The Performance Impact of Vector Processor Caches*

Jeffrey D. Gee
Alan Jay Smith

Department of Electrical Engineering and Computer Science
Computer Science Division
University of California
Berkeley, CA 94720

ABSTRACT

Cache memories have not been used for vector supercomputers, as far as we
know, because of a belief that program behavior in relevant workloads was such as to
preclude efficient cache operation. It has been possible to make efficient use of such
machines by carefully programming around the resulting long memory delays, although
unmodified, "dusty-deck” code usually performs poorly. In related research, we have
found that hit ratios are high for large caches in processors with vector workloads. In
this paper, we address the specific issue of the direct effect of cache memory on vector
processor performance.

The issue in processor design is machine performance, of which the hit ratio of the
cache is only one determinant. In this paper, we simulate three vector processors, the
designs for which are derived from expected technology changes applied to the Ardent
Titan. Our simulator is an accurate timing model incorporating the necessary aspects of
the design of the cache and memory system. We find that current trends in memory and
processor performance will lead to increasingly severe memory speed and bandwidth
limitations. Either of two designs using large cache memories (2MB, 4MB) on the
average double processor performance relative to the design without a cache. Hit ratios
for aimost all of the programs used for trace driven simulation, drawn from real Ardent
workloads, are over 99%. Based on the work presented here and elsewhere, we recom-
mend that future supercomputers incorporate cache memories.

December 4, 1990

* The material presented here is based on research supported in part by the National Science Foundation under grant
MIP-8713274, by NASA under grant NCC2-550, by the State of California under the MICRO program, and by Philips
Laboratories/Signetics, the International Business Machines Corporation, Digital Equipment Corporation, and Apple Com-
puter Corporation.






1. Introduction

Cache memories [Smit82] are a well known and important part of CPUs. At first, cache memories,
for reasons of cost, were found on only the largest mainframes. They are now found on all machines
except low-end microprocessor based machines, and (curiously) supercomputers. The only vector super-
computer with a cache is the IBM 3090-VF; the machines from Cray, NEC, Fujitsu and Hitachi do not
use cache for vector references. We believe that the reason for this is an (incorrect, at least at this time)
assumption that reference patterns to data in such machines would yield poor cache performance. Such a
reference pattern could occur for one of several reasons: (a) Vector strides could exceed the length of a
cache line, thus causing a miss for every memory reference. (b) Scatter/gather operations could have no
locality, thus also causing a miss for every memory reference. (c) Supercomputer workloads tend to be
superlarge, and might have working sets much larger than feasible cache sizes, thus yielding very high
data miss ratios.

Independent of the accuracy of the beliefs noted above, it has been possible to obtain good perfor-
mance from supercomputers by careful programming. By heavy use of vectorization and careful coding to
allow long delays between the issuance of load instructions and the use of the requested data, many pro-
grams could be written to perform well on supercomputers. Nevertheless, there are three severe
weaknesses to the current, no cache, approach: (a) The cost of coding to match the machine architecture
is enormous, and is justified only by the super-high prices of supercomputers; the advent of very high
performance RISC-type 32- and 64-bit microprocessors is already creating significant price pressure on
this class of machines. (b) Programs which have not been specially coded run quite poorly on supercom-
puters. The IBM RS/6000 is faster than some models of the Cray on non-vectorized workloads, while
costing around 1% as much. (c) Processor performance has been increasing much more rapidly than
memory speed [HePa90] and should continue to do so. This trend is illustrated in Table 1, consisting of
data primarily from [Neve89]; missing numbers are not public, although they could be determined experi-
mentally. As may be seen, memory latencies, in terms of processor cycles, have been increasing over
time. Thus the difficulty of programming around the increasingly long memory latencies will increase.

Caches can also play a role in the so-called mini-supercomputer and personal supercomputer
market. Machines of these types (Stardent, Convex, Alliant) offer a respectable fraction of supercom-
puter performance at a small fraction of the cost. For example, the first generation Ardent Titan was
introduced in 1988 with 16 Mflops peak performance, a 16 Mhz MIPS R2000 scalar processor, an 8 Mhz
vector unit, and two 16 Mhz system busses providing 256 Mbytes/second peak memory bandwidth. A
follow on machine, the Stardent ST3000, was introduced in 1989 with double the processing power of the
Titan. The 32 Mflop ST3000 has a 32 MHz MIPS R3000 and a 16 MHz vector unit, but no correspond-
ing improvement in bus speed, memory bandwidth, or memory latency. Vector caches are an appealing
means to match improving processor performance without a large increase in cost.

Another factor supporting the use of vector caches is the increasing use of multiprocessing in vector
machines. All current Cray supercomputers and at least one new Japanese supercomputer can be
configured with multiple processors, all sharing a global memory. Alliant, Convex, and Stardent also
market multiprocessor systems. In shared memory systems, competing vector streams cause conflicts for
memory banks and memory access paths. These conflicts can reduce memory system performance sub-
stantially [Cheu84, Cala88]. Contention for main memory is dramatically reduced if each processor has



Machine Characteristics

Computer Year Clock Peak Mem. Latency Max

Cycle (ns) | MFLOPS (cycles) CPUS
Cray 1 1976 12.5 160 11 1
Cray X-MP 1984 8.5 233 14 4
Fujitsu VP-200 1984 7.0 533 31-33 1
Hitachi S-810/20 | 1984 14.0 630 1
NEC SX-2 1984 6.0 1300 1
Cray 2 1985 4.1 488 35-50 4
Fujitsu VP-400 1986 7.0 1700 31-33 1
Cray Y-MP 1988 6.0 333 17 8
Hitachi S-820/80 | 1988 4.0 3000 1
Fujitsu VP-2600 1989 4.0 4000 >30 1
NEC SX-3 1989 2.9 5500 60-70 4
Cray 3 - 2.0 1000 16

Table 1: Machine Characteristics

This table contains some performance characteristics for a number of vector machines. Cycle
times are in nanoseconds, and memory latencies are in processor cycles. Peak MFLOPS refers to
the peak performance of a single processor machine. Max CPUS refers to the maximum number
of processors in a multiprocessor configuration.

its own private vector cache.

Interest in vector caches has resulted in at least three recent studies ([So88a], [So88b], [Gee90]).
These studies examined locality in vector references and measured cache miss ratios over a range of
applications. Miss ratios are typically less than 2% for caches larger than 128 Kbytes, and fall below 1%
for cache sizes above 1 Mbyte. The extensive study in [Gee90] showed that there was substantial locality
in vector workload reference patterns, and gave substantial evidence that caches would aid the perfor-
mance of vector machines.

Much more convincing than miss ratio figures are the results of CPU timing simulators. In our
research we have developed timing simulators for hypothetical vector cache machines, enabling us to
estimate the performance impact of vector caches. The hypothetical machines are based on the Ardent
Titan architecture, and assume that processor speeds will continue to increase dramatically, with little or
no increase in main memory speeds. We developed three simulators, each containing an identical timing
model for processors and main memory. Two of the simulators contain different vector cache models,
while the third assumes that all vector data is referenced directly from memory. All simulators accurately
measure execution time, as well as time independent metrics such as miss ratios and bus traffic ratios.
Long (500M reference) traces from a large number of real applications were used to drive the simulator.
The programs came from areas such as computational fluid dynamics, linear analysis, and computational
chemistry. Our results indicate that applications run up to five times faster with a vector cache, and twice
as fast on average.



