Implementing Ada Fixed-point Types having
Arbitrary Scales

Paul N. Hilfinger
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

June, 1990

Abstract

Ada implementations have the option of supporting fixed-point arith-
metic with arbitrary scale—that is, in which the safe numbers are of the
form mo for a fixed, arbitrary rational ¢ > 0, with m in some contiguous
range of integers. The major difficulty with providing such support is the
implementation of the mixed-type operations, multiplication and division.
If z and y are the integer values representing the operands, these operations
reduce to finding integer approximations of azy or fz/y with an absolute
error less than 1 for a fixed-point result type, an absolute error less than or
equal to 1/2 for an integer result type, or a relative error of less than one
safe interval for a floating-point result type. The static constants a and 3
may be arbitrary positive rational numbers, depending on the scales of the
two operand types and on the result type. I present reasonably fast ways
to compute appropriate fixed-point results for all values of @ or 3. For in-
teger result types, I give algorithms for @ and § that have the form 2™a/b,
where a and b are positive, single-precision integer constants. Finally, I give
algorithms to produce floating-point results for a variety of architectures,
including the VAX| the IBM 370, and those conforming to IEEE 754.

1 Background

The Ada programming language provides support for fixed-point arithmetic.
However, although the language provides for fixed-point types having arbi-
trary scaling factors, its standard definition only requires support of scaling
factors that are powers of two, mostly out of concern for the difficulties in
supporting some of the primitive operations in the general case. In this
paper, I will address what are perhaps the major problems in supporting
arbitrary scales: dealing with the results of fixed-point multiplications and
divisions.

An Ada fixed-point type has a domain containing the set of safe numbers

{z-0|1<z<k, z an integer}

where the rational quantity ¢ > 0 (the small value of the type), and the
integers ! < k are constants determined by the definition of the type. A fixed-
point type may contain arbitrarily many other values than these; however,
the semantics puts constraints on the results of arithmetic operations in
terms of the safe numbers. Given two fixed-point quantities P and @ and a
fixed-point type T, Ada requires that the results of T(P * Q) and T(P/Q)
(with * and / here denoting the Ada operators) be bracketed by the greatest
safe number of T not exceeding and the least safe number of T not exceeded
by the mathematically correct result. Readers familiar with Ada will notice
that I make no mention of the model numbers—a subset of the safe numbers
defined by the Ada Standard. They are superfluous for most purposes,
including the present ones.

In most of this paper, I will consider the representation types used to
implement fixed-point types specified by the programmer. The defining
characteristic of a representation type is that its domain comprises precisely
its safe numbers. The safe numbers specified by the programmer’s type and
representation definitions will be integral multiples of the representation
type’s safe numbers.

Since we are dealing with representation types, we can consider fixed-
point operands to be themselves represented by integers. If z and y are
integers such that P = z -0, Q = y- 0y, and if the small value for the result
fixed-point (representation) type T is o,, then the computation necessary to
compute T(P % Q) is to find an integer r satisfying the following inequality.

|r — azy| < 1, where o = Tz% (1)

Or
(As a consequence, if azy is an integer—and thus P * Q is a safe number
of T—then 7 = azy.) By taking Q = o, = 1, this same formula indicates
the criteria for converting values of one fixed-point type to another. The

computation necessary to compute T(P/Q) is to find s satisfying

Bz

o
s——‘<1, where § = —
y

0y0r 2)

When a and 3 are powers of two (which is all that an implementation
is required to support), these computations are relatively straightforward.
When the small values may be arbitrary rationals, however, the problem is
considerably more subtle. It might at first appear, for example, that multi-
plication requires a computation such as azy/b where a and b are integers
with o = a/b. It would be unfortunate to be forced to compute a triple-
length integer numerator (requiring three times as many bits as a, z, or y),
since integer operations that produce and divide triple-length integer values
usually are not supported on standard hardware directly. Likewise, division
might appear to require the computation a’z/b'y, where 8 = a’/V', as a divi-
sion of a double-length integer by another double-length integer—again an
operation not commonly supported. Froggatt hypothesized precisely these
difficulties [1].

These difficulties, however, are not really present. Previously, J.-P.
Rosen [2] has shown how to compute the desired quantities for values of
a and 8 of the form 2'57. In section 3, I will show that the computations
of r and-s do not require such unusual operations for any a or 8. Instead,
for fixed-point results they require an integer multiplication operation that
takes two (n + 1)-bit signed integers (n > 0) to produce a (2n + 2)-bit signed
product, an integer division operation that takes a (2n + 2)-bit signed div-
idend and an (n + 1)-bit signed divisor to produce an (n + 1)-bit signed
quotient, and operations for (n + 1)-bit and (2n + 2)-bit integer addition,
subtraction, and arithmetic shifts. Section 6 contains some faster or simpler
algorithms that apply when accuracy requirements are coarser (as when the
implementation chooses a left-justified representation with trailing bits on
the right).

Fixed-point multiplications and divisions whose results are converted to
integer types pose a harder problem. This is because the semantics of Ada
require a result that is correctly rounded to the nearest integer. To compute
either INTEGER(P * Q) or INTEGER(P/Q), one must find integers r’ and
s’ respectively satisfying inequalities (3) and (4).

|r" —azy| < 1/2, where a = 0,0y (3)
s'—@-ﬂE < 1/2, Whereﬁ:gf-. (4)
y Ty

It is not sufficient to perform the same computation used to satisfy (1)
and (2) with o, = 1/2, rounding the result to INTEGER. Rounding a quan-
tity w even to the nearest 1/2 and then rounding that result to the nearest

»u B

integer does not necessarily yield the same result as rounding w to the near-
est integer directly ’

Hence, (3) and (4) do require the computation of quantities such as azy/b
or a'z/b'y. However, these computations usually can be carried out without
resorting to full multiword arithmetic, as shown in section 4. In addition to
the operations listed above, they require an integer remainder (provided as
a result of integer division on many machines).

The expense of integer conversions may still be deemed high, even for
the worst case. However, it need not be incurred for problems that do not
require rounding to nearest. The programmer may always convert instead
to a fixed-point type with a small value of 1, at the cost of rounding only
to within one unit rather than half a unit. Conversion of such a type to an
integer type involves no additional expense.

When the result of a fixed-point multiplication or division is to be con-
verted to one of the floating-point types, the accuracy requirement becomes a
bound on the relative error rather than the absolute error. More precisely, if
FT is a floating-point type defined to have Ng > 0 decimal digits of accuracy,
then its safe numbers are defined to comprise all numbers, k, expressible with
no more than N significant binary bits in the range 2EMIN-1 ¢ p < 2EMAX
In Ada terminology, the integers N, EMIN, and EMAX are called, re-
spectively, FT'MANTISSA, FT'SAFE_EMIN, and FT’SAFE_EMAX. The
language defines N = [Nylog, 10] + 1. As for fixed-point types, the domain
of F may contain other numbers as well.

The value of the Ada expression FT(P x Q) may be any floating-point
number f satisfying the following condition.

f € [azy]n, where a = 0,0y. (5)

The notation [azy]y denotes the N-bit safe interval containing cxy—that
is, the smallest interval containing azy whose end-points are N-bit safe
numbers. This condition implies, in particular, that f must be a safe number
if azy is. Similarly, the value of FT(P/Q) may be any g satisfying

g € [Bz/y]n, where 8 = 0;/0y. (6)

Section 5 gives algorithms for computing f and ¢ under a variety of as-
sumptions about the properties of the floating-point arithmetic provided by
a system.

