A Compiler for Application-Specific Signal Processors

By
Kenneth Edward Rimey
B.S. (Stevens Institute of Technology) 1981
M.A. (University of California) 1983
DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTOR OF PHILOSOPHY
in

COMPUTER SCIENCE

in the
GRADUATE DIVISION
of the

UNIVERSITY OF CALIFORNIA at BERKELEY

Approved:

*************#*******#*********#**

Abstract

I have built a compiler that generates code for a family of application-specific digital signal
processors developed at Berkeley by members of the Lager project. Application-specific
processors are programmable processors that serve as components of application-specific
integrated circuits.

The compiler accepts a C-like language and generates code using a machine description
provided by the user. My work has demonstrated the utility of a user-retargetable compiler
in selecting an appropriate processor architecture for a given program. The designer begins
with some preexisting architecture, compiles the program, and then evaluates changes to the
architecture by recompiling the program with a modified machine description and observing
the effect on the instruction count. I describe two cases in which this approach has been
used at Berkeley to develop signal-processing chips.

The compiler’s target processors have irregular datapaths like those of typical off-the-
shelf signal processors, but execute open horizontal microcode (i.e., the machine instructions
are vectors of control signals with little restrictive encoding). The usual technique for
generating horizontal microcode is to first generate vertical code and then compact this in a
separate pass. This approach is inappropriate for datapaths such as ours, for which I have
developed an effective, new technique. It generates and schedules code in a single pass over
a straight-line program segment, doing local register allocation and chaining of operations
on the fly, using a network-flow algorithm to enforce the constraints that are needed, in this
approach, to avoid blocking. I demonstrate the effectiveness of the technique by comparing
compiler-generated and hand-written code for several signal-processing programs.

Acknowledgements

This work took place in the context of a collaboration between the research groups of Robert
Brodersen and my advisor, Paul Hilfinger. Edward Wang and I set out to provide Broder-
sen’s signal-processing and integrated-circuit research group with a compiler for Silage, an
unusual programming language designed by Hilfinger. Edward Wang worked on the front
end and I worked on the code generator. The intermediate language evolved into RL, and
the code generator evolved into the compiler described in this thesis.

Many members and associates of Brodersen’s group—Lars Svensson, Lars Thon, Chuen-
Shen Shung, Markus Thaler, Brian Richards, and Syed Khalid Azim—used the RL compiler
in its various stages of development. Lars Thon and his predecessor, Chuen-Shen Shung,
maintained the Lager system’s interface to the compiler. Lars Svensson, in continuing
discussions, has provided insights into the direction in which this research should go in the
future.

Paul Hilfinger, Jan Rabaey, and David Auslander served on the thesis committee. Ed-
ward Wang, Luigi Semenzato, Kinson Ho, Benjamin Zorn, Lars Svensson, and Lars Thon
provided additional helpful comments on the thesis. Edward Wang and Luigi Semenzato,
in particular, spent many hours helping me with the hard parts. James Larus helped with
previous papers about this work. The emphasis that all of Paul Hilfinger’s students seem
to place on good writing is partly due to their advisor’s influence.

My friends and family deserve thanks for many things. Special thanks go to William
Daly of Dumont High School, who encouraged my interest in computers and even hired me
as a programmer.

iil

Contents

1 Introduction 1
1.1 Application-specific signal processorso e 1
1.2 Generating horizontal microcodeo e 5
2 Target Architectures 11
2.1 TheKappadatapath oo v i it 12
2.2 The boolean and control units oo 14
3 The RL Compiler 16
0 S ¢ O 7 16
3.2 The register-transfer notation e e 25
3.3 The machine description« o 30
4 Code Generation Method 34
4.1 Greedy scheduling 34
4.2 Lazydatartouting 42
4.3 Spillpaths . . . o . o 49
5 Evaluation 65
5.1 Efficiency of generated code 65
5.2 Case studies in retargeting o .o 68
6 Conclusion T4
A The Kappa machine description 76
B A Sample RL Program 82
B.1 TheRL versionof pitch.« o oo v i e e 82
B.2 The compiler-generated codeo 85

vi

List of Figures

1.1
1.2
1.3
14
1.5
1.6

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18
4.19

An alternative approach: the virtual architecture of Cathedral-IL.
The same processor as Cathedral-II might optimize it.
The application-specific processor design cycle.
Local comPaction. . . « ¢ v v v v v it e e e
Software pipelining. oo
Global compaction. v .o oo

The Kappa datapath. oo oo v i

The default definition of main(). o v oo
A simple filter described in RL.o oo
The compiled Program.« o o oot
Part of the machine description for Kappa.«

The DAG for the loop body in the sample program.
Scheduling the DAG.o o oot i e
The sample DAG (same as Figure 4.1)..o v oo
The place graph for Kappa.« . v vt
A simple place graph.
The corresponding place-time graph. oo
The procedure for trying to labelanode.o
The data routing algorithm. o
Delivering a set of argument values.
Scheduling an ordinary function microoperation.
The place graph of Figure 4.5 before r is split.
An extremely simple place graph.o
The corresponding place-time graph with some labels and spill paths.

The result of adding another label.
The reliable data routing algorithm.o
The corresponding place-time network and network flow..
The updated network with an augmenting path.
The adjusted network flow.o
The algorithm for trying to augment the flow.

vii

-~ =1 O & W W

13

24
25
26
31

5.1 Thon’s extended Kappa datapath.
5.2 Svensson’s fixed-point datapath.

.......................

5.3 Svensson’s integer and pointer datapath.o

viil

71

Chapter 1

Introduction

The impetus for this research has been a project to design a compiler to generate code for a
family of application-specific digital signal processors developed at Berkeley. Application-
specific processors are programmable processors that serve as components of application-
specific integrated circuits.

The compiler that I designed accepts a C-like language called RL and generates code
using a machine description provided by the user. My work has demonstrated the utility of
a user-retargetable compiler in selecting an appropriate processor architecture for a given
program. The designer begins with some preexisting architecture, compiles the program,
and then evaluates changes to the architecture by recompiling the program with a modified
machine description and observing the effect on the instruction count. I will describe two
cases in which this approach has been used at Berkeley to develop signal-processing chips.

The RL compiler’s target processors have irregular datapaths like those of typical off-the-
shelf signal processors, but execute open horizontal microcode (i.e., the machine instructions
are vectors of control signals with little restrictive encoding). The usual technique for
generating horizontal microcode is to first generate vertical code and then compact thisin a
separate pass. This approach is inappropriate for datapaths such as ours, for which I have
developed an effective, new technique. It generates and schedules code in a single pass over
a straight-line program segment, doing local register allocation and chaining of operations
on the fly, using a network-flow algorithm to enforce the constraints that are needed, in this
approach, to avoid blocking.

1.1 Application-specific signal processors

The RL compiler was constructed primarily for use with the Lager computer-aided design
system [39,31]. Lager provides rapid prototyping of VLSI chips for embedded, real-time
applications—especially digital signal processing and control applications.

A way to reduce the design time of a chip is to incorporate a programmable processor.!

'Lager also addresses very-high-speed applications for which this is not a viable option (e.g., real-time
video processing), but these will not be considered here.

When a programmable processor is included on an application-specific chip along with a
read-only memory containing the program, it becomes possible to customize the processor
architecture to suit the program. The result is an application-specific processor. Customiz-
ing the architecture is a way to try to achieve or surpass the speed of highly optimized,
off-the-shelf digital signal processors.

Perhaps more importantly, it is a way to make the processor small. Hardware that is
not needed to achieve the speed required by the application can be discarded, freeing space
for integrating additional peripheral circuits, or at least reducing the total chip area (and
hence the manufacturing cost). The trend in application-specific integrated circuits is to
integrate entire systems onto chips. Analog circuits and even transducers can be brought
“onto the chip nowadays.

To design application-specific processors quickly, one needs a plastic architectural style.
In other words, we want an open-ended family of processors from which to choose. Let us
asswine, at the outset, that the family uses a horizontal instruction word. In other words,
the processors execute a machine language that resembles horizontal microcode. I say
“resembles” because, strictly speaking, microcode is what makes up the internal program
that emulates the virtual machine in a two-level computer. The proper term to describe
our machine language is open horizontal microcode.

Using a horizontal instruction word eliminates the need to design instruction sets, in-
struction formats, and instruction decoding hardware. It lets us focus on designing a dat-
apath suited to the given program. Instruction encoding is an optimization that could
be performed later to reduce the size of the program memory, after the code has been
generated.

The ambitious approach to selecting a datapath is to build a compiler that generates
one at the same time that it generates code for it. This is the spirit of the Cathedral-II
system [30]. Cathedral-II generates processor architectures in which each input to each
functional unit is associated with a register bank. It chooses a set of functional units using
a rule-based system that considers both the source program and additional hints provided
by the programmer. It then generates code under the tentative assumption that the outputs
of the functional units are connected to the register banks through a full crossbar switch;
this fictional target architecture is illustrated in Figure 1.1. After code generation and
scheduling, the Cathedral-II system tries to reduce the number of busses in the switch by
merging those that are never used simultaneously (or seldom used simultaneously—in this
case the scheduling must be redone). It tries to put more than one bus into the same track
(creating a split bus) when the order of the required taps permits. It also does register
allocation at that time, determining the sizes of the register banks. Figure 1.2 illustrates a
plausible result.

The approach that I will describe in this thesis is less automated. The designer selects
an interconnection topology (and may size register banks) before code generation. Pass-
through modes of functional units will augment the interconnect. There may be several
register banks, or just one. The compiler will have to be able to generate code for an
essentially arbitrary, irregular datapath.

A A

\ | R A A

i/

addr
input
i\ memory

data | ‘

\Mux/ \wux/

==

1

\;j %J

\A A

\MUX/ \MUX/

addr

data

multiply
accumulate

address
computation

constants

output
memory :

L

| I

Figure 1.1: An alternative approach: the virtual architecture of Cathedral-II. Shown is
a processor with just two execution units, a multiply-accumulate unit and an address-

arithmetic unit.

A

=

\MUX/

addr '_‘ I
! input multiply
: memory accumulate

data I

L |

I —
i v

addr

data

address
computation

constants

output
memory !

l L

Figure 1.2: The same processor, as Cathedral-II might optimize it after scheduling the code.

Write program;
Select datapath

Compile
program

Generate
layout

Fast enough
and small?

Modify
datapath

Retarget
compiler

Figure 1.3: The application-specific processor design cycle.

In the fully developed version of this approach, the compiler is easy enough for the chip
designer to retarget that he can use it to help design the datapath. He evaluates a change in
the design by recompiling the program and observing the change in the instruction count.
It may suffice to look at the static instruction count for the whole program, or for an inner
loop, or it may be necessary to use simulation data to compute a dynamic instruction count.
The overall design cycle is shown in Figure 1.3.

This approach offers advantages over the alternatives, provided that the compiler can
handle irregular architectures. A conventional architectural style based on the idea that all
intermediate results will be stored in a large, central, multiported register bank simplifies
code generation, but makes the circuit design and the layout difficult unless the number
of ports is severely limited. The Cathedral-II style is less constraining, but postponing
customization until after code generation risks frivolous allocation of resources by the code
cenerator. Generating code for a prespecified, irregular architecture avoids these problems.

Moreover, the task of generating code for an irregular architecture can be reduced to
a manageable level of difficulty by minimizing the nse of restrictive instruction encoding.

4

Although generating fully horizontal code is certainly harder than generating vertical code,
it is far easier than gemerating horizontal code under scheduling constraints imposed by a
heavily encoded instruction format.

1.2 Generating horizontal microcode

Historically, research on compilers that generate horizontal code has focused on bigger
machines, some of which are very different from our application-specific signal processors.

Microengines are used internally in two-level computers to emulate virtual, complex-
instruction-set architectures. The Digital Equipment 11/750 and 11/780, for example,
are microengines designed for emulating the VAX architecture.

Special-purpose horizontal-instruction-word processors for applications such as dig-
ital signal processing and graphics include the VLSI-based, application-specific target
architectures of the RL compiler. In the past, special-purpose horizontal-instruction-
word processors have more often been implemented on the board level.

Long-instruction-word (LIW) computers, also called scientific array processors, are
auxiliary processors for floating-point number crunching. The Floating Point Systems
164 [8]is an LIW machine, as are the ten individual processors of Warp, an architecture
for a linear array of processors from Carnegie-Mellon University [24,5]. I would also
classify the numeric processor of the Cydrome Cydra as an LIW machine [32].

Very-long-instruction-word (VLIW) supercomputers are similar to LIW comput-
ers, except they have many more functional units. The Multiflow Trace is a commer-
cial VLIW supercomputer [9].

Compilation from a high-level language is not taken for granted for the first three classes
above. For microengines, the idea has generally been confined to the research lab. Dewitt
[13], Mallett [27], Ma [26], and Marwedel [28] are among those who have constructed exper-
imental high-level-language compilers for microengines. Others have constructed compilers
for lower level languages; these languages typically provide register transfer notation with
Algol-like control constructs. Davidson [11] has surveyed microprogramming languages and
devised a taxonomy in which languages are classified by both level of abstractness and
degree of machine independence.

Special-purpose processors have worked out better for the microcode compilation com-
munity (represented by the yearly SIGMICRO workshop). Gurd [21], Hopkins et al. [22],
and a team at Quantitative Technology Corporation have developed C compilers for these
machines. JRS Research Laboratories [37] has developed an Ada microcode compiler as a
component of its Integrated Design Automation System product. Al of these compilers,
except for the early one described by Gurd, are intended to be easy to retarget.

LIW computers are usually expected to support Fortran, but there is still an option
of writing critical loops by hand or using a hand-written subroutine library such as the

1
1 3
2
2
3
4
4

Figure 1.4: Local compaction.

one supplied with the FPS-164. For VLIW supercomputers, a good Fortran compiler is a
must because writing code by hand is just too difficult. The Multiflow Trace was, in fact,
developed in parallel with its compiler.

Traditional techniques

The usual approach to generating horizontal code has been to separate the process into
two phases. First, vertical code, the instructions of which usually contain only one mi-
crooperation, is generated using techniques borrowed from ordinary compilers. Then the
microoperations of the vertical code are packed into a smaller number of instructions in the
compaction phase. Researchers have studied compaction in various forms:

Local compaction is the packing of straight-line code segments one at a time.

Software pipelining is a specialized technique for the compaction of loops. It rewrites a
loop so as to overlap the execution of many successive iterations.

Global compaction generalizes local compaction to include movement of microoperations
across branches. The most well-known method is trace scheduling, which was devel-
oped for VLIW supercomputers. Global compaction does not encompass software
pipelining, although it can be used with partial loop unrolling to get almost the same
speed-up.

Tlhese techniques are illustrated in Figures 1.4 through 1.6. Fisher, Landskov, and Shriver’s
paper [18] is a good introduction to compaction in general.

Algorithms for local compaction are surveyed by Landskov et al. [25]. Fisher [15] and
Davidson et al. [12] conducted experiments to compare them, concluding that simple greedy
algorithms with good heuristics perform almost as well as more complex algorithms and
even exhaustive search. Since local compaction is now so well-understood, the research
community has largely shifted its attention to software pipelining and global compaction.

1 2
1 3
2 3
Figure 1.5: Software pipelining.
1 5

/ \

2 6 3
\ /

4

Figure 1.6: Global compaction.

-1

Several authors have addressed software pipelining, proposing widely differing algo-
rithms for the same optimization [45,24,40,2,33]. An LIW computer executing a software-
pipelined loop bears some resemblance to a vector processor executing a vector instruction
(or several chained vector instructions). This is an attraction of software pipelining: it
generalizes vector processing. It also gets by with simpler control hardware.

Touzeau [45] has described a compiler for the FPS-164 that uses software pipelining.
On that machine, the fully compacted body of a straightforward inner-product loop (an
example used by Charlesworth [8]) is 9 instructions long—i.e., requires 9 cycles to execute.
When the loop is software-pipelined, an iteration can be started every other cycle. This is
a speed-up of 4.5, which is large indeed. If the loop is rewritten to sum even-numbered and
‘odd-numbered products separately (changing the floating-point result slightly), a speed-up
of 9 can be obtained.

Whereas the FPS-164 has one floating-point adder and one floating-point multiplier,
the Multiflow Trace has up to four of each. This is a qualitative difference—the Trace can
initiate more operations in one cycle than there are altogether in a typical, simple loop.
Apparently, partial loop unrolling cannot be avoided for VLIW supercomputers.

One might unroll a little and then apply software pipelining. Or one might unroll more
and then just compact the unrolled loop body. As the degree of unrolling is increased,
the latter approach produces a compiled loop that approaches the speed of the software-
pipelined loop as it takes up more and more space. The result is inferior to the software-
pipelined loop, but software pipelining is harder to implement. If the original loop body
is straight-line code—let us assume that the loop bounds are known to the compiler—then
compaction of the body of the unrolled loop is a local compaction problem. If the original
loop contains, say, an if-then-else statement, then a global compaction problem results.

Many authors [16,48,29,44,23,1] have proposed algorithms for global compaction.
Fisher’s trace scheduling method is the most well-known. It repeatedly chooses a frequently
executed path or trace through the control flow graph, compacts it as if it were straight-line
code. and then adds fix-up code to edges that enter or leave the trace. Unfortunately, trace
scheduling is unsuitable for many signal processing applications because it improves average
running time only at the expense of worst-case running time.

Like trace scheduling, Wood’s method (48], which is a refinement of an old proposal by
Dasgupta [10], reduces global compaction to a number of local compaction problems. It
cowpacts a sequence of basic blocks and structured control constructs such as loops and
if-then-else statements by first compiling the control constructs and then compacting
the whole sequence as if the control constructs were just unusually complicated microoper-
ations. Unlike trace scheduling, it improves worst-case running time and does not depend
on estimates of branch frequencies. It happens to do good scheduling of subroutine calls
naturally.

Lam, in her dissertation [24], has further refined Wood’s technique and given it a name:
Lierarchical reduction. She uses it, in combination with software pipelining, to generate
code for the Warp, a small linear array of LIW processors. Data presented in her thesis
indicates tliat the speed-up from hierarchical reduction derives mainly from cases in which

it makes possible the software pipelining of loops whose bodies are not straight-line code.
Lam’s work is the current state of the art in generating LIW code. How her approach
compares to trace scheduling in generating VLIW code is still an open question.

Global compaction and software pipelining address the main issue in generating code for
LIW and VLIW machines: keeping the pipeline full for each of the floating-point functional
units. For some microengines and special-purpose machines, this is not the main issue.
The application-specific processors that users of the RL compiler have designed so far do
fixed-point, not floating-point, arithmetic and thus rarely incorporate functional units with
latencies of more than one instruction cycle. For these machines—assuming that critical,
tight loops are partially unrolled in any case—global compaction and software pipelining
offer speed-ups of only a few tens of percent. More is to be gained from optimizations that
improve the straight-line code.

