Analysis of Multithreaded Architectures for Parallel
Computing'#

Rafael H. Saavedra-Barrera
David E. Culler
Thorsten von Eicken

Computer Science Division
University of California
Berkeley, California 94720

Abstract

Multithreading has been proposed as an architectural stra-
tegy for wlerating latency in multiprocessors and, through lim-
ited empirical studies, shown to offer promise. This paper
develops an analyucal model of multithreaded processor
behavior based on a small set of architectural and program
parameters. The model gives rise 10 a large Markov chain,
which is solved to obtain a formula for processor efficiency in
terms of the number of threads per processor, the remote refer-
ence rate, the latency, and the cost of switching between threads.
It 1s shown that a muluthreaded processor exhibits three operat-
ing regimes: linear (efficiency i» proportional to the number of
threads), transition, and saturauon (efficiency depends only on
the remote reference rate and switch cost). Formulae for regime
boundaries are derived. The model is embellished to reflect
cache degradation due to muluthreading, using an analytical
model of cache behavior, demonstrating that returns diminish as
the number threads becomes large. Predictions from the embel-
lished mode! correlate well with published empirical measure-
ments. Prescripuve use of the model under various scenarios
indicates that multithreading is effective, but the number of use-
ful threads per processor is fairly small.

1. Introduction

Memory latency, the time required to inilate, process,
and return the result of a memory request, has always been the
bane of high-performance computer architecture, and it is espe-
cially critical in large-scale multiprocessors. Many processor
cycles may elapse while a request is communicated among phy-
sically remote modules, in addition to those lost duning the
memory access. For scalable architectures, communication
latency will generally increase with the number of modules, due
to the depth of the network, and may be quite unpredictable, due
to network contention. Thus, the architectural chalienge is o
minimize the fraction of processor cycles wasted due 10 long-
latency requests. There are two obvious allernatives: avoid
latency or tlerate it. In other words, we may attempt to reduce

t To appear in the 2nd Annual ACM Symposium on Parallel Algonthms
and Architectures; Crete, Greece: July 1990

$ The matenal presenied here 1s based on research supported 1n pant by
NASA under consoruum agreement NCA2-128 and cooperauve agreement
NCC2-550. Compuung resources werc provided in pant by the Nauanal
Science Foundauon through the UCB Mammoth project under grant CDA-
8722788,

the number of such requests or perform other useful work while
requests are outstanding. In uniprocessors, the former is realized
by caches [Smit82} and the latier by dynamic hazard resolution
logic [Ande67, Russ78]. Unfortunately, neither of these
approaches extends trivially 1o large-scale multiprocessors
[Arvi87].

The latency avoidance strategy embodied in caches is
attractive for muitiprocessors because local copies of shared data
are produced on demand. However, this replication leads to a
thorny problem of maintaining a coherent image of the memory
[Good83, Arga88]. Concrete solutions exist for small bus-based
multiprocessors, but even these involve considerable complexity
and observed miss rates on shared data are fairly high [Egge88].
Approaches that do not provide automalic replication can be
expected to make a larger number of long-latency requests.

Several recent architectures adopt the alternative strategy
of tolerating latency. These can be loosely classified as mul-
tithreaded architectures, because each processor supports several
active threads of computation. While some threads are
suspended. awaiting completion of a long-latency request, the
processor can continue servicing the other threads. Dataflow
architectures are an extreme example: the processor maintains a
queue of enabled instructions and, in each cycle, removes an
instruction from this queue and dispatches it into the instruction
pipeline. A number of more conservative architectures have
been proposed thal maintain the state of several conventional
instruction streams and switch among these based on some
event, either every instruction {Hals88, Smit78, This88], every
load instruction [lanu88, Nikh89], or every cache miss
[WebeR9]. While the approach is conceptually appealing, the
available evidence for its effectiveness is drawn from a small
sample of programs under hypothetical implementations
[Arvi88, 1anu88, Webe89]. No coherent framework for evaluat-
ing these architectures has emerged.

In this paper, we develop a simple analytical model of
multithreaded architectures in order to understand the potential
gains offered by the approach and its fundamental limitations.
For example, what latency and remote reference rates justify
multithreading, how many threads must be supported to achieve
a significant improvement, and what are the trade-offs between
increased tolerance and degraded cache performance due to
increasing the number of threads. Our model is based on four
parameters: the latency incurred on a remote reference (L), the
number of threads thal can be interleaved (N), the cycles lost in
performing a switch (C), and the interval between switches trig-

gered by remote references (R). L. N, and C are basic machine
parameters, determined by the interconnection between modules,
the amount of processor state devoted o maintaining active
threads, and the implementation of the switch mechanism,
respectively. R reflects a combination of program behavior and
memory system design.

The basic architectural model is presented in Section 2.
To develop a general undersianding of the behavior of mul-
tithreaded architectures, Section 3 analyzes the model under the
assumption that the remote reference interval is fixed. A simple
calculation shows that, for a given latency L, the efficiency of
processor increases linearly with the number of threads up o a
saturation point and is constant beyond that point. To provide a
more realistic prediction of the processor behavior, in Section 4
we assume the remote reference interval has a geometric distn-
bution and arrive at a Markov chain giving the efficiency as a
function of N, C, L and the mean value of R. The size of this
chain is exwemely large, making direct numerical solutions
infeasible, however, an exact solution is obtained. It gives a
more accurale estimate of the processor efficiency and identifies
the transition region between lincar improvement and saturation.
We can see how increasing the number of contexts enlarges the
sawration region, with respect 10 L, and that the effects of
switching overhead are most pronounced in saturation.