2 Notation and Assumptions

Assume that machine arithmetic operates on signed two’s-complement words
of length n + 1 bits, so that the representable single-length integers are in

the range —2" to 2" — 1. Certain operations take or produce double-length
integer values in the range —22"*! to 2Zn+1 — 1.

In the following sections, lower-case roman letters used to denote integer
variables or values will, by convention, be restricted to the range —2" to
2" — 1. Upper-case roman letters that denote integers will be restricted to
the range —227t! to 22"+1 _ 1, Letters f-h generally denote floating-point
variables. Greek letters denote rational values.

I use an Ada-like notation for expressing algorithms. The construct

if condition then actions orif condition then - .. end if;

has the semantics of Dijkstra’s guarded commands. The ordering of the
conditions is not significant; the statement may execute the actions associ-
ated with any one of the true conditions, nondeterministically chosen at the
compiler-writer’s convenience. I use this notation to indicate cases where
several different variations of an algorithm are applicable.

The following functions will be useful.

. 1, ify2>0;
0, if~y>0;

sign (7) -1 = { —1, ify<0.

sign(y) = sign, () + sign_(7)
trunc(7y) sign(7) - [|7l]
top(y) = sign(v)- [ll]

sign_(7) -

The standard interval notation ([y1,72], (71,72, etc.) denotes closed,
half-open, and open intervals on the real line. The notation [y £ 6] is short
for [y — 6, v + 4]; likewise [y % §), etc.

Define 255 = v to be the normal formof yifk =5 =00r1/2< |7| < 1.
Define

chop(y,m) = 2F"™trunc(2™¥)
top(y,m) = 2"“"‘top(2”"y)
roundy(7,m) = 2F"™trunc(2™7 + sign(y)A), 0< A< 1
g
round(y,m) = round,/(y,m)
[,7] — [ChOp(‘)’, m)’top(’Ya m)]v Y Z 0
i [top(7, m), chop(y,m)], ¥ <O

That is, chop(y,m) and top(y,m) are the results of rounding v to m sig-
nificant bits toward 0 and toward oo, and round(y,m) is the result of

rounding v to nearest in m significant bits, with ties biased toward Foo.
The more general roundx(y,m), spoken as “y rounded to m bits with bias
A,” is an explicitly-biased rounding, in which (roughly speaking), numbers
are rounded up to the next-higher m-bit number if their magnitude falls
short of it by no more than A units in the last place.

Borrowing from the terminology of IEEE 754, define

logh(y) = k+ 1 = [log, [vl], v # 0.

For manipulating radix 16 numbers, it will be convenient to define

" 0, ify=0;
adj*(v) { (3 —logb(y)) mod 4, otherwise.
roundh('y, m) = round(y,m — adjh(‘)'))

By analogy with binary normalization, the hexadecimal normal form of v
is 168F'%, where k' = 7' = 0 or 1/16 < |7 < 1. For v # 0, adj*(v) is the
number of leading 0’s in 3. Thus, adj*(1) = 3, adj*(1/2) = 0, adj*(64) =
1, etc. The quantity round®(y,m) is 16¥ times the result of rounding ¥’
at the m'® bit after the binary point. Thus round”(round(y,m’), m) =
round(y,m’) for 0 < m’ < m - 3.

The machine is expected to provide, in some form, the operations listed
in Figure 1 (some machines may require several instructions to implement
them). These operations are undefined for operands that would produce a
result outside the specified range (by the conventions above, ‘— w’ indicates
a single-length result and “—~ W’ indicates a double-length result). In a
correct implementation, such operands should arise only where the Ada
semantics indicate the operation to be erroneous or the result to be undefined
or exceptional.

Other operations in algorithms are denoted with standard mathematical
notation. Multiplications such as sign(zy)(a — 1) are not represented using
‘*’, since they are merely notational devices for indicating an operation that
would actually be implemented with a conditional test. Likewise, expres-
sions such as 271 —sign_ (zy) use a standard mathematical ‘~’, since the
actual operation simply involves selecting one of two constants based on the
signs of and y.

3 Operations with Fixed-Point Results

Equations (1) and (2) give the general form for the problems of performing
fixed-point multiplication and division with conversion to an arbitrary scale.
Algorithms 1 and 2 give machine operations sufficient to carry out these
computations.

vy * vo — W (integer multiplication).

Vi + v — w (integer division, defined w = trunc(V;/v7)).

Vi rem v, — w (remainder, defined w = V; — (V1 + v2) - vq).
shift(Vy, m) — V;, (arithmetic shift, defined V, = |2™V;]).

v £, v = w, V] £4 Vo —» W (single- and double-length addition or
subtraction).

floor(vy, m) = 2™ [2~™v; |, for m > 0. On 2’s complement machines,
this is simply the result of a logical ‘and’ of v; with —2™.

odd(V;) = w (1 if V] is odd, 0 otherwise.)

halfabs(v;) — w (half absolute value, defined ||v;]/2]). Care is needed
for the special case v; = —2".

fi ® fo — f (foating-point multiplication). Subscripts will indicate
specific rounding modes: ®, (rounded to nearest, ties resolved in any
direction) or ®. (chopped). Without a superscript, the operators use
binary normalization; the operator ®£‘ is chopped arithmetic with hex-
adecimal normalization. When used without super- or subscripts, the
meaning is “the standard ® of the floating-point system being dis-
cussed.” This paper considers only chopped and rounded arithmetic.

f1@ f2 — f (Hoating-point division). Subscripts and superscripts have
the same meaning as for ®.

Figure 1: Shorthand notations for required machine operations.

P

To find r satisfying |r — azy| < 1, given o > 0 and —2" < azy <2" - 1.

—— Assume that 2%¢ is the normal form of round(1/a,n).
a:= 2" m:=n-k;
—— Now 21 < a < 2" and |¢| < 27", where a(1 + €) = 1/2F¢ = 2™ /a.
ifm < —n~1then
r:= 0;
else
v:=0; W:i=0
if e < 0 then
v := sign(zy)(e — 1);
end if;
if m < 0and |¢ > 2‘"“;1}'—21 then
W := sign,(—ezxy)(2™™ - 1);
—— W = 0 is acceptable also if it is known that |zy|
—— must be less than 2"“—‘%?21.
end if;
—— Statically known whether v = 0 and whether W = 0.

r:= (shift(z* y +4 W, m) +q v) + a;
end if;

Algorithm 1: Multiplication of fixed-point quantities, yielding a fixed-point
result.

3.1 Multiplication: Algorithm 1

The basic idea behind this algorithm is to avoid having to multiply a double-
precision value (zy) by turning the multiplication by « into a division. We
first approximate « sufficiently closely by 2™ /a, where a is a single-precision
integer. It is always possible to do this with a relative error (denoted ¢ in the
algorithms) of magnitude strictly less than 27". Since z and y are single-
precision quantities, we can compute 2y exactly with the machine operation
z * y. Shifting this result by m bits and dividing by a will now approximate
the desired result, but some adjustments may be needed to get the required
accuracy, depending on m and e.

