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Abstract

This work proposes a probabilistic basis for natural language understanding models.
It has become apparent that syntax and semantics need to be highly integrated, especially to
understand constructs like nominal compounds, but inadequate modelling tools have hindered
efforts to replace the traditional parser-interpreter pipeline architecture. Qualitatively, associative
frameworks like spreading activation and marker passing produce the desired interactions, but
their reliance on ad hoc numeric weights make scaling them up to interestingly large domains
difficult. On the other hand, statistical approaches ground numeric measures over large domains,
but have thus far failed to incorporate the structural generalizations found in traditional models. A
major reason for this is the inability of most statistical language models to represent compositional
constraints; this is related to the variable binding problem in neural networks.

The proposed model attacks these issues from three directions. First, it distinguishes two
fundamentally different mental processing modes: automatic and controlled inference. Automatic
inference is pre-attentive, subconscious, reflexive, fairly instantaneous, associative, and highly
heuristic; this delimits the domain of parallel interactive processing. Automatic inference is moti-
vated by both resource bounds and empirical criteria, and is responsible for much if not most of
parsing and semantic interpretation.

Second, the nature of mental representations is defined more precisely. The proposed
cognitive ontology includes mental images, lexical semantics, conceptual, and lexicosyntactic mod-
ules. Automatic inference extends over all modules. The modular ontology approach accounts for
a range of subtle meaning distinctions, is consistent with psycholinguistic and neural evidence,
and helps reduce the complexity of the concept space.

Third, probability theory provides an elegant basis for evidential interpretation, to model
automatic inference in language understanding. A uniform representation for all the modules is
proposed, compatible with both feature-structures and semantic networks. Probabilistic, asso-
ciative extensions are then made to those frameworks. Theoretical and approximate maximum
entropy methods for evaluating probabilities are proposed, as well as the basis for a normative
distribution for learning and generalization.
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Chapter 1

Introduction

What is the connection between language interpretation and rationality? I argue that
much of the human language facility follows rational principles—enough, in fact, to warrant
studying interpretation as the heuristic approximation of an ideally rational agent.

And though historical divisions would have us believe otherwise, I argue that a heavy
partof this burden is borne by an associationist component. Rational behavior inherently demands
adaptive forward inference, because we must be able to interpret and act effectively, given limited
computational resources. These forward inferences are cued solely by contextual and shallow
perceptual features and are made probabilistically based on knowledge of syntactic, semantic, and
conceptual usage patterns.

Consider the case of nominal compounds, on which I focus throughout this thesis.
Examples include desk drawer handle, cleaner equipment firm, rubber baby buggy bumper, front wheel,
high-speed buses, and coast road. People understand nominal compounds easily and effortlessly,
and fit them coherently into the surrounding context. For example, the interpretation most people
prefer for coast road is a road that runs along the seacoast, even if they have never heard the phrase.
Yet for coast wheel people rarely suggest interpretations having to do with the seacoast at all, and
instead prefer the unpowered-movement sense of coast. Moreover, even coast road can have other
interpretations; consider

(1.1)  Since the earthquake damaged the only Interstate to the coast, old Highway 17 will tem-
porarily be the main coast road.

Here coast road means a road that runs to the coast. Some factors that may enter into one’s
interpretation of coast road in the more usual case are:

¢ The word coast is used slightly more often to mean a seacoast rather than an unpowered
movement.

* Nominal compounds are used to express containment relationships about as often as spatial
direction relationships.

¢ Most of the time when one thinks about roads in the context of seacoasts, one thinks specifi-
cally of the coastal road subcategory of roads.
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¢ Roads that run to the coast are not mentally subcategorized as coastal roads.

¢ Living on the West Coast, Highway 1 is a frequently used concept of the coastal road subcat-
egory.

People integrate such factors effortlessly, yet despite the ease with which people process
nominal compounds they have defied linguistic analysis. Non-computational theories at most
posit intuitive classifications of the nominals’ semantic relationships that are too underspecified
to implement. On the other hand, computational theories resort to ad hoc heuristics, and there is
inadequate motivation to expect them to generalize successfully to interestingly large conceptual
domains.

The proposed model adopts a three-pronged probabilistic approach. First, it distin-
guishes two fundamentally different modes of inference—automatic and controlled—to separate out
the associative parts of interpretation. Second, to combat underspecified semantic classifications,
it puts forth concrete ontological proposals for handling some finer points of semantic and concep-
tual representations, including feature structures rather than simple feature sets. Third, to avoid
ad hoc heuristics and yet keep parsing and semantic interpretation highly interactive, it combines
evidence using probability theory and maximum entropy.

FRIEZE is an implementation of this theory. Using probability theory and entropy maxi-
mization to combine evidence and prior knowledge, it produces the most probable interpretations
of nominal compounds. Unlike other approaches to this problem, FRIEZE is capable of integrating
constraints from related facts to discriminate interpretations of novel as well as familiar com-
pounds. Figure 1.1 previews the flavor of probabilistic evidence integration for coast road (the
example, described later, is taken from figure 7.16). Results for two separate runs are shown, to
demonstrate the effect of probabilities. Each node is an abbreviation for a feature structure incor-
porating lexicosyntactic, semantic, and /or conceptual constraints. The internal nodes (those not in
the bottom row), like C:coast:seacoast, are annotated with marginal probabilities that indicate how
often the agent uses structures meeting those constraints. For example, a probability of 1 - 10~*
(abbreviated “1e-4”) is assumed on the structure for a noun compound expressing a containment
relationship such as road in coastal area. Similarly, in the first run, a marginal of 1.9 - 10~7 is
assumed for “coast” expressing seacoast, whereas 1.5 - 10~ is assumed for “coast” expressing
the unpowered-movement coasting accomplishment sense. These are switched for the second run.
The nodes at the bottom are hypothesized automatic inferences; their probabilities are estimated
using a maximum entropy procedure and the hypothesis with the maximum resulting probability
is selected. The first row of probabilities beneath them shows that in the first run, road in coastal
area and road along coastline are preferred. The second row shows how the preference switches to
coasting road (a road on which to coast) by assuming a different usage pattern on “coast”. In the
same way, the hypotheses’ probabilities are sensitive to all the factors listed earlier. Thus, this
model of a linguistic agent is adaptive, since the marginal probabilities are (in principle) derived
from the agent’s experience.

"The name coastal road is just a convenient label for a subcategory; I don’t mean to suggest the phrase “coastal road”
couldn’t also be used to mean a road to the coast.
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11 Overview of Major Claims

1.1.1 Automatic Inference

The major theoretical paradigm that this work is situated in—and which it aims to
sharpen and define—is a distinction between automatic and controlled inference, particularly in con-
nection with though not limited to language comprehension. Table 1.1 summarizes how assorted
characteristics break down between automatic and controlled inference. Automatic and controlled
inference are conceived of as the two most general classes of inference, with sufficiently different
properties as to warrant two distinct modelling frameworks. The terms “automatic” and “con-
trolled” are psychological terms describing whether attention is required to perform some cognitive
process (LaBerge & Samuels 1974; Posner & Keele 1975; Shiffrin & Schneider 1977). Automatic
inference is pre-attentive and subconscious, is reflexive and fairly instantaneous, is associative and
heuristic, and most likely is implemented by massively parallel processes. Controlled inference in-
volves conscious problem segmentation and sequential chaining. In general a process requires less
attention and becomes more highly automized when it is extensively practiced, either by frequent
occurrence or by rehearsal.

Besides empirical cognitive arguments for automatic inference, there are theoretical mo-
tivations stemming from the fact that an agent’s resources are finite. As] argue in chapter 3, rational
behavior requires a resource-bounded agent to make fast forward inferences based only on ready
information. (Forward or data-driven inferences are automatically triggered by new input, as
opposed to backward or demand-driven inferences which are triggered by the agent because of
some high-level need.)

The distinction between automatic and controlled inference lies in the type of processing,
not in the type of knowledge. It is a horizontal rather than vertical modularization. As the
introductory example implied, automatic inference spans lexicosyntactic, semantic, and conceptual
domains, and is not confined to any subset of ontological modules.

The inferences produced by automatic inference need not always turn out to be the
interpretations ultimately chosen. To be effective, automatic inference merely needs to produce
useful intermediate results most of the time. In this model automatic inference gives rise to
cognitive default and prototype effects, where subjects reach logically unwarranted conclusions
that are plausible but may later need to be rejected. Thus automatic inference is also related to
non-monotonic inference, though this is not addressed since it also depends on intervention by
controlled inference.

The theoretical analysis makes use of probability and decision theory. Ultimately, chap-
ter 3 derives a probabilistic formulation of the automatic inference task, various aspects of which
are addressed by the subsequent chapters. The nature of probabilities and quantitative measures,
and justification for their use in a cognitive model, is discussed in section 2.2.5.



1.1. OVERVIEW OF MAJOR CLAIMS

Automatic Inference

Controlled Inference

sus  Inf e is quick, momentary, spontaneous.
Data-driven Triggered by new input data, either bottom-up

perceptual input or top-down conceptual input.
Primitive Performed by basic mechanisms.

Pre-attentive

Subconscious
Reflexive

Reconstructive Inherent tendency to reconstruct, from
previous experience, the situation that probably
gives rise to the perceptual input information.

Bounded capacity Only relative small conceptual chunks
can be handled at a time.

Evidential Inferences adhere to some form of probability,
likelihood, or plausibility optimization, subject to
resource bounds.

Online Sensitive to the timing (and thus, order) of input
information. This produces context sensitivity, as
prior inputs establish the context.

Non-monotonic Commitments to default inferences are
retracted to maintain consistency with subsequently
acquired contrary evidence.

Heuristic Produces quick results that are useful most of the
time.

Supports controlled inference by providing heuristic
memory retrieval.

Associative models are the most promising for efficiency
reasons, especially massively parallel models.

Arbitrarily prolonged Inf e can be sequentially

chained for indefinite periods.
Goal-driven Triggered by high level goals.

Derived Procedures for performing controlled inference
built upon the more basic ability to learn and chain
action sequences.

Attention required

Conscious
Reflective, deliberative

General purpose Problem solving techniques for many
different types of tasks can be learned.

Segmentative Complex problems can be segmented into
arbitrarily many manageable steps.

Non-quantitative Inferences do not necessarily involve
weighted comparisons.

- Meaningless; too slow and general -

- Not a defining characteristic -

~ Not a defining characteristic -

Depends on automatic inference for heuristic memory
retrieval.

Logical models have produced more successes.

Table 1.1: Differentiating characteristics of automatic and controlled inference.
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1.1.2 Modular Ontological Model

The second major point of attack is to define more clearly what kinds of intermediate
semantic representations automatic inference should produce. The term ontology, in the sense in
which Al has adopted it, means a particular theory of the world and what exists in it. Realists use
the term to refer to attempts at representing the “true” nature of the existence (“the ontology”). The
mentalist sense, taken here, refers to a particular linguistic agent’s ordinary everyday representation
of the world, which may be inaccurate, incomplete, inconsistent, and biased. The agent may even
be consciously aware of this—Newton’s laws are not entirely accurate—but such representations
can nonetheless be useful for the majority of the agent’s interactions with the environment.

The choice of ontology affects the inductive bias in a probabilistic model just as in any
logical model. In choosing the representational primitives, both expressiveness and empirical
concerns must be taken into account. Chapter 4 observes some representational needs that are
often overlooked in Al knowledge representations and linguistic semantics models. It also surveys
empirical evidence from various cognitive disciplines, converging towards a modular mental
ontology. These desiderata are synthesized into an organization including modules for mental
image, lexical semantics, conceptual, and lexicosyntactic structures. Chapter 5 then puts forth a
concrete set of representational primitives for these modules, using a formalism that is amenable
to both unification grammar approaches and probabilistic modelling.

A Note on Notation. Before discussing how the probabilistic model facilitates evidential interpre-
tation, let me point out some important and potentially confusing terminology and notation that
use.

1. Frames versus concepts. In the proposed model, concepts and frames are distinguished pri-
marily as a matter of convenience. When I use the term “frame” I am emphasizing the roles
and the relationship between internal structures of a concept. When I use the term “concept”
Iam emphasizing the gestalt properties of the entire structure. There is one slight difference,
namely that frames must always have explicit internal structure, whereas concepts can be
primitive, atomic feature bundles.

2. Feature structures and graphs. Though a wide range of notations is employed in the literature,
the notations have similar expressiveness and are equivalent in many cases. It is sometimes
convenient or more intuitive to think of feature-structures using either graph/network nota-
tion or predicate logic. Particularly useful are typed notations of either the feature-structure
or semantic network variety, which define types using an inheritance hierarchy so that con-
ceptual structures can be written (and stored) using pointers to the type rather than by explicit
enumeration of every feature value. I will be using typed notation throughout. Since these
techniques are well known, rather than giving a formal definition, figure 1.2 simply shows
an example of the same structure written using a feature-structure, typed feature-structure,
and typed DAG (directed acyclic graph) notation. This figure can be used for later reference;
it is not essential to understand the representational details yet as they will be gradually
introduced.
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Figure 1.2: An example of the same structure using equivalent feature-structure, typed feature-structure,
and typed DAG notations.
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1.1.3 Evidential Interpretation

The third major line of attack is to develop a probabilistic basis for integrating evidence
and knowledge sources across all the ontological modules. Until now probabilistic models have
seen little development in natural language work. However, recent interest in neural, connectionist,
and probabilistic models on the one hand, coupled with interest in large electronic corpora on the
other, is leading to a resurgence of statistically based approaches to language processing and
acquisition.

The primary contribution of the proposed evidential interpretation model is to extend
probabilistic modelling to complex structures such as those in figure 1.2. This is particularly
important for semantic and conceptual interpretation because simple feature sets or vectors are
insufficiently expressive for representing meanings involving relations or roles. Structured repre-
sentations have been problematic for statistical methods, both in computational linguistics and in
Al and neural networks. Most linguistics-oriented methods only analyze probability distributions
on feature sets. This includes current large-corpus techniques as well as the statistical approaches
of the late 50’s and early 60’s. Similarly, existing distributed neural network models work on fea-
ture vector representations. Proposals for storing compositional structures with roles and relations
have been advanced, in effect translating structured representations into feature vectors. However,
so far this has turned out to be ineffective for statistical modelling because those models that can
successfully handle a wide range of structuresend up simply using neural networks asa sequential
memory, and thus miss important generalizations over similar structures. Thus the advantage of
using a neural network is lost. This problem is known as the variable binding problem and continues
to be an active area of research.

The proposed model operates directly on structured symbolic representations. In fact,
one of its advantages is that familiar unification grammar feature-structure and semantic network
formalisms are used. A (theoretical) probability distribution is placed directly over the concept space
of possible feature-structures, thus avoiding the variable binding problem. Chapter 6 analyzes the
relationship of probability to semantic network and feature-structure representations, and proposes
probabilistic extensions. I argue that the probabilistic approach stays more faithful than the logical
approach to the traditional conception of semantic networks as associational representations.

Throughout this work, attention is paid to establishing the meaning of the probabilities,
an issue introduced in chapter 2. A common shortcoming among language interpretation models
that employ quantitative measures is that they lack motivation for the numbers used. The proposed
model combats ad hoc measures in three ways. First, a clearly mentalist stance is taken, so that
there is no confusion as to whether probabilities are realist (objective probabilities) or mentalist
(subjective or logical probabilities). Toward this end chapter 3 embeds the function of probabilistic
automatic inference within a situated linguistic agent, and chapter 4 explains the significance of
the intermediate conceptual structures over which probability measures are placed. Second, if the
investigator is able to choose a priori the patterns believed to be relevant within the domain of
interpretation, then the probability distribution over the patterns can be estimated by loading the
statistical distribution from a training set, as described in chapter 7. In contrast many quantitative
models give no derivation procedure to ground the numbers. Third, a theoretical distribution,
defined in chapter 8, is proposed as a normative learning theory in the event that the relevant
patterns are not known beforehand. The distribution is motivated by considerations of desirable
generalization behavior. It is unlikely that distributions of this kind could actually be stored using
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a reasonable number of patterns; instead patterns and probabilities should be chosen so as to
approximate the normative distribution.
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Chapter 2

Background: Nominal Compounds and
Probability

This thesis proposes a probabilistic basis for language understanding models; the domain
of application is the interpretation of nominal compounds. This chapter surveys work relevant
to the latter, and presents some basic principles underlying the former. The reader may skip
either or both sections without seriously impairing the line of presentation of concepts in this
work. However, the latter outlines the philosophy of probability, and familiarity with some of the
philosophical issues will be necessary to understand the subtler points of the proposed usage of
probabilities.

2.1 Theories of Nominal Compounds

In this section I survey some theories of nominal compounds. Nominal compounds are
simple and small, yet provide a fertile ground for studying semantic and conceptual approaches to
language. They often involve homonymous nouns—is dream state a sleep condition or California?—
and this necessitates resolving lexical ambiguity. Nested nominal compounds involving three or
more nouns have more than one parse and therefore require resolution of structural ambiguity; for
example, consider [baby pool] table versus baby [pool table].

I distinguish three major classes of nominal compounds:

1. Lexicalized, such as clock radio. Such compounds have established conventional interpre-
tations; to handle these, lexicosyntactic biases must be integrated into the interpretation
process.

2. Identificative, such as clock gears. These compounds are novel in Downing’s (1977) sense, in
that they are not conventional phrases. However, they do identify a conventional conceptual
schema, since one knows about gears in clocks beforehand, from experience.

3. Creative, such as clock table. These are also novel compounds, but interpreting them requires
the hearer to create a new conceptual structure, such as table on which a clock sits. For creative
as well as identificative compounds, semantic and conceptual biases play an important part
in guiding composition tasks like frame selection and role/slot binding.
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The interaction of biases can become quite complicated. Normally, there is a bias to use
the most specific pre-existing categories or schemas possible—syntactic, semantic, or conceptual.
Preference is first given to lexicalized forms, then to identificative interpretations, and lastly to
creative interpretations. However, this sort of “Maximal Conventionality” principle can easily
be overridden by global factors arising from the embedding phrase and context. The first two
columns of Table 2.1 show nested compounds where both potential parses involve lexicalized
forms. Depending on semantic and conceptual factors, the preferred interpretation can either
include the more lexicalized compound as in [kiwi fruit] juice or baby [pool table], or it can break the
more lexicalized compound as in [navel orange] juice or New York [state park]. The rightmost column
of Table 2.1 shows even more extreme cases where an identificative compound like afternoon rest
breaks a lexicalized compound like rest area.

COMPETING LEXICALIZED COMPOUNDS COMPETING LEXICALIZED
PREFERRED AND IDENTIFICATIVE
PARSE First compound Second compound COMPOUNDS
more lexicalized more lexicalized

/(\ kiwi  fruit  juice navel orange juice afternoon  rest area

LEXICALIZED LEXICALIZED IDENTIFICATIVE
N NN LEXICALIZED LEXICALIZED LEXICALIZED
M New York state park 1 table gold _watch  chain

LEXICALIZED LEXICALIZED LEXICALIZED
N NN LEXICALIZED LEXICALIZED IDENTIFICATIVE

Table 2.1: Interacting biases in competing lexicalized and identificative interpretations (see text).

211 Descriptive, Predictive, and Situated Language Models

Nominal compound theories, and theories of natural language in general, can be struc-
tured as descriptive, predictive, or situated models. These terms are qualitative and there are no
exact lines. Descriptive and predictive models of language are primarily theories that characterize
aspects of language from the external scientific observer’s perspective, without characterizing the
precise processes by which a language user operates in real time. In contrast the distinguishing
criterion of situated language models is the constraint that the theory explain how the resource-
bounded language user processes information under time constraints, in order to function within
the environment. In Chomsky’s terms a situated language model must incorporate not only lan-
guage competence but also performance. Situated models are called agents.! Although there is
a good deal of overlap between what is labelled “computational linguistics” versus “natural lan-
guage processing”, computational linguistics more strongly connotes the descriptive and predictive
models and natural language processing more strongly connotes situated models.

Situated models have been studied predominantly in simpler domains than natural
language. The most basic type of environment is one of survival; one popular mode of research is to
constructagents whose purpose is to survive in a video-game micro-world (Agre & Chapman 1987;
Russell & Wefald 1991). In the case of natural language modelling the survival goal is more remote
and an agent may instead emphasize satisfying cooperation goals. The Unix Consultant (Wilensky
et al. 1988) is an agent that operates in an environment in which the agent’s sensory input is limited

!Not to be confused with the case role.
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to the user’s typing, and the agent’s actions are limited to generating textual output.? Natural
language is a tool that can be used to help it achieve its goal of assisting the user; toward this
end both interpretation and generation are useful. The later Wittgenstein (1963) view of meaning
as being the use of a linguistic utterance or text, both conventional and contextual, is naturally
captured by the situated language model.

Grammatical versus stimulus-response models. In a grammatical model no function or task is explicitly
specified; the grammar is a collection of rules that aim to describe and / or predict linguistic phenom-
ena. Traditionally we conceive of a grammar in terms of being able to generate all the acceptable
strings of a language, given unlimited time to apply all the rules. In contrast a stimulus-response
model associates an input stimulus with an output response, where either or both are strings be-
longing to a language. A stimulus-response model is therefore functional or task-oriented. As we
shall see both grammatical and stimulus-response models can be probabilistic.

Stimulus-response models come in a variety of flavors. The most theory-neutral models
are behaviorist, attempting only to model the externally observable behavior of a language user
without postulating what internal states the user’s cognitive mechanisms must pass through. An-
other predominant class of models are interpretive and seek to describe how linguistic inputs cause
semantic or conceptual structures to be constructed; of course these structures are highly theory-
dependent. Conversely the object of generative stimulus-response models (not to be confused
with generative grammars) s to transform semantic or conceptual inputs into linguistic structures.
Clearly a behaviorist model may contain interpretive and generative components but no claims
are made about cognitive correspondence.

Converting grammars into stimulus-response models. For certain classes of grammars, methods are
known for generating particular kinds of stimulus-response models. The most obvious examples
are the many parsing algorithms for accepting context-free grammars. The stimulus is an input
string; the response is an accept or reject signal, or a parse tree.

For situated agents in most environments, merely computing an accept or reject signal is
not a very useful response. However the basic technique can be used to produce more interesting
response behavior by augmenting the grammars with things like attributes. For example, if the
Noun category can have syntactic attributes like “gender” or semantic attributes like “count /mass”,
then the attributes effectively split the Noun category into a number of subcategories. We can
then require the parser to decide not only that an input item is a Noun, but also which specific
subcategory of Noun it belongs to. This produces a simple kind of a semantic interpretation as the
output response.

The problem is that after adding attributes (or other extensions) to the grammar the old
parsing methods no longer apply. In general adding attributes causes the grammar to become
ambiguous, especially when the attributes are semantic and have no directly corresponding syn-
tactic surface form realization. Simple parsers have only random or ad hoc means of resolving
ambiguities, and more motivated disambiguation methods require additional assumptions about
cognitive processing biases; here statistically justified heuristics play a significant role.

?Survival goals are present in limited form; the agent has a built-in rudimentary model of its own existence, which
says that the agent’s own existence depends on the continued well-being of its host computer (Chin 1988). Thus the
user will be denied information about means of sabotaging the host computer.
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2.1.2 Descriptive and Generative Accounts

Historically, generative grammar has pursued descriptive and predictive aims, while in-
terpretive models have paid more attention to situatedness. Actually there are certain equivalence
classes of models that can be arbitrarily transformed between generative and interpretive models.
However, because the kind of claims made by theories vary significantly with their descriptive or
interpretive orientation, I keep the traditional distinction.

Jespersen.  Jespersen’s (1946, v. 6) analysis of compounds is restricted to a survey of some general
classes of relations that can hold between the constituent elements of a compound. For nominal
compounds, which Jespersen calls “substantive-compounds”, these classes include subject-action
(nightfall), ocation (garden-party), destination (land-breeze), instrumental (sabre-cut), and so on.3
Itis debatable whether Jespersen claims generalizations can possibly be made about the
relations in a compound. On the one hand, Levi (1978, p. 105) reads Jespersen as saying nominal
compounds are “inherently idiosyncratic”, drawing as evidence the following quotes:

(a) Compounds express a relation between two objects or notions, but say nothing of
the way in which the relation is to be understood. That must be inferred from the
context or otherwise. (p. 137)

(b) On account of all this it is difficult to find a satisfactory classification of all the
logical relations that may be encountered in compounds. In many cases the relation is
hard to define accurately. (p. 137)

(c) No definite and exhaustive rules seem possible. (p. 140)

(d) The number of possible logical relations between the two elements is endless.
(p. 143)

On the other hand, the fact that Jespersen even bothers to enumerate classes of relations implies
some belief in systematic subregularities. Probabilistic systematicity, as in the model I propose, is
possible even if the classes are not exhaustive, and is compatible with quotes (b), (c), and (d). This
leaves only quote (a), which is problematic since the constituents of a compound do say something
about the likelihood of the possible relations. But Jespersen’s “say nothing of” is probably just a
careless statement, not intended to rule out probabilistic tendencies.

Similar general classifications are found in other grammars. For example, Quirk et al.
(1985, pp. 1330-1335) also classify the subclass of nominal compounds they call “premodification
by nouns” into “source-result” (metal sheet), “part-whole” (clay soil), “place” (top drawer), “time”
(morning train), and “whole-part” (board member). Nominal compounds are not the focus of such
accounts, and are treated purely descriptively and not in depth.

Levi. Levi’s (1978) analysis of “complex nominals”, a superclass of nominal compounds, is set
within a generative semantics framework. The main innovation is a claim that in most compounds
the relation between the constituents is one of nine predicates. These are CAUSE (disease germ, birth

%Jespersen does not give names to the classes.
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pains, HAVE (apple cake, lemon peel), MAKE (silk worm, snowball), USE (steam iron), BE (target structure),
IN (inorning prayers), FOR (arms budget), FROM (test-tube baby), and ABOUT (price war). The first
three predicates have two variants corresponding to the example pairs. In one, the modifying
noun is the object of the relative clause implied by the predicate; in the other it is the subject.
Because of the generative semantics framework, Levi thinks of compounds as being transformed
from longer paraphrases with explicit predicates, like a germ that causes disease. The predicates are
deleted by the transformation, but can be recovered by the hearer; thus Levi refers to the predicates
as “Recoverably Deletable Predicates” (RDPs).

From the point of view of the conceptual system, it is not clear that the set of RDPs actually
constrains the range of semantic relations that a surface form might potentially signify. The RDPs
are extremely general concepts, and can be seen as the merely the most abstract forms of an infinite
number of more complex types of roles. For example, Schank’s (1973) Conceptual Dependency
representation is limited to a set of relations of the same order of magnitude, but an infinite number
of complex structures can be constructed around the relations, in effect representing many of those
variations that Jespersen claims cannot be exhaustively enumerated. Semantic network hierarchies
make this even more explicit with role hierarchies; in such a conceptual representation one might
expect to find roles similar to the RDPs near the top of the abstraction hierarchy.

Another somewhat ::-:7ear point is what distinguishes RDPs as semantic rather than
syntactic forms. The analysis - . : 2rly conceived from a semantic perspective, but the transforma-
tional paradigm of generative semantics makes the process of deleting RDPs from relative clauses
resemble a syntactic transformation, as in Lees’ (1963, 1970) treatment. The problem is that the pred-
icates, even when made explicit in the paraphrases, are still polysemous; the metaphoric temporal
IN in morning prayers should be distinguishable from the IN in field mouse. Independent justification
of the semantic primitives, not connected to their use in nominal compound paraphrases, would
be one way to improve this.

Warren.  Warren (1978), like Levi, postulates a number of primitive semantic relations that can hold
between a nominal compound’s constituents. However, Warren’s relations are somewhat more
detailed in that they actually form a taxonomic hierarchy. At the most abstract level, the primitive
relations are Constitute, Belonging-To, Location, Purpose (Goal-Instrumental), and Activity-Actor
(OBJ-Actor).* The next more specific level includes relations such as Source-Result, Copula Com-
pounds, Whole-Part, Part-Whole, Size-Whole, Goal-OBJ, Place-OB]J, Time-OB], and Origin-OB]J.
Still more specific are relations like Material-Artefact(clay bird) and Matter-Shape (raindrop) Though
Warren’s semantic categories are, like Levi’s, not independently justified, Warren’s analysis has a
more conceptual bent than Levi’s, since there is less reliance on paraphrastic transformations with
their polysemy problems.

The primary contribution of Warren’s work is a statistical analysis of the frequency of
semantic patterns over a relatively large set of compounds. Warren'’s corpus of 4,557 distinct
nominal compounds was taken from 180 of the 500 texts in the Brown Corpus (Kutera & Francis
1967), a total of about 360,000 words. Working with standard, widely available data is a great
advantage in terms of facilitating comparisons and building upon previous analyses. I have
therefore concentrated on compounds from Warren’s corpus; most of the examples in this work
come from Warren and the sources are footnoted.

*Warren also treats proper name combinations.
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213 Interpretive Accounts

Downing. Downing (1977) argues against the paradigm of deriving nominal compounds from un-
derlying structures. Concentrating on experiments in which subjects produced novel compounds
in the course of performing naming tasks, Downing argues that the set of potential compounding
relationships is infinite. She also argues that the possible interpretations of a compound are con-
strained by the fact that speakers choose to use a compound construction only subject to pragmatic
functions (e.g., naming in context). Another interesting result is variation in the frequency of
occurrence of general semantic relationships, depending upon the semantic type of the head noun
(human, animal, plan, natural object, synthetic object). Such variation is consistent with Warren’s
statistical findings.

