Performance Characterization of Optimizing
Compilers

USC-CS-92-525

Rafael H. Saavedra:t
Alan J. Smith™

1 Department of Computer Science
University of Southern California
Los Angeles, CA 90089-0781
saavedra@usc.edu

Computer Science Division
University of California
Berkeley, CA 94720

August 15, 1992

7§

Performance Characterization of Optimizing Compilers

Rafael H. Saavedra:t
Alan Jay Smith#

ABSTRACT

Optimizing compilers have become an essential component in
achieving high levels of performance. Various simple and sophisticated
optimizations are implemented at different stages of compilation to yield
significant improvements, but little work has been done in characterizing
the effectiveness of optimizers, or in understanding where most of this
improvement comes from.

In this paper we study the performance impact of optimization in the
context of our methodology for CPU performance characterization based
on the abstract machine model. The abstract machine model considers all
machines to be different implementations of the same high level language
machine; in previous research, we have used this model as a basis to
analyze machine and benchmark performance. In this paper, we: 1) show
that our model can be extended to characterize the performance improve-
ment provided by optimizers and to predict the run time of optimized pro-
grams; 2) measure the effectiveness of several optimizing compilers in
implementing different optimization techniques; and 3) analyze the optim-
ization opportunities present in the Fortran SPEC benchmarks and other
benchmarks.

1. Introduction

Recent work in machine performance evaluation has focused on assembling large
suites of realistic applications to be used as benchmarks, and in developing a more for-
mal and systematic approach to benchmarking [SPEC89, Cybe90]. Computer manufac-
turers are using these suites to evaluate the overall performance of machines and to
improve the designs of future machines and compilers. By concentrating on the perfor-
mance of the whole system, however, it is not possible to explain why machines perform
well on some benchmarks but badly on others, or to predict how they behave on

1 The material presented here is based on research supported principally by NASA under grant NCC2-550, and also in part
by the National Science Foundation under grants MIP-8713274, MIP-9116578, and CCR-9117028, by the State of Califor-
nia under the MICRO program, and by the Intemational Business Machines Corporation, Philips Laboratories/Signetics,
Apple Computer Corporation, Intel Corporation, Digital Equipment Corporation, Mitsubishi and Sun Microsystems.

§ This paper has been issued as technical report USC-CS-92-525 of the Computer Science Department at USC and techni-
cal report UCB-CSD-92-699 of the Computer Science Division, UC Berkeley, August 15, 1992.

$ Computer Science Department, Henry Salvatori Building, University of Southem Califomia, Los Angeles, Califomnia
90089-0781.

Computer Science Division, EECS Department, University of California, Berkeley, Califomia 94720.

programs not included in the suites. Observed CPU performance is the result of the
interactions between many hardware and software components, i.e., integer, floating
point, and branch units, memory system, applications, libraries and optimizing compilers,
and a comprehensive performance evaluation should characterize their respective contri-
butions [Lind86]. Our research has focused in developing a methodology that addresses
two problems: how to compare machines with different architectures in a meaningful
way, and how to explain in detail performance results in terms of the different com-
ponents of the system [Saav89, 92a, 92b].

The basis for our research has been to model all computers as machines that execute
Fortran. By measuring the execution time for primitive Fortran operations on a given
machine, and by counting the frequency of occurrence of the various operations in each
program of interest, we have been able to predict with good accuracy the running time.
We refer to this as our abstract machine model.

In this paper we focus on two problems, characterizing the performance improve-
ment due to compiler optimization and extending our performance methodology to
include the effects of optimization. We do this by addressing three different subprob-
lems: 1) extending the abstract machine model to include optimization and using this
new model to quantify and predict the execution time of optimized programs; 2) evaluat-
ing the effectiveness of different optimizing compilers in their ability to apply standard
optimizations; and 3) evaluating the amount of optimization found in the SPEC suite and
identifying distinctive features in the benchmarks which can be exploited by good optim-
izing compilers.

In Section 2 we begin by discussing the relevant work done with respect to evaluat-
ing the effectiveness of optimizing compilers. We then give a brief description of our
methodology for CPU performance characterization, summarize our previous work, and
discuss the inherent limitations of our model with respect to compiler optimization.

We then proceed in Section 3 by extending our methodology to account for the per-
formance improvements due to optimization by using the concept of invariant optimiza-
tions. An optimization is invariant with respect to our abstract machine model if it is still
possible to abstract from the optimized sequence of machine instructions the original
operations embodied in the source code. This approach avoids the extremely difficult
problem of having to predict how an arbitrary program will be modified by different
optimizers. It assumes that the effect of optimization is now to cause the execution time
of a given primitive operation to be reduced; in effect, optimization modifies the machine
performance, not the program. We have found this approach to be quite successful in
allowing us to predict the running times of optimized code.

In Section 4 we address the problem of characterizing and comparing different
optimizing compilers in their ability to apply standard optimizations. We use a special
benchmark consisting of a set of small kernels, each containing a single optimization,
which detect the set of optimizations that optimizers can apply and the context in which
they are detected. We show that even when most optimizers attempt to apply the same
set of optimizations, there are some differences in their relative effectiveness, and these
differences can significantly affect the performance improvement obtained on some pro-
grams.

Finally, in Section 5, we analyze the potential optimizations present in the SPEC
Fortran benchmarks and how well current optimizers can detect them. We also discuss
some problems in the benchmarks which can exploited by smart compilers to artificially
improve the performance of the machine.

2. Previous Work and Background Material

In this section we review some of the work done in evaluating the effectiveness of
optimizing compilers, and then give a brief description of our methodology for CPU per-
formance evaluation. We note that most performance studies about optimizing compilers
have focused on showing that they actually improve the execution time of programs, but
have ignored other important aspects like evaluating their effectiveness in detecting
optimizations or how often these optimizations occur in real applications.

The second part of this section introduces our methodology for performance
evaluation, in particular it reviews the abstract machine execution model and discusses
some of our previous results. In the following section we discuss the limitation of the
model with respect to compiler optimization and how they can be overcome using the
concept of invariant optimizations.

2.1. Previous Performance Studies in Compiler Optimization

Knuth, in 1971, was the first who attempted to quantify the potential improvement
due to optimization {Knut71]. He statically and dynamically analyzed a large number of
Fortran programs and measured the speedup that could be obtained by hand-optimizing
them. He found that on the average a program could be improved by as much as a factor
of 41,

Papers reporting on the effectiveness of real optimizers were not published until the
beginning of the eighties [Cock80, Chow83, BalH86, John86, Wolf85, Much86, Jaza86].
Most of these studies describe the set of optimizations that can be detected by the optim-
izers, but without specifying if they are detected on all data types or only on a small sub-
set. As we will see in §4.2, very few optimizers are able to detect optimizations on all
data types; this can result in a significant loss of potential improvement as a result of
changing the precision or type in the declaration of variables. Another problem is the
programs used to evaluate optimization in these studies tend to be small and thus the
results may not be representative of real applications.

The performance of IBM’s PL/1L experimental compiler is evaluated in [Cock80].
The compiler has 3 levels of optimization. Although the paper describes which optimiza-
tions are carried out at each level, only the aggregate speedup is reported. On four pro-
grams, the amount of speedup obtained at the maximum level of optimization was 1.312.
Chow [Chow83] who wrote the Uopt portable global optimizer at Stanford, gives

1 In the rest of this paper we quantify the improvement produced by an optimizer in terms of
the speedup experienced by the program, i.e., the ratio between the unoptimized execution time to
the optimized time. When reported, the overall speedup on all benchmarks is computed by taking
the geometric mean of the individual speedups. In order to be consistent, we also follow these two
rules when we describe work done by others. Because of this some of the numbers we quote here
are not the same as those found in the original papers.

statistics about the number of times that each optimization was detected and for some of
the optimizations he reports the amount of improvement produced. On 13 small Pascal
programs, with no program larger than 160 lines, the average speedup was 1.705. He
also found that the most effective optimizations were register allocation and backward
code motion with speedups of 1.423 and 1.431 respectively when applied individuallyz.
Bal and Tanenbaum [BalH86] found using the Amsterdam Compiler Kit optimizer that
the speedup produced on toy programs was 1.851, while the speedup on larger programs
was only 1.220. Because the larger programs consisted of modules taken from a single
application and were all written by the same people, it is not clear whether the difference
in speedups can be attributed to the complexity of the programs or the ability of the pro-
grammers. A performance study based on the HP Precision Architecture global optim-
izer [John86] found that on the same programs used by Chow the average speedup was
1.381.

There had been other studies dealing with other aspects of optimization. Arnold
[Amo83] reports on the effectiveness of the CYBER 205 vectorizing compiler in produc-
ing either vector or scalar versions of a loop as a function of the number of iterations.
Richarson and Ganapathi [Rich89] have shown that certain types of interprocedural data
flow analysis provides only marginal improvement on most of the programs in their
suite. Callahan, Dongarra, and Levine have collected a large suite of tests for vectorizing
compilers and have evaluated a large number of compilers [Call88]. Most commercial
vectorizing compilers are based either on the VAST or KAP pre-compilers developed at
Pacific Sierra Research and Kuck and Associates, which are compared in [Bras88].
Singh and Hennessy [Sing91] are studying the potential and limitations of automatic
parallelization.

Most of the effectiveness of vectorizing compilers comes from making a depen-
dence analysis of the program. People have realized that dependency analysis techniques
[Bane88] can also be used to improve the performance of scalar machines. Recent
research have proposed using this information to improve register allocation of subscript
variables [Call90], increase locality inside nested loops [Port89, Ferr91, Wolf91], and
reduce memory latency by using software prefetching in conjunction with lockup-free
caches [Call91]. Although it will take some time before these techniques are incor-
porated into commercial compilers, they appear to be the best way of improving the per-
formance of scientific programs. As optimizers become more and more powerful and
complex, the need to evaluate their effectiveness and characterize how they affect real
programs becomes increasingly important.

2.1.1. Factoring Out the Effect of Languages and Architectures

The programs used in the above studies have been written in C, Pascal, or a dialect
of PL/1 and the speedups observed were in all cases smaller than two. We have found
that Fortran compilers produce significantly larger speedups; we believe that this is
because Fortran is inherently easier to optimize. First, Fortran programs appear to offer
more opportunities for optimization as most of the work is inside highly nested loops.

2 The product of the individual speedups can be larger than the overall speedup because in
some cases one optimization prevents the application of the other.

Performing an optimization inside one of these loops tends to significantly reduce the
execution time. Second, Fortran programs tend to use large amounts of data stored in
arrays, and the access to this data tends to follow simple regular patterns which can often
be easily optimized. Third, subroutines in Fortran programs tend to be larger than for
other languages, so there is more opportunity to find optimizations. Fourth, typical For-
tran code inside basic blocks contains long sequences of arithmetic statements, rather
than complicated sequences containing procedure calls, case statements, and other pro-
gram structuring constructs, which impede optimization. Lastly, there are no pointers in
Fortran, so detecting aliases is no problem for the optimizer. (Aliases do exist, because
of common and equivalence statements, and subroutine parameters, but may be readily
identified.) Normally, in the presence of aliases, optimizers are forced to make worst case
assumptions.

One problem when comparing the improvements produced by different optimizers
is how to factor out from the results the quality of the unoptimized code. It is clear that it
is always possible to increase the speedup produced by an optimizer by generating worse
unoptimized code.

Another factor that has to be taken into account is the effect of the architecture.
Some machines are easier to generate code for than others. One of the arguments in
favor of the RISC movement [Patt85] was that a simple architecture makes it easier to
write better optimizers, as the number of combinations to consider is significantly
smaller. An attempt to evaluate the effect of optimization on different architectures
using again the Uopt optimizer is reported in [Cude89]. This study found that register
architectures tend to benefit the most from optimization, as the optimization process
introduces large numbers of temporaries which get assigned to registers, effectively elim-
inating many load and store instructions.

2.2. The Abstract Machine Performance Model

We call the approach we have used for performance evaluation the abstract
machine performance model. The idea is that every machine is modeled as and is con-
sidered to be a high level language machine that executes the primitive operations of For-
tran. We have used Fortran for three reasons: (a) Most standard benchmarks and large
scientific programs are written in Fortran; (b) Fortran is relatively simple to work with;
(¢) Our work is funded by NASA, which is principally concerned with the performance
of high end machines running large scientific programs written in Fortran. Our metho-
dology could be straightforwardly used for other similar high level languages such as C
and Pascal.

There are three basic parts to our methodology. In the first part, we analyze each
physical machine by measuring the execution time of each primitive Fortran operation on
that machine. Primitive operations include things like add-real-single-precision, store-
single-precision, etc; the full set of operations is defined in [Saav89, 92a]. Measurements
are made by using timing loops with and without the operation to be measured. Such
measurements are complicated by the fact that some operations are not separable from
other operations (e.g. store), and that it is very difficult to get precise values in the pres-
cence of noise (e.g. cache misses, task switching) and low resolution clocks [Saav89,
92a]. We have also called this machine analysis phase narrow spectrum benchmarking.
This approach, of using the abstract machine model, is extremely powerful, since it saves

us from considering the peculiarities of each machine, as would be done in an analysis at
the machine instruction level [Peut77].

The second part of our methodology is to analyze Fortran programs. This analysis
has two parts. In the first, we do a static parsing of the source program, and count the
number of primitive operations per line. In the second, we execute the program and
count the number of times each line is executed. From those two sets of measurements,
we can determine the number of times each primitive operation is executed in an execu-
tion of the entire program.

The third part of our methodology is to combine the operation times and the opera-
tion frequencies to predict the running time of a given program on a given machine
without having run that program on that machine. As part of this process, we can deter-
mine which operations account for most of the running time, which parts of the program
account for most of the running time, etc. In general, we have found our run time predic-
tions to be remarkably accurate [Saav92a, 92b].

It is very important to note and explain that we separately measure machines and
programs, and then combine the two as a linear model. We do not do any curve fitting to
improve our predictions. The feedback between prediction errors and model improve-
ments is limited to improvements in the accuracy of measurements of specific parame-
ters, and to the creation of new parameters when the lumping of different operations as
one parameter were found to cause unacceptable errors. The curve fitting approach has
been used and has been observed to be of limited accuracy [Pond90]. The main prob-
lems with curve-fitting is that the parameters produced by the fit have no relation to the
machine and program characteristics, and they tend to vary widely with changes in the
input data.

In [Saav89] we presented a CPU Fortran abstract machine model consisting of
approximately 100 abstract operations and showed that it was possible to use it to charac-
terize the raw performance of a wide range of machines ranging from workstations to
supercomputers. We used these characterizations to define and compare a set of reduced
parameters synthesized from the abstract operations which represents the performance of
different aspects of the machine. These reduced parameters makes it easier to make a
direct comparison between machines as the parameters can be identified with specific
subunits in the machine. We also introduced the notion of a performance shape, which
represents graphically the overall performance of a machine; we also defined a metric of
machine similarity which identifies machines with similar distribution of performance
over the parameters. We showed that this metric is related to the amount of variance
found in the relative results between pairs of machines.

In [Saav92a, 92b] we studied the characteristics of the SPEC and Perfect Club
benchmarks using the same abstract machine model and showed that it is possible to
predict the execution time of arbitrary programs on a large number of machines. Both of
these studies assumed that programs were compiled and executed without optimization.
In the next section we discuss how optimization can invalidate some of our assumptions
and how it is possible to extend the model to remedy this situation.