1.1. Previous Work

There are only a limited number of previous studies of caches for vector workloads. Two papers by
So and Zecca [S088a,88b] analyzed traces for the IBM 3090 VF, and observed that low miss ratios (less
than 4%) could be obtained, but with the use of larger cache and line sizes than would be needed for a
scalar workload. In {Gee90], a much larger sample of Cray X-MP and Ardent Titan traces were collected
to explore reference locality and cache behavior in vector applications; many of these traces are used for
the results presented in this paper. Temporal and spatial locality were characterized by measuring miss
ratios, working set sizes, interreference intervals, and changes in cache miss ratio with increasing block
size. The study found vector references to contain more spatial locality, but less temporal locality than
scalar references. Cache miss ratios fell below 1% for caches as small as 128 Kbytes, and below 0.5% for
a 1 Mbyte cache.

[Gee90] also estimated the effect of caches on time performance by measuring average access
delays over a range of memory system parameters. For cache machines, the average access delay is the
product of the cache miss ratio and the time to service a cache miss. For machines without cache, the
average access delay is measured by assigning delays to each instruction branch, to the first element of
each vector reference, and to each scalar reference. Using a simple pipelined model of execution,
[Gee90] estimated that a large vector cache can improve the time performance of an application by at
least 50%, and possibly more, depending on the memory latency in the system.

[Abu86] provided timing results for the Alliant FX/8, a vector multiprocessor which caches vector
data. Vectorized kernels from the Los Alamos benchmarks were timed, with vector lengths ranging from
1 to 100,000. Observed performance improvements showed speedups of 1.35 to 3.67 over a system with
no cache. The kernels cease to fit in the cache for vector lengths beyond a few thousand elements, how-
ever, and performance drops quickly once these lengths are exceeded. The results, while interesting,
mislead somewhat by suggesting that caches lose effectiveness once the problem size exceeds the cache
size. This is not the case in real environments, as large numerical applications can be coded to execute
efficiently in smaller memories [McKe69], [Triv77], [Agar86].

1.2. Organization

The remainder of this paper is divided into the following sections. Section 2 discusses the simula-
tion environment. Section 3 discusses the machine and vector cache models. Section 4 describes the
benchmarks and presents some of their characteristics. Simulation results are presented in section 5. Sec-
tion 6 presents the conclusions of our work.

2. Simulation Environment

2.1. Simulation Platform: The Ardent Titan

The timing simulator used for this research is developed for and runs on the Ardent Titan [Died88].
The Titan is a graphics supercomputer which combines the scalar performance of a MIPS R2000 general
purpose processor and a custom floating point vector unit built partially with commodity parts. The
machine architecture is a combination of MIPS scalar instructions and Ardent-defined floating point
operations. The MIPS processor handles instruction fetch and executes integer operations, while the
floating point unit executes both scalar and vector floating point operations. Floating point unit instruc-
tions are specified in the instruction stream by a MIPS load or store to reserved locations in the address



MIPS R2000 Conrol Vector Unit
Data 8 Mhz
16 Mhz D A B
¥
T
| I !
| I-Cache D-Cache Write
‘ 16 KB 16 KB Buffer
RBUS (read) ¢ -
SBUS (fw)  ® ‘ X U
16 Mhz, 256 Mbytes/sec
{
I
r
|
!
Memory
8 or 16 way intericaved
8-512 Mbytes | ]

Figure 1: Ardent Titan block diagram
This figure shows a block diagram of the Ardent Titan. The Titan consists of a 16 MHz MIPS
R2000, an 8 MHz custom vector unit, and a 256 MByte/sec memory bus. Instruction and data

caches for MIPS references are provided, while the vector unit references all data from memory
through one store and two load pipelines.

space. Each reserved address corresponds to a different floating point operation. A block diagram of the
Titan is shown in figure 1.

Vector Operation Timings

Operation Clock Cycles
FP add,sub 6+ VL
FP mul 6+ VL
FP single div 7+4*VL
FP double div 7+5*VL
load 8+ VL
store 2+ VL

Table 2: Ardent Titan Operation Timings (VL: vector length)

In the Titan, the MIPS R2000 integer unit operates at 16 Mhz, and the floating point vector unit
operates at 8 Mhz with a peak performance of 16 Mflops. Timings for some typical floating point vector
operations are listed in table 2. The MIPS processor fetches instructions and integer data through
separate 16 Kbyte instruction and data caches. Each cache can be accessed in a single cycle, and load
data is available to the MIPS processor after a one cycle delay. The integer data cache is a write through
cache, with a four deep write buffer to keep write stalls infrequent. The vector unit references all data



-5-

from memory. It has three independent memory pipelines for scalar and vector floating point references:
two 8 Mhz pipelines for loads, and one 16 Mhz pipeline for stores. The total memory bandwidth is 256
Mbytes/second, available from one 64 bit read only bus (RBus) and one 64 bit read/write bus (SBus),
both of which are clocked at 16 Mhz. The memory system can be configured with 8 0 512 Mbytes of
memory, interleaved 8 or 16 ways.

2.2. Simulation Process

The simulation process is as follows. A benchmark is compiled, and a postloader translates the
resulting object code into a profiled version, inserting calls to simulation entry points before each MIPS
load, store, and branch. Simulator calls inserted in front of MIPS loads and stores pass the address and
data associated with that load or store. If the address corresponds to an Ardent-defined vector instruction,
the simulator maintains sufficient state to reconstruct and simulate the vector operation.

The simulator is implemented in Unix System V shared libraries, which the operating system
attaches to the profiled code at runtime. The profiled code is then executed on an Ardent Titan. Each call
to the simulator specifies an event, either the completion of a basic block, a MIPS load or store, or a vec-
tor unit operation. The simulator contains a timing model for the machine, and updates internal cycle
counts based on the particular event. At the end of the simulation run, cycle counts and cache metrics are
deposited to an output file.

The timing simulator accurately models the entire vector unit, vector cache, and memory system.
Memory bank, vector register, and bus conflicts inherent to multiple pipeline processors are handled pre-
cisely. A scoreboard resolves data dependencies and correctly serializes operations which require com-
mon vector registers. Modeling of the MIPS scalar processor is approximated by incrementing the clock
for each executed MIPS instruction. For efficiency, details of the MIPS/Integer cache part of the system
are not accurately simulated, since they are common to all three models studied. In particular, memory
activity by the integer processor, including integer cache misses, is not modeled.

2.3. Limitations and Justification

Although timing results are preferable to miss ratios in assessing the performance impact of cache
designs, there are inherent limitations to timing simulation. First, timing simulators tend to be slow, and
our simulator is complicated by fact that multiple vector pipelines and resource conflicts must be modeled
exactly. This limits the design space that can be explored, as well as the amount of real execution time
that can be simulated. Programs with our simulator attached execute approximately 1000 times slower
than unprofiled programs, limiting our simulations to a few minutes of real time. In addition, the results
produced are highly dependent on the machine architecture, memory system, and timing parameters
characteristic of one particular machine. Reported resuits, while highly accurate for that machine, may
not apply to machines built on a different architecture or technology.

One limitation of our simulator is that since the simulator and tracer run as coroutines, the simulator

runs only on Ardent Titans, and not on any other machine. Since we no longer have access to an Ardent
Titan, we are unable to further extend the results that we report here.



3. Simulation Models

In this section, we describe the three models studied. We first present the common architecture of
the machines, which is essentially the Ardent Titan architecture, as described earlier, and shown in figure
1. The timing parameters of the machine are based partially on technological trends and partially on tar-
geted performance levels for a future generation machine. Two of the models contain vector caches. The
third model has no cache and was developed mainly for comparison purposes. The vector caches utilize
different techniques to achieve the high cache bandwidth critical for multiple pipeline architectures. One
cache is interleaved with a crossbar switch connecting interleaves to memory access pipelines. The other
cache consists of several independent caches, each assigned to a different memory access pipeline, with
consistency maintained in hardware. Both caches are direct-mapped with a block size of 64 bytes.