Leonard. Leonard (1984) describes a computationally implemented algorithm for interpreting
nominal compounds, in which input compounds are paraphrased as noun phrases with preposi-
tional phrases (fir bough becomes the bough of a fir) or relative clauses (hire-car becomes a car that
someone hires. She employs a similar typology to Warren’s, but uses her own somewhat smaller
corpus of 1,944 compounds, drawn from 305,000 words from sixteen novels.

Each noun participating in a compound is marked with semantic features; Leonard uses
four classes of semantic features, which different rules are sensitive to. The 21 “primary features”
include “The noun is related to a verb” (attack), Locative, Material, Plural, and so on. The 22
“secondary features” apply only to nouns that are related to verbs, and include such features as
“Related to a covert verb” (accident happens) and “Instrument of an overt verb” (pick). There are
nine “tertiary features”, also called “semantic fields”, including Mechanism, Human organization,
Part of the body, Plant or tree or part of one, furniture, and so on. The five “quaternary features”
really just encode the relative size of an object using a discrete five-level scale. To interpret a
compound, a sequence of nine rules is applied; preference is strictly determined by the order of
the rules. The rules search for things like “match in semantic fields”, which occurs when two
nouns share a “tertiary” semantic feature (plant or tree for fir and bough). Another rule searches for
a “material head”, such as stone or clump; this is paraphrased as [head] composed of [modifiers].

Leonard reports a 76% accuracy rate for the nine rules applied to her corpus. Itis probably
true that at least this percentage of compounds found in text can be reasonably paraphrased by
such relatively simple techniques. However, as is usually the case in language processing, the last
24% or so is the difficult part that requires integrating syntax, semantics, and complex conceptual
structures.

Moreover, it is not entirely clear whether Leonard’s program is more an interpreter or
more a paraphraser. In some sense, paraphrasing can be easier than interpretation, because it
can be regarded as a kind of syntactic transformation, where the burden of interpretation is still
unconsciously being performed by the investigator rather than the model. For example, the phrase
the bough of a fir does not actually specify a very prices semantic relation; it is we, the investigators,
who impose the interpretation of of as a part-whole relationship. In this particular example,
Leonard’s program does actually have an internal representation of the part-whole (“Annex”)
relation, but in general the use of paraphrasing for evaluation is susceptible to this problem.

McDomnald. McDonald’s (1982) computational model interprets nominal compounds by combin-
ing a number of heuristics. Some of these heuristics pre-empt others; others are weighted and
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combined. The heuristics can be broken down into two families (my analysis, not McDonald’s).
One family has to do with filling slots in frames; this is McDonald’s method of selecting interpreta-
tions for what I called creative compounds (above). The “Slot Verification Heuristic” checks how
well fillers match prototype-like expectations that are attached to slots. Also, selectional restrictions
are enforced on the head noun, and there are consistency checks against mutliple fillings the same
slot. A rough mechanism is suggested to give preference to interpretations matching the contex-
tual topic, but McDonald acknowledges that determining the topic is difficult. The other family
of heuristics deals with finding previous knowledge of conventional (lexicalized) nominal com-
pounds and “interpretations” (really schemas or semantic patterns for identificative compounds).
The previous knowledge can be in the form of either categories (types) or instances (tokens); in
the latter case the interpretation with the most instances stored in the knowledge base is preferred.
For compounds involving three or more nouns, preference is given to the interpretation with the
most lexicalized sub-compounds or sub-compounds matching stored instances.

McDonald’s heuristics derive from many of the same qualitative intuitions addressed
by the proposed model. However, they are implemented by heuristics that can run into trouble
because they are too coarse. For example, the “Embedded Instances of an Interpretation Heuristic”
selects the interpretation involving the most schemas with instances stored in the knowledge
base. However, the way the heuristic is formulated makes it insensitive to the relative strength of
schemas, which is related to their frequency of occurrence. The proposed model uses probability
theory to integrate such factors cleanly.

McDonald performed a hand-simulation on 625 compounds found in newspapers and
journals; implementation would have required building a complex real-world knowledge base. He
argues that roughly 60% of the compounds would be processed correctly by the model, and that
30% more would be processed somewhat correctly. However, it is difficult to check these results
because the coarseness of the heuristics would make them highly sensitive to the exact structure
of the knowledge base.

Wermter. Aninteresting connectionist model is proposed by Wermter (1989b; Wermter & Lehnert
1989), in which the semantic relations between constituents are learned from a training corpus.
Seven relations can be predicated between the nouns: BY, FOR, FROM, IN, OF, ON, and WITH.
Figure 2.1 shows a small-scale version of the back-propagation network used.® Each node in the
top layer corresponds to an individual input noun; the nodes are duplicated for the modifier and
head noun. The weights from the top layer to the microfeatures layer are hardwired to encode
a set of features characterizing each noun. Sixteen features are used to encode a noun, using the
NASA thesaurus (NASA 1985). Each node at the bottom corresponds to one of the seven relations;
the output activation strength indicates how likely the network judges that semantic relation to
hold between the input nouns. In the training mode, an error signal is back-propagated through
the network from the node corresponding to the desired semantic relation for the input nouns. In
the testing mode, the network is deemed to produce the correct output when the desired semantic
relation has the maximum activation. Each of 108 compounds from the NPL (National Physics
Laboratory) corpus of abstracts and physical sciences (Sparck-Jones & van Rijsbergen 1976) was
judged with respect to each of the semantic relations. The network was trained on 88 of the

®For exposition, I have added a layer of nodes at the top of Wermter’s net; Wermter actually used the microfeatures
layer directly for input, so nouns were translated into feature clusters by a mechanism outside the network.
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compounds with every semantic relation deemed plausible for the compounds. Wermter reports
93-98% accuracy on plausibility judgements within the training set. The network was then tested
on the remaining 20 compounds. More than one interpretation was permitted; each output node
with activation over 0.5 was considered a potential semantic relation for the compound. For the
test data, Wermter reports 73-95% accuracy.

NOUN l* NOUN 2 +

NOUN SENSES

MICROFEATURES

Figure 2.1: Wermter’s connectionist nominal compound interpreter (see text).

Wermter’s model is intended primarily to demonstrate the feasibility and qualitatively
desirable behavior of connectionist modelling. The semantic relations are not as detailed as in
some of the linguistic theories, and do not handle compositional structures or nested compounds.
Also, the evaluation of success would be more convincing if the criteria were to predict a single
most plausible interpretation, rather than a set of interpretations.

Hobbs. The weighted abduction framework (Hobbs et al. 1988; Hobbs 1990) has been applied to
nominal compound examples. In this approach the part of the interpretation task dealing with
nominal compounds is to prove an expression like:®

1) (3o, a, nn)lube-0il(0)* A alarm(a)*® A nn(o,a)™°

The superscripts represent assumability costs associated with the various terms. In weighted abduc-
tion, theorem proving is augmented by a mechanism that allows unproven terms to be assumed,
for a price. The object is to prove the least-cost expression for the input utterance, generating
a parse and semantic interpretation as a by-product. Only examples involving simple semantic
relations of the Levi sort have been implemented; for instance, one of the kinds of noun-noun

relations is FOR:
(Vz,y)for(y, 2)* D nn(z, y)

If $a, the cost for assuming for(y, ), is lower than any other way of proving equation (2.1) then it
will be taken.

Realistically speaking, more complexity would be needed than in the above example to
distinguish FOR from all the other relations that might hold. To make the selection of the semantic

®Hobbs et al. subsequently drop the use of nn as a predicate variable in favor of treating it as a simpler first-order
predicate constant.
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relation sensitive to the types of the constituent nouns requires the addition of axioms of the form
(Vz, y)function(z, €) A involve(e, y) A extra(z, y)* D for(y, z)

This says “if the function of z is some eventuality involving y, then FOR may be assumed at a
cost $b, which presumably is less than $a”. Thus contextual conditions may change the preferred
semantic relation.” *

Weighted abduction has not been applied to nominal compounds in depth, but the frame-
work is intriguing. One version of weighted abduction has been shown to have a probabilistic
semantics by Charniak & Shimony (1990). Given this, it will be interesting to see whether proba-
bilistic and weighted abduction models encounter the same difficulties, particularly in how they
deal with computational resource bounds.

2.2 Probabilistic Language Models
This section’s aims are twofold:

1. To introduce the critical philosophical distinctions concerning how probabilistic models are
interpreted.

2. To clarify the theoretical positions of some previous probabilistic approaches to language,
by pointing out where they fit into the survey. '

Work on applying probability theory to natural language study is experiencing a resur-
gence after several decades of near non-existence. However, the nature of the relationship between
probability theory and language is still under debate. Many different uses of probability are pos-
sible; probability theory by itself is merely a calculus built on a few axioms, a metaphor in the
hands of the investigator just like any other model. It is up to the investigator to specify how the
distribution and event space map onto aspects of the real world. In other words the semantics of a
model must be specified, just as in logical, non-probabilistic models. Entirely different claims can
be made depending on the model’s semantics.

The reader may skip this section or return to it later. However, this section clarifies
various foundational points about probability theory that are all too often misunderstood. Such
misconceptions potentially lead to unfounded methodological and philosophical objections.

221 Interpretations of Probability Theory

Probability theory and statistics are intricately related and this is one source of confusion
over the nature of claims made by any given model. There are probabilistic versions of the
descriptive, predictive, and situated language models discussed in section 2.1.1. With respect to
these different modelling goals, probability can be used in various ways. Table 2.2 charts some
of the main distinguishing ways of applying probability theory. Each row describes one possible
use of probability theory, classified along a number of dimensions discussed in the following

paragraphs.
"Personal communication with Jerry Hobbs transmitted and elaborated by Robert Wilensky.
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Type of Investigator
probability: ascribes
probabilistic
beliefs to:
Nobody, De: ive/  Statistical/ Societal/ Genemed/ Finite/
Agent / Ind succr:l;:’t; Prop:m ional Individual Enumerated Infimite
itional (EmlB 1lnfu{te
d‘ucuve => Descniptive) => leneﬂned)
Objective Descriptive ~ Statistical
[Phys-Obj-RF]
Objective Descriptive  Propositional
[Propensity]
Subjective Agent Descriptive  Statistical
Subjective Agent Inductive Statistical
Subjective Agent Inductive Propositional  Individual  Generated Finite
[Auto. Inf.]

Table 2.2: Applications of probability theory.

Subjective versus objective probabilities. The debate over what probabilities really are has a long
history. Only a common set of mathematical axioms unifies the many different interpretations of
probability.® The three major schools are logical probabilities, objective probabilities, and subjective
probabilities.

The logical interpretation of probabilities is the most neutral. Probabilities are treated as
purely mathematical relations and probability theory is simply a type of logic. Probabilities are
attached to propositions, sentences, logical events or atoms; no predication of physical entities is
assumed within the logic. Any intended correspondence to empirical physical observations must
be explicitly and a priori defined, by giving a semantics that maps the logical sentences to the
world. Much of the groundwork in logical probabilities was done by Carnap (1952, 1962).

Objective probabilities are postulated to be physical properties existing in the real world.
The simplest case of objective probabilities are relative frequencies, denoted “Phys-Obj-RF” in
Tables 2.2-2.4. Another case of objective probabilities are propensities (see footnote on page 22).

Subjective probabilities denote degrees of belief. They are posited to be quantitative
measures of certainty in a human (or computational agent). Subjective probabilities are frequently
criticized by scientific researchers as being arbitrary. The objection to subjective probabilities is not
that they should be avoided for cognitive modelling, but that one should specify how an agent
derives its subjective probabilities from experience in its environment. The use of probability in the
proposed model is primarily logical probability, but a subjective interpretation can also be ascribed
to it. However, we will see that the probability distribution is estimated from observations of
certain relative frequencies.

Descriptive versus inductive statistical models. In some sense the most basic type of statistical model,
descriptive statistical models are simply used to summarize data too numerous be explicitly stored.

8 Actually several equivalent axiomatizations can be used.
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Insofar as a descriptive statistical model employs the probability calculus, those probability values
are interpreted in the objectivist sense, that is, the relative frequencies describe the distribution of
a set of real-world instances. For example, word counts and category counts (either of pre-tagged
corpora or using a real-time parser) are one way to summarize certain surface aspects of large
amounts of text. A more subtle kind of application is to count co-occurrences of word pairs or
n-grams (Smadja 1991b) or fixed-window word associations (Church & Hanks 1989).° In addition
descriptive statistical models can be used to capture information about processing times. Example
applications are recognition times, semantic retrieval times, or voice-onset times (Macken &
Barton 1980).

Inductive statistical models attempt not only to capture and summarize previously seen
data but also to predict future data. Statisticians also refer to this mode as statistical inference. The
most straightforward form of statistical inference is to assume that the relative frequency distribu-
tion of a finite sample extends to the rest of the world. For example, in a series of studies concerning
the dialectology of New York English, Labov (1966, 1972) uses a sample of 264 employees in Lower
East Side branches of Saks, Macy’s, and S. Klein department stores to support the conclusion that
prevalence of consonantal [r] in postvocalic position is correlated with social status. The extension
is clearly only valid if there is no correlation between the sample and the feature being assessed; all
the various statistical sampling techniques are means of factoring out, or correcting for, any known
feature that could possibly be correlated with the sample.!°

Hypothesis testing is a branch of inductive statistics that facilitates more powerful checks
when the investigator has hypothesized some general rule. In essence these methods check the
rule’s degree of consistency against a probabilistic model of some other (preferably large) fragment
of the investigator’s knowledge or assumptions. Though hypothesis testing is prevalent in most
scientific disciplines, its use in language studies has been largely confined to external, easily
observable phenomena such as phonology (Fasold 1972). In fact Fasold (1972) observes that even
Labov’s work did not employ hypothesis testing, and Davis (1990, p. 41-5) shows that several of
Labov’s distinctions are not adequately (i.e., with greater than probability 0.9 or 0.95) supported
by the data.

Of greater relevance to computational linguistics are inductive statistical methods in
algorithmic form. Automation permits large amounts of electronically stored data to be pro-
cessed. Among the techniques frequently employed are methods for inducing Hidden Markov
Models (HMMs) and probabilistic context-free grammars (PCFGs). HMMs and PCFGs are exten-
sions of regular and context-free grammars, respectively, where the transition or rewrite rules are
augmented by values specifying the probability of that rule being applied, as opposed to any alter-
native rule that could be applied at that point in the expansion (Fu 1974). The Forward-Backward
(Baum 1970) algorithm is a standard iterative method in speech recognition that converges on the
probability distribution for a Markov model, i.e., when one assumes that the input strings are being
generated by a regular grammar. The Inside-Outside algorithm is an extension of the Forward-
Backward algorithm for estimating the probability distribution when input strings are assumed to
be generated by a context-free grammar. The method has been applied by Fujisaki et al. (1991) to
learn a context-free grammar from a corpus of about 30,000 Japanese noun compounds taken from

®Though these models go on to use the statistics inductively.
191f however there is a skew but none of the correlated features are known, no sampling technique will help and the
only solution is to discover a better model which includes a correlated feature. The ramifications of this are discussed
more in section 2.2.2.
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machine translation abstracts. Based on a classification of the individual nouns into 46 categories,
the model learned to bracket (i.e., assign a tree structure to) nested compounds with 75% accuracy
on a test set of 153 compounds. For both Forward-Backward and Inside-Outside algorithms one
must provide a priori constraints on the number of rules (or terminals and non-terminals), though
methods for dynamically adjusting these constraints have been experimented with (Lari & Young
1990).

When the features fed into an inductive statistical model are the same features a human
language user in ordinary life perceives or otherwise has access to, then inductive statistics can
be used to model language acquisition. Probabilistic grammar learning approaches of the sort
described in the preceeding paragraph are sometimes regarded as models of syntax acquisition.

Statistical versus propositional probabilities. What Bacchus (1990) calls statistical and propositional
probabilities have in the past been termed “definite” and “indefinite” probabilities (Pollock 1990;
Jackson & Pargetter 1973). Statistical probabilities are probabilities of categories of events (types)
whereas propositional probabilities are probabilities of individual events (tokens). A statistical
probability is thought of as a relative frequency in a set, regardless of whether the entire set has
been sampled in which case the statistical probability is descriptive, or only part of the set has been
sampled in which case the estimated statistical probability is inductive. Statistical probabilities can
have either objective or subjective interpretations.

A propositional probability predicates an individual event. Since individual events are
not repeated one cannot count relative frequencies. Instead, propositional probabilities denote a
degree of certainty and are therefore subjective probabilities.'! Nonetheless the same probability
calculus extends consistently to propositional probabilities, and this is the basis of decision theory
which is discussed below in section 3.2. It is possible to think of individual events as if they
were repeatable by imagining a large set of alternate possible worlds and asking how many of
the possible worlds the individual event in question occurs in. From this perspective worlds are
generated by stochastic application of the same set of non-deterministic probabilistic rules. Note
that the only useful form of propositional probabilities is inductive since there is little reason to
attribute any probability other than 0 or 1 to an event that has already been sampled.

Other distinctions. Probabilities can be used to describe variation among the members of a society,
or they can be used to describe variation in the performance of an individual person. Labov’s
(1966, 1972) work, described above, is an example of a sociolinguistic application. On the other
hand, recognition time studies are usually a mix where samples are taken both over individuals
and groups.

A probability distribution can be used to describe a finite set of instances that is explicitly
enumerated. Alternatively, a method can be specified for generating or gathering a set of instances.
One way to specify a generation procedure is by giving a mathematical definition, e.g., “the set of
all even numbers”. Another possibility is to give an empirical procedure like “the set of all possible
English utterances”. Generated sets may be either finite or infinite.

1 A notable exception to this view is Popper’s (1959a, 1959b, 1983) theory of propensities which are postulated to be
physical properties of individual objects in the world.
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222 Static and Dynamic Probabilities

Good’s (1971, 1977) distinction between static and dynamic probabilities actually applies
at more than one level, because the definition of static probabilities is relative to one’s point of view.
We first examine the distinction from the standpoint of the investigator, then from the standpoint
of an agent being modelled.

Static versus dynamic investigator probabilities. The way one usually speaks of static probabilities
is from the “physicalist” point of view of an investigator who assumes that probabilities actually
exist as physical entities in the real world. However except for purely descriptive probability dis-
tributions, none of the (inductive) probability distributions hypothesized in scientific theories are
static probabilities themselves; rather they are empirically motivated guesses as to the approximate
nature of real static probabilities. Since our time as investigators is constrained the static proba-
bilities can never be determined with absolute certainty. The hypothesized (inductive) probability
distributions are referred to as dynamic probabilities.

Given this physicalist view of probabilities, most dynamic probabilities are not true
probabilities. A dynamic probability distribution is one that the investigator estimates after having
seen some finite number of examples. Because of this sometimes dynamic probabilities are written
as conditional probabilities, which are conditionalized on having seen those examples (e.g., Breese
& Fehling 1990):

PrdynamiC(zIy) = Prstaﬁc(z'y, ilv i2, LR} 7'11)

However as this formula makes clear, this intuitively sensible notation is in reality only formally
correct when the inductive process is itself Bayesian. Though dynamic probabilities adhere to
the Bayesian axioms within their own distribution, the inductive methods through which entire
dynamic probability distributions are postulated and evolved often are not (though adherence
to Bayesian learning methods often results in mathematically elegant theories). To reiterate, the
physicalist believes that probabilities exist as properties of the real world and considers those
static probabilities, which human investigators under time constraints approximate with dynamic
probabilities using some separately specified theory of induction.

Static versus dynamic situated agent probabilities. The notion of dynamic probabilities as being
time-limited estimates of a static distribution can also be applied to a subjectivist framework. In
this framework probabilistic beliefs are ascribed to agents rather than the investigating observer.
Again a distinction is made between static probabilities, which are probabilities in an idealized
distribution that an agent “believes” to exist in its environment but is possibly intractable, and
dynamic probabilities, which are probabilities in the intermediate distributions the agent computes
as its working hypotheses.’? A probability distribution might be impossible for a situated agent
itself to compute explicitly, and yet the agent might act as though it were trying to learn this
distribution (“Unbounded agent” in the tables). As investigators we can describe the behavior of
this agent in terms of this distribution.!?

121n this discussion I have attempted to stay within the neutral view of probability theory as merely a logical theory
that can be applied either objectively or subjectively. As discussed in the previous section, a subjectivist would argue
that all probabilities are held by agents, and that scientific investigators are simply particular agents.

13This approach will be taken in modelling automatic inference.
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In contrast the agent might be explicitly computing certain distributions, possibly ap-
proximations to the intractable ones (“Bounded agent” in the tables). The statistical computations
that are part of a situated model must be performed in real time.!* Situated statistical models are
also inductive statistical models to the extent that predicting regularities helps them function in
the environment.

The role of situated statistical computations is most likely quite limited. It is entirely
conceivable that agents could function effectively in their environments making few explicit statis-
tical computations. For example, consider (possibly Bayesian) learning of (deterministic) decision
trees, where the agent adapts its decision tree so that no statistical computations are needed to
handle inputs. The problem with situated statistical models is their expense. Above we discussed
inducing probabilistic grammars. Unfortunately for situated models, natural language contains
too many potential sources of non-determinism. Beyond a certain complexity, parsing a proba-
bilistic grammar takes too much computation time. We must therefore include more structural
assumptions to simplify the necessary computation. I will return to this subject in discussing
compilation.

The subjective-objective circularity problem. The circularity that arises in trying to define the relative
frequency and subjective versions of probabilities is shown in Table 2.3 using the device of a
meta-investigator.

The essence of the loop is: I am an investigator who, in this work’s line of research, takes
the physicalist viewpoint and “believes” in the existence of real world probabilities. However
when I introspect on my belief system I find that this position is a subjective one. This is because I
am myself an agent whose resources are bounded by my environment.

In this view investigator probabilities are strictly a subcase of situated agent probabilities.
The only differences between theories of investigator probabilities and theories of agent probabil-
ities surface at orthogonal points: (1) the types of inputs that are presented to the investigator or
agent being modelled, since the range of criteria used by scientific investigators is far broader than
that available to the average child who learns to use language (or the average chess player, etc.),
(2) the desired type of output: descriptive or reactive; whether there is a utility or loss function,
and if so the nature of the function, and (3) scientific investigation commands far greater time and
space resources.

It is important to remember that objective probabilities are not in fact entirely objective.
In working with probabilities one must always select a model; in other words one always assumes
that certain variables are random variables whose values are drawn perfectly randomly from a
probability distribution. So far as we know the real world only contains phenomena that can be
approximated, but not exactly described, by this assumption (albeit very closely approximated
in many cases). One tries to select a model so as to minimize controversiality but in the end a
probabilistic theory can only be as correct as its underlying model is.

MSituated statistical models are different from statistical descriptions of nondeterministic situated models, which I
will also be considering later. The distinction is discussed in section 2.2.4.
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Meta-investigator  Investigator Investigator
(philosopher— (bounded by real— ascribes
logician) chooses ~ world environment)  probabilistic
definition of takes probability beliefs to:
probability to be: to be:

Unbounded Descriptiv Statisti

Bgunged agggte oy Inductg/ttl: ¢/ Pmposxgggnal
Objective

[Phys—Obj-RF]
Objective
[Propensity]
Subjective Objective (Self) Descriptive  Statistical
Subjective Objective (Self) Inductive Statistical
Subjective Objective (Self) Inductive Propositional
Subjective Subjective Unbounded agent  Descriptive  Statistical
Subjective Subjective Unbounded agent  Inductive Statistical
Subjective Subjective Unbounded agent  Inductive Propositional
[Auto. Inf.]
Subjective Subjective Bounded agent Descriptive  Statistical
Subjective Subjective Bounded agent Inductive Statistical
Subjective Subjective Bounded agent Inductive Propositional
[Situated]

Table 2.3: The circularity problem in defining subjective and objective probabilities.
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2.2.3 Probabilistic Processing Models

The relation of an actual processing model or algorithm to probability theory may be
~ implicit or explicit. The behavior of an implicitly probabilistic model conforms to some known
probability distribution, and yet the algorithm itself need not explicitly compute the probabilities in
the distribution. The implicit probability distribution may describe different aspects of processing
behavior. As mentioned earlier in section 2.2.1, the distribution can describe processing times; for
example, online models of phoneme/letter /word recognition, lexical access, or semantic retrieval,
even if not explicitly probabilistic, should exhibit the same delay characteristics as humans. On
the other hand the distribution can describe the probability of various responses to the same input;
in this case we have a model of a stochastic function, such as a Hopfield net (Hopfield 1982) or
Boltzmann machine (Hinton & Sejnowski 1986). Note that these can be viewed as implicit subcases
of random Markov fields or probabilistic grammars.

2.24 Models Using Multiple Applications of Probability

A model can employ multiple systems of probability. These systems can be entirely
independent or they can be interrelated. For example, Bacchus’s (1990) logic maintains two inde-
pendent systems of probabilities, one objective and one subjective. The objective probabilities are
used for representing descriptive statistics and the subjective probabilities are used for represent-
ing degrees of certainties. Bacchus goes on to propose a specific method for deriving subjective
probabilities from objective probabilities, thus interrelating them.

We can have a descriptive probabilistic model of a situated statistical agent. The descrip-
tive probabilistic model is used to describe how a situated agent behaves; the situated agent may
(or may not) employ statistical methods in its own computations.

2.2.5 Probabilities in the Automatic Inference Model

The “Auto. Inf.” label in Tables 2.2-2.4 indicates the intended interpretation of the pro-
posed model of automatic inference. Probabilities are subjective because, as we see in the next
chapter, they represent the likelihood of conceptual structures being useful to an agent, which does
not necessarily correspond to real-world frequencies. In fact, being intentional, different mental
structures may not even map to distinct real-world situations.

The probabilities themselves are not ascribed to the agent although the intent is to model
a bounded, situated agent. Probabilities are used in describing the behavior, but in humans this
behavior may well emerge from heuristic adaptive mechanisms that do not explicitly compute
probabilities. In fact, computing rigorous probabilities in the complex domains considered here
is likely to be intractable. The approximate maximum-entropy estimation method introduced in
chapter 7 offers one possible solution; as neural network techniques improve in representational
expressiveness, they may offer other approximation heuristics. Nonetheless probability theory
is one of the most powerful and enlightening metalanguages at the investigator’s disposal, and
will complement more “black box” distributed adaptive neural-network style accounts that may
eventually develop.

Probabilities are inductive because they affect the agent’s behavior in novel situations
according to the degree of similarity to previously encountered situations. Probabilities are propo-
sitional because when they are used, it is to judge the chances of conceptual structures being useful
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Meta-investigator  Investigator Investigator
(philosopher— (bounded by real- ascribes
logician) chooses world environment) obabilistic
definition of takes probability liefs to:
probability to be:  to be:

bounded .. sistical . ite/
gounded ag;:i!mu vevel ﬁ-‘opmhgml m‘m&: mwn;d inite
itional ted finite
= dw?v.e) (El:mipﬁve) ag> Generated)
Objective
[Phys—Obj-RF]
Objective
[Propensity]
Subjective Objective (Self) Descriptive  Statistical
Subjective Objective (Self) Inductive Statistical
Subjective Objective (Self) Inductive Propositional
Subjective Subjective Unbounded agent  Descriptive  Statistical
Subjective Subjective Unbounded agent  Inductive Statistical
Subjective Subjective Unbounded agent  Inductive Propositional  Individual  Generated Finite
[Auto. Inf.)
Subjective Subjective Bounded agent Descriptive  Statistical
Subjective Subjective Bounded agent Inductive Statistical
Subjective Subjective Bounded agent Inductive Propositional
[Situated]

Table 2.4: Summary of the classification of probabilistic models.

in a particular novel situation. They areapplied to certainty judgements in a single individual agent.
We assume the data sets are generated by the agent’s environment and that at any given point the
agent has only encountered a finite number of instances, though this number is not bounded.

Relation to Goldman and Charniak. Goldman & Charniak (1990a, 1990b; Charniak & Goldman 1988,
1989) propose a story understanding model based on Bayesian belief networks Pearl’s (1988). For
example, figure 2.2 shows the network built to process hypotheses for interpreting

(2.1)  Jack got a rope. He killed himself.

Most of the nodes have fairly clear interpretations. An unusual node is the one marked (patient
83)=r2, which represents the hypothesis that r2 fills the patient role of 83. This is equivalent to a
variable binding hypothesis because it posits binding the constant 2 to the unnamed patient variable
associated with g3.

Variable binding hypotheses are problematic on a larger scale, because they interact. For
example, if (patient g3) is bound to 2, then it can no longer be bound to any other rope 4 (not
shown in the example). This means the conditional probabilities of (patient 83)=r2 and (patient
83)=r4 are not independent. In a belief net, any nodes whose probabilities are dependent must
either be directly connected or be connected by intermediate nodes whose instantiation makes
them conditionally independent. Thus in the general case all the binding hypotheses in a belief net
should, properly speaking, be heavily interconnected. This causes loops in the belief net, however,
which are particularly expensive to evaluate. Asa consequence Goldman and Charniak use as few
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10e-11
r2

(kill k1) )
(8,0 (8,0) (80)
(patient g3)=r2
(.8,0)
(kill wl) (get w3) (object—of w2 w3) (rope w2)

Figure2.2: Example belief net from Goldman & Charniak (1991). Nodes at the bottom are lexical inputevents;
the others are conceptual hypotheses. Given conditional probability matrices are shown in parentheses;
probabilities on the hypothesis nodes are computed.

variable binding hypotheses as possible, and in constructing the belief nets, rule out a priori most
potential interactions. A universal parameter called the “knob” conditions the probability of all
binding hypotheses (they intend this as a first stab at the problem). As we will see, the method
proposed in this work takes an implicit binding approach that circumvents the problems with explicit
variable binding hypothesis nodes, while allowing alternate bindings to interact probabilistically.