It is easy to verify that the algorithm works when zy = 0; therefore,
assume zy # 0 in the following discussion. When m < —n — 1,

m 2—n—222n

. xy
< =
2n-1.1/2

a-(1+4¢)

lazy| = 1,

which means that 0 is one of the end-points of the resulting safe interval,

and may be selected as the result. When W > 0 and -W < zy <0,

2m2—m
2n—1

2Mzy

<1,

ozl = |

a

indicating that r = 0, which the algorithm returns in this case, is an accept-

able value. Assume in the following, therefore, that sign(zy) = sign(zy+W).

For the remaining cases, we must first establish that 2™ /a is indeed a

sufficiently close approximation to @. By construction, 1/a = 2=™(a + p),
where |u| < 1/2 and 27! < a < 2". Thus,

a(l+e€) =2"(1+¢)/(atp)=2"/a,

whence € = p/a. This will force |¢| < 27", unless p = £1/2 and a = 2”71,
If a = 2771, then the definition of normalization requires p > ~1/2 (this is
because, as for floating-point, the normalized number next below 2P*"~1 jg
2P—1(27 _ 1)). Since the rounding used in this treatment is biased toward
infinity, furthermore, we also never achieve the case u = 1/2. Hence, |u| <
1/2 and |e| < 27" in all cases.

The main assignment to r produces the result

r=((ay+W)2™ = p2 +v)/a— p1 = (1 + e)azy +2"W/a — pz/a+v/a—py

where sign(zy)p € [0,1 — 1/a] and p2 € [0,1 — 2™], as given by Facts 1
and 2 in the Appendix. In other words, the absolute error in r is

§=r—azy=cazy—p2fa—p +(2"W +v)/a

For brevity, define n = (2™W +v)/a and € = 2"|¢| < 1. Because |azy| < 2",
assume that |eazy| < €. This allows us to bound § as follows.

2y | m € é
1. >0[>0(>0 [-14+1/a+7n, é+7]
2. <0|>0}|>0 [-é+n, 1-1/a+7]
3. >0[(<0}2>0 [-1+2™/a+1n, &+ 7
4. <0|<0|>0|[-é-1/a+2™/a+7n, 1-1/a+ 7]
5. >012>0}<0 [-é—=1+1/a+1n, n)
6. <0|{>0]<0 (n, é+1—-1/a+n]
7. >0]<0}<0 [-é~1+2™/a+7, n)
8. <0}<0|<o0 (-1/a+2™/a+7n, é+1-1/a+ 7

The width of each of these intervals for § is strictly less than 2. The idea
behind Algorithm 1 is to choose W and v, and thus 7, so as to keep this
interval within (—1,1), which guarantees the desired post-condition.

By inspection, cases 1, 2, and 3 always yield the correct interval with
n = 0. Case 4 yields the correct intervalif ¢ < 1-1/a+2™/a = (a—14+2™)/a

To find s satisfying |s — Bz/y| < 1, given 8 > 0 and —2" < fz/y < 2" - 1.

—— Assume that 2%¢ is the normal form of round(g, n).
b:=2"; m:=k-mn;
—— Now 0 < b < 2" and |e| < 27", where 3(1 + €) = 2™b.
if m< -2nor z=0then
s:= 0
else
W :=0; v:=0;
if m < 0 then
W :=sign, (-z)(2™™ - 1);
end if;
if € < 0 then
v := sign(zy);
end if;
—— Statically known whether v = 0 and whether W = 0.

§:= v +4 shift(b* z +q W, m) + y;
end if :

Algorithm 2: Division of fixed-point quantities, yielding a fixed-point result.

and 7 = 0. In each of these cases, Algorithm 1 sets v and W (and thus 7)
to 0. Cases 5, 6, and 8 will work if we use n to move the error interval
toward infinity (i.e., in the direction of the sign of ry) by an amount of
magnitude 1 — 1/a. Again, this same use of 7 will also work for case 7 if
¢ < 1—1/a+ 2™/a. Thus in each of these cases, Algorithm 1 sets v to
sign(zy)(a — 1) and W to 0.

This leaves cases 4 and 7 when 1-1/a+2™/a < € < 1. In case 4, setting
ntol/a—2™/a = (1 —2™)/a will move the interval sufficiently far. This
is accomplished by setting v = 0 and W = 2~™ — 1. In case 7, it suffices to
set nto 1 —2"/a=1~1/a+ (1-2™)/a, which is accomplished by setting
v=a—land W=2""-1.

3.2 Division: Algorithm 2

For division, the computation is actually a bit more straightforward than for
multiplication; we actually multiply z by an approximation of 3 (separated
into a multiply and a shift) and then divide by y with the adjustments
needed to roughly center the error interval around 0. The suitability of 2™b
as an approximation is immediate in this case (Fact 7)).

The case £ = 0 is trivial, so assume z # 0 in the following. When

m < —2n,

Bz/yl =12 -b-(1+€)-z/yl 272 (2" - 1)-(1+27") .27 <11,
allowing the choice s = 0. If m < 0 and —-27™™ + 1 < bz < 0, then
Bz 2™Mbz -14+2™ -142™
—_— Z >
lyl lwl(l+e€) ~ lyl(1+¢) " 1+4e
Thus, Bz/|y| € (-2,0) if € < 0, allowing the approximation s = sign(zy)
provided by the algorithm in that case. Likewise, Bz /|y| € (-1,0) if € > 0,
which allows 0 as a result. In the rest of the discussion, accordingly, assume
sign(z) = sign(bz) = sign(bz + W).

The main computation of s produces the result
s=v+(2M(bz+ W) —p2)/y—p1=B(1+e)z/y+v+2"W/y—p2/y - p,

where again p; and py are as given by Facts 1 and 2. The error term is
therefore

0>

§=s—Pz/y=eBz/y+v+2"W/y—p2/y - p1.

Define n(y) = v + 2™W/y and again take &€ = 2"|¢|, so that |efz/y| < &
When m > 0 (p2 = 0), the following bounds hold for 4.

zy l € | 6
1. >0(>0 -1+ 1/lyl +n(y), &+ n(y)]
2. <0|>0 [—&+n(y), 1-1/lyl+ n(y)]
3. >0 <0|[-e=14+1/|yl+n(y), n(y)
4. <0 <0 (n(y), €é+1-1/lyl+n(y))

The widths of all these intervals are strictly less than 2 for all valid values of
y (1 <]yl £2"). In cases 1 and 2, no further adjustment is needed, and the
algorithm sets n(y) = v = W = 0. Cases 3 and 4 require that the interval be
moved by 1 in the direction of the sign of the result, which is accomplished
by setting W = 0 and n(y) = v = sign(zy). We can get away with adjusting
the interval by precisely 1 (rather than slightly less) because of the strict
inequality € < 0 in these cases, which makes the error interval open on one
side.
Consider now m < 0, for which we have the following bounds on é.