Vegdahl investigated the generation of straight-line code for microengines [46,47]. He
found that it is worthwhile to couple the two phases into which the process is usually divided:
feedback from the compaction phase is needed for effective microoperation selection.

His investigation focused on the generation of constants. In a microengine, it is common
for there to be several ways to generate the same small integer. For example, there may be
several ways to generate the number one besides loading it from memory. To generate the
number two, one might load it from memory or one might generate and add together two
ones. Which is better will often depend on the opportunities for compaction.

Vegdahl compared several ways of coupling the two phases, but he did not discuss com-
bining them into a unified scheduler. The success of greedy, local compaction algorithms
suggests a natural approach: Do selection of microoperations on the fly as they are posi-
tioned in the final code by a greedy algorithm.

Two different greedy, local scheduling algorithms were developed to compact traces in
the trace-scheduling Bulldog VLIW compiler developed by Fisher and his students at Yale
[14]. The first, developed by Ellis, is based on list scheduling. It selects functional units
in a preliminary pass, rather than on the fly, on the assumption that functional units and
not registers or busses are the critical resources in the machine—a reasonable assumption
for LIW and VLIW machines. The second, developed by Ruttenberg, is based on what he
calls operation scheduling. It does select functional units on the fly and it, furthermore,
delays all code-generation decisions for as long as it can. Ruttenberg’s operation scheduler
and Ellis’s list scheduler are compared in a 1984 paper written with Fisher and Nicolau:
“Parallel Processing: A Smart Compiler and a Dumb Machine” (17].

My approach

The local scheduling algorithm that I will describe in Chapter 4 is also based on operation
scheduling and is closely related to the algorithm described by Ruttenberg. It considers
the nodes of the dataflow graph for a straight-line code segment in turn, in some order
consistent with all data dependences. For each node—or operation—it finds the function
microoperation that can be inserted into the earliest possible instruction and inserts it.
It also finds transfer microoperations (which just copy data from place to place) that de-

liver the arguments of the function microoperation, and inserts them into the appropriate
instructions.

There may be many routes along which an argument value can be delivered to the
desired place and time from some place and time where it has already been deemed to
exist. The task of selecting argument delivery routes is called data routing. How best to
route an intermediate result between functional units depends on the time interval between
the definition and the use, as well as on what resources in the datapath are free during that
interval. By postponing the selection of the route until the use is scheduled (and more of
the schedule is known), more constraints are obtained to guide the selection. This is lazy
data routing.
~ Greedy scheduling of function microoperations with lazy scheduling of transfer micro-
operations is the essence of operation scheduling. Effective treatment of transfer microop-
erations seems to be particularly important for our target, application-specific processors.

The hard part of lazy data routing is making sure that all feasible routes for a value are
not unwittingly closed off by an unfortunate scheduling decision made between when the
value’s definition is scheduled and when the last use is scheduled. Ruttenberg’s operation
scheduler requires that each function microoperation have an associated register bank into
which the result is always put. When it schedules a function microoperation, it sets aside
a register to hold the result for an indeterminate time.

I propose a more powerful approach in which no fixed register is set aside. Instead, a spull
path, a route into the indefinite future, is set aside—tentatively. As scheduling proceeds, the
spill path is adjusted when necessary. The purpose is just to identify and avoid scheduling
decisions for which no accommodating adjustment exists.

The spill-path technique allows the result register to be chosen lazily. Furthermore, it
lLandles the case in which the result is never put into a proper register—just into a series
of Lot spots: busses, latches, registers that would obstruct computation if tied up. The
Bulldog compiler outlawed hot spots altogether.

In Chapter 4, I will describe a network-flow algorithm for incrementally maintaining
a set of spill paths. With this algorithm, any number of spill paths can be rerouted to
accommodate an incremental change, in a time linear both in the number of elements in
the datapath and in the number of instructions in the resulting straight-line code segment.

10

Chapter 2

Target Architectures

The RL compiler is designed to generate code for a family of application-specific proces-
sor architectures, the members of which I will call Kappa-like architectures because they
are derived for the most part from an architecture called Kappa. Although Kappa itself
was designed for a particular robot-control application [7,6], it is not a very specialized
architecture, and it has served well as a prototype for other application-specific processors
developed within the Lager project.

All Kappa-like processors use a horizontal instruction format, with little or no restrictive
encoding, and all use the same control unit. Another component that they have in common
is the boolean unit. I will describe these in Section 2.2. Both the control unit and the
boolean unit are based on state machines whose specifications are generated by the RL
compiler—an approach that is only possible for application-specific processors.

Where Kappa-like architectures vary is in the design of the datapaths. They differ in
the functional units and registers provided, and in topology. They do, however, have these
features in common: The microoperations that they implement belong to a standard set of
microoperation types defined in Section 3.2. The register structure and datapath topology
meet basic connectedness requirements to be defined in Section 3.3. And finally, although
the above suffices for the RL compiler to be applicable (maybe with crude results), the
datapaths of the target family are further constrained to be similar in style to the Kappa
datapath. Each is by and large an irregular datapath (one for which good data routing is
hard) with a moderate amount of parallelism.

The last proviso is essential if the RL compiler is to be appropriate. There are many
ways to design a datapath that is qualitatively different from Kappa’s, and that calls for
a different kind of compiler. If the functional units are made deeply pipelined, software
pipelining becomes the main issue in compilation. If many functional units are added, global
optimizations become important. If a regular structure is imposed on the interconnect, a
code generation algorithm that fails to take advantage of it does poorly. If the interconnect is
pruned so severely that it cannot tolerate minor modifications to the program, any greedy
scheduling algorithm risks taking a wrong turn. If the datapath contains a very severe
bottleneck, all specialized techniques for generating horizontal code become superfluous,

11

and again a different compiler is called for. These pitfalls are easy to avoid in deriving a
datapath from Kappa’s, however, and a datapath obtained in this particular way is certainly
a Kappa-like datapath, and thus one for which the RL compiler is expected to produce good
code.

Section 2.1, which follows, describes the Kappa datapath; some of its derivatives will
be described in Chapter 5. Section 2.2 describes the boolean and control units, which are
common to all.

2.1 The Kappa datapath

Kappa’s datapath is shown in Figure 2.1. Throughout this thesis I will use it as a repre-
sentative example of the target datapaths.

In the figure, registers are represented by short rectangles, while register banks and
memory banks are represented by taller ones. There is one memory bank, on the top left.
It differs from the register banks in that reading and writing are mutually exclusive and in
that the address can be computed in the datapath.

The registers, the register banks, the memory bank, and one exceptional interconnection
near the bottom right of the figure partition the datapath into pipeline stages that are one
cycle (one instruction-time) long. In my terminology, there is a one-cycle delay associated
with each of the former, and no delay associated with any of the functional units.

The Kappa datapath has two parts. To the right of the mbus (the vertical line down
the middle of the figure) is the address arithmetic unit. The mbus itself and everything to
its left constitute the fixed-point arithmetic unit, which will generally have a longer word
length.

To avoid wraparound due to overflow, the adder in the fixed-point unit can either do
saturating arithmetic or generate a guard bit for use in a subsequent right-shift. In satu-
rating arithmetic, an operation that overflows generates either 2N _ 1 or =2V, where N
is the word length (not counting the guard bit). The compiler ordinarily uses saturating
arithmetic for fixed-point computations.

The intended use of the guard bit is in a multiplication step.! Kappa is atypical of signal
processors in that it does not include a parallel multiplier. (Some of its derivatives do.) By
convention, fixed-point multiplication produces bits N — 1 through 2V — 2 of the signed
integer product. Multiplication by a constant is done with an optimal sequence of shifts,
additions, and subtractions generated by the compiler. Variable-variable multiplication is
done with this sequence of N instructions (which I have written in a more concise C-like
syntax than is used by the compiler):

! The actual hardware does not handle the guard bit correctly in certain other cases, namely in combina-
tion with conditional writing of the acc.

out

mem[]

| mor I:

0, 1, x|,
e
X, -X B
abus | (N+1) bbus
d\df barrel
r .
adde shifter
(N+1) {N+1)
{N+1)
acc —>
rbus
e

mbus

address field
0 ——————b>
x[] —>
A
xbus addr
v v

\V4
adder

eabus

l coef }:

(takes one cycle)

effective address

Figure 2.1: The Kappa datapath.

13

(to mem)

/* Multiplier in coef, multiplicand in mor. */
ace = (coef & 1) ? mor : 0, coef >>= 1;
o, N =1:
acc = (acc > 1) + ((coef & 1) ? mor : 0), coef >>= 1;
N: acc = sat((acc > 1) - ((coef & 1) 7 mor : 0));
/* Product in acc. */

[R
“CO

This code uses microoperations that, for simplicity, are not depicted as functional units in
Figure 2.1. A more complete description of the Kappa datapath is given in Appendix 1, in
the machine description language to be described in Section 3.3.

More important than details about the microoperations that Kappa can execute is the
idea that any combination of them can be put into an instruction. For example, Kappa can
do input or output (moving the data to memory or from memory via the mbus) while it is
doing variable-variable multiplication as described above.

2.2 The boolean and control units

The boolean unit and the control unit do the decision-making in Kappa-like application-
specific processor architectures. Their designs take advantage of the dedicated nature of
the processor; each unit contains a finite state machine whose specification is generated by
the compiler.

The boolean unit is like a secondary datapath devoted to the operations and, or, and
not. It is used to evaluate the boolean expressions that appear in the program. Because
it is actually a state machine based on a programmable logic array, it can simultaneously
evaluate any number of complex logical expressions reduced to normal form. The bits of its
state represent the values of boolean variables. Its inputs may include signals from off-chip,
and sign bits from the adders in the datapath. Its outputs may go off-chip, to the control
unit, and to the datapath. In Kappa in particular, one of the boolean unit’s outputs (cc)
can be used to control whether an instruction latches a new value into the accumulator
(acc).

The control unit generates addresses for the program memory. It contains a state
machine and a program counter; the output of the state machine includes a block number,
to which the value of the program counter is appended to obtain the address. A branch is
performed by simultaneously clocking the state machine and resetting the program counter.
This scheme leaves gaps in the program address space, but on an application-specific chip
the unused locations can be omitted.

The inputs to the control state machine may include signals from the boolean unit, from
off-chip, and from the datapath.? With the aid of a return-address stack, the control unit
provides a fully general multi-way jump/call/return capability based on these primitives:

2Signals that go from the datapath to the control unit can always go through the boolean unit at a cost of
a one-cycle delay. Eliminating the intermediate step is an optimization that the compiler does not currently
perform.

14

e goto destination-state
e call destination-state, state-to-push

e return

The return primitive idles the processor for one cycle so that it can get the destination

state from the stack.
Actually, call and return can be implemented without the return-address stack, if

there is no recursion, by using a many-to-one mapping of states to block numbers. The
RL compiler does not currently use this approach, even though the RL language prohibits
recursion anyway (since there is no stack for local variables).

Chapter 3

The RL Compiler

Ideally the chip designer should not have to know how the RL compiler works. He should
be able to treat it as a black box that takes an RL program and a machine description and
produces an assembly language program. This chapter describes these three languages.

Originality in language design has not been one of my goals. I have instead striven for
simplicity and expedience. Still, the languages may be of interest to those embarking on
similar projects.

3.1 RL

RL is loosely based on a subset of C. I tried a subset of Pascal at first, because it has a
simple expression syntax and includes a simple counting loop, but later I switched to C as
a favor to users who program in C in their day-to-day work.

RL includes significant extensions to C. An RL program cannot be compiled as-is
by a standard C compiler, but the RL compiler is capable of translating RL programs into
standard C, incorporating calls to a run-time arithmetic library of the user’s choice. Indeed,
this translation capability, used with a finite-precision library written for the compiler by
Lars Svensson, seems to be a useful tool in its own right.

I will assume that the reader is familiar with C and first explain what features are absent
from RL. Then I will describe the new features.

Limitations
Many parts of C have been left out of RL for the sake of simplicity:
o There is no separate compilation.

e There are no explicit or implicit function declarations: functions must be defined
before they are used.

o Initial values may only be specified in declarations of variables that are to be stored
in read-only memory.

16

e There are no struct, union, or enum types; no char, float, or double types; and
no short, long, or unsigned. This leaves only void, int, pointer types, array types,
and the RL-specific types, bool and fix.

o There are no goto, switch, continue, or break statements.
e There is no typedef, no sizeof, and there are no octal or hexadecimal constants.

Because the target processors do not provide a stack for local variables, the programmer
also has to be cognizant of these limitations:

e Recursive function calls are prohibited.

e A register used for a local variable whose scope contains a function call will not be
available for use by the compiler elsewhere in the program (on the assumption that
the compiler does no analysis of the call graph).

Target architectures need not implement all the arithmetic operations that are in RL.
Nomne of those that we have considered so far have implemented integer multiplication,
division, or remainder, for example. (But the compiler can always expand multiplication
by a literal into other operations.) The policy is that the compiler will not accept programs
that use unimplemented operations.!

Features borrowed from ANSI C

The recent ANSI standard for C [4] introduces type modifiers, namely const and volatile,
and a new preprocessor command, #pragma. These have been incorporated into RL. (But
my compiler does not do all the error checking that is strictly required for const and
volatile.)

Combinations of type modifiers can be attached to any type. An integer variable,
for example, can now be int, const int, volatile int, or const volatile int. The
meaning of const is that the program will not change the value. The meaning of volatile
is, roughly, as if reads and writes of the value had side effects on the external world, the
sequence of which the compiler must preserve.

In RL, the const type modifier is used mainly in declaring variables that are to be stored
in read-only memory. Currently, the volatile type modifier is used mainly to identify
boolean variables (variables of type bool) that represent external signals. A volatile
bool variable represents a wire whose level is set by the processor, while a const volatile
bool variable represents a wire whose level is set externally.?

The ANSI standard defines a preprocessor command (or something that looks like one),
called pragma, that “causes the implementation to behave in an implementation-defined

My compiler is particularly harsh in this regard. If testing for zero is not directly implemented, for
example, the programmer who needs to write “x == 0” must instead write “x <= 0 && x >= 0.” This
artificial limitation, which I should perhaps remove, is an attempt to bully the programmer into using one

or the other inequality.
2The program may not change a const value, but that is not to say that a const value will not change.

17

manner.” In RL, pragmas have the same form as the define preprocessor command, but
they are allowed to appear only where a top-level declaration is allowed to appear. Pragmas
define flags and parameters that control the RL compiler and the Lager system, as in these
examples:

word_length determines the number of bits in a processor word (in the case where int
and fix have the same width);

bank_capacity sets a limit on the number of registers that the compiler can specify for the
register bank of the name bank.

Features for controlling storage allocation
Register declarations

In C, the programmer can suggest that the compiler store a variable in a register instead
of in memory by putting the keyword register in front of the declaration. This feature
allowed early C compilers to produce good code without using global register allocation.
In RL, the register keyword serves the same purpose, except that whether the compiler
will produce any code at all may be at issue if the datapath is not strongly connected. In
RL, unlike in C, the register keyword can also be used in top-level declarations and in

declarations of static local variables.
By default, the RL compiler assigns a variable to a specific memory or register bank

according to
o whether or not it is a register variable,
e its base type,® and
e if the base type is a pointer type, the bank that it points into.

To illustrate, the following table lists the default assignments for the Kappa architecture.

base | pointer || normal | register
type target || default | default

N3 ” g

fix mem r
int “mem” “x”
pointer | “mem” “mem” “x”
bool “bmem” “bmem”

(Here “bmem” refers to the bits of the boolean unit’s state.) The defaults for a given
architecture are specified by pragmas in the machine description, but can be overridden by
pragmas in the RL program. For example, to override the usual defaults for Kappa and
store non-register integer and pointer variables in “x” instead of in “mem,” the programmer
would put the following pragmas into the RL program.

3The base type of an array type is the base type of its element type. The base type of a scalar type is
itself.

18

#pragma int_memory 'x"

#pragma mem_pointer_memory "x"

In general, the default bank for a variable of base type type, where type is £ix, int, or
bool, is the value of the pragma type_memory if the variable is not a register variable,
or of the pragma type_register if it is a register variable. If a variable has base type
“pointer to subtype,” pointing into the bank bank, then its default bank is the value either
of the pragma bank_pointer_memory or of the pragma bank_pointer_register. If bank is
not specified using register type modifiers as described below, it is assumed to be the same
as the default bank for a non-register variable of type subtype.

Register type modifiers

Assigning variables to default memory and register banks is sometimes too crude. Archi-
tectures that have two memory banks, one for each input of a multiplier, are an important
case in which this is true. For such cases, RL has register type modifiers. A register type
modifier is written as the name of a memory or register bank in double quotes. It is a
type modifier, like const and volatile, that can appear wherever const and volatile
can appear. For example, "foo" int is a type that describes an integer stored in the bank
“foo.”

I will give some examples because the syntax looks odd. Here is how to declare that the
variable x has type "foo" int:

"foo" int x;

Pointers present a complication: there are two banks involved, the one in which the pointer
resides and the one into which it points. Here is how to declare that the variable p points
toa "foo" int:

"foo'! int *p;

On the other hand, a type modifier for a pointer type is written after the “x.” Here is how
to declare a pointer to int that resides in “bar” and points into “foo”:

"foo" int * "bar" p;

This last flourish would typically not be needed, since the programmer could choose between
two default banks for p by either adding or not adding the keyword register in front of
the declaration.

New data types
Booleans

In C, boolean values (true and false) are represented as integers. In typical general-purpose
computers, boolean temporaries are conveniently represented implicitly, through the use of

19

control flow, and boolean variables are indeed conveniently represented as integers. Our
application-specific target processors, however, can perform boolean operations upon and
store single bits. To determine whether an int variable in a C program could be stored in
a single bit, a compiler would inconveniently have to consider every use. This is the reason
for having a distinct boolean type, bool, in RL.

In RL, there are no implicit conversions to or from bool, except in certain cases to be
described involving literal numbers. True can be written as “(bool) 17; false, as “(bool)
0”: and in most contexts the cast can be omitted. I will now use the term boolean to mean

“of type bool.”
The operations that return booleans results are the relationals

. >. =, >=, == |I=

b ? ’ b ?
and the boolean operations
&g, |1, !

The operations that exclusively accept boolean values are the three boolean operations
above, and the conditional expression

boolean-condition 7 else-part : then-part

The tests in if, while, do-while, and for statements are also required to be boolean.

Fixed-point numbers

RL has a set of fixed-point types. They are a convenience for the programmer who does
real arithmetic with integer hardware. He could use int, but that approach is clumsy:

e Simple fixed-point constants correspond to huge, impenetrable integer constants.

e The natnral multiplication for fixed-point numbers is not integer multiplication. The
product of two K-bit numbers? can always be represented in 2K — 1 bits (except for
the case of squaring the most negative number). If this must be truncated to J bits
(J = K in RL), integer multiplication preserves the lowest J bits while fixed-point
multiplication preserves the highest J bits.

e Partly because of this, fixed-point code written using integers tends to be littered with
shift operations.