Though Goldman and Charniak’s model is probabilistic, it does not really acknowledge
the difference between objective real-world relative frequencies or subjective belief measures.
Goldman and Charniak say the probabilities are objective relative frequencies, but must then
introduce the “knob” parameter to increase the probabilities for variable binding. The knob is set
relatively low for real-world probabilities, and high for story understanding to account for text
coherence. To gloss this, one thing is more likely to be the same as another if the domain is text
rather than the real world. However, the resulting conditional probabilities are then no longer
relative frequencies; thus interpreting the probabilities is somewhat problematic. This difficulty
does not arise in the proposed model since probabilities are interpreted subjectively, as a measure
of frequency of use.

Relation to Skousen. Skousen (1989) has proposed a framework for language modelling based on
an analogical framework. In this model, all previous instances of input-output pairs are stored
in a database. To predict the correct response for a new situation, the “analogical set” of relevant
previous instances is selected—tokens rather than types—is selected and one member is randomly
selected. The output response from that instance is returned as the answer for the new situation.
Skousen explicitly rejects the use of probability values:

One of the most difficult problems in language description has been non-deterministic
or probabilistic language behavior. Rule approaches typically account for such behav-
ior by positing probabilistic rules. Even if we suppose that probabilities exist, there is
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still the very difficult question of how those probabilities are actually learned from the
statistics and then used to predict behavior. But in an analogical approach no prob-
abilities are directly postulated; instead, an analogical set of examples is constructed
and then one of these examples is randomly selected in order to predict stochastic
behavior. Thus it may look as if probabilities are learned, but in fact none are. (p. 9)

Nevertheless, Skousen’s approach is essentially probabilistic. Mill (1896) recognized
the intrinsic connection between analogical induction and probabilities (see section 3.1.1). Here,
storing all previous instances as tokens rather than types has the effect of preserving the relative
frequency distribution over the space of possible events. Selecting an “analogical set” conditions
the event space on the new situation’s input event. The frequency of different output values
among the members of the “analogical set” are the conditional distribution. The “analogical set” is
selected using a distance metric based on the chosen set of a priori representational features. Such
methods can be reduced to a prior distribution derived from the data set, and are in the spirit of the
similarity-based prior discussed in chapter 8 (though in this work we will be considering feature-
structures, which are more general than the feature-vectors considered by Skousen). Moreover,
just because a random selection is made from the “analogical set” does not mean that probabilities
are emergent. To store all previous tokens is more expensive than storing the probabilities of types,
and it is really an alternate way of storing the relative frequency distribution. Thus there is really
no fundamental difference between Skousen’s model and a probabilistic one.

Also note in comparison that the “probabilities” in Skousen’s model are statistical rather
than propositional; they model stochastic process variation rather than certainty levels. He applies
his framework primarily to sociolinguistic data, that is, to variation over societal members rather
than individuals.

On humnan probabilistic judgements. Kahneman et al.’s (1982) results demonstrate that humans are
poor at making probabilistic and utilitarian judgements. This does not conflict with probabilistic
modeling of automatic inference, because Tversky and Kahneman'’s experiments dealt with con-
trolled inference where conscious, deliberative judgements of probability and utility were sought.
Even if automatic inference processes are consistent with some form of bounded probabilistic infer-
ence, as I suggest, humans have no direct introspective access to the corresponding probabilities,
nor in fact are the probabilities necessarily stored anywhere in explicit form. Any correspondence
to probability theory may well be purely epiphenomenal and emergent.
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Chapter 3

Utility, Inference, and Language

In this chapter I constructa Bayesian utility optimization framework for linguistic agents,
and situate the automatic inference model therein. The tools of probability and decision theory
are used to formulate the situated agent’s use of language, interpretation and generation. Decision
theory is an extension of probability theory that prescribes the optimal action in any given situation,
by weighting the utilities of the various possible outcomes by the probability of their occurrence.
It forms the basis for analyzing how situated agents function and thrive in their environments.
Moreover, as we see, inference and interpretation are themselves computational actions possessing
utilities.

The decision-theoretic framework provides an elegant formalism for modelling the re-
lationship between language and its use. It has been an unfortunate characteristic of language
understanding research that elegant and simple theories of interpretation are nearly always subject
to counterexamples. One of the prime culprits is the pragmatics of language use, whose influences
extend far into semantic and lexical levels of inference. For this reason, even when a module can
be studied in isolation in great depth, it remains imperative to embed the function of the module
within the context of its use.

3.1 Inference in Language Interpretation

Language understanding models are usually formulated in terms of performing some
amount of inference upon the input string or utterance. This inference may be deductive, as is
the case with many parsers. A good deal of recent work on interpretation casts the understanding
process in terms of abductive inference. The purpose of this section is twofold. First, it surveys
abductivelanguage interpretation models and the nature of claims made by such models. Second, I
argue thatabduction is merely a useful conceptual tool that must be supplemented by a statistically-
based inductive theory to solve the critical problems in language understanding.

3.1.1 Inductive Inference

Aninductive inference is any non-deductive inference. This strictdefinition of induction,
held by Carnap (1962), is more general than many traditional views such as the commonly held idea
that induction must extract a universal conclusion from specific observations (the counterexample
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of analogical induction is discussed below). The terms reductive inference or simply generalization
will be used to refer to the induction of universals. Inductive inference has sometimes been called
“ampliative”, since itamplifies knowledge in drawing conclusions that do notlogically follow from
the data.! Not all inductive inferences are useful; it becomes immediately clear that a minimal
condition must be met for an inference to be rational, this being that a “Dutch book” bet cannot be
made on the agent’s resulting set of beliefs.

Subjectivist probabilists call a bet a “Dutch book” when the agent makes two bets based
on odds from two of the agent’s belief subsets, and the agent is guaranteed to lose regardless of
the outcome. For the agent’s beliefs to be coherent, it cannot be the case that a Dutch book can be
made. Ramsey (1931) showed that avoiding the possibility of a Dutch book is equivalent to the
axioms of the probability calculus (I. J. Good has called this the “Dutch Book Theorem”).

Enumerative inductionand the role of statistics. Enumerative inductionis defined as the mode of induc-
tion in which increasing the number of observed instances of a class lends additional probabilistic
weight to that class. The term is used historically in opposition to “eliminative” or “variative
induction” in which the number of varieties of classes is the critical weighting factor (see Cohen
1989). As modern statistical techniques are based on enumerative induction, when I say “statistical
induction” I will be concerned only with enumerative induction.

Statistical induction is the focal method of inference in the present work. Statistical
induction was largely neglected by both Al and linguistic research in the decades preceding the
late 1980’s, before the resurgence of interest in neural network models and their applications in
language processing. However, from the late 1950’s to 1960’s, statistical induction machines were
heavily studied in Al. As we saw earlier, the application of statistical methods in linguistics has
been quite limited.

Analogical induction. Analogy is often treated separately from inductive statistics, a tradition
perhaps dating back to Hume (1888) who classified probabilities “arising from analogy” as an
altogether distinct category from statistical and propositional probabilities, never suggesting us-
ing a numerical measure for analogy. However, Mill (1896) recognized the inherent connection,
observing that

If we discover, for example, an unknown animal or plant, resembling closely some
known one in the greater number of the properties we observe in it, but differing in
some few, we may reasonably expect to find in the unobserved remainder of its proper-
ties a general agreement with those of the former, but also a difference corresponding
proportionately to the amount of the observed diversity. (p. 367)

Thus Mill anticipates the idea of primitive features upon which a similarity metric can
be defined, thus regulating analogical transfer.

!The philosophical literature sometimes contrasts “ampliative induction” with “summative induction”, which is an
oxymoronic term. “Summative induction” produces a universally quantified rule in the special case where the rule can
be verified over the entire event space. It is erroneously viewed as a form of induction because its form (producing a
universal rule from a set of individual propositions) syntactically resembles generalization, which is a true ampliative
induction. In fact “summative induction” merely restates the given data, adding no information; in other words it is a
case of descriptive statistics. If universal verification is possible with no assumptions outside of the data, then the rule
follows logically from the data, making the “summative induction” actually a form of deduction.
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3.1.2 Abductive Inference

Peirce (1931) defined the term abduction in his trichotomy of syllogistic reasoning com-
prised of deduction, induction, and abduction. He exemplifies his typology as follows:

Deduction
Rule.—All the beans from this bag are white.
Case.—These beans are from this bag.
therefore Result—These beans are white.

Induction
Case.—These beans are from this bag.
Result.—These beans are white.
therefore Rule.—All the beans from this bag are white.

Hypothesis (Abduction)
Rule.—All the beans from this bag are white.
Result.—These beans are white.
therefore Case.—These beans are from this bag. (v.2 §623)

Abduction, unlike deduction, is a synthetic or ampliative form of inference, because the
truth of its premises does not preclude its conclusion from being false. It is an operation that
generates an explanatory hypothesis:

The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true. (v.5 §189)

Thus abduction is often glossed as “inference to the best explanation” following Harman
(1965). The question is what “best” is. Peirce himself does not address the nature of the hypothesis
generation process. Clearly if the hypotheses are always wrong then abduction is of no use. In fact,
hypotheses should be generated so that in the long run one expects hypotheses of high average
utility.

Logical versus causal interpretations of abduction. Peirce’s typology is a purely logical distinction,
between modes of logical inference. I follow Peirce in taking the strictly logical interpretation.
Note however that in Al literature, “abduction” is often used to convey more than the purely
logical sense, and appeals implicitly or explicitly to the investigator’s intuitive sense of causality.
Causally interpreted, abduction is a process that produces not only correlative explanations for
observed events, but causal explanations. Causality is a philosophical morass that, not being
directly relevant to the purposes of this work, I attempt to sidestep.

Abductive models of language interpretation. The primary drawback of pure abductive models is that
they cannot choose between multiple competing explanations, as many authors have observed (e.g.,
Pearl 1990; Goebel 1990). This is a severe limitation for language interpretation purposes, as natural
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language nearly always contains ambiguities. Thus all practical abductive language models are
hybrids, containing additional mechanisms for explanation selection.

Charniak & McDermott (1985, ch. 10) lay out a basic model of abductive plan recognition,
story understanding, and speech act analysis. In this model, abduction is used to explain the
actions of the characters in a story, or to infer the motivations that underlie a speaker’s speech acts.
The story understanding direction is pursued in a probabilistic variant in Goldman & Charniak
(1990a, 1990b; Charniak & Goldman 1988, 1989) using Pearl’s (1988) belief networks. Other models
along these lines include the coherency-based story understanding model of Ng & Mooney (1990),
Hinkelman’s (1990) speech act recognition model, and the question-driven story understanding
model of Ram (1990; Ram & Leake 1991). None of these models cast semantic interpretation or
parsing in terms of abduction.

The most ambitious application of abduction to language interpretation to date has
been the weighted abduction model (Hobbs et al. 1988; Hobbs 1990; Stickel 1990; Appelt & Pollack
1990). In this model, both semantic interpretation and pragmatics are elegantly integrated into the
same abductive framework, which is a theorem prover supplemented with a cost-minimization
mechanism. Parsing remains deductive in the Prolog style, but parse rules are augmented with
semantic constraints. A cost is associated with each constraint. In interpreting a sentence, semantic
antecedents of parse rules can be assumed if they are not known to be false, but the associated cost
is charged. The goal is to minimize the total cost of the proof; intuitively, we want to interpret the
sentence making a minimum of extra assumptions.

The primary advantage of the weighted abduction framework is that the cost mechanism
allows finer-grained coherency judgements than simpler abductive models that use counts of
overlapping concepts or other ad hoc coherence metrics. However, it remains to be shown that the
weighted abduction framework provides tractability gains over probabilistic models, or even that
they are expressively different. Charniak & Shimony (1990) have given probabilistic semantics
for a very similar cost-based abduction model. The relation between abduction and probability is
further considered below.

Inductionand abduction. AccordingtoCarnap’s view that any non-deductive inferenceisinductive,
it follows trivially that abductive inference is inductive. Still, it is instructive to consider the
relationship between specific forms of inductive inference.

Firstly, the relationship of abduction to deduction is presented in an interesting way
by Josephson (1990), who suggests considering abduction as the limiting case of the deductive
disjunctive syllogism

PVQVRVSV---.
But-Q,-R,~§,~-...

therefore P.

If in fact we assert that all alternative explanations have been ruled out, then we can deduce
P. Abduction, then, is the weaker case where we accept that most alternative explanations are
unlikely, and heuristically conclude P.

Now let us consider induction. Arguing in favor of abductive models, Harman (1965)
argues against giving special status to enumerative induction:
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If we think of our knowledge as based on enumerative induction (and we forget that
induction is a special case of the inference to the best explanation), then we will think
that inference is solely a matter of finding correlations which we may project into the
future, and we will be at a loss to explain the relevance of the intermediate lemmas.

We may re-interpret Harman'’s argument as a legitimate call to pay close attention to correctly
structuring the event space of a probabilistic model. For an Al model this translates to finding
the correct conceptual primitives (to which chapters 4 and 5 are devoted). While probabilists have
often in the past been guilty of ignoring this issue, it is not an inherent weakness in the probabilistic
framework. Moreover the issue of finding the most appropriate conceptual primitives—i.e., deter-
mining what in machine learning work is called the inductive bias or, more specifically, the language
bias—applies equally to abductive and inductive models.

Formally, analogical induction (or any non-reductive inference) can always be rewritten
as a pairing of a generalization (reductive induction) plus an abduction. In the generalization step
we create an abstraction of the source domain that also includes the target domain; subsequently
we apply the generalized schema to the target domain, a case of abduction. This goes back to
the connection made in the previous section between analogy and induction. The generalization
in the intermediate step represents shared features of the source and target domains. (Note that
to reformulate a sequence of analogical inductions, it may be necessary to discard the previous
generalization before a new instance is handled, if there is any undesired interaction between the
genera.)

Any abductive model needs to start from a belief set containing universals or generaliza-
tions, which can then be used to explain new observations. Abduction-based theories of language
interpretation are fine, but unless some explanation is given for the source of these universals—be
that an adaptive, genetically innate, or other source—the theories are ungrounded. In most abduc-
tive models the universals assumed clearly derive to a large extent from the agent’s experience,
so to obtain the universals one needs a non-abductive theory of reductive inference. The best and
most neutral theories of reductive inference to date are still the enumerative induction models
based on probability theory. Thus, while abduction is a useful conceptual tool in constructing
language interpretation models, it does not permit us to avoid the issues with which statistical
induction is concerned.

3.2 Utility of Inferential Actions

This section presents a view of inference as an action that has some beneficial or detri-
mental effect for the agent. The language agent makes inferences in such a way as to optimize
its overall effectiveness within the environment, given the constraints on the agent’s architecture.
Bayesian utility theory is employed as the framework.

3.2.1 Utility and Decision Theory

Bayesian utility and decision theory is only beginning to be applied to language. The
most natural application, and the only one I know of so far, is to model the stimulus-response
behavior of an individual agent in terms of trying to maximize subjective expected utility. Within
this approach there is the same range of modelling options as described earlier for probability
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theory alone; one may model stimulus-response behavior from a behaviorist, interpretive, or
generative standpoint. Due to the complexity of language use, purely behaviorist approaches are
impractical except for the grossest level of detail.

Utility theory prescribes a normative method for choosing a rational course of action. It
is a straightforward extension of probability theory where the possible outcomes of each action A;
in a world state W, are assigned some numeric utility measure U([A;, W}]). (The square brackets
denote “the new world state after action A; is taken in world state W;..) The utility of outcomes are
weighted by the probability of their occurring. Thus the rational action is the one that maximizes
the expected utility

E[U([A])le] £ 3 P(Wile) - U([4i, Wi)
k

given the constraints that the known evidence e already tells us about the state of the world. For
more in depth introductions to utility and decision theory see Berger (1985), von Winterfeldt &
Edwards (1986), and Luce & Raiffa (1957); the seminal work is von Neumann & Morgenstern
(1944).

One might question using a theory of “rationality” to model human language processing.
Humans after all do not act rationally and are poor at estimating utilities (Kahneman et al. 1982).
However, to view utility theory as a direct model of conscious human decision making would
be oversimplistic; this is why I prefer the term “utility theory”. Utility theory is applicable
to cognitive modelling insofar as it provides a simple, analyzable mathematical framework for
adaptive agents. In this work utility theory is used as a framework for unifying the contribution
of diverse cognitive processes toward helping a language-using agent to function and adapt in
its environment. Utility theory has the advantage of being a very simple mathematical model in
the sense that all assumptions are made explicit in a small set of axioms. This ensures internal
consistency in the model; there are no “hidden surprises” in the processing mechanism.

Moreover, the proposed utility model is resource-bounded, which removes much of the
“idealistic” rationality. The power of the bounded model is that one can build in all sorts of
resource constraints that force the model to behave in certain ways, for example by restricting
decision processes to a coarse granularity to match cognitive limitations. From another, less
constrained viewpoint, the model would not be behaving “rationally”. (Counterarguments are
invalid if they are based on the scientific investigator’s (relatively unbounded) evaluation of a
human'’s (highly bounded) actions.) Except for abstract analysis I will only be considering highly
constrained models.

3.2.2 Russell and Wefald’s Bounded Rationality Framework

In its pure form decision theory ignores the fact that the real world always imposes
bounds on the computation time and memory space resources that a situated agent requires to
evaluate its expected utilities. In other words the computations to implement a decision-theoretic
mechanism themselves constitute actions with a cost. Resource-bounded agents cannot perform
an unlimited amount of computation before deciding what further course of action to take.

In this work I treat inference as a commitment to some hypothesis without absolute val-
idation, for reasons of resource limitations. (The commitment to a hypothesis is always retractable
though not necessarily without substantial computational cost.) Over the years a number of other
theories concerning normative conditions for hypothesis acceptance have been advanced (e.g,,
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Kyburg 1961, 1983; Pollock 1990). Though the resource-bounded view of acceptance is not fleshed
out with the rigor and detail of those theories, it deals nicely with the value of information and
computation using an elegant Bayesian framework.

From this perspective there are two subkinds of inference: (1) The hypothesis may be one
that follows deductively from the agent’s premises, though the agent is unable to verify deductive
consistency within time constraints. (2) The hypothesis may not follow deductively, and may
even be inconsistent with other premises held by the agent. In neither case can the agent know
with certainty which type of inference is being made, i.e., whether the hypothesis is deductively
consistent with all other premises.

To analyze inference I employ Russell & Wefald’s (1988, 1989, 1991; Wefald & Russell
1989b, 1989a; Russell 1990, 1991) metalevel framework for resource-bounded computation. Asin
straight utility theory, define

e U(W}): a utility measure over the possible states of the world. Typically the utility depends
only on aspects of the world that are external to the agent, so we might instead write U( E).

e [X,W,]: the world state resulting from taking an action X in world state W;. Where no
ambiguity can result [ X'] may be used as an abbreviation for taking the action in the current
state.

Actions, however, are now divided into
e A;: an external action that affects the surrounding environment, and
¢ S;: an computational action that changes only the agent’s internal cognitive state.

In addition define the following (for clarity reasons my notation differs very slightly from that of
Russell and Wefald):

¢ e: the body of evidence available to date, from previous computations and percepts.
e es: the new eﬁdence made available by computation S.

e ag: the external action that the agent estimates to have the highest utility after computation
S. a alone denotes the action currently deemed best.

Q°: an estimate made by the agent of the quantity () given the available evidence. Typically,
the exact computation of the quantity () would be intractable.

Computational actions have the effect of revising ¢, the external action currently deemed
optimal. The net value of a computational action §; is defined as

G.1) V(5;) E U(S;)) - U([e])

However, the analysis of U([S;]) is quite complex when the utility measure is defined only over
external aspects of the world (since there can be multiple values of j for which [S;] € E;, but
where the values of U([S5;]) differ nonetheless because they enable divergent future computation
chains). Thus we generally employ a simplifying single-step assumption where the value of U([5;])
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is approximated by U([as;, [S;]]), the utility if the “best” external action were taken immediately
after computation S;:

(32) V() € U(les;, [S1]) - Ule])
Ideally, the agent would follow the algorithm:

1. Compute E[V(S;)|e A es,], the expected value of all possible next computational actions
S; given the previous evidence e plus the additional evidence es; made available by the
computation.

2. If any S; has positive net value, perform the S; with highest expected value and go to step
1.

3. Execute the current a.

The problem is of course that usually step 1 itself requires significant computation; it
is potentially impossible to compute without actually performing the actions, and perhaps even
intractable. Thus instead of assuming the expected values can be computed exactly, we assume
that estimates of V'(.S;) are made by the metalevel:

(3.3) Ve(S;) ¥ est E[V(S))le Aes,]

given only the available evidence to date e. The algorithm can then be modified using V¢(S;)
instead, and will approximate the ideal to the extent that the estimation function is accurate.
Often an additional simplification is made, by assuming that the dependence of utility on
the time it takes to perform a computation S; is captured by a cost function C that is independent
from the external actions being considered. In this case the normative value of computation is

V(S) ¥ Ulles,[S]) - U(le])
= U(les;]) - C(S;) - U([a])
3.4) = U(las,)) - U(le]) - TC(1S;])

where T'C(|S;|) in the last expression denotes the time cost associated with the duration |5;] it
takes to perform S;. This can be done as .S; only affects the agent’s internal state. Correspondingly
for the estimated value of computation,

35) Ve(S;) = est E[U([as,]) - U([a])|e A es,] — TC(]S;])

3.3 Language Interpretation as Rational Forward Inference

There are at least twolevels at which it is interesting to consider how the utility of forward
inference relates to language interpretation: (1) all language interpretation is forward inference,and
the mechanism responsible for those forward inferences must be sensitive to the past effectiveness
of inferences in helping the agent function in its environment; (2) automatic inference is a type
of forward inference within the language-interpretation-forward-inference scheme, whose power
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is heavily constrained by architectural (presumably biological) limitations. The latter approach is
discussed in subsequent sections.

The former approach has been applied in a dialog model with both interpretive and
generative components (Wu 1991a; Wu & Horster 1989). The use of a decision-theoretic model of
inference allowed the model to account for more sophisticated, realistic, and efficient interchanges
than in previous dialog models. The example application domain is that of a route consultant
system advising a user asking for directions. Let us consider a brief example here, in order to make
the idea of a situated language agent more concrete. Consider the dialog:

(1) U: How do I get to the center of the bay?

(2) S: Why do you want to go there?

(3) U: Iwant to take a picture of the skyline.

(4)  S: Isitsufficient to drive to Treasure Island, or is it necessary to take a cruise?
(5) U: No, a cruise isn’t necessary.

(6) S: Then you should drive to the Bay Bridge and take the Treasure Island exit.
(7) U: What about Angel Island?

This last query is difficult to analyze, because the plan recognizer is not able to produce a plan that
would explain the user’s speech act. The system agent at this point either continues by generating
an active acquisition goal to identify the unknown user goal:

(8a) S: Why do you ask?
(9a) U: Ialso want to visit Angel Island.

or it generates a goal to identify and /or correct a suspected user misconception:
(8b) S: There is no bridge to Angel Island, you must take a ferry.

The decision-theoretic framework allows the agent to trade off the utility of acquiring
further information from the user against the additional conversational burden that would be
required to do so. The paradigm is proposed in Feldman & Sproull’s (1977) “hungry monkey”
example, who used visual (“LOOKAT”) rather than linguistic information-acquisition operators
in the classic monkey-and-bananas domain. A number of rules for generating active acquisition
goals are considered in Wu (1991a), accounting for the other back-and-forth interchanges in the
example dialog as well. The absence of such rules in previous dialog systems, which prevented
them from asking back appropriate questions, is due to the fact that the active acquisition goals
will proliferate rapidly, putting an unnecessarily heavy conversational burden on the user. What is
needed is a strong control mechanism that is capable of efficiently pruning the unnecessary goals;
this is one application of utility estimation in the model.

The other reason to estimate utilities arises from the need to judge when it is fruitful to
continue attempting plan recognition on the user’s query. Since the agent cannot possibly search
the space of all possible user plans exhaustively, and since the probability of many possible plans
is extremely low, it is important that the agent have some means to trade off the utility of further
search against the cost of waiting to respond to the user. The estimation of a multi-attribute utility
metric is treated in depth in Wu (1991a).
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3.4 Compilation and Adaptation

In theabove model, utility is estimated for actions ata fairly coarse level. We now consider
finer inferential steps, and the role of compilation in resource-bounded agents, in preparation for
the treatment of automatic inference.

Russell and Wefald describe compilation as “a method for omitting intermediate com-
putations in the input-output mapping . . . when an entire class of computations can be omitted, so
that a whole class of decision-making episodes can be speeded up” (p. 41). To classify the ways in
which computations can be omitted, four types of “static” knowledge are identified, dealing with
(1) conditions predicated of the current world state, (2) conditions predicated of the world state
that results from an action, (3) the utility values associated with those states, and (4) the optimal
action for the current world state. These are depicted as stages in figure 3.1. The stages are linked
by “dynamic” knowledge (the solid edges) of four kinds:

A: condition(W,) = condition' (W)
B: condztzan(Wk) = condztwn'([A., Wk])
C: condition(W}) = U(W}) = value

DT: Thedecision-theoretic principle takes knowledge of the possible actions’ utilities and chooses
the one with the highest expectation.

Depending on what regularities the environment exhibits, these uncompiled types of
knowledge can sometimes be converted into compiled rules (the dotted edges) that bypass one or
more stages without changing the decisions. This results in efficiency gains ranging from marginal
to exponential. Russell & Wefald (1991) discuss at greater length the conditions that make a domain
amenable to compilation. Of the three types of compiled knowledge only the condition-action rules
(the long dotted edge) will concern us.

Russell and Wefald also suggest an architecture for limited rational agents containing one
representative from each of the four kinds of execution architecture (uncompiled decision-theoretic;
goal-based; action-utility; and condition-action or production systems). All four execution archi-
tectures run in parallel. The proposal is preliminary and does not address the difficult issue of
how compilation is performed, i.e., how knowledge could be transferred from the uncompiled
decision-theoretic execution architecture to one of the others. Compilation is an ongoing area
of research, SOAR (Laird et al. 1986; Laird et al. 1987; Newell 1990) being a notable example of
a compilation architecture motivated by cognitive concerns. However, no model has resolved
the issue of balancing the compiled operators’ speed gain against the number of operators and
thus the increased search time (Tambe & Newell 1988; Tambe & Rosenbloom 1989; Minton 1988;
Braverman & Russell 1988, 1992). In this study automatic inference is treated as a compilation
mechanism that creates a time-bounded condition-action system, whose output inferences need
not always be correct but only statistically useful.

3.41 Compilation as Adaptation of Computational Action Set

I propose to treat compilation as a process whose effect is to create a new computational
action(s). For example, one type of compilation creates condition-action rules. We can view the
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Figure 3.1: Types of “static” knowledge (nodes), uncompiled “dynamic” knowledge (solid edges), and
compiled knowledge (dotted edges), based on Russell & Wefald’s (1991, p. 45) figure.
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creation of a condition-action rule as the creation of a new computational action §;. Evenif S;, was
created by compiling some sequence of actions including explicit utility estimations, the compiled
form is an impenetrable single action. In handling new situations, S;» must be weighed alongside
all the old §; actions.

Note that the condition-matching process for selecting a condition-action rule also has a
cost. A compilation method may attempt to reduce this cost as well. For example, a decision tree
is sometimes an efficient way to precompile the selection algorithm. In this case the entire decision
tree algorithm must itself also be considered a single computational action S;n. If, subsequently,
a new rule is added into the decision tree, S;» changes and so we think of S;~ as an adaptive
computational action.

In my presentation of compilation I wish to emphasize the fact that there is no clearcut
division between execution architectures and computational actions. Russell and Wefald as-
sumed that their condition-action execution architecture contained a built-in, prewired condition-
matching process. As pointed out in the preceeding paragraph, this need not be the case. In fact
selecting an optimal indexing strategy is equivalent to constructing a new execution architecture
on top of the primitive level. The issue of what primitive level is optimal can only be addressed
through empirical means. Thus the interaction between compilation and execution architectures
is actually quite subtle.

Nonetheless it is pragmatic to assume some small number of primitive execution ar-
chitectures, as Russell and Wefald have. The issues surrounding the optimality of compilation
methods are quite complex and remain unsolved. In general the overarching issue is how an agent
can perform compilation incrementally, as it gains experience. It is not yet clear how the set of
computational actions can be adapted to maintain optimality, or at least, come close to optimality.
Moreover in deciding whether to compile some non-trivial subdomain into, say, a decision tree of
rules versus a rule hierarchy, the optimal indexing method will depend heavily on the subdomain’s
statistical structure. The larger the computational actions, the more complex and infeasible the
optimality analysis becomes. If too many adaptive parameters are permitted on computational
actions, a resource-bounded agent cannot perform the optimality analysis in real time. It appears
that we can only expect an agent to consider a few different execution architectures, possibly
prespecialized. Thus for the present, compilation remains mostly a conceptual metaphor with
implementations being heavily constrained.

In this work automatic inference is induced by a compilation method that has prewired
limitations on the form and complexity of compiled rules. The entire automatic inference facility
is treated as a single computational action S, with an associated utility estimation function.
Over time, the results given by S, adapt, and therefore also the estimated utility. It follows
that the automatic inference compilation method is optimal only if its prewired structure fits the
environment.

3.4.2 Normative Value of Forward Inference

Assuming that an uncompiled decision-theoretic module is among an agent’s battery of
execution architectures, let us now consider why forward inference—automatic inference being
one instance—is a crucial facility.