3.1. Machine Architecture

As noted and described above, the core of our three models is an Ardent Titan. The major design
decisions are (1) determining memory and operation latencies, in clock cycles, and (2) selecting clock
rates for the integer unit, vector unit, and memory bus. Since this work is based on technological
upgrades to the Ardent Titan and its successor (the Stardent ST3000), we assume that pipeline organiza-
tions remain the same, i.e. latencies for floating point operations are unchanged. Similarly, the access
time to main memory, in bus cycles, also remains the same as in the Titan.

We determined cycle times by examining current trends in technology. The original Ardent Titan is
a 16 Mfiops peak machine, with a 16 MHz integer processor, an 8 MHz vector unit, and a 16 MHz, 256
Mbyte/second bus. The Stardent ST3000, a successor to the Titan, is a 32 Mflops peak machine, with a
32 MHz integer processor, a 16 MHz vector unit, and the same 16 MHz, 256 Mbyte/second bus. At the
time of this study (summer 1989), integer unit clock speeds were expected to double again to 64 MHz (60
MHz MIPS R6000 processors are available in 1990), with little, if any, decrease in memory access times.
It was also believed that a vector unit could be implemented at integer unit speeds, unlike earlier Ardent
machines, which have vector units running at half the integer unit clock rate. These designs were expli-
citly based on design alternatives under consideration at Ardent and are thus considered to be highly real-
istic.

Our next generation machine model thus has the following timing characteristics. The integer and
vector units both run at 64 MHz, yielding a peak performance of 128 Mflops. The memory latency is four
processor cycles plus nine bus cycles, identical to earlier Ardent and Stardent machines. The bus rate and
aggregate bus bandwidth are 16 MHz and 256 Mbytes/second, four times slower than processor clock
rate, and unchanged from previous machines.

3.2. No Cache Model

The base configuration is identical to figure 1, except for the improvement in integer and vector unit
clock rates. With the slow bus and main memory, this model essentially evaluates performance in a
memory limited environment. The three memory access pipelines arbitrate for the read-only R bus and
writable S bus. Writes have priority for the S bus, while the read that issued earliest has priority for the R
bus. The bus bandwidth and clock rate of 256 Mbytes/second and 16 Mhz are both low for a 128 Mflops
machine. Interleave conflicts at main memory are not modeled. The latency for a memory access is four
processor plus nine bus cycles, for a total of 40 processor cycles.



3.3. Interleaved Cache Model

S o Ve O
Data
64 Mhz D A B
. 1
M b i
I-Cache D-Cache Write ) 1
Buffer .
Crossbar Switch
-
Lilddl
Intericaved
Cache
4 MB
RBUS (read) #- T .
SBUS (rjw) @= >

16 MHz, 256 Mbytes/sec I
[
[
I "
Memory
8 or 16 way interleaved
8-512 Mbytes

Figure 2: interleaved cache model

This figure shows the interleaved cache model, which consists of a 4 MByte, eight way inter-
leaved cache with a two cycle access time. A crossbar switch connects the cache with the three
vector access pipelines.

Because of the high memory bandwidth requirements of vector machines, arising from several data
access pipelines running in parallel, a traditional, single-ported cache architecture is a bottleneck. One
solution, as shown in figure 2, is to borrow from existing memory system techniques and interleave the
cache N-ways; this increases the potential bandwidth by a factor of N. It also allows multiple memory
access ports to run in parallel, given a suitable interconnect (e.g. a crossbar switch) between the ports and
the separate cache interleaves.

In our interleaved cache model, the cache size is four Mbytes and the bank cycle time is two cycles.
This was considered to be the maximum feasible cache size for a next generation Stardent machine. The
two cycle access time includes transit time through the cache interconnect. For a given bank cycle time,
the degree of interleaving is generally chosen to match bandwidth needs. We interleaved the cache eight
ways, yielding a total cache bandwidth of 2 Gbytes/sec, sufficient for all three memory pipelines running
at the full 64 MHz rate. A crossbar switch connects each interleave to each memory access pipeline.

The cache is interleaved by eight-byte word. The cache block size is 64 bytes and consists of a slice
across all eight interleaves. In the simulator an arbitration scheme based on operation issue time is used
to resolve interleave conflicts, with a two cycle delay between accesses to the same bank.

As shown in figure 2, the interleaved vector cache is distinct from the MIPS integer caches. There
are several reasons why we did not simply eliminate the MIPS data cache and have the MIPS unit refer-
ence data directly from the vector cache. This would reduce the amount of cache bandwidth available to
the vector pipelines, and delay either the integer unit or the vector unit in the case of conflicts. Conflict
levels could be very high, as both the vector and integer units make heavy use of the cache, at Jeast in



spurts.

Instead of unifying the vector and integer caches, a better option is to use the vector cache as a large
secondary cache for MIPS data references. The MIPS processor only accesses the vector cache on integer
cache misses and write throughs, taking up only a small fraction of vector cache bandwidth. Cache con-
sistency is easily maintained by making the contents of the MIPS cache a strict subset of the vector cache.
Writes by the MIPS processor update both the MIPS and vector cache, while vector unit writes invalidate
blocks from the MIPS cache.

On an interleaved cache miss, all interleaves are temporarily blocked. Each word retrieved from
memory fills one of the interleaves, and frees that interieave to process additional cache references. The
interleave where the miss occurred is serviced first, and the remaining interleaves are serviced in wra-
paround fashion at the rate of one interleave per bus cycle. The write policy in the interleaved cache is
copy back, and copy backs are assumed to take zero time. This assumes that some sort of write buffering
mechanism exists, i.e. a buffer containing several cache lines. Attributing no time to copy backs is rea-
sonable, as replaced lines can usually be moved into the buffer while the processor is waiting for the line
which caused the miss [Smit79,82]. We also assume that there is no bus or memory queuing when ser-
vicing a cache miss. Measured bus transfer ratios (presented later in this paper) are low, thus memory
and busses should be free to service the occasional cache miss.

3.4. Partitioned Cache Model

Control

Vector Unit
MIPS Rxxx
Data 64 Mhz
64 Mhz D A B
. Read Read
I-Cache | | D-Cache ;:'f"f“ Cache Cache
“ 1 MB l—' 1 MB
RBUS (read) -
SBUS (r/w) ¢ R
16 MHz, 256 Mbytcs/sec
|
[
[
; [
Memory
8 or 16 way interiecaved
8-512 Mbytes

Figure 3: partitioned cache model

This figure shows the partitioned cache model, which consists of two 1 Mbyte read only caches
and a deep write buffer. The read only caches are connected to the two vector read pipelines, and
can be accessed in one cycle. Access time for the write buffer is also a single cycle. Consistency
is maintained via hardware updates; each write to the buffer stalls both read caches for one cycle.

In addition to the interleaved design, it was considered desirable to consider at least one other cache
alternative. The constraints of developing a low latency, high bandwidth cache model limits the number



-9.

of feasible alternatives. For a machine with N memory ports, one could conceivably fill the requirements
by (1) building N large caches, (2) building a single cache that is N times faster than each memory port,
or (3) partitioning a large cache into N separate, smaller caches. The first and second options are imprac-
tical, the first due to the vast amount of cache required, and the second due to the excessive cost of build-
ing a cache N times faster than processor speed. The third option, which we explore, operates by parti-
tioning a large cache into separate, smaller caches, each of which is assigned to a different memory port.
The multiple caches provide sufficient bandwidth for all memory access ports.