The distinction between integer and fixed-point arithmetic is, moreover, convenient for
controlling saturating arithmetic. In RL, fixed-point arithmetic is saturating arithmetic,
except in shift operations, and integer arithmetic is always nonsaturating arithmetic.

*In 2’s-complement representation.

The fixed-point types have names of the form fix:n, where n is a possibly negative
integer. The form fix is a shorthand for £fix:0. Values of type fix:n have a machine-
dependent precision and lie in the range

2" >z > 2"

Casts may be used to convert between different fixed-point types, but conversions between
fixed-point and integer types are not allowed.

The following table shows how the four basic arithmetic operations act on fixed-point
numbers.

op | X y X opy
+ | fix:: fix:¢ fix::
- | fix:t fix:: fix:¢

* | fix:i fix:j fix:(i+7)
/ | fix:i fix:j fix:(i—j) (unimplemented)

(Since there is no implicit conversion between fixed-point types, if the right-hand side of a *=
or /= has type fix:n, then n must be zero.) All of C’s floating-point arithmetic operators
are available in RL for fixed-point arithmetic; the arguments of a relational operator must
have the same type, as must the second and third arguments in a conditional expression.

In addition, the shift operators << and >> may be applied to fixed-point values. They
perform a signed left-shift or right-shift on the underlying 2’s-complement representation
of the fixed-point value. The result type is the type of the first argument.

Literal numbers

Every literal number has a well-defined type in C. To obtain this feature in a language with
a family of fixed-point types would require inventing new notation for numbers. An entirely
different approach is taken in RL: All literal numbers have the type number. Thus “3” and
“3.0” are just two different ways of writing the same thing.

Arithmetic on values of type number is performed at compile time and produces a result
that is also of type number. It is an approximation® of real arithmetic: unlike in C, the
result of evaluating “1/2” is one half.

The only implicit conversions that the RL compiler performs are implicit conversions
from type number. Moreover, it is illegal to implicitly convert a number other than 0 to a
pointer type, a number other than 0 or 1 to bool, or a non-integer to int. Conversions to
bool occur in these contexts:

e an argument of !, &&, or |1,
e the first argument of a conditional (7:) expression,

o the test in an if, while, do-while, or for statement.

®Nothing in the language precludes the use of exact real arithmetic here.

21

Conversions to int occur in these contexts:

e the second argument of << or >>,

e the argument of ~, or either argument of &, |, ~,orl,

e cither argument of +, or the second argument of -, if the other argument is a pointer,

o the last argument of in() or out() (described below).
Conversions to types determined by the program occur in these contexts:

e the right-hand side of a simple assignment (not an op= assignment),

¢ an argument of a user-defined function,

e the expression in a return statement.
Otherwise, if exactly one argument in a sum, difference, or relational operation has type
number, it is converted to the type of the other. If exactly one argument in a product or
quotient has type number, and the other has type int, the one of type number is converted
to int. Finally, if exactly one of the last two arguments of a conditional (?:) expression
has type number, it is converted to the type of the other.

Fixed-point multiplication and division are the only operations that can directly combine
a value of type number with a value of another type. The following table lists those cases.

op| x y x opy
* | number fix:: fix:z
* fix:: number fix:e
/ | number fix:s fix:(—i) (unimplemented)
/ | fix:: number fix:i

The expressions 2%x and x/2, where x is of type fix, are common.

In most circumstances, the rules for implicit conversion eliminate the need to put casts
on literal numbers, but there are exceptions. For example, the expression “c 7 1 : 0" is
illegal. (The expression “c ? (int) 1 : 07 is legal.)

Miscellaneous features
Predefined functions

RL hLas three predefined functions: abs(), in(), and out (). The function abs () computes
absolute value and is overloaded in exactly the same way as unary minus:

Q]
[\V]

int abs(x)
int x;

fix:n abs(x)
fix:n x;

number abs(x)
number X;

The functions in() and out() provide input and output for integer and fixed-point values.
The programmer is entrusted to correctly specify the type according to which the exchanged
data is to be interpreted.

For out (), this is the type of the first argument. The second argument, which specifies
a machine-dependent port number, is optional and defaults to 0 if omitted.

void out(data, port)
int data;
int port; /* a literal integer */

void out(data, port)
fix:n data;
int port; /* a literal integer */

For in(), the type assumed for the exchanged data is the type to which a literal number
would be cast or implicitly converted if it appeared in the same position. (Excepting
experimental features, this is the only place in RL where context is used to resolve an
overloaded operator or function.) It is illegal for in() to appear where it would be illegal
for a literal number to appear, or where a literal number would not be cast or implicitly
converted to int or fix:n. The sole argument of in(), like the second argument of out(),
defaults to 0 if omitted.

int in(port)
int port; /* a literal integer */

fix:n in(port)
int port; /* a literal integer */
Preprocessor commands

There are four new preprocessor commands: #repeat, #endrepeat, #rrepeat, and
#endrrepeat. The form

#repeat id N
text
#endrepeat

is roughly equivalent to

#define 1id 0O
text
#undef id

#define 1id 1
text
#undef d

#define id N -1
text
#undef id

#rrepeat and #endrrepeat are similar, except that they count backwards. These new
preprocessor commands are useful for unrolling and partially unrolling loops.

Program structure

The last difference between RL and C is that the RL programmer can and should leave
main() undefined. In its place, he defines loop() and optionally defines init ().

void init()
void loop()

The compiler then supplies an implicit main() of the form shown in Figure 3.1. This is the
appropriate form for a signal processing program that is to read a nonterminating input
stream.

void main() {
init(); /* omitted if init() is undefined */
for ()
loop();

Figure 3.1: The default definition of main().

Figure 3.2 shows a complete RL program, which I will use to illustrate the algorithms of
Chapter 4. It is a low-pass filter that smooths an input sequence Z1,2,3,-. . to produce

an output sequence yi,Yy2,Y3, .-+ using the recurrence
3 1
Yn = Zyn-—l + Zzn

Tlere is an example of a more realistic program in Appendix 2.

24

#pragma word_length 16
register fix y;

void init() {
y =0;
}

void loop() {
y =3/4 x y+ 1/4 % (fix) inQ);
out(y);

}

Figure 3.2: A simple filter described in RL.

3.2 The register-transfer notation

The assembly-language program obtained by compiling Figure 3.2 for Kappa is shown
in Figure 3.3. It consists of three sections:

Parameters: definitions of parameters that Lager needs to generate the layout (also, the
name of the machine description that the assembler should use).

Data: for each memory and register bank, either a total number of words, or a list of
items of the form “variable,” “variable(size],” “variable = value,” or “yariable[size]
= {values...}” (where the last two forms are used for read-only locations).

Code: the microcode, consisting of straight-line segments, each beginning with a label and
ending with a control operation (which may be a multi-way jump/call/return).

Each straight-line segment is a sequence of instructions. The register-transfer notation in
which these instructions are written is the topic of this section. Of the microoperations
that can be written in this notation, only some are implemented by each architecture, but
the notation itself is independent of architecture. Indeed, it is also used in the machine
description, as described in Section 3.3.

A microinstruction, which I call an instruction, is a set of microoperations and boolean
operations (which I will distinguish from other microoperations) separated by commas and
terminated by a semicolon. To make the code easier to read, the compiler chains micro-
«, ..” when it can. For example, it abbreviates “a=b, b=c,”

operations of the form
where b is a bus, to “a=b=c.”

Individual microoperations are written as register transfers, in a notation reminiscent of
C or RL. Except for variables in address literals (which begin with %), identifiers represent

25

/* “sample.k" compiled for "Vanilla Kappa". */

.PARAMETERS

arch_file = "vanilla-kappa";
word_length = 12;
stack_depth = 0;

start_state = O;

.DATA

X 0;

r 2;

_CODE /#* 2 blocks with a total of 9 imstructions */

0: /* 2 instructions */
/*
*x sample.k, 7: y = (fix) 0;
*/

acc=sum=abus=0;
r[0]l=rbus=acc;

GOTO 1;
1: /* 7 instructions */

/*

* sample.k, 11: y = (fix) 0.756 * y + (fix) 0.25 * (fix) in(0);
* sample.k, 12: out(y, 0);

*/

acczsum=bbus=mbus=r[0], mor=mbus, rl{il=rbus=in(0);
abus=mor, acc=sum=bbus+abus, bbus=acc>>1;
acc=sum=bbus=acc>>1;

acc=sum=bbus=mbus=r[1], rlil=rbus=acc;
mor=mbus=r{1], acc=sum=bbus=acc>>2;

bbus=acc, abus=mor, acc=sum=sat(abus+bbus) ;
r[0]=rbus=acc, mbus=acc, out(mbus,0);

GOTC 1;

Figure 3.3: The compiled sample program.

nodes in the datapath. These are busses, registers, register banks, memories—places where
values can exist.

Subscripting has a special meaning: The name of a register bank or a memory is always
followed by a subscript that determines the accessed location. If r is a register bank, it
always appears in the form r[I], where I is an integer. If mem is a memory, it may appear in
the form mem[I], where I can be either an integer or a symbolic address; in the form mem[x],
where x is a datapath node that holds the effective address; or in the form mem[I+x].

Register transfers specify the times at which values are consumed and produced, using
a very general notation together with well-chosen defaults. A node x appearing in a register
transfer may be annotated with an explicit time offset:

X.n

Then x.0 refers to the value of x in the current instruction; x.1, to the value in the next
instruction; x.-1, to the value in the previous instruction; and so on. The annotation

follows the subscript if one is present:
x[...].n

A node that appears on the left-hand side of a register transfer of the form “..=..," but
not in a subscript, is an output; a node appearing elsewhere is an input. By convention,
the time offset » must always satisfy

e n > 0, for an output, and

s n <0, for an input.

The default value of n depends on the position in the register transfer. The default value
of n for an input is 0. The default value for an output is the delay of the datapath node—a
number specified in the machine description. In other words, a result normally appears in
the node into which it is written—becoming available for use as an input in another register
transfer—after a number of instruction times equal to the delay of the node. The delay
for a bus is, by definition, zero; the delay for an ordinary register is one. (Of the nodes
mentioned in the code of Figure 3.3, acc, mor, and the bank r have delays of one, and all
the other nodes have delays of zero.)

Besides subscripting ([1), timing annotation (.), and assignment (=), other operator
notation in a register transfer is strictly mnemonic. The compiler defines a fixed set of
microoperation types with standard meanings. For example, one of these microoperation
types is an arithmetic right shift by some number of bits:

x=y>1I

I will distinguish between variables, which stand for datapath nodes, and parameters, which
stand for integers, by capitalizing the latter. To turn a template such as this into a micro-
operation, replace the variables with names of datapath nodes, and add timing annotation.
A given architecture will implement at most a few of the resulting microoperations—maybe
none. Here is one possibility:

27

bbus.0 = acc.0 >> I

To obtain a particular instance of a microoperation, replace the parameters with integers
(or symbolic address expressions). Here is an instance of the preceding microoperation:

bbus.0 = acc.0 >> 2

Before describing boolean operations, I will survey the microoperation types supported
by the RL compiler. An architecture should implement one or more microoperations for
each of these types—with at most a few exceptions. Four types of microoperations are
classified as transfer microoperations:

x=7y
x = y[I]
x{I1 =y
x =1

All other microoperations are function microoperations. Among these are indirect read
and write,

x = y(z]

x{z]l = y
indexed read and write,

x = y[I + z]

x[IT+2z] =y

input and output,

X in(Port)
out{(x, Port)

nonsaturating (integer) arithmetic,

x=-y

x = abs(y)
X =y + 2z
xX=y -2

saturating (fixed-point) arithmetic,

x = sat(~y)

x = sat(abs(y))
x = sat(y + z)
x = sat(y - 2)

fixed-point and integer multiplication,

X =y *z

x = imul(y, 2)

bit-wise operations,

-~

x= 5

x=y &z
x=y | z
x=y~ z

and arithmetic shift operations:

x=y3>1I
x =y <K«I
xX=y> z
x =y <<z

There are three overflow-free postshift operations (in which I > 0):

x=-y>»1
x=(y+2z) »1I
x=(y=-2) >»1

If % is the word length (the same for x, y, and z), these produce bits I through I +
k —1 of the 2’s-complement representation of the true integer result of negating, adding, or
subtracting, respectively.® The compiler uses these three microoperation types in expanding
multiplications by constants.

In addition, there are two microoperations types that produce a boolean result,

(x < 0)
(x == 0)

Cc

c
and a type that is used to implement conditional expressions (when there are no side effects):
xX=c?7y: 2z

Finally, there are a few microoperation types used for serial multiplication, but they are
likely to change, so I will not list them here.

Pure boolean operations are a special case because they are performed by a programmed
logic array designed to perform precisely those operations that appear in the program. They
do not conform to any firite set of templates, but are described by this grammar:

%In Kappa, because the accumulator has a guard bit, “bbus .1=abus+bbus>>N” is equivalent to
“gum=abus+bbus, acc=sum; bbus=acc>>N.”

boolean-operation — identifier := true()
| identifier := false()
| identifier := ezp

exp — identifier | Cezp) | ! ezp | ezp &% ezp | ezp || ezp

The operators !, &%, and || have the same precedences as in C. Identifiers that appear in
boolean operations have their own name space, in which only certain datapath node names
are reserved—those that appear as c in microoperations of these forms:

(x < 0)
(x == 0)

c

o]

x=c?7y:2

An instruction can contain any number of boolean operations.

3.3 The machine description

A machine description consists primarily of definitions of the implemented microoperations,
preceded by declarations of the nodes of the datapath. To illustrate, Figure 3.4 shows the
portion of Kappa’s machine description that describes the address unit. (The Kappa address
unit appeared on the right-hand side of Figure 2.1.) The complete machine description is
in Appendix 1.

A node declaration begins with the keyword node and a list of attribute definitions and
flags. The attribute delay was described in the previous section; this non-negative integer
is the default for the number of cycles after which a value written into the node can be
read. The two most important flags are these:

static: A static node is one that retains data from one instruction to the next, until it is
overwritten. A bus is an example of a node that is not static.

bank: A bank is a node, such as a register bank or memory, that can hold more than one
value at once.

These orthogonal attributes—delay, static, and bank—form a classification system that
is more general and more precise than terms like register, latch, and bus.

Like nodes, abstract resources, the use of which I will discuss below, must be declared
before they are used. A resource declaration simply consists of the keyword resource,
followed by a list of resource names. These may be chosen arbitrarily, provided that they
are distinct from the node names.

A microoperation definition begins with either micro or macro, defines one microoper-
ation, and may include additional information on indented lines following the first. The
micro form is the basic one. The macro form defines a microoperation as a combination of
others.

30

#define bus node:delay=0
#define reg node:delay=1:static
#define file reg:bank

file b
bus addr, xbus, xsum, xsign, eabus

micro addr = Immediate

micro xbus = x[N]

micro xsum = addr

micro xsum = xbus

micro xsum = addr + xbus

micro xsum = xbus + addr

micro xsign = xsum.-1 < 0

micro eabus = xsum /* effective address */
micro x[N] = eabus

Figure 3.4: The portion of the Kappa machine description describing the address unit.

A micro definition may include information for other programs—the assembler, in par-
ticular. Exceptional micro definitions may also include compiler directives that impose
scheduling constraints. That is, these directives impose additional constraints beyond the
fundamental one, which is that two microoperations may not write to the same node at the
same time. They come in three varieties:

reserve identifies a node modified by the microoperation but not mentioned in the register
transfer—a scratch node. The value written into the node is undefined.

grab identifies an abstract resource to which the microoperation requires exclusive access.
The semantics of this is simply that two microoperations may not use the same re-
source at the same time.

sequence is like grab, but creates an additional constraint: the uses of a resource by
sequence directives must occur in the same order in the compiled code as in the
source program.

The grab directive should be used when microoperations that do not write a common node
are nevertheless incompatible (perhaps because of instruction encoding). The sequence
directive is used principally to preserve the order of input and output microoperations. (For
examples of the use of grab and sequence, see the references to the resources read_write
and input_output in the Kappa machine description in Appendix 1.)

A macro definition includes neither information for the assembler, nor compiler direc-
tives. Instead, it specifies a set of previously defined microoperations that together im-

31

plement the defined microoperation. (The set may be punctuated with both commas and
semicolons, so that it resembles a fragment of microcode, if some of the microoperations in
the expansion are to be inserted into instructions that follow the current one.) For example,
here is the definition of subtraction given in the Kappa machine description:

macro sum = bbus - mor
{ abus = -mor, sum = abus + bbus }

This defines sum=bbus-mor and causes it to invoke the compiler directive “reserve abus.”
In general, a microoperation defined as a macro invokes reserve for each intermediate
node in the expansion. It also invokes all of the compiler directives invoked by those
‘microoperations (with the proper timing).

Besides node and resource declarations, and micro and macro definitions, a machine
description can include a few other kinds of entries, about which I have little to say. Some
are very simple:

architecture defines the name of the architecture;

pragma defines a default value “or a pragma, to be used when the pragma is not present
in the RL program.

Others are experimental:
field defines one or more instruction fields (for the assembler);
op associates an RL function name with a user-defined microoperation type.

The machine description should define all the microoperations that the architecture
implements of types listed in Section 3.2. Some of these microoperations may be equivalent
to combinations of others; these might conveniently be defined as macros. In principle a
compiler could aggregate microoperations itself, but the RL compiler does not do this.

There is one exception: composing transfer microoperations. The compiler will auto-
matically compose arbitrarily long sequences of transfer microoperations to chain together
function microoperations. In particular, if the machine description defines a = band b =
c, it need not define a = c.

One must pay special attent.on to transfer microoperations when writing a machine
description. First, it is important to define all of them. For example, a machine description
that defines the microoperations

bbus = O
sum = abus + bbus
sum = bbus + abus

should also explicitly define the microoperation

sum = abus

Second, unnecessary reserve and grab compiler directives should not be used when
defining transfer microoperations. (The compiler does not allow sequence to be used with
transfer microoperations at all.) For reasons explained in Chapter 4, violating this rule may
reduce the quality of the generated code.” A related rule is that transfer microoperations
should not be defined as macros. A definition like

macro sum = abus /* Should use micro instead. */
{ bbus = 0, sum = abus + bbus }

is bad because it causes sum=abus to invoke “reserve bbus” although no microoperation
that produces a result in bbus would ever be scheduled in the same instruction anyway.

Finally, the RL compiler imposes certain requirements on the datapath topology. For a
given architecture, the transfer microoperations of the forms

X=y
x = yl[I]
x[I1 =y

collectively form a directed graph that may have several disconnected components. The
algorithms of Chapter 4 are intended for use with architectures for which each component
of the graph contains a node that satisfies these conditions:

e It is static and it is a bank.

e There is a path from it to each node in the component that is read by a function
microoperation or by a transfer microoperation of the form x[I] = y.

e There is a path to it from each node in the component that is written by a function
microoperation or by a transfer microoperation of the form x = y[I], and also from
any node to which the program assigns any variables.