In search-theoretic frameworks such as the Russell-Wefald theory, the boundary between
forward and backward inference is blurred. One normally thinks of forward inference as some
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amount of computation that is automatically performed when input data is acquired, and backward
inference as focussed computation driven by a particular goal. This distinction made sense in
simple rule-based systems, but in more complex inference models the distinction is entirely relative
to one’s definition of what constitutes goals. In one sense much of language interpretation is
forward inference, including any aspect that is recognition-like in character, as opposed to being
driven by a conscious goal to disambiguate or re-interpret the input utterance. (This of course is
part of the definition of automatic versus controlled inference.) Yet in a different sense, even the
recognition-like forward inference can be considered goal-driven since the only reason to perform
forward inference is for the goal of interpreting the input more quickly. The Russell-Wefald
framework takes the latter approach and incorporates everything into a teleological metalevel of
search, driven by the overall goal of maximizing expected utility. The only place in the Russell-
Wefald model where true forward inference occurs is within a single computational action S;.

This latter view alone, however, is not very illuminating with respect to practical execu-
tion architectures. In practical architectures (say, the brain), the need for recognition-like “forward
inference” processes arises from the fact that procedures for determining maximum-value compu-
tational actions are themselves computational actions with a cost—actions that explicitly compute
the formulae described previously, by estimating the expected values of actions, comparing them,
and selecting the maximum, using procedures like

1. function EstimateVal (S;;e A e;[S]): R
2. return EstimateUtil ([as;, [S;]]; € A €;; [S]) — EstimateUtil ([a]; e A ¢;;[S])

A second possibility, on the other extreme, is to use a production system which precom-
piles the maximum-value selection process into a fast rule such as a decision tree. In this case
there is almost no time to perform forward inference; in fact an optimal compilation method will
incorporate all possible forward inference into the fast rule itself.

The most likely and practical option, however, is to use some semi-compiled hybrid
procedure that is intermediate between the foregoing extremes, but nonetheless employs some
amount of explicit decision-theoretic reasoning. Because of this, optimal behavior nearly always
requires some non-zero amount of forward inference. Intuitively the optimal amount of forward
inference is that which is, on the whole, less costly than the average combined cost of estimating
utilities, comparing them, and then choosing and executing the maximum-value inference. The
only case where no forward inference should be done is when the agent architecture is such
that meta-level utility computation is substantially cheaper than the smallest amount of forward
inference permitted by a single computational operator.

We can see this more explicitly by “unfolding” the Russell-Wefald model to analyze the
metametalevel. Define the following notation:

o ObjectActs o ComputationActs U External Acts.
e A;, as before, denotes a member of External Acts.

e S, as before, denotes a member of ComputationActs.

o MetaActs & MaxValComputationActs U Object Acts, where MaxValComputationActs is the set of
metalevel computational actions that determine the maximum-value action from the object
level sets ComputationActs and External Acts.
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e A; denotes a member of ObjectActs. At the metalevel, both external and “regular” computa-
tional actions are considered “external” actions.

oS ; denotes a member of MaxValComputationActs. At the metalevel, the only “computational”
actions are those for choosing among external and regular computational actions.

o A; denotes a member of MetaActs, i.e., any action.

o ComputationActs C AtomicComputationActs’ where g denotes the granularity of Computation-
Acts. The idea is that the computational actions whose values are compared by an S; action
are generally substantially larger than 5} itself. To capture this we conceive of computational
actions as molecular entities comprised of smaller atomic computational actions. Accord-
ingly g is set to the size of molecular computations that the metalevel MaxValComputationActs
can handle.

¢ s, denotes a member of AtomicComputationActs.

In this case the normative value of a forward inference action F is
3.6) V(F) = U(lar,[F]]) - U([a])

Optimal forward inference is the process that is sufficiently likely to yield useful results
(i.e., of high enough expected utility) that it outweighs the expected utility of explicit computation
of meta-level utility judgements. Thus the optimal amount of forward inference can be expressed
as the maximal function of the form

F ™2 [(e) : E — AtomicComputationActs®
such that for any evidence e given by the situation, it is the case that
(3.7) E[V(F)lener] > E[V(S;)lenes)
which means

E[U(ler,[F]l) - UleDle Aer] > E[U(les,,[$;]) - U(le])]e Aes,]
38) E[U(lag,[F])lener] > E[U([ag,,[Si]])]eeg)]
(39 ElU(lar)le Aer] = TC(F]) > E[U(las]leAes] - TC(IS;)
The last inequality, again, follows from assuming independence between computation cost and

the action. It can be rewritten to express the tradeoff as a function of the difference in time costs
for F'and §;:

410 E[U(larDleAer] - E[U(lasDle Aes) > TC(IF]) - TC(IS;])

Thus the slower the agent’s facilities for estimating utilities (S ;) are, the larger the steps
that forward inference (F)) should make.
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3.43 Precompiled Compilation Methods

Automatic forward inference can be seen as the effect of condition-action rules that
are learned and compiled. To remain strictly within the framework, compilation would itself be
treated as a computational action, and the various possible compilations would be weighed against
each other. However, utility estimation on such a large scale would be prohibitively expensive to
implement in explicit declarative form. It makes more sense to regard the adaptive learning process
as one where the entire perception, action, utility optimization, and compilation procedure is itself
precompiled. This has the effect of adding strong enough constraints to make compilation tractable.
For example, in a neural network employing the Widrow-Hoff learning rule, the Widrow-Hoff rule
can be considered a case of a precompiled learning procedure.

Even with strong constraints, humans and other animals are capable of accomplishing
quite a lot with precompiled learning and inference mechanisms. This amounts to a claim that
the structure of the real world is such that a good deal of useful regularity can be picked out of
it using hardwired learning techniques; human language, having presumably evolved to fit the
needs of its users, also not surprisingly has a convenient structure. It is unlikely that a completely
competent game of chess can be played this way, but in fact the degree of success of neural net
game-players such as Tesauro’s (1991) backgammon system attests to the importance of a primitive
learning mechanism even for such abstract tasks.

The adaptive mechanisms behind human automatic inference presumably evolved un-
der selection pressures, which Russell and Wefald do not address. To explain the evolution of an
automatic inference architecture within Russell and Wefald’s framework requires extending the
compilation paradigm into a teleological view of evolution. This may be stretching the frame-
work to the point of diminishing returns but a brief thought experiment on the interface between
rationality and evolution is worthwhile.

InRussell and Wefald’s normative framework anindividual agent maximizes its expected
utility.” From the evolutionary perspective, a noisy environment generates “random” agent ar-
chitectures, and selection pressures cause those agents who perform in a more optimal manner to
survive. Some agent architectures in fact turn out to be compiled versions of the decision-theoretic
principle as it applies to the structure of the real world, and these survive. Evolution thus functions
as a stochastic utility maximization architecture.

For one discussion of the biological constraints within which language facilities evolved
see Lieberman (1984). See also Millikan’s (1984) discussion of adapted devices and meaning.

3.5 Automatic Inference

According to the automatic inference theory, human cognitive architecture performs
a certain amount of forward inference by itself without recourse to explicit decision-theoretic
computation. This forward inference nonetheless tends to increase the agent’s utility toward
optimal. The cognitive architecture, the argument goes, includes a hardwired capability that
supports automatic forward inference regardless of other inference capabilities that may be slower,
more conscious, more deliberative. The optimal use of the architecture exploits both the automatic

*That is, its dynamic expected conditional utility.
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and controlled inference capabilities to their limit. We take it that evolutionary pressures are
ultimately responsible for this.

Asnoted in the preceeding chapter, in the model I propose the automatic inference facility
is modelled by an engine that attempts to maximize the probability that the inferences drawn are
useful. The automatic inference engine can be analyzed from either an integral or an autonomous
functional standpoint. An integral analysis describes how the automatic inference engine helps
improve the expected utility of the agent’s actions. A functional analysis construes the automatic
inference engine as an autonomous agent whose function is to optimize some utility metric of its
own. This subagent “resides” in a micro-environment that is actually the rest of the cognitive
mechanism.

I will use this distinction to examine automatic inference from two vantage points within
the Russell-Wefald approach. In the integral analysis, depicted in figure 3.2(b), what one might
ordinarily think of as automatic and controlled inferences are simply construed as being different
kinds of computational actions at the object level. At each point in time the choice between alter-
native actions is mediated by the global utility metric. Denote automatic inference computational
actions by S, ; controlled inference are still denoted by ;.

However, this view by itself does not sufficiently capture the way in which human
cognition appears to be constrained. The large number of alternative automatic inference actions
would make prohibitive any implementation based on a decision-theoretic execution architecture
that explicitly maximizes utilities to select inferences. Furthermore the level of computational
granularity is too fine, in the sense that it is unrealistic to assume that at every step computational
resources can be allocated to either automatic or controlled inference. This is a sensible assumption
on a conventional computer where each computational step might take on the order of one-
millionth of a second, but in the brain each computational step takes on the order of one-hundredth
of a second, which is too slow to accommodate much metalevel control.® The coarseness of the
computational step is a serious constraint in cognitive modelling.

Thus we also examine automatic inference from the autonomous functional point of
view, where automatic inference is performed by a subagent. This is depicted in figure 3.2(c).
The agent itself only “knows” about the “atomic” computational action S, which, as explained
below, it always deems rational to execute. The task of selecting a particular inference is left to
the subagent which chooses its action A; to maximize its own expected utility. The subagent’s
decision algorithm adapts autonomously of the agent’s metalevel. By encapsulating automatic
inference within a subagent, we admit the possibility of efficiently compiling its decision algorithm
independent of the rest of the agent’s computation processes.

I noted earlier that the atomic computation step is the one place where true forward
inference occurs in the Russell-Wefald framework. Whereas they assumed that the metalevel
could direct forward inference in tiny steps, in human cognition physical and biological constraints
make the granularity of forward inference steps so coarse that it becomes important to study the
effectiveness and adaptability of single steps. This perhaps is one of the forks at which pursuit of
cognitive modelling issues diverges from pursuit of optimal game-playing and problem-solving Al,
and because natural language is so closely matched to cognitive processing abilities (presumably,
evolved that way) cognitive constraints must also be built into effective language processing

3Besides which, as I noted earlier, some researchers (most notably, Kahneman et al. 1982) would claim that humans
are inefficient or incorrect at utility estimation even at this coarse level.
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models.

I will be concentrating on the autonomous functional analysis of automatic inference,
as is the norm with language interpretation models. However, in keeping with the philosophy
of meaning as use, in this chapter we also consider the integral stance where automatic inference
is embedded within a utility-optimizing agent, and examine why automatic inference helps the
agent function in its environment.

3.5.1 Automatic and Controlled Processes

We can gain a better idea of the architectural constraints on human inference from
empirical studies of online language understanding. There is a substantial body of evidence that
forward inference extends deep into the pragmatic level and is not confined to syntactic processing
or Logical Form (Potts et al. 1988; Till et al. 1988; McKoon & Ratcliff 1981, 1986, 1989b, 1989a; O'Brien
et al. 1988; Anderson & Ortony 1975; Whitney & Kellas 1986; Duffy 1986). However, results at any
more specific level have been inconclusive and controversial. For good surveys and discussion of
empirical techniques see Keenan et al. (1990) and McKoon & Ratcliff (1990).

One important issue in interpreting the results is whether the subject makes the forward
inferences at the time of reading, as opposed to making them when probed by the investigator,
which would not be forward inference.? Keenan et al. (1990) argue that the techniques used in most
previous studies fail to differentiate these, including cued recall, sentence verification, sentence
reading times, recognition, lexical decision, and naming. Not all these methods are inherently
unable make the distinction; the weaknesses lie in their particular realizations. Keenan et al. also
argue against the position McKoon and Ratcliff take in some of their more recent work that the
distinction is neither important nor empirically decidable. From the natural language processing
standpoint, it is certainly important to have a theory of what forward inferences are made directly
upon input.

This methodological problem notwithstanding, the sheer weight of the many studies
combined with the results of several more careful studies argue fairly convincingly that some
significant amount of forward elaborative inference takes place. However, attempts to delimit
specific semantic categories in which elaborative inference can take place have been less than
successful. One working hypothesis that was accepted for some time was that readers do not
elaborate characteristics of instruments, e.g., infer “spoon” from “stir the soup”. In fact Lucas et al.
(1987) showed the actual situation to be far more complex, depending on the context of the task.
That the bounds of automatic inference cannot be delineated along crude semantic characteristics
is a recurring theme of this work. The fact of failure to identify such bounds is some small evidence
against such a priori delineations.

A couple of other caveats are in order. First, the distinction many studies make between
elaborative inferences (a kind of forward inference) and bridging inferences (a kind of backward
inference) is somewhat misleading. It assumes there is such a thing as null context, since bridging
inferences are distinguished by virtue of being “drawn in order to establish coherence between the
present piece of text and the preceding text” whereas elaborative inferences are “simply drawn to
embellish the textual information” (Keenan et al. 1990, p. 378). 1 agree that this is a useful distinction,
but it is not necessarily reflected in the sorts of associative mechanisms that presumably play a

¢ At least, not in the same sense.
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Figure 3.2: (a) Agent’s interface with world. (b) Integral view of automatic inference. (c) Functional view of
automatic inference as autonomous subagent. U is an informal abbreviation for estimated expected utility,
a simplification for intuitive purposes; recall that in the analysis we are actually estimating value rather than
utility of computations.
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large role in comprehension processes. Associative mechanisms are intrinsically context-sensitive
and the presence or absence of context is a continuum rather than a binary condition. The degree
to which “embellishments” are automatically made is a function of all the preceeding contexts
weighted in some way by their recency.

Second, not all forward (elaborative) inferences in these studies need be of the type
denoted by the term automatic inference. As noted in section 3.3, all of interpretation is in some
sense forward inference, including controlled processes that require attention and are sequentially
chained and segmentative. The experiments described above do not necessarily distinguish how
the elaborative inferences are made. The speed with which the inferences are made could yield
some clues. However, procedures for measuring the speed of forward inference would require a
degree of sophistication not found in existing online empirical methods.

Despite these problems, the limited empirical evidence relating to language understand-
ing plus a healthy dose of intuitionism have led a number of researchers to propose dichotomies
related to the automatic/controlled inference distinction I outlined in section 1.1.1. Psychologists
have long used the informal terms “reflexive” and “reflective” in much the same way. What
Marslen-Wilson & Tyler (1980; 1981; 1987) call “obligatory processing” in their language under-
standing work is precisely automatic processing in the traditional, domain-independent sense
(following LaBerge & Samuels 1974; Posner & Keele 1975; Shiffrin & Schneider 1977).

Fodor (1983) made an influential and controversial distinction between modular and
central cognitive faculties. In many respects his criteria parallel those distinguishing automatic
from controlled inference. Though my conclusions diverge sharply from his, his proposal is worth
examining. The overtone of his arguments suggests that Fodor’sintuitions are related to processing
resource bounds and the forward /backward inference distinction. This is the intuition formalized
by the processing arguments of the previous section; yet these arguments are in no way restricted
to particular knowledge types and domains.

Fodor identifies nine properties that distinguish what he calls modular systems from
central systems:

1. Domain specificity. Each module is specialized for dealing with a particular domain, input
sensory systems being the most obvious example.

2. Mandatoriness. Modular processing must always occur when input is received.

3. Limited access to intermediate representations. Modules compute intermediate results that are
not made available to other subsequent processes.

4. Speed. Modular systems are fast and reflexive.

5. Information encapsulation. Feedback from central systems to modular systems is highly re-
stricted.

6. Shallow output. The final results (as opposed to intermediate representations) of modules are
of a “shallow” form, implying that results can be computed with higher certainty.

7. Neural localization. Modules correspond to specific neurally hardwired areas of the brain.

8. Characteristic breakdown patterns. Common types of breakdowns are evidence for neural
localization.
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9. Ontogenetic uniformity. Regular patterns in child visual and language acquisition are evidence
of innate modularity.

Of these criteria, both “mandatoriness” and “speed” are essential characteristics of au-
tomatic processing. Interestingly enough, in his exposition on mandatoriness (p. 53-54) Fodor
suggests a caveat on the attentional definition of automaticity, by observing that one can choose
to “not attend” to the input speech. Instead, he proposes, the automatic input system continues
processing, but their output is ignored by central systems.

Where I and others diverge from Fodor is his conclusion that automized and modu-
lar processes are confined within static, a priori determined boundaries conveniently situated at
Logical Form, between the semantic and conceptual systems. Fodor’s other criteria, particularly
“domain specificity” and “information encapsulation”, are intended to distinguish vertical syntac-
tic faculties. While the criteria themselves are important (in fact these criteria are used extensively
in chapter 4), they diagnose tendencies rather than rules, and the available evidence indicates that
a great deal of horizontal, cross-modular processing occurs as well. Marslen-Wilson & Tyler (1987,
p- 39) have argued cogently that automaticity is not confined to processes prior to Logical Form
(roughly corresponding to lexical semantics in my model). Various discourse phenomena seem to
exhibit both mandatoriness and speed, as well as most of the other modularity properties. It is
problematic that on this issue most arguments, including Fodor’s and Marslen-Wilson and Tyler’s,
are largely phenomenological; the search for more direct empirical methods continues.

Shastri (1988b, 1988a, 1989) argued that because agents must act in real time, the correct
question to be asking in Al is what forms of tractable “limited inference” are needed.® He pro-
poses “inheritance” and “recognition” as forms of limited inference, and implements them using
evidential reasoning in a structured connectionist model that operates in sublinear time. Recog-
nition tasks are of the form, “What is something that is red and sweet most likely to be (apple,
grape, banana)?” Shastri’s recognition is a restricted case of automatic inference, since it only
permits answers that are single, predefined concepts. Automatic inference permits the answer to
be composed from multiple predefined concepts, so the answer to “What is something that is blue
and creamy most likely to be?” could be “blueberry ice cream”. Inheritance tasks are of the form,
“Which color is an apple most likely to be (red, green, blue, or yellow)?” Posing this query in terms
of automatic inference is harder; it requires first asking “What is something that is an apple and
colored?” and then extracting the color value from the result. It seems intuitively plausible that
inheritance queries should require the extra step.

In Weber’s (1989¢, 1989b, 1989a) connectionist model for interpreting figurative adjective-
noun constructions, “direct inference” refers to the priming of property values by the values of
correlated properties. Priming effects of this sort are an excellent example of automatic inference
operating in the semantic and conceptual domains.

Rieger (1977) suggested applying the notion of data-driven “spontaneous computation”
to a wide range of tasks including plan recognition in story understanding and plan critics for
problem solving. The proposed automatic inference theory can be seen as a specific version of this.
Note, however, that spontaneous computation also applies to tasks that I would suggest require at
least some controlled inference, such as plan recognition.

*In a more recent paper, (Shastri 1991, p- 111-2) also adopts the terms “reflexive” and “reflective reasoning” over
“limited inference”.
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3.5.2 A Model of Automatic Inference in an Agent

I will be making a significant assumption, namely, that the automatic and controlled
inference computations are independent, at least up to the point that it is possible to optimize
the utility of the automatic inference mechanism independently of all else. From the autonomous
perspective, a separate subagent performs automatic inference, maximizing its own expected utility
by observing how its computations produce (binary) utility feedback from the rest of the cognitive
mechanism. Fodor (1987) notes that any modularized agent is inherently irrational in the sense that
its “informationally encapsulated” knowledge prevents it from using all its available knowledge
for all its computations. In a similar discussion on treating metalevel computation as a separate
agent, Russell and Wefald (p. 71) observe that it is difficult to show that what is rational for the
separate agent is rational for the agent as a whole. With regard to automatic inference, the desired
autonomy property can be realized by adopting the following “loose interaction” assumptions:

o Fixed computation resource allocation. Performing automatic inference does not in any way
interfere with the progress of other inference mechanisms. That is,

1Sa; A Sj| = max(|S4,l,155])
forall ;. Thus whenever |S,,| < |55,
TC(|5a, A S51) = TC(IS51)
implying that
E[U([as,,,s;:[Sa; A Sil))|e Aea Aej] = TC(|Sa, A Sjl)
> E[U([as;, [Si]D]e A e] = TC(IS51)

and therefore
V(Sa, A S5) 2 V(S))

Note that this does not mean that the cost of an automatic inference step is itself zero, but
just that parallelism in the architecture allows it to be performed concurrently.

o Fixed non-automatic inference. The agent’s non-automatic inference processes do not adapt so
as to optimally exploit automatic inference. Thus the utility of an automatic inference action
is

U([ao,SA, ) [0 A SAI ) Wk]])

where o is the current best computational action S; as determined by the metalevel.

* Binary utility. The agent’s architecture is such that whether it can make use of the result of
automatic inference computation is a binary all-or-nothing condition. The agent either can
or cannot use the result. Either the result makes no difference on the agent’s object level
decision, in which case

U(lao,ars [0 A Saps Wil]) = U([ao, [0, Wil])
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or the gain in utility is a constant “inference value” IV,
U([ad,AI ’ [a A SAn Wk]]) = U([aa’ [‘7’ Wk]]) +1v

One way to intuitively motivate this simplifying assumption is to consider the case where
automatic inference produces a speedup AT in the time that it takes the agent to reach its
object level decision, such that

U(le]) - TC(lo| - AT) = U([e]) - TC(lo]) + IV

* Supervised learning. The only performance feedback that the computational architecture
permits the agent to make available to the automatic inference subagent is the “correct”
result that automatic inference should have computed, i.e., the result that (1) could have
been used by the agent, and (2) could conceivably be computed by the automatic inference
architecture. The subagent takes the value of the “correct” result to be IV. Denote each
instance seen by the subagent, then, by the pair (4;, e).

Analyzed from the integral standpoint, any automatic inference that is made should
be selected in the course of maximizing the agent’s global estimated utility. Recall that to max-
imize its estimated utility, the agent chooses a computational action with the maximum positive
value. Computational actions are now (.$;, §4,) pairs since automatic inference can be performed
concurrently with other computations. The agent selects

(Sj,Sa,): max V(S;,54;)
= (55, 54,) 1 max U((ey,a,,[S; A Sar, Will) = U(las,, [S;, Wa]))
= (o0,4[): max U(lo,ar5[0 A Saps Wi]]) = U([es, [0, Wi]])
the last following from the fixed non-automatic inference assumption, where

o= Sj . mJax U([QSp [Sja Wk]]) - U([a’ Wk])

Thus 54, can be chosen independently by maximizing V(S,,) separately from V'(.S;):
Sa,: max V(S4,)
Sar : maxU([e,a;s[0 A Sap, Will) = U(les, [0, Wi]])

From the functional standpoint, the automatic inference selection process can now be
viewed as an autonomous subagent with its own utility function

(3.11) Uio(A1) € V(S4,)

I will continue to use the integral standpoint for the next several paragraphs to show that the
agent’s global estimated utility is being optimized.
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Of course neither the agent nor the subagent can predict the exact utilities without
actually performing the computations and actions. Instead, they must be estimated given only the
evidence available so far from previous computations and percepts. The automatic inference must
be chosen on the basis of the evidence:

Sa,: max V(Sy,le)

This selection can be performed by the previously described engine that maximizes the
probability of drawing a useful inference. From the binary utility assumption we know

U(lao.ar, [0 A Says Wil)) = U([w, [0, Wi])) € {0, 1V}
and therefore can define

true, i U([ao,u,,[0 A Sa,, Will) = U([a, [0, Wi]) = IV

Usefulk(AI) ‘1—? { fa]se, if U([aa,Ax ’ [0 A SAH Wk]]) - U([aﬂ’ [0', Wk]]) =0

The derivation is then:

Sa,: max V(5y,le)

=S4, tmax (Z P(Wile) - [Ulav,as [0 A Sa,, Will) = U(lay, [o, W,,]])])

= SA,:m}'a,x( Y IV.P(Wile) + > O-P(Wkle))

k:Usefulx(Ay) k:=Usefulx(Ar)

= SA,:m]ax( Z IV-P(WkIe))

k:Usefuh, (A[ )

= SA,:mIa.x( }: P(Wkle))

k :Usefuly (Ar)

(3.12) Sa, : max P(Useful(4;)le)

This final expression is of a form that can be sampled empirically by the automatic
inference subagent. In section 7.5 I discuss some heuristic approaches to hand-gathering rough
statistics of this form. Chapter 8 considers more theoretically sound methods for automated
learning of the distribution, and related issues concerning generalization.

3.53 Language Bias

Russell and Wefald’s rational metareasoning framework provides a powerful and gen-
eral basis for modelling adaptive intelligent behavior. However, to apply it to natural language
interpretation we must also take into account the cognitive biases that cause humans to learn lan-
guage the way they do. The human cognitive architecture is a concrete entity that cannot alter its
execution architecture arbitrarily. The brain constrains computation in very specific ways, and it is
difficult to believe that any reasoning and learning model could produce adequate results without
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approximating fairly closely the inductive biases implied by those architectural constraints. We
should therefore incorporate as much information about the structure of the cognitive architecture
as we can determine from psychological and neurological observations. In machine learning ter-
minology, the language bias for induction (Utgoff 1986) should correspond to that of humans. Yet
another way to look at the position I am suggesting is that it is a decision-theoretic augmentation of
the innateness postulate (though the kinds of innate features could be more primitive than typically
assumed in linguistics).

In choosing a probabilistic architecture for a cognitive model, one is faced with the
decision whether (1) to stick to a framework that is overly general and allow computations that the
brain couldn’t possibly implement (at least, in polynomial time) and then to claim that the brain
operates by heuristically approximating the framework which is normative, or (2) simply to “build
in” the brain’s architectural constraints by selecting the appropriately corresponding language for
the model space, and then claim that the brain actually performs optimally under these constraints.
In practice, as in this work, it is difficult to achieve either extreme. As much as possible, a model
will incorporate constraints that are intended to correspond to physical constraints in the human
cognitive system, but many aspects will remain underconstrained. In the following chapter we
consider the ontology that generates the language bias in the proposed model.
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Chapter 4

Modular Ontology

In this chapter I outline a modular framework for ontology, that is, a mental represen-
tation or cognitive semantic system for a linguistic agent. I propose to include the following
modules:

1. mental images,

2. lexical semantics, including image schemas,
3. conceptual system, and

4. construction lexicon.

There are both empirical and representational expressiveness motivations for the modular approach
taken. Insights of recent empirical work in cognitive linguistics, semantics, mental representations,
and ontology are surveyed. These are synthesized into a framework based on multiple ontological
modules (or levels) that, taken as a whole, account for meaning differences. The more concrete
semantic modules, like the mental image module, are closely connected to sensory registers,
while others are more abstract like the reified image schema level. Modules interact with each
other via intermodular associations, so for example, a hierarchy of associations (the “signification
constructions”) brokers the interaction between the phrasal lexicon and other semantic modules.
The semantic system does not come with a direct mapping to the “real world” but interfaces only
through the perceptual system.

Itis probably the case that no exact formal definition can be given for what constitutes the
intermediate conceptual state produced by interpretation. To precisely define a cognitive model
(or any model), an empirical testing procedure giving falsification conditions must be given. The
model must be defined functionally, with respect to observable inputs and outputs. For example, the
Turing test defines an intelligent natural language system as that which produces conversational
responses indistinguishable from those produced by humans. A conceptual state, however, is not
an observable output. Thus, atleast at present, itis hard to do better than to characterize conceptual
states in terms of intermediate purposes, in the vein of the preceding chapter.

The mentalist ontology can be criticized for its ungrounded semantics which makes falsi-
fication difficult, but this is less of an immediate concernin a long-range research program. Realists
like Barwise & Perry (1983) and Dowty (1989) would argue for mapping conceptual structures to
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their real-world referents, at least in part to make the semantic theories more empirically verifiable.
While it is true that a mentalist semantic system is discomfittingly unfalsifiable, realist systems are
not well enough motivated to make them adequate alternatives. Realist theories ignore the fact
that humans make use of concepts not merely to describe the world, but to facilitate achieving
particular goals. There is no doubt that being able to describe the world is an important part of
rationality but this is not inconsistent with the intermediate representation levels hypothesis. Sig-
nificance can be given to the representational symbols via the notion of associative grounding rather
than mapping to real-world referents (section 4.2.2). The process of discovering the appropriate
intermediate conceptual levels is a longer-term proposition than the realist program. Assuming the
methodology is correct, verification will eventually come in terms of an agent’s ability to succeed
in its environment as humans do, with linguistic communicative ability being one of the agent’s
tools.

In section 4.1 I sketch the modular framework used in the proposed model. Section 4.2
discusses some of the issues that motivated it, having to do with the need for more representational
expressiveness. Subsequently, sections 4.3-4.4 survey some of the evidence from different fields
converging upon modular approaches of the kind proposed.

4.1 Intermediate Levels of Meaning

Though linguistic work often assumes a single uniform level of semantics, there are
different types of intermediate conceptual states, if for no other reason than the fact that humans
possess limited processing resources. These intermediate levels, one suspects, are responsible for
the multitude of intuitions that researchers have had about “Logical Form”, case and thematic
roles, lexical semantics, and so on. For many years, linguists have debated whether thematic roles
properly belong at the “shallow” or “deep” semantic level, because various pieces of evidence
suggest cognitive representations at different levels. Debates between advocates of propositional
and image-based representations oversimplify the more plausible case which is that both forms
are employed.

The problem with the multimodular approach is twofold: (1) the relationship between
modules must be well-defined, and (2) the modularization must be well-motivated and must
permit all necessary interaction between modules including bi-directional “feedback” interaction.
Traditionally in multimodular approaches, the relationship between two modules is defined algo-
rithmically as a sequential algorithm for mapping the contents of one module to another is given.
This satisfies the first condition, but often, at the expense of the second. I propose an alternative
which is to define intermodular relationships based on statistical association.

