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ABSTRACT

Next-generation workstations will have hardware support for digital
“continuous media” (CM) such as audio and video. CM applications
handle data at high rates, with strict timing requirements, and often in
small “chunks”. If such applications are to run efficiently and predict-
ably as user-level programs, an operating system must provide schedul-
ing and IPC mechanisms that reflect these needs. We propose two
such mechanisms: split-level CPU scheduling of lightweight processes
in multiple address spaces, and memory-mapped streams for data
movement between address spaces. These techniques reduce the the
number of user/kernel interactions (system calls, signals, and preemp-
tions). Compared with existing mechanisms, they can reduce schedul-
ing and 1/O overhead by a factor of 4 to 6.






1. INTRODUCTION

Support for digital audio and video as I/O media is an important direction of com-
puter systems research. We call audio and video continuous media (CM) because they
are perceived as continuous, in contrast with discrete media such as graphics. There
are various ways to incorporate CM in computer systems; in the integrated approach,
CM data (digital audio and compressed digital video) is handled by user-level programs
on general purpose operating systems such as Unix or Mach.

An example of an integrated CM application is ACME, an I/O server that provides
shared, network-transparent access to devices such as video cameras, speakers, and
microphones (see Figure 1). We have implemented a prototype of ACME for a Sun
SPARCstation running SunOS 4.1. It suffers from timing errors and lost data when
there is concurrent system activity, even though the hardware is easily able to handle
the data rates (e.g., 64 Kb/sec audio data). The server also cannot supply the low
latency needed for a telephone conversation application.

These problems are partly due to the overhead of user/kernel interaction
mechanisms by which user-level programs invoke system functions such as CPU
scheduling and /0. This overhead is largely due to domain switches (such as signals)
and mapping switches (between user virtual address spaces). For example, the UNIX
asynchronous /O mechanism requires up to ten domain switches and two mapping
switches to read a block of data. The expense of these operations can be amortized by
hysteresis and increased granularity (techniques used in buffered I/O and pipes). For
CM applications, however, these techniques may increase delay excessively.

With the goal of better supporting CM applications, we have designed OS mechan-
isms for scheduling and IPC.
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Figure 1: Audio playback is a basic integrated CM application. The client reads CM
data from a file and sends it to the ACME server (bold line). The client also provides a
graphical interface for making selections and controlling the playback parameters.




e  Split-level scheduling and synchronization. In this approach each user virtual
address space (VAS) contains multiple lightweight processes (LWPs). The
scheduler is partitioned into user-level and kernel-level parts, which communicate
via shared memory. The information in shared memory is used to correctly priori-
tize LWPs in different VASs, and avoid domain and mapping switches where possi-
ble. Split-level scheduling can be used with many scheduling policies; we discuss
its use for deadline/workahead scheduling, a real-time policy designed for CM.

e  Memory-mapped streams. A memory mapped stream (MMS) is a shared-memory
FIFO used for communicating CM data between user and kernel VASSs. Once the
MMS has been setup, no explicit kernel requests are needed to transfer data, and
a minimal number of domain switches are needed for producer/consumer syn-
chronization and /O initiation.

In the next section we explain the process structure of the ACME server and the
deadline/workahead scheduling policy in more detail. Sections 3 and 4 describe the
new mechanisms. Section 5 gives some performance estimates, and Section 6
discusses related work.

2. PROCESS STRUCTURE AND SCHEDULING FOR CM APPLICATIONS

To motivate subsequent sections, we sketch a typical CM application (the ACME
I/O server), and describe the deadline-workahead CPU scheduling policy.

2 1. The ACME Continuous Media I/O Server

ACME (Abstractions for Continuous Media) [2] supports applications such as
audio/video conferencing, editing, and browsing. ACME allows its clients to create logi-
cal devices, associate them with physical I/O devices (video display or camera, audio
speaker or microphone), and do I/O of CM data over CM connections (network connec-
tions carrying CM data). The data stream on a given CM connection may be multiplexed
among different logical devices. ACME provides mechanisms for synchronizing different
streams. ’

The ACME server performs multiple concurrent activities, and it is convenient to
structure it as a set of concurrent processes. Our prototype uses the following
processes (see Figure 2):

e For each CM connection, a network VO process transfers data between an inter-
nal buffer and the network. It may do software processing (e.g., volume scaling for
audio streams).

e  For each CM l/O device there is a device /O process. For an output device, this
process merges the data from the logical devices mapped to it and writes the
resulting data to the device.