This requirement is somewhat stronger than what the compiler strictly needs, but it is
probably not restrictive in a practical sense. I will describe the more general requirement.
and its origin, in Section 4.3.

"Using resexrve or grab in a transfer microoperation creates mutually exclusive groups of place nodes
and thus reduces the effectiveness of the spill-path updating algorithm.

3] have not looked into having the compiler deduce this, except to observe that it is not trivial. However,
the whole issue may be minor—see the discussion at the end of Chapter 5.

33

Chapter 4

Code Generation Method

The RL compiler divides into a front end and a back end. The front end translates the
program into an intermediate representation, partitioning it into straight-line segments.
Then, for each straight-line segment, the back end selects microoperations and packs them
into instruction words. Generally, only the back end uses the machine description.

The front end performs a variety of routine tasks and simple optimizations, including
parsing, constant folding, building the symbol table, and type analysis. In the most inter-
esting optimization, intended to take advantage of multi-way jump /call/return operations,
the compiler uses a structured dataflow algorithm to move control-low operations upward
within the program so that they can be coalesced, eliminating all jumps to jumps, jumps
to calls, and jumps to returns in the process.

The back end is the focus of this research. This chapter describes the scheduling algo-
rithm that it uses to generate horizontal code for a straight-line segment produced by the
front end. I will describe

1. the overall framework, greedy scheduling;

(]

the key idea behind my approach, lazy data routing; and finally,
3. the cure for the complications that arise in applying lazy data routing to architectures
like Kappa, the spill-path updating algorithm.
4.1 Greedy scheduling
The scheduler’s task is to build a fragment of horizontal code from
¢ a machine description for the datapath and
e a DAG (directed acyclic graph) representing a straight-line segment of the program.

The scheduler must both select microoperations and choose the instructions in which they

are to be executed.

34

7

Figure 4.1: The DAG for the loop body in the sample program.

Figure 4.1 shows the DAG for the body of the loop in the sample program of Figure 3.2.
The nodes of the DAG represent operations, while the edges and forked edges represent
values. The edges define data dependences constraining the sequence in which operations
may be scheduled. Operations that interact with state may additionally be subject to side-
effect dependences; for example, there is a read-write dependence here between nodes 1
and 7. This read-write dependence happens to be redundant with the data dependences
and is not shown.

Horizontal code does not have to be generated one instruction at a time. Conceptually,
the scheduler begins with an infinite sequence of empty instructions, selects microoperations
and inserts them into these instructions, and when it is finished, truncates the sequence to
its final length. It may well insert microoperations into the second instruction before the
first is finalized.

The RL compiler schedules microoperations in groups that correspond to the nodes of
the DAG. To schedule a node is to schedule a group consisting of a function microoperation
and transfer microoperations to set up its inputs. Once the compiler has successfully sched-
uled a node, the corresponding microoperations become final; they will not be retracted
later in response to difficulties in scheduling other nodes. To impose such a limitation on
backtracking is to do greedy scheduling.

Before describing the details of scheduling a single node, I want to address the problem
of scheduling the DAG. Accordingly, let us presuppose a basic transaction that takes

35

a pair [N, T], where N is a node (whose predecessors have already been scheduled) and
T =0,1,2,... is a time, and tries to schedule the node N at time 7. The transaction may
fail, in which case it has no effect.

Scheduling the DAG

For each node N of the DAG, the scheduler must find some time T at which N can be
scheduled. It does this by trying a succession of pairs [V, T], never retracting a successful
transaction. Thus the problem comes down to choosing what pair [N, T] to try next. The
choice is from among untried pairs [V, T] such that

e N has not been scheduled,
e all nodes on which it depends have been scheduled, and
e none of these was scheduled at a time later than T'.

If N directly depends on N’, which has been scheduled at time 7", scheduling IV at time
T is not ruled out for T = T’; only for T < T'. This is useful for modeling architectures
like Kappa. If this is a data dependence, it may still cause the transaction [N,T] to fail,
depending on the time at which NV ! writes its output, the time at which N reads its input,
and the time needed to route the data from one place to the other. If this is a side-effect
dependence between read or write nodes that potentially access the same location, the
constraint imposed on their relative positions in time is, by design, exactly the right one;
regardless of the definitions of the corresponding transfer microoperations, internally the
compiler uses these conventions for read and write nodes:

e A read node scheduled at time T fetches the value that the variable has at time 7.
e A write node scheduled at time T sets the value that the variable has at time T.

The cloice of the pair [N, T] to try next is guided, in part, by priority orderings for tlhe
nodes N and the times T. For times, the natural ordering gives priority to earlier T. For
nodes, there are several popular ideas. One can give higher priority to

e nodes (i.e., operations) that appear earlier in the source program,

e nodes that appear higher in the DAG (where height means execution time of the
longest path to a leaf), or

e nodes of particular types, such as those that must not be scheduled in the last in-
struction of the sequence.

The first strategy tends to keep the lifetimes of temporaries short. The second, recom-
mended by Fisher [15], is effective when one expects the DAG’s critical path to determine
the number of instructions. The third is analogous to good RISC-instruction reordering
strategy: giving high priority to instructions with delay slots to increase the opportunities

36

for filling them. I think the most effective choice for the RL compiler would be a blend of
these three strategies. For simplicity, however, the RL compiler uses source-order priority.
The priority ordering for the sample DAG is the order in which the nodes in the figure are
numbered.

Now assume N; has higher priority than N3, and Ty < T. In choosing the next schedul-
ing transaction to try, we would choose [N1,T] over [Ny, T for any T, and we would choose
[N, Ty] over [N, Ty] for any V. But between [N1,T;] and [N2, T3] the choice is less clear. We
could put more weight on the node, or on the time. There are two basic variants of greedy
scheduling:

o List scheduling chooses [No,Tj], putting more weight on the time.

e Operation scheduling chooses [Ny, T3}, putting more weight on the node.

List scheduling and operation scheduling are almost equivalent. In fact, they produce
identical schedules when applied to the problem of scheduling tasks with precedence con-
straints, resource constraints, and preassigned scheduling priorities such that

e cach task completes in one unit of time,
e there are no resource constraints between tasks that execute at different times, and

e the scheduling priorities assigned to the tasks are consistent with the precedence
constraints (which are analogous to the DAG).

List scheduling, however, may be easier to program for that problem. This is because list
scheduling completely determines the set of tasks to be executed in one time interval before
beginning to build the set to be executed in the next.

For the problem at hand, however, list scheduling has no significant advantage over
operation scheduling. It would be nice if the RL compiler could generate one instruction at
a time, but the nature of lazy data routing is such that scheduling a node at time T’ may
involve scheduling transfer microoperations in much earlier instructions.

I have chosen to use operation scheduling. Because I use a priority ordering that is a
total ordering of the DAG, the algorithm takes a particularly simple form that does not
require the compiler to actually construct the DAG. This algorithm is shown in Figure 4.2.

Scheduling a DAG node

In trying to schedule a given node of the DAG at a given time, the compiler may have
several different function microoperations of the same type to consider. For example, the
Kappa machine description defines four ways to add a pair of integers:

abus + bbus

sum

sum bbus + abus
xsum = addr + xbus

xsum = xbus + addr

37

for each node IV, in order of priority do
To — maz{time(N') | N depends on N'};
for T « To,T0+ 1,T0 +2, do
try to schedule N at T
if successful then
break;

Figure 4.2: Scheduling the DAG.

The first and second arguments could be taken from abus and bbus respectively, or vice
versa, or from addr and xbus respectively, or vice versa. To schedule a node NV at a time
T, the compiler just tries all applicable function microoperations in the order in which they
appear in the machine description.

This reduces the problem to that of scheduling a given function microoperation at a
given time 7. Assume that the microoperation has the form

:l?o.to = f(.’l)l.tl N xg.tz, ey :z:n.tn)
where z; is the name of a datapath node and ¢; is an integer for i = 0,1,2,...,n. This
microoperation takes n argument values vy, v2,...,Vn and produces one result value vo.

Scheduling it at time T involves these steps:

1. For each v;, deliver v; to z; at time T + #;; that is, find a sequence of transfer micro-
operations that propagates v; to z; at time T +¢; from some place and time where it
already exists. (Section 4.2 will describe the data routing algorithm that does this.)

[]

Put the function microoperation in instruction T and verify the constraints due to
reserve, grab, and sequence compiler directives associated with it in the machine
description.

3. Record the presence of the new value vo in zo at time T + tg.

If any step is inconsistent with the current schedule, some other microoperation or time
must be tried.

Actually, a little more persistence is called for. An unfortunate choice among ways of
delivering one argument may preclude the delivery of another. If delivery of an argument
other than the first fails, it seems to be a good idea to try again, delivering that argument
first. So that time is not wasted on lost causes, however, the procedure should incorporate
this preliminary step:

0. For each v;, check that the cost estimate for delivering v; to z; at time T + t; is
finite. (See Section 4.2.) Check that the resources required by compiler directives are
available. Check that z¢ is empty at time T + fo.

38

I will summarize the entire procedure more formally in Section 4.2, in Figures 4.10 and 4.9.

That completes the explanation of how to schedule an ordinary node of the DAG.
“Read” and “write” nodes and nodes that generate constants, however, are special and are
scheduled differently. I will describe the details, but they are not essential for reading the
rest of the chapter.

Consider, first, reading or writing a location that is known at compile time. Accessing a
scalar variable is an example of this, as is accessing an array using a constant as the index.
To schedule a “write” node of this sort, the compiler applies the usual procedure to the
corresponding microoperation (as if it were a function microoperation), except that in step 3
it puts the input value, rather than a new value, into the destination. To schedule a “read”
node, the compiler does nothing more than return the last value that a “write” node put
into the given location, or the initial value that the compiler put there when the scheduling
of the DAG was begun. The corresponding microoperation will be used in delivery routes
for nodes that use this value.

Generating a constant is like reading from a fictitious read-only register. By scheduling
nodes that generate constants like it schedules “read” nodes, the compiler reaps substantial
benefits. When there are two uses of a constant, a choice presents itself: The constant can
be generated once and used twice, or it can be generated twice. In the process of choosing
among delivery paths, the RL compiler’s data routing algorithm makes both this choice and
the choice among different ways to generate the same constant.

Finally, consider reading or writing a memory location whose address is not known at
compile time. Such a node is scheduled with the usual procedure, skipping step 1 if reading,
or skipping step 3 if writing. After scheduling a “write” node, the compiler must update its
record of the latest value in each location in the given memory bank. For each location that
could potentially be the one being written, the recorded value must be replaced to reflect
the possibility that the actual value has changed. Determining the set of locations to which
a “read” or “write” node might refer is alias analysis, which is very difficult in general. All
that the RL compiler tries to do is find nodes for which a particular location or array can be
identified as the target.! It uses this information also to determine read-write, write-read,
and write-write dependences for use in the algorithm of Figure 4.2.

Example

Now I will show how the compiler generates code for the sample DAG, which I repeat here
in Figure 4.3. It will be necessary to refer to the diagram of Kappa in Figure 2.1.

The first step is to create a value token for the initial value of the variable y, which has
been assigned to register 0 in the register bank r. This will be value 1. I will consecutively
number other values as they are created. Because the nodes of the DAG that will create
new values are nodes 2-6, it happens that subsequent values will have the same numbers

'If p is a pointer into an array and i is an int, the expression *(p+i) is illegal unless it refers to an
element of the same array. The RL compiler can thus conclude, for example, that the expression a[i] (where
a is an array) refers to an element of a.

39

7

Figure 4.3: The sample DAG (also shown in Figure 4.1).

as the nodes that create them.

Scheduling node 1 of the DAG, “read y,” is easy; the compiler just looks up the current
value of y, value 1, without scheduling any microoperations. Value 1 becomes both the
input to node 2 and one of the inputs to node 3.

Node 2 is the operation “shift 1,” for which there is the function microoperation
bbus=acc>>N. The attempt to schedule this node in the first instruction fails for lack of
a delivery route, but the compiler succeeds in scheduling it in the second instruction. The
result, value 2, is available on the bbus in the same instruction. After node 2 is scheduled,
only the first two instructions are non-empty:

acc=sum=bbus=mbus=r{0];
bbus=acc>>1;

Node 3 is the operation “add and shift 1,” for which there are the microoperations
bbus. 1= (abus+bbus) >>N and bbus.1=(bbus+abus)>>N, which are defined as macros. The
inputs to node 3 are value 2 and value 1, in that order. The compiler tries to schedule
bbus.1=(abus+bbus)>>N in the second instruction, but is unable to deliver value 2 to the
abus. It succeeds, however, in scheduling the other version, bbus. 1=(bbus+abus)>>N, in
the same instruction. The delivery route for value 2 has zero length. The delivery route
for value 1 begins in the middle of the previous route. After node 3 is scheduled, the code
looks like this:

40

acc=sum=bbus=mbus=r{0], mor=mbus;
bbus=acc>>1, abus=mor, acc=sum=bbus+abus;
bbus=acc>>1;

The result of node 3, value 3, is available on the bbus in the third instruction. Since
the bbus is indeed a bus, value 3 will disappear unless something is done with it. The
idea of lazy data routing is to decide what to do with it later, when the node that uses it,
node 6, is scheduled. A reason to worry is that the compiler might schedule nodes 4 and
5 in such a way that all delivery routes for value 3 are blocked, so that node 6 cannot be
scheduled in any instruction. Making sure that this does not happen is the hard part of the
compiler’s job: at each step in the scheduling of nodes 4 and 5, it must check that value 3
has a spill path, a hypothetical delivery route to the indefinite future. This mechanism will
be described in Section 4.3, but its function will be apparent here.

Node 4 is the operation “input”—actually “input 0”—for which there is the microoper-
ation rbus=in(Port). It can be scheduled in the first instruction; there is a spill path for
the result (value 4) that does not conflict with the spill path for value 3.

acc=sum=bbus=mbus=r[0], mor=mbus, rbus=in(0);
bbus=acc>>1, abus=mor, acc=sum=bbus+abus;
bbus=acc>>1;

For node 5, “shift 2,” there is again the function microoperation bbus=acc>>N. Schedul-
ing this node is interesting. The compiler’s attempts to schedule it in the first, second,
and third instructions fail for obvious reasons. The attempt to schedule it in the fourth
instruction fails because there is no delivery route for the argument (value 4) that leaves
open a spill path for value 3. The compiler finally succeeds in scheduling node 5 in the fifth
instruction, choosing one of several plausible delivery routes:

acc=sum=bbus=mbus=r[0], mor=mbus, r[Ti]=rbus=in(0);
bbus=acc>>1, abus=mor, acc=sum=bbus+abus;
bbus=acc>>1;

acc=sum=bbus=mbus=r[T1];

bbus=acec>>2;

For node 6, “add and saturate,” there are the microoperations sum=sat (abus+bbus)
and sum=sat(bbus+abus). Because of difficulties in delivering value 3, the earliest that
that this node can be scheduled is the sixth instruction?:

acc=sum=bbus=mbus=r[0], mor=mbus, r[T1]=rbus=in(0);
bbus=acc>>1, abus=mor, acc=sum=bbus+abus;
acc=sum=bbus=acc>>1;

acc=sum=bbus=mbus=r[T1], r[T2]=rbus=acc;
mor=mbus=r[T2], acc=sum=bbus=acc>>2;

bbus=acc, abus=mor, sum=sat (abus+bbus) ;

2Node 6 could be scheduled one instruction earlier if the compiler had chosen a different delivery route
for the argument of node 5.

41

After the compiler has scheduled the remaining two nodes of the DAG, it does local
register allocation for the part of each register bank or memory bank used for temporary
storage. Here is the end result:

acc=sum=bbus=mbus=r[0], mor=mbus, r[i]=rbus=in(0);
bbus=acc>>1, abus=mor, acc=sum=bbus+abus;
acc=sum=bbus=acc>>1;

acc=sum=bbus=mbus=r{1], rlil=rbus=acc;
mor=mbus=r[1], acc=sum=bbus=acc>>2;

bbus=acc, abus=mor, acc=sum=sat(abus+bbus);
r[0]=rbus=acc, mbus=acc, out(mbus,0);

4.2 Lazy data routing

Data routing is the task of finding delivery routes. For describing it, and for carrying it out,
the place graph and the place-time graph are helpful. I will describe these data structures,
and then the data routing algorithm.

The place graph

The place graph is a directed graph that summarizes the transfer microoperations that can
be used in delivery routes. The edges of the graph are labeled with the amounts of time
used by the corresponding transfer microoperations. The nodes of the graph, which I will
call places, are a superset of the nodes of the datapath. Places have two attributes: capacity
and width. The capacity is the number of values that the place can hold. The width is the
maximum number of bits in a value.

Figure 4.4 shows the place graph that the compiler uses in compiling the sample DAG.
The plain circles represent places that can hold only one value; the double circles represent
places with unlimited capacity; and it happens that no places with intermediate capacity
appear. Because zero is such a common edge label, I have included only non-zero edge
labels in the figure.

The boxes in the figure identify groups of mutually exclusive places nodes. Only unit-
capacity nodes may belong to such a group, which in effect has unit capacity itself: only
one node at a time may hold a value.3

Groups of mutually exclusive place nodes arise from transfer microoperations that have
reserve and grab compiler directives associated with them. The compiler breaks such
transfer microoperations into multiple steps, creating an intermediate place node for each
compiler directive. Intermediate nodes that arise from grab directives for a common re-
source are made mutually exclusive. Intermediate nodes that arise from reserve directives
for a common node are made mutually exclusive with it and with each other. The lower
mutually exclusive pair in the figure arises from these microoperation definitions:

3Because the compiler enforces mutual exclusion internally by substituting a collective capacity limit for
the individual limits, groups of mutually exclusive place nodes must always be disjoint.

42

“o” “q” N
\ \
1 Q §
\ \ J [\
Q x@f
\ [N/

mor
1
1
abus bbus mbus
sum
1
acc
1 '
rbus r r[0]

Figure 4.4: The place graph for Kappa, with a variable assigned to r[0]. The disconnected
part on the lower right represents the boolean unit.

43

micro eabus = mbus
grab one_way_only

micro mbus.1l = eabus
grab one_way_only

The other four groups of mutually exclusive place nodes arise from these microoperation
definitions:

macro mor = mem[Loc]
{ addr=Loc, xsum=addr, eabus=xsum, mor=mem{eabus] }

macro mem[Loc] = mbus
{ addr=Loc, xsum=addr, eabus=xsum, mem[eabus]=mbus }

Both mor=mem[Loc] and mem[Loc]=mbus evidently implicitly reserve addr, xsum, and eabus.?
They also grab the resource read_write, since they are defined in terms of the microoper-
ations mor=mem[eabus] and mem[eabus]=mbus, which are themselves defined as follows:

micro mor = mem[eabus]
grab read_write

micro mem[eabus] = mbus
grab read_write

In scheduling a function microoperation as described in the previous section, a reserve
or a grab just directs the compiler to store a dummy value in a particular place node (i.e.,
to label a place-time node as described below). For a reserve, this is naturally the reserved
node. For a grab, this is an arbitrarily chosen member of the group of mutually exclusive
intermediate nodes that was created for the grabbed resource. If the resource is grabbed
only by function microoperations, and hence no intermediate node was created for it, a
dummy place node is created. There are a few such dummy nodes in the place graph of the
figure, but they are not shown.