In this approach, modules are broken down according to information type rather than
process type. This is a weaker form of modularity than Fodor’s (1983). In Fodor’s proposal,
the “limited access to intermediate representations” and “information encapsulation” constraints
combine to prevent mental processes from crossing vertical modular boundaries in either “for-
ward” or “backward” directions. One of the primary benefits of these constraints is that they place
restrictions on one dimension of processing complexity, thereby ostensibly improving our under-
standing of how mental processing can be tractable. However, the model proposed here eliminates
the constraints since they conflict with empirical data, raising the question of why we would want
to retain a modular approach. The answer is that the statistical paradigm, which Fodor didn’t have
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recourse to, includes notions like information entropy that can help us use ontological modularity
to reduce processing complexity, even without the strong constraints. Connectionists in particular
have made it a priority to integrate process and representation: in this paradigm, modularity in
representation leads directly to improved modularity in processing complexity, without sacrificing
interaction between modules. Thus, even though the data does not bear out strong modularity
hypotheses like Fodor’s, it seems likely that the structural patterns that have been discovered will
turn out to have statistical complexity and computability advantages, and we should therefore
keep these modules while relaxing the encapsulation assumptions.
The remainder of this section gives an overview of how the ontology is structured.

411 Overview of Modules

Figure 4.1 depicts how modules are organized in the ontology, using a topological device.
Only modules that share a flat border have direct associations. (We see in chapter 6 how to realize
this constraint by restricting the way different modules can participate in the same correlational
term.) The nonshaded modules—lexicosyntactic constructions, lexical semantics, spatial images,
and the conceptual system—are the ones for which some representation has been attempted here.
The shaded modules are not studied here, and are shown only to orient readers familiar with those
subfields.!

Conceptual structures mediate the relationship between mental images and natural lan-
guage. In this chapter we will consider two such intermediate-level modules, lexical semantics and
the conceptual system. Itis possible in these modules to represent abstract conceptual propositions
that either have no directly corresponding image, or violate spatiotemporal properties. While it
is necessary to ground such things as spatial relations in perception, other intermediate repre-
sentations can be associatively grounded instead. From the memory processing point of view,
additional distinctions need to be made as to the directness of the connection between perception
and representation. This is discussed in section 5.2.2.

412 Common Characteristics of All Modules

Contrary to Fodor’s model, automatic processes are permitted in any module. As dis-
cussed earlier, Marslen-Wilson & Tyler (1987) argue convincingly that automaticity extends all the
way to discourse representations (section 3.5.1). However as with Fodor, controlled inference is
permitted only in the conceptual level; in other words, syntax, lexical semantics, and mental im-
ages are only accessible to controlled inference via their automatic associations with the conceptual
module. Thus far, no study contradicts this hypothesis, including Marslen-Wilson and Tyler’s.

Each module adds statistical constraints, representing associations between conceptual
structures, that can influence the interpretation of an utterance. Chapter 6 discusses how statis-
tical constraints are captured using correlational terms. Correlational terms can be used to assert
associations between conceptual structures that are all within one module, or else they can span
bordering modules (figure 4.1) to assert intermodular associations.

Structures are always combined in strictly compositional ways; we will see that this
is how the representation enforces transitivity relationships. “Non-compositionality” enters the

!In particular, the term audio images may be confusing. Mental image researchers often use “image” in a generalized
sense that encompasses eidetic representations of any sensory mode.
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Figure 4.1: Modularization of the ontology.
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model by the fact that alternative substructures can be chosen to account for different inputs, so
local compositional rules can be overridden. This is analogous to any non-monotonic parser (say, a
chart parser): the preferred interpretation for an input sequence can switch when given subsequent
input, as in

(4.1) The environmentalist couple put together a baby bottle.
(4.2) The environmentalist couple put together a baby bottle bill.

Intermodular mapping rules, including the rules that map syntactic to semantic structures, are
probabilistic, or associative, rather than absolute. Each individual rule is strictly compositional;
however, the association it represents can be defeated by other stronger associations. Partee
(1984) gives a good survey of compositionality issues; in her terms, the model proposed here is
compositional in a weak sense but not in the strong Montague sense.

4.1.3 Differentiating Characteristics of Modules

The primary differentiating characteristic is ontological expressivity. Each module has a
different set of compositional roles that in effect determines what can be expressed within that
module. Thus, although every module expresses statistical associations that influence interpreta-
tion preferences, each module is restricted to expressing certain kinds of statistical associations.
Though all compositional roles satisfy the transitivity constraint, they capture different abstrac-
tions. This means that the representations in different modules intrinsically enforce different
relational consistency conditions. Of course, each module also has a different set of primitive
features corresponding to its domain. This is essentially Fodor’s “domain specificity” condition.

This approach, where different modules hold disparate types of information but are
highly interconnected, can be seen as a generalization of Paivio’s (1971, 1986) dual coding theory.
Figure 4.2 shows a schematic conception of a mental representation system broken into verbal
and non-verbal systems. Mental image structures correspond to what Paivio calls “imagens”, and
the other modules are all lumped into “logogens”; imagens and logogens are highly associated by
referential connections. Paivio distinguishes referential connections from ordinary associative con-
nections, but referential connections (i.e., signification) should really be reserved for lexicosyntactic
mappings. The connections between imagens and logogens would not all have to be referential if
logogens were divided into lexicosyntactic and non-image conceptual modules.

A second condition is constrained maximum information (CMI for short). As I have said,
the “limited access to intermediate representations” and “information encapsulation” constraints
appear to be too strong. The CMI condition is a weaker constraint that addresses qualitatively
similar concerns. It is put forth here solely for motivationary purposes, and will not be developed
in depth since its parameters are determinable only by long-term empirical study.

Essentially, the frequency distribution of the input data should be summarized using as
few correlational terms as possible. However, the set of correlational terms must be chosen subject
to resource bounds, which can be viewed as an a priori model of neural architectural restrictions.
First, the function of certain modules is preset (in particular, those close to the perceptual appa-
ratus). Second, though non-perceptual modules are not preassigned any function, the long-term
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storage capacity of each module is bounded.? There is one limit parameter for each module, to
be estimated empirically. Third, correlational terms are only permitted to relate structures from
bordering modules (figure 4.1); this is a topological constraint. This means associations between
non-bordering modules must either (1) emerge from combinations of other, legitimate correlational
terms, or (2) be captured by correlational terms that span some shared intermediate module(s).
Within the preceding constraints, the CMI principle assigns all non-perceptual primitives? to the
remaining modules—thus drawing the boundaries of a modular ontology—so as to preserve as
much of the input frequency distribution as possible.*

Whether the CMI principle will be borne out with respect to the particular modules I have
proposed remains to be seen. Certainly the principle is overly strong as stated, and in practice
a weaker interpretation should be taken. There is no reason to assume that neural modularity
should have evolved perfectly to draw the boundaries at the exact optimal minima. Instead, the
condition should be something like “boundaries between modules cause the learnable part of
the input distribution to be close to optimal under the resource constraints”. We can reasonably
assume that the boundaries conform relatively well to visual and linguistic usage patterns, since
humans and natural language are tuned for efficacy.

Below I suggest some other characteristics of modules for intuitive purposes. These are
rough and imprecise, and are therefore open to question and not very useful as diagnostic criteria
for distinguishing modules.

The size limitation condition says thata module can only hold active conceptual structures
of a particular size. This is a “working memory” restriction rather than a “long-term memory”
restriction of the sort given above. A more specific version of this condition, related to Fodor’s
neural localization criterion, can be postulated by asserting that each neurally localized site has
some static size limitation.

The simultaneous conceivability condition says that one is more likely to be able to simul-
taneously hold multiple inconsistent concepts active if they are in different modules. This idea
will become clearer below in discussing schematization associations. Note that “inconsistent” is
meant here in the intuitive sense. What the condition really means is that alternative ways of
schematizing situations are likely to be found in different modules. Formally, the “inconsistent”
concepts must be consistent since no active conceptual structure is permitted to be inconsistent.

The completability condition says that it is easier to recognize that a pattern is “complete”
within a module. An utterance is syntactically complete if a complete parse is recognized. A
conceptual proposition is complete if its argument structure is filled in. A complete visuospatial
image must have some minimum set of features such as shape and dimensionality. On the other
hand, it is much more difficult to say if a complete semantic interpretation has been recognized for
an input utterance; instead, one just does the best one can to associate a conceptual interpretation
with the input utterance.

%One way to do this would be to set a limit on the information-theoretic entropy over all correlational terms within
a module.

3In the proposed model, features and role features.

‘The discrepancy between the input and stored distributions can again be measured using information entropy.
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4.2 Representational Needs

4.2.1 Image Reification

The representation of physical objects in existing Al formalisms usually fails to make clear
the way in which the object is conceived. For example, in conceptualizing a desk, you inherently
conceptualize its drawers and the entire picture forms a “gestalt”. On the other hand, it is less
obvious that you always need to conceptualize the handles on the drawers as well, but do so only in
situations where you need to focus on the handles, perhaps to open a drawer. Furthermore, the fact
that the handle is a COMPONENT of the drawer is normally left implicit in your “drawer gestalt”
image, but sometimes you need to be able to reflect explicitly on the component relationship, for
example to assemble a new desk or to understand this sentence.® As another example where a
relationship must be considered explicitly, take

(4.3)  Becky says half the fun of eating marrow is that the marrow is in the bone.

where it is the containment relationship, rather than marrow or bone, that is “the fun of eating”. ~

Al formalisms have largely focussed on the epistemological rather than heuristic aspects of
knowledge representation (for readers unfamiliar with this distinction, I will discuss it in greater
depth later). The upshot is that knowledge representation work has concentrated on ensuring that
things like desk-in-drawer and handle-component are somewhere in the knowledge base, but the
form and /or location in the knowledge base is less important. Unfortunately, this obscures some
equally important issues. For example, suppose there is only one representation of the COMPO-
NENT relation between handle and drawer. Sometimes this relation will have to function as an
implicit part of the drawer gestalt; other times the same relation must function as an explicit con-
cept that can be reasoned with, as any other concept. This leads to messy higher-order logics where
predicates (or roles or relations) are permitted to apply to other predicates (like COMPONENT).

Alternatively, an operation called reification can be used to transform roles (or relations
or predicates) to objects (constants).® For example, in the representation of drawer in a component
role of desk, COMPONENT might normally be a role that cannot be used as an argument to another
role. However it can be reified into an object; as we see in chapter 5 the object is a schema in which
both the desk and the drawer play roles. This object can be used as an argument to some other
structure, for example to handle

(44) In this design, the drawers stand independently on the floor instead of being part of the
desk.

One primary purpose of the proposed modularization is to capture structures at different
levels of reification. Reification does not transform arbitrary relations into arbitrary objects. Rather,
there are conventional types of reification, that associate specific types of relations and objects in
regular ways. Below are listed several types of image reification that are dealt with by the ontological
primitives proposed in chapter 5. Image reification is defined as the relationship between concrete
“vivid” conceptualizations and reified schematizations of images. -

*To reduce ambiguity I will follow the convention of capitalizing names of roles (relations).
®Reificiation is related to paramodulation and demodulation inference rules in logical deduction systems. The exact
relationship depends on the interpretation of one’s constants and predicates.
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The case of desk drawer above is an example of a kind of image reification called con-
stituency reification. On one hand, the base-level representation, where drawer is an implicit com-
ponent of desk, is a mental image representation in which physical objects are conceptualized as
gestalts whose spatial properties are largely preserved (as discussed in section 4.3). On the other
hand, the mental image module does not hold the reified representation in which desk as well as
drawer play roles connected to an explicit containment-schema object reified from the COMPONENT
role. (As discussed later, such reified representations are employed by both the lexical semantics
and conceptual modules.) Note that there may still be mental image representations of desk and
drawer. Only the reified object and its associated roles are excluded from the mental image module.

The reified representation permits imposition of explicit foreground / background dis-
tinctions. For example, the whole (drawer) can be marked as the background (LANDMARK) and
the part (handle) can be marked as the foreground (TRAJECTOR). Foreground and background
distinctions make sense only in the context of an embedding schema. Since there is no embedding
schema in the mental image representation, no explicit foreground /background distinction can be
made in the base-level representation.

Two other kinds of image reification are state and property reification. State reification
occurs when a mental image representation of some relational state is turned into a schematic
object. Wilensky (1989) calls this qualitization. For example, the mental image representation of
an apple being red is transformed into a state schema to handle something like

(4.5)  Adam, who had a fondness for bright things, only ate the apple because it was red.

Property reification occurs when the fact that some concept has a property is itself made
a proper concept. For example, the same mental image representation of a red apple can be
transformed into a property schema to handle

(4.6) It was a Granny Smith apple that had a red color because it had been spray painted.

4.2.2 Associative Grounding

The notion of modules also facilitates addressing the “symbol grounding” issue, because
modules have varying degrees of closeness to the perceptual apparatus. The symbol grounding
issue (Harnad 1990) concerns defining the meaning of symbols or structures, particularly atabstract
levels like image schemas, state schemas, or property possession schemas. Harnad argues that
the meaning of conceptual symbols must be grounded in the agent’s perception and use of those
symbols. A more concrete version of the issue is: what does it mean to apply a visuospatial
relation to a non-physical object? We will see in chapter 5 that image schemas can be used to
capture not only visual distinctions, but all sorts of abstract distinctions like low anxiety and high
speed. The source of meaning for an image schema, however, derives from those occasions when
it is used to describe an actual image. To begin with, consider the question from the standpoint
of traditional frameworks. If some relation is defined with reference to a visuospatial domain, to
apply it metaphorically to non-visual objects is to violate the selectional restrictions that form an
intrinsic part of its definition. We are left with two choices: (1) non-visual objects can be mapped
into a visual representation through some sort of regular transfer protocol, or (2) the relation itself
can be abstracted to apply to non-visual objects as well. Humans employ both mechanisms, but
we will focus on the latter.
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I propose the notion of associative grounding as the basis for formal grounding of symbols
that have no direct perceptual connection. Associative grounding is a probabilistic version of
symbol grounding, where the significance of symbols is determined either

1. by their occasional co-occurrence with symbols in a module closer to the perceptual appara-
tus, or

2. by the degree of syntactic and structural correspondence to symbols that are grounded as in
(D.

In case (1) the notion of absolute selectional restrictions is replaced by probabilistic association
(section7.3.2). In case (2), syntactic correspondence for feature structure representations translates
to the amount of overlap in feature values and roles, including recursive application to substruc-
tures. The mental image representations in section 4.3 are more directly connected to the perceptual
apparatus than image schemas, which are in the lexical semantics module. One direction in cog-
nitive linguistics is to ground the semantics of image schemas perceptually (Talmy 1983, 1985,
1988; Lakoff 1987b; Langacker 1987; Feldman e al. 1990). The object here is to formalize this notion
S0 as to apply to abstract uses of image schemas as well. By considering how image schemas are
associatively grounded to the mental image module, the reader should be able to extend the general
idea to other cases, like grounding the mental image module to more “vivid” visual primitives, or
grounding of temporal event and process schemas. In the case of image schemas used to describe
perceptual images, the image schema symbols are grounded by their frequent association with the
corresponding unreified mental images.

The meaning of an associatively grounded symbol is determined indirectly by the inter-
modular associations that syntactically similar symbols participate in. This is similar to the notion
researchers have had in the past about the meaning of nodes in semantic networks. However, in
traditional non-statistical frameworks the problem is to abstract a visuospatial relation without
making it altogether meaningless. If in the extreme case all forms of selectional restrictions are
removed the resulting relations will be indistinguishable. The associative grounding approach
employs a statistical remedy, allowing us to view selectional restrictions not as hard and fast rules,
but rather as probabilistic distributions. Because of these distributions, for a particular abstract
relation (and visual ones as well), certain image schemas will be preferred over others. Thus there
is still a difference between relations even if they can all apply to the same fillers.

423 Compatible Differentiated Semantics

The modular approach fulfills yet another representational need, similar to image reifi-
cation, namely to capture both the conceptual commonalities and differences between sentences
like

(4.7)  Franny, with Zooey, went off to college.
(4.8)  Zooey, with Franny, went off to college.
(4.9)  Franny, together with Zooey, went off to college.

(4.10) Zooey, together with Franny, went off to college.
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In one sense, the sentences have the same logical meaning, roughly Franny and Zooey went off to
college. In another sense, the sentences express different events, with either Franny or Zooey being
the actor. Most existing theories ignore the distinction. A few account for the similarity by positing
a “co-agent” case role for the actor of the adverbial, so that Franny is the primary agent and Zooey
is a secondary co-agent in sentence (4.9), and vice versa in sentence (4.10). However, this fails to
capture the similarity between sentences (4.9) and (4.11):

(4.11) Franny, followed soon by Zooey, went off to college.

The reason it misses the similarity is that the co-agent role cannot be used to handle Zooey in
sentence (4.11), since it is embedded in a reduced relative. Even if one wanted to use a co-agent
role, there would be no place to attach the semantics of followed soon by.

Given that a single representation does not effectively capture all needed distinctions and
generalizations, clearly the representation should allow both the common and different “meanings”
of sentence (4.9). However, this raises the issue of which state should actually result from inter-
pretation. The proposed modular ontology addresses this issue using the idea of a cross-modular
semantic distinction, which allows interpretation to result in either or both “meanings”, but in a
clean fashion. In this approach, sentences (4.9) and (4.10) are considered to have different inter-
pretations at the lexical semantics level, while the shared interpretation is held in the conceptual
module. The lexical semantics module is able to capture the grammatical and semantic similari-
ties between sentences (4.9) and (4.11); problems with co-agent roles do not arise because having
a shared conceptual-level interpretation captures the meaning commonalities without co-agents.
The representations at the lexicosemantic and conceptual levels may be held either individually
or simultaneously. The correct result of automatic inference depends on which level(s) are most
likely to be useful given the particular sentence and context (for this example I would guess that
automatic inference should produce both representations, since both seem fairly salient).

Iimplied above that automatic inference for sentence (4.9) does not produce the concept
Zooey went off to college at all—neither at the lexical nor at the conceptual level. This claim that
might appear implausible since if you were to infer that Franny and Zooey went off to college, it
seems you would also naturally know that Zooey went off to college. The proposed framework
does not use static structures to represent this sort of duality, but instead deals with it using the
notion of associatively inferrable conceptual shift. The notion suggests that one can rapidly shift
between two different but closely related concepts. Though the shifts themselves are associative,
they are initiated by controlled inference; it is only when the specific fact is needed that you
infer that Zooey, independently of Franny, went off to college. The shift is easy since the two
views are highly associated, and this makes it difficult to distinguish actual “meaning” from
what is merely inferrable. Whereas above we considered the simultaneous holding of multiple
(but consistent) interpretations across different modules, now we consider rapid sequential shifts
within the same (conceptual) module. One must be careful about introspection here. If one asks
whether sentence (4.9) implies that Zooey went off to college, one’s instinctive response is yes.
However, the intuition is misleading, because the very act of understanding the question creates
the need to perform the inference, which otherwise might not have existed; see section 3.5.1.

It would be pointless to take up the debate over distinguishing statically stored knowl-
edge from knowledge that can be inferred upon demand. The argument goes back at least to Plato’s
assertion in Phaedo that everyone is born knowing everything and that it is only a matter of time to
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infer the facts one already knew. Chapter 3 argued that in any reasonable intelligent architecture
some knowledge will be “cached” by forward inference, while other information will be inferred
upon demand, with varying time requirements. We want to model how humans do this. Only
empirical tests over the long run can determine the boundaries of cached forward inference. For
now I only wish to show how the paradigm avoids problems caused by overconstraining the lexical
semantics level, and suggest plausible examples. Moreover, even in the long run with extended
empirical observation, the inferential boundaries probably differ significantly from person to per-
son, making it pointless to strive for an exact theory. Rather, the important thing is for the theory
to acknowledge the shiftable character of associated meanings.

A similar example is the relationship between buy and sell, two ways of conceptualizing
a commercial transaction. Although both describe the same event, they seem to have different
agents. A method of capturing the similarity without overloading the agent role, suggested by
Jackendoff (1972), is to have both verb frames share a subcomponent that does not specify agency.
This would be a case of cross-modular semantic distinction as discussed above if we thought of
the shared subcomponent as being in the conceptual module, and the agentive frame as being in
the lexical module. However, for the buy/sell example this explanation alone seems implausible.
The conceptual notion of buying has a strong intrinsic sense of agency that should not be confined
to a lexicosemantic level, and this is motivated by the fact that the concept of agentive buying,
not just agentless commercial transaction, is needed in order to plan one’s ordinary day-to-day
actions. It makes more sense to take the associative conceptual shift approach, whereby one can
shift between buy and sell conceptual frames by virtue of their high association. The two frames
still share a common commercial transaction locative achievement subcomponent.

4.3 Mental Images

One may argue that it is possible to represent knowledge using different levels of reifi-
cation without ascribing a particular module to each relation, simply by lumping all the base-level
relations together with the relations that apply to reified relations. Indeed I believe this is some-
times unavoidable, and in the proposed modularization the conceptual module permits arbitrary
multiple reifications. However, evidence is amassing from linguistics, psycholinguistics, and neu-
rology for the localization of certain kinds of modules that also happen to capture a particular
level of reification. We now turn to examine—by no means comprehensively, and purely for
motivationary purposes—some of this converging evidence.

In this section we consider the first of the modules, mental images. Only visuospatial
mental images are considered. There are three primary motivations for including a visuospatial
mental image module. First, it demonstrates how the theoretical framework permits the agent’s
concepts to be associatively grounded in perception. As mentioned earlier, Harnad (1990) refers
to this as the “symbol grounding” problem. Second, it provides a way to represent the distinction
between abstract image schemas and more “vivid” images, which, as I discuss below, differ in
nature but are nonetheless systematically related (by reification). Third, there is a good deal of
evidence supporting a mental image module and thus, it makes sense methodologically to start
with the assumption that the language bias for a probabilistic model incorporates mental images.
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43.1 The Nature of Mental Images

One definition of mental images, proposed by Finke (1989), is “the mental invention
or recreation of an experience that in at least some respects resembles the experience of actually
perceiving an object or an event, either in conjunction with, or in the absence of, direct sensory
stimulation”.

“Mental image” does not connote any specific type of representation syntax (array, propo-
sitional, etc.). The issue of appropriate representations is taken up later.

Mental versus retinal and iconic images. Though closely tied to perception (of visual, auditory, or
any other sensory nature) mental images are neither retinal nor iconic images. Retinal images are
impressed upon the visual sensory apparatus. Iconic images hold percepts reflecting current or
very recent stimuli. However, when I use “image” it should be understood as short for “mental
image”. Mental images are one step up the chain and are less vivid than iconic representations,”
though more vivid than image schemas. They can be generated either from iconic sensory input, or
by associative recall in which case they are similar to representations produced by previous sensory
stimuli. A recalled mental image can always be distinguished from one being produced by direct
sensory input, though as with many types of memories it can be difficult to recall whether some
past mental image was generated from imagination or perceptual input (Johnson & Raye 1981;
Finke et al. 1981).

Principles of mental images. Finke (1989) has proposed five major principles describing the essential
properties of mental images, which, broadly interpreted, can serve as a working definition for the
purposes of this work. These are:

1. Implicit encoding. “Mental imagery is instrumental in retrieving information about the physi-
cal properties of objects, or about physical relationships among objects, that was not explicitly
encoded at any previous time.” (p.7)

2. Perceptual equivalence. “Imagery is functionally equivalent to perception to the extent that
similar mechanisms in the visual system are activated when objects or events are imagined
as when the same objects or events are actually perceived.” (p. 41)

3. Spatial equivalence. “The spatial arrangement of the elements of a mental image corresponds
to the way objects or their parts are arranged on actual physical surfaces or in an actual
physical space.” (p. 61)

4. Transformational equivalence. “Imagined transformations and physical transformations ex-
hibit corresponding dynamic characteristics and are governed by the same laws of motion.”
(p-93)

Eidetikers are supposedly able to recall scenes in exact detail, as if able to recall the iconic representation of a
previous sensory experience. This is also not what mental images are. The literature sometimes implies that array-
based representations must only be used to model eidetic images. Although I will be using a structured propositional
representation of mental images, I would nonetheless admit the possibility of constructing array-based, or other non-
propositional, representations to model mental images rather than “vivid” eidetic images (e.g., Paivio 1971; Shepard 1981;
Kosslyn 1980, 1983; Kosslyn et al. 1984; Farah 1984).
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5. Structural equivalence. “The structure of mental images corresponds to that of actual perceived
objects, in the sense that the structure is coherent, well organized, and can be reorganized
and reinterpreted.” (p. 120)

I say “broadly interpreted” because the last three principles can be applied to proposi-
tional representations of the sort used in this work, although that is not how these principles are
usually construed. The paragraphs below discuss the issue of how “spatial” a representation is.

Preserving spatial properties in representations. To encode vivid or semi-vivid spatial images, the
representation must ensure that certain important spatial properties are preserved, such as topo-
logical proximity. In general there are two approaches: spatial representations that intrinsically
preserve these properties, and propositional representations that explicitly assert the requisite spatial
properties.

Although the proposed model does not employ spatial representations, they are fre-
quently used for mental image models. Spatial representations are intrinsically structured in the
same way as the real-world situations they represent, and because of this, they inherently preserve
spatial properties. The most common type of spatially-structured representation are array-like
pixel matrix representations. On the other hand, alternatives to matrix coordinates can be useful.
For example, polar coordinates have the advantage of concentrating the most pixels around the ori-
gin which can be positioned at the focal point. Thus a number of different, related representations
have been proposed (e.g., Shepard 1981; Kosslyn 1980, 1983; Farah 1984). Pinker (1984) suggests
that the critical characteristic of all spatially-structured representations is that they (should) satisfy
the axioms of metric spaces. The metric axioms are:

(a) the distance between a point and itself is less than the distance between a point
and any other point; (b) the distance between point a and point b is the same as the
distance between point b and point a; (c) the distance between point a and point b plus
the distance between point b and point ¢ must be greater than or equal to the distance
between point a and point c. (p. 40)

Note that (b) is the symmetry axiom and (c) is the transitivity axiom applied to distances.

Spatial representations have a property that is often useful: because their representations
are spatially structured, they inherently ensure that only concepts that are consistent with the real
world are representable. For example, using a pixel matrix there is no way to represent a square
that has only three sides, whereas the same concept is easily coded propositionally (as indeed this
sentence just did!). Borrowing Carnap’s terms, a spatial representation always preserves analytic
truths (concerning space) whereas a propositional representation permits synthetic statements
that may be analytically false. A propositional representation must be explicitly prevented by
external axioms from allowing ill-formed spatial descriptions. In any spatial representation that
satisfies the metric axioms, spatial properties are intrinsic and require no external consistency
checks. Thus ultimately it would not be surprising to discover that humans employ both spatial
and propositional representations.

As mentioned, if mental images are represented propositionally (as in the proposed
model) then intrinsic spatial properties must be marked using some artificial means. One way
to do this is to make use of the standard “terminological” versus “assertional” distinction first
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proposed in work on KL-ONE style representations (Brachman et al. 1983; Vilain 1985).% We mark
as “terminological” the fact that a square has four sides so that any instantiation of the square
concept is automatically constrained by the interpreter to have exactly four sides. In contrast the
fact that squares are Mr. Kien’s favorite shape is an “assertional” property of squares since a square
is still a square regardless of Mr. Kien'’s inclinations. The interpreter allows such properties to be
negated.

KL-ONE theorists sometimes have trouble distinguishing terminological and assertional
properties. This problem also arises in trying to say which properties are intrinsic to spatial
concepts. I attribute this to the investigator’s ability to rapidly and effortlessly map between
spatial and propositional representations. So if asked “Is a three-sided square a possible concept?”
we answer “No” when using a visuospatial representation and “Yes” when using a propositional
one.

Propositional representations for mental images. It is not entirely clear how mental images ought
best to be represented. Iconic images are generally modelled using spatial representations, but
for purposes of representing mental images these are subject to Kant’s® objection that they are too
specific and cannot capture, for example, the general notion of a triangle that encompasses both
acute and obtuse triangles. It seems that mental images should be abstract (and non-vivid) enough
to enable conceptualizing a triangle without committing to one or the other subclass.

Similarity-based representations have the property that similar concepts like acute and
obtuse triangles are actually represented by similar codes, for example by activation vectors with
low Euclidean distance. The extreme case of similarity-based representations degenerates back
into spatial representations, but normally by saying that two concepts are similar one is implicitly
abstracting away differences on some dimension, e.g., the angles at a triangle’s vertices. In the
context of mental images Shepard & Chipman (1970) proposed a version of the similarity-based
principle called “second-order isomorphism”.

The proposed model uses propositional representations, which fail to capture the pictorial
quality of visual images. To compensate I suggest that people also have an array store with a spatial
representation, and different array capacities account for the fact that people have varying degrees
of eidetic visualization ability. This is not a radical move; imagery theories such as Kosslyn’s (1983)
contain both array and propositional representations.

Most measurable properties of mental images are related to retrieval speed. However,
it would be a mistake to use retrieval speed data as evidence either for or against propositional
representations. Since propositional representations are entirely neutral with respect to control,
Anderson (1978) observed that mental image effects can be obtained from propositional models
simply by using the correct retrieval strategy. By the same token, on the other hand, when using a
propositional representation one must be careful to avoid the pitfall of implicitly assuming one’s
own favorite control strategy.