To make the model still more realistic, in Section 5 we
embellish it to include the effects of per-processor cache degra-
dation due to competing threads. In this case, the processor effi-
ciency improves more slowly with the number of contexts, for a
given latency, and reaches a peak. from which it may drop with
further increase in N. Section 6 .compares predictions of the
mode! with published measurecments obtained through trace-
driven simulation, showing the correlation to be quite good.
Section 7 employs the model 10 determine maximum improve-
ment, net gain, and points of dimirushing return under various
operating assumptions in multithreaded architectures. To the
extent that these predictions can be verified, this analytic
approach deepens our understanding of the behavior of this new
class of machines.

2. Multithreaded Processor Model

In this section, we present the architectural model and
definitions used throughout the paper. We focus on one proces-
sor m a multiprocessor configuration and ignore issues of
synchronization{ Arvi87]. In addition, we assume the latency in
processing a request i1s determined primarily by the machine
structure and minimally affecied by program behavior, so it is
considered constant. We also assume that many outstanding
requests can be issued and will be processed in a pipelined
fashion. We say nothing about how multiple threads are actually
supported by the processor and assume only that there are N of
them per processor and it takes a constant time C to swiich from
one to another. A thread is represented by a context, consisting
of a program counter, a regisier set, and whatever context status
words. The model is optimistic, in that it assumes sufficient
parallelism exists throughout the computation.

A conventional single-threaded processor will wait during
a remote reference, so we may say it is idle for a period of time
L. A muluthreaded processor, on the other hand, will suspend
the curreni context and switch o another, so after some fixed
number of cycles it will again be busy doing useful work, even
though the remote reference is outstanding. Only if all the con-
texts are suspended (blocked). will the processor be idle.
Clearly, the objective is 1o maximize the fraction of time that the
processor is busy, so we will use the efficiency of the processor

as our performance index, given by

- Busy
" Busy + Switching + ldle’

3 M
where Busy. Switching , and /dle represent the amount of time,
measured over some large interval, that the processor is in the
corresponding state. The basic idea behind a multithreaded
machine is to interleave the execution of several contexts in
order to dramatically reduce the value of /dle, but without
overly increasing the magnitude of Swiching .

The state of a processor is determined by the disposition
of the various contexts on the processor. During its lifetime, a
context cycles through the following states: ready, running, leav-
ing, and blocked. There can be at most one context running or
leaving. A processor is busy, if there is a context in the running
state; it is swilching while making the transition from one con-
text to another, i.e., when a context is leaving. Otherwise, all
contexts are blocked and we say the processor is idle. A running
context keeps the processor busy until it issues an operation that
requires a context switch. The context then spends C cycles in
the leaving state, then goes into the blocked state for L cycles,
and finally re-enters the ready staie. Eventually the processor
will choose it and the cycle will start again.

This general model can be applied to several different
multithreaded architectures, with varying switching policies.
We briefly present three examples and give an interpretation of
the run length and memory latency for each. First, suppose a
context is preempted when it causes a cache miss. In this case,
R is taken o be the average interval between misses (in cycles)
and L the time to satisfy the miss. Here, the processor switches
contexts only when it is certain that the current one will be
delayed for a significant number of cycles. A more conservative
approach is to switch on every load, independent of whether it
will cause a miss or not. In this case, R represents the average
interval between loads. Our general muliithreading model
assumes that a context is blocked for L cycles after every switch,
but in the case of a "swilch on load” processor this only happens
if the load causes a cache miss. The general model can be
employed, if we postulate that there are two sources of latency
(L, and L,) each having a particular probability (p, and p,) of
occurring on every swiwch. If L, represents the latency on a
cache miss, then p, corresponds to what is normally referred as
the miss ratio. L, is a zero cycle memory latency with probabil-
ity p,. Finally, consider a processor that switches on every
instruction, independent of whether it is a load or not ("switch
always"). As in the case of the “"switch on load” processor, we
create two sources of latency, L), representing a cache miss
latency, with p, being the probability of a cache miss per
instruction. The analysis in this paper is in terms of the general
model, however, some of the examples assume a “switch on
miss” processor.

3. Concepts and Preliminary Analysis

In order to introduce the basic concepts and terminology,
we first assume the context transition times, R and C, are con-
stant. In later sections, we consider more realistic conditions.

A single-threaded processor executes a context unil a
remote reference is issued (R cycles) and then is idle until the
reference completes (L cycles), before continuing. There is no
context switch and. obviously, no swiwch overhead. We can
model this behavior as an aliernating renewal process having a
cycle of R +L. In terms of eg. (1), R and L correspond to the
amount of time during a cycle that the processor is Busy and
Idle, respectively. Thus, the efficiency of the single-threaded

machine 1s given by
R __1
R+L 1+L/R’

This shows clearly the performance degradation of such a pro-
cessor in a parallel system with large memory latency.

€= (2)

With muluple contexts, memory latency can be hidden by
switching 10 a new context, but we assume the switch takes C
cycles of overhead. Assuming the run length between switches
is constant, with a sufficient number of contexts there is always a
context ready to execute when a switch occurs, so the processor
is never idle. In this case, we say the processor is sazurated.
The cycle of the renewal process in this case is R +C, and the
efficiency is simply

R ___1
fw R+C 1+CR

Observe, that the efficiency in saturation is independent of the
latency and also does not change with a further increase in the
number of contexts. Saturation is achieved when the time the
processor spends servicing the other threads exceeds the time to
process a request, i.e.,, when (N —1)}R +C)>L. This gives the
saturation point, under constant run length, as

L
R+C

3)

N;= +1. 4)

When the number of contexts is below the saturation
point, there may be no ready contexts after a context switch, so
the processor will experience idle cycles. The time to switch 1o 2
ready context, execute it until a remote reference is issued, and
process the reference is equal 10 R +C +L. Assuming N is
below the saturation point, during this time all the other contexts
have a tumn in the processor. Thus, the efficiency is given by

NR
R+C+L

Eun =

Observe, the efficiency mncreases linearly with the number
of contexts unuil the saturation point is reached and beyond that
remains constant. The equation for g,, gives the fundamental
limit on the efficiency of a multithreaded processor and under-
lines the importance of the ratio C/R. Unless the context switch
is extremely cheap, the remote reference rate must be kept low.