The other nodes in the figure that do not correspond to datapath nodes defined in the
machine description are “0”, “1”, and N (at the upper right), and r[0] (at the bottom). The
first three are fictitious registers that hold constants, as described in the previous section;
the node “0” holds 0, the node “1” holds 1, and the node N holds other pointer and integer
constants. The fourth place node, r[0], represents the location to which the variable y
has been assigned. Unlike the place node r’, which represents all the other locations in the
bank, r[0] has no incoming edge. No delivery route should enter it.

115 Section 3.3 I advised against defining transfer microoperations as macros, but I have defined these
two as macros anyway because it makes the definitions much clearer.

44

The place-time graph

The place-time graph is a directed graph whose nodes are of the form [P,T] where P is a
placeand T € {0,1,2,...} is a time. The place-time nodes [Py, T1] and [Pz, T;] are connected
by an edge if P, and P, are connected in the place graph by an edge labeled T2 — T1. To
illustrate, Figures 4.5 and 4.6 show a simple place graph and the corresponding place-time
graph.

A place-time node may be labeled by one or more values: [P, T)is labeled by the value v
if » is available in P at time T. Labels are attached to nodes by two different mechanisms.
First, the scheduling of function microoperations introduces newly computed values into
the graph. Second, data routing copies values from node to node along its edges.

Place-time nodes inherit the attributes of place nodes:

capacity([P,T]) = capacity(P)
width([P,T]) = width(P)

Similarly, [P1,T),[P2,T],- .-, [Pn,T)] are mutually exclusive if P, Ps,..., P, are mutually
exclusive.

Various circumstances can preclude labeling a place-time node. First, there are basic
conditions that a node must satisfy if it is to be labeled with any additional value whatsoever.
I will call a node open if it satisfies these. A node [P,T] is open if

e the number of labels that it has is less than its capacity, and
e it is not mutually exclusive with a labeled node.

A place-time node cannot accept an additional label unless it is open, but that is not the
only condition. Specifically, a place-time node Q can be labeled with an additional value v
if it is open, if width(Q) > width(v), and if there will still be spill paths afterwards for all
values that need them. This is summarized as a procedure in Figure 4.7.

The labels of a place-time node [P, T] constitute a set, denoted labels([P,T]). They do
not have a particular sequence; the compiler accumulates values to be stored in P at time
T, but does not assign them to particular locations (if capacity(P) > 1). It must ultimately
do that, however, respecting the rule that a value

v € labels([P,T)) N labels([P, T + 1])

must be assigned to the same location at time T + 1 as at time 7. Once the final set
labels([P,T)]) is known for all T, it is easy make the assignments in order of increasing T'.

To see that it is impossible to optimally assign values to registers on the fly, consider a
time series of three place-time nodes of capacity 2. Label the first with value 1. Label the
third with value 2, deciding whether to use the same location or the other location. If the
other, then try to label all three nodes with value 3. If the same, label the first and second
with value 3, and then try to label the second and third with value 4.

45

Figure 4.5: A simple place graph, for a datapath with a bus b, registers a2 and ¢, and a
register bank r. The node for r has been split because a variable has been assigned to r[0].
(This datapath will also serve as an example in Section 4.3.)

a r[o] b r c

19

Figure 4.6: The corresponding place-time graph, truncated at T=3.

46

function attach-label(v,Q) is
if v € labels(Q) then
return success;
if open?(Q) = false or width(Q) < width(v) then
return failure;
return actually-attach-label(v, Q);

function open?(Q) is
return effective-capacity(Q) > 0;

function effective-capacity(Q) is
if 3Q’, labels(Q') # 0 and Q' is mutually exclusive with @ then
return 0;
return capacity(Q) — |labels(Q)l;

function actually-attach-label(v,Q) is
labels(Q) +— labels(Q) U {v};
if there is a consistent set of spill paths for the live values then
return success;

labels(Q) «— labels(Q) — {v};

return fatlure;

Figure 4.7: The procedure for trying to label a node. Section 4.3 will revise the definition
of actually-attach-label.

47

function deliver(v,Q) is
current-mark +— a new mark;
return deliver-auz(v,Q);

function deliver-auz(v,Qo) is
mark(Qo) + current-mark;
if v € labels(Qo) then
return success;
if attach-label(v,Qq) = success then
S, — { Q € predecessors(Qo) | mark(Q) # current-mark };
S; — {[@,C]| Q € 51 and C < o0, where C = cost-estimate(v, Q) }
for [Q,C] € S, in order of increasing C do
if deliver-auz(v,Q) = success then
return success;
undo the effects of the “attach-label(v, Qo)”;
return fatlure;

Figure 4.8: The data routing algorithm. Section 4.3 will revise the definition of deliver.

Finding delivery routes

A potential delivery route for a value v and a destination [P,T) is a path consisting of
distinct place-time nodes Q1,Q2,...,Qn [7 > 1] such that

e Q1 is labeled by v,

o Q,,Q3,...,Q, are open, and
e Qn=[PT]

The function of the data routing algorithm is to try to find a potential delivery route whose
nodes can actually be labeled with v.

Mutual exclusion and spill paths have this effect: Whether a place-time node can be
labeled with a value v may depend on the labels of other nodes. This means that a search
that visits each node at most once may fail to find an existing delivery route. Nevertheless,
the way in which the compiler looks for a route is with a depth-first search rooted at [P, T].
Nodes are labeled with v as the search goes forwards (following edges of the place-time
graph backwards) and unlabeled as it backs up. The search terminates as soon as a node
already labeled by v is found. The penalty for using this heuristic algorithm is an occasional,
unnecessary failure to find a route. Such a failure will at worst cause the compiler to schedule
an operation later than necessary.

The data routing algorithm is shown in Figure 4.8. It uses delivery cost estimates for
the predecessors of a node to choose the order in which to traverse the node’s incoming

48

edges. The estimate used for the cost of delivering the value v to the node Q is the cost
of the cheapest potential delivery route that is wide enough for v, where the cost of the
potential route Q1,Q2,...,Qn (@n = Q) is defined to be

Z cost(Q;)
1=2,3,...,n
The function cost is defined in terms of a set of given place costs:

cost([P,T)) = cost(P)

The compiler calculates cost(P) using a somewhat arbitrary heuristic, basing its value on
the capacity and delay of P, and on whether P isin a mutually exclusive group.
Delivery cost estimates are described by this data flow equation:

0 if v € labels(Q)

oo if v & labels(Q) and Q is not open or width(Q) < width(v)

cost(Q) + min{cost-estimate(v,Q") | Q' € predecessors(Q)}
otherwise

cost-estimate(v,Q) =

Before executing deliver(v,[P,T]), the compiler will have precomputed
cost-estimate(v, [P, T'])

for all P’ and all T' <= T, using a straightforward data-driven relaxation algorithm that
Las been optimized for the common case in which the place-time graph is acyclic. In fact,
the compiler computes these estimates far ahead of time. It precomputes the cost estimates
for all the input values of a node of the DAG before an attempt to schedule the node
(building on any estimates computed in previous attempts to schedule the same node). The
estimates used by the data routing algorithm may consequently be slightly out-of-date, but
an estimate will never falsely indicate that a delivery is impossible.

Delivering more than one value

For delivering n argument values—w, to @1, v2 to Q2, ..., vn tO Q,—a reasonable
procedure is to call deliver(v;,@;) for i =0,1,...,n, in that sequence. However, as stated
in the previous section, trying other sequences can be helpful in occasional, troublesome
cases. Figure 4.9 shows the procedure used in the RL compiler. It looks expensive, but in
practice n is rarely as large as three. It is used in the procedure for scheduling a function
microoperation, which is shown in Figure 4.10.

4.3 Spill paths

The previous section’s definition of a potential delivery route will be the starting point here.
Given a distinguished set of place-time nodes, termed safe, a spill path for a value v is a
potential delivery route Q1,Q2,...,Qn to a safe place-time node @, such that

49

function deliver-multiple([v1,ve,...,0a),(Q1,Q2,--.,@n]) is
for i— 1,2,...,n do
if deliver-and-kill(v;,Q;) = failure then
return failure;
if deliver-multiple([v1, - . ., Vi=1, Vi41s- - - Vn]s
[Q1,...,Qi-1,Qit1,---,@n]) = success then
return success;

undo the effects of the “deliver-and-kill(vi, Q;)”;
return failure;

function deliver-and-kill(v,Q) is
if deliver(v,Q) = failure then
return failure;
if v will never be delivered elsewhere (except after backing up) then
make-dead(v);
return success;

Figure 4.9: Delivering a set of argument values.

e 1no two nodes Q; and Q; are mutually exclusive, and
o width(Q;) > width(Qi—1) fori=2,3,...,n.

The condition width(Q;) > width(Qi-1) is used instead of width(Q:) 2 width(v) because
the algorithms that I will describe require that a partial spill path can be extended without
knowing the value.

When several values must have spill paths, it would not suffice to consider them indi-
vidually. Define a set of spill paths—one for each value in a set of values—to be consistent
if it satisfles these conditions:

o No node on one path is mutually exclusive with a node on another.

e The number of spill paths on which a node appears does not exceed the node’s effective
capacity:

. . _J 0 if @ is not open
effective-capacity(Q) = { capacity(Q) — |labels(Q)} otherwise

Define a live value to be a value that labels at least one place-time node and still has a
delivery pending or in progress. The compiler is based on this rule: There must always be
a consistent set of spill paths for the live values.

50

vy — a new value to represent the result;
for i— 0,1,...,n do
Qi [zi, T+ t;

0. for i+ 1,2,...,n do
if cost-estimate(v;, Q;) = oo then
fail;
for each reserve, grab, or sequence directive do
z « the associated place node;
t «— the time offset;
if open?([z,T + t]) = false then
fail;
if this is a sequence directive then
if T +t < last; then

fail;
if open?(Qo) = false or width(Qo) < width{vo) then
fail;
1. if deliver-multiple([vy,va, ..., Vn),[@1,Q2;.-.,Qn]) = failure then
fail;

9. for each reserve, grab, or sequence directive do
z +— the associated place node;
t «— the time offset;
v «— a new value;

if attach-label(v, [z, T + t]) = failure then

fail;
if this is a sequence directive then
last,— T + t;
3. if attach-label(vo, Qo) = failure then
fail;
if make-live(vo) = failure then
fail;
Figure 4.10: Scheduling zo.%0 = £(zy1.t1, Tz.t2, ..., Tn.ty) attime T, with argument
values vy, v2,...,Vn. The result value is vo. Here “fail” means undo everything and return.

51

Figure 4.11: The place graph of Figure 4.5, before r is split to reflect the assignment of a
variable to r[0]. The text assumes that there is a function microoperation that writes a,
and one that reads c.

Safe nodes

The compiler defines a place-time node to be safe if it is of the form [P, Tsafe) Where Pis a
safe place node and T ¢, is a particular time in the distant future. So that T, 10 Stays in
the distant future as scheduling proceeds, the compiler increases T, whenever it labels a
node [P, T] such that T,,¢, — T is less than a somewhat arbitrary threshold.

A safe place node is a static node towards which a value can be moved without shrinking
the set of place nodes to which it could potentially be delivered. A write-only register is
an obvious example of an unsafe node. The precise definition, which follows, need not be
understood to read the rest of the chapter.

I will illustrate the definition using the place graph of Figure 4.11. This describes the
same architecture as the place graph of Figure 4.5, but the place node r has not yet been
split into ¥’ and r[0] (which will be done because a variable is stored in r[0]). As I
explained earlier, a transfer microoperation like the one that writes r{0] does not have a
corresponding edge in the expanded graph, because it cannot be used in delivery routes.
Such a microoperation cannot, however, be neglected in identifying the safe nodes, and
in fact, the unexpanded graph is in general the right one to use for this purpose. In the
example at hand, r[0] and r’ of Figure 4.5 will be safe if r of Figure 4.11 is safe.

In the place graph of Figure 4.11, there are four nodes: a, b, ¢, and r. Define the set
args to include any place node that is read either by a function microoperation or by a
transfer microoperation of the form x[I] = y. For the example, I will assume that the only
node read by a function microoperation is c. so

args = {b,c}

52

Define the set results to include any place node that is written either by a function mi-
crooperation or by a transfer microoperation of the form x = y[I], and also any place to
which a variable will be assigned. In the example, I will assume that the only node written
by a function microoperation is a, so

results = {a,b,r}

Define closure(z) to include any y such that there is a path from z to y in the place
graph. If edges connect only nodes of the same width, a place node y is defined to be safe if

e y is static and not mutually exclusive with another node, and
o Vz € results,Vz € args N closure(z), y € closure(z) = z € closure(y).

There are two safe nodes in the sample place graph:

safe = {a,r}

The reason that c is unsafe is that, although a € results and b € args N closure(a), and
furthermore ¢ € closure(a), the right-hand side of the implication does not hold: b ¢
closure(c).

After the RL compiler has identified the safe place nodes, it checks this reasonableness

criterion:
Vz € results, closure(z) N safe # 0

It generates an error message for each z such that closure(z) N safe = . Unfortunately, this
criterion is somewhat unintuitive. I described a simpler criterion at the end of Section 3.3,
which may be easier for architects to use, but is stronger than necessary.

In the general case, edges may connect place nodes of different widths. Define the width
of a path to be the width of its narrowest node. Define maz-width(z,y) to be the width of
the widest path from z to y, or zero if there is no path. In the general case, the place node
y is defined to be safe if

e y is static and not mutually exclusive with another node, and
o Vz € results,Vz € args max{maz-width(z,y), maz-width(z,z)} < maz-width(y, z).

The general reasonableness criterion is this: For all z € results, there must be a path of
monotonically non-decreasing width from z to a safe node.

Incremental updating

As nodes of the place-time graph are labeled, their effective capacities and the available
spill paths change, but there is always required to be a consistent set of spill paths for the
live values. The compiler must check this condition every time it labels a place-time node.
Often the previous spill paths will still exist. To avoid a potentially prohibitive amount
of unnecessary computation, the compiler does the checking incrementally. Specifically, to

53

) «

1

Figure 4.12: An extremely simple place graph. The node on the right will be assumed to
have a capacity of two.

determine whether a consistent set of spill paths exists, the compiler actually tries to find
such a set, by modifying the previous set that it found.

Figures 4.12 through 4.14 illustrate this. Figure 4.12 shows a place graph that is even
‘simpler than the previous example. (Anything more complicated would become unwieldy
later.) There are only two place nodes, which I will call 1eft and right. To make things
reasonably interesting, assume that right has a capacity of two. Finite capacities bigger
than one come about when a pragma in the RL program or in the machine description is
used to limit the number of registers in a register bank.

Figure 4.13 shows the corresponding place-time graph, with labels attached arbitrarily:
value 1 on [left,0], and values 2 and 3 on [right,0]. Spill paths for values 1-3 are shown,
assuming that all three values are live. Figure 4.14 shows the adjusted spill paths, after a
second node, [right,1], is labeled with value 1.

The labeling of a place-time node is only one of several different kinds of transactions
that require updating of the set of spill paths:

e Labeling a node [P, T] with a value v. The value v may be a dummy if P corresponds
to a resource.

e Tagging a value v as live, or not live. The value v must already label some place-time
node.

e Tagging a node [P,T] as safe, or not safe. The compiler uses this to increase T, ..
For each P € safe, it tags [P, Ty 50 + 1] as safe and then tags [P, T, o] as not safe.

Transactions can fail. A successful transaction can be undone. This requires keeping an
audit trail of the changes to the set of spill paths.®

Certain kinds of transactions can fail unpredictably: When labeling a place-time node, or
when tagging a value as live, the spill-path updating algorithm described below may overlook
a feasible way to adjust the set of spill paths. Little is required, however, for the code
generator to make progress: One requirement—satisfied for any reasonable architecture—is
that an attempt to label [P, T] with v and then tag v as live will alwavs succeed if T is large
enough (such that [P,7”] is unlabeled for all 7" >).

My compiler does not do this correctly; it uses heuristic spill-path updating to undo changes. It has
never failed in practice, so [have not fixed it.

54

v wo

Figure 4.13: The place-time graph corresponding to Figure 4.12, with some labels and spill
paths.

v W

Figure 4.14: The result of adding another label, as if in delivering value 1 to the register
bank on the right.

Delivery revisited

Constraining the labeling of nodes as required to maintain a set of spill paths reduces the
likelihood of heading down a scheduling dead end, but avoiding such disaster altogether
requires further refinement of the data routing algorithm. I will describe this here in a brief
aside.

The spill path for a value is supposed to facilitate its delivery by providing a prefix for
any delivery route. By keeping open a path through the early, heavily-labeled part of the
place-time graph, one hopes to guarantee the existence of a delivery route to [P, T for all
reasonable P and some T, but in fact, an open but tortuous route might not be discovered
by the basic data routing algorithm of Figure 4.8. This problem can be solved with a
backup delivery algorithm that makes explicit use of the known spill path of the value to be
delivered. The complete procedure used in the compiler—shown in Figure 4.15—uses the
basic algorithm as a subroutine. Indeed, the first thing it does is to try the basic algorithm,
which tends to find a cheaper route when it does find a route.

Spill paths as network flow

Now I will describe the way in which the compiler is able to efficiently update the consistent
set of spill paths. To label a place-time node, or to introduce a spill path for a new live
value, it might well have to adjust every spill path in the set. Fortunately, there is a trick.
The algorithm used in the compiler makes this adjustment in a worst-case time linear in
the size of the place-time graph (truncated at T,f,). In the ideal case in which there are
no mutually exclusive place-time nodes, the algorithm always finds a feasible set of spill
paths if one exists. It may fail otherwise, but only infrequently if mutual exclusion is used
sparingly.

The key idea behind the algorithm is to transform the problem of adjusting the set of
spill paths in the place-time graph into a problem of adjusting a network flow on a different
graph, the place-time network. Figure 4.16 shows the place-time network corresponding to
the labeled place-time graph of Figure 4.13. It also shows the network flow corresponding to
the spill paths. Unlike the place-time graph, the place-time network has capacity limits on
its edges, not on its vertices. Certain edges in the network correspond to nodes in the place-
time graph, and these have capacities equal to the effective capacities of the corresponding
nodes.

Like the place-time graph, the place-time network is infinite. Not only does this fiction
simplify this presentation; it is used within the compiler itself. Here is how the place-time
network would be constructed in principle:

1. For each node Q in the place-time graph, create an in-vertez and an out-vertez, con-
nected by an internal edge of capacity equal to the effective capacity of Q.