¢ Event-handling processes handle non-realtime events such as commands from
the window server and requests for CM connection establishment.

The current implementation of ACME runs on the Sun SPARCstation. It is written
in C++ and uses a preemptive lightweight process library. I/O is done using UNIX asyn-
chronous /0. The server handles telephone-quality (64 Kbps) audio 1/O and video out-
put, both compressed and uncompressed.
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Figure 2: A CM application such as the ACME server consists of multiple processes
sharing a single address space. Some of these processes handle streams of CM data,
while others handle discrete events.

2.2. Deadline/Workahead Scheduling

The Deadline/Workahead Scheduling (DWS) CPU scheduling policy is designed for
integrated CM [1]. In the DWS model, a process that handles CM data is called a real-
time process. There are two classes of non-realtime processes: interactive (for which
fast response time is important) and background.

A realtime process handles a sequence of messages each with a logical arrival
time I(m), either derived from a timestamp in the data or implicit from its position in the
stream. Each realtime process has a fixed logical delay bound, the processing of each
message should be finished within this amount after its logical arrival. At a given time t,
a realtime process is called critical if it has an unprocessed message m with i(m) <t (i.e.,
m's logical arrival time has passed). Realtime processes that have pending messages
but are not critical are called workahead processes.

The DWS policy is as follows (see Figure 3). Critical processes have priority over
all others, and are preemptively scheduled earliest deadline first (the deadline of a pro-
cess is the logical arrival time of its first unprocessed message plus its delay bound).
Interactive processes have priority over workahead processes, but are preempted when
those processes become critical. Non-realtime processes are scheduled according to
an unspecified policy, such as the UNIX time-slicing policy. The scheduling policy for
workahead processes is also unspecified, and may be chosen to minimize context
switching.

3. SPLIT-LEVEL SCHEDULING AND SYNCHRONIZATION

CM applications are most easily programmed using multiple processes sharing a
vitual address space (VAS). The two common multiprogramming techniques,
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Figure 3: In the deadline/workahead scheduling (DWS) policy, each realtime process
has a queue of pending messages. In example a), each message is shown as a rectan-
gle whose left edge is its logical arrival time and whose right edge is its deadline. P, and
P, are critical because they have a pending message whose logical arrival time is in the
past. Processes are prioritized as shown in b). Critical processes are executed earliest
deadline first; policies for other classes are unspecified.

lightweight processes (LWPs) and threads, each have advantages. LWPs are imple-
mented purely at the user level, so context switches within a VAS is fast (on the order of
tens of instructions). However, LWPs in different VASs may not be prioritized correctly.
On the other hand, threads in different VASs can be correctly prioritized but context
switches always involve an expensive user/kernel interaction.

Split-level scheduling is a scheduler implementation technique that combines the
advantages of threads and LWPs: it minimizes user/kernel interactions while correctly
prioritizing LWPs in different VASs. In the uniprocessor version of split-level schedul-
ing!, there is one kernel process and multiple LWPs per VAS. An LWP sleeps or
changes its priority by calling a user-level scheduler (ULS) (see Figure 4). The ULS
checks whether its VAS still contains the globally highest-priority LWP; this is done by
examining an area of memory shared with the kernel. If so, the LWP context switch is
done without kernel intervention. Otherwise, a kernel trap is done, and the kernel-level
scheduler (KLS) decides which VAS should now execute, again based on information in
shared memory.

While split-level scheduling can be used with many scheduling policies, we focus
on its implementation for the deadline/workahead (DWS) policy described in the previ-
ous section. We also describe a related mechanism for efficient mutual exclusion
between LWPs. For simplicity, we consider only the scheduling of realtime processes.
it is straightforward to handle interactive and background processes as well (a VAS

' The technique is applicable to multiprocessor scheduling as well. For brevity we describe only the uniprocessor
case.
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Figure 4: Using split-level scheduling, the kernel-level scheduler decides which user
VAS should execute, and each VAS has a user-level scheduler (ULS) that manages the
LWPs in that VAS. In this example, the KLS chooses VAS S, to run because it has the
globally earliest deadline. The ULS in that VAS executes Ps, which has this deadline.
User/kernel interactions can often be avoided: in this example, if Ps yields then the con-
text switch to P (the next earliest deadline) can be done without a kernel call.

could contain a mixture of process types).