4. Analysis with Stochastic Run Lengths

In this section, we umprove the basic model by assuming
the run length of a context (R) 15 a random variable having a
geometric distribution; i.e., the probability of executing an
instruction that will trigger a context switch is p =1/R. We
present an exact solution to the Markov chain and compare it to
the solution of the simple model above.

The behavior of a multithreaded processor is conveniently
represented by a Petri net diagram as in Figure 1. The circles
represent places, and the boxes transitions. Four of the five
places correspond direcdy to the four context states; place A is
used to enforce the constraint that only one context can be run-
ning or leaving. Note that transition £ is immediate, while tran-
sitions C and L are deterministic (black rectangle). The sto-
chastic transition R associated with the nmning state of a context
is shown as a white rectangle.

(2) ®) (c)

Figure 1: A Pein net represenung the three states of the mul-
uthreaded processor. In (a) the processor is busy; in (b)
the processor is switching, and 1n (c) the processor is
idle

4.1. An Exact Solution to the Markov Chain

By computing the reachability set of a Petri net we obtain
the Markov chain, which can be solved numerically to obtain the
efficiency for specific values of ¥, R, C, and L. However, it is
computationally unfeasible to obtain a solution when the number
of contexts is not small; the number of states in the reachability
sel is loo large. The exact number of states is given by

Staxes—]+L+C+z[(“2)"]

For example, with a latency of 128 cycles, a context switch time
of 2 cycles, and 4 contexts, the Markov chain has more than 9
million states. Fortunately, we have found the exact solution 1o
the limiting probabilities. The main steps in the derivation are
sketched below; details can be found in [Saav90].

Although the number of equations in the transition matrix
for the Markov chain is very large, there are several patterns
present in this particular system that makes it possible to reduce
all equations 0 a new system having only one unknown. Let the
limiting probability for the this state be ;. We group all the
limiting probabilities that represent the same processor state
together (Busy, Swiching, or Idle) and arbitrarily set m, = 1.
We then get the following particular solution to the set of equa-
tions given by the transition matrix

N-1 C 3
L- (k—l)C—J IO A
nsuy-l‘*kzl le[k-1 } (l_p)(C'IXi'U’J *
N-1 L_ Ek
Z[kw} IR)
k=1 (1-p)
L-(N-1)C p" .
Hswuiching = 21(1_ { N -1](l_p)(C-l)(N—l)

N-2C -
sE() e ©

1, (1=pyc Dt

€ ’ifL—(N—'Z)C—i—j] p* .
L N-2) (1=p)C-1XN-2-1

N-2C CrL—(k—lf—l—‘] k-
ZZZ k-1](1_,,)(6‘1)1:-“]‘

L-(N-1)(p"
n"‘z{ N oo pew ™

By replacing egs. (5)-(7) into (1) we effectively eliminate &,
This gives us the following expression for the efficiency

- an
Mpusy + Miwuching + Thiate

€

These equations are only valid when L > C ., but is nol a serious
restriction, since it does not make sense to build a multithreaded
machine that takes more tumc o swiich contexts than the
memory latency it atiempts o hide!. Using egs. (5)-(7), it is
straightforward to compute the cfficiency for complex systems
with many contexts, large run lengths and long memory laten-
cies.

4.2. A Better Approximation to the Saturation Point

It is easy to see that eq. (4) 1s a first-order approximation
to the saturation point in the case of stochastic run lengths; it
only considers the average run length of a context. However, as
shown by figure 2, the efficicncy we obtain using N; may be
well below that in saturation. We can get a much better approxi-
mation using information about the distnbution of the nm
lengths. Essentially, we must determine the number of contexts
required to reduce the probability that the processor is idie below
some threshold. Knowing that a geometric random vanable with
mean p has variance (1-p)p°=R(R -1)) and making some
simplifications (see Appendix). we obtain a quadratic equation
for the new approximate saturation point (N,). The solution is

[oR (@R - 4R ~C)LY"

M=t 2R ~C)

+1. (8)

Variable a gives the level of the “confidence’ (in the sense of the
number of standard deviations considered), that the processor
will not enter the idle state.

Equation (8) was obtained by attempting to minimize the
probability of entering the /dic state. However, what really
interests us is the fraction of the maximum efficiency that N,
contexts provide. We obtain this by using (8) in the formulae for
the efficiency given by egs (5)-(7) and comparing it to the max-
imum efficiency given by (3). Substituting the expression for N,
with a = 1, the value obtained for the efficiency is more than
95% the efficiency in saturation: if @ is increased to 1.5, this
efficiency is more than 99% of that in saturation. When a = 0,
(8) reduces to (4).