Ty z € o

5. >0(>0[>0 [—14+2™/lyl+ n(y), €+ n(y)]

6. >0|<0|>0| [-14+1/ygf+n(y), é+1/lyl-2™/lyl+ n(v)]

7. <0|>0]>0 [—¢+n(y), 1-2"/lyl+ n(y)]

8. <0|<0]|>0| [—é=1/ly[+2™/lyl+n(y), 1-1/lyl+n(y)]

9. >0|>0]|<0|[-&é~14+2™/|y|+n(y), n(y))
10 >0({<0|<0| [-e-1+4+1/lyl+n(y), 1/lyl-2"/lyl+ n(y))
11. <0|>0]|<0 (n(y), &é+1-2"/y|+ n(y)]
12 <0 | <0 | <0 | (=1/lyl+2™/lyl+n(y), &é+1-1/lyl+n(y)]

10

The intervals in cases 5 and 7 require no adjustment; we can take n(y) =
W = v = 0. In cases 6 and 8, the interval extends too far in the direction
of the sign of —y by as much as (1~ 2™)/|y|; setting W to 2=™ — 1 in these
cases gives n(y) = (1 — 2™)/y = sign(y)(1 — 2™)/|y|. In cases 9 and 11,
the interval may be corrected by setting W = 0 and n(y) = v = sign(zy).
In cases 10 and 12 the intervals can extend too far by 1 — 1/|y| in the
direction of —sign(zy) = sign(y). The algorithm sets v = sign(zy) and
W = 2™ — 1, which give the error intervals [-é+ 2™ /|y|, 1) for case 10 and
(=1,& — 2™ /|y|] for case 12. Setting W = 2™™ (equivalently, subtracting 1
from shift(b * £,m)) would also have worked for this case.

3.3 Implementation notes on Algorithms 1 and 2

o The quantities a, b, m, and € may all be computed at compilation. The
computations of W and v can be carried out, where needed, knowing
only the signs of 2 and y.

¢ The Ada Standard only requires handling the cases where € = 0 and
a =1 (b= 1), for which division (multiplication) other than shifting
is unnecessary.

o If azy or Bz /y is out of range, Algorithms 1 and 2 may either result
in an overflow or a (mathematically) incorrect result. The semantics
of Ada don’t specify any particular behavior in these cases either.

4 Operations with Integer Results

Equations (3) and (4) give the general form for the problems of obtaining
correctly rounded integer results of fixed-point multiplication and division.
Algorithm 3 and Algorithm 4 find satisfactory values for r’ and s’. Unfor-
tunately, they do not accept arbitrary positive o or 3 for these algorithms.
Rather, o and 3 must be expressible in the form 2™a/b with 0 < a,b < 2".
Although these algorithms look more formidable than those for fixed-
point results—and are certainly more expensive—they are less subtle. In
essence, both of them compute their respective quotients (2™azy/b and
2™az [by) after adding in “fudge factors” to get proper rounding. Where
necessary they perform, in effect, a certain amount of multiple-precision
arithmetic by breaking the constant into high- and low-order parts.

4.1 Multiplication: Algorithm 3

When a < 272771 we have |zy| < 1/2, to which 0 is always a valid ap-
proximation. When m > 0 and 2™a > b, we know that zy must be single-
precision unless the final result will overflow. Therefore, it is safe to perform

11

To find v’ satisfying |r — azy| < 1/2, given a = 2™a/b; 0 < a,b < 2" — 1;
and —-2" < ary < 2" — 1. Assume without loss of generality that either
m > 0 and 2™a > b or that m < 0 and a < 2b.

if « <2721 then
v’ = 0
elsif m > 0 and 2™a > b then
V := shift((z * y) * a, m);
M= (V4 siga(sy)[5/2]) + b
elsif m =0 and a < b then
vi=(axz+b)*xy; W:=(a* zrem b) * y;
' i= v +s (W +a sign(zy) [6/2]) + b
elsif m < 0 and a < b then
Vi=(a*xz+b)*y+q(axzcrembd) *y <+ b;
r' = shift(V 44 (27™"! + sign_(zy)), m);
elsif m < 0 and b < a < 2b then
Vi=zxy+q((a=d)xz+ b)*xy
+4 ((a=bd) * zrem b) x y =+ b;
r' = shift(V 44 (2™ ! + sign_(zy)), m);
end if;

Algorithm 3: Multiplication of fixed-point quantities, yielding an integer result.

the obvious computation. Only the division by b introduces error; the ad-
dition of sign(zy)|b/2] before the division has the effect of rounding the
result to nearest (see Fact 3) in the Appendix). For m > 0, the only re-
maining case is m = 0 and 2™a = @ < b. Here, the algorithm uses the
identity azy/b = (az + b)y + (az rem b)y/b, rounding the computation
of the second term. The divisions cannot overflow, since |az/b| < |z| and
|(az rem b)y/b| < |yl.

Consider now m < 0. If a < b, the computation of az/b must yield a
single-precision result, and the algorithm again uses the identity azy/b =
(az +b)y+ (az rem b)y/b, getting a correctly rounded result out of the sub-
sequent right shift by using Fact 4) from the Appendix. The same strategy
works when b < a < 2b, but to prevent overflow, the computation of V' uses
azy/b = zy + (a — b)zy/b, where the computation of the second term works
as for the case a < b (since a — b < b).

4.2 Division: Algorithm 4

If 3 < 271 then Bz/y < 1/2, which allows the approximation s’ = 0.
If # > 22", all non-zero results are at or outside [-2",2" — 1], and we can

12

To find &' satisfying |’ — Bz /y| < 1/2, given f = 2™a/b, a,b > 0, and
—2" < Bz/y < 2" — 1. Assume without loss of generality that either m > 0
or a < 2b.

if <2 ™ lorz=0then
s’ 1= 0;
elsif 3 > 2?" then
s’ := sign(zy)(2" - 1) +s sign_(zy);
elsif -n <m< 0and a=5b and y = -1 then
s’ = shift((2=™~! +sign_(zy)) —q z, m);
elsif -n < m< 0and a < b then
s 1= shift((a xz +b) +y +q4 (2™ ! +sign_(zy)), m);
elsif -n—1<m < 0and b < a<2bthen
T:=1z+4q (a=b) x z + b;

if y = £1 then

s’ := shift(sign(y)T+a(2"™"! + sign_(zy)), m);
else

s’ := shift(T + y+a(2~™"! + sign_(zy)), m);
end if;

elsif m > 0 then

d=2"a mod b;

v = 0;

if odd(y) then

v:=sign(z)|(b-1)/2]; —--0ifb<2.

end if;

u:= (d*z+q v) + b

U := shift(|8/2"] * z,n) +4 (|8} mod 27) x z;

—— U reduces to |3} * z when 8 < 2".

8’ := (U 44 u +4 sign(z)halfabs(y)) + y;
end if;

Algorithm 4: Division of fixed-point quantities, yielding an integer result.

13

therefore arbitrarily return the extreme values of s’ for non-zero z. By
assumption, the remaining cases have m > —n — 1. We need consider only
z # 0, since z = 0 is obviously correct. For convenience, this algorithm
gives 0/0 = 0, which Ada allows, but which an implementation might want
to handle differently.

Consider first m < 0. If a < b, then az/b must be a single-precision
quantity, and we can simply divide by y and shift, after adding a correction
of 2=™~! + sign_(zy) to cause rounding (Facts 4 and 5). When a = b the
same computation works, but must be re-organized in the case y = —1 to
avoid overflow when z = —2". When b < a < 2b, the algorithm uses the
identity za/b = z + z(a — b)/b, adds the usual correction term, and shifts.
As long as |y| > 2, the computation of trunc(az/by) will produce a single-
precision result; the only possible problem occurs when |y| = 1, so that is
treated as a special case.

