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Abstract: Many current geometric modeling systems use the rational parametric form to
represent surfaces. Although the parametric representation is useful for tracing, rendering
and surface fitting, many operations like surface intersection desire one of the surfaces to
be represented implicitly. Moreover, the implicit representation can be used for testing
whether a point lies on the surface boundary and to represent an object as a semi-algebraic
set. In the past, resultants and Groébner basis have been used to implicitize parametric
surfaces. In particular, different formulations of resultants have been used to implicitize
tensor product surfaces and triangular patches and in many cases the resulting expression
consists of an extraneous factor. The separation of these extraneous factors can be a time
consuming task involving multivariate factorization. Furthermore, these algorithms fail
altogether if the given parametrization has base points. The parametrizations of many
commonly used rational surfaces, like the quadrics and some cubics, have base points.

In this paper we present an algorithm to implicitize parametric surfaces. If a parametriza
tion has no base points, we formulate the parametric equations in such a manner that their
resultant corresponds exactly to the implicit equation without generating any extraneous
factor. We also analyze the problem of implicitization in the presence of base points. In
particular, we perturb the given parametrizations and use resultants or Grobner basis of
the perturbed system to compute the implicit representation. Our algorithm perturbs only
one of the three equations and shows that the implicit equation is contained in the lowest
degree term of the resultant of the perturbed equations (expressed in terms of the perturb-
ing variable). The strength of the algorithm lies in the fact that it makes use of the GCD
operation as opposed to multivariate factorization to extract the implicit equation out of
the lowest degree term. The base points blow up to rational curves and the extraneous
factors in the lowest degree term of the resultant of perturbed equations is used to compute
the rational parametrizations of these curves. We also describe an efficient implementation
of the algorithm.

1 This research was supported in part by David and Lucile Packard Fellowship and in part by National
Science Foundation Presidential Young Investigator Award (# [RI-8958577).






1 Introduction

Currently most geometric modeling systems use parametric and implicit forms for repre-
senting surfaces. For computational reasons, they restrict attention to rational functions
for parametric representation and algebraic surfaces for implicit representation. A sur-
face represented parametrically by rational functions is known as a rational surface. The
parametrization of a rational surface represented in terms of homogeneous coordinates is:

(xs Y, z?w) = (X(S, t)v Y(S’ t)v Z(S’ t)’ W(S’ t))’ (1)

where X(s,t), Y(s,t), Z(s,t) and W(s,t) are polynomials in the indeterminates s and t.
An algebraic surface is defined as the zero set of an irreducible polynomial F(z,y, z). Here-
after the parametric and implicit representations refer to rational and algebraic surfaces,
respectively.

It is generally accepted that the parametric representation is best suited for generating
points on the surface, thereby used for rendering and tracing, whereas the implicit form is
convenient for determining whether a point lies on the surface. This property of the implicit
form can be used to represent the object as a semi-algebraic set. This motivates the design
of algorithms for converting from one representation to the other. Further motivation is
provided by the surface intersection problem. This problem is greatly simplified if one of
the surfaces is represented parametrically and the other one implicitly. This approach for
surface intersection has been used in [PP88].

The set of rational surfaces is a proper subset of the set of algebraic surfaces. Thus,
every rational parametric surface has a corresponding implicit representation and it is
desirable to compute it. This process of converting from parametric to implicit is known
as tmplicitization.

There are two known techniques for implicitization. In particular, these techniques re-
duce the problem of implicitizing rational surfaces to eliminating two variables from three
parametric equations. The first technique involves the use of Elimination theory. In [Ho89,
Chapter 5] the two variables are eliminated in succession by using the Sylvester resultant for
two equations. The resulting expression does not correspond to the resultant of three para-
metric equations and contains an extraneous factor. The Dixon formulation for computing
the resultant has been used to implicitize tensor product surfaces in [SAG84]. However it is
limited to tensor product surfaces and cannot be used for implicitizing other parametriza-
tions like the triangular patches. [BGW88] suggest the use of Macaulay’s formulation for
computing the resultant of three parametric equations, which is used for implicitizing. It
expresses the resultant as a ratio of two determinants. Many a time, both the determi-
nants evaluate to zero. To compute the resultant we need to perturb the equations and
use limiting arguments. This corresponds to computing the characteristic polynomial of
the two matrices and the resultant is expressed as the constant term of the ratio of two
characteristic polynomials [Ca88]. Perturbation corresponds to introducing an additional
variable and thereby increasing the symbolic complexity of the resulting expression. Later



on, we show that this technique is expensive in practice. In general, it is believed that
techniques based on Elimination theory result in extraneous factors along with the implicit
representation and their separation can be a difficult task [Ho88, CH89, Ho90].

The second technique utilizes Grobner bases. It computes a canonical representation
of the ideal generated by the parametric equations, by defining a suitable ordering of the
variables [Bu89; Ho89, Chapter 7]. This technique is fairly expensive in practice and even
for low degree parametrizations it may take a lot of time. Furthermore it requires rational
coefficients in the description of parametric equations [CH89).

We analyze the problem of implicitization. In particular, we formulate the three para-
metric equations in such a manner that their resultant corresponds exactly to the implicit
representation. These parametric equations are of the same degree and their resultant is
expressed as the determinant of a matrix. Thus, we do not need to perturb the given
equations or compute the characteristic polynomial of the given matrix. Moreover, the
coefficients of the given parametrizations are not required to be rational numbers. We
consider two types of parametrizations: total degree bounded! and tensor product. In each
case the implicit representation corresponds to the determinant of a matrix.

All the techniques mentioned above fail when a given parametrization has base points
in the parametric domain. A base point in the domain, say s = so,t = to, corresponds to
a common solution of the following four equations

X(s,8) =0, Y(s,t)=0, Z(s,t)=0, W(s,t)=0.

The base points also include the common solutions at infinity?. Substituting the base point
into the parametrization, (1), results in

(x’ y’ z’ w) = (0’ O’ 0’ 0),

which does not correspond to any point in the image space. It turns out that many rational
parametrizations have base points. All quadric surfaces, e.g. spheres, cylinders, cones are
rational surfaces. However, their parametrizations have base points and the previously
known techniques cannot be used to implicitize them, unless they are represented as Steiner
surfaces [SA85]. Moreover, all tensor product surfaces have base points at infinity. There
is a special formulation of resultants {Di08], which has been used to implicitize tensor
product surfaces [SAG84]. However this technique fails when there are base points in the
affine domain or excess base points at infinity. In general, any faithful parametrization of
a rational surface, whose algebraic degree is not a perfect square, has base points.

The base points blow up to rational curves on the surface (known as seam curves).
We present an algorithm to implicitize rational parametrizations with base points and
also compute the rational parametrizations of seam curves. In particular, we symbolically
perturb the given parametric equations and show that the implicit equation is contained

1These parametrizations include the triangular patches.
2The Grébner bases work fine in this case.



in the lowest degree term of the resultant of the perturbed system (expressed in terms of
the perturbing variable). However the lowest degree term contains an extraneous factor
along with the implicit equation and separating it involves multivariate factorization. To
overcome this problem we consider a particular perturbation, obtained by perturbing one
of the three equations and hereby denoted as the efficient perturbation, and show that
the extraneous factor is independent of one of the variables. This allows us to compute
the extraneous factor by two substitutions for that variable followed by a GCD (greatest
common divisor) calculation. Moreover, it is shown that in the case of efficient perturbation
the extraneous factor corresponds to the projection of the seam curves and can be used for
computing the rational parametrizations of the seam curves.

The rest of the paper is organized as follows. In Section 2 we specify our notation
and present some background material from algebraic geometry. In Section 3 we analyze
the problem of implicitization and show how we can use resultants or Grobner bases on a
parametrization without any base points to compute the implicit representation. In Sec-
tion 4 we highlight many properties of rational surfaces with base points and show why
the previous techniques of implicitization using resultants or Grébner bases fail on such
parametrizations. We also consider tensor product parametrizations as a special case of
rational surface consisting of base points. We perturb the given parametric equations in
Section 5 and show that the implicit equation is contained in the lowest degree term of
the resultant of the perturbed system. In Section 6, we consider the efficient perturbation,
obtained by perturbing one of the three equations, and present an efficient algorithm to
extract the implicit equation, which does not involve multivariate factorization. This per-
turbation is also used to compute the rational parametrizations of seam curves, the images
of base points on the rational surface. Section 7 presents details of the algorithm and in
Section 8 we discuss its implementation.

2 Background

A rational parametrization is a vector valued function of the form

F(s,t) = (X(s,1),Y(s,t), Z(s,t), W(s,1)). (2)

We use lower case letters like s, t, z or y to denote scalar variables and upper case
letters to represent scalar functions like W(s,t) or F(z,y,z) and homogeneous functions
like F(z,y,w). Bold face upper case letters, like F(s, ), are used to represent vector valued
functions and lower case bold face letters like p and q represent tuples like (s, t,u).

In (2), X(s,t), Y(s,t), Z(s,t) and W(s,t) are bivariate polynomials and assumed to
have power basis representation. All tensor product Bézier, B-spline surfaces can be con-
verted into power basis representation. The degree of parametrization, (2) is the maximum

of the degrees of X(s,t), Y(s,t), Z(s,t) and W(s,1).



Definition: A homogeneous polynomial is a polynomial in which all terms are of the
same degree.

Given any polynomial of the form
G(s,t) = ags™t" + a s Mt as™ .+ a
we homogenize it by adding a variable u:
G(s,t,u) = aps™t" + as™ M F . as™ U 4+ qu™t

Homogeneous polynomials are used for defining objects in projective space.

Definition: A polynomial H(z,y,z) is independent of a variable, say z, if none of its
terms contains z.

The following polynomial is independent of z:

H(z,y,z) = bpax™y" + b1 Yt o+ bony" + o F O™+ Do

2.1 Affine and Projective Space

In geometric modeling a surface parametrization, (2), indicates a mapping of the form

F : R? — R3.

In fact the domain is often restricted to a finite interval, of the form [ay, b1] x [az, b;]
or a triangle. Since the field of real numbers is not algebraically closed, it is often useful
to extend this definition to its algebraic closure, C, the set of complex numbers. Hence we
consider the parametrization as a vector valued function

F:C?— C3

Till now we have viewed our surface as a geometric object in affine space. Affine n-
dimensional space over the complexes is the familiar n-space. Using Cartesian coordinates,
a point in this space has coordinates

(131, Ty ey IE")

where z; € C (and is therefore finite). However, there are a lot of advantages in considering
the object in projective space. Projective n-dimensional space consists of the affine n-
dimensional space plus the points at infinity. Using Cartesian coordinates, a point in this
space is represented as

(Z1,Z2y -+ Tny Tns1)

where not all z; are zero and z; € C. Moreover, for any nonzero complex number, s,
(Z1,%2,- -y Tn, Tnt1) and (8T1,5T2,...,8Zn, sT,41) denote the same point in the space. The
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variable T,y is considered a homogenizing variable. If 2,41 =0 then (z1,...,Zn,Tnt41) is @
point at infinity. More on affine and projective spaces is given in [Ha77, Chapter 1; Ho89,
Chapter 5.

Let s = sg,t = to be a solution of W(s,t) = 0. Since (2) is a homogeneous representation
of the surface, F(so,to) is a point at infinity. Thus, F(s,t) should be regarded as the
following function:

F: C2-P°

where P denotes the complex projective space (affine complex space plus the points at
infinity). It is reasonable to assume that GCD(X(s,1),Y (s, 1), Z(s, 1), W(s,t)) =1, where
GC D denotes the greatest common factor of the given polynomials. The parameters s and
t can also correspond to values at infinity. For example, all tensor product surfaces have
base points at infinity. Thus, the rational surface (2) should be regarded as a mapping of

the form
F: PP

That is, the domain of the parameters, s and t, consists of values at infinity as well.
A parameter value in the domain, P2, is represented by the tuple (s,t,u) and u = 0
corresponds to the parameter values at infinity. The rational surface F(s,t) should be
interpreted as a representation of the form

F(s,t,u) = (X (s, t,u),?(s,t,u),—Z_(s,t,u),W(s,t,u)) (3)

where X (s, t,u),Y(s,t,u), Z(s,t,u) and W (s, t,u) are homogeneous polynomials in s, t and
u and each polynomial has the same degree. Moreover,

GCD(X(s,t,u),Y(s,t,u), Z(s,t,u), W(s,t,u)) = 1.

2.2 Algebraic Plane Curves

A plane curve of degree n, can be represented by an equation F(z,y) = 0, where F' is a
polynomial of degree n. The corresponding homogeneous representation is ¥’ (z,y,w) = 0.
Any point on the curve in general is a simple point. A few points on the curve are multiple

points [SR85, Chapter 2].

Definition: A multiple point of order k (or k-fold point, k£ > 1) of a degree n curve, is
a point p of the curve such that a generic line through p meets the curve in only n — k
further points.

Let us investigate the behavior of a curve at a multiple point. We can assume that the
point under consideration is the origin, i.e. p = (0,0,1), else we can bring it to the origin
by a suitable linear transformation. The curve can be represented as

F(z, Yy, w) = Uo(z, y)w" + Ul(:c,y)w"-l +...4+ U,,_l(x, y)w+ Un(:c,y) =0,



where U;(z,y) is a homogeneous polynomial of degree 7 in z and y. A generic line through
the origin can be represented in the form z/a = y/b. The point of this line whose coor-
dinates are (ka, kb, 1), where k is a scalar, lies on the curve if k is any of the roots of the
equation

Uo(a,b) + kU, (a,b) + k*Usz(a,b) + ... + k'Ui(a,d) + ... + k"Un(a,b) = 0. (4)

To make the curve have a k-fold point at the origin corresponds to making the equation,
(4), have k nonzero roots for every value of the ratio a/b. This can happen, if and only
if Uo(z,y), Ur(z,y), ..., Us_1(z,y) vanish identically. A line corresponds to a tangent at
p, if it has k + 1 of its intersections with the curve at p and the n — k — 1 intersections
at other points on the curve. All lines of the form z/a’ = y/b', where Ui(a’,b) = 0 are
tangent to the curve at p. There can be at most & such lines.

