace period, a full trace (all
files, regardless of last access time) of each file system is taken at the beginning of the trace

period. Having this data eliminates the cold-start problem in simulating the system, thereby

3All files accessed within a specified time window are included in a file trace. This window ends at the time the
file trace is taken, and begins a specified number of hours before that time. This number is the trace time
window size stored in each file trace header. The window is typically 24 hours, but is shortened to 16 hours
because of a problem with the Sprite file systems discussed in section 3.3.

12

simplifying simulation and improving the accuracy of the results. The full trace also
provides a means for obtaining file count per file system and the distribution of file sizes on
disk.

This scheme satisfied the four considerations listed above. Sfind was a straightforward
enhancement of the original UNIX find, and its execution via a simple shell script and
crontab took less than a week to set up and debug. Trace file sizes vary depending on file
system activity and on the number of files in the file system, but average about 20 blocks,
posing no storage problem. Because the tracing run is executed late at night when there are
few if any users, the impact on performance is negligible. A potential for accidental
inclusion or exclusion of files in a trace does exist beeause a given file system is not always
traced at exactly the same time each night. However, these time differences are never more
than a few minutes, and because of the light usage of the system at night, the effects of this

problem are negligible.

3.3 Problems Encountered During Trace Collection

A number of problems occurred during the testing of the trace collection software and
after the tracing period had begun. First, on Sprite, the UNIX tar utility is used for both
incremental and full backups. Tar updates the access time stored in the inode of each file,
which causes trace collection to include files that shouldn’t be included. If a full backup is
done in the 24 hours preceding trace collection, every file ends up in the trace! The problem
is further complicated by the fact that although full backups are made weekly, they are not
always started at the same time every week. The solution is to simply exclude traces taken
on the day of the full backup in analysis and simulation. Incremental backups are predictable
— they are started every morning at 2:00 am, and seldom finish later than 8:00 am. The
solution to the incremental backup problem is to direct sfind to collect files accessed in the
last 16 hours, rather than a full 24 hours. Since tracing is started at midnight, this solution

works as long as nightly backups finish by 8:00 am. Because there are very few file accesses

13

made between midnight and 8:00 am, this does not pose a major threat to the accuracy of the
traces.

The second problem encountered involves unexplained errors in the access and
modification times of a significant number of files on the /home/ginger/users (“Ginger
Users”) file system on Ginger. A few of the files in this file system had access and
modification times that represented dates that are many years in the future. This problem
caused these files to appear in every trace taken, when in fact the files had not been accessed
in a quite a long time. Further investigation revealed that all these files resided in directory
trees owned by long-inactive users. The problem was solved by simply eliminating the faulty
files from the traces. This solution is not expected to affect the results, because the faulty
files were inactive during the trace period. The results clearly would have been tainted if the

error had not been found.

3.4 Drawbacks of the Trace Collection Methodology

There are clearly some drawbacks to the approach taken to trace collection described
above. First, there is no way to know that a file has been deleted from a file system. Deleted
files will simply never show up in traces taken any time after the deletion. The effects this
has on the simulation results will be discussed in Section 5.

Second, the traces only indicate the most recent time a given file was accessed. They do
not indicate how many times a file was accessed on that day, or exactly when the accesses
occurred, with the exception of the last access. Therefore, devising a simulation method that
accounts for queueing delays in the storage devices and the CPU would be difficult.
Queueing delays in the archive storage device could have a significant affect on archive
access latencies, because of the amount of time it takes to automatically load and unload

media, e.g. tape or optical disk.

14

4 Overview of the Statistics Analyzer and Simulator

Two programs were developed to analyze the traces collected in the study, a file statistics
analyzer and a file migration simulator. In the following subsections, the development and

use of these programs will be discussed in some detail.

4.1 Statistical Analysis

The statistical analysis program accepts a group of option parameters that specify the
name of an input trace file and the names of various graph data output files. If no input file is
specified, stdin is assumed, allowing the user to pipe trace files in via UNIX cat. The input to
the program is a sequence of trace files, usually from a single file system. Each file
corresponds to a single day during the trace period. The headers and footers in each file
serve as start and end markers for each day. A single statistics collection run reads in all the
traces for a given file system in the sequence they were collected, then generates data for
various types of graphs.

Three classes of graphs can be generated - file size distributions, access patterns over
time, and file interreference patterns. Each graph class, and the methods used to generate the

data for that class, are discussed in the following sections.

4.1.1 File Size Distributions

Two different types of file size distributions can be generated: staric — the distribution of
file sizes on a file system at a given time, and access-weighted — the distribution of the sizes
of file accesses? over a period of time. A static distribution is generated from the full trace of
the file system taken at the beginning of the trace period, while the access-weighted
distribution is generated from the daily traces. Note that due to the trace collection method, a
file is considered “accessed” only once per day, regardless of the number of accesses that

took place that day.

4The size of a file access is simply the size of the file being accessed.

15

The access-weighted distribution actually consists of two distributions, because reads are
distinguished from writes. A file access on a given day is considered a “write” if the file was
modified at any time during that day, and is considered a “read” if it was not. The analyzer
distinguishes between the two by subtracting the trace time window size from the trace
collection start time, then comparing the result with the last-modified time of the file in
question. b

File size distribution statistics are collected by continuously updating a set of file counters
as trace records are read in. Each pair of counters (one for reads, one for writes) represents a
range of file sizes. For example, the first counter counts all files of size one through ten

kilobytes, the second counts files of size eleven through twenty, etc. Data for a cumulative

distribution graph is then generated from the counters.

4.1.2 Access Patterns Over Time

A simple indication of file access patterns is the volume of file activity over a number of
weeks. To show these patterns, the statistics analyzer produces two graphs — the number of
different files accessed vs. days, and the amount of disk space associated with those files vs.
days. As with the file size distributions, reads and writes (as defined in the previous section)
are considered separately. The analyzer collects this data in the same way as with file
distributions — file counters and Kbyte counters for both reads and writes are kept for each

day, and graph data is generated from these counters.

4.1.3 File Interreference Intervals
An interreference interval is defined as the number of days between two consecutive
appearances of a given file in a sequence of traces. The distribution of interreference

intervals is a useful measure of how often active files are referenced. For example, if the

SNote that this is not the total number of file accesses per day. The number of different files accessed is more
useful in migration studies, because once a file is accessed once, it will be migrated to disk, and will most likely
remain on disk for the remainder of the day. Therefore, further accesses on the same day will not cause
migrations.

16

distribution is heavily skewed toward small interreference intervals, there is a high degree of
temporal locality present in the access patterns. Conversely, a distribution in which the
number of long intervals is significant indicates a lesser degree of temporal locality. Clearly,
a high degree of locality is desirable for purposes of file migration.

- The analyzer generates separate interreference interval distributions for different file size
classes. File size classes are based on the base-two logarithm of the file size in kilobytes — a
file of size x Kbytes is in class [loga(x)]. The input to the analyzer is the full file system
trace followed by the daily traces. The full trace serves to eliminate the cold-start problem,
because the last-access times stored in the full trace define the starting point for each file’s
reference history. As traces are read in, a large hash table of file entries is built. When a file
is first encountered in the trace stream, a file entry containing the sfind fields is created in the
table. On subsequent appearances of that file, a small “reference” record, containing the last-
access and last-modification fields, is added to a linked list. The head of this list is a field in
the original file entry. Once all traces have been processed, the hash table is scanned to count
the number of intervals for each interval length and for each file size class. These counters
are then processed to generate interval distribution curves for each file size class. These
curves can then be displayed as a single contour graph (see Appendix A page 13 for an

example).

4.2 Simulation of a Two-Level Storage Hierarchy

The simulator is designed to simulate the storage system defined in Section 2. The basic
strategy of the simulator is to treat the file traces as streams of accesses to the storage system.
The output of this simulation is a plot of file miss ratios versus the simulated size of the
magnetic disk. The goal is to determine which migration algorithms work better than others,

and to visualize how the miss rate is affected by changes in magnetic disk size.