3.1. Client Interface to the Split-Level DWS Scheduler

A user-level library provides the client interface to the split-level DWS scheduler.
The library exports interfaces for creating and destroying LWPs. An LWP P has three
scheduling parameters: a fixed delay bound (see Section 2.2), a critical time Cp (the logi-
cal arrival time of its next message) and a deadline Dr (Cr plus the delay bound). The
library provides the following functions for scheduling LWPs:

time_advance (TIME critical_time);
An LWP P calls this when it finishes a message; the argument is the logical arrival time
of the next message. time_advance () updates Cr, and may yield the CPU.

timed sleep(TIME critical_time);
An LWP calls this to suspend its execution until the given time; at this point it becomes
runnable and C» is set to the current time. This may be used by processes that do
time-based output with no device synchronization (e.g., slow video) or for rate-based
flow control.

I0_wait (DESCRIPTOR iodesc, TIME critical_time);
An LWP calls this to wait for /O to become possible on the given /O descriptor

representing a file, socket, /O device or MMS (Section 4). When data arrives on the
descriptor, the process becomes runnable and its Cp is set to the given value.



mask_preemption();

unmask_preemption();
These calls bracket “critical sections” within which the calling LWP cannot be preempted
by an LWP in the same VAS.

3.2. Implementation of the Split-Level DWS Scheduler

In this section we first describe the control and shared memory interfaces between
the ULS and the KLS (see Figure 5). We then describe the implementation of each
level. We defer discussing synchronization issues (e.g., mutual exclusion on shared
data structures) until Section 3.3.

3.2.1. User/Kernel Control interface

The control interface between a ULS and the KLS consists of system calls and
user interrupts. The system call mechanism is the same as in UNIX-type systems: a
trap instruction and return. The split-level scheduler uses two system calls: yield()
yields the processor to another VAS, and set_timer (TIME) requests a user interrupt at
the specified time.

User interrupts are like UNIX signals except that the handler does not end with a
system call to reset the signal mask (hence there is one domain switch rather than
three). Each ULS registers the addresses of its handlers during initialization. Three
types of user interrupts are used: INT TIMER signals the elapse of a timer set using
set_timer(), INT_IO_ READY is delivered when I/O becomes possible on an /O
descriptor, and 1INT _RESUME is delivered when a user VAS resumes after being
preempted.

user VAS user VAS

79 ¥

_ user-level scheduler

— usched ksched —
I~ S area area £ 1

user
system calls interrupts

kernel-level scheduler

Figure 5: The user-level and kernel-level parts of the split-level scheduler communicate
using system calls, user interrupts, and through an area of shared memory.




3.2.2. User/Kernel Shared Memory Interface

The ULS for each VAS A shares a region of physical memory with the kernel. This
region consists of two parts: the usched area and the ksched area (see Figure 5). The
usched area is written by the ULS and read by the KLS. It contains the following:

C.: the minimum of C» for workahead processes P e A, or + if there are none. (A
runnable LWP P is critical if Cp < Tnw and workahead if Cp > T,ow). In Other words,
C. is the earliest critical time of a workahead process in A.

D4: the earliest deadline of a critical LWP in A.

A table of workahead and sleeping LWPs P in A such that Dr < D4. Each entry in
the table contains the critical time and deadiine of the LWP.

For each 1/O descriptor, a waiting_for_IO flag indicating whether an LWP is blocked
on the descriptor, and if so the critical time and deadline of the LWP.
The ksched area, written by the KLS and read by the ULS, contains the following:

T.... the current real time as measured by a hardware clock.

C;: the earliest critical time of a workahead LWP not inA.

Ds: the earliest deadline of a critical LWP not in A.

»|

For each I/O descriptor, a ready_for_IO flag to indicate that data has arrived on
that descriptor.

We use the following additional notation:

P,: the runnable LWP P such that P is critical and De = D, or if D4 is infinite,
Cr = C4. In other words, P, is the highest priority runnable LWP in A2,

pP’: the globally highest priority LWP.

A’": the VAS containing P’.

3.2.3. ULS Implementation

The ULS of VAS A is responsible for scheduling LWPs in A. If the ULS detects
from its ksched area that A= A", it calls yield(). Similarly, if the KLS detects from A's
usched area that A = A", it preempts A.