Now assume m > 0. The algorithm uses the identities

2™a/b=f = |B] +(2™a mod b)/b
|8] =2"|B/2"]| + |B] mod 2"

to break the computation of 2™az/b into sufficiently small pieces. The
resulting error in s is given by

§ = & —pa/y=sign(zy)(—p/lyl - o + Llvl/2]/Iyl + |v/byl),
where 0 < p<1-1/b, 0<p <1 -1/]y|

This gives

v

—1/lyl + 1/blyl — 1 + 1/lyl + Liyl/2]/|y] + v /byl
=1+ 1/blyl + Llyl/2]/1yl + v /byl
sign(zy)é < [|yl/2]/1yl + [v/by]

sign(zy)é

A

When y is even, the algorithm sets v = 0 and ||y}/2] = |y|/2, so that
-1/2+ 1/bly| < sign(zy)s < 1/2
and |6| < 1/2. When y is odd, the algorithm sets
v = sign(z)[(b - 1)/2] = sign(z)(b—-1)/2, for I =1 or 2;
and in this case, ||y|/2] = |y|/2 = 1/2. As a result,
—1/2 < sign(zy)é < 1/2 — |1/2by|

and again |6| < 1/2.

14

5 Operations with Floating-Point Results

The computations necessary to produce correct floating-point depend on
several parameters of the arithmetic:

e N > 0, the number of significand bits in the safe numbers;
e N’ > 4, the number of significand bits available for computation;

e n > 0, the number of bits in the magnitude of an integer;

the floating-point radix; and

e the available rounding modes of the floating-point multiplication and
division operators.

I will present algorithms for any of the following situations.

e N’ > N + 3, binary radix, with all results of multiplications and divi-
sions rounded to nearest (ties resolved in either direction).

e N’ > N + 3, radix 16, with results chopped.

e N’ > N+2, binary radix, with operations to produce either all chopped
results or both rounded and chopped results.

If v is the mathematically-correct result, the strategy employed in all
cases is to first compute a floating-point result h satisfying

h = chop((1+ 8)y,M");
N<M<M <N,
“A2M <5 < N2M | with ‘
A+ N <1, AN >0, and A=1-2M"Minteger [

and then to invoke the following lemma.
Lemma 1 roundy(h, M) € [v]um-

In other words, the result of the biased rounding of 4 is a correct approx-
imation to v for a type with M-bit safe numbers, and therefore also for a
type with N-bit safe numbers (Fact 6). The conditions on A also serve to
make the biased rounding implementable.

One very important, and possibly surprising, consequence of Lemma 1
is that if the last operation in the computation of h chops its result, then it
does not contribute to 4. It is preferable, in fact, to have the last operation
chop rather than round—even though the latter produces a more accurate
result—if the outcome is then to be rounded to a lower precision. On the

15

other hand, it is generally better to have other operations produce rounded
results, decreasing relative error. Thus, it is indeed useful that arithmetic
conforming to IEEE 754 provides for both chopped and rounded arithmetic.

Proof of Lemma 1. The case ¥ = 0 is immediate; assume v # 0. Define
4" = 4(1+46) and without loss of generality, take 1/2 < 7’ < 1 (the formula is
symmetric with respect to sign, and extending to magnitudes outside [1/2,1)
is merely a matter of scaling). It suffices to show that round(y’, M) € [v]m,
since because of the form of A,

chop(y’ +1-2=M' M)
chop(chop(y', M) +1-2=M'| M)
= round,(chop(y’, M), M).

round, (v, M)

it

Define n = 7' + A2=M . If vy < 1, then

y(1=22"Myp a2 M << y(1 4 A2 M) 4 a2 M
y<np<y+ A+ N2 M <y M

Thus, chop(y,M) < chop(n, M) and, since safe numbers above 7 are at
least 2=M apart, chop(n, M) must be no larger than the next safe number
at or above . Thus chop(n, M) € [y]ar. This leaves the case ¥ > 1, which
is possible only if § < 0, v < 14+ 2=M+1 and 4/ > 1 — A2=M_ Thus,
chop(y, M) = 1 and chop(n, M) = 1, so that again chop(n, M) € [y]p. O

The value round(y,m) = roundy,(7y, m) is biased toward +oo in cases
of ties. However, for the algorithms to follow, it will not matter whether the
operations ® and @, when they round, use this biased rounding (as does the
VAX) or unbiased rounding (rounding to even, as does IEEE 754).

In general, § will be a product of terms having the form (1 + é;). When
an operation involves rounding the mathematically correct result, the cor-
responding §; will satisfy |é;| < po, where we define

i =1/(1+2V7). (7)

When the operation involves chopping, —u; < § < 0.

5.1 Multiplication: Algorithm 5

Consider first the case where ®. is available (binary radix, chopped). Let

f
§

round(a, N') ® round(z * y, N') = chop(azy(1l + §), N'),

16

where |64| and |8, are bounded by pg. The value round(a, N’) is a compile-
time quantity. By the properties of rounding,

~2 NV (1) - 1< < (T4 mo) -1 < 27N+

As a result, rounding f to N’ — 2 bits yields a correct result, as long as
N<N -2
For the case that only ®, is available, consider

f = round(e,N') ®, round(z * y, N')
= azy(l+60)(1+ 6y)(1 4+ bg)
= azy(l+6),

where the magnitudes of the subscripted §’s are again bounded by uo. Thus,
3.2V c(1-p)P-1<6<(+p)P-1<3-27V,

(the outer inequalities here—and similar ones later in this paper—may be
derived by fairly simple algebraic manipulation, although I confess to having
used Macsyma). Since |6] is bounded by 4-2=V', the value round(f, N’ — 3)
is a valid result. :

If only ®” is available (hexadecimal radix, chopped), we can use the
same analysis as for ®., substituting u, for g (that is, as if rounding to
N’ — 3 bits). Thus, doing all rounding and arithmetic in hexadecimal,

f = round®(a, N') @" round®(z * y, N'),

gives a result that can be validly rounded to N’ — 5 bits. When this is
insufficient precision, a simple trick will produce a correct result with N/ —
3 bits of significance (the maximum possible value of N for hexadecimal
arithmetic according to Ada rules). For any real number v,

round(2™y, N') = round®(2™v, N'), where m = adj*(v).

That is, hexadecimal rounding of 2™+ yields a significand that is also normal-
ized for binary radix. Furthermore, when two such numbers are multiplied,
the hexadecimally-normalized result can have at most one leading binary 0;
the result is chopped to either N’ or N’ — 1 significant bits. By the previous
analysis, therefore, the result can be correctly rounded to N’ — 2 bits in
binary, and thus to N’ — 3 bits hexadecimal (with scaling by a power of two
to correct the effects of the adjustments for binary normalization).

Algorithm 5 summarizes the analysis of fixed-point multiplications pro-
ducing floating-point results.

17

To find a floating-point number f € [azy]n, given |azy| = 0 or 2EMIN-1 <
lazy| < 2BMAX(1 _ 2-N). This algorithm works for (1) N’ > N + 3 with
®ec, ®r or @ available; or (2) N’ > N + 2, with ®. available.