2.3. Limitation of Our Model in the Presence of Optimization

An apparent limitation of our linear model is that it does not account for the pro-
gram transformations induced by optimization. To state this formally, we describe our
methodology with this equation:

n
Tym = 'Zlci,APi,M = C4 Py (1)

i=
Here C; 4 is the number of abstract operations of type i that program A executes,
and P; y is the execution time of operation i on machine M. In general, when we
include optimization, both the decomposition of the program in terms of the abstract
model (C,) and the performance of the abstract operations (Py) may change. C, changes
when the optimizer eliminates some part of the computation. The raw performance
measurements represented by Py change, because the compiler generates different
sequences of machine instructions at different levels of optimization. Therefore, in gen-

eral, the execution time equation when using an optimizing compiler should be

Tamo = XCiaoPimo = CaoPuo 2)
i=1
Our problem here is to obtain C, o and Py o by only making an analysis of the program
and running experiments with optimization enabled.

3. Extending the Abstract Model to Include Optimization

From the discussion of the preceding subsection we can proceed to classify optimi-
zations according to how they affect eq. (1). In the first class (type I) we have optimiza-
tions which change the program’s distribution of abstract operations, either by removing
or replacing some amount of code. Common subexpression elimination is one example
of this type of optimization. Here all the abstract operations forming the subexpression
are eliminated and replaced by a reference to the previously computed result. Applying a
type I optimization has the effect, on equation (1), of changing C,, but without affecting
Py. The difficulty in characterizing the performance improvement due to these optimi-
zations is that we need to know how C, changes, but without having any information
about how an arbitrary optimizer works.

In the second class (type II) we have optimizations which only improve the
sequence of machine instructions generated by the compiler to implement an abstract
operation, but do not remove any abstract operations. This class not only includes
improved machine code sequences, but also strength reduction, as explained below.
Here one or several slow operations are replaced by a faster but equivalent sequence of
operations. Type II optimizations change Py, while leaving C, unchanged. We call
these optimizations invariant with respect to the abstract decomposition of the program.
The advantage to us of invariant optimizations over type I optimizations is that we can
characterize the performance improvement of the former by just running our machine
characterizer with optimization enabled. If the optimizer changes the code it generates
when it encounters an abstract operation in a program, it does the same action when it
encounters it in the machine characterizer; thus the performance effect of this change can
be quantified.

Whether an optimization is of type I or II depends mainly on the level at which we
define the abstract machine. If the abstract machine were defined at the level of the
machine’s instruction set, then all optimizations would be of type I, since every machine
instruction eliminated affects the decomposition of the program. If, on the other hand,
the abstract operations consisted of different algorithms, then almost all optimizations are
of type II. As long as the algorithm is not eliminated, changes to it are considered only
as different implementations of the same abstract operation. Given the level of abstrac-
tion of our model, it happens that most source to source transformation are optimizations
of type 1, and low level transformations are optimizations of type II.

To illustrate the difference between invariant and non-invariant optimizations, con-
sider the following code excerpt

DO 2I-=1, N
DO1J =1, N
X(I) = X(I) + Y(J,K) * Z(J,L)
1 CONTINUE
2 CONTINUE

During program analysis we identify the different abstract operations, €.g., a floating
point add (ARSL), floating point multiply (MRSL), computing the addresses of a 1- and
2-dimensional array elements (ARR1 and ARR2), DO loop initialization and overhead
(LOIN and LOOV), floating point store (SRSL). Combining this static decomposition
with information on how many times each basic block is executed we can then obtain the
contribution of this code to the total execution time

Time = (Pspsy +2-Pagr2+2-Parr1 + Purst + Parst + PLoov)N*+ (Prow + Proov)N +Proi -

In table 1 we show the sequence of assembler instructions generated by the MIPS
Co. f77 compiler version 1.21 for the innermost loop for each abstract operation (left
column) without and with maximum optimization. (We have made inconsequential
changes to the syntax of the machine instructions to make the code more readable.)

3.1. Optimization Viewed as an Optimized Implementation of the Abstract Machine

What the above example shows is that even when the two sequences of machine
instructions, one unoptimized and the other optimized, are very different, we can still
identify in both the original abstract operations. Thus in this case the optimizer has
reduced the execution time, but the characterization of the program excerpt, in terms of
our abstract machine, has not changed. We refer to these type of optimizations, which
improve the execution time of a program but do not change the distribution of abstract
operations, as being invariant with respect to the abstract machine model.

It is important to note that the optimizations applied to the program excerpt in table
1 are not only simple low-level optimizations. The compiler here has to apply strength
reduction, backward code motion, and address collapsing in order to eliminate the 2
loads, 2 multiplies, and 4 add/sub operations in the sequence associated with ARR2.
This requires identifying that some part of the address computation is invariant with
respect to the loop induction variable so it can be moved out of the loop; and that the
sequence of array addresses is generated by a linear recurrence, so future values can be

abstract assembler code assembler code
| operation without optimization with optimization
[~ arr2 loadi rl4, 80444 (sp) loadf £4, 24708(r3)
loadl rl5, 40036(sp) add i r3, r3, 4

mul_i r24, rlS, 100
add i r25, ril4, r24
sub_1 r8, r25, 101
mul_4i r9, r8, 4

add_1i rl1l0, r9, -40424
add_i rll, sp, 80464
add_1 riz2, rio0, ril1l
loadf £6, 0(ril2)

arr2 loadl r13, 32 (sp) loadf £6, 17472(r4)
mul_41i ri5, ri3, 100 add_1 r4, r4, 4
add_4{ rz4, ri4, rils
sub_1 r25, r24, 101
mul_1 r8, r25, 4
add_1{i r9, r8, -80428
add_4i rio, r9, rill
loadf £8, 0(rlo0)
mrsl mul f £10, f6, f8 mul_ f £8, f4, f6
arrl sub_1i rl12, ri4, 1 loadf £16, -428(r2)
mul_f rl13, riz, 4
add_1i ri15, ri13, -424
add_1i r24, sp, 80464
add_i r25, ri1S, r24
loadf £16, 0(r25)

arsl add_f f18, fl6, £f10 add_f £10, f£f16, f8

srsl storf f£18, 0(r25) storf £10, -428(r2)

loov loadl r8, 80444 (sp) add_1i r2, rz2, 4
add_41 r9, r8, 1 br_ne r2, ré, r35

storf r9, 80444 (sp)
loadi rll, 80440 (sep)
br_ne r9, rll, r34

Table 1: Nonoptimized and optimized assembler code for the innermost loop. On the left side we show
the abstract machine operations represented by the assembler code.

computed from previous ones using only adds. However, from our perspective, the
optimized program still executes operation ARR2, even though the new version con-
sumes fewer cycles. Therefore we consider the above optimizations invariant with
respect to parameter ARR2, which now has a new ‘optimized’ execution time. We can
do this as long as 2-dimensional array references can be optimized in a similar way by
the compiler in most programs and in our program characterizer. For some optimizations
this assumption is reasonable, but on others it is not. Overall, as we will observe, this
assumption works well.

In the case that all optimizations are invariant, predicting the execution of the
optimized version requires only taking the dot product between the unchanged abstract
characterization of the program excerpt and the ‘optimized’ set of machine parameters.
This ‘optimized’” machine characterization is obtained by using the optimized version of
the machine characterizer to measure the parameter values.

The relevance of viewing optimization not as an attempt to improve the object code
which executes on the same machine but as running the same abstract set of instructions
on an ‘optimized’ machine, is that we effectively avoid having to predict how an

10

arbitrary optimizer would transform the program.

Although it is not always possible to know how optimization in general will affect a
program, it is possible, for many programs, to obtain reasonable predictions by assuming
that most of the optimization improvement comes from applying invariant optimizations.
Under this assumption the execution time of an optimized program is

Ty mo=2Ci.aPimo=CaPmo 3)

i=1

There are three main reasons why this approach works. First, optimizations are
applied at a low level when most of the program structure is not present any more, so
most of the improvement derived is from optimizing sequences of machines instructions
and not from eliminating abstract operations. Second, optimizers are consistent in
detecting optimizations. If an optimizer is capable of improving the code emitted by the
compiler in the expansion of a particular abstract operation, then it can also do it in most
of the other instances where the same sequence appears, such as in the machine charac-
terizer. Lastly, the execution time of programs is normally determined by a small
number of basic blocks, and it appears that for the programs we’ve studied, programmers
try to eliminate obvious machine-independent optimizations on these blocks to guarantee
that the programs will execute efficiently.

The second argument in the previous paragraph is worth discussing in more detail.
Even when a type I optimization changes the distribution of abstract operations of pro-
grams by eliminating some operations, it can be considered an invariant optimization as
long as the same operations are eliminated from all occurrences in all programs, includ-
ing our machine characterizer. For example, suppose that a very good compiler is capa-
ble of eliminating at compile time all multiply operations. As long as the optimizer is
always successful, we can include this optimization in our predictions, because our meas-
urements with the machine characterizer will indicate that the execution time of the mul-
tiply operation is zero or close to zero. The corresponding execution time computed
using this value will correspond to the actual execution time. Our focus in this subsection
is in quantifying the performance effect of optimization and not in finding out which
optimizations are applied. In §4 we characterize the particular optimizations that com-
pilers can apply.

3.2. Limitations of Invariant Optimizations

The above approach to optimization works as long as the optimizer attempts to
reduce the execution time of the programs without changing the original computations
embodied in the source code. This, however, is not always the case. For example, a
sophisticated vectorizing compiler can apply loop interchange, code motion, and loop
unrolling [Paud86] to the previous code excerpt to dramatically reduce the number of
operations and consequently the execution time”. These source to source transformations

3 Loop interchange transposes the order of the loops. This allows the compiler to the detect
that the expression Y(J,K) * Z(J,L) is invariant with respect to the induction variable I
and hence can be moved out from the loop. The compiler can then identify that all elements of ar-
ray X get the same value, which can be computed only once and the result added to all elements.

11

produce the following equivalent piece of code

DO1I=1, N
T™P = TMP + Y(I,K) * Z(I,L)

1 CONTINUE
DO2I-=1, N
X(I) = TMP

2 CONTINUE

The contribution of this code to the total execution time is
Time =N (Pypst + Parsy +2'Pagr2 + Parr1+ Psgs. + Prrse +2'Proov) + 2-Proiv + Prrse -

This equation is now linear with respect to the number of iterations instead of quadratic.
This example shows that, in general, without detailed knowledge of which transforma-
tions are applied by the optimizer, it is not possible to predict the execution time after
optimization.

3.3. Machine Characterizations Results with Optimization

In the previous section we argued that we can easily extend our model to include
invariant optimizations, if we consider them as defining a faster machine rather than
optimizing the object code. This ‘optimized machine’ has its own machine performance
vector which is obtained by executing the system characterizer with optimization
enabled. Furthermore we can apply to the performance vector the same metrics as in the
unoptimized case. Thus, the concept of performance shape and machine similarity
[Saav89] are well defined and provide useful information with respect to the effective-
ness of optimization. In this section we compare different machine characterizations
under various levels of compiler optimization.

reduced HP 720 MIPS M/2000 Sparcstation 1+

parameters -00 -01 -02 -00 -01 -02 -00 -02 -03
memory latency 108 104 61 173 135 52 545 511 269
integer add 95 60 29 165 89 69 247 188 41
integer multiply 442 419 170 574 | 463 489 || 1132 | 1265 950
logical operations 193 139 95 229 245 144 586 598 383
single prec. add 99 53 45 175 139 95 319 299 233
single prec. multiply 128 96 35 260 201 200 406 343 133
double prec. add 100 73 45 223 167 117 488 427 233
double prec. multiply 129 117 35 348 279 276 799 598 254
division 300 234 188 780 | 669 575 || 2648 | 2592 | 1933
procedure calls 99 96 72 328 238 161 215 76 77
address 136 76 42 462 262 147 426 267 166
branches & iteration 151 97 41 286 164 95 318 135 105
intrinsic functions 2561 | 2490 | 2477 || 3306 | 3246 | 3405 || 7442 | 7747 | 8568

Table 2: Optimization performance results in terms of the reduced parameters. Each parameter
represents a particular characteristic of the machine and is computed from a subset of basic
abstract machine parameters. All units are in nanoseconds. On the Sparcstation 1+ the results for
optimization levels 0 and 1 were almost identical, so we only report results for level 0.

12

We ran the system characterizer using different optimization levels on three high
performance workstations. The complete results, including those without optimization,
are shown in Appendix A (tables 13-17). Table 2 shows a set of thirteen parameters
which were synthesized from the basic measurements.

The vector of reduced parameters can be used to characterize a machine and to
compute the degree of similarity between machines. We can also use a graphical
representation of performance called the performance shape (pershape [Saav89]), a type
of Kiviat graph, as shown in figure 1. There we plot the (inverse of the) performance of
each machine, at each level of optimization, normalized to the MIPS M/2000 with no
optimization; each bar is on a logarithmic scale.

et “’_, b
HP 720 (-02) MIPS M/2000 (-02) Sparcstation [+ (-03)

Figure 1: Performance shapes (pershapes) of different optimization levels. The thirteen dimensions
correspond to the same thirteen parameters used in table 1. All dimensions are normalized with
respect to the MIPS M/2000 with optimization level 0.

The results in figure 1 clearly show that some abstract and reduced parameters
benefit more from optimization than others. The parameters that benefit most are
memory bandwidth, integer addition, floating point arithmetic operations, address com-
putation, branching and iteration. Conversely, intrinsic functions show little if any
improvement. This is because normally the same libraries are used at all optimization
levels. In fact, the average execution time for intrinsic functions on the Sparcstation 1+

13

increases with the level of optimization, and on the MIPS M/2000 the average time at the
maximum level of optimization is larger than for other two cases. This is because the
call to an intrinsic function can inhibit optimizations that would otherwise occur to the
surrounding code; our methodology attributes that loss of performance to (the presence
of) the intrinsic function.

3.4. Execution Time Prediction For Optimized Code

In this section we show that we can predict, reasonably well, the execution time of
optimized programs when most of the optimization improvement comes from the appli-
cation of invariant transformations. The experiments were done using a large set of For-
tran programs taken from the SPEC and Perfect Club suites, and also some popular
benchmarks. A description of the programs and their dynamic statistics can be found in
[Saav92b]. First, we compiled the programs using different levels of optimization and
measured their respective execution times. At the same time we collected machine char-
acterizations for the different levels of optimization. Using machine characterizations
and the dynamic statistics of the programs, we predicted the expected execution times.

Minimum opt level Maximum opt level
Machine Average RMS Average RMS
HP-9000/720 -851% | 2184 % +342% | 35.60 %

MIPS M/2000 +195% | 1681 % || +1064% | 33.67%
Sparcstation 1+ || -7.52% | 22.87% —6.03% | 2534 %

Table 3: Summary of execution time errors by machine at the minimum and maximum levels of optimi-
zation. RMS represents the root mean square error. The plus (negative) sign for average errors in-
dicate that the predictions were above (below) the real execution times.