A simple version of Bezout’s theorem is used for determining the number of intersections
between a curve of degree m and that of degree n. It is assumed that the curves have no
component in common. That is:

Two curves of degree m and n intersect at mn points, counted properly with respect to
multiplicity.

2.3 Faithful and Unfaithful parametrizations

In many cases a rational curve or surface can be identically described by a lower degree
rational parametrization. Such curves or surfaces have unfaithful parametrizations. In
particular, a surface parametrization is faithful if there is a one to one relationship be-
tween the points on the surface and the parameter values, except for a finite number of
points and curves on the surface. Another popular terminology for faithful and unfaithful
parametrizations are proper and improper parametrizations, respectively.

Consider the following affine parametrization of the unit sphere
(z,y,2z,w) = (1 — s* — 1%,2s,2t,1 + s + t2).

Since the preimage of (z,y,z,w) = (0,0,1,1) consists of a unique point in the parametric
domain (s = 0,t = 1), the given parametrization is faithful. If we reparametrize by
substituting s = uv and ¢ = u?, we obtain

(z,y,2z,w) = (1 — u?v? — u? 2uv, 2u?, 1 + u?v? + u?),

which is an unfaithful parametrization. There are two points in the preimage of (0,0,1,1),

(u,v) =(1,0) and (u,v) = (-1,0).

Every rational surface has a corresponding faithful parametrization [Cal894]. However
no algorithms are known at the moment for computing the faithful parametrization of an
unfaithfully parametrized rational surface. Resultants and Grébner bases have been used
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to decide whether a given parametrization is faithful [BGW88; Ho89, Chapter 7]. Our
implicitization algorithm also determines whether a given parametrization is faithful or
not.

2.4 Algebraic Sets

In this section we present some definitions and basic results on the dimension of algebraic
sets. We use these results in the rest of the paper.

Let us consider an algebraically closed field, C and define a polynomial ring
A=Clz),z2,. .., Tm)

of m variables over C. All the polynomials used in this section are assumed to be defined
over this ring.

Definition: The set of common zeros of a system of polynomials Fi,..., F,inz1,...,Zm
is called an algebraic set and is denoted V(F, ..., Fn) C C™. An algebraicset V(F) defined
by a single polynomial (which is not identically zero) is called a hypersurface. If F' is linear,
then V(F) is called a hyperplane.

The union of two algebraic sets is an algebraic set. The intersection of any family of

algebraic sets is an algebraic set. The empty set and the whole space are algebraic sets
[Ha77, Chapter 1}.

If all the F; are homogeneous, it is more convenient to work with the projective space
Pm-1_formed by identifying points in C™ which are scalar multiples of each other. We
use the same notation, V(Fy,..., Fy) C P™! for an algebraic set defined by homogeneous
polynomials F..

Definition: The Zariski topology on P™ is defined by taking the open subsets to be the
complements of the algebraic sets. This is a topology, because the intersection of two open
sets is an open, and the union of a family of open sets is open. Furthermore, the empty set
and the whole space are both open.

An algebraic set is said to be reducible if it can be expressed as a finite union of proper
subsets which are algebraic. Otherwise it an irreducible algebraic set. An irreducible
algebraic set is known as a variety. Analgebraic set can always be expressed as a finite union
of irreducible algebraic subsets called components. Many results in algebraic geometry
apply only to irreducible algebraic sets, and in much of what follows, we work with the
individual components of an algebraic set.

Definition: Let Z be the intersection of n hypersurfaces in m-dimensional affine or
projective space. A component W of Z is said to be proper if it has dimension m — n. A
component of dimension greater than m — n is said to be an ezcess component.

And in fact all components of an intersection must be either proper or excess by the
following lemma [Mm?76, Chapter 3]:



Lemma I: If F; are n non-homogeneous polynomials in m variables, (or homogeneous in
m + 1 variables), then every component of V(Fi,..., Fy,) has dimension at least m — n.

3 Implicitization

Conisder a rational surface

F(S’t’u) = (z,y,z,w) = (X(s,t,u),Y(s,t,u), Z(s,t,u), W(S,t,u)),

where X (s,t,u), Y(s,t,u), Z(s,t,u) and W(s, t,u) are homogeneous polynomials of degree
n. F is a vector valued function defined as

F:P?-pP°

Let the image of F be YV, where Y C P3. We assume that ) has dimension 2. For
example, F is not a parametrization of the form

F(s,t,u) = (z,y,z,w) = (s + t, s+ t,5 + t,u),

whose image is the 1-dimensional line, z = y = .

A parametrization of the form F corresponds to the plane representation of a rational
surface in P3. To a generic point p of the plane, there corresponds a unique point of ).
The only exceptions are the base points, which blow up to rational curves on the surface.
However, there are a finite number of such base points in the parametric domain. At times,
the preimage of a point in Y consists of a curve in the domain. Let Z be one such curve
of the plane, where Z C P?. Such curves are known as the fundamental curves [SR85,
Chapter 6]. If F is a faithful parametrization, then there are open sets U C P2and VC)Y
such that I isomorphic to V. Moreover, U and V are dense in P? and ), respectively (A
subset A is said to be dense in its superset B, if it has the same dimension as that of B).
In fact

FUu)=V.

Thus, P? and ) are birationally equivalent [Ha77, Chapter 1, Corollary 4.5). For more on
birational maps we recommend [Ha77, Chapter 1; Mm76, Chapter 8]. As a result there
exists an inverse rational function (with respect to F)

F':Y-P?
which can be represented as
F ' (z,9,2,0) = (s, t,u) = (S(z,4,2,0), (2,4, 2,w), U(z,9,2,v)), (5)

where S, T and U are homogeneous polynomials in z,y,z and w. Furthermore, each of
them has the same degree. Just like F is not defined at the base points, F ' is not defined
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at those values of (z,y, z,w), which correspond to the images of fundamental curves (like
F(Z))). To show the birational equivalence, we can remove such points and their images
from P? and Y and the birational map is, therefore, defined between the corresponding
open sets.

Given F, resultants and Grdbner bases have been used to compute Flin [BGW88] and
[Ho89, Chapter 7], respectively. It is possible that there is more than one faithful rational
parametrization of a given rational surface. All such parametrizations of a given surface
are birationally equivalent.

Let F be an unfaithful parametrization. Then F has a corresponding faithful parametriza-

tion of the form
G:P?pP°

E(p, q, 1‘) = (.’L‘, Y, 2, w) = (/_Y_l (pv q, 7‘), ?l(pa q, 7‘), 71(?, q, r)a Wl(p’ q, 7‘))
The image of G is V. Since G is a faithful parametrization, it has an inverse map
Gl:y-p?

G (z,y,z,w) = (p7 qar) = (F(.’L‘, y,Zaw),@(%y,Z,w),ﬁ(i,y,Z,w)),

where P, Q and R are homogeneous polynomials of same degree. Moreover,
(p.q.7) =G '(z,9,2,0) = G (F(s.t.u)).

Let G 'F be H and

(pqur) = ﬁ(s,t,u) = (—P_l(s’tau)v (S’t’u)aﬁl(s’t’u))’

1
where Py(s, t,u) = P(X(s,t,u), Y(s,t,u), Z(s,t,u), W(s,t,u)). We can similarly define Q,

and R;. H is a rational map of the form

H:P? - P2

I

Fig. I
The relationship between the various functions
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It is possible that F has base points, while G has no base points. For example, consider
the faithful parametrization of a plane

G(p,¢,r) = (z,y,2,w) = (p+7,2p+¢,¢—3r,¢+ ).

G has no base points. Substitute

(p,q,r) = H(s,t,u) = (st + t*, su + tu, s? + su),
and the resulting unfaithful parametrization is
(s, t,u) = (z,y,2,w) = (s> +t* + st +su, 2% + 25t + su + tu, —3s% — 2su+tu, s> + tu + 2su).
(s,t,u) = (0,0,1) is a base point of F.

Let us consider the case when the parametrization, F, has no base points and the map
T, is therefore, defined at all points in the domain. Since P? is a closed, compact and
irreducible set of dimension 2 and F is a continuous rational map, the image of F is a
closed and irreducible set in P3. This can be proved formally by considering P? and P2, the
domain and range of F, as topological spaces with respect to Zariski topology. The image
of a compact set under a continuous map is compact [Mu75, Chapter 3, Theorem 5.5]. As
a result ) is a compact set. Furthermore, every compact subset of a Hausdorff space is
closed [Mu75 , Chapter 3, Theorem 5.3]. Since P2 is a Hausdorff space, ) is therefore, a
closed set. Thus, ) is a 2 dimensional projective variety in P2. The following lemma from
algebraic geometry [Ha77, Chapter 1]

Lemma II: A projective variety Y C P™ has dimension m — 1, if and only if it is the zero
set of a single irreducible and homogeneous polynomial G of positive degree.

implies that the image of F correspond to the zero set of a single irreducible and homo-
geneous polynomial, G(z,y, z,w). Thus, G(z,y, 2, w) is the implicit representation of the
given surface. It is characterized by the following property:

G(X(s,t,u),Y(s,t,u), Z(s, t,u), W(s, t,u)) = 0,
i.e. the resulting polynomial in s, t and u, obtained after substitution, vanishes identically.
Consider the following parametric equations

Fi(s,t,u) = zW(s,t,u) —wX(s,t,u) =0,

Fa(s,t,u) = yW(s,t,u) —wY(s,t,u) =0, (6)

Fa(s,t,u) = zW(s,t,u) —wZ(s,t,u)=0.
The solution set of each equation corresponds to a 4-dimensional hypersurface in P? x P3
(spanned by (s,t,u) and (z,y,2,w), respectively). Lets consider the algebraic set, @ =

V(F,,F,, F3), obtained by the intersection of the three hypersurfaces, obtained as the
solution set of the above equations. Let II be a projection function

O:P?xP*—P®

10



such that _
H(S, t’ u’ x’ y’ z’ w) = (x’ y’ z’ w)'

Lemma I implies that each component in Q has dimension at least 2. Since there are no
base points, the intersection set consists of the following components:

1.

Q, = {(s,t,u,z,y,z,w)|z = X(s,t,u),y =Y(s,t,u),z= Z(s,t,u),w = W(s,t,u)}.

@, is a proper component of Q and

(@1) = V(F(x’ Y, 2, w))a

=

where . . .
H(z,y,z,w)=G(z,y,z,w), for k=1

Z)_z = {(s,t,u,x,y,z,w)lW(s,t,u) =0,w =0}.

@, is an excess component of Q (of dimension 3). However, TI(Q,) has dimension 2
and corresponds to the points at infinity in the (z,y, z,w) space.

We see that TI(Q) consists of at least two distinct components, whereas we are interested
in computing G(z,y,z,w) only. We therefore, work with an affine representation of the
image space and modify the parametric equations, (6), as

Fli(s,t,u) = zW(s, t,u)— X(s,t,u) =0,
Fla(s,t,u) = yW(s,t,u) = Y(s,t,u) =0, (7)
Fla(s, t,u) = 2W(s,t,u) — Z(s,t,u)=0.

This corresponds to substituting w = 1 in (6). Lets consider
Q=V(F,,Fy,F3) CcP?xC?
and let II be the projection function
n:P2xC*—C°

such that
(s, t,u,z,y,2) = (2,9, 2)-

Theorem I If the given parametrization has no base points then Q consists of a single
component. Moreover, that component can be represented as

X(s,t,u) Y (s, t,u) Z(s,t,u)
Wis, tu)”

Ql = {(s,t,u,x,y,z)|x =

11



Proof: The fact that Q, C Q implies that @; C Q. Thus, @1 is a component of Q.
Let us assume that Q consists of some other component, say P. Since P#@,3dp=
(s1,t1,U1,Z1,41,21) € P and p € Q1. There are two possibilities:

1. _W—(sl,tl,ul) =0.
We know that p € V(FI,FQ,F;;) and therefore

Fl(slvtlaul) = 0’

= Y(sl,tl,ul) = xIW(sl,tl,ul) = 0.

Similarly, we can show that Z(sl, t1,u;) =0 and Z(s1,t1,u1) = 0. This implies that
(s1,t,u1) is a base point of F, which is contrary to our assumption.

2. W(Sl, tl, Ul) # 0.
We know that p € Q and therefore,
Fl(sl,tl,ul) =0
= $W(31,t1,ul) = —X(Sl,tl,ux)

X(s1,t1,u1)

= I = .
W(sla tlvul)
Similarly we can show that .
Y(Sl, tlv ul)
yl —-_— =_——,
W(Slv t17 ul)
and —
Z(sla tla ul)
31 =" =".
W (s, t1,u1)

This implies that p € Q1.

Thus, all points in @ also lie in Q; and therefore,

Q=Q1-

Thus, @ consist of one component.

Q.E.D.

Since @ is an irreducible algebraic set, each point in II(Q) lies in Y. This follows from
the representation of Q or @; in Theorem I. Since ) and [1(Q) are two dimensional algebraic
sets, TI(Q) correspond to the affine portion of the zero set of the implicit representation
of F(s,t,u). If the given parametrization is unfaithful, each point in II(Q) has more than
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one preimage with respect to F. In this case, II(Q) corresponds to an algebraic set of
multiplicity greater than one. Thus,

I(Q) = V(H(z,y,2)), (8)

where H(z,y,z) = G(z,y, z)¥, k> 1. k=1 if and only if F is a faithful parametrization.
Using Bezout’s theorem it can be shown that the algebraic degree of H(z,y, z) is n?, where
n is the degree of the parametrization [Sal4]. The degree of G(z,y,z) is n?/k. Moreover,
k corresponds to the number of points in the (s,t,u) plane, that are the preimages of an
arbitrary point in V(G(z,y, 2)).