U:i=1z=*y;
—— Where multiple orif branches apply, choose any convenient one.
if N'> N +2then -—— binary radix, chopped.
f := round(round(a, N’) ®. round(U, N'), N' - 2);
orif N/ > N + 3 then —— binary radix, rounded.
f := round(round(a, N’) ®, round(U, N’), N’ —3);
orif N/ > N + 3 then —— hexadecimal radix, chopped.

my = adj*(a); my := adj*(U);
f := 2™ round(a, N') ®" 2™2round(U, N');
fi= 2=™-m2 . round(f, N’ — 3);

orif N'> N 4+ 5 then —- hexadecimal radix, chopped.
f:= round(round®(a, N') ®" round®(U, N'), N’ - 5);
end if;

Algorithm 5: Multiplication of fixed-point quantities, yielding a floating-point
result.

5.2 Division: Algorithms 6 and 7

The approaches used for division depend on whether integers are exactly
representable (n < N'). First, let us consider the cases in which they are
and in which the radix is binary. If both ®, and ®. are available (as under
IEEE 754), then there is the computation

§ = (round(8, N') ®, z) @c y = chop((Bz/y)(1 + 65)(1 + bg), N')

which, by the same analysis as in the preceding section, will give a valid
result when rounded to N’ — 2 bits. Replacing @. with @, yields three
rounding errors, which may, as in section 5.1, be rounded to N’ — 3 bits.
Using chopping for all arithmetic gives

(round(8,N') ®. z) @ y
chop((Bz/y)(1 + 65)(1 + 8g), N')

where ég indicates the relative error of the chopped multiplication: —p; <
6% < 0. Thus, the relative error, 6, in the argument to chop is bounded by

g

3. 27N c (1 - p0)(1—pl)—1< 86 < po< 27N

so that rounding to N’ — 2 bits with a bias of 3/4 gives a correct result.

18

To find a binary-radiz floating-point number g € [Bz/yln, given Bz/y =0
or 2EMIN-1 < 135 /y| < 2EMAX(1_2-N) The computation requires either
(1) N’ > N +2 with Q. and either ®. or ®, available; (2) N’ > N +2 with
N' < n;or (3) N> N + 3 with ®, and @, available.

—— Where multiple orif branches apply, choose any convenient one.
if N'> N +4then —— rounded or chopped.
§ := (round(8, N') ® round(z, N')) @ round(y, N');
g := round(g, N’ — 4);
orif N> N +3 and N’ > n then —— rounded.
g := round((round(8, N') ®, z) @r y, N’ - 3);
orif N> N +2and N' >n then —— chopped.
g := rounds/y((round(8, N') @) Oc y, N' - 2);
orif N> N +2and N’ >n then —— rounded and chopped.
g := round((round(8, N') ®,) Q. y, N' —2);
orif N'> N +2 and N’ < n then
ifz = 0 then
g := 0.0;
else
= n — logb(round(8,n — 1)) — 2;
:= min(0, n — logb(z) - 1);
m3 := min(0, n — logb(y) — 1);
u = (2™round(f,n — 1) x 2™2z) + 2M3y;
g = 27™-m2¥miround(u, N — 2);
end if;
end if;

33
i

Algorithm 6: Division of fixed-point quantities, yielding a floating-point result
(binary radix case}.

19

To find a hezadecimal-radiz floating-point number g € [Bz/yln, using
chopped arithmetic, given Bz/y = 0 or 2EMIN-1 < |3z /y| < 2EMAX (1 _
2-N). The computation requires that ®* and @» be available and that
N'>N +3.

—— Where multiple orif branches apply, choose any convenient one.
if N'> N +7 then
§ := (round®(8, N') ®" round*(z, N')) @F round?(y, N');
g := round(g, N’ - 7);
orif N> N+5and N'>n+3 then
g := (round"(8, N') @% 2) 0} y;
g := roundg/4(g, N' - 5);
orif N> N +4and N’ > n then
m1 = ad(8); ma = adif(z); ms = adit(y);
g := (2™ round(B3, N') @k 2m2z) @b 2msy;
g := 2-™~m2+M3round(g, N’ — 4);
orif N> N +3and N' > n then
my = adj*(B); my = adif(z); ms = adj*(y);
h := 2™round(3, N') ®F 2™2z;
my 1= adjh(h) -1 ——mzg=0o0r —-1.
§:= 2™chop(h,N' — 1) @F 2m3y;
g 1= 2-™i=m2ms=Taroundy (g, N’ - 3);
orif N> N +3 and N’ < n then
if z = 0 then
g := 0.0;
else
my = n — logb(round(8,n — 1)) —
mg := min(0, n —logb(z) - 1);
m3 := min(0, n — logb(y) — 1);
u:= (2™round(f,n — 1) x 2™2z) + 2™M3y;
g := 27™i—m2+Maround(u, N — 3);
end if;
end if;

Algorithm 7: Division of fixed-point quantities, yielding a floating-point result
(hexadecimal radix case).

20

Next, consider the cases using binary radix in which N’ < n, so that
integers cannot (always) be represented exactly. If all arithmetic rounds,

(round(8, N') ®, round(z, N')) @, round(y, N') = (Bz/y)(1 + 6),
§=(1+6p)(1+6:)(1+60)(1+80)/(1+4,) -1

giving
5.2V < (1= po) /(L +po) =1 <6< (14 o) /(1 —pmo)—1<6-27V.

Thus, |8] < 2=V'+3, which allows correct rounding to N’ — 4 bits. When the
rounding operations are replaced by chopping,

(round(3, N') ®. round(z, N')) @, round(y, N')

= chop((Bz/y)(1 +6), N'),
§ = (1+6a)(1+6:)(1+8g)/(1+6,)—1

Here,
5.2V < (1—po)?(1—p1)/(1+p0)—1 < 6 < (1+p0)?/(1—po) -1 < 427N

so that again |6] < 2-V'*3 and rounding to N’ — 4 bits works.

If N' < n and N’ — 4 bits are too few, it is possible to perform the
computation using integer operations. This first involves expressing 3 as
an integer in the range [2"~2, 2"~! — 1] times a power of two, similar to
what was done in Algorithm 2, and likewise scaling z and y so that their
magnitudes are in the range [2"~!, 2"]. This gives a value of § rounded to
n — 1> N’ binary digits. Performing integer multiplication by the scaled z
followed by (truncated) integer division by the scaled y produces the result

2™ chop(round(8,n — 1)z/y,n’), where n —2 < n’ < n,

where m reflects all the scaling. Since the only error before the final chop is
from the rounding of 3 to at least N’ bits, it is easily seen that this result
may be safely rounded to any number of bits less than N/ -1 < n — 2.
Since only integer operations are involved, this same strategy will work for
hexadecimal radix, if the final rounding is to N’ — 3 bits.

Now assume a hexadecimal radix. The analysis above (for binary radix)
works if N’ — 3 is substituted for N’. Thus,

(round®(8, N') @" round”(z, N')) @* round?(y, N')

gives a valid result when rounded to N’ —7 bits, and if N’ > n + 3 (integers
exactly representable), then

(roundh(ﬂ, N @k z) oty

21

will give a valid result when rounded to N’ — 5 bits with a bias of 3/4.

On the IBM 370, N’ —5 bits in double precision will suffice (N’ = 56 and
the maximum N is 51 for that format). If one wants to get by with N'—4 and
N’ > n (we have already covered N’ < n), then scaling 3, z, and y by powers
of two to make them binary-normalized in the hexadecimal representation
will by itself effectively increase the precision of the multiplication to at least
N’ — 1 bits, chopped, as in section 5.1. The final division then chops to at
least N’ — 3 bits, allowing for a correctly-rounded N’ — 4-bit result.