The partitioned cache model is shown in figure 3. The two read pipelines are connected to separate
read-only caches. The write pipeline feeds a write buffer common to both integer and vector units. We
did not implement a write-only cache because such a cache made little sense. The write-only cache sim-
ply buffers writes, which we felt could be done more efficiently with a very deep write buffer. The buffer
uses a write through mechanism to channel writes between the vector unit and main memory.

The combined size of the two caches shown is only 2MB, not the 4MB used for the interleaved
design. This choice stems from an original plan (not followed) to add a third read port to the cache, with
an additional 1MB cache, thus yielding a total of 3MB, close to the original four. In retrospect, we would
choose to also study a design with two 2MB caches, but the facilities of Ardent Computer Corporation,
now the West Coast branch of Stardent Computer Corporation, are being dismantled. We no longer have
the facilities to do new simulations or repeat old ones. As will be seen below, we have been careful in
our analysis to separate out the effect of cache capacity differences from other changes between the two
models.

Each one Mbyte read cache is direct mapped with a 64 byte line size. As previously mentioned, the
write through buffer never stalls. The cycle time of both read caches and the write buffer is one processor
cycle, allowing each memory access pipeline to potentially complete one reference per cycle.

The read caches are independent, and duplicate copies of data may exist in both caches. In order to
maintain consistency, a write through, write update protocol is used, by which all writes sent to the write
buffer (for transmission to main memory), are also used to update any corresponding data found in the
read caches. These updates stall any pending read accesses until the next cycle. Initial analysis found
that updates are necessary for virtually all writes, thus the simulator assumes the worst case and blocks all
read caches for one cycle when a write occurs.

Maintaining consistency between the integer and vector caches is quite simple. By using a shared
write buffer, we guarantee that integer unit writes are seen by both the integer and vector cache. Using
write through at all levels of the cache hierarchy eliminates the need for the integer to be a strict subset of
the vector cache. To maintain consistency, vector unit writes must only invalidate the integer cache if the
block is present there.

The miss penalty in the read caches is again four processor plus nine bus cycles. Valid bits are not
maintained for each word within a block. Instead, the entire block is assumed valid after the first word in
the block is fetched. Timing results for the partitioned cache model will thus tend to be slightly optimis-
tic, as data assumed valid at a certain time may not actually be available until several cycles later.



-10 -

4. Workload

Choosing the benchmark set is one the crucial steps in any performance study. This is particularly
true for this work, as the performance of a vector cache is considerably more application and algorithm
sensitive than the performance of a scalar cache. Our goal in the selection process has been to gather real
applications which are typically used in a vector processing environment. We sought out large real pro-
grams, to stress the cache, and selected them across as wide a range of applications as possible. The
applications gathered from real workloads at Ardent Computer include linear analysis programs such as
abaqus and ansys, the computational chemistry module born, computational fiuid dynamics programs
such as arc3d, dyna2d, flo57, flo82, and wake, linear equation solvers linpack, linpeak, and lapack, and
the molecular orbital applications ampac, mopac, and nekzon.

Table 3 displays some vector unit characteristics of the programs. The memory references listed in
the table do not include instruction and data references made by the MIPS integer unit. All statistics were
gathered from the first 500 million vector unit memory references of each application, which, due to time
constraints, was the stopping point for each simulation.

A column in table 3 lists the average number of memory references per floating point operation; the
overall average is 1.4 memory references per floating point operation. A simple calculation shows that
these memory references will be the performance bottleneck in future machines. The Stardent ST3000
has a maximum bus bandwidth of 32 million word references per second on the R and S busses. Using an
average of 1.4 references per floating point operation, we calculate a peak in-memory performance of 21
Mflops for the ST3000. This is considerably less than the 32 Mflops potential peak performance of the
machine. In our hypothetical machine, the vector unit is four times faster than the ST3000 vector unit,
providing a theoretical peak performance of 128 Mflops. However, with memory and bus performance
unchanged, the maximum performance executing from memory remains at 21 Mflops. Without some
improvement in memory access rates, it is clear that vector unit memory references will be the perfor-
mance bottleneck.

The working set sizes in table 3 are fairly large, on the order of one megabyte for a time quantum of
one million references; see [Gee90] for a detailed study of vector reference behavior. We note that the
working sets of many applications fit into our two proposed cache models. This is not a coincidence, as
our choice of cache size is partially based on the sizes of typical applications, and partially based on the
cost of the cache.

Table 4 is a breakdown of vector unit memory references into scalar reads, scalar writes, vector
reads, and vector writes. As the Titan vector unit executes all floating point operations, scalar floating
point references occasionally occur. The scalar categories also include scarer/gather references, which
are vector references without a constant srride, or distance, between elements. They are included in the
scalar categories because the Titan implements scatter/gather references as a series of scalar references.
The programs are heavily vectorized, as over 80 percent of all floating point references are made in vector
mode. The ratio of reads to writes is approximately two to one for both scalar and vector references,
similar to results found in [Smit85].



-11-

Benchmark Characteristics

Flops Mem Refs Data Space | Working Set
Program Dataset (millions) ;| (millions) Refs/Flop (Mbytes) (Mbytges)
abaqus t2-4-6 329.0 500.0 1.52 11.7 0.3
abaqus t3-4-6 335.0 500.0 1.49 13.2 0.3
abaqus t4-4-6 3444 500.0 1.45 13.0 0.5
abaqus 16-4-6 257.6 500.0 1.94 0.8 0.3
ampac testbig.dat 4124 412.3 1.00 1.2 0.4
ansys ml 333 60.2 1.81 1.0 0.3
ansys m2 313.0 500.0 1.60 28 1.2
ansys m3 298.6 500.0 1.67 27 1.1
ansys sl 292.9 500.0 1.71 20 1.1
ansys s2 248.4 500.0 2.01 6.2 1.1
ansys s3 194.0 500.0 2.58 13 0.2
arc3d high.in 603.1 500.0 0.83 2.0 0.5
born demo5 568.5 500.0 0.88 1.1 0.1
born therm 398.5 500.0 1.25 0.8 0.2
dyna2d dyna.2 354.9 500.0 1.41 0.5 0.3
FFT 1k x 1k 38.4 25.2 0.66 16.0 12.5
flo57 in.data 336.6 500.0 1.49 10.6 1.7
flo82 rae2822 325.3 500.0 1.54 2.1 0.8
lapack 1000x1000 330.5 500.0 1.51 7.7 2.6
linpack 100x100 18.6 28.8 1.54 0.3 0.2
linpeak 1000x1000 3334 500.0 1.50 7.8 33
mopac testbig.dat 508.3 500.0 0.98 0.9 0.2
wake input.dat2 4304 500.0 1.16 0.6 0.4
Mean 317.6 435.9 1.37 4.6 1.3
Median 330.5 500.0 1.50 2.0 0.4

Table 3: Characteristics of the Benchmark Programs

This table lists some characteristics of the benchmark programs, including counts of floating point
operations and vector unit memory references. The data space size was measured using a one kilo-
byte page size. The working set size was computed in real time using a time quantum of one mil-
lion references and a one kilobyte page size.