17

4.2.1 Simulator Operation Overview

A simulation run begins by reading in the full file system trace. From each trace record, a
file entry is created and placed into a hash table. The variables Kresident, to keep track of
total occupied disk space, and Kdirty, to keep track of total disk space occupied by dirty files,
are updated as entries are created. All files are initially marked dirty and resident. Next, a
nightly migration run is simulated. A migration run consist of two steps, as described in
Section 2.3. First, a file migration preference list is generated by scanning the entire hash
table, applying the specified migration algorithm to each file entry, and placing the entry
appropriately in the preference list. Second, if the sum of the size fields in all the file entries
exceeds the size of the magnetic disk being simulated (henceforth maxResident), simulated
migOuts are performed on files starting at the top of the preference list until the sum falls
below maxResident. Now, to clear enough disk space for the next day’s activity, writeOuts
are performed on files starting in the preference list where the migQOuts left off. A simulated
writeOut simply clears the file’s dirty flag. The amount of space “cleaned” by this operation
is defaulted to 50% of maxResident — a value decided upon after some experimentation. Note
that this value has no affect on miss rate as long as it is large enough to avoid migOuts during
active periods.

The state of the simulation system following these steps closely represents a storage
system in a quiescent state. This is considered an acceptable start condition for file migration
simulation, which is essentially a cache simulation with variable-sized cache blocks. There is
no need to be concerned with the “cold-start” problem encountered in cache simulation,
thanks to the fact that the initial full file system trace contains sizes and last-access times for
all the files.

Simulation continues by reading in the first daily trace and performing the appropriate
operations on the file entries in the hash table for each trace record encountered. For
example, if a write-file record is encountered, and the corresponding file entry has its resident

bit set and dirty bit cleared, the dirty bit is set for that file, and Kdirry is updated. If a non-

18

resident file is encountered (either a file that was previously migrated out or a new file), we
must determine whether performing a migIn will cause Kresident to exceed maxResident. If
so, one or more “clean” files must be deleted (set non-resident). Clean files must be deleted
in the order they appear in the most recently generated migration preference list. If the
system should run out of clean files, dirty files must be made clean before deletion (eg. a
migOut). Each encountered record increments a reference counter, and each record that
refers to a non-resident file increments a miss counter. These counters are used to determine
file miss ratio. After the first daily trace is processed, another migration run is simulated, and

the process continues with the second day’s trace.

4.2.2 Migration Algorithms

The migration algorithms used in the simulator are based partially on previous published
research on the subject [Smit81b, Lawr82]. Only relatively simple algorithms were
attempted, as previous research seems to indicate that very complex algorithms resulted in
only marginal benefits, if any at all. All the algorithms considered here involve only file size
(s) and time-since-last-access (r). These algorithms include LRU (or simply time), as
discussed in Section 2.4.3, weighted size-plus-timeS (sprx, where x is a constant weighting
factor to be multiplied by 7 in calculating migration preference), weighted size-times-time
(sxr, where x is a constant weighting factor power to which s is raised, e.g., s*7), and simply

size.

S Results

The results generated using the analysis and simulation methods described in the previous
section are discussed in the following subsections. Discussions refer to the graphs and tables

provided in Appendix A.

6The “size plus time” algorithm was motivated by the plan to use it in a new hierarchical storage system/server
product from a major computer manufacturer.

19

5.1 Statistical Analysis Results

Table 1 provides overall statistics for all the file systems traced in this study. The first
three columns show “snapshot” statistics of the file systems at the beginning of the trace
period. The remaining columns show statistics related to the daily file traces collected. The
explanations and discussions of the statistical analysis results (shown in Appendix A) in the

following subsections will refer to this table.

File system || Number | Total Avg. File | Num. of | Num. of Total KB Average | % “Write" | % “Write”
Name of Files | Kbytes Size Days File in File File File weighted
on of Files | (Kbytes) | Traced’ | Access- | Access- | Access | Access- | by size
8/19/91 on Days$ Days Size Days®
8/19/91 (KB)

——]
user1 37,988 | 427,721 11.26 78 34,603 721,720 20.86 37 67
userd 17,520 | 334,491 19.09 76 12,625 735,265 58.24 34 62
users 47,122 | 827,745 17.57 80 96,211 | 2,118,861 | 22.02 22 34
| ginger users j| 21,901 | 270,862 12.37 79 22,274 578,815 25.99 28 46
pcs 59,923 | 756,653 12.63 77 31,388 | 1,044,782 | 33.29 20 49
x11 r 3,853 | 526,139 37.98 84 31,956 | 4,305,959] 134.75 13 10
local 4993 | 218,823 | 43.83 81 14,700 | 1,077,469 | 73.30 27 8

Table 1: Overall Trace Statistics

5.1.1 File Size Distributions

Pages 3 and 4 of Appendix A show the static file size distributions for the file systems
traced!0. The distributions of the user disks (top graph) show that a large portion of the files
are small. On userl, for example, over 53,000 of the files (about 90% of the total) are
smaller than 5 kilobytes. User6 has significantly more files larger than 5K, but nearly all
are smaller than about 35K. The few very large files on the user disks cause the average file

size, shown in Table 1, to be larger than most files on the disk.

7The number of days traced differ across filesystems because some traces were corrupted or missed during the
trace period. The “ginger users” filesystem had very few missing traces (ginger’s backup method doesn’t
corrupt access times), but tracing started a few days later, which tended to compensate for this.

8A “file access-day” is is one or more accesses to a file on a specific day. Thus, a given file can contribute at
most one access-day to the sum in this column for each day in the trace period.

9A “write” file access-day is one in which at least one of the accesses on that day was a write (eg., modified the
file, according to the mtime in the inode of the file). File creations count as writes.

10Notes: The small upturn in the distributions at the extreme right of the graphs on page 3 represents all files
over 200 kilobytes. The top graph on page 4 shows the same data as the graphs on page 3, except that the file
size scale is logarithmic. Thus page 3 provides a more intuitive picture of the distributions, while page 4 may
be more useful in comparing the distributions of different filesystems.

.-

20

The distributions of the “non-user” disks are significantly more skewed toward larger
files. For example, compare the curve for X11 with the curve for user4. Both disks have
about the same total number of files, but X11 has a much steeper distribution curve. This
fact is due to the types of files stored on these file systems. For example, 1ocal contains
many large binary command files, emacs lisp files, man pages, and command source files.
Similarly, X11 contains binary executables for the X windowing system. The exception is
the pcs file system, which has a distribution similar to the user disks. This result prompted a
closer look at the files on the pcs file system, revealing that it was actually a “user” disk,
containing the home directories of about ten users! So clearly, there is a significant
difference in file size distributions on file systems that are used for user home directories and
those used for common-access files like command binaries. In addition, distributions across
different user disks are somewhat similar.

File size distributions weighted by access appear on pages 4 (bottom) and S of Appendix
Al!l, Read accesses and write accesses are considered separately. For each file system, the
solid symbol designates reads, and the corresponding hollow symbol designates writes. The
graphs indicate that on the “user” disks, write accesses tend to be skewed slightly more
toward larger files than small ones. The non-user disks on page 6 show a high read-to-write
ratio of accesses, and a tendency for many accesses to be to rather large files. In particular,
the X11 plot shows a significant portion (about 25%) of read accesses were to files in the 7-
to-9 file size range, which translates to files of 128 to 512 kilobytes. The user disks, on the
other hand, have a very small number of accesses above log-size 6. These two characteristics
of the X11 disk are expected because of the type of files present on this disk — large, binary

executables for the windowing system which are rarely changed.

File sizes are expressed as logarithms, and should therefore be compared to the static file size distributions at
the top of page 4. File counts are also plotted on a log scale, to make comparisons between filesystems with
different total file counts easier.