4.3. Comparing the Approximate and Exact Solutions

Inwitively, we expect the solution of the deterministic
model to match well with the stochastic solution far from the
transition region with a maximum separation in the transition

} However, in a “switch on load” or “switch always™ processor condi-
tian L >C may not be true. In thesc processors L corresponds to the
weghicd average of the muluple sources of latency, and even when the re-
mote latency is large the effective latency we obtain can be smaller than a
context swich ume

0.90 < Determumsuc R
Model :

0.80 7 | Markov, Model

0.70 4

€O -0 =t

0.60 -

0.50

0.40

0.30

!
[
|
|
|
|
l
|
|
{
i
!
I
|
i
|
|
1
]

Ns

A

2 7 12 17

Number of contexts

Figure 2. Efficiency as a funcuon of the number of contexis:
L =128 cycles, R = 16 cycies, C =2 cycles. The nght-
most curve 1s obtained from the exact soluuon to the
Markov chamn.

itself. In figure 2, we plot both solutions as a function of N.
The latency is 128 cycies; the probability of context swilchung
0625 (R = 16); and the context switch time 2 cycles. In this
case, the maximum efficiency of the processor is .888. The
saturation point (N,) predicted by the deterministic model 1s
located at 8 contexts. This corresponds to a real efficiency of
743 which is only 84% of the actual maximum. In contrast. N,
with @ = 1.5 equals 13 contexts and its efficiency corresponds 1o
99% of the maximum.

4.4. Latency, Number of Contexts, and Context Switch
Overhead

The utilizalion expression obtained with the stochastic
mode] allows a detailed investigation of the behavior of a mul-
tithreaded processor as a function of N, R, L, and C. This is
illustrated in figure 3, where we show utilization curves for a
system in which memory latency is varied from zero to 200
cycles, context switch overhead is either 0, 1, 4, or 16 cycles,
and the number of contexts is 2 and 6 contexts. However, the
qualitative behavior we identified in the simple determinisuc
model is present here. (1) The maximum utilization is com-
pletely determined by the ratio C/R; (2) In the saturation region,
latency is effectively eliminated; (3) The effect of the context
switch overhead is greater in saturation than in the linear regime.
(4) Outside the saturation region, an increase in memory latency
rapidly reduces the utilization of the processor.

5. Dependency of Contexts on Cache Miss Ratio

The next step in our analysis is to consider a more realis-
tic model that takes inlo account that increasing the number of
contexts running on a processor will have an adverse effect on
the cache miss ratio. A higher number of cache misses will
decrease the run length and possibly increase memory latency
due 1o higher memory contention. In this section, we modify the

Jap—

l'w.\/C:O

0.509
0.801
0.709

0.601

PR

0.501

0.401

0.309

0.209

Number of Contexts = 2

0.10 v v v
100 150

200

Memory Latency (cycles)

NS) s s T

1.0019

Number of Contexts = 6

0.901
0.801
0.704

0.609

0.50

0.409

0.301

0.10 v v v
100 150 200

Memory Latency (cycles)

Figure 3. Efficiency as a funcuon of latency and context swich. For both graphs R = 16 cycles.

efficiency equations obtained in both the deterministic and sto-
chastic cases to take into account the possible effect of muluple
contexts on the run length. We will assume that each context
uses 1/ N of the total cache, instead of sharing the whole cache
between the contexts. Thus, the lotal cache size is constant and,
as the number of contexts increases, each context will have a
smaller cache for its own use. This is a ‘middle ground’
assumption. In reality, contexis may interfere constructively or
destructively on shared data. If they do not interfere at all, they
might fit in the cache with unequal partitions.

On uniprocessors, cache misses experienced by an appli-
cation can be classify into four groups: start-up effects, nonsta-
tionary behavior, intrinsic interference, and extrinsic interfer-
ence [Agar89]. The first is caused by initial execution of the
program; the second by changes in the program’s working set;
the third by the size of the cache: and the last one by multipro-
gramming. Only the number of misses due to interference
(intrinsic and exfrinsic) increases with a larger number of con-
texts. By assigning independent caches to the contexts we elim-
mate the effect of extrinsic interferences in the miss ratio.
Hence, we only have 1o consider how the intrinsic interference is
affected?.

Many different techniques have been used to obtain the
performance of caches: trace-driven simulation, hardware meas-
urement, and analytical models {Smit82, Clar83, Agar89). It has
been observed, although not completely validated, that the miss
ratio (m), as a function of the size of the cache, can be approxi-
mated by m = A S%, where § is the cache size, and A and K
are positive constants that depend on the workload?. The above

2 Thus does not reflects that there may be same ~unimum nuss rate, re-
gardless of cache size, due to communicauon of dawa between processors,
but the approach {ollowed here could be casily extended to do so.

3 D. Thiebaut argues in [Thie89) that this relatonship can be explained

miss ratic formula appears to be valid for caches berween 1K
and 256K bytes under uniprocessor execution. We will use this
miss ratio approximation to obtain an expression for the miss
rate for N contexts in terms of the miss ratio of one context
using all the cache. For, example, if the total cache size 1s 256K
bytes the above formula can be used to obtain approximale miss
ratios for up to 128 contexts, each using a cache partition of 2K
bytes, or 4 conlexts each using a cache partition of 64K bytes.