The ULS may need to preempt the currently running LWP when the critical time of
a sleeping LWP is reached or a non-running workahead LWP becomes critical. This
requires an INT_TIMER user interrupt from the kernel. To reduce the number of

2 For simplicity, we assume that workahead LWPs are scheduled earliest critical time first; other policies are possi-
ble.



set_timer () system calls and INT_TIMER user interrupt deliveries, the following policy
is used (see Figure 6):
Claim 1: Let x be the set of sleeping and workahead LWPs P in A such
that Dp < Ds. Let Toyea = min(Cp:PeX). Then it is sufficient for the ULS to
maintain a timer for T

In addition to the data in the usched area, the ULS maintains queues of sleeping,
critical and workahead LWPs. The implementations of timed sleep(),
time_advance (), and Io_wait () are as follows. Each function inserts the calling LWP
into the appropriate structure (the sleep queue, the workahead or critical queue, and an
IO descriptor respectively), then does the following (see Figure 7):

(1)  For each LWP P in the workahead and sleep queues such that Cp < Thow, insert P
in the critical queue. For each LWP P sleeping on an I/O descriptor for which
the ready for_IO flag is set, insert P into the workahead or critical queues as

appropriate.

(2) Update ¢, and D, in the usched area.

(3)  Update the usched area’s table of sleeping and workahead LWPs P with Dp < Da
and the list of LWPs waiting for 1/O.
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Figure 6: At a given time T, the ULS for a VAS A must have a pending INT_TIMER
user interrupt for the earliest critical time of a sleeping or workahead process PeA such
that D» < D4. In this example, P, is critical and P, and P, are workahead. If P; is still run-
ning when Cp, arrives, P, becomes critical and must preempt P,. On the other hand, P,
cannot preempt P, because its deadline is greater. Therefore a timer is needed for Cs,
but not Cp..
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Figure 7: An LWP configuration just before steps 1-5 are executed. The ULS moves P;
to the critical queue, records P, and P, in the usched area, sets D, and C, to De, and Cp,
respectively, and sets a timer for Texs. Finally, it does a context switch to Pe.

(4) IfA=A thencall yield(), else,

(5) Set atimer for Teme if Tomea IS finite. Do a context switch to P,.

The handler for an INT_TIMER user interrupt moves the LWPs for which Ce<Toow
from the sleep queue to the critical queue. It then executes steps 2, 3 and 5 above.
The handler for an INT Io READY user interrupt moves all LWPs for which the
ready_for_IO flag is set to the critical or workahead queue and executes steps 1-5
above.

An INT RESUME user interrupt is delivered to a VAS when it resumes execution
after having been preempted. Between when the VAS was preempted and Thw, an
indeterminate amount of time has elapsed. The same is true when the VAS returns
from a yield() system call. In both cases, the ULS performs steps 1-5 above to
update its state.

3.2.4. KLS Implementation

The KLS is responsible for updating Cz and Dz in the ksched area of the currently
executing VAS A. If in doing so it detects that A » A, it preempts A and switches to A".

Changes to C; and Dz can occur when a sleeping LWP wakes up or a workahead
LWP becomes critical. In either case, timers have to be set to detect the change. KLS
timer management is analogous to that of a ULS. The KLS maintains a timer for the
earliest C» such that Dr < Dz; this is computed from the tables in the usched areas of all
VASs not currently executing. If, when the timer expires, the current VAS A is no longer
A’, the KLS preempts A and switches to the new A".
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The yield() system call determines A". It then computes Dz and c;, writes these
to A"’s ksched portion and updates the pending timer if necessary. Finally, it switches to
A°, either by returning from an earlier yield() system call, or by delivering an
INT_ RESUME user interrupt.

The handier for an I/O completion interrupt examines the waiting_for_IO flag for the
corresponding descriptor. If it is set, the interrupt handler sets the ready_for_IO flag in
the ksched area of the VAS A containing the descriptor. Moreover, if the LWP waiting
on that descriptor is critical and has the earliest deadiine, an INT_IO_READY USer inter-
rupt is delivered, preempting the current VAS if necessary. if AxA’, the handler
updates D, or C, in A’s ksched area, depending on whether the waiting LWP is critical.

3.3. Split-Level Synchronization
Split-level scheduling requires two basic types of synchronization:

e VAS Preemption masking. While this is in effect, the current VAS cannot be
preempted by another VAS, allowing the ULS to make consistent updates to the
usched area. VAS preemption is masked during all the ULS routines.

e User Interrupt masking. While in effect, user interrupts are (logically) disabled
(but not necessarily preemption of the VAS as a whole). Since this prevents con-
text switches within the VAS, it can be used to implement the mask_preemption ()
and unmask_preemption () ULS interface routines.