21

5.1.2 Access Patterns Over Time

Pages 6 through 12 of Appendix A contain area graphs of file activity over the trace
period. The black areas describe the number of files or kilobytes written, while the gray
areas describe reads. The top border of the gray area indicates the sum of reads and writes —
the total number of file access-days or the total kilobytes associated with the file accesses.

There is clearly a cyclical pattemn in the file access graphs of the “user” disks and the pc =
disk, with lulls in activity occurring every six to seven days (Table 3 in Appendix A details
the mapping of days of the week to the day numbers shown on the graphs). By comparing
the day-of-the-week column in the table with the location of the “valleys” in the graph, we
see that periods of inactivity tend to occur on weekends, which is expected. The local and
X11 disks, however, do not appear to have a strong cyclic pattern — file use is more evenly
distributed across different days. Files on these disks are mostly executables for commands
and the X windowing system. We would expect that these files are accessed more often
during the week than on weekends, but recall that the trace collection method recognizes only
one access of a file per day. So as long as most “active” files are accessed at least once on
weekend days, they will appear in the graph. Thus the graphs indicate that there is certainly
some user activity during weekends — enough that many system-related binaries are accessed
at least once per day.

It is interesting to compare the height of the peaks of these graphs with the total number
of files or Kbytes on the file system (table 1) to see what percentage of files or disk space are
accessed each day. For all the disks, the highest peaks represent roughly between 5% and
20% of the totals for files and kilobytes of disk space. There doesn’t seem to be a tendency
for non-user disks, as compared with user disks, to have a higher percentage of their files
accessed each day. This may indicate that a large portion of the files on these disks are
seldom accessed, if we assume that the same set of files are accessed every day. This is a
reasonable assumption considering the small variation in access volumes from day to day,

including weekends, and considering the access patterns we would expect on the files stored

22

on these disks. However, this assumption can’t be confirmed with this data set - file
interreference data and simulation data are needed to determine if the set of “active” files
changes slowly or quickly over time.

There are some particularly high peaks of activity on some days of certain file systems
that should be explained. For example, a large spike of activity on day 40 on X11 was the
result of updating some X-windows utility sources. On the 1ocal file system, a single spike
of activity at day 38 and a number of active days near the end of the trace period were the
result of various builds, including a recompilation of emacs. Large “write” spikes on local
and X11 are usually due to a system administrator updating or adding new utility or
application software. We found that the large spikes of activity on user disks are often the
result of a user copying many files to or from a different disk or to tape. A large “write”
spike at day 32 on user6 was apparently caused by copying a 129 Mbyte tar file, probably
from an 8mm tape. Large spikes seem to occur not because a tremendous amount of
computation is being performed on files, but rather because users are moving many files from
one disk or tape to another. If a migration system were in place, many of these operations
probably should be performed by accessing the archive device directly. For example, if a
user desires to copy many large data files (which are currently not resident on disk) to an
8mm tape to send to a colleague, it would not make sense to copy all the files to disk before
copying to tape. By providing direct user access to the archive device, many of these large

activity spikes might be completely hidden from the migration process.

S5.1.3 File Interreference Intervals
File interreference distributions appear on pages 13-19 of Appendix A. There are two
graphs for each file system to distinguish between interreference patterns for reads and

writes!2. Each graph represents ten different interreference distributions, one for each file

12There were so few write accesses to the X11 disk that the corresponding interreference distributions were
deemed non-useful. Therefore, no interreference graph is presented for X11 writes.

23

size group!3. The data is displayed as a contour graph, with the “z” axis representing the
normalized cumulative distribution of interreference intervals. The “z” values for each
grayscale level are shown in the legend. For example, in the graph for userl reads, the
grayscale level boundary at file size group two (x-axis) and interreference time 10 days (y-
axis) represents a cumulative distribution of about 0.6. This indicates that 60% of intervals
between “read” file accesses to files in size group two (4-7 kilobytes) are 10 or fewer days
long.

All of the graphs, with the exception of those for the pcs file system, indicate that more
than half of the interreference intervals for all file sizes are no longer than a few days. This
indicates a high degree of temporal locality of access on these file systems. One possible
explanation for the pcs file system’s notably different overall distributions is that pcs had
far fewer file accesses than the other file systems, as a percentage of the total number of files
resident at the start of the trace period (see table 1). In fact, on a number of the days during
the trace period, there were no accesses to files on pcs. In general, accesses to pcs appear
to be rather bursty (page 10 of Appendix A). This burstiness could explain the steep
transitions around 32 and 47 days on the “reads” graph, and at 22 and 47 days on the “writes”
graph.

There does not seem to be a consistent, strong correlation between the shapes of
interreference interval distributions and file size. The widest and narrowest distributions for
each file system occur within different file size groups on different file systems.
Furthermore, there does not seem to be a strong trend of distributions narrowing or widening
as file size increases. Therefore, file size does not seem to be a good predictor of temporal
locality of access. This result is in contrast to Smith’s findings in [Smit81a]. He found that

for his data, large files tend to have shorter interreference intervals than small files.

13Note that the accuracy of distributions is dependent on the total number of accesses to files in that file size
group. Because there are generally a small number of files in the largest file size groups, these distributions are
statistically less accurate than those of smaller file size groups. For this reason, it is useful to refer to the
cumulative file size distributions weighted by access that appear on pages 4 and 5 of appendix A when
interpreting these graphs.

24

For the “user” file systems and pcs, interreference intervals are generally shorter for
writes than for reads, as indicated by the heavier clustering of the darker grayscales toward
the top of the graphs of the distributions for writes. For the non-user filesystems X11 and
local, however, the opposite is true. As emphasized before, these disks tend to have a
higher read-to-write ratio, because they contain primarily binary executable files for X-
windows and various commands available on Sprite, which are seldom modified. This fact
would explain longer interreference intervals for writes. Also, because the “write”
distributions for these two filesystems are based on a small number of accesses, there is a
larger margin of error. One or two long interreference intervals in a given file size group
could stretch the distribution out toward the bottom o{ 'the graph. This is also the reason for

the steep transitions in the distributions for these filesystems.

5.2 Simulation Results - Comparison of Migration Algorithms

The results of the migration simulation runs are shown on pages 20-26 of Appendix A.
All the graphs show file miss ratio versus simulated magnetic disk size. The top graph of
each page shows a subset of the algorithms considered, including the best overall algorithm14
(always one of the size-times-time algorithms), the best size-plus-weighted-time algorithm,
and the pure size and pure time algorithms. File miss ratio is plotted on a linear scale for
these graphs, to emphasize the location of the “knee” of the curves. The bottom graphs
include most or all of the algorithms considered. These graphs show file miss ratio plotted
on a logarithmic scale, to make comparisons between different algorithms easier.

The abbreviations in the legend for size-times-time algorithms are s, for size!3, followed
by a size weighting factor, and ending in ¢, for time!6. The size weighting factor is the power
to which s is raised, eg. “s12t” represents s1-21, “s6t” represents 5067, and “s10t” is simply st.

Similarly, size-plus-time algorithms are designated “spt,” followed by the weighting factor

14The “best” algorithm is the one corresponding to the curve with the lowest file miss ratio.
15Size is measured in kilobytes.
16Time is measured in days.

25

for 1, eg. “spt5” represents s+5t, and “spt” represents simply s+t. We chose the best overall
range of weighting factors for these two algorithms by trying a number of weights on each of
the filesystems. The migration algorithms based purely on time-since-last-access and purely
on file size are designated “time” and “size,” respectively.