-12-

Vector Unit Memory Reference Breakdown
Scalar | Scalar | Vector | Vector
Program Dataset Read | Write Read Write
% % % %
abaqus t2-4-6 9.0 4.1 57.8 29.1
abaqus 134-6 7.9 3.5 59.2 29.4
abaqus t4-4-6 5.1 3.7 61.8 294
abaqus 16-4-6 28.6 14.1 36.6 20.7
ampac testbig.dat 18.2 8.3 63.8 9.7
ansys ml 103 2.5 59.3 27.9
ansys m2 1.8 0.6 63.7 33.9
ansys m3 32 1.0 61.4 344
ansys sl 3.1 0.7 61.7 345
ansys s2 58 1.1 57.0 36.1
ansys s3 8.5 1.6 51.9 38.0
arc3d high.in 143 6.2 57.1 224
born demo5 28.5 11.1 37.7 22.7
born therm 38.6 15.4 28.0 18.0
dyna2d dyna.2 22.8 13.0 37.7 26.4
FFT 1k x 1k 8.4 8.4 41.6 41.6
flo57 in.data 54 2.2 62.7 29.7
flo82 rae2822 34 2.0 67.3 27.3
lapack 1000x1000 04 0.3 66.1 33.2
linpack 100x100 2.0 1.8 64.3 31.9
linpeak 1000x1000 0.2 0.2 66.4 33.1
mopac testbig.dat2 || 25.3 6.1 53.7 14.8
wake input.dat2 7.9 2.6 60.2 29.3
averages 11.8 4.8 55.5 27.8

Table 4: Breakdown of Vector Unit Memory References

This table provides a breakdown of vector unit memory references into four categories: scalar
reads, scalar writes, vector reads, and vector writes. Values in the table are percentages of all vec-
tor unit memory references.

5. Results

5.1. Time Performance

This section contains timing results for the three simulation models: the model without a vector
cache, the interleaved cache model, and the partitioned cache model. We briefly note that the results
were generated using prototype compilers and simulators. The performance of these hypothetical
machines are not meant to be indicative of any current or future products from Stardent or any other
supercomputer vendor.

Performance numbers for the benchmark suite are presented in table 5. The table also contains per-
formance ratios normalized to the no cache model, as well as arithmetic and geometric averages for each



-13 -

Timing Simulation Results
Program Dataset . Megafiops — Ratios
int | part | nome | int ' part | none
abaqus 2-4-6 10.7 | 10.2 58 || 1.8 | 1.8 1.0
abaqus 3-4-6 152 | 144 70 || 22 | 2.1 1.0
abaqus t4-4-6 16.1 | 15.6 3.8 | 42 | 4.1 1.0
abaqus 6-4-6 14.0 | 10.3 26 || 54 | 4.0 1.0
ampac testbig.dat || 158 | 163 | 13.0 || 1.2 | 1.3 1.0
ansys ml 6.3 6.2 44 | 14 | 14 1.0
ansys m2 20.5 | 147 96 | 2.1 | 1.5 1.0
ansys m3 11.3 9.3 67 || 1.7 | 14 1.0
ansys sl 15.0 | 11.8 79 1| 1.9 | 1.5 1.0
ansys s2 10.6 6.1 45 24 | 14 1.0
ansys 3 3.4 34 26 |13 ] 13 1.0
arc3d high.in 172 | 176 | 102 || 1.7 | 1.7 1.0
born demo5 17.2 | 17.0 47 || 3.7 | 3.6 1.0
born therm 12.8 | 12.8 29 || 44 | 44 1.0
dyna2d dyna.2 9.5 9.7 47 | 2.0 | 2.1 1.0
FFT lkx 1k 4.2 85 | 165 || 03 | 0.5 1.0
floS7 in.data 125 | 121 79 | 1.6 | 1.5 1.0
flo82 rae2822 20.7 | 21.6 87 || 24 | 25 1.0
lapack 1000x1000 | 433 | 204 | 147 || 29 | 14 1.0
linpack 100x100 355 | 27.8 | 11.2 || 3.2 | 25 1.0
linpeak 1000x1000 || 153 | 195 | 13.0 | 1.2 | 1.5 1.0
mopac testbig.dat || 152 | 17.0 7.6 || 20 | 2.2 1.0
wake input.dat2 | 19.9 | 21.1 89 || 22 | 24 1.0
Means (w/ FFT)
arithmetic 15.7 | 14.1 78 || 20 | 1.8 1.0
geometric 13.6 | 12.7 68 | 20 | 1.9 1.0
Means (w/o FFT)

arithmetic 163 | 143 74 |22 | 19 1.0
geometric 144 | 13.0 65 || 22 1 2.0 1.0

Table 5: Performance Results for the Various Cache Models

This table contains the performance results for the benchmark suite. Performance was measured
over the first 500 miliion vector unit references made by each application. The columns int, part,
and none represent the simulated performance of the interleaved, partitioned, and no cache
models, respectively.

column. The results show that both cache architectures improve performance dramatically on nearly all
applications. The only negative result is the 1k x 1k FFT [Temp83], which has a large (16 Mbyte) dataset
and poor locality of reference. We believe that the poor performance of this FFT is largely attributable to
its algorithm, which was not designed for memory hierarchies; we discuss this topic further later. In the
meantime, we list performance averages both including and excluding the FFT. Without the FFT, aver-
age performance improves by 5 to 10 percent.

The interleaved cache improves time performance from 20% to over 400% compared to a system
without a cache. Arithmetic and geometric averages indicate that the interleaved cache doubles



-14 -

performance. This improvement arises from the speedup of both scalar and vector references. Scalar data
references require 40 processor cycles without a cache, but only 2 processor cycles with a hit in the inter-
leaved cache. Similarly, uncached vector references have an initial latency of 40 processor cycles, and the
memory bus can only support two vector references every four processor cycles. The interleaved cache
removes the initial latency and supports all three memory pipelines running at the full 64 MHz clock rate.

The partitioned cache improves performance by 30% to over 300% percent, with an average perfor-
mance improvement of 80%. The amount of improvement is less than that for the interleaved cache
model for most benchmarks, which we attribute to several factors. First, each write by the vector unit
reduces read bandwidth while the independent read caches are updated. Second, each 1 MB read parti-
tion is only one-fourth the size of the 4 MB interleaved cache. Applications with working sets larger than
a read partition but smaller than the interleaved cache will perform much better in the interleaved cache
model. Finally, as discussed earlier, the combined cache size of the two read partitions is only half that of
the interleaved cache. The effective combined cache size of the two read partitions is even lower, due to
data duplication, and is probably closer to 1 MB than 2 MB. Size factors are probably responsible for the
results on ansys (m2), ansys (m3), ansys (sl), ansys (s2), and lapack. Each of these applications has an
average working set larger than 1 MB, but smaller than 4 MB. For the ansys programs, the interleaved
cache model outperformed the partitioned cache model by 20% to 70%. In lapack, the largest of these
programs, performance with the interleaved cache is double that with the partitioned cache.

Timing Simulation Results: Small Applications
Program Dataset ‘ Ratios Working Set Size
int | part | none (Mbytes)

abaqus t2-4-6 1.8 | 1.8 1.0 0.3
abaqus t3-4-6 22 | 2.1 1.0 0.3
abaqus t4-4-6 42 | 41 1.0 0.5
abaqus 16-4-6 54 | 4.0 1.0 0.3
ampac testbig.dat || 1.2 | 1.3 1.0 04
ansys ml 14 | 14 1.0 0.3
ansys s3 13 | 13 1.0 0.2
arc3d high.in 1.7 | 1.7 1.0 0.5
born demo5 3.7 1 3.6 1.0 0.1
born therm 44 | 44 1.0 0.2
dyna2d dyna.2 20 | 21 1.0 0.3
linpack 100x100 || 3.2 | 2.5 1.0 02
mopac testbig.dat | 2.0 | 2.2 1.0 0.2
wake input.dat2 || 2.2 | 2.4 1.0 04
Means

arithmetic 23 | 22 1.0 0.3
geometric 24 | 23 1.0 0.3

Table 6: Performance Ratios for Small Benchmarks

This table lists the performance ratios from table 5 and working set sizes from table 3 for pro-
grams with working set sizes smaller than either cache model.