It is desirable to implement both types of synchronization without user/kernel
interactions (i.e., no system calls) in the normal case. This can be done using a tech-
nique we call virtual masking. For each of the two types of synchronization, there is a
mask level in the usched area and a request flag in the ksched area. (For user interrupt
masking, the request flag is a bitmap with one flag per user interrupt type).

To mask VAS preemption, for instance, the ULS increments the corresponding
mask level. Whenever the kernel wants to preempt a VAS and finds its mask level
nonzero, it sets the request flag and defers the preemption. When the ULS unmasks
preemption it decrements the mask level. If this returns to zero and the request flag is
set, the ULS calls yield () to return to the kernel.

3.4. Discussion

Split-level scheduling introduces new protection problems: a malicious or incorrect
program may keep VAS preemption masked indefinitely, or it may execute indefinitely
without changing its deadline. Either of these actions would starve all other VASs. A
“watchdog timer” can be used to detect such conditions, and to kil or demote the
offending process.

Deadline/workahead scheduling has both “hard” and “soft” variants: the distinction
is whether or not processes reserve CPU capacity in advance. In the hard variant, each
new LWP specifies its workload (message rate and CPU time per message). The KLS
conducts a schedulability test to determine whether the workload can be accommodated
and if so, with what logical delay bound. This test involves a simulation under worst-
case load, and is described in [1]. In the soft variant, no such screening is done, and it
is possible for the system to fall behind schedule.
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4. MEMORY-MAPPED STREAMS

Each real-time LWP in a CM application handles a stream of CM data. The source
and sink of each stream is typically an /O device, so CM data must be moved to or from
the kernel address space. A mechanism for this user/kernel IPC has three components:

e Control and synchronization: This includes /O initiation and producer/consumer
synchronization.

e Data location transfer: If the addresses of data buffers in the user VAS change,
they must be transferred from the user to the kernel (if the user determines the
buffer addresses) or vice versa.

e Data transfer: The actual transfer of data, perhaps by copying or VM remapping.

Traditional user/kernel IPC mechanisms require a user/kernel interaction for one or
more of the above components in every |/O operation. For example, the UNIX read()
system call performs all three components. UNIX asynchronous /O uses the read()
system call for data and data location transfer and the siGIo signal and select () SYS-
tem call for control and synchronization.

Memory mapped streams (MMS) are a new class of IPC mechanisms for stream-
oriented user/kernel IPC3. An MMS uses shared memory for control and synchroniza-
tion. MMSs may use a number of techniques for data location transfer; all these use
shared memory to hold either the data itself or the data location (with each technique
one or more data transfer mechanisms are possible, see Section 4.3). This combination
of shared memory mechanisms reduces or eliminates user/kernel interactions in /O
operations.

4.1. Client Interface to Memory-Mapped Streams
The client interface to MMS consists of the following library routines:

d = MMS_create (fd, buffer_size, ...);

MMS read(d, nbytes) ;

MMS write(d, nbytes);
MMS_create () creates a new MMS, returning a descriptor. Fd identifies the data source
or sink (network connection, disk file, etc.); the data direction (read or write) is implicit.
Buffer_size is the size of the MMS buffer.4 Additional arguments may be needed for the
data transfer structure. MMS_read () blocks until nbytes of data are available, and
MMs_write () blocks until nbytes of data can be written to the buffer.

4.2, Synchronization and VO Initiation

create_MMs () allocates and initializes a synchronization structure in an area of
memory shared between user and kernel. For concreteness, we discuss the

3 The basic technique of MMS (shared-memory synchronization structures) can be used for user/user IPC also.
We describe only the user/kemel case here.

4+ Streams in which a storage device sources or sinks data typically have large end-to-end delay bounds (e.g., a
second or more), so buffering may be used to increase the system efficiency and responsiveness. Streams that are part
of an inter-human conversation or conference have low end-to-end delay bounds (tens of milliseconds) must use smaller
buffers. The buffer size may change dynamically; for example, the ACME audio output process must use a small buffer if
any of the streams it is currently handling is part of a conversation; otherwise it can use a large buffer.
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synchronization structure and mechanism for the case when a user LWP (scheduled by
a split-level scheduler) reads CM data from an MMS. The synchronization structure
contains the following data:

The buffer size.
M. : the number of bytes read so far; this is updated by the LWP.