The best algorithm for all the filesystems traced is consistently a size-times-time
algorithm. However, the s weighting factors of the best algorithms differ across filesystems.
The distance between the various size-times-time algorithms is relatively small, indicating
that choosing any weighting factor (close to 1.0) would probably result in reasonable hit
rates. The only filesystem for which a size weighting factor larger than 1.0 is best is X11. A
weighting factor less than 1.0 is best for all the “user” disks on Sprite, including pcs, while
1.0 is best for the ginger users disk. As we saw earlier, the file size distribution weighted by
access for X11 (page S, Appendix A) was notably different than the same distributions for
other filesystems. Because the distribution of file sizes on the X11 disk stretches out toward
larger files much more than on other filesystems, basing file removal on size more heavily
than on time tends to clear more space. Also, recall that the “active” files on X11 are
accessed very frequently (see interreference intervals on page 13, Appendix A), so time may
not be as useful a value. In fact, we can see that the pure size algorithm performed nearly as
well as the best algorithm for X11, while the pure time algorithm (LRU) performed rather
poorly.

The size-plus-time algorithms performed significantly more poorly than the size-times-
time algorithms for all the filesystems. The time weighting factor for the best size-plus-time
algorithm for each filesystem varied significantly across filesystems. For example, the best
factor for /home/ginger/users was 1, while the best for user4 was 10, a factor of 10
difference. This suggests that the size-plus-time algorithm may be more dependent on an
appropriate weighting factor than size-times-time, which varied only by a factor of 2 between

the two extreme cases. In any case, because size-times-time can be computed as easily as

26

size-plus-time, and because it consistently performs better, there seems to be no reason to
consider size-plus-time further.

The pure size and pure time algorithms performed considerably more poorly than the
other algorithms, and should therefore be avoided. However, it is interesting to note that
without exception, the pure size algorithm performed much better than pure time. Thus file
size is clearly an important factor in determining migration, and should not be ignored. Note
that there are performance issues besides file miss rate that should be considered in choosing
a migration algorithm. For example, if a size-based algorithm is used, the files that are
migrated will tend to be the largest files in the system, and will therefore incur a larger
average transfer time. However, because latency, not bandwidth, is expected to be the
performance bottleneck on archive devices, migrating large files is to our advantage.
Migrating many small files is far more detrimental to overall performance than migrating a

few large files, because long latencies must be endured more often.

_ffilesystem Disk-Archive Disk-Archive
Name Ratio for 5% Ratio for 1%
Miss Ratio Miss Ratio

user1
userd 0.19 0.60
user6 0.21 0.46
| ginger users 0.20 0.48
pcs 0.22 0.50
x11 0.53 0.76
local 0.27 0.46

Table 2: Disk-to-archive ratios necessary to obtain specific file miss ratios.

It is useful to compare the simulated disk size at which file miss ratio reaches a
reasonable value with the total size of the filesystem traced for that simulation. This gives an
indication of the ratio between disk and archive that is needed to obtain reasonable
performance. The knee of the best curve for each filesystem seems to occur consistently at a

miss ratio of about 0.05, so we will use this value to compare the ratio on different

27

filesystems. We will also use a miss ratio of 0.01, or 1%, to represent a tradeoff of cost for
performance. These values are shown in Table 2.

The data in Table 2 indicates that the disk-archive ratios needed to obtain a given miss
ratio are very consistent across filesystems, with the exception of X11. The high values for
X11 indicate that a large portion of this filesystem is active, and that the cost benefits of
setting up a migration system for this filesystem are relatively small. For the oths*
filesystems, if a miss ratio of about 5% is acceptable, only about 20% of the total filesystem
space need be on magnetic disk. Even if 1% is the highest tolerable miss ratio, half of the

disk space occupied by files in these filesystems could be migrated to archive media.

5.3 Comparison with Previous Published Research Results

In [Smit81b], Smith found the space-time product algorithm to work well, although not
quite as well as his “stochastically optimal” algorithm, which is significantly more complex
to compute. For his data, taken from the Stanford Linear Accelerator Center (SLAC) around
1977, exponentially weighting the time-since-last-access by values between 1.3 and 1.6
worked best. This is equivalent to weighting the size with the inverse of these values —
between 0.63 and 0.77. This is the same range of values we observed for all but one of the
“user” disks. In [Lawr82], Lawrie et. al. also found the space-time product to work well. For
their data, a weighting factor of 1.0 worked best, which is what we observed for the

remaining “user” disk.

6 Conclusions

In this study, we have developed a straightforward strategy for collecting file access trace
data from a live system. We can then analyze the data to investigate file usage patterns and
evaluate migration algorithms. We found that most of the files on the systems studied were

small, with the exception of one file system that contained many large binary executable files

28

rather than user files. In comparing static file size distributions with file size distributions
weighted by access, we found

File access activity per day over the trace period tended to be rather “bursty” on all file
systems, with the lowest periods of activity occurring on the weekends. This burstiness
indicates that nightly migration runs must often overestimate the amount of disk space that
will be used the following day to avoid running out of “clean” files to delete during active
periods. We also observed that while there were more file read accesses than file writes,
most of the blocks accessed were associated with file writes. We therefore concluded that
write accesses tended to be associated with larger files than read accesses.

We found that most file interreference intervals were rather short — usually less than five
days. We did not find a strong correlation between file size and file interreference interval
length, though the distribution of intervals did differ with file size for each file system.
Almost invariably, file interreference intervals for writes were shorter than for reads.

Our simulation results indicate that algorithms based on the product of file size and time-
since-last-access work well — significantly better than the other algorithms we considered.
The best weighting factor on size in the size-time product algorithm varied across file
systems, though all weightings performed relatively well. We found that for file systems
with many large files that were accessed frequently, weighting size more heavily in the

product worked best.

7 Further Study

There are a number of aspects of hierarchical storage systems that remain to be studied in
depth. Some studies could make use of the traces collected in this study, while others would
require more detailed and precise file access traces. The following sections describe a few

enhancements that we considered, but did not have the time or resources to complete.

29

7.1 File Chunking

As we discussed in Section 2.4.3, some files may be large enough that migrating the
entire file to or from archive could be detrimental to overall storage system performance.
There are two reasons for this. First, transferring large files could keep the archive device
busy for a long time, possibly delaying the servicing of other requests. Second, migrating a
large file from archive to disk could force many smaller, “active” files off the disk, thus
reducing overall file hit rates. One solution to this problem is to “chunk” large files into
smaller pieces, each of which is migrated separately. The simulator developed for this study
could be enhanced to handle file chunking. These enhancements would include determining
which files should be chunked, and how large each chunk should be. Chunk size should be a
simulator parameter that can be varied to compare strategies. The simulator would then

handle each chunk as a separate file.

7.2 Disk-To-Archive Traffic Analysis

If a size-times-time migration algorithm is employed, the larger files in the file system
tend to be the ones moved between disk and archive. It may be useful to investigate the
distribution of sizes of files moved to determine how much bandwidth should be provided
between the disk and archive devices. This could be particularly important if many file
systems migrate large files across a single network. Using the traces collected in this study,
file size distribution graphs, such as those on pages 3-5 of Appendix A, could be generated
by enhancing the simulator program.

To fully understand the bandwidth and latency needs of a hierarchical storage server
based on file reference traces, the simulator would need to be enhanced with queueing
models. This enhancement would require a different trace collection scheme — one in which
the exact time of each file access request was recorded. This would involve instrumenting

the file system code to write a trace record each time a file is accessed.

30

8 References

[Denn72] P. J. Denning, “On Modelling Program Behavior,” Proceedings of the Spring
Joint Computer Conference, AFIPS Press, Reston, VA, 1972, pp. 937-944.

[Lawr82] D. H. Lawrie, J. M. Randal, and R. R. Barton, “Experiments with Automatic File
-Migration,” IEEE Computer, July 1982, pp. 45-55 (1982).

[Smit81a] Alan Jay Srhith, “Analysis of long term file reference patterns for application to
file migration algorithms.” IEEE Transactions on Software Engineering SE-7(4). 403-
417, 1981.

[Smit81b] Alan Jay Smith, “Long term file migration: development and evaluation of
algorithms.” Communications of the ACM 24(8): 521-532, 1981.