In figure 2 we show the comparison between the real and predicted execution times
for both optimized and unoptimized programs; the abbreviations for the various pro-
grams are explained in [Saav92a]. For each graph the vertical distance to the diagonal
represents the error of the prediction. Although the scale is logarithmic and hence the
errors appear smaller than they are, it is clear from the figure that the predictions even at
the maximum optimization level are quite good. Tables 18-20 on Appendix B gives the
exact execution times and relative errors. Summaries of the predictive errors, by
machine and program, are presented in tables 3 and 4. The RMS error, shown in tables 3
and 4, is the square root of the average of the square of the individual errors. As
expected the magnitude of the error increases with the optimization level, but this
increase is relatively small with an average error of less than 11%. Note that the average
actual run time increases relative to the predicted run time; that increase reflects optimi-
zations that are not invariant.

Figure 2 (see also tables 18-20) clearly shows that some programs benefit more than
others from optimization. For example, the execution time improvement of WHET-
STONE on the four machines is only 20 percent; the smallest of all benchmarks. This is
because of the relatively large number of intrinsic functions executed by the program,
which do not run faster when the program is optimized.

14

Minimum Opt. Level || Maximum Opt. Level
Program Average RMS Average RMS

Doduc +4.10 % 676 % || -1406% | 1693 %
Fpppp +593% | 11.74% || -1939% | 2997 %
Tomcatv ~1192% | 1354 % || —18.44% | 21.60%
Matrix300 ~3787% | 39.00% || 4600% | 5133 %
Nasa7 -1801% | 19.98 % —4.14% | 1230%
Spice2g6 +1187% | 17.36% || +17.66% | 35.87%
ADM -18.17% | 2273 % -740 % 743 %
QCDh +3072% | 31.04% || +4398% | 54.11%
MDG +1215% | 1543 % +3.23% | 13.43%
TRACK +1671% | 17.16% || -1478% | 1554 %
BDNA -13.18% | 1427 % +032% | 15.19%
OCEAN +345 % 426 % || +4584 % | 48.85%
DYFESM -2576% | 28.62% || +1040% | 27.87%
ARC2D -3528% | 35.63% || -26.75% | 3538%
TRFD -2204 % | 26.37 % -844% | 1531%
FLOS2 ~1950% | 22.86 % || +34.12% | 47.42%
Alamos +271% | 11.15% || +27.69 % | 34.48 %
Baskett +1633% | 1658 % || +24.42% | 25.28 %
Erathostenes || —14.58 % | 1854 % || -45.02% | 47.01 %
Linpack —625% | 1574 % || +23.01% | 31.54 %
Livermore +1241% | 17.16 % || 42198 % | 3145%
Mandelbrot +6.17 % 8.01 % +165% | 1048 %
Shell +621% | 21.60% || +33.60% | 39.38%
Smith -18.14% | 19.86 % +127% | 28.78 %
Whetstone ~11.82% | 1687 % {| -22.69% | 25.58 %
Totals —483% | 2059 % +2.48% | 31.89 %

Table 4: Summary of execution time errors by program at the minimum and maximum levels of optimi-
zation for the programs on table 3. The real and predicted execution times are given in tables 19-
21 in Appendix B. RMS represents the root mean square error.

Table 5: Error distribution for execution time predictions
level <5% <10 % <15% <20 % <30 %

no optimization 15 (22.06) | 26 (36.76) | 39 (54.41) | 46(64.71) | 61 (85.29)
max optimization || 11(12.86) { 19(24.29) | 28(37.14) | 36 (48.57) | 47 (68.29)

level >30% > 40 % >50%
no optimization 11 (14.71) 3 (441) 0 (0.00)
max optimization || 27 (35.71) | 17 (22.86) 10 (12.86)

Table 5: Error distribution for the predicted execution times with and without optimization. For each er-
ror interval, we indicate the number of programs having errors that fall inside the interval (percen-
tages inside parenthesis). The error is computed as the relative distance to the real execution time.

By modeling the execution time of a program using the abstract machine model in
combination with the tools we have developed, we can get an understanding of how
much optimization really affects the execution time of a program across many machines.
We talk in more detail about this in §3.7.

15

10000 - ; - ; v ; 10000
- | |
- (! [I |
1000 |2 ! ! ! | MDG .-
H | I i 1 +..1
- | | I T
T e
10 ' ' A?coﬁ&M FEO, v - 10000
- ! ! ot L
tofe : |y SMDODT e
P : | | *—‘ﬁN* :TRA | F-LOE*,MDG
I) - | e X NTRf-#Ag MAT
'g] | t AEP[T }OCDDYF !
e - BAS .+ MAN ! A7 POD ! =1 10000
B - .] |
N SHE L HWHE | TRAZSMI | NAS. e
d HP 72 &02) e ' LIN.¢ ' ?_—
- [i P 1 OCE + + ARC
i TRE+ BDN
i o1 o s : PP B
c i GRAERER
WHE+ SHE | ALAFS | | NAS
tomhon T RA A BON A OCE
e \. n v EHN l MR MAT
0.01 |~ ' L ' SMﬁFp}i" YE O
R e i
d | BASaN i ALAH " |
SHE 4y LV £ P ! T 10000
a7 - _4MDG
MIPS M/2000 (-02), 1 T ERA ! _'_,..}* iIN | oc1-:'+4vN S
N T ! TOM TRE
| - |
i 001f : M@QX SHE Qc@D,,, FLO,
I WHEi-"' | | ALAﬁh’ 1
m ! "+ ERA [SMI n MDG .--gl 0000
[.- ! LIY_:&- ! |]
e MIPS M/OO\(‘)(OO)[: ""’H;'LIN Bo}O(D MA’II‘QAS;J 1000
! | | E
L t P | PDYF]
. : BASMAN;PWHE | TRA‘i" i : 4 100
Vo >F ﬁ Ly, SMI :
_ p +ERA ; | _~FLIN : : -
Sparcstatign I+ (-03)..- | : 'L | : 7110
| | | | G
+BAS]
e ! 1 1 !
0.01 ! SHH#WHE ! ! ! 1,
e : : ;
1. ' 1 1 |
Sparcstatirn I+ (_OQ)"_.-"‘l') 1 1 | E 0.1
\ i ' [! f _
I | | I |
0.01 . d = d d 0.01
0.01 0.1 1 10 100 1000 10000
(sec)

Real Execution Time

Figure 2: Each broken diagonal line, which corresponds to a particular machine and optimization level
combination, shows the accuracy of the predictions compared to the real execution times. The left
end point of each diagonal line maps to (0.01, 0.01) and the right end point to (10000, 10000).
Points along the diagonal are of the form (T, T'). All scales are in seconds.

16

3.5. Accuracy in Predicting the Execution Time of Optimized Programs

Our assumption that most of the performance improvement obtained from optimiza-
tion is due to invariant optimizations is a simplification which is not necessarily valid on
all programs. Nevertheless, the results of the previous section show that for most pro-
grams the assumption is reasonable. In table 5 we compare the distribution of errors for
both non-optimized and optimized programs; we can see that for maximum optimization
the average error increases. For the results shown in figure 2, table 5 shows that while
85% of the non-optimized predictions are within 30% of the real execution time, this
value decreases to 68% for optimized programs. Moreover, almost 13% of the predic-
tions have errors of more than 50%, while none of the non-optimized prediction have
errors of that magnitude.

If a program exhibits a significantly larger positive prediction error at the maximum
optimization level than it does with no optimization, then it is probably the case that the
error is the result of ignoring non-invariant optimizations. In table 4 we see several pro-
grams for which this is true. An analysis of the source code shows that in these cases,
optimizers are applying optimizations that are not invariant. For example, the code
excerpt below taken from QCD contributes significantly to the total execution time. It
contains many opportunities for the compiler to apply common subexpression elimina-
tion (3*I+P+1, 3*J+Q+1, and 3*K+R+1) and thus significantly reduce the execu-
tion time.

PO 21I=20, 2
DO 2 P =20, 2
DO 2 J =0, 2
DO 2 Q =0, 2
DO 2 K=20, 2
IF (EPSILO(I+1,J+1,K+1) .NE. 0) THEN
DO 3R =20, 2
IF (EPSILO(P+1,Q+1,R+1) .NE. 0) THEN
FAC = EPSILO(I+1,J+1,K+1) * EPSILO(P+1,Q+1,R+1)
TOT(1) = TOT(1) + FAC * ULl(1,3*I+P+1) ¥ U2(1,3*J+Q+1) *
. U3(1,3*K+R+1)
TOT(1) = TOT(1) - FAC * U1(2,3*I+P+1) * U2(2,3*J+Q+1) *
U3(1,3*K+R+1)
TOT(1) = TOT(1) - FAC * U1l(1,3*I+P+1) * U2(2,3*J+Q+1) *
U3(2,3*K+R+1)
TOT(1) = TOT(1) - FAC * U1(2,3*I+P+1) * U2(1,3*J+Q+1) *
U3(2,3*K+R+1)
TOT(2) = TOT(2) + FAC * U1(1,3*I+P+1) * U2(1,3*J+Q+1) *
U3(2,3*K+R+1)
TOT(2) = TOT(2) + FAC * U1l(1,3%*I+P+1) * D2(2,3*J+Q+1) *
U3(1,3*K+R+1)
TOT(2) = TOT(2) + FAC * Ul{2,3*I+P+1) * U2(1,3*J+Q+1) *
U3(1,3*K+R+1)
TOT(2) = TOT(2) - FAC * Ul(2,3*I+P+1) * U2(2,3*J+Q+1) *
. U3(2,3*K+R+1)
ENDIF
CONTINUE
ENDIF
2 CONTINUE

Common subexpression elimination in this context is not an invariant optimization
as defined in §3.1. Replacing an arithmetic expression by a reference to a previously
computed equivalent value eliminates the abstract operations involved and thus distorts

17

our predictions. This is what happens on QCD, for which all of our predictions are
greater than the real time; on two of the machines machines the errors are as high as 47%
and 81% (tables 18 and 19).

3.6. Improving Predictions in the Presence of Non-Invariant Optimizations

We can improve our predictions of run times by identifying the applicable non-
invariant optimizations and performing them manually on the source code. By applying
common subexpression elimination to the previous example, we obtain the equivalent
code shown below.

DO 21I=20, 2
DO 2P=20, 2
DO 2J =0, 2
DO 2Q=20, 2
DO 2 XK =0, 2
IF (EPSILO(I+1,J+1,K+1) .NE. 0) THEN
DO3R=0, 2
IF (EPSILO(P+1,Q+1,R+1) .NE. 0) THEN
FAC = EPSILO(I+1,J+1,K+1) * EPSILO(P+1,Q+1,R+1)
I3 =3 *I 4+ P + 1
J3 =3 *J +Q+1
K3 =3 *K+R+1
T11 = U1(1,I3) * U2(1,J03)
T12 = U1(1,I3) * U2(2,J3)
T21 = U1(2,1I3) * U2(1,J3)
T22 = U1(2,1I3) * U2(2,J3)
U3l = U3(1,K3)
U32 = U3(2,K3)
Ti1l = T11 * U31
T112 = T11 * U32
T121 = T1i2 * U31
T122 = T12 * U32
T211 = T21 * U31
T212 = T21 * U32
T221 = T22 * U31
T222 = T22 * U32
TOT(1) = TOT(1) + FAC * (T1l1 - T221 - T1l22 - T212)
TOT(2) = TOT(2) + FAC * (T112 + T121 + T21ll - T222)
ENDIF
CONTINUE
ENDIF
2 CONTINUE

Here the values of common subexpressions are computed once and stored in vari-
ables I3, J3, and K34, In a similar way, we can eliminate other common subexpressions
and in this way reduce the number of integer operations from 60 to 15 and the floating
point operations from 37 to 23. After making the above changes, we found that on all
machines the prediction errors were less than 30%.

By distinguishing the invariant and non-invariant optimizations, we can assess the
performance impact of each, because the performance improvement due to non-invariant

4 Although /3 and J3 are invariant with respect to the induction variables of the two innermost
loops, it is not profitable to move the code outside the loops because the two IFs eliminate a large
fraction of the innermost iterations.

18

optimizations is equal to the difference between our prediction, considering only invari-
ant optimizations, and the real execution time.

3.7. Amount of Optimization in Benchmarks

By comparing the execution times before and after optimization for several dif-
ferent compilers, we can measure how much potential optimization exists in programs.
In table 6 we show the program speedup achieved by each optimization level for the
three machines previously discussed.

In §2.1 we mentioned that previous studies on the effectiveness of optimizing com-
pilers for languages like C, Pascal, and PL/1 reported speedups of less than a factor of 2.
The results in table 6, however, show that at the maximum level of optimization the
speedups observed on Fortran programs are frequently larger than 2, with some programs
experiencing speedups of more than a factor of 5.

program HP 720 MIPS M/2000 Sparcstation 1+ || Geom. Mean

-01 -02 -01 -02 -02 -03 Max. Opt.
Doduc 1307 | 2123 21]| 1.255 | 1.701 21 || 1.439 | 1.468 20 1.744 2
Fpppp 1.344 | 2.000 22 || 1.222 | 1437 23 || 1.479 | 1541 1 1.642 22
Tomcatv 1.504 | 3.497 10 §| 1.445 { 2994 10 || 1.866 | 1.927 16 2.722 1a
Matrix300 1377 | 3413 n |} 1.263 | 2475 1a || 3.788 | 4.854 2 3.448 7
Nasa?7 1477 | 3318 14 || 1.300 | 2.817 u || 3.759 | 3953 s 3.331 »
Spice2gb 1.345 | 2.560 15 || 1.250 | 1.739 15 || 1.231 | 1.462 2 1.867 2
ADM 1.305 | 4.000 s || 1.372 - 2.506 | 2.646 10 3253 10
QCD 1374 | 2793 16 || 1.351 | 1957 18 || 1.443 | 1.621 18 2.069 18
MDG 1.215 | 1.698 24 || 1.250 | 1.701 20 || 1.208 | 1.238 25 1.529 »
TRACK 1.316 | 1.786 23 || 1.377 | 1.700 22 || 1.318 | 1.403 23 1.621 »
BDNA 1.414 | 2.890 15 || 1.381 | 2.088 16 || 1.237 | 1.440 22 2.056 19
OCEAN 1.370 | 3.891 7 || 1.408 | 3344 s || 2.066 | 2924 3 3.363 s
DYFESM 1.468 | 6993 3 i 1.335 | 4525 3 |} 4367 | 5263 1 5.502 2
ARC2D 1340 { 4878 s || 1.368 | 3417 7 || 2.118 | 3.606 s 3917 s
TRED 1.664 | 7.143 2 || 1.361 | 4338 4 || 3.690 | 3.891 s 4940 3
FLO52 1460 | 8333 1 || 1.360 | 6.008 2 || 3.610 | 3.937 4 5.820 1
Alamos 1.397 | 3.344 12 || 1.311 | 3571 s || 1.362 | 2558 n 3.126 n
Baskett 1.316 | 3333 13 || 1.370 | 2.564 13 || 2.331 | 2.801 9 2.882 13
Erathostenes 1.300 | 2.597 18 || 1.305 | 2.237 15 |} 1.667 | 1.667 17 2.132
Linpack 1.600 | 3.831 s || 1.410 | 3.344 o || 2.584 | 3.268 7 3472 ¢
Livermore 1473 | 2703 17 || 1.570 | 2.725 12 || 2.045 | 2326 12 2.578 15
Mandelbrot 1.348 | 2.545 20 |} 1.429 | 2.083 17 || 2.000 | 2.000 15 2.197 16
Shell 1.634 | 4902 4 || 1.592 | 6.289 1 i 1.357 | 2.093 14 4011 4
Smith 1350 | 3.597 o || 1.282 | 3472 6 || 2.000 | 2.105 13 2973 »2
Whetstone 1.218 | 1.647 25 {| 1.200 | 1.372 24 || 1.300 | 1.300 2 1.432 25
Geom. Mean || 1.392 | 3.271 1.348 | 2.665 1.973 | 2.296 2.722

Table 6: Optimization speedups under different optimization levels. Each speedup is computed by tak-
ing the ratio between the nonoptimized and optimized execution times. The last column gives the
geometric mean of the machine speedups obtained at the maximum level of optimization. The
small number on the right of each speedup indicates its relative magnitude, with the numeral 1
representing the largest speedup. Program ADM did not execute correctly on the MIPS M/2000 at
the maximum optimization.