-15-

The size differences between the interleaved and partitioned caches make it somewhat difficult to
evaluate the relative merits of each model. To factor out these effects, we examine the performance of
programs with relatively small working set sizes. Normalized performance ratios for these programs are
listed in table 6, along with their average working set sizes. The largest of these programs has an average
working set size of balf a megabyte, and the average across these programs is only 0.3 megabytes. All of
these programs clearly fit into both cache designs.

The average performance improvement for this subset of applications is 15 to 20% greater than the
average improvement for the entire benchmark suite, and roughly 10% better than the benchmark suite
minus the FFT. As expected, caches are more effective on programs which fit into the cache. The inter-
leaved cache remains the better alternative, although the performance gap between the two alternative
cache models has decreased from 11 percent for the full benchmark suite to 5 percent for this subset. By
factoring out cache size, bandwidth reducing effects, i.e. interleave conflicts in one model and write
updates in the other, are the major difference between the two models. Although we have no direct meas-
urements, it appears that write updates in the partitioned cache have a more negative effect on perfor-
mance than conflicts in the interleaved cache. (The model for the partitioned cache also omits accounting
for the delay in the fetch of the remainder of a line, and also for write stalls in the write buffer, so small
differences between various results may not be significant.)

We had earlier mentioned that the 1k x 1k FFT is the only negative result for both cache based
models. This is a two dimensional FFT algorithm presented in [Temp83], where transforms are per-
formed in parallel, with each vector containing one element from each different transform. Each indivi-
dual transform is stored in memory as a 1k strip of contiguous elements, and the 1k different transforms
are stored one after another. Consequently, a vector containing one element from each transform has a
vector stride of 1k words, and since the dataset size of the 1k x 1K FFT is 16 Mbytes, each reference
causes a miss. The partitioned cache model performs better than the interleaved cache model only
because writes always complete in one cycle using the partitioned cache write buffer. In the interleaved
cache, writes often miss in the cache, triggering a block fetch.

This particular FFT algorithm is not designed for memory hierarchies, but does improve processor
utilization, as vector lengths increase by performing transforms in parallel. Alternative FFT algorithms
do exist which account for memory hierarchies and attempt to minimize cache misses. [S088b] simulated
a 1k x 1k FFT which uses a library routine written especially for the 64 Kbyte cache in the IBM 3090 VF
[Agar86]. The routine operates on vectors with unit stride, and utilizes data blocks as often as possible
once they are cache resident. The miss ratio of this FFT on the small 3090 cache is only 3 percent.

Our discussion of the FFT algorithm has been illustrative of an important point - programs can be
rewritten to perform well in a cached system, just as they can be rewritten (in some cases, and in our
opinion, with more difficulty) to work well in a vector machine.

As a final note, programs making a large number of scatter/gather references, such as born, benefit
more than other programs from the addition of a vector cache. This occurs because scatter/gather refer-
ences were implemented as a sequence of scalar loads and stores in the first generation Ardent Titan.
Scalar loads and stores are not pipelined, thus each scatter/gather reference takes 40 processor cycles to
complete without a cache. The second generation Stardent machines can vectorize these references.



-16 -

5.2. Cache Metrics

Cache miss and bus traffic ratios from the simulations are shown in table 7. The bus traffic ratio is
defined as the ratio of memory traffic with a cache (due to the reading and writing of cache blocks) to
memory traffic without a cache. Low cache miss ratios reduce bus traffic ratios well below unity. By
reducing bus traffic, contention for main memory decreases and the scalability of multiprocessor systems
improves. Table 7 contains three sets of averages, one for all programs, one for all programs minus the
FFT, and one for the subset of small programs (boldface entries in table 7). Each set lists three types of
averages: (1) weighted averages, which are arithmetic averages weighted by the number of references in
each application, (2) unweighted arithmetic averages, and (3) unweighted geometric averages. We have
most confidence in the weighted averages. Simple arithmetic averages are skewed by poor performing
benchmarks (i.e. the FFT), while the geometric averages are optimistic where low values equal better per-
formance.

From table 7, bus traffic ratios for the partitioned cache are much higher than traffic ratios for the
interleaved cache. This is due to the write through mechanism used in the partitioned cache write buffer,
which forces bus traffic ratios to be at least as large as the fraction of writes in each trace.

Cache miss ratios range from as low as a few hundredths of a percent to over 40 percent for bench-
marks with poor locality, such as the FFT. Miss ratios for the partitioned cache are generally larger than
miss ratios for the interleaved cache, as the partitioned cache is smaller and allows data duplication.

The smaller effective size of the partitioned cache is most noticeable in the miss ratios for the ansys
datasets m2, m3, s/, and s2, and the flo57, lapack, and mopac benchmarks. Partitioned cache miss ratios
for these benchmarks are nearly an order of magnitude larger than interleaved cache miss ratios. With the
exception of mopac, all of these benchmarks have working sets in excess of 1 Mbyte but less than 4
Mbytes. As noted in the timing results, most of these benchmarks also execute significantly faster in the
interleaved cache model.

For the small benchmarks, miss ratios for the two cache models are in good agreement except in
mopac. The mopac result is probably due to set mapping conflicts in the smaller partitioned read caches,
as all caches are direct-mapped. Mopac contains a large fraction of scalar reads, which may be contend-
ing with vector reads for cache sets.

5.3. Comparisons

We have shown how vector caches can dramatically increase the performance of a vector processor.
This increase is most noticeable when comparing the performance of our hypothetical machines to exist-
ing Ardent and Stardent products. The Ardent Titan, with a 16 MHz integer unit, 8 MHz vector unit, and
16 MHz bus, runs the 100x100 linpack benchmark at 6 Mflops. The Stardent ST3000, with a 32 MHz
integer unit, 16 Mhz vector unit, and identical 16 MHz bus, runs 100x100 linpack at 10 Mfiops. Our base
configuration without cache, but with 64 MHz integer and vector units and the same 16 MHz bus, runs
100x100 linpack at only 11.2 Mflops. The addition of vector caches allows us to extract a good fraction
of the extra performance. The interleaved cache model runs 100x100 linpack at 35.5 megafiops, while
the partitioned cache model runs the benchmark at 27.8 megafiops.