2

. For each edge Q; — Q3 in the place-time graph, if width(Q1) < width{Q2) connect
the out-vertex of Q1 to the in-vertex of Q2 with an edge of unbounded capacity.

56

function deliver(v,Q) is

current-mark < a new mark;
if deliver-auz(v, Q) = success then
return success;

if cost-estimate(v,Q) = oo then
return failure;

[Q1,Q2,...,Qnl— spill-path-tail(v);
if Vi € {2,3,...,n}, mark(Q;) # current-mark then
return failure;

make-dead(v);
for i— 2,3,...,ndo

attach-label(v,Q;); /* always succeeds */
make-live(v); /* always succeeds */

current-mark < a new mark;

if deliver-auz(v,Q) = failure then
undo the effects of this call to deliver;
return failure;

let Q'1,Q,...,Q', be the delivery route;

=1
for i« 2,3,...,n do
if @; = Q'; then
j—

for i j+1,j+2,...,ndo
labels(Q) + labels(Q;) — {v};

return success;

function spill-path-tail(v) is
let Q1,Q2,...,Qk be the known spill path for v;
VAS
for i— 2,3,...,k do
if v € labels(Q;) then
Jje 5

return [Q,;,Qjt+1,-- -, Qkl;

Figure 4.15: The reliable data routing algorithm.

Figure 4.16: The place-time network and network flow corresponding to Figure 4.13.

58

3. For each value v, create a walue vertezr, and for each place-time node @ labeled by
v, connect the value vertex of v to the out-vertex of Q with an edge of unbounded
capacity.

4. Create a source verter for the network. For each live value v, connect the source
vertex to the value vertex of v with an edge of unit capacity.

5. Create a sink vertez for the network. For each safe place-time node ¢, connect the
out-vertex of Q to the sink vertex with an edge of unbounded capacity.

6. For each group of mutually exclusive place-time nodes, make the corresponding inter-
nal edges mutually exclusive. Call such a group of edges a bundle.

A flow through such a network is a function that assigns a non-negative integer, flow(E),
to each edge E, and satisfies these conditions:

o It is conserved at every vertex (but the source and the sink):

Y fowB)= Y. flow(E)

incoming E outgoing F

o It satisfies the capacity constraints:

flow(E) < capacity(E)

¢ It accommodates every bundle of edges Ey, Es, ..., En:
> flow(E) <1
i=1,2,...,n

If the net flow out of the source vertex equals the number of live values, then the network
flow corresponds to a consistent set of spill paths for them. There is an ambiguity as to
which spill path goes where when more than one unit of low leaves an out-vertex, but the

choice is indeed arbitrary.
Updating a network flow is a well-understood problem. Define an edge E to be empty if

Aow(E)=0

and full if
flow(E) = capacity(E)

An edge may well be neither empty nor full. Define an augmenting path to be an undirected
path that traverses non-full edges forwards and non-empty edges backwards, and moreover,
never traverses an edge of a bundle forwards unless either the other edges are empty or
it traverses one of them backwards. To augment a network flow (by one unit) along an
undirected path means to add a unit of flow to each edge that it traverses forwards, and

59

to subtract a unit from each edge that it traverses backwards. Augmenting a network flow
along an augmenting path preserves its correctness, except it causes a unit of low to appear
at the head of the path and disappear at the tail.

Figure 4.17 shows the use of an augmenting path to adjust the three spill paths in the
example to accommodate another label, as in going from Figure 4.13 to Figure 4.14. The
approach is to update the network—adding an edge from the value vertex of value 1 to the
out-vertex of the labeled node, reducing the capacity of the internal edge from two to one
to reflect the new effective capacity of the node, and thus forcing the reduction of the flow
on that edge from two to one—creating temporary violations of flow conservation at the in-
vertex and the out-vertex of the node. The procedure is then to try to find an augmenting
_path from the in-vertex to the out-vertex to correct the flow. This is the dashed, curved
arrow in the figure. Augmenting the flow along it yields the properly adjusted flow shown
in Figure 4.18.

An augmenting path is, of course, just a path through yet another graph, the residual
network of network flow theory. If there are no bundles of mutually exclusive edges, then
every path through the residual network is a valid augmenting path. In this happy case,
if there is a way to cause an additional unit of flow to appear at one vertex and disappear
at another, there is always an augmenting path that will accomplish this. Finding such an
augmenting path involves nothing more than finding a path through the residual graph.

The case in which there are bundles is, in principle, hard. Determining whether a given
network with bundles admits an integral flow of a given size is an NP-complete problem
[19, problem ND36]. For such a network, augmenting the flow around a closed loop may
cause an augmenting path to exist between a pair of vertices, between which none existed
before. Moreover, just determining whether an augmenting path exists between two vertices
is an NP-complete problem.® Fortunately, for realistic arrangements of bundles, augmenting
paths exist and are easy to find for those operations in which finding a way to adjust the
flow is necessary for the code generator to make progress.

The algorithm that the compiler uses to find an augmenting path resembles the basic
data routing algorithm sans cost estimates. (Because the set of spill paths maintained
by the compiler serves mainly as an existence proof—they are only used rarely in data
routing—the quality of the augmenting path is not critical.) The compiler searches for an
augmenting path with a depth-first search, locking and unlocking bundles of edges as it
proceeds. Bundles that include non-empty edges are locked at the outset. The algorithm is
shown in Figure 4.19. In the case in which there are no bundles, it is exact and, furthermore,
optimal. In the general case, it is a heuristic that runs in the same worst-case time, without
completely neglecting bundled edges. It never returns an augmenting path that puts more
than one unit of low on the edges of a bundle, and it occasionally finds an augmenting path
that moves a unit of flow from one edge in a bundle to another.

Finally, here are the procedures that make incremental changes to the place-time net-
work:

¢It is NP-complete even if the flow on every edge is constrained to be zero [19, problem GT54].

60

Figure 4.17: The network of Figure 4.16, updated to reflect the labeling of [right, 1] with
value 1. The dashed, curved arrow is an appropriate augmenting path for correcting the
resulting violations of flow conservation.

61

Figure 4.18: The adjusted network flow.

62

function augment(V7,V3) is
current-verter-mark +— a new mark;
return augment-auz(Vy, V2);

function augment-auz(V;, V2) is
mark(V1) < current-vertez-mark;
if Vi = V; then
return success;
for each edge E to V; from some V do
if mark(V') # current-vertez-mark then
if flow(E) > 0 then
flow(E)+ flow(E) - 1;
if augment-auz(V,V;) = success then
return success;
flow(E)«— flow(E) + 1;
for each edge £ from V; to some V do
if mark(V') # current-vertez-mark then
if flow(E) < capacity(E) and locked?(E) = false then
flow(E)+ flow(E)+ 1;
if augment-auz(V,V,) = success then
return success;
flow(E)+— flow(E) - 1;
return failure;

function locked?(E) is
if 3E’, flow(E’) > 0 and E’ is in a bundle with E then
return true;
else
return false;

Figure 4.19: The algorithm for trying to augment the flow along some augmenting path
from a vertex V; to a vertex V5.

63

actually-attach-label(v, Q) : Put v into labels(Q), add an edge of unbounded capacity from
the value vertex of v to the out-vertex of @, and decrement the capacities of the
internal edge of Q and any edges in the same bundle. If this leaves an edge E such
that
flow(E) = capacity(E) + 1

then subtract one from flow(E) and try to augment the flow along some augmenting
path from the in-vertex of E to the out-vertex of E.

make-live(v) : Add an edge of unit capacity from the source to the value vertex of v, and
then try to augment the flow along some augmenting path from the source to the sink.

“make-dead(v) : Remove the edge from the source to the value vertex of v, and then rip up
one unit of fow along some path from the value vertex of v to the sink.

make-safe(Q) : Add an edge of unbounded capacity from the out-vertex of Q to the sink.

make-unsafe(Q) : Remove the edge from the out-vertex of Q to the sink, and then for each
unit of flow that it carried, augment the flow along some augmenting path from the
out-vertex of Q to the sink.

64

Chapter 5

Evaluation

The RL compiler has been used by at least a half dozen different people here at Berkeley.
It is written in Common Lisp, and it compiles typical programs, for Kappa, at a rate of
about one instruction per second, which is fast enough.! There are two areas in which
I want to carefully evaluate exactly how well the compiler does: the quality of the code
generated by the algorithms of Chapter 4, and the usefulness of the compiler in developing
application-specific architectures.

5.1 Efficiency of generated code

The function of the algorithms of Chapter 4—top-level scheduling, data routing, and spill-
path updating—is to generate a straight-line sequence of instructions from a DAG. I will
show that they succeed in generating sequences that are tolerably close in length to hand-
written sequences, provided extremely short sequences are excluded. The proviso is nec-
essary because the search that the compiler conducts is sharply limited. There can be no
guarantee that it will find a tricky one-instruction solution, and doubling the running time
of an inner loop is not tolerable.

Global optimizations—software pipelining or removal of loop-invariant computations,
for instance—may be critical for some programs, but such programs are not useful for
evaluating the local algorithms of Chapter 4. Fortunately, they have been the exception in
our experience with the RL compiler. When they do come up, it is often possible for the
programmer to work around the problem; partial loop unrolling can substitute for software
pipelining, for instance.

My strategy will be to compare compiler-generated code, for real RL programs, with
functionally equivalent hand-written code. Table 5.1 shows instruction counts for hand-
written and RL versions of three sample programs, all for Kappa: controller, pitch, and
xmas. As can be seen from the static instruction counts in the table, these are medium-sized

1Spill path updating uses a significant fraction of the compilation time, but surprisingly, not as much as
the data-flow cost estimation of Section 4.2.

65

program hand-written RL increase
static | dynamic | static | dynamic | static | dynamic

controller 175 646 268 657 | 353% 2%
pitch 93 1921 101 1926 9% 0%
Xmas 119 104 142 123 19% 18%

Table 5.1: Instruction counts for hand-written and RL versions of three programs.

programs; the RL versions consist of 100-200 lines each. The RL version of pitch and the
corresponding compiler-generated code are included in the appendices.

Since I am more familiar with the RL compiler, and perhaps with Kappa, than anyone
else can be expected to be, ideally I should not be the author of either version of any of the
sample programs. Unfortunately, I had to have a hand in the RL versions of controller
and pitch, and in the hand-coded version of xmas. I did my best to exercise restraint so
that the comparison would nevertheless be fairly realistic.

Each sample program has an initialization section and a main loop that repeats indefi-
nitely. Table 5.1 lists, for each version of each program, a static and a dynamic instruction
count. The static count is just the total number of instructions in the program. The dy-
namic count is the number of instructions executed per iteration of the main loop in the
worst case, assuming that all polling loops execute just once.?

Controller

This is a two-axis adaptive robot controller designed by Azim [7,6]. The hand-written code
appears in his thesis, along with a partial implementation in C. To obtain a complete RL
version, I decompiled the hand-written code, styled the result to resemble the existing C
code, and passed it to Azim for criticism.

The instruction counts show that the compiled RL version runs at about the same speed
as the hand-written version, but is about fifty percent bigger. Azim worked hard to keep
his code small, defining small subroutines and loops as one would not do in RL. Table 5.2
shows that the hand-written version indeed executes, per iteration of the main loop, fewer
blocks (straight-line code segments) than the RL version. This accounts for the larger size
of the RL code. It also accounts for the apparently unreasonably-good code generated by
the compiler; the tradeoff of speed for space in the hand-written code balances the poorer
quality of the compiler-generated code.

In interpreting the instruction counts, it is important to be aware that controller
spends about scventy percent of its time in a subroutine for multiplication, as is apparent
from Table 5.3. Each multiplication of two 20-bit variables takes 20 instruction cycles

21 controller, there is a loop whose repetition count is externally determined. I have assumed that its
value is one, which the author, Azim, has told me is typical.

66

program hand-written RL
static | dynamic | static | dynamic

controller 36 87 41 56
pitch 6 55 10 139
xmas 6 3 9 5

Table 5.2: Block counts for the programs.

program hand-written RL
static | dynamic | static | dynamic
controller || 11% 72% ™% 70%
pitch 0 0 0 0
xmas 17% 19% | 14% 16%

Table 5.3: Fractions of the instruction counts due to two-variable multiplication.

(and returning from the subroutine takes another cycle). The other programs, pitch and
xmas, do more multiplications by constants, for which the compiler generates much shorter

instruction sequences.

Pitch

This is a variant of the Gold pitch-tracking algorithm [20], which has been used as a test
case in the Lager project for a long time. It detects peaks and valleys in an input signal,
and using a moderately complex voting scheme, makes estimates of the pitch for use in
voice encoding. This particular hand-coded version appears in the thesis of Shung [38]. I
updated an old RL implementation of the algorithm to make it functionally equivalent to
the hand-written code, using a decompiled version of the hand-written code as a guide.

Tle compiled RL version runs about as fast as the hand-written version, and is about
ten percent bigger. The overhead in the speed of the compiler-generated code is again
disguised. In this case, however, the compiler-generated version executes more blocks per
iteration of the main loop, not fewer. The cause is a heavy reliance, in the hand-written
code, on conditional microoperations. The corresponding RL code is, naturally, written
with if statements, for which the compiler generates branches. The RL compiler’s approach

produces faster code (for this particular program).

67

Xinas

This is the program for a demonstration chip designed by Richards and Thaler [34]. The
name derives from the December 1988 deadline for the completion of the initial design. The
function of the program is simply to detect the presence of sound in a specific frequency
range. The biggest part of it is a single straight-line segment, consisting of a lot of carefully
designed arithmetic that does the signal processing. Richards and Thaler wrote only an RL
version of the program, which I compiled by hand into near-optimal code. The compiler-
generated version is about twenty percent slower and about twenty percent bigger than my
hand-written version.

Conclusion

I do not promise that the RL compiler will generate such good code for all programs, but
certaiuly these examples demonstrate that the algorithms of Chapter 4 do indeed produce
good straight-line code. They also demonstrate that real programs that do not have one-
instruction inner loops are plentiful. The average block sizes in the RL versions of the three
sample programs are 6.5, 10, and 16 instructions, and the worst-case dynamic instruction
and block counts suggest that the frequency-weighted average block sizes are no smaller.
Moreover, in controller, which uses two-variable multiplication heavily, the average length
of the schedule generated from a DAG is significantly larger than the average size of a
block; a single DAG may generate many blocks, interspersed with calls to the multiplication
subroutine.

5.2 Case studies in retargeting

To be useful in experimenting with designs for application-specific architectures, the RL
cowpiler must be easy to retarget. I have experimented with a variety of diverse machiue
descriptions, but these were really just exercises. Here I want to describe two case studies
in which the compiler is actually being used to design application-specific chips based on
modified versions of the Kappa architecture. In the second of these, it is the chip designer,
not the compiler writer, who has done the retargeting. Unlike the three examples of the
previous section, the RL programs involved here are many hundreds of lines long, and there
are no plans to produce hand-coded versions for comparison.

Extending Kappa for a robotics application

The first case study concerns the incorporation of additional hardware into Kappa by Thon.
In his research on computer-aided design [43], Thon is developing a chip for performing a
computationally intensive task normally assigned to the host processor of a robot arm:
solving for sets of joint angles that correspond to a desired position and orientation of the
manipulator.

68

The program compiles into just under 700 instructions—a tight fit into on-chip read-only
memory. By compiling it for Kappa, Thon confirmed that additional hardware is needed to
achieve the required speed. The program spent too much time in the multiplication routine,
and too much time doing variable-distance shifts by repeatedly shifting by one bit at a time.
The variable-distance shifts occur in cordic computations of sine, arctangent, and square
root.

Figure 5.1 shows Thon’s extended version of Kappa. It incorporates a parallel multiplier
and a new, logarithmic shifter, which can shift by fifteen bits. Thon’s architecture allows
the shift distance to be obtained from within the address unit so that the cordic routines
can use x >> k, and store k, a loop variable, in the address unit.

The differences between the machine descriptions for Kappa and for the extended ar-
chitecture are small. The hardware itself is another matter; in fact the parallel multiplier
has only recently been fabricated and tested. Thon will first fabricate a version of his chip
that uses serial multiplication. Working with multiple architectures in this manner would
be difficult without a retargetable compiler for a fairly machine-independent language.

A processor for mobile radio

The second case study involves more extensive modification of Kappa. Svensson is inves-
tigating tradeoffs—in architecture and in adaptive filtering algorithm—for an application-
specific chip that is to perform channel equalization for a digital mobile telephone [42]. In
this case, the designer has taken responsibility for maintaining the machine description, and
has written a substantial part of it from scratch.

A typical version of the program compiles into about 400 instructions, about thirty
percent of which are due to aggressive loop unrolling in the source program. The least
demanding version has to perform more than 2.5 million multiplications per second, in ad-
dition to other operations. Svensson’s goal in modifying the architecture has been to achieve
this with a processor that will execute, conservatively, about 5 million instructions per sec-
ond. Because the requirements will differ according to the algorithm and the clock rate, he
ultimately intends to define a family of architectures, providing a range of performance.

Figure 5.2 shows the main arithmetic unit of Svensson’s current top-of-the-line architec-
ture. He began with Thon’s architecture (without the fancy shifter), and looked for ways to
improve the performance. Since the bandwidth from memory was insufficient to keep the
multiplier and adder busy, he decided to use the two independent memories shown in the
figure. Comparison of this figure with the previous will reveal additional, minor changes.
(The reason that there is no output port is that the only output is a bit stream generated
by the boolean unit.)

The introduction of the second memory was originally a troublesome architectural
change. It influenced the incorporation of register type modifiers into RL. Now the lan-
guage and compiler should be more compatible with architectural features of this particular
nature. Svensson originally planned to generate addresses for the pair of memories using a
pair of address units identical to Kappa’s. He later designed a single unified address unit.

69

mem{]

in

out

log

shifter

l acce I e

address field

r{]

(takes one cycle)

Figure 5.1: Thon’s extended Kappa datapath.

y

effective address
(to mem)

barrel
shifter

acc —

rf]

Figure 5.2: Svensson’s fixed-point datapath.

S

ptO[] ints{] pti[]

¢ !

const0 X, Xx<<1 X, X<<1 constl
\Ovlax,'y V),lsxa'y
! "
\V4 \Y2
adder adder

(to memO0) (to meml)

Figure 5.3: Svensson’s integer and pointer datapath.

For this there were no modifications necessary to the compiler, and furthermore, I was not
involved in modifying the machine description.

Figure 5.3 shows the new address unit. The design is essentially an example of archi-
tectural support for the RL programming language. With the old approach of using two
address units, to efficiently compute the inner product of a vector stored in one memory
with a vector stored in the other, the programmer had to use two loop variables stored
in the corresponding address units. (The RL compiler does no global optimization and is
incapable of deciding to use two variables where the programmer specified one.) With the
new address unit, the programmer can index both vectors with a single loop variable, an
int. The names of the three register banks—int, pt0, and ptl—are suggestive of their
intended uses. In the machine description, Svensson directs the compiler to, by default,
use these register banks to store int variables, pointers into mem0, and pointers into memi,
respectively.