Let m (N) be the miss ratio when there are N contexts,
each using a cache of size Sy =S;/N. An expression for m(¥)
can be obtained in the following way

A
-X -K Sw K
m(N) = ASiK = AS; s_} = m(1)N¥.
1

This expression for m(N) is a monotonicly increasing function
and does not take into consideration that the miss ratio cannot be

greater than one. Thus, a better expression for the miss rauo
should be:

m(HNK,

ifNSILm(l)‘“‘_';
m(N) =

9
1, 'fo>|.m(1)‘”K_|.
Thus, we can easily express the run length with N contexts as

RN,

RN) = ifNS{R(l)x/xJ;

(10)

1, if N> ILR(I)“‘J .

by considering the program’s execution as a fractal random walk over the
address space. In tus model constant K 1s related to the fractal’s dimension
and this value depends on the particular intermuss gap distnbution of the

program

1 od D)= Oy m)=04
E
§ 091 (P
T 084 m(1) = .08 \\
<
1 074 / m(l)=.16
e
T 06ql
i
¥ oyf/
i
04-/
0.34
024 cache ignored
K =000
(63
0 10 20 0 40
(a) Number of Contexts
p —)
1.0 4 N4 m(l)= 0!
E % \‘“) ”
f o m =
£ 09 0"
Lo073 3 m=.08
el TR
<
y |
m(l)=.16

1/
i

034 |
| .
o:-/ | cache included
: i K=040
01 v v v
0 10 20 0 40
() Number of Contexts

1.04 \i w mMGy=01~ ml)=0
E N r'd
f 094 No Np
f i
1084 LN m(l) = 08—""
c ’ e
1074 T \
< ol
7 069 i m(l) = 16
Y 054 /
044 3
034
024 cache included
K =020
0.1
20 0 40
®) Number of Contexts
1.0 4
E
f 094
f
L 084
4 !
1074
c
T 064 .
¥ 054 I
! b
04 4 | 1
[
034 | i
(s | H .
021 i\ i cache included
o K=057
0.1 v -
0 10 20 0 40
(d) Number of Contexts
Np (peak

N /99% sarmim)

Figure 4. EfSciency versus the number of contexts far different values of m (1) and K. C =4 ang L = 128

An estimate of R (1) and K can be obtained from direct measure-
ments or trace-driven simulauons.

5.1. Results Including Cache Dependency

Equation (10) can be replaced in formulas (2)-(8) to
obtain a new set of equations that reflect how the miss rauo
depends on the number of contexts. Figure 4 compares the pro-
cessor efficiency computed using the original equations and the
new ones for various values of K. The four curves in each graph
assume a single context miss ratio of 0.01, 0.04, 0.08, and 0.16, a
latency of 128 cycles, and a context swilch cost of 4 cycles. We
also assume that the number of queries to the cache due to data,
equals 25 percent. The above miss ratos correspond to run
lengths of 400, 100, SO and 25. The set of values for the cache
degradation constant, K, are 0.0, 0.2, 0.4, and 0.57, and the size
of the cache is, in the case of a single context, 256K bytes®.

The graphs in figure 4 indicate that utilization degrades
considerably when the initial miss ratio or the cache degradation

4 For most programs K lhes between .2 and .5, but is not unusua! to find
programs with a valuc as large as the onc we have selected. The large vaiue
reflects a scenano where the muss ratio increases rapidly as the cache size 1s
decreased.

constant is large. When K > 0.0, we observe that the utilization
increases up to some Maximum (Epe) and then drops as N
increases. This maximum value diminishes as K becomes larger
and more contexts are needed in order to reach the maximum.
The flat segment in the curve with m(1)=.16 and K =.57
reflects a regime where every query o the cache misses,
(mN)=1).

An estimate of the saturation point (N,) in the presence of
cache degradation is easily obtained using (8) with R replaced
by R(N), as given in (10), and computing the fix-point of the
resulting non-linear equation. (R(N) is monotonically non-
increasing). As demonstrated in figure 4, N,, computed with o =
1.5, is a good predictor of the number of contexis needed o
obtain maximum efficiency (Np.). Moreover, in the deter-
ministic model with cache degradation, it can be proved that the
point where the system saturates corresponds exactly 1o thal of
maximum efficiency, independent of the values of m (1) and K.

6. Comparison with Published Measurements

The analytic model developed above employs only a sim-
ple characterization of program behavior and the machine organ-
ization, so the “proof of the pudding” is the ability to predict
actual behavior. To this end, we proceed to compare predictons
from our model against trace-driven simulation results for a

program run length | latency miss rate cache degradation
R() L m(l) | m(4) K

LOCUS_ROUTE 156 22 0055 | .0122 5747

P_THOR 50 25 .0160 | .0220 .1988

MP3D 16 32 0350 | .0420 1315

program swilch 1 context 2 conlexts 4 contexts
cost Weber | Model error Weber | Model error Weber | Model error

LOCUS_ROUTE 1 0890 | 0.876 +1.57% | 0.946 0.975 -3.07% | 0946 | 0986 4.23%
4 0890 | 0.876 +1.57% | 0.948 0.952 —042% | 0904 | 0946 —4.64%
16 0890 | 0876 +157% | 0.864 0.867 —035% | 0.780 | 0.815 —4.49%
P_THOR 1 0.690 | 0.666 +3.48% | 0.846 0.894 -5.67% | 0882 | 0972 | -10.20%
4 0.690 | 0.666 +3.48% | 0824 0.856 -388% | 0.834 0.904 -8.39%
16 0.690 0.666 +348% | 0728 0.723 +0.69% | 0660 | 0.703 —6.51%
MP3D 1 0.385 0333 | +13.51% | 0.550 0.561 -2.00% | 0652 | 0837 | -2837%
4 0.385 0333 | +13.51% | 0.536 0.527 +1.68% | 0.612 | 0.744 | -2157%
16 0.385 0333 | +13.51% | 0470 0421 | +1042% | 0410 | 0455 | -10.98%

Table 1: Comparison between trace-dnven simulation and the stochastic model modified 1o include the cache degradation due to the number

of contexts. The first table gives the relevant parameters needed for our equations.

multiprocessor currently being studied at Stanford [Webe89].
The simulated architecture consisis of several nodes commected
via a network. Each node consists of a processor supporting
some number of contexts, a direct-mapped instruction and data
cache of size 64K bytes, a fraction of the global memory, and a
network interface. The caches are maintained consistent by a
directory-based cache coherency protocol. A context executes
unti] 1t requires information not available in its processor cache
or attempts to write data marked "read-shared”.