3.1 Resultants

Given a set of m homogeneous equations in m variables, it is always possible to combine
the equations to obtain from them a single equation R = 0, in which these variables do not
appear. We are then said to have eliminated the variables and the quantity R is the resultant
of the system of equations. In general, the resultant of any such system of equations is a
function of the coefficients, whose vanishing is the necessary and sufficient condition for the
given system to have a non trivial solution. There are different formulations of computing
the resultant of a system of equations. Perhaps the most general one is given by [Ma02].
If all the equations have the same degree, an improved version is given in [Ma21].

Let us consider the system of equations (7), as polynomials in s, t, and u with coefficients
being functions of z, y, and z. Since F has no base points, the resultant of (7), say
R(z,y,z), is a nonzero polynomial in z, y and 2. Lets consider V(R(z,y,2)) and let
(z1,y1,21) € V(R(z,y,2)). The fact that R(z1,31,21) = 0 implies that 3 s1,%1,u; such

that (z1,y1, 21,81, t1,u1) € Q. Thus,

I(Q) = V(R(z,y,2)),
and from (8), it follows that

R(z,y,z) = gH(z,y,2),
where g is a scalar.

Given R(z,y,2), G(z,y,2) can be expressed as

_ R(z,y,2)
Cl#:9:2) = GED(R(z . 2), Rul@r9,2)) )

where R,(z,y,2) is the partial derivative of R(z,y, z) with respect to z.

The resultant of three equal degree homogeneous equations can be expressed as a de-
terminant of a matrix. Such formulations are given in [Sal885; Di08;Mo025]. In particular
the formulation in [Di08] constructs a matrix of order 2n? — n, where n is the degree of the
equations, and its determinant correspond to the resultant. Some other cases where the
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resultant can be expressed as the determinant of a single matrix are given in [MC27]. Thus,
we need not perturb the equations for computing the resultant. Later on we show that
this formulation of resultants is an efficient and compact representation for the implicit
representation.

Example I Let
st+1 s s?
F(s,t) = (z,9,2) = (t—g’ 12’ t_g)
After homogenizing we obtain the following system of equations

rtl —st =0,

yt? — su =0,

2t2 — 52 = 0.

Considering these equations as polynomials in s, t and u, the resultant is

R(z,y,2) = y* — 2zy*z + z?z? — 23,

whose degree is 4, since n = 2. Since F is a faithful parametrization

R(.’L’, y,Z) = H(.’B,y,Z) = G(z,yaz) = y4 - 223]22 + 1'222 - 23.

3.2 Grobner Bases

Consider a ring of polynomials
S = C[xl, .o .,.'L'm].

An ideal, I, of S is its subring such that forany F € S, H €T
FH eI

Any ideal in S can be generated by a finite number of polynomials and the generating set
is represented as

I={F,...,F}.

Any member of the ideal is of the form
ALFL + A B + ... + AkF,

where A; € S.

Ideals are sets of polynomials that describe elementary geometric objects symbolically,
and are a natural representation for geometric objects. Typically, an ideal has many gener-
ating sets defining it and Grébner bases of an ideal is one of them. Given an ordering of the
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variables, 71,2, ..,Tm, the Grébner bases of an ideal, T, is its canonical representation of
the form

I= {Gl,...,Gr}.

The representation is a function of the variable ordering and allows conceptually simple
algorithms to decide whether a given polynomial belongs to the ideal. For more details on
Grébner bases we recommend {Bu85; Ho89, Chapter 7).

Grébner bases allow us to describe objects in affine space and perform geometric opera-
tions. We can always homogenize the polynomials defining the generating set and thereby,
describe objects in the projective space.

Given an affine parametrization of a surface

X(s,t) Y(s,t) Z(s,t)
W(s,t)’ W(s,t)’ Wi(s, t))’

F(s,t) = (z,9,2) = (

where X(s,1), Y(s,t), Z(s,t) and W(s,t) are polynomials in s and ¢, not necessarily of the
same degree. We need not homogenize these polynomials. Lets consider the ring

A = Clz,y, z, s, ]
and its ideal
T = {zW(s,t) — X(s,t),yW(s,t) = Y(s,1),2W(s,t) — Z(s,1)}.

We define T as the ideal generated by the parametric equations. We know from theorem I
that V(Z), the zero set of the ideal Z, corresponds to Q', where Q' = Qu=; and Q' C C*xC3.
In other words, Q' can be represented as

_ X(s,t) Y{(s,t) L Z(s,t)}
TW )Y T W)t T Wis, 0

Q ={(s,t,z,9,2)|z

Consider the implicit form, G(z,y, z). For every (zo, Yo, 20, S0, to) € Q', G(zo,Y0,20) = 0.
This follows from the property of the implicit representation . Thus, according to Hilbert’s
Nullstellensatz [Ha77, Chapter 1, Theorem 1.3A}

Let C be an algebraically closed field and I be an ideal in A= Clz,y,z,s,t] and let G € A
be a polynomial which vanishes at all the points of V(I). Then G" € I for some r > 0.

Hence, if we order the variables as
z<y<zz<t<s,

and compute the Grébner bases of Z, say H. The first polynomial of H will be independent
of s and t and corresponds to the (G(z,y,2))" for some r > 0 and we can recover G(z,y, z)
from it.
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Example II Let us consider the affine parametrization of the surface in example |

st+1 s 2
F(Svt) = (.’L’, yaz) = (—t2—, t—27 ﬁ)

In this case
I = {t’z —st—1,t%y — s,t*z — s*}.

Ordering the variables z < y < £ < t < s, we obtain the Grobner bases
H = {:z:2z2 + y“ - 2.7:y22 - 23, y2 —rz + tyz, zy2 -2z 4+ 22+ ty3, t:cy2 +yz + tz? — tz’z,
2y? — z,y + tz — tPzy, s+ ty + 27 — 222 1 + t3y — t¥z, t?y — s}

The first polynomial in the Grébner bases, %22 +y*— 2zy%z — 23, corresponds to the affine
representation of the implicit equation.

4 Base Points

A base point is a common solution of
X(s,t,u) =0, Y(s,t,u)=0, Z(s,t,u)=0, W(s,t,u)=0.

The solution set of any of the polynomials, say X(s,t,u) = 0, corresponds to an algebraic
plane curve in the P? plane (denoted by homogeneous coordinates s, t and u). Each curve
may have more than one component and the base point corresponds to the intersection of
these curves. The multiplicity of each base point is equal to the multiplicity of the curves
at that point. In other words, a base point has multiplicity k, if it is a k-fold point of
X(s, t,u),Y(s,t,u), Z(s,t,u) and W(s,t,u). Let

S = V(X(s,t,u), Y(s,t,u), Z(s,t, u), W(s,t,u))
be the set of base points. Since
GCD(Y(s,t,u),?(s,t,u),?(s,t,u),W(s,t,u)) =1,
S is therefore, a finite set. Let p = (8o, to,uo) € S. Moreover,
F(p) = F(so, to,u) = (0,0,0,0),

which does not correspond to any point in the image space. It has been known that base
points blow up to rational curves on the surface (known as seam curves) [C11869; SR85,
Chapter 6; Sn70, page 281; Se90]. Furthermore, the degree of the seam curve is bounded
by the multiplicity of the corresponding base point. The blow up can be explained in the
following manner:
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Consider the rational parametrization
F(s, t,u) = (z,y,2,w) = (su + 2tu + s?, su + 3tu + 2, su + tu + 2st, su + 4tu).

It follows that p = (0,0,1) is a base point of the given parametrization. Lets consider the
first neighborhood of p in the domain. That can be obtained by substituting s = mt,u =1
and taking the limit t — 0. That is,

G(m) = lti_r%_F_(mt, t,1)

= G(m) = ltimo(mt + 2t + m2t%, mt + 3t + 3, mt + t + 2mt*, mt + 4t)

= G(m) = lim t—-»O(m+2+m2t,m+3+t,m+1+2mt,m+4)
= G(m)=(m+2,m+3,m+1,m+4),

which is the rational parametrization of a straight line. Thus, each direction in the first
neighborhood of the base point gives rise to a different limit point in the image. For an
arbitrary parametrization with a base point at the origin, this has been shown in Fig.
I1. For more on blowing up and its applications we recommend [Ha77, Chapter 1; Wad0,
Chapter 4]. If the parametric curves intersect tangentially at a base point, then the first
neighborhood cannot be used for computing the seam curve. Later on, we present an
algorithm to compute the rational parametrization of seam curves.

Fig. 11
Blowing up of a base point at the origin.

Since F is not defined at the base points, we modify its domain and define it as a
mapping of the form .
F :P2\S - P?
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F'(s,t,u) = F(s,t,u),
where P2 \ S represents the difference of two sets. P?\ S is an open and irreducible set
of dimension 2. Let K be the image of F'. We know that X is a 2-dimensional set and

K C P3. In general, K is a proper subset of an algebraic set V(H(z,y, z,w)). The problem
of implicitization corresponds to computing H(z,y, z, w).

The degree of the implicit representation is a function of the number of base points. If
a parametrization of degree n has p simple base points, then the implicit representation
has degree at most n? — p. This is assuming that the parametrization is faithful, else we
divide it by a suitable k. This can be explained in the following manner [Sal4]:

The degree of the implicit equation of a parametric surface can be determined by count-
ing the number of times it is intersected by a generic straight line. Let us assume that the
parametrization is faithful. Such a line in the space can be represented as the intersection
of following 2 planes:

a;r + axy + azz + a4 = 0,

b1x+bgy+b3z+b4 = 0

To determine the number of intersections of this line with F, we substitute for z, y and z
and obtain

Fi(s,t,u) = a1 X(s,t,u) + arY (s,t,u) + asZ(s,t,u) + agW (s, t,u) = 0,

Fo(s, t,u) = by X(s,t,u) + b Y (s, t,u) + b3Z(s,t,u) + bW (s, t,u) = 0.

These curves are each of degree n in s, t and u. According to Bezout’s theorem the two
curves intersect in n? points. If a parametrization has no base points, each such point of
intersection in the (s,t,u) plane is a preimage of a point of intersection between the line
and the surface. Thus, the surface has degree n?. If F has any base points, both F;(s, ¢, u)
and Fy(s,t,u) contain the base point. Thus, they intersect at that base point. The base
points blow up to 1-dimensional curves on the surface (V(H(z,y,z,w)) \ X). Since there
are a finite number of such curves on the surface, it is always possible to find a line which
does not intersect the surface along any of these curves. In other words, the line does not
intersect with any point in the set V(H(z,y, z,w))\ K. For such a line the base point is not
the preimage of any point of intersection on the surface, and the line intersects the surface
at n? — 1 or less number of points. If there are p simple base points, then the degree of the
implicit equation is n? — p. Base points of multiplicity & decrease the degree of the surface
by at least k* [Sn70, page 281; Se90]. If Fi(s,t,u) and F3(s,t,u) intersect tangentially
along a k-fold base point, it decreases the degree by at least k2 + 1.

The total number of base points (counted properly) of a parametrization of degree n is
n?—d, where d is the degree of its implicit representation. Thus, a base point of multiplicity
k is counted at least k? times.
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4.0.1 Problem with Resultants

Given F, a parametrization with base points, we use resultants to compute the implicit
equation. The corresponding parametric equations, (7), are

s, tu) = zW(s,t,u) — X(s,t,u) =0,

s, tu) = yWi(s,tu)— Y(s,t,u) =0,
a(s,t,u) = 2W(s,t,u)—Z(s,t,u) =0.

T

R

The resultant of these equations, by considering s, t and u as variables, is zero. This can
be explained in the following manners:

1. Given p = (o, to, uo), @ base point in the parametrization. From the definition of a
base point it follows that

F1(so,to,u0) =0 F(s0, to, uo) = 0, F3(s0,to,uo) = 0.

Thus, the given system of equations, (7), has a non trivial solution (so, to, uo). More-
over, this solution is independent of the coefficients, z, y and z. The resultant is
therefore, identically zero.

2. The solution set of each equation is a 4-dimensional hypersurface. The resultant of
these equations contains projections of each component in the intersection set to the
(z,y,z) space. Due to base points, one of the component is

Q’ = {(so,to, ug,x,y,z)l(so, to,uo) € S}-

Q' has dimension 3 and II(Q’) is a 3-dimensional component, too. Let R(z,y, z) be
the resultant, a polynomial in z, y and 2. Thus,

Q) | R(z,y,2).

Since II(Q’) has dimension 3, R(z,y,2) = 0. Thus, we cannot recover the implicit
representation by computing the resultant of the given parametric equations.

4.0.2 Problem with Grobner Bases

The Grébner bases approach is based on the fact, that the implicit equation is contained in
the ideal generated by the parametric equations. Thus, by a suitable ordering of the vari-
ables, a polynomial in the Grobner bases of the ideal corresponds to the implicit equation.
However, this method does not work when a given parametrization has base points in the
affine domain. If there are only base points at infinity, we can use the affine formulation of
the given parametric equations for defining the generating set of the ideal and obtain the
implicit equation by computing its Grobner bases.
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Theorem II: Given a parametrization with base points in the affine domain. Let T be
the ideal generated by the parametric equations. There is no polynomial in I, which is
independent of s and t, the variables used for defining the parametric domain.

Proof: The ideal is of the form
T = {zW(s,t) —wX(s,t),yW(s,t) — wY(s,t),z2W(s,t) —wZ(s, t)}.

Let (so,to) be a base point in the affine domain.

Let us assume that there is a polynomial F(z,y, z), which is independent of s and ¢ in
the ideal Z. Than F(z,y,2) can be expressed as

F(z,y,z) = Ai(z,y,z 5 t)(cW(s,t)— wX(s,t)) +
Aqx(z,y,2,8,t)(yW(s, t) —wY (s, t)) +
As(z,y, 2,8, t)(2W(s, t) — wZ(s,t)).

Lets substitute s = sq,t = to in the above equation. Thus,

F(z,y,2) = Ailz,y,z2,s0,t0)(xW(so,t0) — wX(s0,%0)) +
As(z,y, 2, 50, t0) (yW (50, to) — wY (s0,%0)) +
As(z, Yy, 2, S0, to) (W (0, to) — wZ(s0, o)),
= F(z,y,z) = 0.