Svensson sketched for several days before settling on the basic design of the address unit,
but writing and debugging a description of it took only a day. He simplified the design over
the course of another few days, finally obtaining the result shown in the figure. There were
two main instances in which the compiler caused difficulties.

First, it occasionally performed part of an address calculation in the main arithmetic
unit, causing time to be wasted later in transferring the result back to the address unit.

72

Since Svensson had designed the address unit to be self-sufficient, he solved this problem by
just removing the connection between the units, as he would have done eventually anyway.
I could improve the compiler’s performance in such cases by using delivery cost estimates,
instead of the order of definition in the machine description, to break ties between different
microoperations for implementing the same operation, but I am reluctant to do this without
an example of a real case in which it matters.

Second, the machine description did not follow my recommendation (in Section 3.3)
against using macros or unnecessary compiler directives in defining transfer microop erations.
Svensson described the transfer microoperations that pass data through each of the adders
in the address unit as macros, each expanding into two microoperations: the first to set the
other input of the adder to zero, and the second to add. The microoperations so defined in
effect invoke the reserve compiler directive on the input that is set to zero. The nature of
the architecture, however, is such that no microoperation that writes that input would ever
be scheduled in the same instruction anyway. We changed the machine description so that
it does not define the transfer microoperations as macros. For one program, the change
caused the compiler to generate 387 instructions instead of 390. It is unfortunate that the
compiler is sensitive in this way, but in this case at least, it would have been okay to ignore
the issue.

Allin all, the compiler has worked well enough for Svensson to be able to concentrate on
algorithmic and architectural issues. It has enabled him to put algorithm and architecture
together at an early stage in the design process, o that each can be developed with realistic
assumptions about the other. It has also enabled him to work with a variety of algorithms
and a variety of architectures. This compiler-based design methodology will be one of
the topics of his dissertation, as will be an evaluation of the advantages of using different
processors for different adaptive filtering algorithms [41].

73

Chapter 6

Conclusion

I have described a family of programmable processors and a user-retargetable compiler that
form the basis of a practical development strategy for application-specific integrated circuits.
In this strategy, which is applicable, for example, to audio signal processing applications,
the designer first writes a program, and then develops a suitable processor architecture
by incrementally modifying a preexisting architecture, observing the effect of each change
on the compiler-generated code. I have described two cases in which my collaborators are
using this strategy to design complex chips. Our experience so far indicates that the machine
description language of the RL compiler is indeed flexible enough and simple enough for the
compiler to be used to assess architectural changes. The compiler seems to be more reliable
than intuition for this purpose.

The target processors, typified by Kappa, use horizontal instructions and datapaths
of irregular topology. The choice of this architectural style facilitates the customization
of a processor to suit a particular program, but limits the applicability of standard code-
generation techniques. I have shown that the combination of greedy scheduling and lazy
data routing used in the RL compiler produces straight-line code for these processors that is
competitive with hand-written code. Moreover, retargeting of the compiler seldom requires
writing code—TI attribute this to the ability of lazy data routing to utilize diverse datapath
topologies.

In datapaths that have hot spots, as ours do, lazy data routing is complicated by the
possibility of making a bad decision that precludes ever using a particular value. The way to
do lazy data routing without extensive backtracking is to test for the existence of spill paths.
I have described an incremental algorithm for this that is based on finding augmenting paths
for network flows. The algorithm is a heuristic that works best when the instruction format
is fully horizontal.

I will say a little about the direction in which this research should go next. Adding
complexity to the compiler is not the way to go. I would neither incorporate more opti-
mizations, nor try to extend the class of target architectures. In the big picture, what I
have done in this thesis is describe a combination of an architectural family and a compiler.
A deficiency of this particular combination is that the code generator is fairly complex,

74

since it must test for the existence of spill paths. Another deficiency is that the class of
target architectures—although it is suitably diverse and open-ended—is difficult to define
precisely. What I would do next is design one or two other combinations of architectural
family and compiler to see how they compare. The current combination, however, is tough
competition: Implementations of Kappa and its relatives could, in principle, be made quite
small and fast. We still have much to learn about high-level-language-oriented architecture
for digital signal processors in general, and for application-specific processors in particular.

Appendix A

The Kappa machine description

architecture "Vanilla Kappa"

#define bus node : delay =

#define latch node : delay =1

#define reg node : static : delay =1
#define file node : static : delay = 1 : bank

#define memory node : static : delay = 1 : bank : symbolic_addresses

/* Defaults */

pragma word_length 12
pragma max_left_shift 1
pragma max_right_shift 6

pragma fix_register T

pragma int_register x

pragma bool_register bmem
pragma mem_pointer_register x

pragma fix_memory mem

pragma int_memory mem

pragma bool_memory bmem
pragma mem_pointer_memory mem

/* Arithmetic Unit */

Treg mor

bus mbus, abus, bbus, sum
latch acc

bus sign, rbus

Treg cc

file r

resource sat_abus /* Don’t combine sat minus with nonsat addition. */
resource sat_sum /* Don’t combine nonsat minus with sat addition. */

micro mor = mbus
micro mbus mor

micro abus = 0
micro abus = 1
micro abus = mor
micro abus = -mor
grab sat_sum
micro abus = abs(mor)
grab sat_sum
micro abus = sat(-mor)
grab sat_abus
micro abus = sat(abs(mor))
grab sat_abus

micro bbus = 0

micro bbus = mbus
micro bbus = acc
micro bbus = acc >> N
micro bbus = acc << N

77

micro sum = abus
micro sum = bbus
micro sum = abus + bbus
grab sat_abus
micro sum = bbus + abus
grab sat_abus
macro sum = bbus - mor
{ abus = -mor, sum = abus + bbus }
micro sum = sat(abus + bbus)
grab sat_sum
micro sum = sat(bbus + abus)
grab sat_sum
sat(bbus - mor)
{ abus = sat(-mor), sum = sat(abus + bbus) }
micro sign = (sum.-1 < 0)
micro acc = sum
micro acc = cc 7 sum : acc

macro sum

micro mbus = acc
micro rbus = acc
micro rbus = mbus
micro r[N] rbus
micro mbus = r[N]

"

resource input_output

micro rbus = in(Port)

sequence input_output
micro out(mbus, Port)

sequence input_output

macro bbus.1 = (abus + bbus) >> N /* N> 0! %/
{ sum = abus + bbus, acc = sum;
bbus = acc >> N; }
macro bbus.i1 = (bbus + abus) >> N /* N> 0! %/
{ sum = bbus + abus, acc = sum;
bbus = acc >> N; }

macro bbus.1 = (bbus - mor) >> N /* N > 01 %/
{ abus = -mor, sum = abus + bbus, acc = sum;
bbus = acc >> N; }
macro bbus.l = -mor >> N /* N > 0t %/
{ abus = -mor, sum = abus, acc = sum;
bbus = acc >> N; }

78

/* Address Unit */

file x

bus addr, xbus, xsum, xsign, eabus

micro
micro
micro
micro
micro
micro
micro
micro
micro

addr = Immediate
xbus = x[N]

xsum = addr

Xsum = xbus

xsum = addr + xbus
xsum = xbus + addr
xsign = xsum.-1 < O
eabus xsum

x[N] = eabus

/* Memory */

memory mem

resource read_write

micro

micro

macro

macro

macro

macro

mor = mem[eabus]

grab read_write
mem[eabus] = mbus

grab read_write

mor = mem[Loc]

{ addr = Loc, xsum
mem[Loc] = mbus

{ addr = Loc, xsum

mor = mem[Loc + xbus]
{ addr = Loc, xsum =
mor =
mem{Loc + xbus] = mbus
{ addr = Loc, xsum =

mem[eabus]

addr,
addr,
addr + xbus,
mem[eabus] }

addr + xbus,
mbus }

v d

9

eabus

eabus

eabus

eabus =

Xsum,

xsum,

mor = mem[eabus] }

mem[eabus] = mbus}

xsum,

Xsum,

/* Multiplication */
resource multiplication

micro load_coef(mbus)
sequence multiplication

micro bbus.1 = multiply_start(mor)
reserve abus, sum, acc.l
sequence multiplication

micro bbus.1 = multiply_step(mor, bbus)
reserve abus, sum, acc.l
sequence multiplication

micro acc = multiply_finish(mor, bbus)
reserve abus, sum
sequence multiplication

micro acc.0 = multiply_subroutine(mor)
reserve mbus, sign, xsign
sequence multiplication

/* Miscellaneous */
resource one_way.only

micro eabus = mbus

grab one_way_only

unless _address_word_length
micro mbus.l = eabus

grab one_way_only

unless _address_word_length

op "write_timer_register” write_timer_register(x)

micro write_timer_register(eabus)
/* a non-standard microoperation type */

30

/* Boolean Unit */

bus:bank bval
memory bmem

micro
micro
micro
micro

micro
micro

micro
micro
micro
micro
micro

bval[N] = sign
bval[N] = xsign
bval[N] = bmem[Loc]
bval[N] = cc

cc = bvallN]

bmem[Loc] = bval[N]

bval[I] = true()

bval[I] = false()

bvallI] = tbvallJ]

bvall[I] = bval[J] &% bvallK]
bval[I] = bvall{J]] bvallK]

81

Appendix B

A Sample RL Program

B.1 The RL version of pitch

/*
% Gold Pitch Tracker
*/

#pragma arch_file "vanilla-kappa"
#pragma word_length 16

#pragma r_capacity 2

#pragma x_capacity 3

#pragma _max_sample_interval 350

#define VOICED 5
#define BLANK 12
#define DECAY (1 - 3/128)
#define DELTA 4

#define compare(a, b) (abs((a) - (b)) < DELTA)
#define is_peak(x, old_x) ((old_x) && !(x))
#define is_valley(x, old_x) (!(old._x) && (x))

fix sig, old_sig, last_peak, last_valley, signal(6], thresh[6];
int score, topscore, pitch, winner, ppcl6], ppl6l, old_ppl6];
bool slope, old_slope, even;

const volatile bool EOS;

fix low_pass(x) /% transfer function = -1/4 / (1 - 3/4 z™-1) = 2 */

fix x;

{

82

static fix y, z;

y += (1/4) * (x - y);
z = (3/4) * z - y;
return 2z,

Y

int tally_score(score, a, b, ¢)
int score, a, b, ¢;
{

score = compare(a, b) ? score + 1 : score;

score = compare(a, c) 7 score + 1 : score;
score = compare(a, b + c) ? score + 1 : score;
return score;

¥

void init() {
write_timer_register((int) 350);

¥

void loop() {
register int i;

pitch = (topscore < VOICED) ? O : winner;
topscore = 0;

for (i = 0; i < 6; i++) {
register int j;

out(pitch);

old_sig = sig;

sig = low_pass(in());
old_slope = slope;

slope = (sig >= old_sig);

signal(0] = sig;

signal[1] = -signall0];

signal[2] = sig/2 - last_valley/2;
signall3] = -signall2];

signall4] = sig/2 - last_peak/2;
signal[5] = -signall4];

83

last_valley = is_valley(slope, old_slope) ? sig : last_valley;
last_peak = is_peak(slope, old_slope) ? sig : last_peak;

score = 0;
even = 1;

for (j = 0; j < 6; j++) {
fix threshold;
bool after_blank, is_extremum;

after_blank = ++ppc[j] >= BLANK;
is_extremum = even && is_peak(slope, old_slope)
] teven &% is_valley(slope, old_slope);

even = leven;

threshold = thresh[j];

threshold = after_blank 7 DECAY * threshold : threshold;
thresh([j] = threshold;

if (signall[j] > threshold &% after_blank && is_extremum) {
thresh[j] = signal(jl;

old_ppljl = ppljl;
pp[jl = ppeclil;
ppcljl = 0;

¥ else {

old_ppl[jl = old_ppljl;
pplil = pplil;
}
score = tally_score(score, pplil, pp(jl, old_pp(jl);

do {
¥} while (!EDS);

if (score >= topscore) {
winner = pplil;
topscore = score;
}
+
}

84

B.2 The compiler-generated code

/* ‘“pitch.k" compiled for "Vanilla Kappa". */

.PARAMETERS

arch_file = "vanilla-kappa";
word_length = 16;
stack_depth = 0;

start_state = O;

max_sample_interval = 350;
.DATA

const_volatile_bool EQS;

bd 3;

T 2;

mem sig, last_peak, last_valley, signal[6], thresh[6], score,
topscore, pitch, winner, ppclé], ppl6l, old_pplel, y, z,
_MEM_TEMP[2];

bmem slope, old_slope, even, EOS, _BC, _BMEM_TEMP, _BMEM_TEMP_1;

.CODE /* 11 blocks with a total of 101 instructiomns */

0: /* 1 instructions */
/*
* write_timer_register({(int) 350);
*/

eabus=xsum=addr=350, write_timer_register(eabus);
GOTO 1;
1: /* 6 instructions */

/*

*

pitch.k, 51: pitch = topscore + (int) -5 < 0 7 (int) 0 : winner;
pitch.k, 52: topscore = (int) 0;
i = (int) 0;

#*

*/

eabus=xsum=addr=&topscore, mor=mem[eabus] ;

mbus . 1=eabus=xsum=addr=-5, acc=sum=abus=0;

bbus=mbus, abus=mor, eabus=xsum=addr=&winner, mor=mem[eabus],
r{0]=rbus=acc, sum=abus+bbus;

acc=sum=abus=mor, mem[eabus]=mbus=r[0], eabus=xsum=addr=&topscore,
sign=sum.-1<0, CC:=SIGN;

85

sum=abus=0, x[0]=eabus=mbus=r{0], acc=cc?sum:acc;
mem[eabus]=mbus=acc, eabus=xsum=addr=&pitch;

GOTO 2;

/* 30 instructions */

/*

* pitch.k, 57: out(pitch, 0);

* pitch.k, 59: old_sig = sig;

* x = (fix) in(0);

* pitch.k, 30: y = y + (fix) 0.26 * (x + - y);

* pitch.k, 31: z = (fix) 0.75 * z + - y;

* low_pass_result = z;

* pitch.k, 60: sig = low_pass_result;

* pitch.k, 61: old_slope = slope;

* pitch.k, 62: slope = ! (sig + - old_sig < 0);

* pitch.k, 64: (&signal)[(int) 0] = sig;

* pitch.k, 65: (&signal)[(int) 1] = - (&signal)[(int) 0];

* pitch.k, 66: (&signal)[(int) 2] = (£ix)0.5*sig + (£ix)-0.5%last_valley;
* pitch.k, 67: (&signal)[(int) 3] = - (&signal)[(int) 2];

* pitch.k, 68: (2signal)[(int) 4] = (£ix)0.B*sig + (£ix)-0.5*last_peak;
* pitch.k, 69: (&signal)[(int) B] = - (&signal)[(int) 41;

* pitch.k, 71: last_valley = ! old_slope && slope 7 sig : last_valley;
* pitch.k, 72: last_peak = old_slope &% ! slope ? sig : last_peak;

* pitch.k, 74: score = (int) 0;

* pitch.k, 75: even = (bool) 1;

* j = (int) O;

*/

eabus=xsum=addr=gpitch, mor=mem[eabus], _BMEM_TEMP:=!slope,
even:=TRUE(), old_slope:=slope;

mbus=mor, eabus=xsum=addr=%&y, mor=mem[eabus], out(mbus,0),
_BMEM_TEMP_1:=old_slope;

eabus=xsum=addr=&sig, mor=mem[eabus], acc=sum=abus=sat(-mor),
r{0]=rbus=in(0);

r{0]=rbus=acc, mor=mbus=r[0], x[1]=eabus=xsum=addr=0,
acc=sum=abus=sat{-mor);

bbus=mbus=r[0], abus=mor, eabus=xsum=addr=&y, mor=memfeabus],
r[0]=rbus=acc, acc=sum=sat(abus+bbus);

abus=mor, eabus=xsum=addr=&z, mor=mem[eabus],
acc=sum=sat(abus+bbus), bbus=acc>>2;

mem[eabus]=mbus=acc, acc=sum=abus=mor, r{1]=rbus=acc,
eabus=xsum=addr=&y;

abus=mor, acc=sum=bbus+abus, bbus=acc>>1;

mor=mbus=r[1], acc=sum=bbus=acc>>1;

bbus=acc, mor=mbus=r[0], acc=sum=sat{bbus+abus), abus=sat(-mor);

mor=mbus=acc, r{0]=srbus=acc, abus=mor, bbus=acc,

36

sum=sat(bbus+abus), eabus=xsum=addr=&z, mem[eabus]=mbus;

mem[eabus]=mbus=r[0], acc=sum=abus=sat(-mor), sign=sum.-1<0,
eabus=xsum=addr=&sig, _BMEM_TEMP:=_BMEM_TEMP&&!SIGN,
_BMEM_TEMP_1:=SIGN&&_BMEM_TEMP_1, slope:=!SIGN;

acc=sum=bbus=mbus=r[0], r[0]=rbus=acc, eabus=xsum=addr=&signal,
mem[eabus]=mbus;

mem[eabus]=mbus=r[0], r[0]=rbus=acc, acc=sum=bbus=acc>>1,
eabus=xsum=addr=&signal+i;

eabus=xsum=addr=glast_valley, mor=mem[eabus], r[1]=rbus=acc,
acc=sum=abus=0;

mor=mbus=r{1], rli]l=rbus=acc, acc=sum=abus=-mor;

abus=mor, mem[eabus]=mbus=r[1], eabus=xsum=addr=&score,
acc=sum=sat(abus+bbus), bbus=acc>>1;

mor=mbus=acc, eabus=xsum=addr=&signal+2, mem[eabus]=mbus;

mor=mbus=r[0], acc=sum=abus=sat(-mor);

mem[eabus]=mbus=acc, acc=sum=abus=mor, eabus=xsum=addr=&signal+3;

eabus=xsum=addr=glast_peak, mor=mem[eabus], r[0]=rbus=acc,
acc=sum=bbus=acc>>1;

mor=mbus=acc, acc=sum=abus=-mor;

abus=mor, acc=sum=sat(abus+bbus), bbus=ace>>1;

mor=mbus=acc, eabus=xsum=addr=&signal+4, mem[eabus]=mbus;

eabus=xsum=addr=&last_valley, mor=mem[eabus],
acc=sum=abus=sat(-mor);

mem[eabus]=mbus=acc, acc=sum=abus=mor, eabus=xsum=addr=&signal+5,
CC:=_BMEM_TEMP;

sum=bbus=mbus=r[0], eabus=xsum=addr=&last_peak, mor=mem[eabus],
acc=cc?sum:acc;

mem[eabus]=mbus=acc, acc=sum=abus=mor,
eabus=xsum=addr=&last_valley, CC:=_BMEM_TEMP_1;

sum=bbus=mbus=r[0], acc=cc?sum:acc;

mem{eabus]=mbus=acc, eabus=xsum=addr=&last_peak;