9 Further Reading

[Boyd78] Donald L. Boyd, “Implementing Mass Storage Facilities in Operating Systems,”
IEEE Computer, February 1978, pp. 40-45 (1978).

[Coll88a] Bill Collins and Marjorie Devaney, “Profiles in Mass Storage: A Tale of Two
Systems,” Digest of Papers, Proc. Ninth IEEE Symposium on Mass Storage Systems,
November 1988, pp. 61-67 (1988).

[Colig8b] Bill Collins and Catherine Mexal, “The Los Alamos Common File System,”
Tutorial Notes, Proc. Ninth IEEE Symposium on Mass Storage Systems, November
1988, pp. 171-180 (1988).

[Cope83] Lee Copeland, “Monitoring the Performance and Capacity of the IBM 3850 mass
Storage System,” Proceedings of the Computer Measurement Group, 1983, pp. 45-50
(1983).

[Hend90] Robert L. Henderson and Alan Poston, “MSS-II and RASH: a mainframe UNIX
based mass storage system with a rapid access storage hierarchy file management
system.” USENIX Winter 1989 Conference, San Diego, Califomnia, January, 1990, pp 65-
84.

[Hevn85] Alan R. Hevner, “Evaluation of Optical Disk Systems for Very Large Database
Applications,” Proceedings of Sigmetrics, May 1985, pp. 166-172 (1985).

[Katz89] Randy H. Katz, Garth A. Gibson, and David A. Patterson, “Disk System
Architectures for High Performance Computing,” Proceedings of the IEEE 77(12),
December 1989, pp. 1842-1858 (1989).

[Kenl90] Gregory G. Kenley, “An Architecture for a Transparent Networked Mass Storage

System,” Digest of Papers, Proc. Tenth IEEE Symposium on Mass Storage Systems,
May 1990, pp. 160-167 (1990).

31

[Mill90] Steve Miller and Sam Coleman, “Mass Storage System Reference Model: Version
4 (May, 1990),” IEEE Technical Committee on Mass Storage Systems and Technology,
May 1990.

[Muus88] Michale Muuss, et al, “BUMP, The BRL/USNA Migration Project,” Proceedings,
Workshop on Unix and Supercomputers, pp. 183-214, USENIX, September 26, 1988.

[Nels87] Marc Nelson, David L. Kitts, John H. Merrill and Gene Harano, “The NCAR Mass
‘Storage System,” Digest of Papers, Proc. Eighth IEEE Symposium on Mass Storage
Systems, May 1987, pp. 12-20 (1987).

[Oust85] John K. Ousterhout et al., “A trace-driven analysis of the UNIX 4.2 BSD file
system.” Operating Systems Review 19%(5): 15-24, 198S.

[Patt87] D. A. Patterson, G. Gibson, and R. H. Katz, A case for redundant arrays of
inexpensive disks, Report No. UCB/CSD 87/391 Dept. of Electrical Engineering and
Computer Science, University of California, Berkeley, 1987.

[Rich88] J. Richards, “A Unix-MVS Based Mass Storage System for Supercomputers,”
Digest of Papers, Proc. Ninth IEEE Symposium on Mass Storage Systems, November
1988, pp. 108-113 (1988).

[Smit85] Alan Jay Smith, “Disk cache - miss ratio analysis and design consideration,” ACM
Transactions on Computer Systems 3(3): 161-203, August 1985.

[Than88] Erich Thanhardt and Gene Harano, “File Migration in the NCAR Mass Storage
System,” Digest of Papers, Proc. Ninth IEEE Symposium on Mass Storage Systems,
November 1988, pp. 114-121 (1988).

[Twet90] David Tweten, “Hiding Mass Storage Under Unix: NASA’s MSS-II Architecture,”
Digest of Papers, Proc. Tenth IEEE Symposium on Mass Storage Systems, May 1990,
pp. 140-145 (1990).

32

Appendix A - Analysis Results (Tables and Graphs)

Day User1 User4 User6 Ginger pcs X11 local
Num. Users :
d date | day | date _day dateé date M&E’é day | date
e — P ————
1 Mon | 8/19 | Mon | 8/19 | Mon | 8/18 | Wed 9/4 Mon | 8/19 Tue | 820 | Mon | 8/19
2 u Tue | 820 | Tue | 8/20 | Tue | 8/20 | Thu | 9/ | Tue | 8/20 | Wed | 8/21 | Tue | 8/20
3 | Wed]821 | Wed | 8/21 | Wed | 8/21 | Fn 9% | Wed | 8/21 | Thu | 8/22 | Wed | 8/21
4 Thu | 822] Thu [822] Thu | 8/22 | Sat | 97 | Thu | 8/22 | Fn | 8/23 | Thu | 8/22
5 Salt | 824 | Sat | 8/24 | Fn | 8/23 | Sun | 9/8 | Sat | 8/24 | Sat | 8/24 | Fn | 8/23
6 Sun [825 | Sun | 8/25 | Sat | 8/24 | Mon | 9/ | Sun | 8/25 | Sun | 8/25 | Sat | 8/24
7 Mon | 8/26 | Mon | 8/26 | Sun | 8/25 | Tue | 9/10 | Mon | 8/26 | Mon | 8/26 | Sun | 8/25
8 Tue | 8/27 | Tue | 8/27 | Mon | 8/26 | Wed | 8/11 | Tue | 8/27 | Tue | 8/27 | Mon | 8/26
) Wed | 8/28 | Wed | 8/28 | Tue | 8/27 | Thu | 6/12 | Wed | 8/28 | Thu | 8/29 | Tue | 8/27
10 Fi | 830] Fi [830 | Wed [8/28] Fn] 9/13 | Thu | 8/26 | Fn | 8/30 | Wed | 8/28
11 Sat | 8/31 | Sat | 8/31 | Fn | 8/30 | Sat | 6/14 | Fn | 8/30 | Sat | 8/31 | Tha | 8/29
12 Sun | 9/t | Sun | 9/1 | Sat | 8/31 | Sun | 9/15 | Sat | 8/31 | Sun | 9/ Fi | 8/30
13 Mon 92 Mon 9/2 Sun /1 Mon | 9/16 | Sun Q/1 Mon 2774 Sat 8/31
14 Tue | 93 | Tue | 9/3 | Mon | 972 | Tue | 5717] Mon | 972 | Tue | 973 | Mon | 972
15 Wed | 9/4 | Thu | 95 | Tue | 9/2 | Wed | 9/18 | Tue | 973 | Wed | 9/4 | Tue | 973 |
16 || Thu | 95 F /6 | Wed | 9/4 | Thu | 9/19 | Wed | 9/4 | Thu | 9/5 | Wed | 9/4
17 Fr 9/6 | Sat | 9/7 | Fn /%6 | Fn | 9/20 | Sat | 977 Fr 9/6 | Thu | 955
18 &Sun 9/8 | Mon | 98 | Sat | 9/7 | Sat | 921 | Mon | 9/ | Sat | 977 =5 9/6
19 Mon 7] Tha | 9/12 | Sun 9/8 Sun | 9/22 Tue | 9/10 | Sun 9/8 Sat 9/7
20 Tue | 9/10 | Sat | 9/14 | Mon | 98 | Mon | 9/23 | Thu | 9712] Mon | 9/ | Sun | 9/8
21 Thu | 9/12 | Sun | 9/15 | Tue | 9/10 | Tue | 9/24 | Sat | 9714 | Tue | 9/10 | Mon | S
22 Sat | 9/14 | Mon | 9/16 | Thu | 8/12 | Wed | 9/25 | Mon | 9/16 | Thu | 9/12 | Thu | 9/12
23 Sun | 9/15 | Tue | 9/17 | Sat [6/14 | Thu | 9/26 | Tue | 9/17 | Fn | 9/13 | Fi | 9/13
24 Mon | 9/16 | Wed | 9/18 | Sun | 9/15 Fn 9/27 | Wed | 9/18 Sun | 9/15 | Sun 9/15
25 ﬁ_Tue 9/17 Thu | 9/19 | Mon | 9/16 Sat 9/28 Thu 8/19 | Mon | 8/16 | Mon | 9/16
26 Thu | 9/19 | Sun | 922 | Tuse | 9/17 | Sun [9/29] Fi | 9/20 | Tue | 9/17 | Tue | 9/17
27 Sun | 9/22 | Mon | 9/23 | Wed | 9/18 | Mon | 9/30 | Sun | 9/22 | Wed | 9/18 | Wed | 9/18
28 Mon | 9/23 | Tue | 9/24 | Thu | 9/19 | Tue | 10/1 | Mon | 9/23 | Thu | 9/19 | Thu | 9/19
29 Tue | 9/24 | Wed | 9/25 | Sun | 9722 | Wed | 10/2 | Tue | 9/24 | Fn | 9/20 | Fn | 9/20
30 Wed | 9/25 Thu | 9/26 | Mon | 9723 | Thu | 10/3 | Wed | 9/25 Sat 9/21 Sun | 9/22
31 Thu [9/26 | Sat | 9/28 | Tue | 9/24 | Fn | 10/4 | Sat | 9/28 | Sun | 9/22 | Mon | 9/23
32 Sat 9/28 { Sun | 9/29 | Wed | 9/25 Sat 10/5 | Sun | 9/29 { Mon | 9/23 Tue | 9/24
33 Sun | 9/29 | Mon | 9/30 | Thu | 9/26 | Mon | 10/7 | Tue | 10/1 | Tue | 9/24 | Wed | 9/25
34 J Mon] 9/30 | Tue | 10/1 | Sat | 9/28 | Tue | 10/8 | Wed | 10/2 | Wed | 9/25 | Thu | 9/26
35 Tue] 10/1 | Wed | 10/2 | Sun | 9/29 | Wed | 10/9 | Thu | 10/3 | Thu | 9726 | Fn | 9/27
36 jwed 10/2] Thu | 10/3 | Mon | 9/30 | Thu |10/10| Fn | 10/4 | Fn | 9727 | Sun | 9/29
37 Thu | 10/3 | Sat | 10/5 | Tue | 10/1 | Fn | 10711] Sat | 10/5 | Sun | 9729 1 Mon | 9730
38 Sat 10/5 | Sun | 10/6 | Wed | 10/2 Sat {10/12 | Sun | 10/6 { Mon | 9/30 Tue 10/1
39 Sun | 10/6 | Mon | 10/7 | Thu | 10/3 | Sun | 10/13 | Wed | 10/9 | Tue 10/1 | Wed | 10/2
40 Mon | 10/7 | Tue | 10/8 | Sat | 10/5 | Mon | 10/14 | Fn | t10/11 | Tha | 10/3] Thu 1 10/3
41 Tue | 10/8 | Wed | 10/9 | Sun | 10/6 | Tue | 10/15] Sat | 10/12] Fn | 10/4 | Fn | 10/4
42 § Wed | 10/9 | Thu [10/10 | Mon | 10/7 | Wed | 10/16 | Sun {10/13] Sun | 10/6 | Sun | 10/6