19

The results of table 6 show that speedups on FLO52, DYFESM, TRFD, ARC2D, and
SHELL are the highest of all programs, while those of DODUC, FPPPP, TRACK, MDG,
and WHETSTONE are the lowest. Our analysis of the source code shows that the pro-
grams in each group share similar characteristics. For example, the sizes of the most
time-consuming basic blocks of the programs with the highest speedups are quite small.
These consist of a few arithmetic statements where most of the operands are elements of
multi-dimensional arrays. Our examination of those programs shows that most of the
optimization improvement comes from collapsing the computation of the array
addresses, good register allocation, and eliminating loads and stores of temporary values.

The programs with the smallest speedups are different. They tend to have substan-
tially larger basic blocks. For example, the largest basic block on FPPPP has 590 lines
of mostly scalar code. Here register files having as many as 32 or 64 registers cannot
keep most of the variables in registers between their definition and use. Furthermore, on
these programs, most of the operands are either scalars or one-dimensional arrays, so
address collapsing, the elimination of time consuming address calculations in multi-
dimensional arrays, does not produce very much improvement. They also tend to exe-
cute a larger number of intrinsic functions whose execution is mostly unaffected by
optimization. This is also the case for MDG and WHETSTONE. Further discussion of
the optimizations possible in these programs appears in §5.1.

Coefficient of level of Spearman’s Rank level of
machines Correlation significance Correlation significance
HP 720 and MIPS M/2000 0.8677 0002 0.9417 0003
HP 720 and Sparc 1+ 0.7390 0009 0.7954 0012
MIPS M/2000 and Sparc 1+ 0.5656 0070 0.7652 .0020

Table 7: Coefficient of correlation and Spearman’s rank correlation of pairwise optimization speedup
results. The statistical significance level gives the probability that there is not a positive correlation
involved.

It is dangerous to draw conclusions about the effectiveness of the different optimiz-
ers from the speedup results of table 6. The overall speedup is as much a function of the
quality of the non-optimized object code as it is of the optimizer, since it is always possi-
ble to improve the overall speedup by generating worse non-optimized code. This is par-
ticularly true for the HP 720, for which the overall speedup is significantly higher
because the compiler generates native code for the 700 series only at the maximum level
of optimization. For compatibility reasons, the object code at low levels of optimization
is for the 800 series, which is emulated on the 720 in software.

Program SHELL is a good example of how the quality of nonoptimized code affects
the amount of speedup observed on different programs. This benchmark is one of the
few integer programs in our suite and implements shellsort. As Table 6 shows, SHELL is
the program with the largest speedup on the MIPS M/2000 (6.289), and is one of the top
four for the HP 720 (4.902). On the other hand, the speedup on the Sparcstation 1+ is
significantly lower (2.093), even lower than the overall improvement for all programs
(2.296). The reason for this is not because the Sun’s optimizer fails to improve the code,
but is due to the fact that with no optimization, the MIPS M/2000 and HP 720 generate
especially poor code. This is evident in the number of machine instructions generated by

20

each compiler. On the Sparcstation 1+, the number of instructions changes from 41
without optimization to 23 with optimization. The corresponding numbers for the MIPS
M/2000 are 74 and 16, with speedups of 1.873 and 4.625. This discrepancy is clearly
present in the actual execution times. Benchmark results normally rate the MIPS M/2000
as being at least 50% faster than the Sparcstation 1+. The results for SHELL on tables 19
and 20 (Appendix B), however, indicate that at low levels of optimization the Sparcsta-
tion 1+ is faster than the MIPS M/2000 (0.95 sec vs. 1.64 sec and 0.70 sec vs. 1.03 sec).
It is only at the maximum optimization level that the MIPS M/2000 exhibits a smaller
execution time (0.43 sec vs. 0.26 sec).

We can test if there is positive correlation between the amount of speedup produced
by pairs of optimizers on these benchmarks, by computing either the coefficient of corre-
lation or the Spearman’s rank correlation coefficient. Table 7 gives the value of the coef-
ficients and the level of significance for the three combinations. As is evident, there are
substantial but not perfect correlations in the speedup produced by the three compilers.

4. The Characterization of Compiler Optimizations

In the last section we discussed how to measure and predict the performance
improvement produced by optimizers. In this section we characterize the set of optimi-
zations that compilers actually apply, and in which contexts. The context indicates
whether a particular optimization can be performed on all data types or only on a subset
of them. We are also interested in knowing if the optimization is detected when it is
present inside a basic block and/or across basic blocks. In what follows, we refer to a
local optimization as one that is detected inside a basic block and a global optimization
when it spans more than one basic block.

Our approach to detecting optimizations is similar in some respects to the way we
characterize basic machine performance [Saav89]. We have developed a Fortran pro-
gram consisting of a number of tests which detect individual optimizations; each test is
made separately for integers, floating point or mixed mode expressions. When appropri-
ate, we also test for the local and global cases.

We detect whether a particular optimization is applied or not by running experi-
ments which show a difference in their execution time only when the optimization is per-
formed. In this way we can avoid having to analyze the assembler code. Each optimiza-
tion test consists of two almost identical measurement where the only difference between
them is that the second measurement contains a potential optimization. The running time
of the two cases differs significantly only if the optimization is performed. Each experi-
ment is repeated 20 times to collect a large statistic and a post-processor computes the
average execution times of each experiment (1, and) and the significance level of the
following statistical test: M <M, If there is sufficient evidence to reject the null
hypothesis, then we can assume that the optimization was performed. The level of signi-
ficance represents the probability that random variations in our measurements would
appear as supporting the conclusion that the optimization was detected when in fact it
was not. Nevertheless, in all cases we have double checked that the optimizations were
applied by analyzing the assembler code.

Figure 3 illustrates the basic structure of our experiments. This example is one of
the tests for detecting local dead code elimination. The two corresponding innermost

21

DO 2 J =1, 20 DO 4 J =1, 20
TO = SECOND (P) TO = SBCOND (P)
DO 1 I =1, ITER DO 3 I =1, ITER
Wl=X*"Wl+ (A" (B*C)) Wl=X*Wl+ (A* (B*C))
W2 =X * W2 + ((A*B) *C) W2 =X *W2 + ((A*B) *C)
W3 =Y * W3 + ((C*A) * B) W3 =Y *W3 + ((C*A) *B)
A= XA - A A=XA-A
B=XB-B B=XB -B
C = XC - C C=XC ~-¢C
Wi=Y*Wl+ (A* (B*C)) Wli=X*A + (A* (B*C))
W2 =Y *W2+ ((A*B) *C) W2 =Y *Wl+ ((A*B) *C)
W3I=X"*W3+ ((C*A) *B) W3 =Y *W2 + ((C*A) * B)
A= XA - A A =XA -A
B=XB -B B=XB -B
C=XC-¢C C=XC -¢C
1 CONTINUE 3 CONTINUE
T(J) = SECOND (P) - TO T(J) = SECOND (P) - TO
2 CONTINUE 4 CONTINUE

Figure 3: A particular experiment to detect dead code elimination. On the left hand experiment all defin-
itions inside the innermost loop are used at least once, while on the other experiment the topmost
definitions of W1, W2, and W3 are not used. The three definitions can be eliminated by the op-
timizer.

loops are almost identical with only one difference: in the right hand side, the first set of
definitions of variables W1, W2, and W3 are not used subsequently by any other state-
ment. Furthermore, these definitions are killed by the second set of definitions to the
same variables. Formally, we say that there are no forward dependencies having as
source the first definitions. Hence, if the compiler can detect this, it can eliminate their
computation. In contrast, this does not occur on the left side where every definition is the
source of a forward dependency. Eliminating the first three statements on the second
experiment reduces the execution time between 25% and 50% on most machines.

4.1. Standard Optimizations Detected

The types of optimizations that we are interesting in detecting are machine-
independent. This is consistent with our methodology which permits comparing different
machines, and in this case their compilers, by providing a unified representation of the
execution while ignoring machine-level details. Machine-dependent optimizations, like
those performed by peephole optimizers, are invariant with respect to our model. Most
machine-independent optimizations detected by current optimizers have been known for
many years. A good reference describing these optimizations and the general problem of
compiler optimization is [AhoA86]. [Chow83 and BalH86] describe how optimizations
are implemented in a real compiler. The following are the optimizations that we
currently detect:

e Constant Folding: replace symbolic constants by their actual values and evaluate the result-
ing expressions at compile time. If during this process other variables get a recently com-
puted constant value, then their values are again propagated until no more constant expres-
sions remain. The current emphasis on program modularity and portability has increased the

22

use of symbolic constants and correspondingly the importance of applying this optimization.

e Common Subexpression Elimination: identify two or more identical subexpressions in a
region without an intervening definition of any of the relevant variables. Compute the
subexpression at the beginning and replace subsequent computations by a reference to a tem-
porary variable holding the result of the computation.

e Code Motion: identify expressions or statements which are invariant with respect to the
induction variables of the loop and are computed unnecessarily on every iteration, and to
move them out of the loop. The performance improvement obtained is proportional to the
number of times the loop is executed. In scientific programs this is one of the most impor-
tant optimizations along with address collapsing. Both of them are used in conjunction in
the optimization of array references.

e Dead Code Elimination: in some programs there are pieces of code which can be statically
proved never to be executed or whose execution does not have any semantic effect on the
final computation. This code can be safely eliminated by the compiler to reduce the execu-
tion time and/or the object code size. Although this optimization does not appear very
promising, as most programmers do not deliberately write needless code, occasionally some
statements become dead as the result of applying other optimizations, or as the result of revi-
sions to the program.

e Copy Propagation: some optimizations like common subexpression elimination, code
motion, and address collapsing create large number of copy instructions, e.g., x = y. By
replacing uses of the copy with the original variable it is possible to simplify the code and
expose new optimizations. Optimizations that benefit from copy propagations are common
subexpression elimination and register allocation.

e Address Collapsing: eliminate slow address computations for multi-dimensional array ele-
ments in innermost loops by precomputing outside the loop the addresses of the elements
referenced in the first iteration and updating their values by adding a constant in subsequent
iterations. This optimization is based on the observation that in the majority of nested loops
the sequence of machine addresses associated with a specific array reference form an arith-
metic progression, which is completely determined by the first value and the increment.

e Strength Reduction: this optimization is a generalization of address collapsing as it
attempts to replace a time-consuming computation with an equivalent but faster one. One
example is replacing an exponentiation having a small integer exponent which is known at
compile time with a series of multiplications. Similarly, multiplies can often be replaced by
additions. On array references, the combination of strength reduction and code motion
makes it possible to collapse address computations.

e Subroutine Inlining: substitute for a call to a subroutine the actual subroutine code. This
avoids the overhead of the call, and exposes optimizations present at the site of the call.
Although most optimizers claim that they do subroutine inlining, they tend to differ substan-
tially in the amount of integration they perform.

e Loop Unrolling: expand several iterations of the loop into a single basic block and hence
expose new optimization opportunities. This also reduces the impact of the loop overhead.

In this paper we have concentrated on scalar optimizations. But in addition to the
above optimizations, there are others program transformations which have been designed
to exploit vector and parallel hardware. Some of these like loop distribution, loop inter-
change, loop fusion, loop peeling, and stripmining are used to help compilers in recog-
nizing hardware vector instructions [Paud86, Alle87, Hira91]°. A description of a large
test suite and evaluation of vectorizing Fortran compilers can be found in [Call88].

5 Loop distribution separates independent statements inside a single loop into multiple loops
which can be optimized independently [Hira91). Loop fusion transforms two adjacent loops into a

23

Machine Compiler Name/Location
VAX-11/785 BSD Unix F77 1.0 arpa.berkeley.edu
MIPS M/2000 MIPS F77 2.0 mammoth.berkeley.edu
Sparcstation 1+ Sun F77 1.3 heffal.berkeley.edu
VAX-11/785 Ultrix Fort 4.5 pioneer.arc.nasa.gov
Amdahl 5860 Amdahl F77 2.0 prandtl .nas.nasa.gov
CRAY Y-MP/8128 | CRAY CFT774.0.1 | reynolds.arc.nasa.gov
IBM RS/6000 530 IBM XL Fortran 1.1 | coyote.berkeley.edu
Motorola M88K Motorola F77 2.0b3 | rumble.berkeley.edu

Table 8: List of machines with their respective Fortran compilers.

4.2. Optimization Results

We have run our experiments on several optimizing compilers and for different lev-
els of optimization. In table 8 we give the list of machines along with their correspond-
ing compilers. The complete results are presented in tables 21-26 in Appendix C, while
tables 9-11 summarize the same information. The Appendix’s tables indicate for each
optimization and different context (integer, float and mixed), whether the optimization
was detected or not. In our experiments we make a distinction between local and global
optimizations. A local optimization (tables 9-10) is one in which the optimization and all
the information needed for its detection are found within a single basic block. A global
optimization (table 11) requires the propagation of control and data flow information
across basic block boundaries. In these tables, a ‘yes’ or ‘no’ entry indicates that the
optimizer was able to detect all or none of the optimizations in the tests. The other two
alternatives, two out of three and one out of three, correspond to entries ‘partial’ and
‘marginal’, for the three cases of real, integer and mixed mode computations. The results
show that some compilers are only able to apply optimizations under certain conditions
and not on all cases.

The optimization results for constant folding illustrate the difficulties in evaluating
the effectiveness of an optimizer. While almost all the compilers are able to propagate
integer constants inside a basic block, with the exception of the f77 BSD Unix and
Amdahl compilers, the situation is less clear for floating point constant and global con-
stant propagation. The Sun Fortran compiler does not apply constant propagation for
floating point or across basic blocks, while the fort Ultrix compiler from DEC imple-
ments constant propagation on all data types but only inside a basic block. For the MIPS
compiler, constant propagation is applied in the local and global context only for
integers. For floating point, the value of a variable known at compile time is propagated
only if the variable is assigned a constant value, but not if it gets the constant as a result
of evaluating an expression.

single loop so as to reduce the loop overhead. Loop collapsing transforms two nested loops into a
single one so as to increase the effective vector length. Stripmining transforms a single loop into
two nested loops when the number of iterations of the original loops is much larger than the
number of elements in the vector registers [Paud86]. Loop Fusion and loop collapsing are,
respectively, the inverse transformations of loop distribution and stripmining.