Hence, the only polynomial independent of s and ¢, which lies in 7 is the zero polynomial.
Thus, all other polynomials have a term containing s or t.

Q.E.D.

Given a parametrization with base points in the affine domain, the Grodbner bases of
the ideal generated by the parametric equations does not contain the implicit equation.
Thus, Grébner bases cannot be used for implicitizing such parametrizations.

4.1 Tensor Product Surfaces

In computer graphics and geometric modeling, most surfaces are represented as tensor prod-
uct surfaces. A tensor product surface is a linear combination of bivariate basis functions,
where each bivariate function is formed by taking every possible pair, one from one set of
univariate functions and the other from another [Pr84]. Typical univariate functions are
like the Bernstein polynomials, B-spline basis functions etc. Such a surface is represented
as
F(s,1) = (X(s,8), Y (5,8), Z(5,8), W(s, ) = 3 5 Ay Gi(s) Hy(t),
J 3

where G; and H; are the univariate basis functions and A;; are 4 dimensional vectors,
used to represent the scalars for each component. Any component, say X(s,t), can be
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represented in the power basis form as:
X(s,t)= > 3 Xis't, Xmn #0,

1=0,m =0,n

which is of degree m + n in s and t. However, the highest power of s in any monomial is
m and that of ¢ is n. After homogenizing we obtain

X(s,t,u)= >, Y Xijs' iy (10)

1=0,m 3y=0,n

which is a homogeneous polynomial of degree m + n. Let

F(s, t,u) = (Y(S,t,u),?—(s,t,u),f(s,t,u),W(s,t,u)).

Lemma III: Every tensor product surface of the form F(s,t,u) has a base point of multi-
plicity n at (1,0,0) and of multiplicity m at (0,1,0).

Proof Let us consider one of the components, say X (s,t,u). It follows from (10) that
X(1,0,0) =0, X(0,1,0) =0.
Similarly Y, Z and W vanish at these points, too. Thus, (1,0,0) and (0,1,0) are base

points of F.
To analyze the multiplicity of (1,0,0), we represent X(s,t,u) as

X(s,t,u) = Xo(t,u)s™" + ...+ Xaoa(t, W)™ 4 X, (t,u)s™ + ..+ Xmgn(t u),

where X;(t,u) is a homogeneous polynomial of degree i in t and u. Since the highest degree
of s in any term of X(s,t,u) is m, it follows that Xo(t,u), X1(t,u),... X no1(t,u) vanish
identically.

Thus, (1,0,0) is a base point of multiplicity n. Similarly, (0,1,0) is a base point of
multiplicity m.
Q.E.D.

Since a tensor product surface always has base points at infinity, the resultant of the
parametric equations, considering them as total degree bounded polynomials in s, t and
u is identically zero. Dixon gave a special formulation of a resultant of three quantics in
two independent variables, of the form X(s,t), such that the vanishing of the resultant is a
necessary and sufficient condition for the system to have a non trivial solution [Di08]. The
set of trivial solutions consists of

e (1,0,0) of multiplicity n.

e (0,1,0) of multiplicity m.
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For total degree bounded polynomials, every base point in P? is a non trivial base point.
We refer to this formulation for tensor product surfaces as Dizon eliminant®. The term
resultant would be used for total degree bounded parametrizations. The Dixon’s eliminant
has been used by [SAG84] to implicitize tensor product surfaces.

The degree of the homogeneous formulation of the parametric equations of F is m +n.
Hence, the degree of the corresponding implicit equation can be at most (m+n)?. However,
base points of multiplicity n and m decrease the degree by n? and m?, respectively, and the
implicit representation is of degree 2mn or less. If the parametrization has base points in
the affine domain or the curves X, Y, Z and W intersect tangentially at (1,0,0) or (0,1,0),
the degree of the implicit equation 1s strictly less than 2mn and the Dixon’s formulation
for such equations is identically zero, too.

Let us see when do these curves, X, Y, Z and W, intersect tangentially along a base
point at infinity. We will later on use these constraints for choosing a suitable perturbation.
Consider the base point (1,0,0). Let

X(s,t,u) = Xalt,u)s™+...+ X man(t,u),
Y(s,t,u) = Ya(t,u)s™+...+ Y man(t,u),
Z(s,t,u) = Zu(t,u)s™+... + Z man(t,u),
Wi(s, t,u) = Walt,u)s™+...+ W man(t,u).

A line, t/a = u/b is tangent to these curves at (1,0, 0) if and only if
X, (a,b) =0, Yala,b)=0, Zn(a,d)=0, Wha(a,b)=0.
Since 7{.,,,7”,7,1,—17,1 are homogeneous polynomials in ¢ and u this can happen if and only
if
.G-(t’ u) = GCD(Yﬂ(t» u), ?ﬂ(tv u)7—Z—n(t’ u)’W'n(t’ u))

is a homogeneous polynomial of positive degree in and u. Moreover, (a,b) is one of the
roots of G(t,u). This constraint is equivalent to saying that

G(t) = GCD( Y Xemit's 3 Yuit!, Y Zmit’, D Wit?)
7=0,n 1=0,n j=0,n 1=0,n
is a polynomial of positive degree. } ;-0 Xmjt! corresponds to the coefficient of s™ in
X(s,t). Similarly the curves intersect tangentially at (0,1,0) if and only if
H(s) = GCD( E X;ns', Z Yins', Z Zins', z Wins')
1=0,m 1=0,m 1=0,m 3=0,m

is a polynomial of positive degree. In such cases Dixon’s formulation can not be directly
used for implicitizing. However, Grébner bases can still be used since the base points are
at infinity. Grébner bases fail when the tensor product surface has base points in the affine
domain.

3Dixon gave many other formulations for computing the resultant for a set of equations, including
one for total degree bounded polynomials, too. We are only referring to the one used for tensor product
surfaces.
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5 Perturbation

Till now we have analyzed two main techniques for implicitizing parametric surfaces: Elim-
ination theory and Grobner bases. Elimination theory has been used in the form of resul-
tants for total degree bounded parametrizations and Dixon eliminant for tensor product
surfaces. All these techniques fail when a parametrization has non trivial base points. For
example, the resultant of the parametric equations is identically zero due to the presence
of an excess component in the image space. Thus, the problem of implicitizing corresponds
to: computing the proper component in the presence of ezxcess component. Some similar
problems have been encountered while solving system of polynomial equations and tech-
niques for dealing with such problems have been highlighted in [Ca88, 1e89]. The technique
corresponds to perturbing the given equations, such that the resulting algebraic set (in the
higher dimensional space defined by adding the perturbing variable) has no excess compo-
nent. The projections of the proper components of the algebraic set corresponding to the
unperturbed system can be obtained from the projections of the algebraic set corresponding
to the perturbed system by applying limiting arguments.

We will carry out the rest of perturbation analysis for total degree bounded parametriza-
tions and use resultants. The results obtained are also applicable for tensor product
parametrizations or using Grobner bases instead of techniques from Elimination theory.
These methods will be illustrated with some examples.

Lets consider the parametrization
F(s,t,u) = (z,y,2z,w) = (X (s,t,u),Y(s,t,u), Z(s, ¢, u), W(s, t,u)),

of degree n, which has base points in the domain, represented by set S. The resultant of the
parametric equations, (7), is identically zero. Lets perturb the given system of equations
and the resulting parametric equations are

Gi(s, t,u) = zW(s,t,u)— X(s,t,u) + AX1(s,t,u) =0,
Ga(s,t,u) = yWi(s, t,u) —Y(s,t,u) + AV (s, t,u) =0, (11)
Ga(s, t,u) = zW(s,t,u)—Z(s,t,u) + AXZy(s,t,u) =0,

where ) is the perturbing variable and X,;(s,t,u),Y1(s,t,u) and Z;(s,¢,u) are homoge-
neous polynomials of degree n such that

V(Y(s, t, u),?(s, t,u),?(s, t, u),-Xl(s, t, u),?l(s, t, u),?l(s, t,u)) = ¢.

In other words, the perturbed system of parametric equations, (11), has no non-trivial solu-
tions and therefore, their resultant does not vanish. A simple procedure is to choose random
polynomials, X:(s, t,u),Y1(s,t,u) and Z1(s,t,u). The resulting system of perturbed equa-
tions has a base point if and only if their resultant of G,’s is zero. This process of choosing
random polynomials can be repeated until the resultant is nonzero. The probability of
success is very close to 1.
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Let L
Q = V(Gl,Gz,G;;) - F’2 X C3 X Cl,

and II be the projection function
O:P2xC3®xC'—-C3x (!,
such that
(s, t,u,z,y,2,A) = (z,y,2,A).

According to Lemma I every component of @ has dimension greater than or equal to 3.
Let R(z,y,z, ) be the resultant of the perturbed system, (11), i.e.

R(z,y,z,A) = I(Q).

Let us express the resultant as a polynomial in A, while the coeflicients are polynomials in
z,y and z:

R(z,y,2,)) = Pi(z,y, z)/\‘ + ...+ Py(z, y,z)/\d. (12)

If we specialize (A = 0) in the parametric equations, (11), the resultant of the specialized
system is zero due to the presence of base points. As a result

R(xvyaz’ ’\)/\=0 = 0

and therefore, 7 > 0 in (12).

Theorem III: H(x,y, z), the implicit representation of F(s,t,u) is contained in Pi(z,y, z),
i.e.

H(I,y,Z) I P,-(x,y,z),

where P(z,y,z) is the coefficient of the lowest degree term of R(z,y, z, A), ezpressed as a
polynomial in A.

Proof: ¢ Let _ _ _
P = V(Fi(s,t,u), Fa(s,t,u), Fa(s,t,u))

where F(s,t,u) is an unperturbed parametric equation and
P cP?xC3

Let B be component of P defined as

—Fl(sa t, u) F2(3,t, U) Fa(s’ t’ 'U,) \
T ————— — - P
Fuo i) " T tu)’ " Falstuy SHWEPAS)

U {(s,t,u,z,y,2) | (s,t,u) € S and (z,y,2) € C(,'t,u)(:z:,y,z)},

B = {(s,t,u,z,y,2) |z =

where C, 1,4)(Z, ¥, z) is the set of all points lying on the seam curve corresponding to (s, t,u).
B is a proper component of P.

41t is very similar to the proof of Theorem 3.2 in [Ca88].
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With the addition of a complex variable A, the zero set of Q lies in PZ x C® x C'. Since
Fi(s,t,u) and Gi(s,t,u) are identical when A =0, it follows that

Px{0}=Qn(A=0).

Thus, B x {0} C Q. Since every component of Q has dimension greater than or equal to
3, B x {0} must be contained in some 3 dimensional component B’ of Q. Every point of
B' has a 3 dimensional neighborhood whose intersection with the hypersurface A = 0 is
a 2 dimensional set. Thus, for every point q = (S, tk, Uk, Tk, Yk, 2k, 0) € B x {0}, there
is a sequence of points q; = (8;,t;,uj,Zj,¥;,2j,A;) in B' — B x {0} which converges to
q. Moreover R(Il(q;)) = 0 for all j’s. Thus, R(z,,y;,2;,A;) = 0. Divide the polynomial
throughout by (};)* (which is non-zero) and we obtain

Pi(z;, Y5, 25) + Pz, 95, 25) (X)) + - - + Palz5, 95, z)(A;)¥ =0

for all q;. This is a polynomial in the coordinates of q; and is, therefore, a continuous
function of the coordinates. Since it is zero for q; — q, it must be zero at q. But qisa
point lying on the hypersurface A = 0, so Pi(zk, Yk, 2k) = 0. Since

V(H(Ivy’z)) = {(:Ek,yk,zk) | q= (Sk,tk,Uk,xk,yk,Zk,O) € B x {0}}s

V(H(z,y,2)) C V(Piz,y,2)) If F is a faithful parametrization, H(z,y, z) is an irreducible
polynomial and therefore, H(z,y,z) | Pi(z,y,z). Else let any generic point in Y have m
preimages (m > 1). Thus, H(z,y,2) = G(z,y,2)™. Let (z1,91,21) € Y and (s, ti,uq), 1 <
i < m be its preimages. In other words q; = (si, ti, i, Z1,41,21) € B for all 7. As a result
qi x0 € B’ and it has a 3-dimensional neighborhood in B’ — B x 0 which converges to q; x 0.
Since R(z,y,2,)) = II(Q), we can use the limiting argument to show that (z1,y1,21) Is a
point of multiplicity m in V(Pi(x,y,2)). Thus,

H(I, Y, z) ' P;(l‘, Y, z)'
Q.E.D.

The same result hold when we use Dixon eliminant on tensor product parametrizations
or Grébner bases. We illustrate the techniques on the following example.

Example III Let
s2—1—1¢2 2s 2st )
241412752 41412" 5241412

be the parametrization of a rational surface (a sphere in this case), which has a base point
at (s,t) = (0,4), where i = v/=1. The ideal generated by the parametric equations is

F(s,t) = (z,9,2) = (

T={a(s*+1+t}) =s?+1+t5y(s*+1+1%) —2s,2(s% + 1 + %) — 2st}.

According to Theorem II, none of the polynomials in I is independent of s and t. Lets
perturb the parametric equations and the resulting ideal is

jz{x(s2+1+t2)—s2+1+t2—/\t,y(s2+1+t2)——25—/\,z(s2+1+t2)—23t+/\s}.
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Compute the Grébner bases of J with a variable ordering
z<y<z<A<s<t.

The first polynomial in the Grébner bases is independent of s and ¢. It can be expressed
as a polynomial in A as

)\(2+/\2)(/\2y2(—3—z2—y2—4z—22)—2/\y(——x+:c3—2y2+zy2—2—412—322—3y22—2z2)
—oy(=3z22 = 2} —2(z* +y* + 22—1)(14+2c+z2+y* +2z+ 222+ z%)),
whose lowest degree term is
—2(z2+ ¢y + 22 -1)(1 +2z + 2+ y? + 2z + 222 + 2P).

Thus, the implicit representation of the sphere, z? + y? 4+ 2% — 1, is contained in the lowest
degree term.