Moreover in the extreme case, a propositional notation does not even prevent one from
using it to store pixel-structure information. A pixel structure can straightforwardly be coded as
a set of propositions where a variable is assigned to each pixel. Clearly there is no advantage

8Using the terminological/assertional distinction this way is subtly different from the way it is used in most KL-ONE
systems. This point is discussed in section 6.4.1.
®The Critique of Pure Reason.
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over a dedicated pixel representation if one’s imagery theory only uses spatial representations. If,
however, one wished to construct a model that employed both complex propositional semantics
and spatial representations, this would be one way to handle both uniformly.

In the proposed model, the terminological-assertional mechanism described above is
used to enforce spatial consistency conditions. Compositional transitivity is enforced by the
semantics of the representation language (not natural language!). For example, figure 4.3 shows
the encoding of the image of a desk drawer handle'®, where transitivity guarantees that the handle is
a part of the desk as well as the drawer. The metric axioms, including transitivity of distances, are
not currently built into the primitive semantics, and if needed, must be enforced by making use of
compositional transitivity.

TYPE:
. [TYPE: drawer
[COMPONENT~ [COMPONENT: [TYPE: handle]]

Figure 4.3: The encoding of the mental image for desk drawer handle enforces compositional transitivity.

Spatial versus visual images. The difference between spatial and visual processing is still a mat-
ter of debate; some argue that most visual imagery experiments can be interpreted in terms of
spatial image processing (Neisser & Kerr 1973; Kerr et al. 1985). On the other hand, some recent
neurological studies describe patients who are able to generate mental images of spatial locations
but not visual appearances, and vice versa (Levine et al. 1985; Farah et al. 1990). Even if spatial
and visual mental image processing occurs in separate modules it may well be that many tasks
can be performed using either type of processing. The evidence is too sparse to warrant strong
assumptions and therefore I will often use the term “visuospatial” to indicate neutrality.

Spatiotemporal images and motion. Real world events occur over time intervals, and impinge upon
our sensory registers over time. Humans learn not only static patterns, but also pattern sequences.
Unfortunately, at this time I have no dynamic representation of temporal pattern sequences. Models
of temporal sequence learning that employ recurrent neural networks are being investigated (Elman
1989, 1990, 1991; Pollack 1988, 1989, 1990; Rumelhart 1991; Schmidhuber 1991), but too little is
known as yet of either the mathematical theory or neurological workings to warrant inclusion of
any particular model here.!

4.3.2 Arguments for Mental Image Semantics

For some time cognitive linguists have been appealing to image-like schemas to explain
prepositional and case phenomena (Talmy 1983, 1985, 1988; Lakoff 1987b; Langacker 1987; Jack-
endoff 1972, 1983). Unfortunately it is not always clear whether the spatial schemas are an actual
claim about cognitive representation or merely a convenient research meta-language. Here I am
putting forth a more specific hypothesis about representation and cognitive process, one tenet of

1°From Warren (1978, p. 127).
!! Regier deals with motion by converting dynamic sequences into static representations. See section 5.2.2, p. 104.
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which is that understanding a linguistic input often automatically creates a mental image. More-
over, though it may be intuitively obvious that reasoning about the physical world is often more
“picture-like” than verbal, it is still necessary to show that there are corresponding modularities
in the cognitive processes. Below, we consider some types of evidence that have been put forth in
favor of modularizing mental image representations.

Psychological evidence. An experiment by Brooks (1968) showed that mental image processing is
more closely associated with visual processing than verbal processing, by using an interference
technique. Subjects were given two similar tasks, with verbal input versus imagery input. In the
verbal task, a sentence like “A bird in the hand is not in the bush” is given and the subject is to
indicate serially whether each word is a concrete noun: “no, yes, no, no, yes, no, no, no, no, yes”. In
the imagery task, the subject is to imagine a (previously seen) block letter such as that in figure 4.4
and indicate serially whether each corner is at either the top or bottom: “yes, yes, yes, no, no, no,
no, no, no, yes”. Both visuospatial and verbal manners of response were tested, for both tasks. The
subjects were told to either to point to a response sheet with staggered rows of the letters Y and N,
or to say the words “yes” and “no”. As figure 4.4 shows, visuospatial responses were faster for the
verbal task while verbal responses were faster for the imagery task. Thus Brooks concluded that
visuospatial processes interfere with mental imagery more than the verbal processes.

Block Letters

15F-

10 |=— Sentences

Mean Response Time (sec)

: 5
f 0 Poi:ting Ve}bal
o — Type of Response

Figure 4.4: Brooks (1968), from Finke (1989).

In her study of prototype effects, Rosch (1975) found that priming effects required less
time for visual tasks than verbal tasks. Subjects heard a priming word (furniture, vehicle, vegetable)
and some interval later were presented with either a picture pair or a word pair. The subject
was to answer “yes” if the pictures/words came from the same category or were identical, and
“no” otherwise. Rosch found that the priming word facilitated faster response times when the two
pictures/words were identical and came from the named category. Moreover, the interval between
the priming stimulus and the picture/word pair could be shorter for picture pairs (200 msec.) than
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word pairs (at least 300 msec.). Rosch therefore suggested that the internal cognitive interpretation
of the priming words is closer to mental images than verbal or linguistic forms.

In a related experiment Potter & Faulconer (1975) discovered that given a priming word
naming a superordinate category, subjects were faster at deciding whether a subsequent stimulus
belonged to that category when the subsequent stimulus was a picture rather than a spoken word.
For example given the word fruit subjects could determine more quickly that a picture of an apple,
rather than the word apple, designated a kind of fruit. This also led Potter and Faulconer to conclude
that at least the meaning of words like fruit is closer to an image-like representation.

Other evidence for the connection between visuospatial processing and imagery comes
from a series of experiments on the symbolic distance effect (Moyer 1973; Paivio 1975; Kosslyn 1975,
1976; Moyer & Bayer 1976; Holyoak 1977). Subjects are slower at identifying which of two objects
named (e.g., animals) is larger when the two objects are similar in size (beaver, raccoon) than
when they are very different (beaver, squirrel). The response speed is inversely proportional to
the relative size difference and the effect is invariant with respect to many other parameters. This
effect is easy to explain in terms of visuospatial processing but difficult to explain in terms of verbal
processing.

Neurological evidence. Neurological evidence for the modularity of mental image processing comes
primarily from studies on brain damage. No modular breakdown has clearly emerged and it
appears that the data cannot be adequately captured by any simple model. Modularized semantic
systems are therefore still controversial, but because of the weaknesses of unified semantic systems
new modular models continue to be proposed. Moreover the advances in neural and distributed
modelling may provide the means to resolve the problems with modular semantic systems. For
an in-depth survey of neurological modularity issues, the reader is referred to Farah (1990), from
which the summary here is derived.

Toillustrate the difficulty with unified, non-modular semantic models consider the exam-
Ples in figures 4.5-4.8 based on past proposals to account for optic aphasia (Ratcliff & Newcombe
1982; Riddoch & Humphreys 1987; Farah 1990). Optic aphasics can name objects described ver-
bally and can recognize visually perceived objects (demonstrated by gestures indicating their use),
but cannot name visually perceived objects. Though each of the illustrated models were proposed
to explain this apparently paradoxical condition, none of them resolve the paradox satisfactorily.
If there is only one route from visual input to semantics (figure 4.5) then patients with that route
broken should not be able to visually recognize the function of objects. Yet if any unbroken route re-
mains (figures 4.6, 4.7) then the semantic level ought to be able to categorize the object sufficiently
well to name it, since being able to recognize its function requires a large amount of semantic
knowledge. Optic aphasics cannot do this even given an indefinite amount of time. The idea that
two separate damage loci are needed to explain optic aphasia (figure 4.8) obliges one to assume
that the conjunction of two partially damaged loci causes worse effects than one would predict
by serially concatenating the effects. Farah observes that superadditive impairments do occur in
many neural network models, which can restore degraded patterns but fail when the signal is too
heavily damaged. However from the computational point of view, this analogy unrealistically
assumes that the cognitive system is a flat neural network that operates in one massively parallel
shot. In fact it is more plausible that the semantic system can restore degraded input from a
damaged visual system before passing on to the naming task, in which case there should be no
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superadditive effect.
NAMING
SEMANTICS
VISUAL INPUT VERBAL INPUT

Figure 4.5: Only one route from visual input to semantics.

NAMING

SEMANTICS

RN

VISUAL INPUT VERBAL INPUT

Figure 4.6: Ratcliff & Newcombe (1982), from Farah (1990).

Several interesting modularized semantic models have been proposed. Beauvois (1982)
proposed distinguishing visual and verbal semantics as in figure 4.9. This is a version of Paivio’s
dual coding model, visual semantics being “imagens” and verbal semantics being “logogens”.
Farah (1990) objects that for this model to account for optic aphasics’ ability to pantomime the
use of objects, redundant conceptual knowledge would be required in the visual semantics mod-
ule. However, the type of knowledge that is required for gesturing is strongly associated with
spatiotemporal abilities, and it is perfectly plausible that the gesturing abilities derive from an or-
ganization where just parts of the conceptual system dealing with spatiotemporal knowledge are
replicated. This modularization, highlighted in figure 4.10, is used in my proposed model, where
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NAMING
GESTURE SEMANTICS
VISUAL INPUT VERBAL INPUT

Figure 4.7: Riddoch & Humphreys (1987), from Farah (1990).
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Figure 4.8: Farah (1990).
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spatiotemporal knowledge in the lexical semantics and conceptual modules are image schemas
(section 5.2.2). Not only is a certain degree of redundancy neurally plausible, but there can also be
advantages from the standpoint of computational efficiency, because localizing concepts that are
frequently associated (e.g., gestures and other spatiotemporal scenes) is a form of “caching” that
speeds retrieval.

NAMING

VISUAL SEMANTICS |——>€—]  VERBAL SEMANTICS

VISUAL INPUT VERBAL INPUT

Figure 4.9: Beauvois (1982), from Farah (1990).

NAMING
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VISUAL SEMANTICS ——% VERBAL SEMANTICS
VISUAL INPUT VERBAL INPUT

Figure 4.10: Distributing “redundant” spatiotemporal knowledge to account for optic aphasia in Beauvois’s
model.

An even more radical approach along these lines is proposed by Coslett & Saffran (1989).
Figure 4.11 shows the architecture, which differentiates semantic modules by left and right hemi-
sphere. In this model a loose correspondence is assumed between hemisphere and visual/verbal
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knowledge and processes, so that one can view it as a relaxation of Beauvois’ model. Right
hemisphere semantics is coarser than left (Zaidel 1985; Kosslyn et al. 1985) and tends to be more
directly associated with visual processing; left hemisphere semantics is more closely tied to verbal
processing.!?

NAMING
LEFT HEMISPHERE RIGHT HEMISPHERE
SEMANTICS SEMANTICS
VISUAL INPUT VERBAL NPUT

Figure 4.11: Coslett & Saffran (1989), from Farah (1990).

Neurological researchers sometimes interpret findings such as these to mean that non-
propositional representations are used for visual mental images since the relevant loci are primarily
part of the visual system. Whether this is a valid argument all depends on what one means a
proposition to denote; it was noted in section 4.3.1 that propositions could even be used to describe
the early visual system, though it would usually not be felicitous to do so.

Spatial properties can be exploited for computation. Thereisalsoa computational efficiency argument
to be made for the existence of a mental image module in humans. According to the spatial
equivalence principle, mental images are encoded using representations that preserve spatial
properties. The computational advantage comes if humans use a representation that is intrinsically
spatial. As discussed in section 4.3.1, spatial representations have the property of only being able
to represent concepts that are consistent with real-world spatial properties. Since this eliminates
the need for constant consistency checking, any tasks involving spatial reasoning can be more
efficiently processed.

Spatial representations may be useful for non-spatial reasoning domains as well, when
reasoning by metaphor or analogy. Reasoning in abstract domains that can be mapped to a
spatial schema can be speeded up by mapping invariant properties (transitivity, dimensionality) to
spatial properties that are intrinsic, again eliminating the processing overhead of enforcing those
constraints.

Unfortunately, the propositional representation used in the proposed model is too ab-
stract to enforce intrinsic spatial properties. Instead, explicit meta-level terminological definitions

?Interestingly enough, Farah (1984, 1988) found in a survey of patients with brain damage that the process of
generating images tends to be localized in the posterior left hemisphere.
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must be used to achieve this effect. It is a weakness of the model that consistency must be enforced
by the underlying propositional logic interpreter. The consistency checking must be explicitly
excluded from the intended mapping from the model to the human cognitive architecture.

4.4 Lexical Semantics

For reasons mostly having to do with accounting for syntax but also having to do
with language acquisition and learnability, a number of researchers have proposed lexically-
based theories of semantics. Usually the theories postulate an intermediate level of represen-
tation between accepted syntactic categories and pure Al-style conceptual representations. The
present linguistic tradition of lexical semantics derives primarily from the work of Fillmore (1968,
1977) and Gruber (1965), who argued for case relations and thematic relations, respectively, as the
primitive structural elements for verb arguments.'® I will follow Dowty (1989) in using the general
term thematic role. After 25 years there are still as many variant theories as investigators, yet even
work outside the tradition has slowly converged toward a remarkably similar paradigm; broadly
construed, the term lexical semantics might be applied to work as diverse as Logical Form and
KL-ONE. Within the tradition there are several major lines we can identify.

It is important at the outset to note which of two possible metatheoretical motivations
for pursuing lexical semantics I have in mind. There are two schools of research that go by the
rubric “lexical semantics”, but whose methodological goals are entirely different in character. One
motivation is theoretical neutrality: language being the most accessible and observable function
of the mind, organizing semantics around the lexicon in some sense makes the least commitment
to any cognitive theory. In particular, those who are interested in a highly descriptive style of
linguistics have created a strain of atheoretic lexical semantics (Cruse 1986).

The other motivation is, as mentioned above, to account for morphosyntactic phenomena
that established morphosyntactic categories fail to explain, but without resorting to a complete
dependence on the conceptual system. Current data supports the working hypothesis that many
generalizations can be captured at the intermediate lexical semantics level. This is the more usual
motivation, and it is also the motivation for including a lexical semantics module here (albeit in
a slightly different, information-theoretic sense of “accounting for syntax”). Lexical semantics in
this tradition is highly committed to theory and relies on linguistic and psychological data for
justification of the structural and ontological elements to be included.

4.4.1 The Boundaries of Lexical Semantics

Syntax versus lexical semantics. It is no surprise that there is widespread disagreement as to the
proper lines between syntax and lexical semantics, and between lexical semantics and the concep-
tual system. With regard to the division between syntax and lexical semantics, Jackendoff (1990)
argues emphatically that

The fundamental point, from which all else proceeds, is that thematic roles are part of the
level of conceptual structure, not part of syntax [italics in original]. Recall Gruber’s (1965)

'*Similar ideas have been traced back as far as 350 B.C,, to the Sanskrit grammarian Panini’s kiraka theory (Anantha-
narayana 1970; Singh 1974; Somers 1987).
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intuitive definition of Theme: the object in motion or being located . . . thematic roles
are nothing but particular structural configurations in conceptual structure; the names
for them are just convenient memonics [sic] for particularly prominent configurations.
(pp. 46-7)

On the other hand, it is unclear that categories like “count noun” and “patient” are
sufficiently unlike categories like “plural noun” and “accusative” to make it worthwhile to pro-
mote lexical semantics as a distinct module from syntax. Taking this view to the extreme, the
division is purely historical and syntax should simply incorporate lexical semantics. Interestingly
enough, Gentner (1988) argues that verb meaning and grammar may be neurally localized in the
same region, since agrammatic aphasics not only suffer impaired syntactic construction use but
often also have trouble naming verbs, which, she hypothesizes, reflects damage to verb meaning
representations. The Logical Form or LF module (figure 4.12) that grew out of Chomsky (1965)
represents quantification, scope, and reference information in a form suggesting truth-conditional
logic, which seems semantic in nature, and indeed, many semanticians have followed up on this
by attempting to explicate the truth conditions underlying LE. Yet by definition LF is a level of
syntactic representation since formal transformation rules relate it to the other syntactic modules,
and since its purpose is solely to facilitate accounting for syntactically allowable structures.!*

DS (deep structure)

SS (surface structure)

e

PF (phonological form) LF (Logical Form)
Figure 4.12: Standard placement of Logical Form in grammar.

However, I am proceeding on the hypothesis that there will prove to be a division in
the weak sense of the CMI principle. Moreover, since the most complete semantic theories are
currently cast within the lexical semantics framework, it is convenient, for expository reasons if
nothing else, to retain the distinction between syntax and lexical semantics.

Lexical versus conceptual semantics. The division between lexical semantics and the conceptual sys-
tem is likewise blurred. Selectional restrictions can require arbitrarily deep conceptual knowledge.

"*Note that logical form (without capitals) is used by semanticians and philosophers to refer not to LF, but to a realist
truth-conditional semantic representation as in Montague semantics; see for example Lycan (1984). In fact, this can
be taken a step further since “logical form” need not even be restricted to realist representations. The term “logical”
describes a type of representation language rather than the content that can be represented using that language. Some
aspects of ordinary predicate logic make it well suited as a realist representation for handling phenomena such as
quantifier scope. Other aspects are less desirable, especially when looking at associative effects and reflexive automatic
inference, since the psychological evidence shows humans to be poor at understanding any but the simplest of logical
constructs. Logics can also be used to construct mentalist representations where the only predications made concern an
agent’s state of mind (indeed, this is my approach). Discussions of the relationship between LF and logical form (in the
realist, truth-conditional sense) are found in Chierchia & McConnell-Ginet (1990) from the semantician’s perspective,
and May (1985) from the syntactician’s perspective.
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McCawley (1968) argues that devein only applies to shrimp, assassinate only to political figures, and
. diagonalize only to matrices. Unfortunately, it is probably the case that there is no a priori way to
absolutely define the elements of the lexical semantics module, so that it is guaranteed to conform
to the CMI principle. It is only possible to use linguistic and psychological data as evidence for
heuristically demarcating the boundaries. I first consider here some of the criteria that have been
proposed for distinguishing lexical from conceptual semantics, but which are unsatisfactory for

this purpose.

1. Equating verb meanings to single logical predicates. This approach to defining lexical semantics
requires that all predicates used in the lexical semantics module correspond one-to-one with
lexemes. This form of semantics is non-reductionist in the sense that one cannot define
“smaller” predicates to capture common aspects between different lexemes, unless those
predicates happen to correspond exactly to some other lexeme. Otherwise, commonalities
are only captured by using the same case or thematic roles with different lexemes. The
motivation behind pursuing such an approach lies more in describing the semantics of
particular lexemes; there is no reason to expect the approach to be flexible enough to capture
all pertinent generalizations about morphosyntactic variation.

2. Requiring one-case-role-per-argument. A stricter variant of the above approach also restricts
the predicate arguments to one-to-one correspondence with case roles. The one-case-role-
per-argument constraint is the most important feature distinguishing Fillmore’s (1968) case
grammar from Gruber’s (1965) thematic relations, which permits arguments to fill an arbi-
trary number of roles. The constraint proved to be too strong, and is relaxed in a number
of different ways in subsequent case grammar work, including Somers’s (1987) case-grid
system which is a major influence in the present proposal. Although I attempt whenever
possible to minimize the number of case roles per argument, the principle is contravened
by other representational flexibility needs. When, as with Gruber, an argument can have
multiple roles, the set of all different role combinations effectively forms an abstraction hier-
archy of composite roles; for example, the single (AGENT) role is an abstract ancestor of
the compositerole (AGENT, PATIENT), which could be used to characterize a reflexive
action. In the original case grammar, case roles are required to form a flat set rather than a
hierarchy, with the goal of minimizing the number of distinct case roles needed to handle
the syntactic phenomena.

3. Including all automatic processes. As already discussed, a distinction based on automaticity
(Fodor 1983) does not fit empirical results (Marslen-Wilson & Tyler 1987). People are equally
fastat inferences extending beyond the lexical level into discourse and real-world knowledge.

4. Defining lexical semantics as a pipeline stage. In some approaches the distinction between lexi-
cal semantics and the conceptual system lies between processing stages in the interpretation
pipeline. For example, Allen’s (1987) “logical form” (a mix of case grammar and logical quan-
tifiers, closer to LF than the semantic-philosophical sense) is conceived of as an intermediate
stage where certain types of case role and scoping interpretation are performed, but prior
to resolving anaphoric reference and ellipsis ambiguities, or any kind of stereotype-, script-,
or plan-based interpretation. Here logical form has the advantage that it is considered to
be an intermediate result rather than the full meaning; further inferences can be made upon
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the logical form. Again, the drawback is that the evidence indicates automatic processing
extends to discourse and real-world knowledge. The particular choice of constraints on the
language of logical form cannot be justified empirically.

- Restricting lexical semantics to literal forms. Another pipeline-based distinction involves

literal versus figurative or metaphoric forms (Nirenburg & Levin 1991). The lexical se-
mantics stage comes first, and is responsible for parsing the surface grammatical form
into a largely uninterpreted result; for example, the result for posting growth leaves the
metaphor uninterpreted. The conceptual stage follows and is to produce a fully inter-
preted canonical form, which for posting growth is some sort of increase concept. The
problem is not with the idea that the purpose of lexical semantics primitives is to cap-
ture surface grammatical variation. However, the assumption that processing should take
place in corresponding stages is unwarranted, especially given cognitive propensities to-
ward automatization. With bound phrases like posting growth, the intended conventional
interpretation should be retrieved without necessarily first requiring a compositional in-
terpretation. Even for many novel metaphors, humans appear to perform interpretation
quickly by following conventional (and therefore, automatized) patterns (Martin 1988, 1990,
1991).

- Including only compositional-monotonic semantics. Another distinction (Bierwisch & Lang 1989;

Herweg 1991; Lang ef al. 1991) is that lexical semantics is syntax-driven and compositional.
Because whether an interpreter is compositional is such a notoriously vague condition (see
Partee 1984), we might try to take a slightly more rigid and concrete interpretation of the
distinction, namely that inference at the lexical semantics level combines structures purely
monotonically—that is, with no backtracking—while conceptual inference permits non-
monotonic composition decisions. Still, it is not clear that this condition has much dis-
criminatory power since it is so dependent upon the particular theorem prover and search
ordering rules used, and since the monotonic composition criterion can be circumvented by
building structures in parallel, like a chart parser does.

. Varying notation. Sometimes commonalities that may exist between lexical and conceptual

modules are obscured by different notations used at each level. For example, Allen’s (1987)
aforementioned logical form employs a mix of relatively standard constructs from case
grammar and quantification theories, whereas the stages that follow employ a variety of other
Al knowledge representation formalisms. While there are practical engineering reasons for
interfacing a standard linguistic theory to a standard Al theory, it can be difficult to tell
whether a theoretically meaningful distinction is being drawn.

Pinker’s Grammatically Relevant Subsystem hypothesis. Among recent approaches to lexical seman-
tics, Pinker’s (1989) appears to be most promising for the purpose of constructing a lexical semantics
module that is likely to approximate the CMI principle. The guiding principle of Pinker’s approach
is to minimize the specificity of the semantic features and roles, subject to the constraint of han-

dling morphosyntactic variation (but not lexical variation). In other words, what belongs in the
lexical semantics module is all and only ontological distinctions that help explain phenomena at

the morphological and syntactic surface-level. I regard this as a heuristic, because I do not feel a
sharp line can be drawn between knowledge that can and cannot influence syntax, but for cognitive
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processing motivations it is nonetheless advantageous to modularize knowledge, and then allow
intermodular interactions to influence syntax.

My approach permits arbitrarily complex semantic structures, thus following Jackendoff
(1972, 1983, 1990) and Pinker (1989). No one-case-per-argument constraint is enforced, though
the use of a case-grid type of thematic role system is an attempt to minimize the ratio of roles
to arguments. Jackendoff and Pinker deal with surface cases by using a set of linking rules to
map surface cases to open arguments in the complex semantic structures; a similar function can
be performed by signification relations in the Construction Grammar framework I use. Pinker
proposes the following “Grammatically Relevant Subsystem” hypothesis in the context of his
study on verb argument structure acquisition:

Perhaps there is a set of semantic elements and relations that is much smaller than
the set of cognitively available and culturally salient distinctions, and verb meanings
are organized around them. Linguistic processes, including the productive lexical
rules that extend verbs to new argument structures, would be sensitive only to parts
of semantic representations whose elements are members of this set. The set would
consist of symbols that have cognitive content, such as “causation” and “location,”
but not all cognitively meaningful concepts are members of this privileged semantic
machinery. (p. 166)

In this kind of approach the distinction between lexicosemantic and conceptual primi-
tives merely boils down to a matter of how specific the representational features are. The artificial
intelligence tradition simply employs some of the conceptual primitives for specifying lexicose-
mantic patterns or rules, with the object of including only the least specific features necessary to
account for syntax. Though Pinker denies that the primitives of the lexical semantic system are
necessarily primitives of the conceptual system, the thrust of his argument is just to distinguish
lexical semantics as a part of the cognitive system with a special function in acquisition, and noth-
ing in the argument actually prevents the conceptual system from embracing lexical semantics as
one of its components. Thus Jackendoff (1990) states:

it certainly turns out that only limited aspects of conceptual structure interact with
syntax. This might be seen as motivation for an independent level of §-structure that
encodes only a subset of conceptual information. But there is an alternative account
that requires no extra level of representation: one can incorporate the constraints
directly into the correspondence rule component. ... As far as I can see without
detailed examples, the constraints on the theory and the need for stipulation are
exactly the same in either case, and the latter treatment makes do with one fewer level
of representation. (p. 49)

Although this approach means that cases and slots are essentially the same, Charniak’s
(1981) well-known analysis of “case-slot identity” does not hold because verbs are not identified
one-to-one with predicates (frames). Charniak observes a number of theoretical implications that
arise as a consequence of either using the same role types for both verb frames and conceptual
frames (the “minimal hypothesis”), or using exactly the same frames as both verb and conceptual
frames (the “maximal hypothesis”). However, as Charniak writes,
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this theory rests on an assumption that underlying most verbs in English is a frame
which captures most of the verb’s meaning. If this is not the case, but rather a
verb plus arguments is represented by a large number of complex statements (as in,
say, conceptual dependency theory .. .), then we will again have lost the underlying
structure necessary for the theory. (p. 291)

Indeed, verb frames are represented here by structures composed of conceptual primitives that are
not necessarily themselves verb frames. Thus the use of thematic roles instead of strict case roles
eliminates the case-slot identity difficulties.

I also disagree with Pinker’s belief that the sort of distinctions made at the lexical se-
mantics level are insignificant with respect to cognitive categorization, though not because of the
question as to whether lexical semantics belongs to the conceptual system (to say that lexical se-
mantics does or does not belong to the conceptual system is just a terminological quibble). The
important point is that even if one excludes lexical semantics from the conceptual system proper,
it is still the case that the lexical semantics representation of an utterance is part of our conceptu-
alization of the situation. How we conceptualize a situation is at least as important to cognition
as the situation itself, since we have many alternate ways of conceptualizing the same situation,
upon which our responses depend. In other words, we cannot exclude any level of semantics—be
it lexical semantics, mental images, detailed conceptual structures—from the “meaning” of an
utterance.

442 Arguments for Lexical Semantics

Linguistic arguments for lexical semantics. Nearly all linguistic arguments for lexical semantics fall
into one of two classes. First, the sorts of primitive roles posited in most lexical semantics proposals
surface as closed-class morphemes in one or more languages. Since closed-class morphemes have
highly restricted functions, this argues for the primitive status of those functions. It is then
highly plausible that those same functions are employed wherever possible for verb complements
in the same language. Talmy’s (1985) survey of semantic categories, from which are derived
many of the proposed lexical semantics primitives, showed a remarkable overlap in the kinds of
semantic relations that can or cannot be realized both as closed-class “satellite” surface forms, or
as incorporated parts of a verb root’s meaning. Moreover, when the same roles occur in multiple
languages either as closed-class morphemes or in verb argument structures, as is often the case in
Talmy’s study, it suggests the roles are universal.

Second, the same roles also account for surface grammatical variation in the argument
structures over a wide range of verbs, both within and across languages. The case grammar and
thematic relation theories discussed above, as well as Talmy’s studies, are largely motivated by the
need to account for these generalizations.

Psycholinguistic evidence for lexical semantics. Pinker (1989) argues that the verb usage errors made
by children in the standard developmental sequence are explained by incorrectly constructed
semantic structures, and supports the lexicosemantic module hypothesis by accounting for over-
regularization phenomena in a wide range of examples involving argument structure alternations
in dative, causative, locative, and passive constructions. Such errors involve verbs used in the



4.4. LEXICAL SEMANTICS 85

correct sense, but with incorrect argument structures; similar errors have also been studied for past
tense acquisition (Bybee & Slobin 1982; Rumelhart & McClelland 1986). The three stages are:

1. Conservative usage. Initially, children learn the correct usage of constructions involving
particular verbs, for example, causatives like open, break, wet, and hurt (Bowerman 1974,
1982). There is no productive use of the constructions.

2. Overregularization. This stage, depending on the child and the type of error, typically occurs
within the range from ages 2,0 to 5,5-9;3. Children apply constructions productively to
verbs that in adult usage do not accept particular alternations. For example, the causative is
overextended in I'm gonna just fall this on her and, in a double-object construction, in Will you
have me a lesson? (Bowerman 1982).

3. Adult usage. Eventually overregularization errors drop out, particularly when alternate
lexemes (for example, causatives like knock down rather than fall) are learned.

Pinker posits “broad-range” and “narrow-range” rules that link syntactic forms to se-
mantic structures; these rules are sensitive only to the lexicosemantic level, and not the general
conceptual system. He is able to explain the overregularization stage by having the broad-range
rules already learned, but the narrow-range rules not yet learned.