24

compiler constant common code copy dead code
folding subexpr elim motion propagation | elimination
BSD Unix F77 1.0 no partial marginal partial no
Mips F77 2.0 -02 partial yes yes partial yes
Mips F77 2.0 -O1 marginal yes no marginal no
Sun F771.3-03 marginal yes yes no yes
Sun F7713-02 marginal yes yes no partial
Sun F7713 -0O1 no no no no no
Ultrix Fort 4.5 yes yes yes yes yes
Amdah]l F77 2.0 no no no no no
CRAY CFT774.0.1 yes yes yes yes yes
IBM XL Fortran 1.1 yes partial yes partial yes
Motorola F77 2.0b3 || marginal yes yes no no

Table 9: Summary of local optimizations. Each entry summarizes how well the optimizer detects the op-
timization using integer, floating point, and mixed data types in arithmetic expressions. These op-
timizations do not extend beyond a single basic block.

compiler constant common code copy dead code
folding | subexpr elim motion | propagation | elimination
BSD Unix F77 1.0 no no marginal no no
Mips F77 2.0 -02 partial yes yes marginal yes
Mips F77 2.0 -01 no no no no no
Sun F771.3 -03 no yes partial no yes
Sun F771.3 -02 no yes partial no partial
Sun F771.3 -01 no no no no no
Ultrix Fort 4.5 no yes yes partial yes
Amdahl F77 2.0 no no no no no
CRAY CFT774.0.1 yes partial partial no yes
IBM XL Fortran 1.1 partial partial yes marginal yes
Motorola F77 2.0b3 no partial no no no

Table 10: Summary of global optimizations. Each entry summarizes how well the optimizer detects the
optimization using integer, floating point, and mixed expressions. These optimizations cover more
than one basic block.

Common subexpression elimination is successfully detected by most compilers in
all contexts. Although the IBM XLF compiler identified almost all common subexpres-
sions, it missed a couple which involved floating point adds and multiplies. The reason
is that the RS/6000 series provides, in addition to the normal add and multiply opera-
tions, a combined multiply-add instruction. In our experiments the compiler generated
for two occurrences of the same subexpression, a multiply followed by an add in one
case, but a single multiply-add for the other case. As a result of this, it did not recognize
that the two expressions were identical. Missing an optimization as a result of applying
another, however, is in many cases acceptable if the first optimization provides a better
improvement.

25

compiler strength address inline loop
reduction | calculation | substitution | unrolling

BSD Unix F77 1.0 partial marginal no no
Mips F77 2.0 -02 yes yes marginal yes
Mips F77 2.0 -O1 no yes no no
SunF7713 03 partial marginal no yes
Sun F771.3-02 partial no no yes
SunF771.3-01 no no no yes
Ultrix Fort 4.5 yes yes no no
Amdahl F77 2.0 no no no no
CRAY CFT774.0.1 yes yes yes yes
IBM XL Fortran 1.1 yes yes partial yes
Motorola F77 2.0b3 partial no no no

Table 11: Additional optimizations. These optimizations are tested using a single data type, as their ap-
plication is not affected by this kind of context. Here partial and marginal have a different mean-
ing than on tables 8 and 9. Instead of summarizing the results of several experiments, they
represent the effectiveness of the optimizers on a single test.

Table 11 shows that our tests detected that three compilers have some ability to
inline procedures, but only the CRAY CFT77 compiler takes full advantage of it. In the
case of MIPS f77 2.0, the compiler does not perform an actual inline substitution. The
only transformation done is that the compiler does not use a new stack frame for the leaf
procedure, but instead execution is carried out on the caller’s frame [Chow86]. In con-
trast, a real inline substitution is done by the IBM XLF 1.1 compiler [O’Br90], but here
the insertion of unnecessary extra code obscures optimizations that inlining should have
exposed. Only the CRAY’s CFT77 compiler was abled to detect all optimizations
present after proper inlining.

4.3. Correlation Between Different Optimizing Compilers

An interesting question to consider is how well different compilers correlate in their
ability to improve the execution time of individual programs. If indeed there is a strong
correlation between the amount of optimization obtained by different compilers, then
knowing how much one optimizer reduces the execution time of a program would allow
us to estimate the reduction on the other optimizer. Thus, this would give us alternative
way of predicting execution times that would work, not only for invariant optimizations,
but also for non-invariant ones.

A suite of programs was run both with and without optimization and the ratio of run
times was computed. We then computed the coefficient of correlation between pairs of
optimizers and the level of significance involved. In figure 4 we show the scattergrams
and include on each one the best fit to the data. Table 12 gives the numerical values for
the slope, y—intercept, correlation coefficient, and level of significance.

As expected there is a positive correlation between all optimizers; on the average
more improvement by one compiler means more improvement in the other. Unfor-
tunately, the correlation across compilers does not appear to be strong enough to make
this approach better than estimating the execution time using the concept of invariant
optimizations.

26

M 1.0
IS I .
S A
E
£
7 0.5 iy
7
*.‘0-
2.
0 "
0.0 l’ a a
0.0 05 1.0
UNIX {77 1.1
1.09
3 o
8 »
k
A
0.51 ‘
f R
7
7
0.0 - .
0.0 0.5 10
UNIX f77 1.1
1.01
Mo [9] o
8
8 * .
k
LT
f 0.59 ' +
7
7
0.0 . a
0.0 0.5 10
MIPS {77 2.0
; 101
;
M
X s .t
L 8
F |
+ et
e +
1. few
.
0.0 . -
0.0 0.5 10
CFT774.0.1

. 1.04 + i 1.09
AT il M
* 7
& 7 X
0.54 s 0.59 L L 059 + "
s 4. _.“., F o
4,"" 0. i o
: 1 A 4
K FL I 1. +,
e B 1 o+
0.0 et > 0.0 = - 0.0 ik A
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
UNIX {77 1.1 UNIX f77 1.1 UNIX {77 1.1
. 1.09 + I 1.09
0 e ;
- T M M
+ 7 .
- + 7 .-
- 0.54 e L 059 +
& 8' N F L
~* : - +
5 + o
! + + 1 4:,.—".
1 . - +
0.0 = = 0.0 - A 0.0+ A A
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
MIPS {77 2.0 MIPS 77 2.0 MIPS {77 2.0
1.09 + I 1.09 1.09 .
<A u s
+ - .
- M 8 + L
. k -
. o
0.59 Fan L 0-51 o ¢ 059 "+
A F . 7 [
a 7
T4 1. g
1
A s 0.0 A s 0.0 A —_
0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0
Sun {77 Sun {77 Sun {77
1.09
. N
---- 8
: i i‘_,.o-i
054" . RS
7
7
0.0 A = 0.0 A e
0.0 0.5 1.0 0.0 0.5 1.0
CFT774.0.1 IBMXLF 1.1

Figure 4: Cormrelation between execution time improvements of various optimizing compilers. Each
graph includes the best linear fit.

Compiler 1 Compiler 2 Obs. Slope y Intercept || Correlation Level of
coefficient | significance
BSD Unix F77 1.0 MIPS F772.0 7 1.1883 -0.3600 0.8294 0.020
BSD Unix F771.0 SunF7713 8 1.2981 —0.4555 0.8987 0.001
BSD Unix F77 1.0 CRAY CFT77 4.01 9 1.6864 -0.7733 0.7376 0.015
BSD Unix F77 1.0 IBMXLF 1.1 7 0.8282 -0.3452 0.6892 0.040
BSD Unix F77 1.0 MS88K F77 2.0b3 6 0.9912 —0.0547 0.9489 0.001
MIPS F772.0 SunF7713 7 0.7816 0.1064 0.7454 0.025
MIPS F772.0 CRAY CFT774.01 8 0.3829 0.2566 0.2699 0.300
MIPS F772.0 IBMXLF1.1 5 0.4523 0.0086 0.6361 0.150
MIPS F772.0 MB88K F77 2.0b3 6 0.5109 04106 0.6899 0.070
SunF7713 CRAY CFT774.01 8 1.0224 —0.0558 0.6864 0.040
SunF7713 IBMXLF1.1 5 0.6152 —0.0686 0.9510 0.007
SunF7713 MS88K F77 2.0b3 6 0.5805 0.3829 0.8325 0.020
CRAY CFT774.01 | IBMXLF 1.1 7 0.2220 0.1555 0.4608 0.170
CRAY CFT774.01 | M88K F77 2.0b3 7 0.2855 0.5375 0.6329 0.070
IBMXLF1.1 MB88K F77 2.0b3 5 0.5764 0.5298 0.6322 0.150

Table 12: Slope, y-intercept, correlation coefficient, and level of significance for pairs of compilers.

5. Compiler Optimization and Benchmarks

In this section we discuss the main optimizations present in the SPEC benchmarks.
We focus on those basic blocks in the source code that account for the bulk of the execu-
tion time, since they provide most of the potential for useful optimization. We consider
both the optimizations that current compilers can detect and those that might be found
with better optimizers.

5.1. Amount of Optimization in the SPEC Fortran Benchmarks

5.1.1. DODUC

This program, along with FPPPP, are the two SPEC programs showing the least
optimization improvement in table 6. In these programs the most important basic blocks
consist of a large sequence of scalar arithmetic expressions with very little reuse. In
DODUC most of the computation does not reside in loops, so optimizations like strength
reduction, address collapsing, code motion, and register allocation, which are effective in
other scientific programs, are not profitable here. Furthermore, the execution time of the
program is not determined by a few basic blocks, so optimizers are forced to do a good
job on the whole program to significantly reduce the execution time. Therefore DODUC
can be considered a good challenge to any optimizer, and it is not surprising that its
SPECratio on almost all machines is consistently lower than the overall SPECmark even
on those machines with very good floating point performance [SPEC90, 91a, 91b].

DODUC does have some opportunities for optimization that are not addressed by
current compilers. Consider the procedure below, which is one of the most time-
consumning basic blocks and accounts on the average for almost 5 percent of the execu-
tion time®.

6 The contribution of a basic block to the total time varies from machine to machine, thus the 5
percent represents only an approximation.

28

SUBROUTINE X21Y21 (X,Y)

DOUBLE PRECISION X(21), Y(21)

REAL XX(21), YY(21)

DATA XX /0.2, 200., 400., 600., 800., 1000., 1500., 2000.,
2500., 3000., 3500., 4000., 6000., 8000., 10000.,

. 15000., 20000., 25000., 30000., 40000., 50000./

DATA YY /0., 69.31, 120.68, 166.92, 210.12, 251.19, 347.43,
437.34, 522.82, 604.92, 684.31, 761.46, 1053.22,
1325.78, 1584.89, 2192.16, 2759.46, 3298.77, 3816.78,
4804.5,5743.49/

DO 1 I =1, 21
X(I) = XX(I)
Y(I) = YY(I)
1 CONTINUE
RETURN
END

The code clearly shows that XX and YY are constant vectors and that the purpose of
this subroutine is to copy their values into arrays X and Y. This procedure is executed al-
most 150,000 times. What is surprising is that vectors X and Y remain constant for the
whole execution, that is, their values are never redefined outside this procedure; obvious-
ly there is no need to call the procedure more than once. This can be easily detected by
inlining the subroutine at its only call site, where data flow analysis will detect that X and
Y can be safely replaced by XX and YY. Doing this will reduce the execution time by
around 5 percent. To detect this possible optimization requires procedure inlining and
extending copy and constant propagation optimization to include vectors as well as sim-
ple variables.

5.1.2. FPPPP

As we mentioned above, optimizing FPPPP is quite difficult, because of the struc-
ture and size of its basic blocks. Its most time-consuming block contains 3000 floating
point operations without a single branch, and accounts for approximately 40 percent of
the execution time. The block uses 653 different variables, so achieving a good alloca-
tion of variables to registers is the most important optimization problem here. Further-
more, on the average a variable is referenced only 6 times, with around 161 intervening
references between two consecutive uses of the same variable. For this block, a register
set with an unlimited number of registers would eliminate close to 82% of all loads and
stores’. For comparison, the MIPS compiler, at the maximum optimization level, is
capable of eliminating only 22% of the loads and stores, while Sun’s optimizer elim-
inates only 11%. There other basic blocks in the program with similar characteristics.

Given that this program’s performance is strongly determined by the scalar floating
point performance of the machine, the only way to significantly improve its performance
is by reducing the execution time of floating point operations, by increasing the size of
the register file, or by improving the register allocation algorithm [Chai82, Chow8418.

7 1t is evident that a register file having at least as many registers as variables in a basic block
makes it possible to generate the minimum number of loads and stores.

8 1t should also be possible to also speed up the program by finding some way to do loads fas-
ter than issuing successive load instructions. For example, load multiple.

29

5.1.3. TOMCATV

This is a good benchmark for testing an optimizer, as its most time consuming loop
contains ample opportunities for optimization. Some of these optimizations cannot be
detected by many of today’s best optimizing compilers. TOMCATYV contains a couple
number of statements which serve no function at all, and which can be eliminated only if
the optimizer implements the correct optimizations. The loop shown below is responsi-
ble for approximately 60% of the total execution time.

DO 250 I = I1P, I2M

IP =1 + 1
IM=I-1
XX = X(IP,J) - X(IM,J)
YX = Y(IP,J) - Y(IM,J)
XY = X(I,JP) - X(I,JIM)
YY = Y(I,JP) - Y(I,JM)
A = 0.250 * (XY * XY + YY * YY)
B = 0.250 * (XX * XX + YX * ¥YX)
C = 0.125 * (XX * XY + YX * YY)
QI = 0.0
QJ = 0.0
c QI = A * 0.5
c QF = B * 0.5
AA(I,M) = - B
DD(I,M) = B + B + A * REL
PXX = X(IP,J) - 2. * X(I,J) + X(IM,J)
QXX = Y(IP,J) - 2. * Y(I,J) + Y(IM,J)
PYY = X(I,JP) - 2. * X(I,J) + X(I,JdM)
QYY = Y(I,JP) - 2. * Y(I,J) + Y(I,JdM)
PXY = X(IP,JP) - X(IP,JM) - X(IM,JP) + X(IM,JM)
OXY = Y(IP,JP) - Y(IP,JM) - Y(IM,JP) + Y(IM,JM)
RX(I,M) = A * PXX + B * PYY ~ C * PXY + XX * QI + XY * QJ
RY(I,M) = A * QXX + B * QYY - C * OXY + YX * QI + YY * QJ

250 CONTINUE

First, consider the two statements above the comments; not only can they be moved
out of the loop, but if their constant values are propagated, the two rightmost subexpres-
sions of the last two statements (xx * QI + XY * @¥and ¥YX * QI + YY * QJ)can be
eliminated, as they reduced to zero. This can be done, however, only if the optimizer
implements floating point constant propagation. The results of §4.2 show that the Sun’s
Fortran compiler cannot detect this optimization. Our measurements indicate that if the
Sun compilers were capable of eliminating the useless computations, then the execution
time of TOMCATYV on the Sparcstation 1+ would improve by 9 percent.