Table 3: Dates of File Activity Captured in Traces (continued on next page)

Appendix A - Page 1

Usert User4 User6 Ginger pcs X11 local
Users

date | day | date da; !date day |date | day | date | day | date daz !date
10/10 | Sat]10/12] Tue] 10/8 | Thu | 10/17] Mon | 10/14 | Tue] 10/8 | Mon | 10/7

44 1012] Sun] 10113 | Wed | 10/6 | Fi |10s18 | Wed | 10116 | wed | 10/9 | Tue | 10/8
45 10/13 | Mon | 10/14 | Sat | 10/12 | Sal {10149] Thu | 10/17 | Thu | 10/10 | Wed | 10/9
46 10/14 | Wed | 10/16 | Sun | 10/13 | Sun | 10/21| Fn | 10/18] Fa | 10/11] Fn | 10/11
47 10/16] Thu | 10/17 | Mon | 10/14 | Tue |10/22 | Sat | 10/19 | Sat | 10712 | Sun | 10/13
48 10/17 | Fn | 10/18 | Wed | 10716 | Wed | 10/23 | Mon] 10721 | Sun | 10/13] Mon | 10/14
49 10/18 | Sat | 10/19| Thu | 10/17] Thu | 10724 | Tue | 10/22 | Mon | 10/14 | Wed | 10/16
50 10/19 | Tue |10/22| Fn | 10718] Fi | 10725 | Wed | 10723 | Wed | 10/16 | Thu | 10/17
51 10/21 | Wed | 10723 | Sat | 10/10 | Sat | 10/26 | Thu | 10/24 | Thu | 10/17 | Fn | 10/18
52 10/22 | Thu | 10724 | Tue | 10722] Sun | 1027 | Fn | 10/25] Fn | 30/18] Sat | 10/19
53 10/23 | Fn | 10/25 | Wed | 10723 | Mon | 10/28 | Sat | 10726 | Sat | 10/19 | Sun | 10721
54 10/24 | Sun | 10727 | Thu | 10724 | Tue | 10728 | Sun | 10727 | Sun | 10721 | Wed | 10723
55 10/25 | Mon | 10728 | Fn | 10/25 | Wed | 10/30 | Mon | 10/28 | Wed | 10/23 | Thu | 10724
56 10/27 | Tue | 10728 | Sun | 10/27 | Thu | 10/31 | Tue | 10/29 | Thu | 10/24 | Fn | 10725
57 10/28 | Wed | 10/30 | Mon | 10/28 | Fn | 11/1 | Wed | 10/30 | Fn | 10/25] Sat | 10726
58 10/28 | Thu | 10731 | Tue | 10725 | Sat | 11/2 | Thu | 10731 | Sat | 10/26 | Mon | 10/28
59 10/30 | Fn | 11/1 | Wed | 10/30 | Sun | 11/3 | Fn | 11/1 | Sun | 10/27 | Tue | 10729 |
60 10/31 | Sat | 11/2 | Thu | 10731] Mon | 11/4 | Sat | 1172 | Mon | 10/28 | Wed | 10/30
61 111 | Mon | 11/4 | Fn | 11/1 | Tue | 11/5 | Tue | 11/5 | Tue | 10/29 | Thu | 10/31
62 1172 | Tue | 11/5 | Sat | 11/2 | Wed | 11/6 | Wed | 11/6 | Wed | 10/30 | Fa | 1171
63 11/4 | Wed | 11/6 | Mon | 11/4 | Tho | 11/7 | Thu | 11/7 | Thu | 10/31 | Sat | 1172
64 11/5 | Fn | 11/8 | Tue | 11/5 | Fn | 11/8 | Fn | 11/8 | Fi | 11/1 | Sun | 11/3
65 11/6 | Sat | 11/9 | Wed | 11/6 | Sat | 11/9 | Sat | 11/9 | Sat | 11/2 | Tue | 11/5

66 Thu | 11/7 | Mon | 1111 | Thu | 11/7 | Sun | 11/10 | Mon | 11/11] Tue | 11/5 | Wed | 11/6
67 T/ 7178 Tw (T2 B 398 | Won [1iAT] Toe 111742 Wed [1176 | Tha | 1177
68 Sat | 11/9 | Wed | 11/13 | Sat | 11/9 | Tue | 11/12]| Wed | 11/13] Thu | 11/7 | Fi | 11/8
69 Mon | 11/11] Tha | 11/14] Mon | 11/11| Wed | 11/13] Thu | 11714 Fn | 11/8 | Sat | 11/9
70 Toe |11/12] Wi | 1135] Tue |11/12] Thu 111734 Fi | 1115 Sat | 11/8 | Sun | 11/10
71 Wed | 11/13 | Sat | 11/16 | Wed | 117131 Fn | 11/15] Sat | 11716 | Sun | 11710 | Mon | 11/11
72 Thu | 11/14 | Sun | 11/37] Thu | 11714] Sat | 11716] Sun | 11/17 | Mon | 11/11] Tue | 11/12
73 Fi | 11/15] Mon | 11718] Fn] 11/15] Sun | 11/17] Tue | 1118 | Tue | 11/12 | Wed | 11/13
74 Sat | 11/16 | Tue |11/19 | Sat | 11/16] Mon | 11/18 | Wed | 11720 | Wed | 11/13 | Thu | 11/14
75 Mon | 11/18 | Wed | 11/20 | Sun | 11/17| Tue | 11/18] Thu | 11/21 | Thu | 1114 | Fn | 11/15
76 Tue | 11/19] Thu | 11/21 | Mon | 11/18 | Wed | 11/20 | Sat | 11/23 | Fa | 11/15] Sat | 11/16