Finally, although again there is no official need for it, one can squeeze by
with N’ — 3 bits (the theoretical maximum for hexadecimal). This involves
adjusting the product of the rounded § by z to have exactly one leading
binary 0. When this is divided by a binary-normalized y, the leading hex-
adecimal digit will have to be either 8 or 4—at least N’ — 1 bits of precision,
chopped. The prior analysis on binary arithmetic with chopping operators
now applies, with N’ — 1 in place of N'.

Algorithms 6 and 7 summarize the analysis of fixed-point divisions that
yield floating-point results.

5.3 Implementation notes on Algorithms 5-7

Arithmetic conforming to IEEE 754 meets the requirements of these algo-
rithms with either single-precision format (N’ = 24, which may be used
for types specified with up to 6 decimal digits of accuracy or a maximum
N = 21) or double-precision format (N’ = 53, good for up to 15 decimal
digits or N = 51). IBM 370 hexadecimal arithmetic also meets the require-
ments with either single-precision (N’ = 24 and N = 21) or double-precision
(N' =56 and N = 51) format. VAX arithmetic meets the requirements with
F floating format (N’ = 24 and N = 21), with D floating format (N’ = 56
and N = 31), and, for floating-point types requiring fewer than 15 decimal
digits, with G_floating format (N’ =53 and N = 51).

The case of D_floating format on the VAX is a fluke; the current Ada
definition only allows this format to be used to represent types with up to 9
decimal digits of accuracy, giving it an enormous number of extra bits. As
a result, one can use D floating format for doing conversions to G_floating
format for cases such as N = 51, where N’ = 53 is insufficient. One must
simply take care to re-scale the intermediate results to avoid overflowing
D_floating’s smaller exponent range. With this caveat, Algorithms 5-7 apply
to all Ada floating-point types representable in VAX G loating format.

The biased rounding operation, roundy(7y, M), is easily implemented if
there is an integer [> 0 such that A = 1-2M~N' as in the algorithms used
in this paper. If on a machine with arithmetic that chops, the operation (for
v # 0) amounts to adding sign(7y)-I- 2logb(v)=N"+1 t 5 and then masking off
the last N/ — M bits if the addition does not increment the exponent, and

22

otherwise the last N’ — M — 1 bits. It may, however, be faster to manipulate
the representation as integers.

The algorithms use a number of other operations that are carefully dis-
guised in the harmless-looking mathematical notation used to express them.
These include

e scaling and shifting, represented as multiplications and divisions by
powers of 2;

e conversions, represented implicitly by, for example, the application of
floating-point operations to integers;

o assorted other operations, notably logb(), adj*(-) and round”(-,).

Realization of some of these operations will involve significant code se-
quences. However, I will not elaborate on them here, because they are
typically representation-dependent and in any case present no conceptual
difficulties.

6 Looser Accuracy and Range Requirements

If a fixed-point type declaration requires a representation type with only
n' < n significant binary digits, a compiler may (and often will) choose to
use a representation whose small value is less than that required by some
power of two. For example, consider the following Ada declaration on a
machine with 32-bit words.

type T16 is delta 1.0 range —2#**16 .. 2xx16;

The type T16 requires only 17 bits for its representation (the semantics of
Ada do not require that 2!€ be representable). It will often be represented by
integers in the full range, —23! to 23! — 1, with the value 1 being represented
by 213, For this choice of representation, results of multiplications and divi-
sions that are coerced to type T16 need only be accurate to within 2!° rather
than 1. Alternatively, the type T16 can be represented by 32-bit integers in
the range —216 to 216 — 1. In this case, the legitimate intermediate values
produced by Algorithms 1 and 2 have a restricted range.

Of course, the Algorithms 1 and 2 will work for both of these choices
of representation. It is reasonable to inquire, however, whether these less
stringent requirements on the accuracy of the final result or on the range
of intermediate results might be exploited to simplify the algorithms. To a
certain extent, they can.

When z and y are restricted to particular signs (non-positive or non-
negative), tests of sign(z) and sign(zy) may be eliminated. When the

23

operands’ ranges are sufficiently restricted, it is sometimes possible to sub-
stitute single-length additions, subtractions, or comparisons for the double-
length operations generally required. In operations that require left shifts,
the shifting may be transferred to the operands and done using single-length
shifts, again depending on the operands’ ranges. This is advantageous when
shifting of double-length quantities is relatively expensive. All of these sim-
plifications are sufficiently straightforward that I won’t go into details.

When the representation chosen for the result type has k “extra bits”
on the right, so that small is represented by 2% one cannot, unfortunately,
get away with the obvious adjustments to equations (1) and (2):

|r —azy| < ok (8)
|s - Bz/yl < 2~ (9)

These conditions are necessary but not sufficient to guarantee that r and
s end up in the same minimal safe intervals as azy and fBz/y. However,
if » and s satisfy these conditions and are safe numbers of the result type
themselves, then they are valid results, since the conditions then preclude
there being any other safe numbers between r or s and the mathematically
correct values.

Algorithms 8 and 9 are modifications of Algorithms 1 and 2 suitable for
use with k > 0. These algorithms use the operation floor(g, m), which is the
result of rounding the integer ¢ down (toward —oo) to the nearest multiple
of 2™. Both produce valid safe numbers either of the desired result type or
of a finer type (i.e., whose smallis smaller by a power of 2 from that of the
result type); such results are valid by Fact 6).

6.1 Coarse multiplication: Algorithm 8
Let # = shift(z *y,m) + a and

b=+ — azy = eaxy — pa/a — p,

with p; and p; as prev10usly Let § = r — azy.

Ife>0,then ~1 < é < 1 when zy > 0 and — -2 < é < 1 when zy < 0.
Since for this case the algorithm computes r = floor(# + 1, 1), we have
-1 < 6 < 2when zy > 0 and -2 < é§ < 2 with zy < 0, using the fact
that 0 < z — floor(z,m) < 2™ — 1 for m > 0. Since the floor operation here
yields a safe number for a type with small represented by 2 and |6] < 2, the
resulting value of r is valid, by Fact 6).

Ifk>1,and e < 0, then —2 < § < 0 when zy > 0 and — —-1< 4 < 2 when
zy < 0. The algorithm computes r = floor(# + 2, 2), giving -3 < é < 2 for
zy > 0and —2 < § < 4 for zy < 0. Since |6] < 4 and r is a safe number

24

To find an r satisfying (1) or a safe number r satisfying (8), for k > 0,
-2" < azy <2" -1.

—— Assume that 2%¢ is the normal form of round(1/a,n).
a:= 2" m:=n-—k;
if €>0and (m>0ore< 2 "2=2") then
—— This case is simply taken from Algorithm 1.
r := shift(z * y, m);
elsif € > 0 then
r := floor(shift(z * y,m) +a +4 1, 1);
elsif £ > 1 then
r := floor(shift(z * y,m) + a +4 2, 2);
elsif k = 1 then
r := floor(shift(z * y,m) < a +, sign (zy), 1);
end if;

Algorithm 8: Coarse multiplication of fixed-point quantities, yielding a
fixed-point result whose small is represented by 2%.

for a type with small represented by 4, it is correct. If we instead compute
r = floor(# + sign (zy), 1), weget —2< § < lforzy>0and -2< 6 <2
when zy < 0. Again, r is a safe number for a small of 2 and |§] < 2. This
result is therefore valid when k£ = 1.