Nue: the number of bytes written so far; this is updated by the kernel. The buffer is
empty When Neas = Nume, and full when they differ by the buffer size.

Active: a flag, maintained by the kernel. If false, further I/O must be initiated by a
request from the user process®.

Boaew: If the data level in the MMS is greater than this number, the interrupt handier
sets the ready for_IO fiag in the MMS descriptor and delivers an INT_IO_READY if
necessary.

B,.:: this is set by the kernel. A system call to initiate /O must be made if the dev-
ice is not active and the data level falls below this value.

Hysteresis for I/O initiation is controlled by the Byar parameter. Hysteresis for pro-
cess wakeup is implicit in the DWS policy for workahead processes.

The algorithm for MMs_read () is as follows:

MMS read(d, n) {
mask_user_interrupts();
Bwake«.p = n;
waiting for IO = TRUE;

W = Nue;
if (w = Nwag < n)
I0_wait ()
if ((Ww = Neas < Bsar) && lactive)
initiate_IO(); _
waiting_for_ IO = FALSE;
Nag += n;
unmask_user_interrupts();
}

This code executes at user level, so VO interrupts cannot be masked
(mask_user_ interrupts() merely inhibits the delivery of INT 10 _READY user inter-
rupts; see Section 3.3). There is a potential race condition if an /O interrupt occurs
between getting Ny and calling 1o_wait (). This race condition is avoided, however,
by setting waiting_for_ro; if an I/O interrupt occurs during the critical period, it will
simply set the 1InT_10_READY request flag and the descriptor's ready for_10 flag.

5 A CM /O device such as a D/A converter is always active; it continually does VO, periodically generating inter-
rupts when a block of data has been input or output. A file system is generally passive; |/O must be initiated by a system
call; this call may trigger a chain of operations via YO completion interrupts, but eventually another system call is needed
to restart O, A passive stream such as a file can be made active by using a time-based kemel activity (e.g., polling) to
restart YO without intervention from the client. Incoming network connections may be either active or passive depending
on the transport protocol used.
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The ULS will check these flags when it unmasks user interrupts in 10_wait (), and will
awaken the LWP that called MMs_read () if necessary.

The interrupt handler for an n-byte read operation completion does the following:

append data to data transfer structure;
update data location transfer structure if needed;

Nue += 1
if (waiting_for_ IO)
if (Mwbe — Nwead > Bwarew) |

ready_for_ IO = TRUE;
if (Cp<Tpow and Dp<D)
deliver INT IO _READY user interrupt to VAS
}

Synchronization is simpler in this case because the LWP cannot preempt the interrupt
handler.

4.3. Data and Data Location Transfer

The mechanisms for transferring data location, and the data itself, are largely
independent of control and synchronization. Some possibilities are:

e Datais passed in pages of physical memory that are statically shared between ker-
nel and user. Data location is implicit. Data copying may still be necessary: for
user writing, the kernel may need a copy of the data (e.g. for retransmission) after
the page has been reused; for user reading, the client may need to write the data
to another MMS.

e Data is passed in a fixed range of virtual pages that are mapped dynamically to
physical pages. Data location is implicit, and copying can be avoided in some
cases.

e The kernel and user share an array of “message descriptors” that contain pointers
to blocks of data. Data may be transferred by remapping, by copying, or by copy-
on-write.

The optimal choice of mechanism depends on factors such as remapping cost and
message size. The control and synchronization mechanism described earlier may have
to be slightly modified in some cases; for example, the Ny and N.. variables may need
to be defined in terms of pages or messages instead of bytes.

5. PERFORMANCE

in this section we show by example how split-level scheduling and memory-
mapped streams reduce the number of user/kerne! interactions. We then compare the
performance of split-level scheduled LWPs and MMSs with other alternatives for
scheduling and I/O.

5.1. Example Scenario

To see how split-level scheduling and MMSs together reduce the number of
user/kernel interactions, consider the following scenario (see Figure 8). An application
(say the ACME server) has two realtime LWPs and one background LWP: a device 1/O
LWP P, for audio output, a network I/O LWP Py reading from a CM connection, and an
event-handling LWP Pc. P, has an MMS for output to the audio output device, which
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Figure 8: An example of the MMS mechanism. Pp and Py do several I/O operations,
but there is only a single user/kernel interaction.

interrupts every 30 ms. This MMS’s buffer is small (e.g., because the stream it is han-
dling is part of a low-delay conversation). Py has an input MMS from its network con-
nection; I/O is passive and the MMS buffer is large (e.g., because the data is coming
from a file). The LWPs are scheduled using a split-level scheduler. A typical sequence
is as follows.