Restating measurements presented in {Webe89] in terms
of our model we obtain values for the relevant parameters shown
in the top portion of table 1. All values, except the cache degra-
dation, are reported in the paper, while degradation factor was
obtained using eq. (9). These parameters are used as input for
our model and the comparison with reported simulation results is
presented in the remainder of table 1.

The predictions derived from our model are close o the
reported simulation results on the first two programs. In particu-
lar, where a drop in processor efficiency is observed in going
from 2 contexts to 4 contexis, the prediction shows a similar
quality and magnitude. This behavior is consistent with the effi-
ciency curves presented in figure 4. The quality of the predic-
tion is considerably worse for MP3D, especially with a large
number of contexts and a small switch cost. One explanation for
this discrepancy is the use of a fixed latency m the model,
regardless of the number of contexts. Weber and Gupta report
that, on this program, increasing the number of contexts resulted
in significantly larger network delay due o higher global traffic.
Unfortunately, they do not report the new latency value in this
case. Using our model, we calculate that the reported efficiency
would be obtained with an average latency of 55 cycles, rather
than 32.

A second potential source of error in this comparison is
that sharing of information between portions of the program on
different processors is manifested either as a cache miss or a pro-
tocol dependent coherency transaction, e.g., invalidation of
remote copies. The mix of these two kinds of remote operations
may depend on the number of contexts. The reported miss rates,
from which K was derived, reflect only the actual misses, while
the reported run lengths reflect both kinds of remote operations.
Comparing these two measurements indicates that a significant

fraction of the remote references are coherency transactions.

7. Designing a Multithreaded Machine

We now proceed to show how our analytical mode! can
be used to explore the space of possible design choices in build-
ing an effective multithreaded machine. To make the exercise
more realistic, we will consider the parameters values used in the
last section.

We consider memory latencies of 32, 64, and 128 cycles.
A latency of 128 cycles may seem large, but it will help us
evaluate how much multithreading can hide latency and improve
efficiency. With respect to context swilching, we consider four
possible design points; the most aggressive design attempts to
switch contexts immediately, for a value of C =0; three more
conservative designs require 1, 4 and 16 cycles of overhead to
switch, respectively. Although a context switch overhead of 16
cycles may appear large, such a system needs only to maintain
one context on-chip and keep the others offchip in fast memory
(engineering such a system is still a challenge). This implemen-
tation is interesting because it supports a large number of con-
texts with only a small increase in processor cost. We consider
three miss ratio values of approximately 1.1%, 2.2%, and 3.1%
with 1.4 memory references per instruction to give average run
lengths of 16, 32 and 64 cycles. We further assume a cache
degradation constant (K') of .57, which is large compared to
magnitudes normally found in other workloads.

For these parameters, table 2 gives the number of contexts
(Npeat) Needed to achieve maximum efficiency (Epsat) and the
ratio between the maximum utilization and the utilization with
only one context (Epet/€;). The results show large variability in
the number of contexts needed 10 achieve saturation and relalive
improvements that vary from a mere four percent to a nine fold
increase.

In the real world, a machine designer never has an unlim-
ited amount of resources; generally, the goal is to produce the
largest improvement with the smallest increase in cost and com-
plexity. Therefore, we might consider how many contexts are
needed 1o improve utilization by some constant factor across a
range of design values. As a possible answer to this question,
the ‘Improvement’ column of Table 2 shows the number of con-
texts needed to increase utilization by 50 and 100 percent with

Parameters Maximum Improvement Fracuon of Maxuimum
L C R N!ﬁ! Epeat _&gg!‘lel 1.5'8] 2.0'5] 505@ 755,.4‘
32 0116 16 0.993 3.00 2 4 2 6
32 0] 32 8 0.991 2.00 3 8 1 3
32 01 64 5 0.993 1.50 5 - 1 2
32 1y 16 10 0.803 2.41 3 5 2 4
32 1| 32 7 0.908 182 3 - 1 2
32 1| 64 5 0.959 1.44 5 - 1 |
32 41 16 s 0.594 1.78 3 - i 2
32 4132 5 0.759 1.52 5 - 1 1
32 4| 64 4 0.864 1.30 - - 1 1
32116 16 3 0.348 1.04 - - 1 1
32 116 | 32 2 0.528 1.06 - - 1 1
32 {16 | 64 2 0.705 1.06 - - 1 1
64 0116 33 0.990 5.00 3 4 7 17
64 0132 17 0.991 3.00 3 4 3 6
64 01 64 8 0.990 2.00 3 8 1 3
64 1116 21 0727 3.63 3 S 4 9
64 1] 32 13 0.874 262 3 6 2 4
64 1| 64 8 0.946 1.89 3 - 1 2
&4 4116 10 0.507 2.54 3 5 2 4
64 4132 8 0.702 2.11 3 6 1 3
64 4| 64 6 0.846 1.69 3 - 1 2
64 | 16 |16 4 0.301 1.50 4 - 1 1
64 | 16 | 32 4 0.472 1.42 - - 1 1
64 ' 16 | 64 3 0.657 1.31 - - 1 1