77 Wed | 11/20 Wed | 11/20] Thu | 11/21] Sun | 11/24 | Sat | 11/16 | Sun | 11/17
78 Thu | 11/21 Thu | 11/21 Fri 11/22 Sun | 11717 | Wed | 11/20
79 Sun | 11/24 | Sat | 11/23 Tue {1119] Thu | 11/21
80 Mon | 11/25 Wed | 11/20 | Sat | 11/23
81 Thu {11721 | Sun | 11/24
82 | 11722
83 Sat | 11/23
84 | Sun | 11/24

Table 3: Dates of File Activity Captured in Traces (continued from page 1)

Appendix A - Page 2

Cumulative File Size Distributions — User Disks

70000
60000 userl
usero6
o 50000
=
Y 40000
(o]
o
-g 30000
2 ginger users
20000
userd
10000
0
100 125 150 175
Fne Size (Kbytes)
Cumulative File Size Distributions — "non-user" Disks
20000
18000
16000 x11
o 14000
@
i 12000
g 10000 5Cs+10
£ 8000
=)
< 6000 local
4000
2000
0
0 25 50 75 100 125 150 175

File Size (Kbytes)

Appendix A - Page 3

200000

Cumulative File Size Distributions — All Disks (log-log scale)

100000

Cumulative Number of Files
P
o
(@)
T

3000

user1

user4

useré
ginger users
pcs

local

x11

2 3 4 5 6 7 8 9 101112 13
base-2 Logarithm of File Size in Kbytes

Cumulative File Size Distributions Weighted by Access (log-log)

30000

10000

Cumulative Number of File-Access-Days

1000

useri-reads
useri-writes
useréd4-reads

user4-writes

ginger
users-reads

ginger
users-writes

0 1

base-2 Logarithm of File Size in Kbytes

Appendix A - Page 4

2 3 45 6 7 8 9 101112 13

Cumulative Number of File-Access-Days

Cumulative Number of File-Access-Days

100000

10000

2000

Cumulative File Size Distributions Weighted by Access (log-log)

p
)]
D
¢
()
O
()
¢
U]

-8 UserB-reads

-2 user6-writes

—— pcs-reads

—2— pcs-writes

01 2 3 45 6 7 8 9 10 1112 13

base-2 Logarithm of File Size in Kbytes

Cumulative File Size Distributions Weighted by Access (log-log)

—o— X11-reads

—2— X11-writes

—a— local-reads

—2— |ocal-writes

01 2 3 45 6 7 8 9 101112 13
base-2 Logarithm of File Size in Kbytes

Appendix A - Page 5

Sprite User1 - Files Accessed vs. Days

2400
2200 3
2000 -

-81 3
$800:

® 1600
§ 1400 B Files Read
@ 1200 - -

S 1000 3 1 A B Files Written

files

800 - i
600
400
200

0
0O 7 14 21 28 35 42 49 56 63 70 77

Days

Number

Sprite User1 - Kbytes Accessed vs. Days

60000

50000

Kbytes
E Read

40000

30000 Kbytes

Written

Kbytes Accessed

20000

0O 7 14 21 28 35 42 49 56 63 70 77
Days

Appendix A - Page 6

B
(2]
g
Q
Q

<
[}
[}

Kbyt

Sprite User4 - Files Accessed vs. Days

800

200+

Number of different files accessed
S
e

0 7 14 21 28 35 42 49 5 63 70
Days

Sprite User4 - Kbytes Accessed vs. Days

45000+
40000-
35000
30000-
25000
20000-
15000 4 |
100001
5000

0 ; ;
0 7 14 21 28 35 42 49 56 63 70

Days

Appendix A - Page 7

B Files Read

[Files Written

Kbytes
B Read

Kbytes
| Written

Sprite User6 - Files Accessed vs. Days

2 3000 " B Files Read

£ 2000 | [l Files Written ?

0 7 14 21 28 35 42 49 56 63 70 77
Days

Sprite User6 - Kbytes Accessed vs. Days

160000

140000

Kbytes

120000 -
] 2 Read

100000

BOOOO: Kbytes
] H yt

Written

Kbytes Accessed

60000

H

o

Qo

o

o
|

0O 7 14 21 28 35 42 49 56 63 70 77
Days

Appendix A - Page 8

Ginger Users - Files Accessed vs. Days

1400 -

1200

1000

800 -

600

&
o
l

Number of files accessed

0 7 14 21 28 35 42 49 56 63 70 77
Days

Ginger Users - Kbytes Accessed vs. Days

30000

25000

20000 J l

Kbytes Accessed

’f' d

0 7 14 21 28 35 42 49 56 63 70 77
Days

Appendix A - Page 9

[Files Read

[Files Written

Kbytes
‘ Read

Kbytes
Written

2000 -

Sprite pcs - Files Accessed vs. Days

b 1800 =

(724
[72]

@ 1600 -

CcC

& 1400 -

2 1000
2 1200

1ooo§
800

sooé
400
200

o

Number of different

0 7 14 21 28 35 42 48 56 63 70 77

Days

Sprite pcs - Kbytes Accessed vs. Days

200000

180000 -

160000
140000

120000

100000

80000 -

Kbytes Accessed

60000 -

40000

20000

3
3
(=

7 14 21 28 35 42 49 56 6
Days

it

3 70 77

Appendix A - Page 10

[l Files Read

B Files Written

s Kbytes
Read

Kbytes
. Written

Sprite X11 - Files Accessed vs. Days

(6) w
s 8
o o

N
3
o

[Files Read

S
3

B Files Written

Number of different files accessed

3

84

0 7 14 21 28 35 42 49 56 63 7077
Days

Sprite X11 - Kbytes Accessed vs. Days

300000
250000- !
] Kbytes
:]
B 200000- Read
& 150000 Kbytes
@ Written
2 100000

50000

O 7 14 21 28 35 42 49 56 63 70 77 84
Days

Appendix A - Page 11

Sprite local - Files Accessed vs. Days

[Files Read

[Files Written

1 8 15 22 29 36 43 50 57 64 71 78
Days

Sprite local - Kbytes Accessed vs. Days

50000
45000-
40000
35000

g 30000

£ 20000

2 15000 i
10000

5000

0

= Kbytes
" Read

1 8 15 22 29 36 43 50 57 64 71 78
Days

Appendix A - Page 1—2

10

20

30

Interreference time (days)
H
o

o

—y
o

n
o

Interreference time (days)
H w
o o

0
o

2]
o

Sprite User1 — File Interreference Distributions — Reads

) o
Troter e e o,

OOOBODOSS
OO

o

1 2

4 5 6

7 8

Base-2 Logarithm of Size (KB) of File Referenced

S
a s

sy : 0. 6
0.5
0.4
0.3
0.2
0.1

Sprite User1 - File Interreference Distributions — Writes

X
QRN
x. CRRNNN ’: D059

.