(1)

(2)

(4)

(5)

At time 10 ms P, completes processing a chunk of audio data and calls
MMS_write (), which calls 10_wait () since the MMS buffer is full. Py is now
the highest priority runnable LWP, so the ULS switches to it.

Py repeatedly calls MMs_read () to wait for a message, processes the message
and calls time advance(). At time 27 ms, MMS_read() Sees that the MMS
buffer is empty calls 10_wait (). Pg is now the highest priority LWP, so the ULS
switches to it.

At time 30 ms an audio output interrupt occurs. Pp, which was earlier
suspended because the MMS buffer was full (see step 1), now becomes critical,
so the interrupt handler delivers an INT_Io_READY. This causes the ULS to
preempt P and switch to Pp.

Data arrives for Py at time 35 ms. Because Py has worked ahead into the CM™M
stream, Dy, > Ds, and Py cannot become the highest priority LWP in the VAS.
Therefore, the interrupt handler only sets the ready_for_IO flag and does not
deliver an INT_IO_READY.

At time 40 ms, P, completes the message and calls MMS_write (), which calls
10 _wait () (see step 1 above). From the ready for_IO flag in Py's MMS
descriptor, the ULS finds that the LWP is runnable and also the highest priority
LWP. So, the ULS switches to Py.

In this scenario, the only user/kernel interaction is the user interrupt at time 30 ms.

No system calls for I/O or scheduling are needed. An INT I0_READY at time 35 ms is
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also eliminated. A similar economy of interactions will exist whenever a VAS has multi-
ple activities, some of which can work ahead.

5.2. Performance Evaluation

In this section we compare the following alternatives for structuring CM applica-
tions:

(1)  Split-level scheduled LWPs (SLS-LWPs) using MMSs for I/O.
(2) Threads using separate system calls for scheduling and 1/O.

(3) LWPs without split-level scheduling (pure LWPs) using UNIX asynchronous,
non-blocking /0. In this case, if an LWP does not find data available when it
does a non-blocking read (), it has to wait for a signal and then do a select()
before calling read() again.

We have implemented prototypes of split-level scheduling and memory-mapped
streams, and measured the CPU times of their basic operations on a DECstation 3100
(a 14 MIPS machine representative of current RISC workstations). For the other
approaches, we measured scheduling and I/O synchronization costs on a DECstation
3100 running Mach 2.5.

Consider a thread or LWP that reads a CM message from an I/O descriptor,
processes the message, and then changes its deadline to that of the next message in
the stream. Table 1 shows the total scheduling and I/O synchronization overhead per
message for various scenarios.

The times shown in Table 1 are a significant fraction of typical CM message pro-
cessing costs. For instance, volume scaling 2K 8-bit samples of audio data uses 1.0ms

Scheduling and /O scenarios Overhead (in ps)

SLS-LWP reads message from MMS and then calls time_advancs() 17
SLS-LWP called /O_wait() (because MMS was empty) and has been 67

scheduled on receiving an INT_IO_READY
SLS-LWP called timed_sleep() and has been woken up by INT_ TIMER 132
Thread does a system call to read the next message and another 145

to switch to the next thread
Pure LWP does a system call to read the next message and another 129

to change its priority
Pure LWP does a non-blocking read(), finds no data, subsequently 384

receives a signal, does a select() and another read(} to get
the message, and finally a system call to change its priority

Table 1: Scheduling and I/0O synchronization overheads per message for different
scenarios.
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and mixing two 2K blocks of audio samples uses 1.1 ms. Thus, the scheduling and I/O
synchronization overhead using threads and pure LWPs ranges from about 15-25% of
the total message processing time.

Figure 9 shows scheduling and I/O synchronization overhead as a function of mes-
sage rate for a particular workload: an ACME server simultaneously outputting one video
stream and two audio streams and inputting an audio stream and distributing it on two
CM connections. Thus, the server has five (workahead) network I/O processes and
three (periodic) device |/O processes.