The most obvious way of optimizing this loop, which compilers can do, is to elim-
inate the address calculation of array elements. Once this is done, most of the improve-
ment comes by eliminating as many loads and stores as possible. First, most elements of
arrays X and Y are used twice in the loop, so they need to be loaded only once. Second,
a good compiler may notice that all scalar variables are temporaries whose values do not
need to be stored for the duration of the loop. After this we are still left with 18 loads
and 4 stores per iteration. However, few optimizers can achieve this because of the lim-
ited number of registers available to them. For example, the MIPS Fortran compiler,
which is one of the best compilers, cannot keep all temporaries in registers and is forced
to make 26 loads and 10 stores per iteration. This is because the R2010 coprocessor has
only 16 floating point registers.

30

If the machine has more than 16 floating point registers it can further eliminate
loads and stores by using a novel optimization technique called predictive commoning
[O’Br90]. The idea here is to identify a sequence of values used in an iteration which
contains a subsequence which is reused in the next iteration as a successor of the same
sequence. An example of this is sequence X(IP,J), X(I,J), and X(IM,J), whose
first two elements are reused in the next iteration. The optimization consists of eliminat-
ing all the loads of the reused values by moving them at the end of each iteration to the
registers into which their successors would be loaded. In the code there are six such
sequences, so we can eliminate 12 of the 18 loads. Although this introduces 12 register
to register move instructions, these can be eliminated by unrolling the loop.

The SPECratio of the IBM RS/6000 on this benchmark is much higher than that of
the other benchmarks; a factor of three with respect to the overall SPECmark. This is
due to the exceptional ability of the compiler to detect most of the optimizations we
described and to the 32 floating point registers in the machine. The IBM XLF compiler
is capable of eliminating most of the loads by reusing registers and applying predictive
commoning.

5.1.4. MATRIX300

It has been documented that this benchmark is completely dominated by a single
basic block, which accounts for 99% of the execution time [Saav90a, 90b, 92a]. This
basic block implements the SAXPY vector to vector operation Y[1,1:N] =
Y[1,1:N] + A * X[1,1:N]. This subroutine is used in the program to compute eight
different variations of matrix multiplication, each representing a particular operation
between the three matrices and their transposes. Because the distance between two ele-
ments is different depending on whether the matrix is traversed by column or by row, this
makes SAXPY difficult to optimize as each time it is called using different strides.
Furthermore, the combined size of the matrices is greater than 2MB, so they do not fit in
any of the caches of current machines.

Although MATRIX300 is difficult to optimize, it can be done. The best way to
achieve this is to incorporate the same compiler technology developed for supercomput-
ers to generate vectorized code. The idea is to apply data dependence analysis to identify
loops that can either be decomposed into vector operations or parallel execution. The
same technology, however, can also be used in scalar machines even if they do not have
vector hardware. The idea here is for a preprocessor to generate, instead of vector
instructions, subroutine calls to hand-coded routines. These routines can be highly
optimized by taking into consideration the best scheduling and blocking (tiling) factor to
produce substantial reductions in the execution time. Several high performance worksta-
tions are starting to use this approach: the new HP 700 series includes a preprocessor
developed by Kuck and Associates to make a source to source transformation of the pro-
gram which includes calls to library routines.

The latest SPEC results [SPEC91a, 91b] clearly indicate that manufacturers are now
using preprocessors to dramatically improve performance for MATRIX300. Note that
this approach is not entirely "fair" for benchmark purposes, and makes programs suscep-
tible to this type of manipulation of questionable value for benchmarking purposes. In
particular, this type of preprocessing changes MATRIX300 from a memory bound
benchmark, which generates huge numbers of cache misses, into one which is CPU

31

bound; thus the preprocessing even changes what the benchmark attempts to measure.

5.1.5. NASA7

This benchmark consists of several computation intensive kernels which are fre-
quently found in scientific applications. As most of the work is localized in highly-
nested loops, most of the optimization improvements come from eliminating computa-
tion from the innermost loops by using array addressing, code motion and strength reduc-
tion optimizations.

As in other benchmarks based on kernels, this benchmark has some characteristics
which can be exploited by a clever compiler. For example, the code excerpt below
implements matrix multiply by doing a 4-way unrolling of the outer loop and accounts
for approximately 16 percent of the execution time.

SUBROUTINE MXM (A, B, C, L, M, N)
IMPLICIT DOUBLE PRECISION(A-H,0-2)
DIMENSION A(L,M), B(M,N), C(L,N)

DO 100 K = 1, N
DO 100 I = 1,
C(I,K) = 0.
100 CONTINUE
DO 110 J = 1, M, 4
DO 110 K = 1, N
DO 110 I =1, L
C(I,K) = C(I,K) + A(I,J) * B(J,K)
+ A(I,J+1) * B(J+1,K) + A(I,J+2) * B(J+2,K)
+ A(I,J+3) * B(J+3,K)

L

110 CONTINUE

RETURN
END

This subroutine is called 100 times by the following loop:

DO 120 II = 1, IT
CALL MXM (A, B, C, L, M, N)
120 CONTINUE

It is possible for a good compiler to detect, after inlining the subroutine, that the
code inside loop 120 is invariant with respect to the induction variable and hence it only
has to be executed once.

5.1.6. Spice2g6

This scalar code is similar to DODUC and FPPPP. The few opportunities for
optimization involve finding small common subexpressions and allocating frequently
used variables to registers. Some of the most executed blocks are very small and do not
contain much that can be optimized. The following spaghetti-like code, for example,
accounts for almost 43% of the total execution and contains few opportunities for optimi-
zation.

32

135 IF (J .LT. I) GO TO 145
LOCIJ = LOCC

140 LOCIJ = NODPLC(IRPT+LOCIJ)
IF (NODPLC(IROWNO+LOCIJ) .EQ. I) GO TO 155
GO TO 140

145 LOCIJ = LOCR

150 LOCIJ = NODPLC(JCPT+LOCIJ)
IF (NODPLC(JCOLNO+LOCIJ) .EQ. J) GO TO 155
GO TO 1590

158 VALUE (LVN+LOCIJ) = VALUE(LVN+LOCIJ) - VALUE(LVN+LOCC) *
. VALUE (LVN+LOCR)

160 LOCC=NODPLC (JCPT+LOCC)
GO TO 130

The small size of the basic blocks and the irregular way in which the array elements
are accessed makes it difficult for the compiler to improve the code.

6. Conclusions

Evaluating and explaining the performance of a machine requires relating observed
performance to the individual components of the system. Machine designers are able to
do this by constructing detailed models and simulators of their machines [Peut77,
Shus78, Cmel91]. These machine models, however, are machine-dependent and gen-
erally they can only be used for one machine. Our research has concentrated on develop-
ing a sound methodology for evaluating machines and compilers in a machine indepen-
dent manner. We have created a machine independent model for program execution,
measured its parameters, and demonstrated its ability to make accurate predictions.

In this paper we have discussed how optimization can be incorporated in our metho-
dology and have shown that it is possible to evaluate different optimizing compilers, not
only by detecting the set of optimizations which they can perform, but also by predicting
and explaining how much improvement they provide on large applications. In earlier
work [Saav89], we said that we did not expect our methodology to extend naturally to
include optimization, because we believed that it would be necessary for us to know how
an arbitrary optimizer could transform any possible program. Since that time, we have
discovered that our abstract machine paradigm largely extends to optimized code. By
assuming that most of the optimizations are invariant with respect to the abstract decom-
position of the program, we change the nature of the problem from one of detecting how
a program could be changed by the compiler to characterizing the performance of the
‘optimized’ machine defined by the optimizer. Using this approach we showed that it is
possible to measure the contribution of optimization and predict the execution time of
optimized programs, although not as well as in the nonoptimized case.

We have written programs to detect local and global machine-independent optimi-
zations and measured several optimizing compilers. We showed that optimizing com-
pilers differ in the effectiveness to which they can apply the same optimizations. We
also evaluated the optimization improvement provided by several optimizers on the For-
tran SPEC, Perfect Club, and other popular benchmarks. Finally, we discussed the main
optimizations found in specific benchmarks and discussed some of the characteristics
that could be exploited by clever compilers.

Acknowledgements

33

We would like to thank K. Stevens, Jr. for providing access to facilities at NASA
Ames, as well as Jean Gascon and Ruby Lee from HP, and David E. Culler and Oscar
Loureiro from U.C. Berkeley who let us run our programs on their machines.

Bibliography

[AhoA86] Aho, A.V., Sethi, R., and Ullman J.D.,
Compilers: Principles, Techniques, and Tools,
Addison-Wesley, Reading, Mass., 1986.

[Alle87] Allen, R. and Kennedy, K., ‘“Automatic
Translation of FORTRAN Programs to Vector
Form™, ACM Transactions on Programming
Languages and Systems, Vol.9, No4, October
1987, pp. 491-542.

{Arno83] Arnold, C.N., *‘Vector Optimization on
the CYBER 205", Proc. of the 1983 Int. Conf. on
Parallel Processing, Columbus, Ohio, August
23-26 1983, pp. 530-536.

[BalH86] Bal, H.E. and Tanenbaum, A.S.,
“Language- and Machine-Independent Global
Optimization on Intermediate Code’, Computer
Languages, Vol.11, No.2, 1986, pp. 105-121.

[Bane88] Banerjee, U., Dependency Analysis for
Supercomputing, Kluwer Academic Publishers,
Boston, 1988.

[Bras88] Braswell, RN. and Keech, M.S., “*An
Evaluation of Vector FORTRAN 200 Generated
by CYBER 205 and ETA-10 Pre-Compilation
Tools’’, Proc. of the Supercomputing *88 Conf.”’,
Orlando, Florida, November 14-18 1988, pp.
106-113.

[Call88] Callahan, D., Dongarra, J., and Levine,
D., “Vectorizing Compilers: A Test Suite and
Results’’, Proc. of the Supercomputing '88 Conf.,
Orlando, Florida, November 14-18 1988, pp. 98-
105.

[Call90] Callahan, D., Kennedy, K., and Carr, S.,
“Improving Register Allocation for Subscript
Variables’”, Proc. of the ACM SIGPLAN '90
Conf. on Prog. Lang. Design and Implementation,
White Plains, New York, June 1990, pp. 53-65.

[Call91] Callahan, D., Kennedy, K., and Porter-
field, A., ‘‘Software Prefetching”’, Proc. of the
2nd Int. Conf. on Arch. Support for Prog. Lang.
and Oper. Sys. (ASPLOS 111}, Santa Clara, Cali-
fornia, April 8-11 1991, pp. 40-52.

[Chai82] Chaitin, GJ., ‘‘Register Allocation and
Spilling via Graph Coloring”’, Proc. of the SIG-
PLAN '82 Symp. on Compiler Construction, June
1982, pp. 98-105.

[Chow83] Chow, F., A Porwable Machine-
Independent Global Optimizer, Ph.D. Dissertation
and Technical Report No. 83-254, Computer Sys-

tems Laboratory, Stanford University, December
1983.

[Chow84] Chow, F. and Hennessy J.L., ‘‘Register
Allocation by Priority-Based Coloring’’, Proc. of
the ACM SIGPLAN '84 Symp. on Compiler Con-
struction, Vol.19, No.6, June 1984, pp. 222-233.

{Chow86] Chow, F., Himelstein, M., Killian, E.,
and Weber, L., “Engineering a RISC Compiler
System’’, Proc. of the Compcon '86 Conf., San
Francisco, California, March 4-6 1986, pp. 132-
137.

[Cmel91] Cmelik, R.F., Kong., S.I., Ditzel, D.R.,
and Kelly, EJ., “An Analysis of MIPS and
SPARC Instruction Set Utilization on the SPEC
Benchmarks®’, Proc. of the 2nd Int. Conf. on
Arch. Support for Prog. Lang. and Oper. Sys.
(ASPLOS I1I), Santa Clara, California, April 8-11
1991, pp. 290-302.

[Cock80] Cocke, J. and Markstein, P., ‘‘Measure-
ment of Program Improvement Algorithms”,
Technical Report No. RC-8111 (#35193), IBM
Yorktown Heights, February 7 1980.

[Cude89] Cuderman, K.J. and Flynn, M.J., ““The
Relative Effects of Optimization on Instruction
Architecture Performance’’, Technical Report
No. CSL-TR-89-398, Computer Systems Labora-
tory, Stanford University, October 1989.

[Cybe90} Cybenko, G., Kipp, L., Pointer, L., and
Kuck, D., Supercomputer Performance Evalua-
tion and the Perfect Benchmarks, University of
Illinois Center for Supercomputing R&D Techni-
cal Report 965, March 1990.

[DongR7] Dongarra, J.J., Martin, J., and Worlton,
J., “Computer Benchmarking: paths and pit-
falls’’, Computer, Vol.24, No.7, July 1987, pp.
38-43.

[Ferr91} Ferrante, J., Sarkar, V., and Thrash, W.,
‘‘On Estimating and Enhancing Cache Effective-
ness’’, Fourth Workshop on Languages and Com-
pilers for Parallel Computing, Santa Clara, Cali-
fornia, August 1991.

[Hira91] Hiranandani, S., Kennedy, K., and
Tseng, C.W., “‘Compiler Optimizations for For-
tan D on MIMD Distributed-Memory
Machines™, Proc. of the Supercomputing 91
Conf., Albuquerque, New Mexico, November
18-22 1991, pp. 86-100.

[Jaza86] Jazayeri, M. and Haden, M., ‘‘Optimiz-
ing Compilers Are Here (mostly)”’, SIGPLAN
Notices, Vol.21, No.5, May 1986, pp. 61-63.

[John86] Johnson, M.S. and Miller, T.C., ‘Effec-
tiveness of a Machine-Level, Global Optimizer’’,
Proc. of the SIGPLAN '86 Symp. on Compiler
Construction, Palo Alto, June 25-27 1986, pp.
99-108.

[Knut71] Knuth, D.E., ‘““‘An Empirical Study of
Fortran Programs’’, Software-Practice and
Experience, Vol.1, 1971, pp. 105-133.

[Lind86] Lindsay, D.S and Bell, T.E., ‘‘Directed
Benchmarks for CPU Architecture Evaluation™’,
Proc. of the CMG '86 Conf, Las Vegas, Nevada,
December 9-12 1986, pp. 379-385.

[Much86] Muchnick, S.S., ‘‘Here Are (Some of)
the Optimizing Compilers”, SIGPLAN Notices,
Vol.21, No.2, February 1986, pp. 11-15.

[Noba89] Nobayashi, H. and Eoyang, C., “A
Comparison Study of Automatically Vectorizing
FORTRAN Compilers”’, Proc. of the Supercom-
puting '89 Conf., Reno, Nevada, November 13-17
1989, pp. 820-825.

[0’Br90] O’Brien, K., Hay, B., Minisk, J.,,
Schaffer, H., Schloss B., Shepherd, A., and
Zaleski, M., ‘‘Advanced Compiler Technology
for the RISC System/6000 Architecture’’, IBM
RISC System/6000 Technology, SA23-2619, IBM
Corporation, 1990, pp. 154-161.

[Pant85) Patterson, D.A., ‘‘Reduced Instructions
Set Computers’”, Comm of the ACM, Vol.28,
No.1, January 1985, pp. 8-21.

[Paud86] Pauda, D.A. and Wolfe, M.J.,
*‘Advanced Compiler Optimizations for Super-
computers’’, Comm. of the ACM, Vol.29, No.12,
December 1986, pp. 1184-1201.

[Peut77] Peuto, B.L., and Shustek, L.J., *‘An
Instruction Timing Model of CPU Performance’’,
The 4th Annual Symposium on Computer Archi-
tecture, Vol.5, No.7, March 1977, pp. 165-178.