Example IV Lets consider a tensor product parametrization
F(s,t) = (z,y,z,w) = (st — t,st + 5,25 — 2t, st?),
which has a base point at (s,t) = (0,0). The resulting parametric equations are

zst? —st?+t = 0,
ystt —st—s = 0,
zst? =25+ 2t = 0,

whose Dixon eliminant is zero. Lets perturb these equations and the resulting system is

st — st +t+A(s+2) = 0,
yst? —st —s+ At? = 0,
25t =25+ 2t + A(s+4) =

The Dixon eliminant of these equations is polynomial in z,y,z and A and after expressing
it as a polynomial in A, the lowest degree term is

8(—2 + 2z — 2)(—4z + 42> — 8y + 8zy + 4y® + 2z — 4z — dyz + 2°).

In this case, (—2 + 2z — z) is an extraneous factor and (—4z + 4z® — 8y + 8zy + 4y’ + 22 —
4zz — 4yz + z?) is the implicit representation.

Q.E.D.

Thus, we can perturb the given parametric equations such that the lowest degree term
of the resultant of the perturbed system contains the implicit equation. However, there is
always an extraneous factor present in the lowest degree term and extracting the implicit

26



representation involves multivariate factorization. Furthermore, we need to test each ir-
reducible polynomial, obtained after factorization, whether it corresponds to the implicit
equation. In many cases this process can be a time consuming task.

We can express R(z,y,z,A) as
R(z,y,2,A) = X(Pi(z,4,2) + ... + Palz,3,2)A7).

Each component of V(R(z,y, z,A)) € C®xC! corresponds to the projection of a component
of Q. Thus, A = 0 is a component of multiplicity ¢ of II(Q) and it is obtained as the
projection of a component of the form

M = {(so, to, U0, 2,9, 2,0) | (0,0, u0) € S}

The lowest power of A in R(z,y,z,)) is greater than the number of base points (counted
properly with respect to multiplicity). In other words, the degree of the implicit equation
is at least n? — i, where i is the lowest power of A in the resultant of the perturbed system,
expressed as a polynomial in A.

6 Efficient Perturbation

In this section we present an efficient perturbation such that the implicit equation can be
extracted from the lowest degree term of the resultant by computing the GCD of bivariate
polynomials and multivariate polynomial division. It 1s simpler to compute the GCD of
bivariate polynomials and perform trivariate polynomial division than to factorize trivariate
polynomials. Moreover the extraneous factor in the lowest degree term of the perturbed
system contains interesting information about the seams or blow-ups of the base points. In
particular, we choose our perturbation so that we get the X-Y -projection of the blow-up
curves. This is useful because the polynomial we obtain is the product of the implicit
equation and a polynomial that depends on z and y only. This makes it easy to separate
the implicit equation, assuming that it depends on z (which it will after a generic change
of coordinates). As a result we do not need to factorize, and the GCD we compute involves
only bivariate polynomials.

Before we present the efficient perturbation and carry out the analysis, we make certain
assumptions on the given parametrization, F. They are:

o The implicit representation is not independent of z. In other words, it is not of the
form H(z,y) = 0. Later on, we present a technique to verify this assumption and
adjust the parametrization accordingly.

o W(s,t,u)) does not divide z(s, t,u). Otherwise the implicit representation is of the

form z — k =0, where k = % and we can compute it directly.

27



The base points blow up to rational curves of the form (X(t),Y (), Z(t), W(t)) on the
surface. Since these curves lie on the surface, they are characterized by the property that
(X(t) Y(t) Z(¢)

W(t)' W(t) W(t)

) =0,

where H(z,y, z) is the implicit representation of the surface. Lets consider the projection of
one of these curves on the X-Y plane. The projected curve has a rational parametrization
of the form (X(t),Y(t), W(t)) and it can be implicitly represented as the zero set of an
irreducible polynomial, say F(z,y). The fact that V(H(z,y, z)) represents a single com-
ponent in space (unique up to multiplicity) and the assumption that the implicit equation
is not independent of z imply that V(F(z,y)) is not contained in V(H(z,y,2)). In fact we
will show that the lowest degree term of this efficient perturbation can be expressed as a
product of H(z,y,z) and F(z,y)’s (corresponding to different seam curves).

Given a parametrization with base points, let us perturb one of the three parametric
equations, (7), say Fa(s,t,u) and the resulting perturbed system is

Gi(s, t,u) = zW(s,t,u)— X(s,t,u) =0,
Ga(s,t,u) = yW(s,t,u)—Y(s,t,u) =0, (13)
Ga(s, t,u) = 2W(s,t,u) — Z(s,t,u) + AZ,(s,t,u) =0,

where Z,(s,t,u) is a homogeneous polynomial of degree n such that
V(X(s,t,u),Y(s,t, u), W(s, t, u), Z1(s,t,u)) = ¢.

We will denote this perturbed parametrization as G. It is still possible that for all choices
of Z,(s,t,u) the resultant of Gi(s,t,u),Ga(s,t,u) and Ga(s,t,u) is zero. Let

Q= V(E_l,@g,@g) C P?xC?x Cl,

and II be the projection function from P? x C? x C! to C*® x C', as defined in the previous
section.

Theorem IV: Given a set of three equations of the form, Gi(s,t,u),Ga(s,t,u) and Gi(s,t,u),
where Z1(s,t,u) is chosen such that

V(X (s, t,u),Y(s,t,u), W(s, t,u), Z(s,t,u), Z1(s, t,u)) = ¢.
The necessary and sufficient condition that the resultant of Gi’s does not vanish is that
P(s,t,u) = GCD(X(s,t,u),Y (s, t,u), W(s, t,u))

1s a constant.

Proof: Necessity
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Let us assumne that P(s,t,u) is a polynomial of positive degree. Let us consider the set
M= {(s,t,u,z,y,2,A) | P(s,t,u) = 0,—Z(s,t,u)+ AZ,(s,t,u) = 0}
and
McP?xC¥*xC
Let p = (s1,t1, U1, 21,41, 21, A1) € M. Thus,
P(s,t,u)=0
and therefore

sy, ti,uy) = zaW(s1,t,u1) — X(s1,t1,u1) =0—-0=0,

2081, t,u1) = yiW(sy, ti,w) — Y(s1,t1,1) =0—-0=0,

a(s1,t,u1) = ZIW(sl,tl,ul)—Z(sl,tl,ul)+A171(31,t1,u1)
= —Z(s1,t1,u1) + A Z1(s1,t1,u1) = 0.

Ql 9 C)l

Thus, p € V(G1,G2,G3) = p € Q. In other words, M C Q. M is a four dimensional
set. Given any 4-tuple, (z,¥,2,)) = (z1,¥1,21, A1), one can find (s1,%1,u;1) such that
(s1,t1,u1,T1,Y1,21, A1) € M. Thus, M is an excess component of Q and II(M) is a four
dimensional set, too. Therefore the resultant of G1,G> and Gg is zero.

Sufficiency

Let P(s,t,u) be a constant polynomial. To prove the non-vanishing of the resultant it
is sufficient to show that there is some value of z, y, z and A such that for those values G;’s
have no common solution.

First pick £ = 0. Now choose a value of y so that Gg(s t,u) has a finite number of
intersections with G1(s,t, u)z=o, i.e. X(s,t,u). Since GCD(X X(s,t,u),Y(s,t,u), W(s,t,u))
is a constant, for almost all values of y, _X(s,t,u) and Goq(s,t,u) intersect in n? points,
according to Bezout’s theorem. Let these points be (s;, ti,u;), 1 <1< n?.

Once there are a finite number of solutions for the G (s, t,u) and Ga(s, t, u), it is easy to
choose z and X such that Ga(s;,t;,u;) # 0. At any of the n? solution points, say (s, %, u:),
X(si ti,u) = 0. Pick z and A such that for each solution they satisfy the following
constraint. The constraint depends on the value of W(s;, t;, u):

o Case W_(S;,t,‘,U') =0.

The fact that X (s, t;, ;) = 0 implies that Y (i, i, u; u;) = 0. The polynomial Z(s, t,u
is chosen to be non-zero at the common roots of X(s,t,u), Y(s,t,u) and W(s, t,u
and therefore, Zl(s,, t;,u;) # 0. In this case

Z(si,ti, ;)
Z1(siy tiyug)

N’ N’

A #
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o Case Wi(s;,ti,ui) # 0.
Let A take any value choose z such that
Z (i, tiyui) — AZ1(s4, ti, ui)
W(S,‘, tia ui) .

:

Thus, for almost all choices of z and A, the given equations have no common solution and
therefore, the resultant does not vanish.

Q.E.D.

To circumvent this problem of vanishing resultant in certain cases we perform a change
of coordinates and let the new parametrization be

F(s,t,u)=(z,y,7,0) = (a,y + kz,2,0)
= (._X—'(s, t,u),?(s,t, u) + k—Z—(s, t, u),?(s, t,u),W(s, t,u)),

where k is a scalar. The corresponding parametric equations are

Ell(s,t,u) = aW(s,t,u) — X(s,t,u) =0,
Ga(s,t,u) = yWi(s,t,u) = Y(s,t,u) — kZ(s,t,u) = 0,
Ga(s, t,u) = 2W(s,t,u)— Z(s,t,u)+ AZq(s,t,u) =0.

Since GCD(Y(S,t,u),?(s,t,u),?(s,t,u),W(s,t,u)) =1, for any generic k,
GCD(X(s,t,u),Y(s,t,u) + kZ(s,t,u), W(s, t,u)) =1,

too. We compute the implicit representation in terms of ¢,y ,z and w’ and substitute them
to obtain an implicit equation in terms of z,y,z and w. From now onwards we assume
that it is possible to choose Zi(s,t,u) such that the resultant of Gi(s,t,u),Ga(s, t,u)
and Gs(s,t,u), R(z,y,2,A), is nonzero. Moreover the resultant can be expressed as a
polynomial of the form

R(z,y,z,A) = /\iS(x,y,z,/\), (14)

where S(z,y,2,0) #0.
Lemma IV: The total number of base points (counted properly) of F correspond to i in

(14).

Proof: Let F has m base points (counted properly). Base points of multiplicity are
counted at least k2 times. Thus, its implicit representation has degree n?—m. R(z,y,z,A) is
the resultant of Gy (s, t,u), Ga(s,t,u) and Gs(s,t,u). Gi(s,t,u) and Ga(s,t,u) correspond
to plane curves of degree n each and according to Bezout’s theorern intersect in n? points
(counted properly). Let the points be (s, ti,ui ), 1 <1 < n? If (so,t0,uo) is a base point
of F, G, (80, %0, Ug) = Gg(So, to,ug) = 0. Thus, the 1ntersect10n set consist of these m base
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points and n? — m other intersections (which are functions of z and y). Let (s;,t;,u;),
1 < j < m correspond to the base points. The resultant can be expressed as [Sa1885]

2

3

Q)

R(z,y,z,A) =

3(8i, ti, ui)

-
1l
A

3
~

= (zW (84, ti,ws) = Z(8iy tiy w) + AZ1 (84, i, wi)

1

-
I

n2

= aAm H _G—B(si, tt', ui)’

i=m+1

where o = [I7, Z1(si, ti,ui) # 0. Thus, the lowest degree term in A in R(z,y,z,)) has
degree at least m. Since the points, (s;,%;,ui), m < i < n? do not correspond to the base
points, at least W(s,',t,-,u.-) or _Z—(s.-,t,-,ug) does not vanish. Thus, the lowest degree term
of the resultant has degree exactly equal to m.

Q.E.D.

For a generic choice of Z1(s,t,u) it is possible to show that S(z,y, z, A) is an irreducible
polynomial. This follows from the fact, that for any generic choice of A = A;, the resulting
parametrization G has no base points and R(z,y,z,A;) corresponds to its implicit rep-
resentation. Therefore, R(z,y, 2, ;) is equal to some power of an irreducible polynomial
and for a generic choice of Z1(s,t,u), R(z,y,2,A;) is an irreducible polynomial. Thus,
V(R(z,y,z,\)) consist of i + 1 components and therefore, () consists of : + 1 components,
too. ¢ of these components are of the form

{(So,to, anxsyaz»O)a}

where (s0, to, %) is a base point and the (i + 1)** component can be represented as
Ql = {q = (S.’i’ i Uiy Tjy Yjs 255 ’\J) | qec @, S(xja YjirZ5s /\J) = 0}

Let us express the resultant as a polynomial in A, and let Pi(x,y,z) be the constant
term of S(z,y,z,A). We know from Theorem III that

P,-(:r,y,z) = H(.’t, yaz)F(‘T’ y,Z),

where H(z,y,z) corresponds to some power of the implicit equation and F(z,y,z2) is the
extraneous factor. Our aim is to extract H(z,y, z) without resorting to multivariate fac-
torization.

Theorem V: F(z,y,z) is independent of z. In other words F(z,y, z) is a bivariate poly-
nomial in z and y. Moreover, F(z,y,z) correspond ezactly to the projections of the seam
curves on the X-Y plane.

Proof: Every component of @ has dimension 3. Let P and B be algebraic sets as defined
in the proof of Theorem III. For every point q € B x {0}, there is a sequence of points
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(q;) € Q — B x {0} in its neighborhood, which converges to q. Furthermore, q has a
3-dimensional neighborhood for defining such sequence of points. As a result we are able
to show that H(z,y,z) | Pi(z,y,z). Let (so, to,uo) be a base point of F(s,t,u) and let
q = (o, to, %o, Zo, Yo, 20,0), where (zo,yo, 20) is a point on the seam curve corresponding
to (so, to, uo). Let (z;,¥;,2;,A;) be a point in the neighborhood of (zo, Yo, z0,0) such that
S(z;,y;,252;) = 0. For each such (z;,y;,2;,A;) there exists (s;,t;,u;) such that q; =
(sJ,tJ,u],a:J,yJ,zJ, ;) € @ — B x {0}. As a result we are able to define a sequence of
points g, converging to q. Correspondmg to every pomt in this sequence let us consider
another sequence of points qJ = (sj,t,,uj,:cJ,yJ,z X:) such that

VAR
z; = kzj,
v —kaWsytiw) + Z(s) b, uj)
’ Z1(s;5,t5,u5)

where k is any arbitrary constant. The fact q; € Q' implies that q;- € Q. This follows be-
cause q'j € V(Gi(s,t,u))NV(Ga(s, t,u)). The choice of X, implies that q; € V(Ga(s,t,u)).
As a result R(z;,y;, kzj, A;) = 0.