GOTO 3;
/* 13 instructions */

/*
* pitch.k, 81: after_blank t(((&ppec) [j1=(&ppc) [j1+(int)1)+(int)-12<0);
pitch.k, 83: is_extremum = even &% (old_slope &% 'slope)
[| teven && ('old_slope && slope);

*

* pitch.k, 84: even = ! even;

* pitch.k, 86: threshold = (&thresh) [j];

* pitch.k, 87: threshold = after_blank?(fix)o.9765625*threshold:threshold;
* pitch.k, 88: (&thresh)[j] = threshold;

* _BC = (threshold+—(&signal)Lj]<O&&after_blank)&&is_extremum;
*/

xbus=x[1], acc=sum=abus=1, addr=&ppc, eabus=xsum=addr+xbus,

37

mor=mem[eabus],
_BMEM_TEMP:=AND(even,old_slope,!slope)llAND(slope,!even,!old_slope),
even:=!even;

bbus=ac¢, abus=mor, xbus=x[1], addr=g&thresh, eabus=xsum=addr+xbus,
mor=mem[eabus], acc=sum=abus+bbus;

xbus=x[1], mem[eabus]=mbus=acc, rl[0]=rbus=acc, acc=sum=abus=mor,
addr=&ppc, eabus=xsum=addr+xbus;

mbus . 1=eabus=xsum=addr=-12, mor=mbus=r[0], rl[0]=rbus=acc,
acc=sum=bbus=acc>>2;

bbus=mbus, abus=mor, r[i]l=srbus=acc, xbus=x[1], addr=&signal,
eabus=xsum=addr+xbus, mor=mem[eabus], sum=abus+bbus;

mor=mbus=r[0], acc=sum=abus=sat(-mor), sign=sum.-1<0,
_BMEM_TEMP_1:=!SIGN;

bbus=mbus=r[1], r[0]l=rbus=acc, abus=-mor, acc=sum=abus+bbus;

abus=mor, acc=sum=sat(bbus+abus), bbus=acc>>5;

acc=sum=abus=mor, r[0]=rbus=acc, mor=mbus=r[0], CC:=_BMEM_TEMP_i;

sum=bbus=mbus=r[0], acc=cc?sum:acc, _BMEM_TEMP_1:=CC;

xbus=x[1], mem[eabus]=mbus=acc, abus=mor, bbus=acc,
sum=sat (bbus+abus), addr=&thresh, eabus=xsum=addr+xbus;

sign=sum.-1<0, _BC:=AND(SIGN,_BHEH_TEMP,_BMEM_TEMP_l);

BRANCH {
_BC => GOTC 4;
1_BC => GOTO 5;

/* T instructions */

/*
* pitch.k, 91: (&thresh)[jl = (&signal)[jl;
* pitch.k, 92: (&old_pp)[j]l = (&pp)(jl;

*

pitch.k, 93: (&pp)[jl = (&ppc)(jl;
pitch.k, 94: (&ppc)[jl = (int) O;

*

*/

xbus=x[1], addr=&signal, eabus=xsum=addr+xbus, mor=mem[eabus];

xbus=x[1], mem[eabus]=mbus=mor, (void)mor, addr=&thresh,
eabus=xsum=addr+xbus;

xbus=x[1], addr=&pp, eabus=xsum=addr+xbus, mor=mem[eabus];

xbus=x[1], mem[eabus]=mbus=mor, (veid)mor, addr=&old_pp,
eabus=xsum=addr+xbus;

xbus=x[1], addr=&ppc, eabus=xsum=addr+xbus, mor=mem[eabus];

xbus=x[1], mem[eabus]=mbus=mor, acc=sum=abus=0, (void)mor,
addr=&pp, eabus=xsum=addr+xbus;

xbus=x[1]}, mem[eabus]=mbus=acc, addr=&ppc, eabus=xsum=addr+xbus;

GOTO 6;

88

/* 4 instructions */

VL

* pitch.k, 96: (&old_pp)[j]l = (&old_pp)[jl;
* pitch.k, 97: (&pp)[jl = (epp)[jl;

*/

xbus=x[1], addr=&old_pp, eabus=xsum=addr+xbus, mor=mem[eabus];

xbus=x[1], mem[eabus]=mbus=mor, (void)mor, addr=&old_pp,
eabus=xsum=addr+xbus;

xbus=x[1], addr=&pp, eabus=xsum=addr+xbus, mor=mem[eabus];

xbus=x[1], mem[eabus]=mbus=mor, (void)mor, addr=&pp,
eabus=xsum=addr+xbus;

GOTO 6;

/* 26 instructions */

/*
* score_2 = score;
* a = (&pp)[il;
* b = (&pp)[jl;
* c = (&old_pp) [j1;
* pitch.k, 38: score 2 = abs(a+-b)+(int)-4<07score_2+(int)1:score_2;
* pitch.k, 39: score.2 = abs(a+-c)+(int)-4<07score_2+(int)1:score_2;
* pitch.k, 40: score_2 = abs(a+(-b+—c))+(int)—4<0?score_2+(int)1:score_2;
* tally_score_result = score 2;
* pitch.k, 99: score = tally_score_result;
* j =3+ (dnt) 1;
* _BC =3 + (int) -6 < 0;

*
~

xbus=x[0], addr=&pp, eabus=xsum=addr+xbus, mor=mem[eabus] ;

xbus=x[1], acc=sum=abus=mor, r[0]=rbus=mbus=mor, addr=Zpp,
eabus=xsum=addr+xbus, mor=mem[eabus];

xbus=x[1], bbus=acc, r[i]=rbus=mbus=mor, acc=sum=bbus+abus,
abus=-mor, addr=&old_pp, eabus=xsum=addr+xbus, mor=mem{eabus];

mor=mbus=acc, acc=sum=abus=mor;

r[1]=rbus=acc, eabus=xsum=addr=&_MEM_TEMP, mem[eabus]=mbus=r(1],
acc=sum=abus=abs(mor) ;

mbus . 1=eabus=xsum=addr=-4, mor=mbus=acc;

bbus=mbus, abus=mor, eabus=xsum=addr=&score, mor=mem[eabus],
sum=abus+bbus;

abus=1, bbus=mbus=mor, acc=sum=bbus+abus, sign=sum.-1<0,
_BMEM_TEMP:=SIGN;

acc=sum=abus=mor, r[1]=rbus=acc, mor=mbus=r[i], CC:=_BMEM_TEMP;

sum=bbus=mbus=r{1], acc=cc?sum:acc;

89

bbus=mbus=r[0], rl[0]=rbus=acc, eabus=xsum=addr=& MEM_TEMP+1,
mem[eabus]=mbus, acc=sum=bbus+abus, abus=-mor;

mor=mbus=acc, mbus.i=eabus=xsum=addr=-4, acc=sum=abus=-mor;

bbus=mbus, r[il=rbus=acc, sum=abus+bbus, abus=abs(mor);

abus=1, bbus=mbus=r[0], acc=sum=bbus+abus, sign=sum.-1<0,
_BMEM_TEMP:=SIGN;

acc=sum=bbus=mbus=r[0], r[0l=rbus=acc, CC:=_BMEM_TEMP;

sum=bbus=mbus=r[0], eabus=xsum=addr=&_MEM_TEMP, mor=mem[eabus],
acc=cc?sum:ace;

bbus=mbus=r[1], eabus=xsum=addr=&_MEM_TEMP+1, mor=mem[eabus],
r(0]=rbus=acc, acc=sum=abus+bbus, abus=-mor;

bbus=acc, abus=mor, x[2]=eabus=mbus=r[0], acc=sum=abus+bbus;

mor=mbus=acc, mbus.1izeabus=xsum=addr=-4;

bbus=mbus, addr=1, xbus=x[2], x[2]=eabus=xsum=xbus+addr,
sum=abus+bbus, abus=abs(mor);

acc=sum=bbus=mbus=r{0], mbus.1=eabus=xsum=xbus=x[2],
sign=sum.-1<0, CC:=SIGN;

sum=bbus=mbus, addr=1, xbus=x[1], x[1]=eabus=xsum=xbus+addr,
acc=cc?sum:acc;

mem{eabus]=mbus=acc, eabus=xsum=addr=&score;

addr=-6, xbus=x[1], xsum=xbus+addr;

¥sign=xsum.-1<0, _BC:=XSIGN;

BRANCH {
_BC => GOTO 3;
1_BC => GOTO 10;

/* 5 instructions */

/*
* BC = ! (score + - topscore < 0);

*/ -

eabus=xsum=addr=&topscore, mor=mem[eabus];
eabus=xsum=addr=&score, mor=mem[eabus], acc=sum=abus=-mor;
bbus=acc, abus=mor, sum=abus+bbus;

sign=sum.-1<0, _BC:=1SIGN;

»

BRANCH {
_BC => GOTO 8;
|_BC => GOTO 9;

/* & instructions */

90

10:

/%
* pitch.k, 106: winner = (&pp)[il;
* pitch.k, 107: topscore = score;

*/

xbus=x[0], addr=%pp, eabus=xsum=addr+xbus, mor=mem[eabus];
mem[eabus]=mbus=mor, eabus=xsum=addr=&winner;
eabus=xsum=addr=&score, mor=mem[eabus];
mem[eabus]=mbus=mor, eabus=xsum=addr=&topscore;

GOTO 9;

/* 4 instructions */

* i=1i+ (int) 1;
*« _BC=14i+ (int) -6 < 0;
*/

addr=1, xbus=x[0], x[0]=eabus=xsum=xbus+addr;
addr=-6, xbus=x[0], xsum=xbus+addr;
xsign=xsum.-1<0, _BC:=XSIGN;

BRANCH {

_BC => GOTO 2;
'_BC => GOTO 1,

/* 1 instructions */

/*
*/
BRANCH {
1EQS => GQTO 10;
EQS => GOTO 7;
>

91

Bibliography

(1]
(2]

(3]
(4]
[5]

Alexander Aiken and Alexandru Nicolau. A development environment for horizontal microcode.
IEEE Transactions on Software Engineering, 14(5):584-594, May 1988.

Alexander Aiken and Alexandru Nicolau. Perfect pipelining: A new loop parallelization tech-
nique. In 2nd European Symposium on Programming, Lecture Notes in Computer Science 300,
pages 221-235. Springer-Verlag, March 1988.

Jonathan Allen. Computer architecture for digital signal processing. Proceedings o f the IEEE,
73(5):852-873, May 1985.

American National Standards Institute. American National Standard for Information
Systems— Programming Language C, X3J11-1988.

Marco Annaratone, Emmanuel Arnould, Thomas Karl Richard Gross, H. T. Kung, Monica Lam,
Onat Menzilcioglu, and Jon A. Webb. The Warp(SM) computer: Architecture, implementation,
and performance. IEEE Transactions on Computers, C-36(12):1523-1538, December 1987.

Syed Khalid Azim. Application of Silicon Compilation Techniques to a Robot Controller Design.
PhD thesis, University of California at Berkeley, May 1988.

Syed Khalid Azim, Chuen-Shen Shung, and Robert W. Brodersen. Automatic generation of a
custom digital signal processor for an adaptive robot arm controller. In The IEEE International
Conference on Acoustics, Speech and Signal Processing, volume 4, pages 2021-2024, April 1988.

Alan E. Charlesworth. An approach to scientific array processing: The architectural design of
the AP-120b/FPS-164 family. Computer, 14(9):18-27, September 1981.

Robert P. Colwell, Robert P. Nix, John J. O’Donnell, David B. Papworth, and Paul K. Rodman.
A VLIW architecture for a trace scheduling compiler. In Second International Conference on
Architectural Support for Programming Languages and Operating Systems, pages 180-192, 1987.

Subrata Dasgupta. Parallelism in loop-free microprograms. In B. Gilchrist, editor, Information
Processing 77, pages 745750, North-Holland, Amsterdam, 1977.

Scott Davidson. High level microprogramming—current usage, future prospects. In The 16th
Annual Workshop on Microprogramming, pages 193-200, 1983.

Scott Davidson, David Landskov, Bruce D. Shriver, and Patrick Wayne Mallett. Some experi-
ments in local microcode compaction for horizontal machines. IEEE Transactions on Comput-
ers, C-30(7):460-477, July 1981.

D. J. DeWitt. A Machine Independent Approach to the Production of Optimized Horizonial
Microcode. PhD thesis, University of Michigan, June 1976.

93

(14]

(18]

(18]

(19]

John R. Ellis. Bulldog: A Compiler for VLIW Architectures. PhD thesis, Yale University,
February 1985. ACM doctoral dissertation award.

Joseph A. Fisher. The Optimization of Horizontal Microcode Within and Beyond Basic Blocks:
An Application of Processor Scheduling with Resources. PhD thesis, New York University,
October 1979. Available from Courant Mathematics and Computing Laboratory as DOE report
CO0-3077-161.

Joseph A. Fisher. Trace scheduling: A technique for global microcode compaction. IEEE
Transactions on Computers, C-30(7):478-490, July 1981.

Joseph A. Fisher, John R. Ellis, John C. Ruttenberg, and Alexandru Nicolau. Parallel pro-
cessing: A smart compiler and a dumb machine. In Proceedings of the ACM SIGPLAN ’84
Symposium on Compiler Construction, pages 37-47, June 1984.

Joseph A. Fisher, David Landskov, and Bruce D. Shriver. Microcode compaction: Looking
backward and looking forward. In Proceedings of the National Computer Conference, pages
95-102. AFIPS, 1981.

M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of
NP-Completeness. Freeman, San Fransisco, 1979.

Bernard Gold and Lawrence R. Rabiner. Parallel processing techniques for estimating pitch
periods of speech in the time domain. The Journal of the Acoustical Society of America, 46(2,
part 2), 1969.

R. Preston Gurd. Experience developing microcode using a high level language. In The 16th
Annual Workshop on Microprogramming, pages 179-184, 1983.

W. C. Hopkins, M. J. Horton, and C. S. Arnold. Target-independent high-level microprogram-
ming. In The 18th Annual Workshop on Microprogramming, pages 137-143, 1985.

Sadahiro Isoda, Yoshizumi Kobayaski, and Toru Ishida. Global compaction of horizontal mi-
croprograms based on generalized data dependency graph. JEEE Transactions on Computers,
C-32(10):922-933, 1983.

Monica Sin-Ling Lam. A Systolic Array Optimizing Compiler. PhD thesis, Carnegie-Mellon
University, May 1987.

David Landskov, Scott Davidson, Bruce D. Shriver, and Patrick Wayne Mallett. Local mi-
crocode compaction techniques. ACM Computing Surveys, 12(3):261-294, September 1980.

Perng-Yi Ma. The design of a firmware engineering tool: The microcode compiler. In Proceed-
ings of the National Computer Conference, pages 87-93. AFIPS, 1981.

Patrick Wayne Mallett. Methods of Compacting Microprograms. PhD thesis, University of
Southwestern Louisiana at Lafayette, December 1978.

Peter Marwedel. A retargetable compiler for a high-level microprogramming language. In The
17th Annual Workshop on Microprogramming, pages 267-274, 1984.

Michael D. Poe. Heuristics for the global optimization of microprograms. In The 13th Annual
Workshop on Microprogramming, pages 13-22, 1980.

Jan Rabaey, Hugo De Man, Joos Vanhoof, Gert Goossens, and Francky Catthoor. Cathedral-
1I: A synthesis system for multiprocessor DSP systems. In Daniel D. Gajski, editor, Siicon
Compilation. Addison-Wesley, 1988.

94

[31]

Jan Rabaey, Stephen Pope, and Robert W. Brodersen. An integrated automatic layout gen-
eration system for DSP circuits. JEEE Transactions on Computer-Aided Design of Integrated
Circuits, CAD-4(3):285-296, July 1985.

B. Ramakrishna Rau, David W. L. Yen, Wei Yen, and Ross A. Towle. The Cydra 5 departmental
supercomputer. Computer, 22(1):12-35, January 1989.

B. Ramarkrishna Rau, Christopher D. Glaeser, and Raymond L. Picard. Efficient code gener-
ation for horizontal architectures: Compiler techniques and architectural support. In The 9th
Annual International Symposium on Computer Architecture, pages 131-139, 1982.

Brian Richards and Markus Thaler. University of California at Berkeley. Private communica~
tion, 1989.

Ken Rimey and Paul N. Hilfinger. A compiler for application-specific signal processors. In
VLSI Signal Processing, III, pages 341-351. IEEE Press, November 1988.

Ken Rimey and Paul N. Hilfinger. Lazy data routing and greedy scheduling for application-
specific signal processors. In The 21st Annual Workshop on Microprogramming and Microar-
chitecture, pages 111-115, November 1988.

R. J. Sheraga and J. L. Gieser. Automatic microcode generation for horizontally micropro-
grammed processors. In The 14th Annual Workshop on Microprogramming, pages 154-168,
1981. o

Chuen-Shen Shung. An Integrated CAD System for Algorithm-Specific IC Design. PhD thesis,
University of California at Berkeley, May 1988.

C.S. Shung, R. Jain, K. Rimey, E. Wang, M. B. Srivastava, E. Lettang, S. K. Azim, P. N.
Hilfinger, J. Rabaey, and R. W. Brodersen. An integrated CAD system for algorithm-specific
IC design. In Proceedings of the Twenty-Second Annual Hawaii International Conference on
System Sciences, Architecture Track, pages 82-91, 1989.

Bogong Su, Shiyuan Ding, and J inshi Xia. URPR—an extension of URCR for software pipelin-
ing. In The 19th Annual Workshop on Microprogramming, pages 94-103, 1986.

Lars Svensson. PhD thesis, Lund University, Sweden, 1990. Expected.

Lars Svensson, Mats Torkelson, Lars Thon, and Rajeev Jain. Implementation aspects of a
decision feedback equalizer ASIC using an automatic layout generation system. In The Inter-
national Symposium on Circuits and Systems, pages 585-588, Finland, June 1988.

Lars Thon. University of California at Berkeley. Work in progress.

M. Tokoro, E. Tamura, and T. Takizuka. Optimization of microprograms. IEEFE Transactions
on Computers, C-30(7):491-504, July 1981.

Roy F. Touzeau. A Fortran compiler for the FPS-164 scientific computer. In Proceedings of the
ACM SIGPLAN ’84 Symposium on Compiler Construction, pages 48-57, June 1984.

Steven R. Vegdahl. Local Code Generation and Compaction in Optimizing Microcode Compilers.
PhD thesis, Carnegie-Mellon University, December 1982.

Steven R. Vegdahl. Phase coupling and constant generation in an optimizing microcode com-
piler. In The {5th Annual Workshop on Microprogramming, pages 125-133, 1982,

W. G. Wood. Global optimization of microprograms through modular control constructs. In
The 12th Annual Workshop on Microprogramming, pages 1-6, 1979.

95