Pinker also argues that the adult verb usage data suggest verb meanings are stored and
processed as divisible assemblies. Gentner (1981) surveys a number of differences between noun
and verb usage including (1) the relative difficulty of remembering the particular verb that was
used, (2) frequent change of verb in paraphrasing tasks, and (3) frequent change of verb in double
translation tasks. Pinker interprets these findings to indicate that verbs are represented not as
cohesive gestalts but as structures that can lose or gain elements.

Learnability arguments for lexical semantics. Pinker (1989) argues for modularization on the basis
that it makes more plausible assumptions about child acquisition of verb argument structure. He
criticizes the model in figure 4.13, arguing that it requires assuming that (1) children can accurately
encode the adult’s intended meaning from context alone, (2) a special explanation is needed for
acquisition of languages where correlations between syntax and semantics are different, and (3)
since languages are full of subregular patterns and rules that hold only part of the time, either
parents must filter out the violations (passives, deverbal nouns) or children filter them out using
external criteria. Instead, Pinker proposes the model in figure 4.14 which he argues makes simpler
and more reasonable linguistic and psychological assumptions: (1) syntax and semantics are related
by formal grammatical linking principles that may be universal and fully regular, and (2) parents
need not filter their speech, and need merely use semantic structures that the child shares by virtue
of common context.!®

'*Note that in its pure form, Pinker s argument depends on the assumption that lexical semantics is innate, as discussed
below. However, I believe a relaxed version of the argument could be formulated, where lexical semantics evolves rather
than being innate, but still facilitates acquisition. Consider a purely intuitive analogy to a back propagation network.
Inserting an intermediate hidden layer of the correct restricted size can bias the network to generalize much more
accurately, even though the hidden layer weights are not preset but evolve. ’
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Processing motivation for lexical semantics. Aside from arguments that it facilitates verbal argument
acquisition, an argument can also be made that intermediate lexical semantics module facilitates
faster adult language processing. Suppose that module C contains conceptual categories that the
agent formed for non-linguistic reasons. Suppose further that conceptual regularities in module
C help account for syntactic phenomena in a purely linguistic module A, but because C is large
and complex, it is not possible to index the correlations between A and C for quick retrieval
without incurring unrealistically expensive storage costs. In neural terms, this might correspond
to topological complexity limitations. If, however, enough regularities can be capture in module B
at an intermediate level between A and C, a good part of the processing that would have required
interactions between A and C could be replaced by within-module processing in B, speeding up the
recognition times. However, these intermediate categories in B cannot fully take over the function
of C because conceptual structure within B is too restricted. Thus some correlations must still be
indexed all the way from A through to C. Moreover, B occasionally makes mistakes that C must
correct, albeit at a slower speed.

On the innateness of lexical semantics. 'Whether the lexical semantics module is innate is a far-ranging
question we cannot hope to answer yet, but I will offer a few comments from the computational
point of view. In his arguments from the standpoint of learnability, Pinker argues for the innateness
of the lexical semantics module. This seems improbable for the level of detail of his lexical semantics
primitives, which include entities like EVENT, PATH, liquid/semisolid, time-line. It is more reasonable
to take the intermediate position that any innate biases are too primitive to easily pin conceptual
tags on, and that children adapt/evolve the exact lexical semantics primitives. Pinker leans away
from this position most likely because of over-restrictive assumptions on how children learn in
the presence of exceptions to subregular patterns (what in machine learning would be termed
“noisy inputs”) and on how statistical conceptual clustering methods can be biased to incorporate
implicit classes for generalizing on indirect negative evidence. In fact humans are faced with
subregular patterns in nearly every aspect of the environment and therefore concept formation
and conceptual clustering are fundamental and ongoing areas of machine learning research, and it
would be premature to make strong evaluations of the potential behavior of the many competing
symbolic, statistical, and neural approaches. Pinker argues that “one would not want to posit a
complex ad hoc pruning algorithm [for conceptual clustering] just for this task, as it is not the kind
of task that the child has any strong need for” (p. 272), but the “ad-hoc-ness” is more a reflection of
the immature state of conceptual clustering models than a convincing argument against the need
for them.

We can adapt the processing speed argument above into a more general conjecture in the
spirit of statistical and neural Al approaches, in which learning is noise-tolerant and the syntactic,
semantic, and conceptual modules evolve in parallel. This is more in line with the proposed model’s
view of the human cognitive mechanisms’ tendency to automatize frequently-used processes, thus
adapting to speed up overall average recognition and reaction times. Suppose modules A and C
are as before, but instead of prewiring primitive predicates into module B, new predicate categories
are formed in response to the usage patterns between A and C. Again, B will be too restricted in size
and complexity to absorb all of the regularities between A and C. The more the lexical semantics
module B evolves, however, the more it facilitates further learning of the intermodular correlations.
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4.5 Signification Mappings

A differentkind of representational need from those we have been considering is the need
to link lexicosyntactic or grammatical forms to structures in the mental image, lexical semantics,
and conceptual modules. The proposed modularization follows the philosophy of Fillmore's (1988)
Construction Grammar. Fillmore defines a construction as “a pairing of a syntactic pattern with a
meaning structure”. Like HPSG, this approach returns to de Saussure’s (1966) idea of a sign, which
“unites, not a thing and a name, but a concept and a sound-image (p. 66)”. Note that de Saussure’s
wording places his approach firmly in the mentalist tradition. de Saussure goes on to replace these
terms with signifié and signifiant, from which my term signification mapping derives.

Signification mappings are permitted to map lexicosyntactic constructs to any of the
modules. However, those that map lexicosyntactic constructs to the lexical semantics module,
but not the conceptual module, are postulated to be especially important in terms of capturing
generalizations involving grammatical variation. In many theories similar kinds of mappings are
given special status as “linking rules”. We will see how signification mappings are encoded in
subsequent chapters.

4.6 Summary

In this chapter I have discussed some representational needs that can be elegantly met
by a modular ontology, including:

1. image reification, the relationship between concrete “vivid” conceptualizations and reified
schematizations of images, including imposition of foreground /background distinctions,

2. associative grounding, the relationship between perceptually grounded image schemas and
metaphoric uses of image schemas,

3. compatible differentiated semantics, the relationship between alternative interpretations or
“meanings” that are compatible, handled by the notions of cross-modular semantic dis-
tinction and associatively inferrable conceptual shift, and

4. signification, the relationship between grammatical roles and thematic and conceptual roles.

In addition, to further motivate taking a modular ontology as the representational basis, evidence
from various cognitive disciplines in support of mental image and lexicosemantic modules has
been surveyed. The following chapter describes a particular approach to representation that
fulfills these objectives, and which is amenable to probabilistic modelling of automatic inference.
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Chapter 5

Ontological and Grammatical Primitives

This chapter surveys the types of knowledge structure primitives used in the proposed
parsing and interpretation model. The object is to construct a representation for mental images,
lexical semantics, the conceptual system, and the phrasal lexicon, adhering to the modular philos-
ophy described in chapter 4. To facilitate evidential reasoning and efficient storage, all knowledge
in the model is eventually encoded using MURAL as described in chapter 6, but when thinking
about linguistic knowledge a higher-level notation is convenient.

I have chosen to follow the philosophy of Construction Grammar (Fillmore 1988) as a
basis for extension. A number of other grammatical frameworks could have been used. The
crucial requirements are that (1) it is structuralist rather than transformational, (2) syntactic and
semantic information are represented in such a way as to permit a uniform statistical treatment of
disambiguation, and (3) complex syntactic and semantic patterns can be defined for the purpose
of stipulating statistical information about those patterns. Construction Grammar satisfies the
first criterion by providing a uniform notation for syntax and semantics. It satisfies the third by
permitting constructions of arbitrary complexity (even if the syntax redundantly mirrors a pattern
that could have been derived by composing simpler constructions).

The literature varies widely in notation, partly due to the differences in underlying
theoretical paradigms. I have tried to keep the dependence on notation to a minimum in this
chapter. However, a bit of formal notation is sometimes unavoidable, when the object is to
communicate the differences between the proposed model and others. Where necessary, a feature-
structure notation that is as close to “standard” as possible is used. Details of the representation
formalism are reserved for chapter 6.

Many modern computational theories of grammar have returned to the structuralist
rather than transformational paradigm. Common to most of these models is the assumption that
various structuresin the database represent constraints on legitimate structures. The most common
form of structureis the feature-structure, also abbreviated as f-structure, which are structures formed
by recursive role-filler or attribute-value composition. Internal substructures are permitted to be
co-indexed, meaning that the same substructure fills two or more roles. To denote co-indexed
substructures, I use the standard device of placing the same superscript number after each role;
any information written under one role applies to all others with the same superscript (to avoid
confusion, all information is generally collected under the same role). Especially in more formal
discussions, I also refer to a feature structure as a feature-DAG to connote the distinction from a
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simple feature-vector.!

The most widespread method of interpreting the structures employs the recursive unifi-
cation operation, which combines feature-structures by identifying the root of one structure with
some node in the other. Each node in the first structure is matched to a node in the second, with
the restriction that the role paths must match. The new structure resulting from unification has,
at each node, the features from both original structures. The constraint satisfaction power of this
approach comes from the fact that the unification operation enforces feature consistency at each
matched node, i.e., no mutually exclusive features can be present in any two nodes that are to be
unified. The most influential models of this type include Functional Grammar (Kay 1979), LFG
(Bresnan 1982), and HPSG (Pollard & Sag 1987). Shieber (1986) gives an excellent introductory
survey of unification-based approaches.

The ontology described here is comparable in expressiveness to typical conceptual repre-
sentations. However, besides (or rather, because of) its orientation towards statistical association,
the representation is also powerful enough to address the less obvious yet important issues raised
in the preceding chapter. With respect to these issues, implementation methods are discussed in
the course of introducing the modules’ primitives as they become relevant. Primitive mechanisms
for several major areas have not yet been developed, including dynamic temporal representations
and the certain quantification types. Several other areas that are standard concerns in knowledge
representation do not require special mechanisms here, but the appropriate ontological primitives
have not yet been defined; these include instantiation for real-world extensional entities, and
various modalities and belief predications.

Notational de-emphasis notwithstanding, the primary goal of this chapter is to synthesize
and formalize the modular paradigm of chapter 4 into a common representational framework that
is amenable to the proposed evidential interpretation methods. Thus particular attention is paid
to ensuring the concept space is well-defined, to facilitate constructing an underlying probabilistic
event space as described in chapters 6 and 7.

5.1 Primitives for Mental Images

A substantial body of work in cognitive semantics deals with grounding semantics in
the human perceptual system (Talmy 1983, 1985, 1988; Lakoff 1987b; Langacker 1987). In the L,
project (Feldman et al. 1990; Regier 1991b, 1991a; Weber & Stolcke 1990), visuospatial primitives
are selected by testing their adequacy for learning spatial vocabulary across many languages.
My choice of semantic primitives is influenced by such studies, though because these studies are
ongoing the selection must be regarded as extremely preliminary.

The representation sketched here uses compositional frames, that is, images are organized
as collections of structured hierarchical objects. The representation is propositional rather than
array-based, and is conveniently representable using either feature structures or DAGs. As such
it is similar to Marr & Nishihara’s (1978) 3D representation and to Hinton’s (1979b, 1979a) model.
However unlike those models no commitment is made here as to the coordinate system, say,
whether positions are specified in object-centered or viewer-centered terms.

Thave three goals behind laying out a set of mental image primitives. First, they serve as
an example of how mental images could be integrated into a theory of language. Second, enough

'In graph theory, a DAG is a directed acyclic graph.
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primitives are included to crudely represent the “vivid” semantics of the nominal compounds in
my corpus (described in section 7.1.2). I am not going to propose a sufficient set of primitive
types or relations, but I do consider certain primitives necessary at a minimum. Third, a subgroup
of the primitives account for a range of types of physical constituency involving discrete objects,
groups, substances and masses, a problematic area of ontology representation that is usually
ignored. Under this account, atypical schematizations of concepts are handled through type coercion,
a relationship between a concept and an alternate, possibly metaphoric, schematization of the
concept.

5.1.1 Primitive Features for Visuospatial Mental Images
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Figure 5.1: Primitive features for visuospatial mental images.

At the atomic level there are a number of features describing primitive characteristics
of visuospatial mental image entity. The features used, listed in figure 5.1, are derived in part
from Pinker (1989) though they are more flexible with respect to type-coerced constituency, as
discussed below. Each bracket indicates a feature dimension, with the enclosed features being
mutually exclusive. Except for nested dimensions, each dimension is orthogonal, meaning that
any combination of features from separate dimensions is permissible. Features that are listed in a
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nested bracket can only apply when the “parent” feature is set; otherwise, they are meaningless.
Such features are sometimes referred to as “subfeatures”.

The two feature dimensions that are listed first deal with the dimensionality of the mental
image entity. For example, the aerial view of a road is a one-dimensional object, embedded in a
two-dimensional space (assume that the road has curves and that elevation is imperceptible).

The next feature dimension distinguishes discrete and mass entities. An object concept
represents an entity perceived as discrete and individuable (thus the discrete feature is set), such
as Pacific ocean. In contrast a mass concept represents an entity perceived as non-individuable and
amorphous, such as ocean water.

The +location feature marks entities that are perceived as locations. Although the distinc-
tion makes intuitive sense, theoretical justification for this feature is primarily linguistic, because
not all concepts can equally easily be referred to by surface locative forms. For example, deic-
tic terms like “there” apply more readily to a location like coast than to the typically non-location
handle. Somewhere in between fall the concepts like road, which sometimes schematize as locations.

Concepts with the +aggregate feature set represent entities perceived as composite col-
lections of other entities. If the +group feature is also set, this means the entity is perceived as a
collection of like constituent entities; note that this is a form of coarse quantification. The way the
constituent roles are specified is described in the next subsection.

The color features are obvious, as are +/-animate and +/-human. A set of additional
+featured features are used only to indicate the presence of various roles specifying other properties
and qualities of the entity; these are described further below.

5.1.2 A System of Constituency Roles with Type Coercion

Thus far we have considered only features, which can be thought of as one-dimensional
(single argument) predicates on concepts. We now consider compositional roles (which will be
formalized in chapter 6). Their first application, a natural one, is to represent the compositional
structure of aggregate mental image entities. Aggregates have roles filled by subparts. Such roles
are often called “part-whole” roles, but because the term “part-whole” is badly overloaded, I will
use the term constituency.

Figure 5.2 shows how different kinds of constituency are induced by a set of role features,
which operate in the same way as the concept features above, except that they are attached to
roles. Some common types of roles are also shown, along with their underlying role feature sets.
For example, the standard type of constituency in desk drawer? is denoted by the COMPONENT
role between desk and drawer in figure 4.3. On the other hand, dirt clod (p. 47) requires the FILL-
X-COMPOSITION role indicating that the entire composition of the clod is constituted by dirt, and
the dirt fills the entire shape of the clod. Both the COMPOSITION and PARTICLES role are needed
for seed pods, shown in figure 5.3.

As the table in figure 5.2 shows, the precise function of the role also depends on the
concept types of the whole and constituent part, especially with regard to whether they are mass or
discrete. In fact, the first four entries are forms of type coercion in which discrete nonmass objectsare
transformed into substance masses. As a more obvious example of the type coercion relationship,
consider:

?From Warren (1978, p. 127).
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- +excl-comp (is the exclusive composition of the whole)
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Role Features Whole Part  Example
FILL-X-COMPOSITION composition +excl-comp +shape-fill -group mass ~ discrete skunk meat ( “grinding”, “quantitization”)
FILL-X-COMPOSITION composition +excl-comp +shape-fill +group mass ~ discrete skunks meat ( “grinding”, “substancification”)

FILL-COMPOSITION  composition -excl-comp +shape-fill —group skunk hash

COMPOSITION composition —excl-comp ~shape-fill —group discrete discrete skunk burger

COMPONENT component —shape-fill -group discrete skunk exhibit (i.e., a skunk at the zoo)
PARTICLES component —shape-fill +group mass  discrete skunk herd

Figure 5.2: Constituency role features for visuospatial mental images, along with some common examples.

TYPE: pod
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COMPOSITION: [P ARTICLES: [ TYPE: seed]

Figure 5.3: Constituency in seed pod.

(5.1)  There’s skunk all over the roadway.

The concept skunk is usually a discrete object, but in this case, it is coerced into a substance that
one constructs by mentally “grinding” the skunk. The FILL-X-COMPOSITION role performs the
coercion when applied to a discrete concept, as in skunk meat. Setting the +group feature indicates
that the meat is derived from some group of skunks rather than an individual skunk. Wilensky
(1989) has referred to these as “quantitization” and “substancification”.3

A similar relationship holds when a group of like discrete objects is treated as a group
mass. The PARTICLES role in seed pod or skunk herd exemplify this transformation.

Conversely, a mass concept can be transformed into a discrete object consisting of some
quantity of the mass. The standard COMPOSITION role performs this function for dirt clod or tofu
burger. Less obviously, the same role can be used to transform mass concepts like water into some
imagined but nameless body of water.*

A couple of caveats on what constituency roles are not: (1) Constituency roles are not
meronymy relations. Meronymy is a relationship between two lexemes where some sense of one
denotes a part of some sense of the other (Cruse 1986). In contrast, constituency is a relationship
between two conceptual entities. Moreover, the term “meronymy” is subject to vaguenesses in the
definitions of “part” and “sense”. (2) Constitu:ncy roles are not image schematic, in the sense that

*Wilensky’s distinction actually differs slightly due to ontological differences. Quantitization transforms a discrete
individual object into a mass (Your skunk is all over the roadway), whereas substancification transforms a category concept
into a mass (Skunk is all over the roadway). In Wilensky’s ontology, categories are primitive concepts at the same level
as objects, which is not true of the analysis I propose. To explicitly represent that the source was possibly more than a
single particular skunk, an (arbitrarily sized) set of skunks can be ground into substance.

*In Wilensky’s ontology this is an individuation function performed by the “AIO” (an instance of) relation.
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no figure/ground or landmark/trajector schema is imposed. Although they represent visuospatial
images, mental images need to be reified into image schemas such as containment in order to impose
a choice of foregrounding. This is described in section 5.2.2.
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-overlap
—contact
{ CMabove (center of mass of all constituents above CM of whole)
CMbelow

CMright
3 1

CMside {CMM
\ CMback

( { +contact (boundaries of all immediate constituents touch)

Figure 5.4: Supplementary constituency-related features for visuospatial mental image entities.

In addition to the type of constituency, the location and orientation of constituents needs
to be specified. Marr & Nishihara (1978) suggested that these be represented relative to their
immediate whole. Hinton & Parsons (1981) argue that all such object-centered positional relations
are preserved except for handedness. I will only be making very crude assumptions about the
conclusions that the representation makes readily available. Location is specified using various
prototypical constituency frame types that describe idealized configurations between multiple
constituents, for example, whether one constituent is above or below another, or whether they
touch. This is accomplished by the supplementary set of features in figure 54. If the +contact
feature of an aggregate is set, then all of its immediate constituents are understood to be in contact
with the whole; +overlap is a stronger condition yet. The other features specify where the centers
of mass of the immediate constituents are, relative to the center of mass of the whole aggregate.

Though I agree that the way orientation is specified should probably also be relative
somehow to the immediate whole, as of now orientations are only specified in viewer-centered
coordinates, as described below.

5.1.3 Other Roles for Mental Images

We now consider some non-constituency roles, for holding orientation and other infor-
mation. The orientation primitives are based on the L, project’s preliminary results on identifying
language-universal primitives (Regier 1990, 1991b, 1991a, 1991c; Feldman et al. 1990). Again, it is
my intent to give the flavor of the model’s representation philosophy; no attempt is being made to
address vision issues here.

A sampling of non-constituency mental image roles is shown in hierarchical form in
figure 5.5. Features are only worthwhile in the bottom half (where they generate a number of
different roles combinatorically). The property and quality roles are differentiated by the fact that
property roles are filled by discrete concepts, while quality roles are filled by nondiscrete values.
The only case of nondiscrete values suggested here are continuous-valued scalars.

A GEOM or SHAFE role is filled by a concept representing the geometry, or specifically,
the shape of the entity. The EXTENSION role is filled by a concept that is the agent’s representation
for the real-world extensional identity of the imaged entity. It could be argued that the role is
conceptual, and not a mental image role.
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r FEATURE:
PROPERTY:  (discrete)
GEOM:
{ { {SHAPE:
EXTENSION:
¢ QUALITY: (nondiscrete)
( SCALE: (continuous)
{ MEASURE: (with metric; probably only belongs wfischemas)
1stD (akways the major axis)
J 2ndD (secondary axis - minor axis if 2D)

3rdD (tertiary axis - minor axis if 3D)
¢ theta (orientation of major axis)

| phi  (orientation of major axis if 3D)

xi  (orientation of secondary axis if 3D; handedness if 2D)
+symmetric (lower endpoint is opposite of upper endpoint)
-symmetric (lower endpoint is 0)
+bounded (upper endpoint is 1)
U\ \ ~bounded (upper endpoint is infinity)

Figure 5.5: Supplementary roles for visuospatial mental images.

Scalar quantities can be of four ranges, depending on whether the +symmetric and
+bounded role features are set. The +symmetric feature indicates the upper and lower endpoints of
the range are centered around zero; otherwise the lower endpoint is zero. The +bounded feature
indicates that the upper endpoint is one, rather than infinity. There are three scalar roles specifying
the size of the entity along its (1) major axis, the longest axis that can be drawn through the entity,
(2) secondary axis, next longest axis that is orthogonal to the major axis, and (3) minor axis, shortest
axis, orthogonal to both others. An additional three scalars specify the entity’s orientation.

5.2 Primitives for Lexical Semantics

5.2.1 A Feature System

Inow outline the proposed lexical semantics module, to flesh out the semantic character-
istics I think are important for this level. We begin with the feature system, which is a supersystem
of the features employed for mental images. There is a strong methodological motivation and
a weak theoretical one for including the mental image primitives. The theoretical motivation is
that mental image distinctions like discretefmass, +/-location, +/-group, +[-animate, and +/-human
do surface as inflectional, morphological, and argument structure variations. The methodological
motivation for including all the rest of the mental image distinctions is that arbitrarily excluding
the other primitives would seem premature.

There are only a few new features. The +/~craftable feature distinguishes substances that
are simply conceived of as matter from materials over whose shape the agent has control, at least
hypothetically.

The abstract feature identifies entities like states, events, processes, and categories. All
mental images are concrete, so this feature was not needed earlier. Following Bach (1983, 1986),
the term eventuality is a general category covering states, events, and processes. Barwise & Perry
(1983) use the term “situation” to cover the same things, but are more committed to a realist
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{abstmt { { uality {MP'WSS
N category

Figure 5.6: A feature system for lexical semantics.
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interpretation.® There are a substantial number of subfeatures for eventualities; they are omitted
here. Instead they are discussed below, in conjunction with their function of identifying thematic
roles.

Note that though every semantic substructure type is a category in one sense, here
category is meant in a different sense. The category feature marks semantic structures where the
notion of categoryhood is explicit, for instance in the substructure Interstate highway category needed
to handle

(52) The legislature considered designating Highway 17 an Interstate in order to qualify for
federal funds.

Contrast this with the non-category structure Interstate highway used to handle the compound
Interstate truck stop meaning a truck stop situated on an Interstate highway, and not a truck stop
situated in the category of Interstate highways.®

5.2.2 A Thematic Roles System

The thematic role system described in this section is most directly related to the “case
grid” systems of Somers (1987) and Ostler (1980), but is also strongly influenced by spatially-based
cognitive semantics (Talmy 1983, 1985, 1988; Lakoff 1987b; Langacker 1987; Jackendoff 1972, 1983,
1990; Pinker 1989) and work on aspect (Bach 1983, 1986; Parsons 1985, 1990; Herweg 1991). Idonot
propose a thematic role system that claims to provide a full argument structure for the meaning
of every verb. As with Jackendoff’s and Pinker’s theories the semantic representation allows
nested structures, emphasizing flexibility and expressiveness rather than flat predicate-argument
structure. Verb meanings in this approach are permitted to be composed out of multiple case
frames. The approach also permits the same concept to fill different roles from multiple frames to
help account for instances where an entity appears to be playing multiple case roles, as in Schank’s
(1973) Conceptual Dependency representation.

Overview. In discussing the lexical semantics features above I omitted the features distinguishing
subtypes of eventualities. As can be seen from figure 5.7, the breakdown of eventuality types is
reasonably detailed. Rather than explicitly enumerating the features, the most important frame
types are listed hierarchically. The distinctions are finer than in Pinker’s (1989, p- 195) proposal,
which distinguishes events and states using a +/-dynamic role feature, and subcategorizes them
with a +/-control role feature yielding the frame types have and act for the +control case, and goand
be for the —control case. The approach of giving verb semantics by combining eventualities follows
Parsons’s (1985, 1990) subatomic semantics and Dowty’s (1979) work on Montague grammar.
Many of the frame types are frequently called image schemas. Image schemas are the special case
of eventualities that are associatively grounded in mental imagery (and thus indirectly possibly
eidetic memory); this is discussed later.

Perhaps the most striking characteristic of the thematic role system is that it has exactly
four basic role types. The type of frame that a role is used in determines the precise function of

*See Higginbotham (1983) and Vlach (1983) for arguments for event-based approaches over situation semantics.
®Section 6.4.1 discusses how explicit categories work together with propositional rather than terminological IS-A
relations.
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eventuality SOURCE PATH
state
Im-tr - TRY
containment - BOUNDARY
part-whole
isa-category -
peripheral - BOUNDARY
possession - -
has-property - -
Im-Im LMONE -
link LMONE LINK
Im-tr-lm LMONE TRY
linear-order LMONE
locative
temporal
value
front-back BACK
flank LEFT
above-below  BELOW
state-schema
opposition  OPPST:state
nonbinary  STSET
discretization MIDPT
scalarization
bounded BEGPT
locative
vert  DOWNPT
horiz  LEFTPT
quant LEAST
positive BEGPT
negative  BEGLM
unbounded BEGLM
quant  LESS
event
accomplishment
locative-acc  ORIGIN:loc  TRY
achievement
locative-ach  ORIGIN:loc
accfach*
causal CAUSER MEANS
volative AGENT PLAN
instrumental INSTRUMENT MEANS
psychological STIMULUS  CAUSE
possessive GIVER CAUSE
value-ev INITVAL:val
state-change  INITST:state
loc-st-chg  INITST:loc-st
val-st-chg  INITST:val-st
process.
activity

Figure 5.7: Overview of thematic role system. *An acc/ach frame is an accomplishment if PATH is a process,

and an achievement if PATH is an event.

CHAPTER 5. ONTOLOGICAL AND GRAMMATICAL PRIMITIVES

GOAL LOCAL
LM
CONTAINER CONTENT
WHOLE PART
CATEGORY MEMBER
CENTER PERIPHERY
POSSESSION POSSESSOR
PROP TR
LMTWO -
LMTWO -
LMTWO TR
LMTWO
FRONT ENTITY
RIGHT ENTITY
ABOVE ENTITY
ST:state TR
ST:state TR

TR
ENDPT
UPPT
RIGHTPT
MOST
ENDLM
ENDPT
ENDLM
MORE

DESTINATION:loc PATIENT
DESTINATION:loc PATIENT

EFFECT:s/e PATIENT
INTENT:s/e PATIENT
EFFECT:s/e PATIENT
EXPERIENCER  EXPERIENCE
RECIPIENT PATIENT
FINALVAL:val PATIENT
FINALST:state PATIENT
FINALST:loc-st PATIENT
FINALST:val-st PATIENT

EV:event
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that role. Some roles are used exclusively in conjunction with certain types of frames, while others
attach to different frames. One might think of this as a form of context-sensitivity in role function.
Two major questions arise as to the motivation for this arrangement.

The first issue is why one would want to avoid simply having arbitrarily many types
of roles. The empirical motivation against this is discussed below. There is also a computational
motivation related to tractability concerns, namely to reduce the size of the concept space, by
keeping the number of features needed for roles to a minimum. This is accomplished as described
above by making the interpretation of roles depend as much as possible on the frame. Suppose
there is some arbitrary number r of role types, and no restriction is placed on the combination of
roles particular frames can have. If each frame can have up to b roles and frames can be nested
to depth d, then the concept space includes O(rcb?) possible structures, where ¢ is the number
of different feature combinations. In standard knowledge representations r might typically be
on the order of hundreds or thousands, whereas if we know that frames only occur with four
role types the concept space is reduced by several orders of magnitude. Even more importantly,
roles turn out to be far more difficult than simple feature bundles to represent effectively using
vector representations. Although this is an open problem in neural network research, any method
of reducing the complexity of roles stands to gain. It would be reasonable to speculate that
concept formation also increases in difficulty much more rapidly with role complexity than feature
complexity.

The second issue concerns the assignment of specialized roles to general primitive roles.
The question is why the specialized roles are subsumed under four general roles, and whether there
is any significance to labelling the roles SOURCE, PATH, GOAL, and LOCAL. Why not, for example,
just label them 1, 2, 3, and 4? For that matter, one could minimize the number of roles by having
just 1 and 2, since anything can be represented using binary relations.