As we take the sequence of points approaching q, using the limiting argument it follows
that (zo,%0,20) € V(Pi(z,y,2)). Moreover,

im /\/' _ im —ijW(Si,-tJ‘,‘U,J‘) —-Z(sj,tj,uj)
(3_7.!_1,“;)—'(30,10#0) I (3Jvt1v“1)_'(30-t0»u0) Zl(sj) tJ’ uJ)

= 0.

This is because (so, to, uo) is a base point and therefore, W(so, to, uo) = 0, Z(s0,to,u0) =0
and Z,(so, to, uo) 7 0. Thus, qJ (0, to, o, o, Yo, k20,0) and from the limiting arguments
it follows that P;(zo, yo, kz0) = 0. Furthermore, (o, yo, z0) can correspond to any point on
the seam curve and the choice of k is arbitrary.

The fact P;(zo, yo, k20) = 0 implies either H(xo, yo, kzo) = 0 or F(zo,y0,kz0) = 0. We
have assumed that H(z,y, z) is not independent of z and therefore, it is not possible that
for all points (zo, ¥o, 20) on a seam curve (Zo, Yo, k20) € V(H(z,y,2)), for any choice of k.
Therefore, F(zo,yo, k20) = 0 for all k. Since V(F(z,y,z)) is a polynomial in z, y and z,
this is possible if and only if F'(zo, Yo, 2) = 0 for all such (2o, yo), where zo and yo represent
the z and y coordinates of a point on a seam curve. Let 8j(z,y), 1 < j < m correspond
to the implicit representation of the projection of seam curves (where m correspond to the
number of seam curves and m < 1) on the X-Y plane and therefore

V(Bi(z,y)) C V(F(z,y,2)), for 1<j<m.

It is still possible that V(P;(z,y,z)) may consist of some other component, besides
the implicit representation and the projection of seam curves. Let that component be the
zero set of a(z,y,z). Since a(z,y, z) is distinct from H(z,y,z) and B;(z,y)’s, there exist

(zlayl’zl) € V(a(a:,y,z)) such that H(xlaylazl) # 0 and :Bj(xlvyl) # 0.
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Let us consider the point p = (s0, to, 20, T1,Y1, 21,0). Since p € Q', we can choose a
sequence p; = (s;,t;,2;, T, ¥j, Zj, A;) in the neighborhood of p such that p, € Q. We can
similarly choose a sequence p; = (s,,t;,u;, T, Y5, kz;, /\'J-), such that p; € Q', and from the
argument used above it follows that (z1,y1,kz1) € V(a(z,y,z)) for all k. Thus, a(z,y,2)
is independent of z and we may represent it as a(z,y). Moreover o(zi,y1) = 0.

A seam curve corresponding to (8o, to, uo) is the set of limit points (7,7, Z) such that
q = (so,to,u0,%,7,2,0) € Q' and q has a 3-dimensional neighborhood in Q'. Since
S(zy,91,2,0) = 0 and p = (3o, to, Uo, T1, Y1, 2,0) € Q' for all z, there exists a sequence
of points p; € Q' in the neighborhood of p. The fact that there exists such a sequence
implies that z;,y, must correspond to the z and y coordinates of a point on a seam curve,
which is contrary to our assumption.

Thus, F(z,y,z) exactly corresponds to the projections of all the seam curves on the
X-Y plane.
Q.E.D.

From now onwards we will represent the lowest degree term of the resultant of the
perturbed system as

Pi(zaysz) = H(.’E,y,Z)F(.’E, y)?

where F(z,y) is the extraneous factor. Our aim is to extract F(z,y) out of P(z,y,z)
without resorting to multivariate factorization. Let H(z,y,z) be a polynomial of degree d
(d > 1) and it can be expressed as

H(z,y,2) = ha(2,y) + ha-1(z,9)z + ..., +ho(z,)2%,

where h;(z,y) is a polynomial of degree at most . Since H(z,y,z) corresponds to some
power of an irreducible polynomial

GCD(hy(z,y), ha-1(z,y),- .., holz, y)) =1

Let k be any constant and let z correspond to d + 1 distinct powers of k. On substituting
those values in H(z,y,z) we obtain

1 1 12 ld ha(z,y) H(z,y,1)

1 k k* ... k ha-i(z, H{z,y, k
SRR SO B I (15)
1 k¢ k¥ ho(z,y) H(z,y, k%)

The coefficient matrix is non-singular (as it is a Vandermonde matrix). Let us assume that
GCD(H(z,y,1),H(z,y,k),...,H(z,y, k%)) = P(z,y)

is a polynomial of positive degree. Thus, for every (z1,y1) € V(P(z,y)), the right hand
side vector of the matrix equation becomes a null vector. Since the coefficient matrix is
non-singular, this is possible if and only if

hd(xl,y1)=0, hd—l(zlvyl) =0a hO(xI,yl) =07
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which is contrary to the assumption that
GCD(h4(z,y), ha-1(z,y), .-, ho(z,¥)) = 1.
Thus, P(z,y) is a constant and as a result
GCD(Pi(z,y,1), P(z,y, k), P(z,y, k), ..., Pi(z,y, k%)) = F(z,y).

Hence, we can extract the extraneous factor by taking the GCD of d + 1 bivariate polyno-
mials.

In general, for any two distinct values of z, say z; and z, GCD(Pi(z,y,2), Pi(z,y, 22))

would correspond to F(z,y). Thus, the implicit equation can be represented as

_ Pi(xsyvz)
" GCD(Pi(z,y,x), Piz,y,22))

H(z,y,z2)

Let the parametric equations be polynomials belonging to a ring Fls,t,u]. Corollary
I: If F is an infinite field, there exists an implicit equation belonging to the ring Flz,y, z).

Proof: Ff the parametrization has no base points, then the implicit equation corresponds
to the resultant expressed as determinant of a matrix. Each entry of the matrix is of the
form az + by + cz + d, where a,b,c,d € F, and therefore the coefficients of the implicit
equation belong to the same field.

If the parametrization has base points, we can always choose a perturbing polynomial
Z1(s,t,u) € F(s,t,u) and let R(z,y,z,A) be the resultant of the perturbed system. Each
coefficient of R(z,y,z,)) and therefore, of Pi(z,y,2,) lies in F. The implicit equation
can be expressed as ratio of two polynomials. We can always choose k € F such that each
coefficient of GC D(Pi(z,y,1), Pi(z,y,k), ..., Pi(z,y, k%)) lies in F, too. Thus, the implicit
equation has the same coefficient field as the parametric equations.

Q.E.D.

6.1 Rational Parametrization of Seam Curves

In the previous section we presented the technique for computing the implicit representation
from the parametrization by making use of the GCD operation. The extraneous factor
correspond to the projection of seam curves on the X-Y plane. Given a parametrization,
F, we can use efficient perturbation and perturb the equations containing the z and y
variable so that we are able to compute the projections of seam curves on Y — Z and
X — Z planes, respectively. Given these projections, we present an algorithm to compute
the rational parametrizations of seam curves.

Perform a transformation on the coordinates of a parametrization and let the projections
of the seam curves of the resulting parametrization be P(z,y), Q(y,2) and R(z,z) on the
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X-Y, Y-Z and X-Z planes, respectively. For a generic transformation, each of these
polynomials would consist of projections of all the seam curves.

Every rational space curve is birationally equivalent to an algebraic plane curve. For a
generic choice of coordinates such a birational equivalence can be established between
a space curve B(t) = (z(t),y(t),z(t),w(t) and its projection on X-Y plane, C(t) =
(z(t),y(t),w(t). In our case, P(z,y) is the product of the implicit representations of C(¢)
corresponding to each seam curve. Thus, given P(z,y) we use a factorization algorithm to
decompose it into irreducible polynomials of the form

P(.’Zl,y) = Pl(x’ y)P2(zay) .. -Pm(xsy)’

where Pi(z,y) is an irreducible polynomial [Ka83]. The factorization is over the algebraic
closure of the base field and in our case it corresponds to factoring over the complexes.
However, the polynomials involved are bivariate.

Each plane curve, Piz,y) = 0, is a curve of genus 0 and therefore, has a rational
parametrization [Wa50]. Given any algebraic plane curve of genus 0 techniques of com-
puting its rational parametrization have been well known in algebraic geometry [Wa50].
The computational details are worked out in [AB88]. Thus, we are able to compute the
rational parametrization, C;(t) = (z(t),y(t), w(t)) of the projection of each seam curve.

For the choice of coordinates it is assumed that each seam curve B;(t) = (z:(t), yi(t), zi(t), wi(t))
is birationally equivalent to C;(¢). Thus, our problem is reduced to computing the rational
function

_ ¢(z,9)

~ Y(z,y)

expressing the relation between the z, y and z coordinates of almost all the points on any
seam curve.

6.1.1 Remainder Sequences

Let us treat Q(y,z) and R(z,z) as polynomials in z and its coefficients are in the ring
Flz,y]. Without loss of generality we assume that the degree of R(z,z) is less than or
equal to that of Q(y,z). Let

Si(z) = Q(y, 2),
Sa(z) = R(z, z),
a;Si(z) = BiSiy1(2) — Siva(2),

where Si(z) € Flz,y](z], degree(Siy2(2z)) < degree(Siza(z)) for 1 < ¢ < d and oy,
B; € Flz,y][z] such that

GCD(as, Bi) = 1.

The sequence S;(z), S2(2),...,Sk(2) is a remainder sequence [Lo83]. Sk(z) is independent
of z and corresponds to the resultant of Q(y, z) and R(y, z) with respect to z. Let (z1,y1,21)
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be any point lying on any seam curve. Thus,

P(xlayl) = 0; Q(ylazl) = 0; R(«‘Cl,zl) = 0.

The fact Si(21)e=z, y=sn = 0 and Si41(21)r=z,,y=y, = 0 implies that Siy2(21)e=2, y=» =0
As a result all the polynomials in the remainder sequence vanish when (z,y, z) corresponds
to any point on any seam curve. Lets consider the polynomial Sk-1(2), which is a linear
function in z and can be expressed as

Sk—l(z) = z/J(:c,y)z - QS(.’L‘,y),

where ¢(z,y) and (z,y) are polynomials in z and y. Since this polynomial vanishes for
all points on any seam curve, the points on a seam satisfy the equation

(16)

Thus, the rational parametrizations of the seam curves are

1) wilt) ¢<5‘;1<%’i%%%>)
(t) wilt) (245, w1

wi(t)? wi(t)

Bi(1) = (.

corresponding to each C;(t).

Example V: Lets again consider the parametrization of a sphere (as used in Example
III)

s2—1-1¢2 2s 2st
241412 4+1 41252 4+1+1¢2

F(s,t) = (,9,2) = ( )-

Since the parametrization has base points, lets perturb the given system and the cor-
responding parametric equations are

Gil(s,t,u) = z(s?+t2+1)— (s —1-1*) =0,
Gals, t,u) = y(s*+#+1)—-2s=0,
Ga(s,t,u) = y(s?+12+1) —2st+ A(2s* +3t* +4) =0,

The resultant, R(z,y,2, ) is a polynomial in the 4 variables and the lowest degree of
X is 2 (equal to the number of base points in F). The coefficient of A is

Py(z,y,2z) = —64— 128z + 1282° + 64z* + 64y* + 128zy>
+64z2y? + 642 + 128z2% + 64222,

Choose 2 generic values of z, say z = 1 and z = 2 and the extraneous factor is

F(z,y) = GCD(Pi(z,y,1), Pz,y,2)) = 64 + 128z + 64z,
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Thus, the implicit equation is

H(z,y,z)= ——F((x—x%;—):ﬁ+y2+zz—l.

Apply a linear transformation on the coordinates and obtain

T = I—-2y—-2
= F-7-%
z = -y—z
and the inverse transformation is
T = y—2z
¥y = y—< (17)
zZ = zT—-—YyY—2z

The resulting parametrization is

F = (25— 2st,2s— s+ 1+ 2,8 =1 — ¢ — 25 — 25,8 + * + 1).

This parametrization has the same base points as F and we perturb each of the paramet-
ric equations to obtain the followmg extraneous factors, which correspond to the projections
of seam curves on X' —Y', Y — Z' and X — Z' planes.

( = 242F+7° — 47 — 27y + 27°
1— 27+ 27 + 25z + 2°

1472427+ 72

)
%)
)

A
&I < HI
nloNow

(

P(Z,7) can be factorized as
PET) = ((y - )i — 1) — ix)((y = (i + 1) — i),
where i = /—1. The resulting parametrizations are
Ci(t) = (5,7, @) = (it —t,it +1,1)

and

!

Cy(t) = (£,7,®) = (=it —t,—it +1,1).
Lets consider the polynomial remainder sequence defined as
51(z) = Q(3,2),
S2(z) = R(z,%).
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As a result
S3(Z) = 51(Z) — S2(Z) = =25 + 2§° + 2yz — T° — 2%.

Since S3(Z) is a linear polynomial in Z, we are able to express the rational function from
the plane curves to the space curves as

Loy _TH+U -2
¢(zay) 2?'—2 '

Thus,
B.\(t) = (F,7,%,0) = (it —t,it +1,-1—t —at,1)
and
B,(t) = (7,7,%,0) = (—it —t,—it +1,~1—t +1t,1)
Now we can apply the inverse transform according to (17) and obtain the parametriza-
tion of the original seam curves as

B,(t) = (z,y,z,w) = (—1,1t,t,1)

and
B,(t) = (z,y, z,w) = (=1, —t,,1)

These seam curves lie on the surface and we can verify that by substituting their
parametrizations into the surface equation, H(z,y,z) = 0.