R S IR I S RS
CIOCRARAICII IO IR
KXAXIHXHXIIRNN)

o
OO
So8y ey

.
e teteteteteie o0

o

R
e tetetetetetetets
SRS %

[£4<qx b))

o
sy

2

4 5 6

7 8

Base-2 Logarithm of Size (KB) of File Referenced

Appendix A - Page 13

Interreference time (days)

Interreference time (days)

10

30

40

50

60

Sprite User4 — File Interreference Distributions — Reads

g

LRACAGALHXNEIRIRAREACILYNLEDIRIRE]

1 2 3 4
Base-2 Logarithm of Size (KB) of File Referenced

(8}

6 7 8 9

Sprite User4 - File Interreference Distributions — Writes

ARCALY LI P RIARASH LYt 22RRREES

o

Base-2 Logarithm of Size (KB) of File Referenced

Appendix A - Page 14

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

0.9

0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

ee,
OB

3 (days)

Ime

.

Interreference t

Interreference time (days)

Sprite User6 - File Interreference Distributions — Reads

.

+ .
.
oo aTat

¥l KK

0 1 2 3 4 5 6 7 8 9
Base-2 Logarithm of Size (KB) of File Referenced

Sprite User6 — File Interreference Distributions - Writes

0 1 2 3 4 5 6 7 8 9
Base-2 Logarithm of Size (KB) of File Referenced

Appendix A - Page 15

0.9

0.5
0.4
0.3
0.2
0.1

Interreference time (days)

Interreference time (days)

0
o

n
o

w
o
(AHHEES 2301

H
o

(0]
o

0 1 2 3 4 5 6 7 8 9

Ginger Users — File Interreference Distributions — Reads

0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

Base-2 Logarithm of Size (KB) of File Referenced

Ginger Users - File Interreference Distributions — Writes

T e
R
e
R R RRRLA
IEBIEA

TALAS L xih RN

: i
1 2 3 4 5

o

Base-2 Logarithm of Size (KB) of File Referenced

Appendix A - Page 16

Sprite pcs - File Interreference Distributions — Reads

%
SHOBONO
2% 2% 2% 2% 2% %
't 2 OG-
gttt at N

L e L e

o o o o o o (]

- N () < wn 0
(sAep) ewy} 8ouei8j8LIBlU|

Base-2 Logarithm of Size (KB) of File Referenced

Sprite pcs - File Interreference Distributions — Writes

0.6
0.5
0.4
0.3
0.2
0.1
0

o1
regss

BREK

3
.
LIS NI

fotstaiaiatrisiaidsl
%3
i

o o o o (@] o
- N (@] <t wn o

(sAep) esw} eousie}alIBlu|

Base-2 Logarithm of Size (KB) of File Referenced

Appendix A - Page 17

Interreference time (days)

Interreference time (days)

n
o

10

n
o

w
o

H
o

(o2
o

X11 - File Interreference Distributions — Reads

0 1 2

w

4

5 6 7 8 9

Base-2 Logarithm of Size (KB) of File Referenced

X11 —File Interreference Distributions — Writes

0.1

(4848 xuudpIRRRRALY

oifE

o

1 2 3 4
Base-2 Logarithm of Size (KB) of File Referenced

5 6 7 8 9

Appendix A - Page 18

Interreference time (days)

Interreference time (days)

0
o

10

N
o

W
o

H
o

0
o

o

-t
o

n
o

W
o

'S
o

6

Sprite local - File Interreference Distributions — Reads

0 1 2 3 4 5 6 7 8
Base-2 Logarithm of Size (KB) of File Referenced
Sprite local - File Interreference Distributions — Writes
0 1 2 3 4 5 6 7 8

Base-2 Logarithm of Size (KB) of File Referenced

Appendix A - Page 19

9

0.4

0.2
0.1

Sprite - User 1 (subset)

(o)) ()] mn
N E © a
(7] o= »)
M
p
9
<
*
p
\ \
AY\J‘\ ‘\
0 W T W MW N W - W0 O
o ¥ 0o Mo N o " o @
o o o o o
olley SsI oji4

—+» spt10

N E 8 8 ¢ ¢ B B
n = o »un u u o
oy
e
w
>
[
N
-
S
Q
\n
D
)
]
=
I
Q.
n
" S 5 5
o

oljey ssI ol

Appendix A - Page 20

Sprite - User 4 (subset)

size

—n—

—— time
—a— S8t

—»— spt10

| _—
[

® 0 N W
o N o
o o

olley Ssi e|!4

Sprite - User 4 (full set)

size

—

—=— time

—— sbt

s8t

s10t
si2t
s14t

B

Q
o

oiey ssiN 8jid

0.1+

0.001

00¢
061
08}
0Lt
091
oG}
ovi

[eXeNoloNoNo oo NoNo
TUHOMNDODOHOO~ANM
-

[eNeNe
QN M

—~

a
=

S

Appendix A - Page 21

Magnetic Disk Size

Sprite - User 6 (subset)

size

—&— time

——
—a— §8t
—a— spt

0.7

oney Ssi ejid

Sprite - User 6 (full set)

size

—_—

—— time

s6t
s8t
s14t

—_—
—_—A
—_—

—s— spt

sptd

—h

—»— spt10

olfey ssiw ojid

0.001

oov
08¢
09¢
ove
02€
00€
082S
092 o
o2 5
0ce x
0023
081 .8
094 2
oVl @
0zL=
00}
08

09

oY

02

Appendix A - Page 22

Ginger Users (subset)

size
s10t
size
s6t
s10t
s14t
—a— sptd

——
—x— time
—_——
—=— spt
——
—>=— time
——
—a— s8t
—o—
—_—
—a— spt

o
o
[}
o0
[y
o o
(7 <
3 3
o =
a
m &
brd <
s
| -
o
[e)]
£
O
\\¢
| —1 =
—1 \
1T [T
------------ -.dﬂu TTny Trvy LA) LILR AL AL LALLA S
0 W T WV M OV N OV ~ 1V O -
o ¥ 0o MM o N o " o ©
o o o o o
olley Ss| 9|14

oley SSIN ojid

Sprite - pcs (subset)

size

s8t

—
—&— time
—_—D

—a— spt

00v
08€E
09€
OvE
02€
00€ —
082S
092 o
ove
022¢ x
0024
081 8
091 2
ovL &
0gL=
004
08

09

oy

02

o
o o o o
oley SSI 8|!4

T L —-q.q LN AL AN L
wn < @ !

v
o

Sprite - pcs (full set)

size

—n—

—&— time

s6t

s10t

s14t
—=— spt10

—
—— 88t
—
——
—a— spt

(0]0]7
08¢
09€
ove
02€
00€ —~
082S
092 o
o2
0c¢ x
002 &
081 &
09t 2
oVt &
021 =2
00}
08

09

oV

02

1
<
o

oley ssIn olld

0.1

0.001

.~

Appendix A - Page 24

Sprite - X11 (subset)

size

—

—— time

s14t

—_—
—a— spt

00¥
08E
09€
OvE
0zE
00€E —
08z S
092 o
ove 5
0cc x
002
08t 2
091 2
orL &
02L=
00}

08
09
4}
0¢

rTrr

.................

size
s14t

s6t
sB8t

—

—a-— time
—— spt10

—~—
—a—
—_—
—a— spt

00v
08¢
09¢
ove
02€
00€ —
0822
092 o
vz
022 x
0024
081 .8
09} 2
ort &
0zt =
001
08

09

ov

02

Sprite - X11 (full set)

0
0.01

Oliey SsIN o)1y

Appendix A - Page 25

File Miss Ratio

Sprite - Local (subset)

nowomomomnmowouw n o
T AN ANOOTTUONOONNO®

Magnetic Disk Size (Mb)

0

Sprite - Local (full set)

0.1

0.01

0.001

nowmwomoumonmownouwonoOoOOoWw
FTr AN ANOOTITUOUODOONNODOOO®

Magnetic Disk Size (Mb)

100

Appendix A - Page 26

size

time

s6t

spt10

size
time
s6t

s10t
s14t
spt

sptS

spt10