6.2 Coarse division: Algorithm 9
Let § = shift(b*z,m) + y and

6=35—Pz/y=eBz/y—pafa—p1,

Let § = s — Bz /y, for the final value of s.

Consider first € > 0. If m > 0 or z > 0 (and therefore bz > 0), then
—1 < § < 1, and 3 must therefore be a correct result with no further
modification. Otherwise, we have —1 < § < 2 for zy > 0 and -2 < b<1
for zy < 0. Computing s = floor(3 + 2,2) gives -2 < § < 4 for zy > 0 and
—3 < 6§ < 3for zy < 0, so this is a proper safe number for £ > 1. Otherwise,
computing s = floor(§ —¢ sign_(zy), 1) gives bounds of —2 < § < 2 for all
values of sign(zy).

Now take ¢ < 0. We get bounds of -2 < < 1forzy>0and -1<b< 2
for 2y < 0. The computation s = floor(3+2, 2) gives —3 < § < 3forzy >0
and —2 < § < 4 for zy < 0, which is again acceptable if ¥ > 1. Otherwise,
computing s = floor(3 + sign (zy), 1) gives bounds of -2 < § < 2 for
zy > 0 and —2 < § < 2 for all 2y, which is acceptable for £ = 1.

25

To find an s satisfying (2) or a safe number s satisfying (9) for k > 0,
2" < Bz/y < 2" — 1.

—— Assume that 2F¢ is the normal form of round(g, n).
b:=2"; m:=k-mn;
s := shift(b x z,m) + y;
if e>0and (m>0orz >0)then
null;
orif £ > 1 then
s := floor(s +4 2, 2);
orif t =1 and ¢ > 0 then
s := floor(s — sign_(zy), 1);
orif k =1 and ¢ < 0 then
s := floor(s +, sign (zy), 1);
end if;

Algorithm 9: Coarse division of fixed-point quantities, yielding a fixed-point
result whose small is represented by 2.

7 Concluding Remarks

The semantics of Ada fixed-point operations pose some problems for the
would-be implementor who wishes to provide a complete set of Ada repre-
sentation clauses. However, as we have seen, the costs of providing correct
implementations of fixed-point multiplication in the presence of arbitrary
rational scaling factors are not particularly large for the case of fixed-point
results. In the worst case, fixed-point multiplication with fixed-point result
(Algorithm 1) requires one multiplication, one division, one shift, and two
double-length additions. Fixed-point division with fixed-point result (Al-
gorithm 2) is the same, with a single-length addition substituted for one
double-length addition. When the representation type is left-justified in a
larger word, the cost of fixed-point multiplication or division with a fixed-
point result (Algorithms 8 and 9) can be improved slightly by substituting
a single-length addition and a masking operation for the double-length ad-
ditions.

When results of an integer type are required—in which case Ada seman-
tics requires rounding to half a unit in the last place—the compiler’s case
analysis becomes more complex and the algorithms generally more costly. In
the worst case, fixed-point multiplication with nearest integer result (Algo-
rithm 3) requires two divisions—one with remainder—four multiplications,
one shift, and three double-length additions. Fixed-point division with near-
est integer result (Algorithm 4) requires in the worst case two divisions, three

26

multiplications, a shift, and three double-length additions.

Further, for either Algorithm 3 or 4 to apply, @ or 3 must be precisely
expressible in the form 2™a/b for single-length a and b. I suggest that this
is not an unreasonable implementation restriction. It is probably rare really
to need true rounding to nearest for a multiplication or division where the
conversion factor is not expressible in the necessary form. If true rounding
to nearest is not actually needed, it is easy (but requires a bit more writing)
to specify that one wants integer values that are rounded to one unit in the
last place.

Usually, floating-point results of multiplication require an integer multi-
plication, a floating-point multiplication, a conversion from double-length in-
teger to floating-point, and assorted twiddling. Division requires a floating-
point multiply, and floating-point or integer division, and more assorted
twiddling. The necessary operations are available on reasonably-behaved
hardware—this paper considered machines like the VAX, the IBM 370, and
anything conforming to IEEE 754. The operations require that the floating-
point computation type have a few extra bits than required for the safe
numbers (two for IEEE Standard machines, three for binary-radix machines
that round, three or four for binary-radix machines that chop (depending
on whether integers can be represented exactly). The specific machines con-
sidered will always have these extra bits, and similar architectures may also
have them. I have not considered less well-behaved floating-point architec-
tures as a matter of policy.

There are a number of possible improvements to the results presented.
First, I have quoted worst-case results; it is unclear what the average case
costs are for any of these algorithms. Second, these algorithms all take full
advantage of the indeterminate roundings allowed by the Ada semantics.
Their precise rounding behaviors, which can be important in sufficiently
delicate numerical codes, cannot be described with anything approaching
the cleanliness of IEEE 754. Finally, I have paid no particular attention to
the effects of supplying operands that are outside the domains specified for
the inputs. Although this is valid according to the strict Ada semantics,
where not even division by 0 need cause an exception for non-integer scalar
types, a production implementation will probably want to take more care.

Finally, several of the procedures—in particular Algorithms 5-9—all take
some pains to remove precision from the result in order not to violate rules
on safe numbers. The reader who concludes that this indicates a problem
with the Brown-model style semantics of Ada’s real arithmetic will get no
argument from me.

Acknowledgement. My thanks to Jean-Marc Chebat, Terry Froggatt,
and William Kahan for their comments and assistance. Any remaining errors

27

are, of course, my own.

References

1. Terry Froggatt, “Fixed-point conversion, multiplication, & division, in
Ada(R).” Ada Letters 7, 1 (Jan., Feb. 1987), pp. 71-81.

2. Jean-Pierre Rosen, Une machine virtuelle pour Ada: le systéme d’ez-
ploitation. Ph.D. thesis, ENST, 1986. Paris, France.

Appendix: Collected Arithmetic Facts

The following facts are sufficiently simple that they are presented without
proof.

Fact 1 trunc(U;/uy) = Uy/ug — p1, where 0 < |p1| < min(|{U;/ug|,1 —
1/|uz|) and sign(p;) = sign(Uyuz). This result therefore applies to Uy + u.
when the latter is defined.

Fact 2 shift(U, m) = 2™U - p3, where 0 < p; < min(|2™U|,1 — 2™) for
m < 0, and p» = 0 for m > 0.

Fact 3 trunc((U; + sign(U1)[|uz|/2])/u2) € [Ui/uz £ 1/2]. This follows
directly from Fact 1) and provides a way to produce rounded results via
integer division.

Fact 4 If m < 0 then shift(trunc(U;/uz) + 27™~! + sign_(Uyuz), m) €
[2mU; /ug £1/2]. This is somewhat obscure, but follows from Facts 1 and 2.

Fact 5 trunc(trunc(Ui/u2)/u3z) = trunc(Ui/uqus), so (U1 + uz) + ug =
trunc(U; /(uzus)), where defined.

Fact 6 If the safe numbers of type T are a superset of those of T3, then
any semantically valid values for T} (P * Q) and T,(P/Q) are also valid for
T2(P + Q) and T(P/Q) (i.e., considering just numerical values and ignoring
data types). This is true both for fixed-point and floating-point types T3
and T,.

Fact 7 If v(1 + 6) = round(y, m), then |6] < 1/(1+ 2™).

28