Threads incur 4 times the overhead of SLS-LWPs at all message rates; pure-LWPs
are 6 times as expensive as SLS-LWPs. Pure LWPs and threads incur an unacceptably
high 23-33% overhead at 200 messages per second. This message rate is realistic for
some low-delay applications which need an end-to-end delay on the order of 10 ms (200
message/sec represents a packetization delay alone of 5ms). Moreover, such a high
message rate may also be achieved instantaneously by moderate-delay applications

Overhead
40 =

Pure LWPs

30 1

Threads

20 1

10 =

Message Rate (messages/sec)

Figure 9: Scheduling and I/O synchronization overhead for an ACME server as a func-
tion of message rate. The server workload consists of 5 (workahead) network 1/O
processes and 3 (non-workahead) device I/O processes.
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when they are working ahead.

6. RELATED WORK

The work described in this paper is related to several directions of current OS
research.

e User-level functionality. Modern operating systems such as Amoeba, Chorus
and Mach allow functionality to be shifted from kernel to user level. Local RPC
mechanisms that reduce or bypass kernel interaction have been developed by
Bershad [3].

e Asynchronous communication. Most existing operating systems use
request/reply communication; examples include UNIX-type system calls, RPC, and
object invocation. This paradigm is not well-suited to continuous media (more gen-
erally, it may not be well-suited to future distributed systems in which speed-of-light
delays dominate throughput limits). MMSs provide efficient asynchronous com-
munication. Example of related work include the asynchronous RPC proposed by
Gifford [4] and the datafiow model of Synthesis [6].

e Efficient local data transfer. In UNIX-type systems, I/O and IPC performance is
limited by the overhead of data copying. Systems such as Mach, DASH and Topaz
have attacked this problem using techniques such as VM remapping and shared
memory [7-9]. The MMS mechanism is complementary to this work; it attacks the
overhead of control rather than data movement.

Several other connections should also be observed. First, MMSs are related to
memory-mapped files in the sense that data can (often) be accessed without a system
call. The mechanisms are much different (page faults vs. shared-memory structures) as
is the model of the underlying data (file vs. stream). Second, the CPU scheduling
approach of Synthesis [6] represents an alternative to split-level scheduling. The Syn-
thesis model is based on a rate-control feedback. Processes make no calls to indicate
their temporal progress; instead, the kernel adjusts time-slice quanta based on queue
lengths. This approach is well-suited to some applications (e.g., audio DSP) in some
situations (e.g., little slack CPU time). Finally, the deadline/workahead scheduling policy
is derived from traditional real-time systems [5], but differs in its allowance for worka-
head.

7. CONCLUSION

Existing operating systems incorporate design principles which are contrary to the
needs of applications directly handling real-time streams of continuous media data (digi-
tal audio and video):

o The requestreply paradigm (the basis of centralized systems as well as RPC-
based and object-oriented distributed systems) is non-optimal for stream-oriented
CM data.

e  Assumptions about temporal locality and delay tolerance of data accesses leads to
the use of caching and buffering, which are often inappropriate for CM data.
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e  Scheduling policies in current systems have the goals of fairness, maximum sys-
tem throughput, and fast interactive response. CM applications have real-time
requirements that may conflict with these goals.

Starting with the design goal of supporting CM applications, we have developed
two interrelated mechanisms, split-level scheduling and memory-mapped streams, for
scheduling and IPC. We have described their use in a typical CM application (the
ACME server) and have compared their performance with that of the analogous
mechanisms in UNIX. They achieve better performance by reducing the number of
user/kernel interactions.

Split-level scheduling is most effective when long periods of execution can take
place in a single VAS. Applications such as the ACME server have several low-delay
processes (the device I/O processes) that require CPU time at frequent intervals. To
best exploit split-level scheduling, the /O server should be the only application run on
the workstation. User/kernel interactions are then necessary only for I/0 synchroniza-
tion. On the other hand, CM playback and record applications have only high-delay
processes; hence compute servers and data servers may run multiple applications of
this type and still benefit from split-level scheduling.

These mechanisms are applicable for purposes other than CM. For example,
memory-mapped streams could be used for access to a sequential disk file or a network
stream connection. Similarly, split-level scheduling could be used with a time-slicing pol-
icy for a situation where a VAS contains both interactive and background processes.
More generally, the mechanisms may be useful in any situation where the rate of /O
and scheduling operations, and the cost of user/kernel interactions, are high.
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