[Pond90] Ponder, C.G., ‘‘An Analytical Look at
Linear Performance Models’’, Lawrence Liver-
more National Laboratory, Technical Report
UCRL-JC-106105, September 1990.

[Port89] Porterfield, A., Software Methods for
Improvement of Cache Performance on Super-
computers Applications, Ph.D. Dissertation and
Technical Report No. COMP-TR89-93, Rice
University, 1989.

[Rich89] Richardson, S. and Ganapathi, M.,
““Interprocedural Optimization: Experimental
Results’’, Software—Practice and Experience,
Vol.19, No.2, February 1989, pp. 149-170.

[Saav89] Saavedra-Barrera, R.H., Smith, AJ.,
and Miya, E. ‘‘Machine Characterization Based

34

on an Abstract High-Level Language Machine™,
IEEE Trans. on Comp. Vol.38, No.12, December
1989, pp. 1659-1679.

[Saav90a] Saavedra-Barrera, R.H. ‘“The SPEC
and Perfect Club Benchmarks: Promises and Lim-
itations”’, Hot Chips Symposium 2. Santa Clara,
CA, August 1990.

[Saav90b] Saavedra-Barrera, R.H. and Smith,
A.J., Benchmarking and The Abstract Machine
Characterization Model, U.C. Berkeley Technical
Report No. UCB/CSD 90/607, November 1990.

[Saav92a] Saavedra-Barrera, RH., CPU Perfor-
mance Evaluation and Execution Time Prediction
Using Narrow Spectrum Benchmarking, Ph.D.
Thesis, U.C. Berkeley, Technical Report No.
UCB/CSD 92/684, February 1992.

[Saav92b] Saavedra, R.H. and Smith, AJ,
‘“‘Analysis of Benchmark Characteristics and
Benchmark Performance Prediction’, paper in
preparation, 1992,

[Shus78] Shustek, L.J., Analysis and Performance
of Instruction Sets, Ph.D. Dissertation, Stanford
University, May 1978.

[Sing91] Singh, J.P. and Hennessy J.L., “‘An
Empirical Investigation of the Effectiveness and
Limitations of Automatic Parallelization’’, Int.
Symp. on Shared Memory Multiprocessing,
Tokyo, Japan, April 1991, pp. 25-36.

[SPEC89] SPEC, “‘SPEC Newsletter: Benchmark
Results’’, Vol.1, Issue 1, Fall 1989.

[SPEC90] SPEC, *‘SPEC Newsletter: Benchmark
Results’’, Vol.2, Issue 3, Summer 1990.
[SPEC91a] SPEC, ‘‘SPEC Newsletter: Bench-
mark Results’’, Vol.3, Issue 2, Spring 1991.
[SPEC91b] SPEC, ‘‘SPEC Newsletter: Bench-
mark Results’’, Vol.3, Issue 3, Fall 1991.
[Wolf91] Wolf, M. and Lam, M., *‘A Data Local-
ity Optimizing Algorithm”’, Proc. of the ACM
SIGPLAN ’91 Conf. on Prog. Lang. Design and
Implementation, June 1991, pp. 30-44.

[Wolf85] Wolfe, M. and Macke, T., *“Where are
the Optimizing Compilers’’, SIGPLAN Notices,
Vol.20, No.11, November 1985, pp. 64-77.
[Worl84] Worlton, J., ‘‘Understanding Super-
computer Benchmarks’’, Datamation, September
1, 1984, pp. 121-130.

Appendix A

Group 1: Floating Point Arithmetic Operations (single, local)

machine optim {| SRSL | ARSL | MRSL | DRSL | ERSL | XRSL | TRSL
HP 720 -00 40 89 117 273 84 | 10173 180
HP 720 -01 40 47 108 198 75 | 10447 135
HP 720 -02 7 40 31 167 58 | 10426 20
MIPS M/2000 -00 40 159 258 583 316 | 26136 213
MIPS M/2000 -01 <1 101 169 498 229 | 26068 113
MIPS M/2000 -02 <1 95 145 395 219 | 26255 <1
Sparcstation 1+ | -O0 80 305 384 1856 2419 | 18414 510
Sparcstation 1+ | -O2 75 298 322 1849 2398 | 18512 499
Sparcstation 1+ | -O3 <1 234 133 1444 2575 | 19603 35

Group 2: Floating Point Arithmetic Operations (complex, local)

machine optim || SCSL | ACSL | MCSL | DCSL | ECSL | XCSL | TCSL
HP 720 -00 73 163 496 3603 1726 | 40659 276
HP 720 -01 67 116 251 3574 1727 | 40470 288
HP 720 -02 54 59 130 3528 1700 | 40525 224
MIPS M/2000 -00 22 568 1162 5059 4696 | 37344 339
MIPS M/2000 -01 16 305 795 5019 4672 | 36864 263
MIPS M/2000 -02 12 227 713 4926 4352 | 37249 161
Sparcstation 1+ -00 247 2772 5106 7471 5065 | 71209 1094
Sparcstation 1+ -02 142 588 3287 8073 2423 | 75121 998
Sparcstation 1+ | -O3 20 523 2698 8314 2841 | 72563 649

Group 3: Integer Arithmetic Operations (single, local)

machine optim || SISL | AISL | MISL | DISL | EISL | XISL | TISL
HP 720 -00 <1 81 429 455 657 1603 162
HP 720 -01 <1 48 419 439 640 1589 108
HP 720 -02 <1 20 200 438 463 954 20
MIPS M/2000 -00 <1 134 564 1551 662 1270 198
MIPS M/2000 -01 <1 72 460 1506 715 1272 135
MIPS M/2000 -02 <1 37 489 1685 497 1038 47
Sparcstation 1+ | -O0 <1 216 1104 2625 4645 5967 519
Sparcstation 1+ | -O2 <1 188 1265 2755 4501 5832 556
Sparcstation 1+ -03 <1 41 949 2625 4559 5876 41

Table 13: Characterization results for Group 1-3 under different optimization levels. A value ‘< 17 indi-
cates that the parameter was not detected by the experiment.

36

Group 4: Floating Point Arithmetic Operations (double, local)

machine optim || SRDL | ARDL | MRDL | DRDL | ERDL | XRDL | TRDL
HP 720 00 40 89 117 313 106 9051 180
HP 720 -0l 32 70 112 289 84 9118 140
HP 720 -02 7 40 31 202 59 9325 20
MIPS M/2000 -00 67 206 347 935 421 26040 305
MIPS M/2000 -01 26 112 220 808 295 26208 274
MIPS M/2000 -02 <1 101 172 643 302 26292 27
Sparcstation 1+ | -O0 232 440 757 3336 3797 34902 1045
Sparcstation 1+ | -O2 226 413 469 3339 3839 35032 1047
Sparcstation 1+ | -O3 <1 234 253 2430 4243 37339 263

Group 5: Floating Point Arithmetic Operations (single, global)

machine optim | SRSG | ARSG | MRSG | DRSG | ERSG | XRSG | TRSG
HP 720 -00 41 109 140 286 80 10202 167
HP 720 -01 20 59 85 205 94 10469 170
HP 720 -02 14 49 38 175 81 10384 32
MIPS M/2000 -00 40 192 261 625 307 26134 203
MIPS M/2000 -01 24 176 232 523 240 | 26036 108
MIPS M/2000 -02 <1 95 256 481 302 | 26650 19
Sparcstation 1+ | -O0 95 333 427 1928 2391 18249 522
Sparcstation 1+ -02 84 299 363 1850 2388 18511 419
Sparcstation 1+ | -O3 <1 233 133 1432 2563 19517 37

Group 6: Floating Point Arithmetic Operations (complex, global)

machine optim || SCSG | ACSG | MCSG | DCSG | ECSG | XCSG | TCSG
HP 720 -00 81 209 609 3624 3305 | 47213 272
HP 720 01 67 120 293 3573 1719 | 41728 241
HP 720 -02 53 73 152 3548 1710 | 41541 210

MIPS M/2000 -00 185 652 1278 5172 4705 37529 430
MIPS M/2000 -01 152 374 858 5190 4528 36802 270
MIPS M/2000 -02 135 225 736 5129 4245 37490 166

Sparcstation 1+ | -O0 241 2843 5217 7517 5083 71267 1143
Sparcstation 1+ | -02 190 612 3498 8095 2516 | 75239 989
Sparcstation 1+ | -O3 19 586 2676 8397 2736 | 72942 977

Table 14: Characterization results for Group 4-6 under different optimization levels. A value ‘<1 indi-
cates that the parameter was not detected by the experiment.

Group 7: Integer Arithmetic Operations (single, global)

37

machine optim || SISG AISG MISG DISG EISG XI1SG TISG
HP 720 -00 <1 109 454 482 669 1619 161
HP 720 -01 <1 72 419 450 670 1636 90
HP 720 -02 <1 37 139 449 408 864 50
MIPS M/2000 -00 <1 197 584 1608 676 1281 240
MIPS M/2000 -01 <1 106 466 1671 694 1230 152
MIPS M/2000 -02 <1 101 489 1747 761 1352 97
Sparcstation 1+ | -O0 20 278 1160 2688 4664 5998 516
Sparcstation 1+ | -O2 19 188 1265 2755 5609 5830 492
Sparcstation 1+ | -O3 <1 41 951 2611 4535 5864 40
Group 8: Floating Point Arithmetic Operations (double, global)
machine optim || SRDG | ARDG | MRDG | DRDG | ERDG | XRDG TRDG
HP 720 -00 40 110 141 326 80 9044 167
HP 720 -01 27 76 121 246 92 9338 166
HP 720 -02 13 49 39 210 83 9266 32
MIPS M/2000 -00 67 240 350 978 410 25942 312
MIPS M/2000 -O1 58 221 339 846 341 26064 269
MIPS M/2000 -02 <1 133 381 782 376 27206 61
Sparcstation 1+ -00 232 535 840 3475 3806 34717 1080
Sparcstation 1+ | -O2 186 440 727 3332 6484 34990 1052
Sparcstation 1+ | -O3 <1 233 255 2427 4280 37251 267
Group 9, 10: Conditional and Logical Parameters
machine optim || ANDL | CRSL | CCSL | CISL | CRDL || ANDG | CRSG | CCSG | CISG CRDG
HP 720 -00 87 229 491 94 229 97 270 579 136 269
HP 720 -01 72 168 336 61 175 81 175 337 68 175
HP 720 -02 46 114 282 20 115 46 148 298 47 148
MIPS M/2000 -00 109 283 281 202 365 135 365 366 283 447
MIPS M/2000 -01 105 302 319 208 413 132 418 345 308 518
MIPS M/2000 -02 70 206 207 95 204 97 231 340 95 221
Sparcstation 1+ -00 224 582 1492 420 742 241 664 1572 503 914
Sparcstation 1+ -02 182 595 1474 475 809 182 595 1470 476 807
Sparcstation 1+ -03 79 365 1515 149 365 80 366 1518 149 366

Table 15; Characterization results for Group 7-10 under different optimization levels. A value ‘< 1’ indi-
cates that the parameter was not detected by the experiment.

Group 11, 12: Function Call, Arguments and References to Array Elements

38

‘ machine optim || PROC | ARGU || ARR]1 | ARR2 | ARR3 | IADD
HP 720 -00 81 153 64 217 320 6
HP 720 -01 85 122 30 130 187 9
HP 720 -02 79 50 47 28 50 <1
MIPS M/2000 -00 408 80 309 612 936 <1
MIPS M/2000 -0O1 283 145 150 380 583 <1
MIPS M/2000 -02 152 141 122 184 191 <1
Sparcstation 1+ -00 196 328 224 637 1007 <1
Sparcstation 1+ -02 81 58 124 409 705 <1
Sparcstation 1+ -03 77 41 133 194 281 <1
Group 13, 14: Branching and DO loop Parameters
machine optim || GOTO | GCOM | LOIN | LOOV | LOIX | LOOX
HP 720 -00 28 243 363 202 552 303
HP 720 -01 20 263 242 121 447 161
HP 720 -02 12 172 68 42 182 61
MIPS M/2000 -00 81 609 580 322 838 604
MIPS M/2000 -01 <1 648 325 201 445 354
MIPS M2000 -02 <1 486 1174 <1 284 202
Sparcstation 1+ -00 <1 894 934 404 1458 662
Sparcstation 1+ -02 <1 853 220 114 467 280
Sparcstation 1+ -03 <1 650 161 81 406 244
Group 15: Intrinsic Functions (single precision)
machine optim || EXPS | LOGS | SINS | TANS | SQRS | ABSS | MODS | MAXS
HP 720 -00 2780 3457 1878 3037 292 61 3921 424
HP 720 -01 2725 3396 1787 2927 283 61 3821 284
HP 720 -02 2701 3376 1787 2913 304 61 3782 323
MIPS M/2000 -00 4036 3323 3019 3657 | 3570 35 2232 434
MIPS M/2000 -01 3937 3280 2966 3609 | 3567 81 2118 449
MIPS M/2000 -02 4139 3482 3168 3793 | 3726 40 2120 407
Sparcstation 1+ -00 5563 5996 9085 | 12441 7891 453 3673 3333
Sparcstation 1+ -02 5728 6162 9266 | 12626 | 9083 539 3619 1204
Sparcstation 1+ | -O3 6805 7183 10299 | 13777 | 9140 611 4206 1182

Table 16: Characterization results for Group 11-15 under different optimization levels. A value ‘<1’ in-

dicates that the parameter was not detected by the experiment.

Group 16: Intrinsic Functions (double precision)

39

‘ machine optim || EXPD | LOGD | SIND | TAND | SQRD | ABSD | MODD | MAXD
HP 720 -00 3142 3129 2418 3851 363 64 3813 429
HP 720 -01 3085 3071 2359 3795 365 61 3697 284
HP 720 -02 3066 3051 2340 3780 384 61 3652 324
MIPS M/2000 -00 3586 4156 4327 4702 5519 41 2244 495
MIPS M/2000 -01 3567 4205 4296 4718 5622 16 2263 531
MIPS M/2000 -02 3607 4180 4336 4700 5537 35 2252 408
Sparcstation 1+ -00 9048 | 10881 | 13025 | 16035 18787 624 4696 5373
Sparcstation 1+ -02 9067 | 10944 | 13131 | 16005 18734 847 4610 1169
Sparcstation 1+ -03 10408 | 12175 | 14106 | 17065 19885 892 5967 1115

Groups 17, 18: Intrinsic Functions (integer and complex)
machine optim || ABSI | MODI | MAXI || EXPC | LOGC | SINC | SQRC | ABSC
HP 720 -00 40 1668 161 17520 | 12060 | 30537 9434 5386
HP 720 -01 <1 1630 80 17488 | 12024 | 30514 9406 5400
HP 720 -02 40 1649 81 17555 | 12059 | 30694 9434 5375
MIPS M/2000 -00 91 1522 349 13835 | 10607 | 13559 | 16574 4253
MIPS M/2000 -01 83 1400 203 13671 | 10178 | 13276 9580 4000
MIPS M/2000 -02 94 1579 243 13774 | 10289 | 13401 9562 3765
Sparcstation 1+ -00 982 2229 2056 || 41051 | 22567 | 59548 | 46154 | 23767
Sparcstation 1+ -02 314 2220 657 40561 | 21951 | 59170 | 45925 | 22615
Sparcstation 1+ -03 189 2189 405 40533 | 23827 | 59139 | 45487 | 22478
Groups 19: Intrinsic Functions (type conversion)

machine optim || CPLX | REAL | IMAG | CONJ

HP 720 -00 <1 20 20 61

HP 720 -01 5 <1 40 60

HP 720 -02 40 <1 <1 62

MIPS M/2000 -00 179 <1 824 445

MIPS M/2000 -01 164 <1 918 711

MIPS M/2000 -02 40 <1 649 611

Sparcstation 1+ -00 782 1522 2262 1482

Sparcstation 1+ -02 161 <1 <1 111

Sparcstation 1+ -03 567 <1 <1 144

Table 17: Characterization results for Group 11-19 under different optimization levels. A value ‘<1’ in-

dicates that the parameter was not detected by the experiment.