Based solely on our results, the interleaved cache appears to be the better choice of the two cache
models. In addition to the results, other factors tend to favor the interleaved cache model. Its performance
is less sensitive to the working set size of an application, as each memory pipeline can access the entire



-17 -

Cache Miss and Bus Traffic Ratios
Interleaved Cache Partitioned Cache
4 megabytes 2 megabytes
Program Dataset copy back infinite write buffer
miss ratio | traffic || miss ratio | traffic
% ratio % ratio
abaqus t2-4-6 0.12 0.018 0.14 0.343
abaqus t3-4-6 0.14 0.022 0.14 0.340
abaqus t4-4.6 0.16 0.025 0.17 0.344
abaqus t6-4-6 0.10 0.016 0.14 0.358
ampac testbig.dat 0.17 0.022 0.37 0.210
ansys ml 0.08 0.011 0.11 0.312
ansys m2 0.23 0.036 2.12 0.526
ansys m3 0.20 0.031 2.02 0.515
ansys sl 0.20 0.031 1.89 0.503
ansys s2 0.25 0.038 1.49 0.491
ansys s3 0.04 0.006 0.03 0.398
arc3d high.in 0.23 0.027 0.40 0.318
born demo$S 0.05 0.007 0.17 0.351
born therm 0.04 0.006 0.08 0.341
dyna2d dyna.2 0.06 0.008 0.07 0.400
FFT lkx 1k 45.60 5.255 41.40 3.813
flo57 in.data 1.50 0.177 4.47 0.355
flo82 rae2822 0.10 0.016 0.26 0.331
lapack 1000x1000 0.58 0.053 3.66 0.364
linpack 100x100 0.02 0.003 0.04 0.342
linpeak 1000x1000 3.47 0.552 4.27 0.674
mopac testbig.dat 0.11 0.014 1.05 0.297
wake input.dat2 0.03 0.004 0.03 0.321
Means (w/ FFT)
weighted 0.50 0.068 1.25 0.399
arithmetic 2.33 0.277 2.81 0.532
geometric 0.18 0.025 0.42 0.412
Means (w/o FFT)
weighted 0.39 0.055 1.15 0.390
arithmetic 0.36 0.051 1.05 0.383
geometric 0.14 0.020 0.34 0.372
Means (small progs)
weighted 0.10 0.014 0.23 0.337
arithmetic 0.10 0.014 0.21 0.334
geometric 0.08 0.011 0.13 0.331

Table 7: Miss and Traffic Ratios from the Simulations

This table lists cache miss and bus traffic ratios for the benchmark suite, again measured over the
first 500 million vector unit references. Averages are provided for a) all programs, b) all pro-
grams minus the FFT, and ¢) the small programs from table 6. Small programs are in boldface.

four megabytes of cache. The interleaved cache does not waste cache space due to data duplication,
unlike the partitioned cache. The interleaved cache generates less bus traffic, since it is a copy back
cache, whereas the partitioned cache uses a write through buffer. Finally, the interleaved cache appears to
be more feasible to implement. It assumes two cycle technology to access the cache through the crossba}r



-18 -

switch. The partitioned cache assumes single cycle technology, an infinite write buffer, and a single cycle
update mechanism from the write buffer to the read caches.

The partitioned cache does have certain advantages. There is no need for a crossbar switch between
memory ports and cache interleaves. A certain level of cache bandwidth is guaranteed through the
separate read caches and write buffer, whereas interleave conflicts can reduce interleaved cache
bandwidth. We note that interleave conflicts do not appear to be a problem, as evidenced by our timing
results and earlier work in [Bask76]. We also note that partitioned cache bandwidth can also be reduced
due to write updates. An interesting advantage of the partitioned cache is its write buffer, which makes
the performance of vector writes insensitive to the vector stride. Each write takes one cycle to place in
the buffer, and the total amount of bus traffic due to writes is equal to the total number of bytes that are
written. In the interleaved cache model, write buffering can be used to eliminate the time penalty of a
cache miss, but bus traffic remains excessive if few words in a block are modified before the block is
written back.

The results from this work compare favorably with results from earlier studies. Our timing results
show that a vector cache improves the performance of a 128 Mflop machine by 80 to 100%, in agreement
with the 30 to 130% improvement seen in [Abu86] for the 94 Mflop Alliant FX/8. For memory limited
applications, [Gee90] estimated that caches can improve performance by at least 50% for vector machines
with a short memory latency, i.e. on the order of 10 to 15 processor cycles. For machines with a memory
latency on the order of 50 cycles, [Gee90] predicted that caches can improve performance by over 150%.
The memory latency in our model is 40 processor cycles, and the 150% performance improvement found
for 100 x 100 linpack correlates well with the predictions in [Gee90].

5.4. Extensions

Although our cache models and timing parameters appear reasonable, we believe that it is important
to project our results over a wider range of cache sizes, access times, and memory latencies. In this sec-
tion, we fit the timing results to a very simple performance model which accounts for some variation in
these parameters. We then use this model to extend our results over a larger design space.

To keep the modeling effort tractable, we make the following assumptions: (a) performance is lim-
ited by the memory access rate of vector data, (b) Amdahl’s Law applies to the performance effect of a
vector cache, i.e. some fraction of program execution will not improve at all with a vector cache, and (¢)
this fraction is approximately 25%, corresponding to a maximum speedup of four. This maximum
speedup was observed in several entries in table 5. Our model is summarized in equations (1) - (3).

(1) S = —I—R (Amdahl’s Law)
25+.75 R”'
_ W*VL
@) Rm =T TBR* VL

_ 3
& Re=gs3vm+ms




-19 -

In the model, S is the speedup from a vector cache, R, is the reference rate (elements/cycle) of data
from memory, while R, is the reference rate out of cache. In equation 2, W is the bus width in words, VL
the maximum vector length, L the memory latency in cycles, and BR the bus rate in processor cycles.
After initial latency, memory can supply W * VL words every BR * VL processor cycles. In equation
(3), A is the effective cache access time, M is the miss rate, and MS is the miss service time. A three-
ported vector cache should supply three references every A cycles if no misses occur. Misses increase the
effective access time by a factor of 3 * M * MS.

Our timing results for the interleaved cache architecture fit reasonably well into this model. For the
design we studied, W = 2, VL = 32, L = 40, and BR = 4, yielding a peak R, of .38 elements/cycle. The
interleaved cache model has a bank access time of 2 cycles, but the effective A is 1 because the three
memory ports can initiate references every cycle, and the eight banks combined can support this reference
rate. M is 0.005, and MS = L = 40 cycles, since the cache can begin processing references as soon as the
missed word is read from memory. These parameters yield a R. of 1.88 references/cycle. The predicted
speedup from the model is 2.5, which is close to the observed speedup of 2.2.

--------------------------- 2.0

Slow Bus and Memory

3.0

. Fast Bus and Memory

e W
‘oeEooe ot

: 0.0

0.5 - r r T T ' ' T 1
000 002 004 006 008 010 000 002 004 006 008 0.10

Cache Miss Ratio Cache Miss Ratio

Figure 4: Performance Model Results

This figure shows speedup due to a vector cache in (a) a conservative implementation (1 bus cycle
= 4 processor cycles, memory latency = 40 processor cycles), and (b) an aggressive implementa-
tion (1 bus cycle = 1 processor cycle, memory latency = 13 processor cycles). Curves are
parameterized by effective cache access time, which is the number of processor cycles to com-
plete three vector references (one per memory port).

We can now use the model to explore varying cache access times, cache miss ratios, and memory
latencies. Figure 4 contains two plots, one for the fairly slow bus and memory system that we simulated,
and another assuming a very aggressive bus and memory system. Each plot shows curves for a range of
effective cache access times. From the first plot, we see that vector caches are extremely effective when



-20 -

paired with a slow memory system. A cache with a long access time of four processor cycles improves
performance until the miss ratio exceeds 3%. Faster caches remain effective up to miss ratios of 4% to
6%. These break even points correspond roughly to cache sizes between 64 and 256 kilobytes [Gee90,
Smit87]. For a miss ratio of 2%, which corresponds roughly to a one megabyte cache, speedup ranges
from 15% to 75%.

As expected, caches are less effective when memory is fast enough. In our very simple model,
speedup only exists when the cache access time is one cycle. Slower caches fail to improve or reduce
performance, for the fast memory system, even if miss ratios are zero. Despite these results, slower
caches can still be beneficial on applications using short vectors, as the access rate from main memory
decreases significantly. Slower caches may also increase performance in multiprocessor systems, where
memory contention also reduces access rates. Our model currently does not account for these effects.