7 Algorithm

In the previous sections we have highlighted the technique used for implicitizing rational
parametric surfaces. These techniques consist of computing the resultants or Grobner
bases of the parametric equations. If the parametrization has base points, the parametric
equations are perturbed and we compute the resultant or Grobner bases of the perturbed
system. We showed that the lowest degree term of the resultant or first polynomial of the
Grébner bases (expressed as polynomials in the perturbing variable) contains the implicit
equation. An efficient technique for recovering the implicit equation has been presented,
too. Although the Grdbner bases provide us the additional flexibility of working in the
affine space, we prefer resultants for their computational efficiency. In general the running
time complexity of the Grébner bases algorithm can be doubly exponential in the number
of variables as compared to the singly exponential complexity of the resultants [Ca88]. As
a matter of fact, multipolynomial resultant algorithms provide the most efficient methods
(as far as asymptotic complexity is concerned) for solving system of polynomial equations
or eliminating the variables [BGW88]. In our applications the number of variables is fixed
and any argument based on the asymptotic complexity may not have much significance.
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However we justify our choice with an implementation using resultants and compare its
performance with Grébner bases implementations. Our motivation for choosing resultants
stemmed from the fact that most implicit representations are dense polynomials in z, y
and z. Grébner bases seem to perform well on sparse systems and for dense polynomials
resultants are considered faster in practice.

Any polynomial parametrization has no base points in the affine domain. Consider the
case when such a parametrization has base points at infinity. To implicitize using resultants
we need to perturb the system whereas such a problem does not arise while using Grobner
bases. Although perturbation turns out to be relatively expensive in practice, it may be
faster to implicitize using resultants of the perturbed system as compared to using the
Grobner bases approach.

If the given parametrization has no base points and is faithful, the resultant and there-
fore, the implicit representation corresponds to the determinant of a matrix. We may
choose not to compute the determinant and represent the implicit equation as the determi-
nant of a matrix. Not only is the resulting implicitization algorithm fast in practice, it also
provides a compact representation of the dense polynomial corresponding to the implicit
equation. Details of such a representation and its usage are given in the next section.

7.1 Checking for Base Points

Given a parametrization of degree n,
F(s,t,u) = (Y(S,t,u),Y(s,t,u),-Z—(s,t,u),W(s,t,u)),

the base points correspond to common roots of X(s, t, u),Y(s,t,u), Z(s,t,u) and W(s,t,u).
In general 4 such polynomials have no roots in common. Consider the intersection of this
surface with a line represented as the intersection of the following 2 planes

a1T + axy +azz +a,w =0

biz + boy + bzz + byw =0,
where a;’s and b;’s can be considered as symbolic variables. To determine the number of

intersections of the line with the given surface, we substitute for z,y,z and w and obtain

Fi(s,t,u) = a1 X(s,t,u) + a2Y (s, t,u) + asZ(s,t,u) + aW(s,t,u) =0

Fals,t,u) = by X (s, t,u) + b2Y (s, t,u) + b3Z(s,t,u) + bW (s, t,u) = 0.
The given parametrization has base points, if and only if, Fi(s,t,u) and Fy(s,t,u) have
common roots for all values of a;’s and b;’s. The common roots _corr&epgnd to the base
points. They can be determined by computing the u-resultant of F; and F'; [Wd50]. The
u-resultant is the resultant of
fl(s,t,u) =0
fz(s, t, u)
as+ pt+yu = 0.

Il
o

(18)
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The u-resultant is a homogeneous polynomial of degree n? in «, B and v and it decom-
poses into linear factors of the form (s;a + 8 + u,v), where s;,t; and u; are functions
of a;’s and b;’s. The given parametrization has a base point if and only if there is a factor
the form (s'a +t8+ u"y), where s, t' and u’ are scalar constants and independent of a;’s
and b;’s. In this case (s',t,u’) is a base point of the given parametrization. The number
of base points (counted properly with respect to multiplicity) is given by the number of
factors of the form (s'a + t'B+u'7). If there are n? base points, the given parametrization
is a degenerate parametrization and its image is not a 2-dimensional surface.

The 3 equations (18) are of degree n, n and 1. Their resultant can be expressed as the
determinant of a matrix [MC27]. We prefer this formulation of resultant over Macaulay’s
formulation [Ma02], since it involves computing a single determinant and we do not have
to perturb the given equations.

The u-resultant of F; and F, is a homogeneous polynomial of degree n? + 2n in 11
variables (a;’s, b;’s, a, B and ¥). In practice, this computation can be very time consuming
even for low degree parametrizations. Furthermore, we need to factorize the resultant into
linear factors and thereby adding to the complexity of the computation. For practical
applications we present a probabilistic algorithm.

Consider 4 generic combinations of X(s,t,u),Y(s,t,u), Z(s,t,u) and Wi(s,t,u) of the
form

Gi(s, t,u) = 2, X (s, t,u) + y:Y (s, t,u) + ziZ(s,t,u) + w;W(s,t,u), 1<1<4,

where z,'s, y:'s, z;’s and w,’s are random numbers. We use these combinations for comput-
ing the following u-resultants

Ri(e,B,7) = Resultant(Gy(s, t,u), Ga(s, t,u), as + Bt + yu),

Ry(a,B8,7) = Resultant(Ga(s, t,u), Gy(s, t,u), as + Bt + yu).
Ri(a, B,7) and R3(e, B,7) are homogeneous polynomials of degree n? in a, B and 4. Let

F(aaﬂa7) = GCD(—R—I(Q,ﬂa7)vﬁ2(aaﬁa7))' (19)

Let d be the degree of P(a,3,7). If d = 0, the given parametrization has no base points
else for each base point (s',t',u'), (s'a+t B+u'7) | P(e, B,7). For almost all combinations,
G, ...,Gy, each linear factor of —P(a, B,~) corresponds to a base point. Therefore d cor-
responds to the number of base points in the given parametrization and the degree of the
implicit representation is n? — d. To reduce the symbolic complexity of the computation,

we may specialize a, B or v (one or two at a time.)

Our implicitization algorithm only needs to know whether the given parametrization
has any base points (and not the actual number of base points) and in such cases it perturbs
the parametric equations. A simple algorithm to check for the existence of base points is
obtained in the following manner. Consider any three generic combinations, Gi(s,t,u),
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Ga(s,t,u) and Gi(s,t,u), and let R be their resultant. For almost all such combinations,
R is zero if and only if the given parametrization has base points. The resultant can be
expressed as the determinant of a matrix and all entries of the matrix are numeric. The
computation in this case is purely numeric and very fast in practice.

7.1.1 Tensor Product Surfaces

A tensor product surface can either have base points in the affine domain or excess base
points at infinity. Given a tensor product surface

F(s,t) = (X(s,1),Y(s,t), Z(s,t), W(s,1)),
where any component, say X(s,t), is of the form

X(S,t) = Z Z X“J'S"tj, an # 0.

=0,m 3=0,n

According to Lemma IV, it has a base point of multiplicity n at (s,t,u) = (1,0,0) and of
multiplicity m at (s, t,u) = (0,1,0).

Let us homogenize the given parametrization and take its 4 generic combinations to

compute P(a, B,7), (19). Since the parametrization has base points at infinity, P(a, 3,7)
can be expressed as

P, B,7) = a™ B™ Q(e, B,7),

where Q(a, 3,7) is 2 homogeneous polynomial. Let d be the degree of Q(a,,7v). The
given parametrization has a base point in the affine domain or an excess base point at
infinity, if and only if d > 0. Only in such cases the Dixon eliminant fails to compute the
implicit representation and we need to perturb the parametric equations to compute the
implicit representation. The degree of the implicit representation is 2mn — d.

The technique used to check for the existence of base points is obtained by considering
three generic combinations of X, Y, Z and W, say G (s,t), Ga(s,t) and Gs(s,t). Let R be
the dixon eliminant of Gy, G2 and Gs. For almost all combinations, R is zero if and only
if the given parametrization has base points in the affine domain or excess base points at
infinity.

7.2 Form of Implicit Representation
In this section, we present a simple algorithm to verify whether the implicit representation,
H(z,y,z) is independent of z. This algorithm is required before considering the efficient

perturbation and thereby perturbing the parametric equation containing the z variable (as
shown in (13)).
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The implicit representation is independent of z, if any line represented as the intersection
of the following two planes
wTr = 1w

wiy = 1w,

where (z1,y1,w1) = (7(31,tl,ul),?(sl,tl,ul),W(sl, t1,u;)) lies on the surface. In other
words the given line intersects the surface at an infinite number of points. This should
hold for all (s;,t1,u1), where (s1,t1,u1) correspond to a point in the domain. A simple
probabilistic algorithm to check for this property is given below.

Let (s1,t,u;) correspond to a random point in the domain and consider the equations
71(37 ta u) = 7(31’ tla UI)W(‘S, ta u) - W(Slv tla ul)Y(s, t, u) =0
Fals,t,u) = Y(s1, t1, u)W (s, t,u) — Wi(s1,t1,u1)Y (s, t,u) =0

and

G(s,t,u) = GCD(F (s, t, u), Fa(s,t,u)).

If G(s,t,u) is a constant, then the implicit representation of F is not independent of z. For
almost all choices of (s1,%1,u1), the fact that G(s,t,u) is a polynomial of positive degree
implies that the implicit equation is independent of z.

7.3 Choice of Perturbing Polynomial

If a parametrization has base points, we perturb the polynomials (as shown in (13)) to
compute the implicit representation. The only constraint on the perturbing polynomial
Z,(s,t,u) is imposed by theorem IV, i.e.

V(X (s,t,0), V(s, t,u), W(s,t,u), Zals, t,u)) = ¢.

To simplify the symbolic complexity of the resulting computation we choose a perturbing
polynomial of the form _
Z1(s,t,u) = a18" + ast” + azu”,

where a;, a; and a3 are random numbers. For almost all choices of a;, a; and a3 this
polynomial will satisfy the constraint of the theorem IV. Else the resultant of the perturbed
system is identically zero.

For tensor product surfaces, F(s,t), where the highest degree of s in any monomial is
m and the highest degree of t in any monomial is n, we choose a perturbation polynomial
of the form
Zy(s,t) = a1s™t" + azs™ + aszt” + ay,

where a,, as, a3 and a4 are random numbers. In this case we compute the Dixon eliminant
of the perturbed system and extract the implicit equation from its lowest degree term after
expressing it as a polynomial in the perturbing variable.
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7.4 Algorithm

Given a parametrization
F(s,t,u) = (z,y,2z,w) = (7(3,t,u),?(s,t,u),?(s,t,u),—W—(s,t,u)),

an algorithm for implicitization is

1. Let
P(s,t,u) = GCD(X(s,t, w),Y(s,t,u), Z(s,t, u), Wi(s, t,u)).

If P(s,t,u), the common factor, is a polynomial of positive degree, cancel out the
common factor from each component of the parametrization.

2. Check whether the given parametrization has base points.

3. Check whether the implicit representation, H(z,y,z),is independent of z. Ifit is inde-
pendent of z, interchange Y (s, t,u) and Z(s,t,u), such that the new parametrization
is equivalent to

(x7 y’ z’ w) = (7(5’ t’ ’u’)’?(s? t’ u)’?(s’ t’ u)’W(s7 t7 u))’

and its implicit equation will be a function of z and z only. Substitute y for z and
the resulting representation would correspond to the implicit representation of F.

4. If the parametrization has no base points, compute the resultant of the parametric
equations. Let the resultant be H(z,y, z) and the implicit representation, G(z, y, z),
can be computed as

H(z,y,z)

G(2,9:2) = GEDH(X,Y, 2), Ho(2.9,7)).

5. Let k= %((3*’;—”)- If k is a constant, the implicit representation is given by z = k.

6. Let _ . . .
P(s,t,u) = GCD(X(s,t,u),Y(s,t,u), W(s,t,u)).

If P(s,t,u) is a polynomial of positive degree perform a coordinate transformation
(follows from Theorem IV) and let the new parametrization be

-F_"(s,t,u) = (xl,yl,z',wl) = (z,y + kz,z,w) =

(X(s,t,u),Y(s,t,u) + kZ(s,t,u), Z(s, t,u), W(s, t,u)),

where k is a random number. Rest of the algorithm is used to implicitize F. Given

G(z',y, '), the implicit representation of F , the implicit representation of F corre-
sponds to G(z,y — kz, z).
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7. Compute the resultant of the following system of equations

Ql

(s, tu) = zW(s,t,u)— X(s,t,u)=0,
s, tu) = yWi(s,t,u)— Y(s,t,u) =0,
s(s,t,u) = z2W(s,t,u) = Z(s,t,u) + AZ(s,t,u) =0,

Ql O

where Z,(s,t,u) is a perturbing polynomial. Express the resultant as a polynomial
in X and let P;(z,y, z) correspond to its lowest degree term.

8. Choose 2 generic values of z, z = z; and z = z3, and let

_ P,’(l’,y,z)
H(x9y’z) - GCD(Pl.(:r’y,zl), P,-(a:,y,z;'))'

The implicit representation is computed as

B H(z,y,2)
T GCD(H(X,Y,Z),H.(z,y,2))

G(z,y,z2)

8 Implementation

The algorithm in the previous section can be easily implemented on top of any computer
algebra system. The main operations are computing the matrix entries for resultant formu-
lation, expanding symbolic and numeric determinants, GCD of multivariate polynomials.
Most computer algebra systems support these operations. However when it comes to prac-
tice, expanding a symbolic determinant becomes a time consuming task. Consider the
problem of implicitizing bicubic tensor product Bézier surfaces (with no base points in the
affine domain or excess base points at infinity). The implicit representation corresponds
to the determinant of a matrix of order 18, where each matrix entry is a linear polynomial
in z, y and z. However the computer algebra systems on commonly available workstations
(Sun-3’s, Sun-4’s) are not able to compute such determinants in a reasonable amount of
time and space. Some experiments with the implementations of Grobner bases and re-
sultants in Macsyma 414.62 on a Symbolics lisp machine (with 16MB main memory and
120MB virtual memory) are described in [Ho90]. For many cases of bicubic surfaces, these
systems are unable to implicitize such surfaces and fail due to insufficient virtual memory.
Only a new algorithm for basis conversion is able to implicitize such surfaces, however
it takes about 10° seconds, which would be considered impractical for most applications
[Ho90].