Appendix B
HP-9000/720
Optimization level 0 Optimization level 1 Optimization level 2
real pred error real pred error real pred error

program (sec) | (sec) (%) (sec) | (sec) (%) (sec) | (sec) (%)

Doduc 85 85 -0.12 65 66 +1.08 40 34 -13.67
Fpppp 78 90 +15.30 58 69 +19.52 39 35 -10.28
Tomcatv 182 157 | -14.09 || 121 111 -8.42 52 35 -31.40
Matrix300 598 340 | —43.13 || 434 159 | —6343 || 175 45 -74.44
Nasa7 - - - 1120 | 715 | -36.15 || 387 318 | -17.80
Spice2g6 - - — - - - 509 727 | +42.73
ADM 252 172 | -3192 || 193 116 | -39.90 63 58 -8.08
QCD 81 108 | +33.21 59 86 +46.59 29 41 +81.40
MDG 827 861 +4.04 || 681 631 ~7.34 || 487 474 -2.69
TRACK 25 28 +14.63 19 21 +8.39 14 12 -13.13
BDNA 208 185 | —11.32 § 147 152 +3.47 72 87 +21.37
OCEAN 764 791 +3.52 || 558 548 -1.84 || 196 320 | +63.07
DYFESM 307 187 | -39.09 || 209 101 | -51.70 44 32 -25.92
MG3D - - - - - - 1088 | 1088 -0.03
ARC2D 2137 | 1267 | -40.70 || 1594 | 593 | —62.81 |i 439 187 | 5747
TRFD 464 329 | -2898 || 279 202 | -27.70 65 71 +9.61
FLO52 426 274 | =3570 || 292 142 | -51.20 51 48 -7.23
Alamos 67 67 +0.45 48 37 ~22.38 20 28 +38.73
Baskett 0.50 | 058 | +16.00 || 0.38 | 041 +7.89 || 0.15 | 020 | +33.33
Erathostenes || 0.13 | 0.13 +1.54 || 0.10 | 008 | -20.00 | 0.05 | 0.04 | -26.00
Linpack 8.8 76 | -13.67 5.5 5.1 -7.82 2.3 33 +41.30
Livermore 16.5 17.7 +7.27 || 11.2 114 +1.79 6.1 6.1 -0.49
Mandelbrot 0.89 | 0.89 0.00 || 0.66 | 0.69 +4.55 | 035 | 031 | -11.43
Shell 049 | 042 | -13.67 || 030 | 025 | -16.67 || 0.10 | 0.15 | +50.00
Smith 54 47 -12.15 40 32 -18.23 15 18 +25.17
Whetstone 028 | 0.26 -7.14 || 0.23 | 0.21 -870 || 0.17 | 0.14 | -17.64

Table 18: Nonoptimized and optimized benchmark results on the HP 720. All times are reported in
seconds and the errors are computed as 100x(pred ~real)ireal .

40

MIPS M/2000
Optimization level 0 Optimization level 1 Optimization level 2

real pred error real pred error real pred error
program (sec) | (sec) | (%) || (sec) | (sec) | (%) | (sec) | (sec) | (%)
Doduc 187 208 | +11.69 || 149 143 —4.03 || 110 107 -2.73
Fpppp 247 239 -8.14 || 202 174 | -1386 || 172 177 +2.91
Tomcatv 452 415 =321 | 313 251 | -19.81 151 145 -3.97
Matrix300 816 614 | 2477 || 646 370 | 4272 || 330 182 | —44.85
Nasa7 2906 | 2634 -936 |} 2234 | 1703 | -23.77 || 1033 | 980 -5.13
Spice2g6 4576 | 4539 —0.81 || 3660 | 2679 | -26.80 || 2630 | 1937 | —-26.35
ADM 424 426 +0.47 | 309 259 | -16.18 - 165 -
QCD 131 176 | +34.48 97 124 | +27.84 67 98 +46.27
MDG 1796 | 2254 { +25.50 || 1436 | 1566 +9.05 || 1056 | 1281 | +21.31
TRACK 58 71 +22.20 42 47 +10.49 34 31 -9.94
BDNA 733 582 | -20.60 || 531 388 | -26.93 { 351 328 —6.55
OCEAN 1618 | 1722 +6.47 | 1148 | 1063 -7.40 || 483 732 | +51.55
DYFESM 407 370 -9.10 || 305 221 | -27.54 90 119 | +32.22
ARC2D 3465 | 2470 | -28.70 || 2548 | 1155 | —54.67 || 1014 | 799 | -21.20
TRFD 577 566 -187 || 424 335 | -20.99 || 133 184 | -16.74
FLOS52 721 853 | —-15.52 i 530 529 +0.19 || 120 208 | +73.33
Alamos 118 139 | +16.95 90 85 -5.56 33 48 +45.45
Baskett 1.06 | 1.13 | +13.00 | 0.73 | 0.80 +9.59 || 0.39 | 046 | +17.94
Erathostenes || 047 | 031 | -21.28 || 0.36 | 0.19 | —47.22 || 0.21 | 0.10 | —-52.38
Linpack 127 | 145 | +1394 {| 9.0 103 | +14.44 || 3.80 | 5.13 | +35.00
Livermore 300 | 386 | +28.80 || 19.1 | 229 | +19.90 || 11.0 | 16.8 | +52.72
Mandelbrot 1.50 | 1.59 +6.00 || 1.05 | 1.04 -095 | 072 | 0.82 | +13.88
Shell 164 | 1.59 -244 || 1.03 | 064 | -37.86 | 026 | 0.38 | +46.15
Smith 132 113 | -1505 || 103 68 -34.24 38 45 +17.80
Whetstone 048 | 048 +0.00 || 040 | 036 | —-10.00 || 035 | 031 | -11.43

Table 19: Nonoptimized and optimized benchmark results on the MIPS M/2000 using the f77 compiler
All times are reported in seconds and the errors are computed as

version 1.21.
100x(pred —real)ireal .

41

Sparcstation 1+

42

Optimization level 0

Optimization level 2

Optimization level 3

real pred error real pred error real pred error
program (sec) | (sec) (%) (sec) | (sec) (%) (sec) | (sec) (%)
Doduc 407 410 +0.74 || 283 348 +22.79 || 277 205 | -25.79
Fpppp 590 481 +10.63 || 399 421 +5.62 || 383 188 | —-50.80
Tomcatv 576 637 -18.46 || 309 484 +56.48 || 299 239 | -19.96
Matrix300 1502 815 -45.70 || 397 545 +38.26 || 309 251 | -18.72
Nasa7 5516 | 4046 | -26.66 || 1467 | 2826 +92.65 || 1393 | 1540 | +10.52
Spice2g6 5348 | 6660 | +24.54 || 4504 | 5669 -25.86 || 3659 | 2320 | +36.60
ADM 716 551 -23.05 {| 286 438 +53.11 || 271 253 —6.72
QCD 274 341 +24.47 190 265 +39.87 || 169 176 +4.27
MDG 3809 | 4072 +6.90 || 3153 | 3480 +10.37 || 3079 | 2804 -8.94
TRACK 108 122 | +13.30 82 98 +19.54 77 60 -21.28
BDNA 1270 | 1173 -7.63 || 1027 | 914 -11.09 || 882 760 | -13.87
OCEAN 3538 | 3551 +0.37 || 1713 | 2210 +29.00 || 1209 | 1485 | +22.90
DYFESM 617 | 437.1 | -29.10 || 141 296 | +109.50 || 117 146 | +2491
ARC2D 6437 | 4091 | -36.44 (| 3039 | 3083 +1.45 || 1785 | 1757 -1.58
TRFD 1181 765 -35.26 | 320 525 +64.35 || 303 248 | -18.18
FLO52 1132 | 1049 -7.28 || 314 785 | +150.40 || 288 393 | +36.27
Alamos 207 188 -9.26 || 152 121 -20.29 81 80 -1.12
Baskett 1.40 1.68 | +20.00 || 0.60 1.13 +88.33 || 0.50 | 0.61 | +22.00
Erathostenes || 0.50 038 | —24.00 || 0.30 | 0.27 -10.00 || 0.30 | 0.13 | -56.67
Linpack 359 217 | -19.03 || 139 15.0 +7.92 1 110 | 102 -7.27
Livermore 52.6 53.5 +1.17 {| 25.7 | 426 +65.76 || 22.6 | 25.7 | +13.72
Mandelbrot 240 270 | +12.50 || 120 | 2.67 | +122.50 || 120 | 1.23 +2.50
Shell 0.95 128 | +34.74 || 0.70 | 1.07 +52.86 || 043 | 045 +4.65
Smith 198 144 -27.22 99 113 -14.23 94 57 -39.17
Whetstone 130 | 086 | -28.33 || 1.00 | 0.77 -23.00 {| 1.00 | 061 | -39.00

Table 20: Nonoptimized and optimized benchmark results on the Sparcstation 1+ using the f77 compiler
All times are reported in seconds and the emors are computed as

version 1.3.
100x(pred —real)ireal .

Appendix C

compiler Integer Floating Point Mixed
local | global local global Jocal global
BSD Unix F77 1.0 no no no no no no
Mips F77 2.0 -02 yes yes partial' | partal' || partial’ no
Mips F77 2.0 -O1 yes no no no no no
SunF77 1.3 -03 yes no no no no no
SunF77 1.3 -02 yes no no no no no
SunF77 1.3 -0O1 no no no no no no
Ultrix Fort 4.5 yes no yes no yes no
Amdahl F77 2.0 no no no no no no
CRAY CFT774.0.1 yes yes yes yes yes yes
IBM XL Fortran 1.1 yes yes yes no yes no
Motorola F77 2.0b3 yes no yes no yes no

1 variables assigned to constant expressions are not propagated

Table 21: Optimization results for constant folding (local and global).

compiler Integer Floating Point Mixed

local | global local global local global
BSD Unix F77 1.0 yes no yes no no no
Mips F77 2.0 -02 yes yes yes yes yes yes
Mips F77 2.0 -01 yes no yes no partial’ no
Sun F77 1.3 -03 yes yes yes yes yes yes
SunF77 1.3 -02 yes yes yes yes yes yes
SunF77 1.3 -0l no no no no no no
Ultrix Fort 4.5 yes yes yes yes yes yes
Amdahl F77 2.0 no no no no no no
CRAY CFT774.0.1 || yes | partial? yes partial® yes partial®
IBM XL Fortran 1.1 || yes yes partial® | partial® || partial® | partial®
Motorola F772.0b3 || yes | partial® yes partial® yes partial’

1 not all common subexpressions are recognized
2 incomplete global analysis is not enough to detect all optimizations
3 transformations to the intermediate code destroy some common subexpressions

Table 22: Optimization results for common subexpression elimination (local and global).”

compiler Integer Floating Point Mixed
local global || local | global local global
BSD Unix F77 1.0 partial’ | partial’ no no marginal> | marginal’
Mips F77 2.0 -02 yes yes yes yes yes yes
Mips F77 2.0 -O1 no no no no no no
SunF771.3-03 yes yes yes | partial’® yes partial®
SunF77 1.3-02 yes yes yes | partial’ yes partial®
Sun F77 1.3 -01 no no no no no no
Ultrix Fort 4.5 yes yes yes yes yes yes
Amdahl F77 2.0 no no no no no no
CRAY CFT774.0.1 yes partial® || yes | partial® yes partial®
IBM XL Fortran 1.1 yes yes yes yes yes yes
Motorola F77 2.0b3 yes no yes no yes no
1 Only simple expressions are moved (<var> <op> <var>)
2 Only simple integers expressions
3 Blocks inside the loop are not considered
Table 23: Optimization results for code motion (local and global).
compiler Integer Floating Point Mixed
local global local global local global
BSD Unix F77 1.0 partial’ no partial’ no partial’ no
Mips F77 2.0 -02 partial> | marginal’ || partial’® | marginal’ | partial’ | marginal
Mips F77 2.0 -O1 marginal' no marginal' no marginal’ no
Sun F77 1.3 -03 no no no no no no
Sun F77 1.3 -02 no no no no no no
Sun F77 1.3 -01 no no no no no no
Ultrix Fort 4.5 yes partial® yes partial® yes partial®
Amdahl F77 2.0 no no no no no no
CRAY CFT774.0.1 yes no yes no yes no
IBM XL Fortran 1.1 || partial® | marginal' || partial* | marginal' | partial® | marginal'
Motorola F77 2.0b3 no no no no no no

1 Propagates only simple assignments (<var> = <var>)
2 Compiler has a limited lookahead
3 Incomplete global analysis is not enough to detect all optimizations
4 Transformations to the intermediate code destroy some common subexpressions

Table 24: Optimization results for copy propagation (local and global).

compiler Integer Floating Point Mixed

local | global || local | global [| local | global
BSD Unix F77 1.0 no no no no no no
Mips F77 2.0 -O2 yes yes yes yes yes yes
Mips F77 2.0 -01 no no no no no no
SunF77 1.3 -03 yes yes yes yes yes yes
SunF77 1.3 -02 yes yes no no no no
Sun F77 1.3 -0O1 no no no no no no
Ulwrix Fort 4.5 yes yes yes yes yes yes
Amdahl F77 2.0 no no no no no no
CRAY CFT774.0.1 yes yes yes yes yes yes
IBM XL Fortran 1.1 yes yes yes yes yes yes
Motorola F77 2.0b3 no no no no no no

Table 25: Optimization results for dead code elimination (local and global).

compiler strength address inline substitution loop
reduction || calculation apply affects || unrolling

BSD Unix F77 1.0 partial! marginal® no no no
Mips F77 2.0 -02 yes yes partial® no yes®
Mips F77 2.0 -O1 no yes no no no
Sun F77 1.3 -03 partial’ marginal' no no yes*
SunF77 1.3-02 partial’ marginal’ no no yes®
Sun F77 1.3 -01 partial’ no no no yes®
Ultrix Fort 4.5 yes yes no no no
Amdah! F77 2.0 no no no no no
CRAY CFT774.0.1 yes yes yes yes yes*
IBM XL Fortran 1.1 yes yes yes no’ no
Motorola F77 2.0b3 || partial’ no no no no

1 Optimization is partially applied

2 There is no code substitution; caller and callee use same stack frame
3 There is code substitution; extra code obscures optimization

4 Arbitrary unrolling of loops

Table 26: Optimization results for strength reduction, address calculation, inline substitution, and loop
unrolling.