6. Conclusions

To measure the performance impact of cache memory in a vector processing environment, accurate
timing simulators were developed for two cache models grafted onto the Ardent Titan machine architec-
ture. The simulator is implemented via profiled code and shared libraries, and can reasonably simulate
several minutes of actual program execution. The timing parameters in our models are chosen to
represent possible next generation Stardent machines, and reflect current trends in processor and memory
technology. These trends indicate that performance is increasingly bus and memory limited, making the
performance of our cache models all the more critical.

Our two cache models represent alternative methods to derive sufficient cache bandwidth in the
presence of several pipelined memory access streams. Both models appear feasible to implement in
current technology. One cache architecture utilizes proven interleaving techniques, while the second
cache is partitioned across the two read and one write memory pipelines. A third timing model without
caches was simulated for purposes of comparison.

Results on the benchmark suite indicate that average performance doubles when an interleaved
cache is included in the system. The performance increase over a system without caches ranges from
20% to over 400% on some benchmarks. The performance improvement due to the partitioned cache is
slightly less. Our hypothetical machine runs 100x100 linpack at 11.2 megafiops without a cache, 27.8
megaflops with a 2 Mbyte partitioned cache, and 35.5 megaflops with a 4 Mbyte interleaved cache. In
comparison, the 16 MHz Ardent Titan runs linpack at 6 Mflops and the 32 MHz Stardent ST3000 runs
linpack at 10 Mfiops.

Measured cache miss ratios are low, averaging approximately 0.5 percent for the interleaved cache
and 1.25 percent for the partitioned cache. The low miss ratios translate into low bus traffic ratios for the
copy back interleaved cache. The partitioned cache uses a write through buffer, thus traffic ratios cannot
be smaller than the fraction of writes in the trace. This factor is important when bus saturation in a mul-
tiprocessor system is an issue.

Of the two alternatives, the interleaved cache model appears most promising, mainly because the
entire four megabytes of cache is available to all memory access pipelines. In the partitioned cache
model, the cache is a combination of several independent, smaller caches, whose performance begins to
deteriorate as working set sizes approach the size of each independent cache. Partitioned cache perfor-
mance is also affected by the need to maintain consistency between the independent caches. We



-21-

evaluated this effect separately by examining the performance of smaller applications, to factor out cache
size differences between the two models. Over these smaller applications, the interleaved cache outper-
forms the partitioned cache by 5 percent, compared to 11 percent over all applications.

Both caches will reduce performance on applications with large vector strides and poor spatial
locality. On a naive FFT, the partitioned cache model is two times slower and the interleaved cache
model four times slower than the model without a cache. A properly written FFT can be shown to per-
form well [So88a,b]. We note that applications which perform poorly with caches are rare, and could be
recoded to improve locality and exploit the presence of a cache.

An obvious limitation to the simulations is that results were only provided for a single set of cache
and timing parameters. Although these parameters were chosen to be as realistic as possible, we would
like to evaluate the performance effect of a vector cache over a wider range of implementations. To
address this issue, we developed a simple model to evaluate the speedup provided by a vector cache.
After verifying this model with our timing results, we extended our performance estimates over a large
design space. For a slow memory system, we found that vector caches improve performance over a wide
range of miss ratios and cache access times. Vector caches are less effective given an aggressive memory
system implementation. Short cache access times are necessary, unless memory system bandwidth is
decreased due to short vector lengths or contention from other processors.

Acknowledgements

The authors would like to thank Glen Miranker, John Sanguinetti, and Mike McNamara at Stardent
Computer for providing ideas for the cache models and resources to run the simulations.

Bibliography

[Abu86]  Abu-Sufah, W., and Malony, A.D., ‘‘Experimental Results for Vector Processing on the Alliant FX/8,”’
CSRD Rpt. No. 539, University of Illinois, Urbana, IL, 1986.

[Agar86] Agarwal, R.C., and Cooley, J.W., ‘‘Fourier Transform and Convolution Subroutines for the IBM 3090
Vector Facility,”’” IBM Journal of Research and Development, vol. 30, no. 2, 1986, pp. 145-162.

[Bask76] Baskett, F., and Smith, AJ., ‘‘Interference in Multiprocessor Computer Systems with Interleaved
Memory,”” Communications of the ACM, vol. 19, no. 6, 1976, pp. 327-334.

[Cala88] Calahan, D.A., ‘‘Performance Evaluation of Static and Dynamic Memory Systems on the CRAY-2,”’
Proceedings of the 1988 International Conference on Supercomputing, July, 1988, St. Malo, France,
pp. 519-524.

[Cheu84] Cheung, T., and Smith, J., ‘‘An Analysis of the CRAY X-MP Memory System,’’ Proceedings of the
1984 International Conference on Parallel Processing, August, 1984, Bellaire, MI, pp. 499-505.

[Died88] Diede, T., Hagenmaier, C., Miranker, G., Rubinstein, J., and Worley, W., ‘‘The Titan Graphics Super-
computer Architecture,”” Computer, September, 1988, pp. 13-30.

[Gee90]  Gee, J., and Smith, A.J., *‘Vector Processor Caches,”’ paper in preparation, 1990.

[HePa90] Hennessy, J.L., and Patterson, D.A., Computer Architecture: A Quantitative Approach, Morgan Kauf-
man, 1990.

[McKe69] McKellar, and Coffman, E.G. Jr., ‘‘Organizing Matrices and Matrix Operations for Paged Memory Sys-
tems,”” Communications of the ACM, vo. 12, no. 3, 1969, pp. 153-165.

[Neve89] Neves, K'W., ‘‘Supercomputers: The Next Generation,”’ Scientific Information Bulletin, 14(4), 1989,
pp. 77-95.

[Smit79] Smith, Alan Jay, "Characterizing the Storage Process and its Effect on the Update of Main Memory by
Write-Through", Journal of the ACM, 26, 1, January, 1979, pp. 6-27.



[Smit82]
[Smit85]

[Smit87]

[So88a]
[So88b]
[Temp83]

[Trev77]

-22.

Smith, A.J., “‘Cache Memories,”” ACM Computing Surveys, vol. 14, no. 3, September, 1982, pp. 474-
529.

Smith, A.J., ‘‘Cache Evaluation and the Impact of Workload Choice,”” Proceedings of the I12th Interna-
tional Symposium on Computer Architecture, June, 1985, Boston, MA, pp. 64-73.

Smith, AJ., “‘Line (Block) Size Choices for CPU Cache Memories,”’ IEEE Transactions on Comput-
ers, vol. C-36, no. 9, September, 1987, pp. 1063-1075. (See correction IEEETC, 38, 6, June, 1989, p.
927.)

So, K., and Zecca, V., ‘‘Cache Performance of Vector Processors,”” Proceedings of the 15th Annual
Symposium on Computer Architecture, May, 1988, Honolulu, HI, pp. 261-268.

So, K., and Zecca, V., ‘‘Program Locality of Vectorized Applications Running on the IBM 3090 with
Vector Facility,”” IBM Systems Journal, vol. 27, no. 4, 1988, pp. 436-452.

Temperton, C., ‘‘Self-Sorting Mixed-Radix Fast Fourier Transforms,’’ Journal of Computational Phy-
sics, vol. 52, no. 1, October, 1983, pp. 1-23.

Trevidi, K.S., ‘‘On the Paging Performance of Array Algorithms,’’ IEEE Transactions on Computers,
vol. C-26, no. 10, October, 1977, pp. 938-947.