In fact, an empirical claim does underlie the particular arrangement chosen. What
is significant about the roles is not their intuitive labels, but the patterns of usage of the same
roles across different frame types. EXPERIENCE (grief) and PATIENT (roses) often surface in the
accusative as in She caused him grief and in for giving her roses of the wrong color. Similarly, the fact
that EXPERIENCER and RECIPIENT are both GOAL roles surfaces in grammatical subregularities
like their use of dative case—He caused her grief and She gave him roses—or the corresponding to-
PPs—He caused grief to her and She gave roses to him.” That both EXPERIENCER and LMTWO (the
second landmark in image schemas with two landmarks, like West Coast in the locative They moved
from the East Coast to the West Coast) are both GOAL roles captures the shared use of to-PPs, though
the locative does not permit the dative. The PATIENT in a location state change frame is semantically
very close to the TR (trajector) role in a flank frame. Polarization tendencies like the fact that down
is typically considered less are captured by subsumption under the SOURCE role. Having just two
roles would fail to capture all the subregularities across frame types. The correspondence is by no
means perfect and there are certainly many pairs of specific SOURCE role types that by themselves
predict no surface correlations. However, the fact that they share surface grammatical predictions
with other related roles constitutes evidence for an indirect “family resemblance” similarity in the
way the roles are cognitively represented. The labels are merely intended to convey some notion

7Many people find He caused grief to her strange, yet do find the construct acceptable with heavy NPs as in He caused
grief to anyone foolish enough to get involved with him or He caused great and severe grief to her (Chuck Fillmore, personal
communication).
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close to a “core” significance.

The case grid organization also serves the secondary purpose of providing primitive
roles for the conceptual system; it defines a combinatorically restricted Al-style role hierarchy.
This is discussed in section 5.3.2.

The interpretations shown of thematic roles for different frame contexts are only some
of the major classes. The listing is by no means exhaustive. Fairly broad coverage is intended,
however, since I have included all roles needed to interpret the nominal compound subcorpus
taken from Warren (1978).

Image schemas and constituency reification. The cognitive status of image schemas with respect to
representation and processing has not been clearly laid out in the past. As a first stab toward
remedying this, I put forth a more concrete proposal of the relationship between mental images
and image schemata, namely that image schemas are reified mental images where certain components
and relations have been foregrounded. In knowledge representation, to reify is to view an abstract or
implicit relation as a concrete concept, node, or object (Wilensky 1989, 1991). We consider the first
of three kinds of reification here, constituency reification; the others are discussed later.

i SEM: 1or 2 (see wext
r TYPE: containment
TYPE: bone
(a) FRM: ! | CONTAINER: [ COMPONENT: [TYPE: 2marrow) ] ]
L LCONTENT: 2
[ SEM: 10r 2 (see wexv)
[TYPE:  part-whole
(b) . TYPE: desk
FRM: * | WHOLE: | COMPONENT: { TYPE: Zdrawer]
L | PART: 2

Figure 5.8: Constituency reification on mental images, producing image schemas for (a) bone marrow and (b)
desk drawer (see text).

In constituency reification, an explicit containment schema is used to relate some con-
stituent to a whole object for which the agent has formed a mental image. Constituency reification
makes it possible for the agent to conceptualize a previously implicit constituency relation as an
object, albeit an abstract one. For example, figure 5.8 shows the structures containing both the
mental image and the reified image schema for bone marrow® and desk drawer®. The SEM role is
used to pick out the specific substructure of the FRM that is being signified (see section 5.4.2). With
2 in the SEM role, the structure would be used to represent the marrow or the drawer. On the other
hand, with ! the structure would be used to represent the containment, for use in cases such as

(5.3)  Becky says half the fun of eating marrow is that the marrow is in the bone.

Reification is what makes visual foreground /backgrounding possible. The mental image
level representation contains no foreground /background distinction. However, the propositional
image-schema level uses the LOCAL role to impose a foreground or trajector function on particular
objects, and the SOURCE and GOAL roles to impose a background or landmark function.

®From Warren (1978, p. 185).
®From Warren (1978, p. 127).
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After image schemas have been learned they can be applied to abstract concepts as well
as perceptual ones. However only spatial (or other sensory) concepts can be mapped back to the
mental image level.!® This accounts for the fact that though we can think of law degree!! in terms
of the containment of the degree by the field of law, and though we can apply the usual operators
on containers and talk about getting out of law, we cannot visualize either the degree or law field.

In our model image schemas are given fundamental status but not as representational
primitives. Lakoff (1987b) considers image schemas the primitive relations out of which cognitive
“chunks” are built (what he calls ICMs or idealized cognitive models). However, this would leave
open the question of which sense to consider primitive, since primitive relations can be sensed in
more than one way. Containment can be perceived visually yet a blind person can also sense it
by feel. In fact all the different ways of sensing a relation reinforce the meaning of the abstract
primitive (this is what I mean by associative grounding, more formally defined below).

Cognitive semanticists may take exception to the use of “image schema” to mean a non-
perceptual conceptual structure. However, to “schematize” something is to abstract it and even
perceptual images, once abstracted, can lose their perceptual status. Abstract, spatially-motivated
relationships become propositionalized to the point where they can be applied to non-spatial, non-
visualizable (non-imageable) concepts as well. Normally the propositional relationship would be
thought of without actually visualizing/imaging the composite picture. However if forced to, one
can sometimes construct visual interpretations for abstract domains, e.g., the idiom hump day is
construed (or at least, was construed when initially coined) by visualizing the seven-day week as
a hill centered at Wednesday.'? (Following Levesque (1986), we might call this representation of
the metaphor “vivid”.) Of course for spatial concepts, one can simultaneously think of the abstract
relationship between them, and visualize them.

States. States describe non-changing situations. They do not intrinsically include any information
on duration, and can hold for arbitrary lengths of time. A state has no culmination or intrinsic
termination.!3

Events. All events have intrinsic terminatation points, so one can sensibly ask whether an event is
“finished”. Usually events also have intrinsic, definite culmination points. Events are broken down
into two major classes: the accomplishment and the achievement. An achievement is a happening that
is conceived of as an instantaneous event such as hit, stop, win, or stumble. One cannot meaningfully
ask for the duration of an achievement. In contrast, an accomplishment is an event that is conceived
of as an event whose progress spans some temporal interval.

Many types of event frames can be used for either accomplishments or achievements. In
all event frames except locative events, the PATH role specifies the means by which a state change

100y, for that matter, further back to array or eidetic store.

1 From Warren (1978, p. 174).

1?Nowadays, of course, the term is so entrenched in certain dialects that hearers need not perform the visualization:
hump day is simply a lexicalized form of Wednesday.

13This may be confusing since one might argue that owning a 57 Chevy from 1963 to 1966 is a state. Note that this phrase
might mean two different things, however, one of which is an event and one of which is a state with no termination.
First, in the terminated sense it is an event, a sense we might reinforce by changing the tense—owned a 57 Chevy from
1963 to 1966. Second, viewed as a state, someone who can be predicated now as owning a 57 Chevy from 1963 to 1966 will
always be predicated as such. In other words, the state sense has no termination, even though the event from which the
state is reified contains a termination point.
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is brought about. If the semantic substructure that fills the PATH role is a process (see below) then
the event frame is taken to be an accomplishment. On the other hand, if the substructure is another
event, the event frame is taken to be an achievement.

Locative events are statically schematized versions of spatiotemporal (motion) images.
As I mentioned earlier the model currently has no representation for spatiotemporal images. If
a representation were developed, the method of schematization would be what Langacker (1987,
p. 145) calls “summary scanning”. The spatial path taken by the trajector/patient over time is
converted to a static, directed curve containing all and only those points passed through. Such a
mechanism has been implemented in a connectionist model to handle motion prepositions in the
L, project.!*

The notion of agency is accounted for by wrapping a causal event around some effect
(state or event). This can be glossed by saying that skater is designated the agent in The skater rolled
down the hill by using the semantic interpretation The skater caused the skater to roll down the hill. This
is a different resolution of the problem that Jackendoff (1972) noted with sentences whose subject
functions both as theme and agent. Jackendoff argued that thematic relations, unlike case systems,
do not constrain each noun to only one role, and thus more elegantly capture the similarity of the
above sentence to The tire rolled down the hill. In Jackendoff’s proposal skater functions as both the
theme and the agent of the same sentence frame. In contrast I distinguish the causal frame, with
which the agent role is associated, from the effect frame, with which the theme role is associated.
Both the causal frame’s agent role and the effect frame’s theme role are source roles in the case
grid. This more cleanly captures the generalizations in the previous two sentences, as well as The
skater rolled the tire down the hill.

Processes. 1 propose using the discretefmass feature to distinguish events from processes when
a frame is abstract rather than concrete. Processes resemble events in being dynamic, changing
situations. However, unlike either accomplishments or achievements, they are not intrinsically
terminating. Whereas events have culminations giving them the discrete property, processes are
indefinitely bounded entities, giving them the mass property.

The literature does not usually differentiate the terms “process” and “activity”, but I
define activity as a special case of process that is created by schematizing an indefinite sequence of
event repetitions as a process. For example, hurricane season'® requires schematizing an indefinite
set of hurricane events as an activity that occurs during hurricane season. The schematization of
events into activities is represented as a special case of particle mass constituency, which we saw
earlier.

5.2.3 Discussion

The first of several kinds of schematization, type coercion, was brought up earlier in
section 5.1 for the case of physical constituency. A second, constituency reification, was discussed
in the context of image schemas. Here we consider some other kinds of schematization in the
lexical semantics module. First we consider three related kinds of schematization based on the
scale type, namely discretization, scalarization, and similarity. These are sometimes also considered

*Terry Regier, personal communication.
'*From Warren (1978, p. 246).
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as type coercion, though in the proposed model at least, no concepts are coerced. Afterward we
will examine two other kinds of reification.

Scales, discretization, scalarization, and similarity. A scale concept is one against which relative
positions or intervals can be defined, and is the basis for representing degrees such as weight
or temperature. Scales may be bounded at both ends (fullness; sometimes health, temperature),
unbounded at one end (weight, cost, speed; sometimes health, temperature), or unbounded at
both ends (beauty, poverty). They follow the same notation rules as any other feature structure.
There are underlying semantics special to scales but they are not considered here, being irrelevant
for current purposes.'® Though the current schematization mechanisms are crude, they capture
the flavor of the approach. For additional examples involving scales, also see the examples in the
discussion on reification.

[ TYPE: scale [ TYPE: automobile-speed
(a) MIDPT: reference-property MIDPT: high ]
L TR:  greater-degree-property | TR:  high-automobile-speed
[ TYPE: scale [ TYPE:  calmness
(b) BEGPT: opposition-object BEGPT: anxiety
_ENDPT: itsiglle-object | ENDPT: calm
BEGPT: opposition-object e .‘i“,,’;f’d";“
(c) MIDPT: reference-object MIDPT: inverse-low
ENDPT: ideal-object ENDPT: calm
| TR:  greater-degree-property LTR:  low-anxiety

Figure 5.9: (a) Discretization, (b) scalarization, and (c) similarity schemas, using the scale type and with
examples.

Discretizationis the operation whereby a new discrete property is defined, relative to some
interval on a scale. The current discretization mechanism operates by using the MIDPT and TR
(trajector) roles of a predefined scale such as automobile speed, as shown in figure 5.9(a). The reference
property is a predefined point or interval on the scale such as high. The greater degree property is then
defined to be the property ranging over the part of the scale greater than the reference property. The
resulting high automobile speed property can be used in the semantic representation of, for example,
high-speed buses'”.

Scalarization occurs when a scale is defined by turning an ordinarily discrete property or
object into a matter of degree (Wilensky 1989). For example, normally someone is either pregnant
or not, but in the sentence

(54) The cover photo of an unclad and very pregnant actress caused a media overreaction.

the property pregnant is converted into a degree. Figure 5.9(b) shows the scalarization mechanism’s
use of the BEGPT and ENDPT roles of a scale to specify the endpoints or landmarks of the scale.
The ideal object is an object that serves as the reference point for a greater degree on the new scale,
for example calm on the calmness scale, and the opposition object serves as the reference point for the
lesser degree, for example anxious. Like primitive scales, scalarized scales can be bounded on both

16Various calculi can be employed, including interval logics, mean-variance calculi, and fuzzy logics.
" From Warren (1978, p. 148).
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ends, as in the example, or they can be unbounded on either or both ends. For an unbounded end,
specifying a landmark indicates the directional point of reference, rather than an absolute endpoint

of the scale.

The discretization and scalarization operations combine to form the similarity mechanism,
which places discrete properties or objects on a scale to supporta new discretization. In figure 5.9(c)
the calmness scale from (b) is combined with a discretization operation, producing the new property
low anxiety which s closer to the ideal end, calm. This property is used in the semantic representation
for low-anxiety child'®, as shown in figure 5.10. Note the polarity of the scale has been chosen to
produce the desired property; were the endpoints reversed, the scale would be anxiousness and the
property low anxiety could not be defined. This is not a limitation on expressiveness because scales
are always permitted to be inverted.!®

- SEM: ! .
r TYPE: causal
CAUSER: !
.| TYPE:  habitual-volative
MEANS: | )\ GENT: ichild
TYPE: psychological
EFFECT: | EXPERIENCER: 2
EXPERIENCE: 3
| PATIENT: parent
[ TYPE: parental-link
P fLm: !
LLM2: 2
FTYPE: calmness
BEGPT: anxiety
02: MIDPT: inverse-low
ENDPT: calm
L LTR: 3low-anxiety |

Figure 5.10: Use of the defined low anxiety concept in the semantic representation for low-anxiety child.

TYPE: scale TYPE: reddishness
BEGPT: ideal-object BEGPT: proto-red
MIDPT: reference-object MIDPT: default-ish-point
ENDPT: object ENDPT: any-red

TR: greater-degree-property TR: reddish

Figure 5.11: Use of the similarity mechanism for peripheralization.

The similarity mechanism can also be used to derive “peripheralized” (Wilensky 1989)
concepts like reddish which apply to objects that fall in the periphery of the category described
by red.*® As shown in figure 5.11, a scale is created between the any red and ideal prototype red
concepts. The reddish property is then defined by the interval between any red and the reference

**Toavoid dealing with quantification the plural form low-anxiety children from Warren (1978, p. 148) has been dropped.
Groups or categories could possibly be used to handle the plural form.

1®Whatever the underlying calculus is, it should guarantee symmetry of scales.

?°Note that Wilensky’s use of the term “peripheralized” extends the periphery of a concept beyond its normal
applicable range. I instead use the term to mean the peripheral area of the applicable range, and would suggest a term
like “peripheral extension” for the former.
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point, which is a default or average point corresponding to -ish forms.?!

Comparatives like redder are handled using the similarity mechanism; several variations
are found in the reification examples in figure 5.12. In (a) a redder red property is defined to
characterize the color of a redder apple [than apple/2], where the reference red property is contextually
defined in @, to be the color of some other apple apple/2. (The slash / notation differentiates
extension.) An alternate interpretation is shown in (b), where instead of defining a redness scale,
we define a “redness-of-apple” scale with a slightly different connotation.

Representing state and property reification. Recall that in knowledge representation terminology, to
reify is to view an abstract or implicit relation as a concrete concept, node, or object. We considered
how to implement constituency reification in the discussion on image schemas. State reification
and property reification are considered here.

_ . " SEM: ! 7
[ SEM: ! ~TYPE: redness
FRM: 1 | TYPE:  applef1 . [TYPE: apple1
: [cor_ox- redder-red MIDPT: [cot.o& reference-reid
. [TYPE: applep2 FRM: . [TYPE: apple/1
@ |% |coLor refmnce—rai] (b) ENDPT: [COLOR: proto-red
TYPE: redness . 1[TYPE: applen1 }
0,: [Eﬁ%?r '?feren':;mi J | TR [cor_o& redder-red
. ) M [ : /2
L TR: redder-red e -01. COLOR: ref ce-red] i
[ SEM: ! E FSEM: o 2 (see text) -
TYPE: state-schema TYPE: has-color-schema
vt | TR ? . | PROP: 3
st 2 [TYPE: apple(1 ] TR 2 [TYPE: applef1
’ COLOR: redder-red COLOR: ®redder-red
() 8,: |TYPE: applei2 (d) 0.: [TYPE: apple2
1* | COLOR: reference-red 1 | COLOR: reference-red
TYPE: redness TYPE: redness
¢ MIDPT: reference-red 0,: MIDPT: reference-red
2 ENDPT: proto-red | 2 | ENDPT: proto-red
- TR: redder-red L TR: redder-red L

Figure 5.12: Schematizations of redder apple with alternate scalarizations and reifications.

State reification is implemented by taking the state represented by some feature structure
and making it into a proper concept (i.e., feature structure). Figure 5.12(c) shows how the redder
apple from (a) is turned into being a redder apple by embedding it in a state schema. The difference
between a mental image state and a state eventuality cannot be represented in the simpler single-
level +/-dynamic distinction between events and states proposed by Pinker (1989, p. 195) and based
on Jackendoff.

Property reification is implemented by making a proper concept out of the a (discrete)
property role in a feature structure. Putting ! or ? in the SEM role in figure 5.12(d) determines
whether it represents apple having a redder color [than apple|2] versus apple which has a redder color

21 Consider, however, that sometimes reddish is extended to describe objects one would never call red, like tangerines
in
(5.5)  The study showed that consumers shun reddish tangerines.

To handle such cases it is necessary to instead relativize to a'scale whose endpoints are prototype tangerine and reddest
tangerine.
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[than apple/2]. In either case, the property of having a red color is reified by the has color schema.
Scalar properties can also be qualitized by first applying discretization.

Other kinds of schematization. Wilensky (1989) defined as “categorization” the coercion of indi-
viduals into types, as for example in an independent Namibia. 1 suggest handling this by using a
category, group, or set concept whose members are Namibia in alternative possible worlds. Since
extension is not a primitive relation in the proposed representation, the intensional feature struc-
ture for Namibia (i.e., without the extensional attribute) need not be type-coerced. Figure 5.13
defines a group concept having the intensional Namibia as its constituent structure.

TYPE: intensional-Namibia-group-category
. [ TYPE: particle-mass
COMPOSITION: [PARI'ICLES: [ TYPE: intensional-Namibia )

Figure 5.13: “Categorization” coercion for handling an independent Namibia.

Wilensky (1989) also suggests “objectification” which converts properties into discrete
objects. For example, an oddity is an object with the property of being odd. This seems to be a
lexical rather than conceptual operation. From the standpoint of ontology, it is simple to create a
feature structure representing an odd object.

Associative grounding revisited. Section 4.2.2 discussed the issue of how symbols at abstract levels
can be grounded by statistical intermodular associations. The representational primitives we have
been studying provide the structural basis for encoding such associations.

In figure 5.12, the relationship between (a) and (d) is the property reification of the COLOR
role, which is part of the mental image module, into the has color schema.?? Note that the structure
in (d) contains both the reified (lexical semantics) and non-reified (mental image) representations.
If structures of the sort in (d) are frequently used by the agent, an association is established between
mental image structures with a COLOR role and lexical semantic structures with a has color schema.
What is important about associative grounding is that the representation must provide a way to
capture the co-occurrence frequency correlation; exactly how this is formalized in the proposed
model is described in chapter 6.2

Similarly, a schema type like the height scale is identified by some feature and role
combination that frequently occurs in conjunction with a mental image of an object of corresponding
height. An abstract image schema type like the calmness scale then obtains its grounding through
the fact that its representation employs nearly the same features and role structure. Usually in
symbolic models, the associative perceptual connection is implicitly assumed but no formal or
operational mechanism is provided.

*2The has color schema is a specialization of has property from the lexical semantics module, but is itself part of the
conceptual system rather than the lexical semantics module. While the fact that something is a reified property may
have direct syntactic or morphological bearing, the fact that the property is in particular a color is unlikely to capture
any useful generalizations at that level.

%3 A high marginal probability is assigned to the structure containing both the reified and non-reified representations.
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Differences from Case Theories. This representation depends more heavily on nested structures
than ordinary case systems, thereby reducing the number of thematic roles. A side effect of this is
that surface cases do not map straightforwardly onto thematic roles in a one-to-one fashion. For
instance, the sentence

(5.6) John moved his furniture from San Francisco to Berkeley.

is analyzed as an outer volative frame whose EFFECT role is filled by an inner locative. Thus we
control proliferation of cases by defining the less immediate cases as internal roles. Similarly,

(5.7) John broke the window with a hammer.

is analyzed as an outer volative frame whose PATIENT is the window, EFFECT is a window breaking
state change, and PLAN is an inner instrumental frame, whose EFFECT role is in turn filled by the
same window breaking state change. No single frame can have both AGENT and INSTRUMENT roles;
a verb frame involving both must use nested semantic structures. For convenience we can use a
chain notation, so that the traditional instrument case role becomes PLAN.INSTRUMENT. Similarly,
the beneficiary case role is equivalent to INTENT.PATIENT.

Note that INSTRUMENTS are considered CAUSERS, just like AGENTSs except for being non-
volative. Thus in our analysis the hammer in sentence (5.7) is an instrumental CAUSER internal to
the PLAN of the breaking event, and the internal frame filling the PLAN role is itself the semantic
structure for

(5.8) A hammer broke the window.

where the hammer is the non-volative cause. Omitted here is John's precise action upon the
hammer; to represent this one would have to add a third volative frame in which the AGENT is John
and the PATIENT is the hammer. Of course we would expect a high degree of association between
this volative use of tool frame and the instrumental frame.

I discussed motivations for restricting frame roles earlier; I now add another peripheral
semantic role motivation. There are analogous precedents in syntactic theory for the philosophy
of narrowing the number of direct roles of a frame. Various theories of grammatical cases treat
clauses as layered structures with a central and peripheral argument structure. In these theories
the clause consists of one or two core arguments surrounding the predicate, typically labelled
“subjects”, “direct objects”, “actors”, “undergoers”, and so forth. In addition a larger number
of peripheral arguments express spatiotemporal information or secondary participants such as
“beneficiaries”. The distinction has variously been termed “core” versus “peripheral” (Silverstein
1976; Foley & van Valin 1984; Foley & Olson 1985), “inside the vp” versus “outside the vp”
(Fillmore 1968), “nuclear” versus “satellite” (Dik 1978), “inner” versus “outer” (Halliday 1970;
Platt 1971; Somers 1987), “nuclear” versus “peripheral” (Longacre 1976), and “propositional”
versus “modal” (Cook 1972). Though some of the predicate argument classes are characterized
using semantic notions, the theories are syntactic and do not extend the core-periphery claims
to the semantic representation. The proposed representation does exactly that: instrumental
roles, for example, are postulated to be semantically more peripheral than agent roles if the verb
expresses a volative rather than non-volative causal event. Note that this does not present any
verb valency problems since-nested structures are still available for specifying the linking between
verb clauses and their underlying semantic frame(s). The core-periphery contrast here applies to
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semantic frames—Parsons (1990) might say “subatomic”—rather than verb frames. Across many
languages, including English, certain roles are more readily marked by word order while others
retain case or prepositional markers. (The fact that other languages like Latin or Russian use case
markers for a wider set of roles does not contradict the hypothesis that not all the cases encode
semantic roles of the same status.) A semantic explanation of why this pattern should evolve
would be more satisfying than a purely grammatical one.

Source Path Goal Local
instigator intended result
Active of action instrument (—animate) non-passive
+volitive or means  active recipient patient
tanimate (+animate)
original state result state )
Objective (—concrete) counter- (—concrete) undergoing
instrument
material  passive means factitive change-of-state
(+concrete) (+concrete)
Dative
psychological: stimulus medium experiencer content
+dynamic
possessive: original owner medium/price recipient  thing transferred
Locative place from space final static
where traversed destination position
Temporal time since duration time until time at which
........................ T s
Ambient reason manner consequence condition
(—volitive)

......................................................

Figure 5.14: Somer’s (1987) case grid proposal.

My use of the “case grid” organization differs somewhat from the usual linguistic usage
(Ostler 1980; Somers 1987) although they resemble each other. First, the proposed thematic role
system is more of a hierarchy than a grid. Somers is unsure whether to interpret his grid as an
elaborate model for inner cases only, or a sparse model of both inner and outer roles, but he leans
towards the former. As we have just seen, I propose to distinguish outer roles by hierarchical nest-
ing, rendering the question moot. Second, Somers’ grid, shown in figure 5.14 employs additional
role features (although he qualifies them as “optional”), whereas the restriction to four role types
is absolute in the proposed system. Third, in contrast to the case grids, activeness/ passiveness is
a distinction made orthogonally to the case system. There is no “eventive/agentive” (Ostler 1980)
or “active/objective” (Somers 1987) separation within the role system. Somers sees Objectives as
“processes” (a different usage than the eventuality sense) as opposed to Actives which are actions.
In the proposed model, the volative frame type distinguishes actions with volitional agents and all
others are considered passive. I see no need to distinguish active and passive patients; Somers
suggests handling reflexives by using Active Local as an “active patient”, but reflexives can be
handled equally well by coindexing the AGENT and PATIENT. Fourth, the function of a role cannot
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be ambiguous, as opposed to cells like Somer’s Objective Path, which can indeterminately function
either as a “counter-instrument” (enabler or non-tool-like instruments), or as the instrument in an
agent-less event as in sentence (5.8).

Thematic roles as probabilistic entailment. The semantic significance of thematic roles, I propose,
should be couched in terms of Bayesian conditional probabilities, instead of the traditional per-
spective based on entailment. In model-theoretic semantic proposals like Dowty’s (1989), it is
argued that thematic roles are properly seen as a cluster of entailments and presuppositions. In-
stead, we should see them as probabilistic entailments, and see thematic roles as entities developed
by the cognitive mechanism in order to facilitate making useful inferences a large percentage of
the time. They are an organizational construct that need not be rigorously deductive to increase
the agent’s efficacy and chances of success. We cannot call thematic roles entailments, because
(almost) any condition we try to stipulate on what types are permitted to fill a role can be vio-
lated. The filler of an AGENT role is not necessarily “a rational, sentient, animate being”, though
it usually is; as the AGENT becomes increasingly dissimilar to a rational, sentient, animate being
(The child/seedling/glacier revelled in the cold), we begin to call it metaphoric or figurative usage.
Probabilistic entailment, however, is precisely how we can describe thematic roles: a thematic role
entails certain changes to the probability distribution over its potential fillers. Knowing the type of
the thematic role between two semantic substructures conditions the distribution over the type of
the substructures. Conversely, knowing the types of substructures conditions the distribution over
the kinds of thematic roles that might hold between them. Thus, even without rigorous entail-
ment conditions, the thematic role structure is useful to a cognitive agent for evaluating possible
inferences in the presence of missing information.

Comparison with Conceptual Dependency Theory. In some respects the philosophy of representation
is quite similar to Schank’s (1973) influential Conceptual Dependency (CD) Theory. Like CD
Theory there is a small set of roles that are conceptually motivated and influenced by case roles.
Unlike CD, the roles are intended to be lexicosemantic rather than conceptually canonical since
(1) they are intended to help capture surface subregularities, and (2) they are dependent on how a
situation is schematized.

Moreover, unlike CD, the set of frames is not limited to a small number of primitives.
Concepts like transfer have only a couple of variants in CD. Instead, to capture fine conceptual
distinctions I encourage proliferation of frame types as described below, and define them using a
multiple hierarchy (or set of features; see section 5.3.1).

There is yet another subtler butimportant difference in my interpretation of both semantic
and conceptual structures. A Conceptual Dependency representation is supposed to capture the
meaning of an utterance by combining concepts using the primitive relations. In the proposed
model, however, a semantic or conceptual structure only captures part of the meaning of an
utterance, because of the notion of associatively inferrable conceptual shift. The meaning is
entirely captured only by examining the agent’s state as a whole, including the lexicosyntactic
representation and signification mappings, and also the state of the controlled inference system
(which I do not treat here) that takes care of higher-level pragmatic functions and backtracking.
Thus in the proposed model, all conceptual distinctions need not be captured by static aspects of
representation.
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53 The Conceptual System

In this section I describe the nature of conceptual structures under the proposed model’s
representational philosophy. No attempt is made to actually construct any particular comprehen-
sive conceptual hierarchy of theoretical significance. This is not to say that I think such structures
don’texist. Rather, they exist but depend on ecological factors which are shared over specific com-
munities, some structures being relatively universal and others being particular to very specific
communities. At this level most constraints on concept types appear to be of general functional and
storage capacity nature, making the conceptual ontology more flexible, adaptive, and dependent
upon experience than the previous levels.

53.1 The Conceptual Hierarchy Approach

Shared roles for lexical and conceptual semantics. The conceptual system uses the thematic roles as its
primitive roles. In other words, the conceptual system’s basic conceptual building blocks (frames)
are the eventualities from the thematic role system. In section 4.4.1 we considered motivations for
separating the lexical semantics and conceptual modules. No criteria were found for determining
how conceptual representations differ from lexical semantics representations. The evidence for
lexical semantics comes from linguistic patterns; the evidence for conceptual structures is far
less accessible. The kind of conceptual structures we are interested in here are not higher-level
structures such as plans, because those are presumably more relevant to controlled inference.
Direct empirical evidence for low-level conceptual organization comes from experiments on non-
linguistic categorization and prototypes (Rosch 1975; Rosch et al. 1976; Smith & Medin 1981;
Mervis 1980), but even there much of the evidence is derived through linguistic tasks. In the
absence of convincing arguments for particular conceptual systems, having the thematic roles serve
double duty as the primitive roles of the conceptual system helps avoid unnecessarily proliferating
role types and notations.

Note that this does not imply that an utterance’s semantic representation is the same at
both levels; in fact I will argue below that the representation is often different. Nor, for that matter,
does it impact on lexical semantics’ distinguishing claim to close association with surface gram-
matical form. Still, this is nowadays a somewhat unusual move; contrast for example Nirenburg
& Levin’s (1991) model and the Logical Forms of May (1985) and Allen (1987), discussed in section
4.4.1, all of which employ different representations for lexical semantics and conceptual levels.

We also saw in section 4.4.1 that it would be incorrect to construe the sharing of primitive
role types as a version of the Charniak’s (1981) “case-slot identity theory”, which says that case
roles are 