Let us analyze some properties of the implicit representation. A polynomial equation
of degree d in 3 variables can have up to M monomials, where

M=(d;3).
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For a polynomial of degree 18 that comes to 1330 terms. In practice the implicit represen-
tations are dense polynomials. This is not difficult to see, since a coordinate transformation
of the form

T =T + a¥ + asz
y=P5T+ By+ Bz
2=mT+ 7Y + 732

would result in a very dense polynomial in Z,¥ and Z for almost all choices of «;, 8; and ;.
Furthermore the coefficients of the implicit representation are much larger than those of
the parametrization. If the absolute magnitude of the coefficients of parametric equations
is |N|, the coeficients of the implicit representation can have magnitude of the order of
|N|¢. This follows from the algorithms used for implicitization. Each entry in the matrix
has coefficient size equivalent to that of the parametrization and the order of the matrix is
equal to the degree of the implicit representation (for tensor product surfaces). For general
parametrizations, the order of the matrix is 2n? — n, whereas the implicit equation has
degree atmost n?. This property can have significant impact on the numerical stability of
the algorithms, when the coefficients of the parametrization and implicit representation are
floating point numbers. In particular, any approach based on implicitization can reduce
a well-conditioned problem to an ill-conditioned problem [Ho89; Ho90]. As a result we
restrict ourselves to exact arithmetic. In any case, algorithms based on Grobner bases use
rational arithmetic [Ho89).

There are many reasons for the failure and bad performance of implicitization algo-
rithms implemented within the framework of computer algebra systems. Most computer
algebra systems use sparse representation for multivariate polynomials and the computa-
tions become slow whenever the polynomials generated are dense. Moreover, the algorithms
are symbolic in nature and large intermediate expressions may be generated. Their imple-
mentations in lisp-like environments may require a large amount of virtual memory and
thereby slowing down the computations. Furthermore, these systems use exact arithmetic
and represent the coefficients of intermediate expressions as bignums. As a result the cost
of arithmetic operations is quadratic in the coefficient size. The coefficient size is pro-
portional to the degree of the polynomial expressions being generated and tends to grow
exponentially with the degree.

The bottleneck in our algorithm is the symbolic expansion of determinants. The eest
of the computations are fast enough in the computer algebra systems. We therefore im-
plemented our algorithm within the framework of a computer algebra system and used a
separate implementation for determinant expansion. The main idea is to guess the form
of the determinant, say a polynomial of degree d in 3 or 4 variables, corresponding to
unperturbed and perturbed parametric equations, respectively, and use Vandermonde in-
terpolation for computing the coefficients. The resulting problem is equivalent to that of
interpolating a univariate polynomial which has the same number of coefficients as the
multivariate polynomial. As a result, the algorithm only involves numeric computations
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and no intermediate symbolic expressions are generated. Since the implicit representations
are dense polynomials, we use a dense representation for the resultant. To circumvent the
problem of coefficient growth and its impact on arithmetic computation, we chose to work
in finite fields. The order of the finite fields is about 2%! and thereby making the best use
of hardware implementations of 32 bit integer computations (used on most of the work-
stations). The main problem is in getting a tight bound on the coefficients of the implicit
equations. Since the resultant of the parametric equations (perturbed or unperturbed)
corresponds to a determinant, we can use Hadamard’s bound for computing a bound on
the coefficients of the resultant. However, the bound so obtained is rather loose and we use
a probabilistic algorithm for computing the coefficients of the implicit equation. The algo-
rithm involves computing the coefficients modulo various primes and use chinese remainder
theorem to compute the corresponding bignums. If for two successive prime sequences (the
second one contains one more prime than the first sequence) same bignums are obtained,
than those bignums correspond to the coefficients of the implicit equation. More details of
interpolation based algorithms to compute resultants and the probabilistic algorithm for
computing the coefficients of the resultant are given in [MC90]. The complexity of the
algorithm is output sensitive and is given by O(|C|M(logM)?), where |C| corresponds to
the size of resultant coefficients, and M is the number of terms that can be present in the
resultant [MC90]. If M is small, a simpler algorithm of complexity O(|C|M?) may be used.

8.1 Interpolation

Lets consider the case when we do not perturb the given equations and each entry of
matrix is a linear polynomial of the form a;z + a2y + a3z + a4. Let D(zy,y1,21) be the
determinant of the matrix, when z, y and z are specialized to 3, y1 and 2, respectively.
We choose 3 distinct primes, say p1, pz and ps and compute M determinants of the form
D(pl,pg,p3),D(p12,p22,p32),...,D(le,ng,pg,M), where M corresponds to the number
of monomials in the implicit representation. Given M, we use algorithms for Vandermonde
interpolation to compute the coefficients of the polynomial H(z,y, z) and thereby reducing
the problem to linear interpolation. If we are computing the resultant of perturbed para-
metric equations, then the resultant is a polynomial of the form R(z,y, z,A). We therefore,
use 4 distinct primes and their powers for interpolation. In this case each entry of the
matrix is of the form

a1 + agy + azz + Maq + asz + aey) + ar.

All the computations are performed in a finite field.

Our algorithm requires the value of M. Since it is difficult to compute the actual value,
we use an upper bound corresponding to the number of monomials that the polynomials of
degree d in 3 or 4 variables can have. Though there are many algorithms available for sparse
interpolation, in practice they either require a tight bound on the number of monomials
that the polynomials may have or actually figure out the actual monomials first and than
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compute their coefficients [BT88; KL88]. In the former case, the problem is similar to that
of ours and in the latter case, these algorithms seem to take more time in figuring out the
actual monomials present in the polynomial and as a result may be slower as compared to
the dense interpolation algorithms. Furthermore, the implicit equations and resultants of
perturbed systems are generally dense polynomials.

If the resultant or Dixon eliminant of the unperturbed parametric equations does not
vanish,
d+3

where d is the degree of the implicit representation (d = 2mn for tensor product surfaces
of the form s™t" and d = n? for triangular patches of degree n). If the parametrization
has base points then the determinant of the perturbed system is a polynomial of degree
2d (where d = 2mn or d = n? depending on the case) in z, y, z and A. In general such a

polynomial can have up to
2d+ 4
4

monomials. However, we can use some properties of the resultant of the perturbed para-
metric equations to improve this bound.

The resultant is a polynomial of degree d in the coefficients of each equation. As a
result the sum of the degrees of z and ) in any monomial does not exceed d. According to
Lemma IV, the resultant can be expressed as

R(z,y,z,A) = /\iS(a:,y, z, ),

where S(z,v,2,0) # 0 and 7 corresponds to the total number of base points in the given
parametrization. As a result the resultant can be expressed as

R(Iv Y, 2, /\) = A'.Pt'(z") Y, Z) + ’\i+1Pi+1($ay7 Z) +...+ ’\de(ma Y, Z),
where P;j(z,y,z) is a polynomial of the form

Pj(mvyvz) = Qd(zv y) + sz—l(zay) +...F zd_ij(x’y)a

and Qi(z,y) is a polynomial of degree k in z and y. Thus,
d [ d
k+2
S (£(537)
7=t \k=3
_ Xd: d+3\ [j+2
B j=t 3 3 .

Some deterministic and probabilistic algorithms to compute 7 are presented in Section
7.1. We make use of Lemma IV to present a simple and probabilistic algorithm.

M
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Let (z,y,2) = (21,1, 1) correspond to a random point in space and compute the de-
terminant R(z1,¥1, 21, A), which is a polynomial of degree d in A. We can use Vandermonde
interpolation to compute it. For almost all choices of (z1,y1,21) the lowest degree of A in
R(z1,y1,21,A) corresponds to z.

8.2 Performance

The symbolic determinant computation has been implemented in C++ on a Sun-4 (a 10
MIPS machine) and IBM RS/6000 (a 34 MIPS machine). The rest of the algorithm has been
implemented on top of Mathematica. The bottleneck of the computation is the determinant
computation. In Fig. IIT and Fig. IV its performance for different parametrizations is given.
The timings correspond to a single iteration of the finite field computation. The total
number of iterations is a function of the coefficient size of the output. Since the coeflicient
size is proportional to the degree of the implicit representation, more iterations are needed
for higher degree implicit equations. We use finite fields of order 23! and therefore, the
number of iterations is bounded by k + 1, where k is the minimum integer satisfying the
relation

[N| < 2%
and |N| is the magnitude of the coefficient of maximum size of the resultant.
Parametrization | Implicit Degree | M Sun-4 | IBM RS/6000
s? 4 t* 4 10 1 sec. 1 sec.
S+ 9 220 | 6 sec. 3 sec.
s°t? 8 165 | 4 sec. 2 sec.
s3t3 18 1330 | 100 sec. 23 sec.
s34 24 2925 | 430 sec. 118 sec.
Fig. III

The performance of implicitization algorithm for parametrizations without base points (a
single iteration over a finite field).

Parametrization | Base Points | Implicit Degree | M Sun-4 | IBM RS/6000
s 412 2 2 74 2 sec. 1 sec.
s3+ ¢ 3 6 1064 | 52 sec. 16 sec.

std 2 4 295 4 sec. 2 sec.

s%t? 4 4 510 13 sec. 4 sec.

s3t3 3 15 15300 | 4700 sec. 1180 sec.
Fig. IV

The performance of implicitization algorithm for parametrizations with base points (a

single iteration over a finite field).
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Thus, we see that the algorithm does not perform well for bicubic parametrizations
with base points. In general 3 — 4 iterations are needed and even on a fast machine like
IBM RS/6000 that amounts to 4500 seconds. The main problem is in the perturbation
technique, which increases the symbolic complexity of the resultant.

9 A Proposition

For problems like surface intersection, the implicitization approach becomes unattractive
due to the algebraic degree of the intersection curve. In particular, plane curves of order
108 are obtained in the case of two bicubic Bézier surfaces. Not only is the computation
of such curves a time consuming task, algorithms to trace them are numerically unstable
(in general).

Lets assume that the given parametrizations has no base points. In this case, the
implicit representation corresponds to the determinant of a matrix. We propose not to
expand the determinant and use the matrix as the implicit representation. Let us see how
can such a representation be incorporated in a geometric modeling system. Let the matrix
be M(z,y,z). Each of its entry is a linear polynomial in z, y and z.

e Given a point (z1,¥1,21), we would like to know whether the points is inside, out-
side or on the surface. Substitute for z, y and z and compute the determinant of
M(z1,y1,21). From the value and sign of the numeric determinant we can infer about
the point.

e Consider the problem of intersection of two Bézier surfaces. Implicitize one of the sur-
faces and let M(z,y, z) be the resulting matrix. Substitute the parametric equations
of the other surface and we obtain a matrix of the form

X(s,t) Y(s,0) Z(s,t))
W(s,t) W(s,t) W(s,t)"

P(s,t) = M(

Let G(s,t) correspond to the representation of the intersection curve. This curve has
degree 108 in the case of intersection of two bicubic surfaces. Thus,

G(s,t) = Det(P(s,t)).

Each term of the matrix is a rational function in s and t. However their degree is
equal to the degree of one of the parametrization. Given (s1,1), substitute them into
the matrix and we obtain a numeric matrix of the form P(s;, ;). Furthermore, the
algorithms for the evaluation of the entries of P(s;,t1) are numerically stable since
they involve evaluating low degree polynomials. Given P(s1,t1) we can use Guass
elimination or QR methods to compute the determinants. The process of determinant
computation can be made numerically stable by pivoting [Wi63]. As a result we
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may be able to accurately compute G(s1,¢;). Furthermore, we can use properties
of straight line programs to compute G,(s1,t1), where G,(s, t) represents the partial
derivative with respect to s. However, it is not clear whether the computation of
partial derivatives is accurate and numerically stable.

Although this may look like an interesting representation for geometric modeling sys-
tems, much work needs to be done to show its effectiveness. We should be able to accurately
compute the functions of the form G(s1,t) and their higher order partials. Furthermore,
this analysis is only limited to parametrizations with no base points. We therefore, need
algorithms to represent all implicit representations as determinants of a matrix. Finally
we need algorithms which can make use of such a representation for tracing plane curves
or performing algebraic operations on the implicit representation.

10 Conclusion

In this paper we analyzed the problem of implicitizing rational parametric surfaces. If a
parametrization has no base points, the resultant or Dixon eliminant of the parametric
equation corresponds exactly to the implicit equation. The base points decrease the degree
of the implicit equations and blow up to rational curves on the algebraic surface. We use the
technique of efficient perturbation to compute the implicit equations of parametrizations
with base points. The strength of our technique lies in the fact that we use GCD of
bivariate polynomials to extract the implicit equation from the lowest degree term of the
resultant of the perturbed system and show that the extraneous factor in the lowest degree
term corresponds exactly to the projection of blow-up curves. As a result we are able to
compute the rational parametrization of these curves. Although, similar analysis hold for
Grobner bases, we recommend resultants for efficiency reasons.

The algorithms implemented in the framework of computer algebra systems (available
on commonly available workstations) are unable to implicitize parametric surfaces like bicu-
bic patches. We present an algorithm for computing symbolic determinants and as a result
achieve a significance performance improvement as compared to the previous implementa-
tions of the implicitization algorithms. If a parametrization has no base points (or a tensor
product surface has no base points in the affine domain or excess base points at infinity),
the algorithm is very fast on machines like IBM RS/6000. Furthermore, the algorithm can
be easily parallelized and thereby achieve speedups proportional to the level of parallelism.
However, perturbation increases the symbolic complexity of the resultants and the resulting
algorithm to implicitize parametric surfaces with base points is slow. We therefore, need
efficient algorithms to implicitize parametric surfaces with base points.
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