128 0116 61 0.991 9.00 3 5 26 40
128 01 32 45 0.991 5.00 3 5 7 17
128 01 64 17 0.990 3.00 3 4 3 6
128 1] 16 42 0.706 5.60 3 5 13 29
128 1 2 30 0.815 4.07 3 5 5 11
128 1] 64 16 0924 2.77 3 5 2 5
128 4116 21 0.406 3.65 3 b 4 10
128 4 1 32 15 0.615 3.08 3 5 3 6
128 4 | 64 10 0.797 2.39 3 5 2 4
128 1 16 | 16 7 0.236 2.12 3 6 1 4
128 | 16 | 32 6 0.396 1.98 3 6 | 3
128 | 16 | 64 5 0.589 1.77 3 - i 2

Table 2: The two columns under label ‘“Maximum’ give the number of contexts and utilization increase with respect to a single context pro-
cessor. The columns under label ‘Improvement’ give the number of contexts needed to improve utilization with respect 10 a single
context by 50 and 100 percent. The last two columns give the number of contexts needed to actueve SO and 75 percent of the max-

tmum uulizatuon.

respect to a single context. The results show that only three con-
texts are needed to achieve a 50 percent improvement, wherever
this is possible. That only three contexts are sufficient to obtain
a 50 percent improvement across a wide range of values for L,
C, and R is not surprising, considering that with three contexts
most of the configurations are in the linear regime. The
mmprovement in utilization can be easily approximated using
equation (4) as N-R(N V¥R (1) = 1.6. In the case of 100 percent
improvement, a similar patiern emerges; only 5 contexts are
required.

The last two columns of table 2 give the number of con-
texts needed to achieve fifty and seventy-five percent of the
maximum utilization. Entries having a value of one indicate that
multithreading does not provide a substantial improvement. The
configurations where multithreadirg looks most promising are
those where the last four columns have increasing values; mean-
ing that it is possible to achieve good improvement in utilization

and that there is room for improvement by increasing the number
of contexts.

8. Conclusion

We have presented and analyzed a series of models for a
multithreaded processor, each progressively more realistic than
the previous one, and in each case derived efficiency equations
in terms of the memory latency, context switch overhead, run
length, and number of contexts. The simplest mode! assumnes
that all state transitions take a constant amount of time and
ignores the effect of muliithreading on the cache miss ratio.
Next, we 100k into consideration the stochastic nature of the exe-
cution run length and found the exact solution for the
corresponding Markov chain.

In the first two models the cache miss ratio was assumed

to be independent of the number of contexts supported by the
processor. This unrealistic assumptions was later dropped, by

incorporating a new expression for the run length in terms of the
number of contexts into the solution to the Markov chain. This
more realistic model correlates well with the limited empirical
results available to date, and the discrepancies show where
further improvements in the model are possible. The model
presented here appears adequate to illumninate certain measure-
ments as "interesting”, however, much more detailed measure-
ment and validation needs to be conducted for this model, or an
embellished version of it, 1o properly serve as a reference for
empirical study.

Finally, we used our solution to explore the design space
of a particular multithreaded machine. We showed how our
equations can be used to compare various alternatives and the
relative improvement in efficiency between a multithreaded pro-
cessor and a convenuonal single context processor.

Apart from presenting and analyzing the different models,
we identified the principal factors that need o be taken into
account in the design of a muluthreaded machine. Some of our
conclusions can be summarized as follows:

. The most critical design parameter in a multithreaded
architecture is the ratio C/R. Unless the context switch
cost 1s esscntially zero, the nm length must be maxim-
ized, in which case the number contexts required is small.

. Within the saturation region, the utilization of the proces-
sor is only a function of the run length and the context
swilch overhead and substantial increases in latency can
be tolerated.

. Caches are important in a multithreaded environment, as
they allow large run lengths between misses and may per-
form well even when the number of contexts is increased.
The reduction in the run lengths in a multithreaded
machine due to a larger number of contexts can be
modeled as reducing the size of the cache that each con-
text can use.

. A processor supporting a small number of contexts,
between 2 and 5, can expect an improvement in utiliza-
ton between 50 and 75 percent over a large range of
latencies, context switch overheads, and run lengths.

In this paper, we have ignored the issue of synchroniza-
tion. At this point there is no general agreement in how much it
will impact execution, nor of the level at which it should be han-
dled. Whether a muluthreaded machine will provide an accept-
able solution to the synchronization problem remains an interest-
mg problem that will require considerable attention in the near
future.

Acknowledgements

We would to thank Jose A. Ambros-Ingerson, Herve
Touati, Bob Boothe and David Cross for their comments on ear-
lier drafts.

References

[Ande67] Anderson, D.W., Sparacio, FJ.. and Tomasulo, RM.,
*‘The IBM System/360 Model 91: Machine Philoso-
phy and Instructuon-Handling'*. IBM Journal, Vol.9,
No.25, January 1967, pp. 8-24.

[Arga88] Agarwal, A., Simoni. R. Hennessy, J., and Horowitz,
M., *‘An Evaluation of Directory Schemes for Cache
Coherency’'. Proc. of the 15th Annual Int. Symp. on
Comp. Arch., Honolulu, Hawaii, June 1988, pp. 280-
289.

[Arga89)

{Arvi87]

[Arvi88]

[Clar83)

{Egge88]

[Good83]

[Hals88]

{lanu88§]

[Nikh88]

[Russ78]

[Saav90]

[Smit82]

[Smit78)

[Thie89]

[This88]

[Webe89]

Agarwal, A., Horowitz, M., and Hemnessy, J., *An
Analytical Cache Model’’. ACM Trans. on Comp.
Sys., Vol.7, no.2, May 1989, pp. 184-215.

Arvind, and lanucci, R.A., **“Two Fundamental Issues
in Multiprocessing™". Proc. of DFVLR - Conf. 1987
on Parallel Proc. in Sc. and Eng., West Germany,
June 1987, pp. 61-88.

Arvind, Culler, D.E., and Maa, G K., **Assessing the
Benefits of Fine-Grain Parallelism in Dataflow Pro-
grams’'. The Imternational Journal of Supercom-
puter Applications, Vol.2, No.3, November 1988.

Clark, D.W., '‘Cache Performance in the VAX-
11/780"". ACM Trans. Comp. Sys., Vol.l, No.l,
February 1983, pp. 24-37.

Eggers, SJ., and Katz, R.H., **A Characterization of
Sharing in Paralle] Programs and its Application to
Coherency Protocol Evaluation™. Proc. of the 15th
Annual Int. Symp. on Comp. Arch. Honoluly,
Hawaii, June 1988, pp. 373-383.

Goodman, J.R., ‘‘Using Cache Memory to Reduce
processor-Memory Traffic’”. Proc. of the 10th
Annual Int. Symp. on Comp. Arch., Stockhoim,
Sweden, 1983.

Halstead, R.H., Jr., and Fujita, T., **MASA: A Mul-
tithreaded Processor Architecture for Parallel Sym-
bolic Computing’'. Proc. of the I5th Annual Int.
Symp. on Comp. Arch., Honolulu, Hawaii, June 1988,
pp. 443-451.

lanucci, R.A., “‘Toward a Dataflow / von Neumann
Hybrid Architecture’. Proc. of the 15th Annual I
Symp. on Comp. Arch., Honolulu, Hawaii, June 1988,
pp. 131-140.

Nikhil, R.S. and Arvind, ‘‘Can Dataflow Subsume
von Neumann Computing?'’. Proc. of the [6th
Annual Int. Symp. on Comp. Arch., Jerusalem, Israel.
June 1989.

Russell, RM., *‘The CRAY-1 Computer Sysiem’".
Comm. of the ACM, Vol.21, No.1, January 1978. pp.
63-72.

Saavedra-Barrera, R.H., and Culler, D., **An Analyti-
cal Solution for a Markov Chain Modeling Mul-
tithread Execution’’, University of California, Berke-
ley, technical report in preparation.

Smith, A.J., *Cache Memories''. ACM Compuling
Surveys. Vol.14, No.3, September 1982, pp. 473-530.

Smith, B.J., **A Pipelined, Shared Resource MIMD
Computer’’. 1978 Int. Conf. on Parallel Proc., 1978,
pp. 6-8.

Thiebaut, D., *‘On the Fractal Dimension of Com-
puter Programs and its Application to the Prediction
of the Cache Miss Ratio’’. JEEE Trans. on Compu-
ers, Vol.38, No.7, July 1989, pp. 1012-1026.

Thistle, M.R., and Smith, BJ., *‘A Processor Archi-
tecture for Horizon''. Supercompuiing '88, Flonda,
October 1988, pp. 35-40.

Weber, W., and Gupta A., *‘Exploring the Benefits of
Multiple Hardware Contexts in a Multgprocessor
Architecture: Preliminary Results’'. Proc. of the [6th
Annual Int. Symp. on Comp. Arch., Jerusalem, Israel,
June 1989, pp. 273-280.

Appendix

In order 1o denve equation (8) we will introduce the fol-
lowing notation. Let Ry, .; be the random variable representing
the sum of all run lengths and context switching times from the
moment one parucular coniexts blocks, untl it returns to the
busy state. During this time, the N, — 1 remaining contexts pass
through the running and leaving states. We call this interval the
non-idle time of a memory request because it represents the max-
imum amount of latency that the processor can hide when a con-
text blocks. This random vanable is given by

N1
Ry,.1= Y (R +C),

1=1
and has the following mean and standard deviation
p=(N,- DR +C) (11
= ((N,-DRR-1)"? < N, -1)""R. (12)

Our goal is to derive an expression for N, such that the probabil-
ity that the non-idle time is greater than the latency 1s quite large.
In other words, with high probability all the latency can be hid-
den by additional useful work and context switching time. This
condition 1s captured by the following equation

PY{RN,_1>L]ZBA (13)

Now, without loss of generality we can express the mean of
Ry, -\ as a functon of the memory latency

p = L + D (14)
for some constant D .

Given that each R, is an independent geometric random
variable and knowing from the central limit theorem! that the
distribution of a sum of iid random variables converges to the
normal distribution, we obtain the following expression for the
distribution of Ry, _;.

Pr{Ry_1+ac>pu}=d ().

Replacing g by the nght side of eq. (14) and moving D 1o the
left side of the inequality gives us

Pr{Ry..1+ac-D >L}=d(a)

The above equation is very similar o equation (13) and the latter
equation can be obtained, if the following conditions are satis-
fied

D=ao, and a=®'(B).
By replacing the first condition into eq. (13) we get
p-aoc-L =0 (1%)

The solution to (15) gives us the number of contexts, as a func-

tion of the latency, that will satsfy eq. (13). All we need to do

in order to solve (15) is to substitute egs. (11) and (12)? to obtain
R+CIN,-D-aR (N,-D"2-L =0,

and making the following substitution

U=N,-1N"?

! The central Lmyt theoram is not essential n o -+ srgument and it can
be replaced by Chebychev s inequality. '

2 We will use the nght side of the inequalbity 1n order 1o obtain a simpler
final expression. Ths 1s conservatve and does nat affect our denvanan.

10

gives a simple second degree equation
(R+CHYU*-aRU-L =0

whose solution proves our result after we apply the inverse
transformation.
2
_| GR+ @R+ 4R +C)HL)"

N, = AR ~C) + 1.

