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Abstract

This thesis is a theoretical study of parallel algorithms for combinatorial search
problems. In this thesis we present parallel algorithms for backtrack search, branch-
and-bound computation and game-tree search.

Our model of parallel computation is a network of processors communicating
via messages. Our primary interest in a parallel algorithm is its speed-up over the
sequential ones. Our goal is to design parallel algorithms that achieve a speed-up
proportional to the number of processors used.

We first study backtrack search that enumerates all solutions to a combinatorial
problem. We propose a simple randomized method for parallelizing sequential back-
track search algorithms for solving enumeration problems. We show that, uniformly
on all instances, this method is likely to achieve a nearly best possible speed-up.

We then study the branch-and-bound method for solving combinatorial optimiza-
tion problems. We present a randomized method called Local Best-First Search for
parallelizing sequential branch-and-bound algorithms. We show that, uniformly
on all instances, the execution time of this method is unlikely to exceed a certain
inherent lower bound by more than a constant factor.

In the rest of this thesis we study the problem of evaluation of game trees in
parallel. We present a class of parallel algorithms that parallelize the “left-to-
right” algorithm for evaluating AND/OR trees and the a-8 pruning algorithm for
evaluating MIN/MAX trees. We prove that the algorithm achieves a linear speed-
up over the left-to-right algorithm on uniform AND/OR trees when the number of
processors used is close to the height of the input tree. We conjecture that the same

conclusion holds for the speed-up of the algorithm over the a-3 pruning algorithm.
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Chapter 1

Introduction

1.1 Motivation

Combinatorial search methods such as the branch-and-bound procedure are used in
practice for solving combinatorial search problems, and they have been éxtensively
studied in operations research, computer science and artificial intelligence.

To solve a combinatorial search problem, one often needs to search through a
large set of possible arrangements to find a desired solution. In doing so, one
encounters the phenomenon of “combinatorial explosion” — the time or space used
to solve the problem grows exponentially with the size of the problem, which severely
limits the range of problems that can be solved. Worst of all, the combinatorial
explosion is believed to be unavoidable for many problems in the worst case.

In the last few years we have witnessed a rapid development of parallel comput-
ing technology. A pa.fa.llel computer can speed up a computation significantly by
solving different computational tasks simultaneously. Combinatorial search prob-
lems are well suited for parallelism — the set of possible arrangements can be
searched through in parallel so that the desired solution may be found substantially
faster. Parallelism may well be our most powerful means to reduce the effect of the
combinatorial explosion in solving combinatorial search problems.

How can we perform a combinatorial search in parallel? This question repre-
sents a research area with both theoretical and practical significance. Considerable
research has been conducted on the parallel processing of combinatorial searches.
But theoretical studies are so far scarce.

This thesis is a theoretical study of parallel algorithms for combinatorial search



problems. In this thesis we present parallel algorithms for backtrack search, branch-
and-bound computation and game-tree search. We prove that these algorithms
achieve a good speed-up over their sequential counterparts. We believe that these
algorithms can lead to useful programs for solving combinatorial search problems

in practice.

1.2 Tree Searches

The combinatorial search methods that we will study in this thesis share a common
view: they can be thought of as a tree search. We state this view abstractly here.

We are given an algorithm for solving some combinatorial search problem. The
algorithm has a certain procedure, which we shall call GEN, to generate subprob-
lems. When GEN is applied to a subproblem A, it either solves A directly or derives
from A a set of subproblems A;, Az, ..., Aq4 such that the solution of A can be found
from the solutions of A;, A,,..., Aq4-

Given a problem instance as the input to the algorithm, we associate with the
problem instance a rooted tree as follows. The root of the tree corresponds to
the given problem instance. An internal node corresponds to a subproblem of the
given problem instance. A leaf presents a subproblem that can be solved directly
by the procedure GEN. The children of node v in the tree correspond to the set
of subproblems that can be derived by the procedure GEN from the subproblem
represented by v.

The execution of the algorithm corresponds to a search in the tree associated
with the input problem instance. The search starts with the root of the tree and
generates certain nodes of the tree as the search progresses. The nodes of the tree
are generated by using the so-called “node expansion” operation, which corresponds
to a call of procedure GEN. When this operation is applied to v it either determines
that v is leaf or produces the children of v. A node can be expanded only if it is the
root of the tree or if it is a child of some node previously expanded. The search,
starting with the root, successively applies node expansion to the unexpanded nodes
of the tree until a set of leaves are identified as a solution to the problem.

In addition to the procedure GEN, the algorithm needs a rule to determine
the order in which subproblems are explored. In terms of the associated tree, the
algorithm uses this rule to decide which node or which set of nodes to be expanded

[\&)



next; the decisions are based on the information gathered from the nodes that have
been generated so far. Different rules may result in drastically different search
behaviors. The portion of the tree that will be generated as well as the outcome of
the search may depend on the choice of the rule.

An algorithm using p processors can expand up to p nodes simultaneously at
one step. The number of processors used by a search algorithm is the maximum
number of nodes expanded at some step. An algorithm is parallel if the number of
processors used by the algorithm is greater than one; otherwise, it is sequential.

In the subsequent chapters, we shall present a number of parallel algorithms
for solving combinatorial search problems and compare the performance of these

parallel algorithms with that of their sequential counterparts.

1.3 Model of Parallel Computation

Our model of parallel computation is a multiprocessor system in which there is
no global memory and processors communicate via messages. In a multiprocessor
system, each processor has its local memory and is capable of performing computa-
tions on the data gathered in its local memory; the processors are connected by a
network over which messages are sent. There is no central control in the network.
Two processors are neighbors if they are connected directly by the network. A
network is fully-connected if any two processors of the network are neighbors. Two
neighboring processors can send one message to each other in unit time. We assume
that the input/output is handled by a single designated processor.

We assume that the processors are synchronized. A step of computation consists
of two phases: the computation phase in which each processor performs some com-
putation locally and the communication phase in which each processor can send a
message to each of its neighboring processors. The ezecution time of an algorithm
is the number of steps it takes. A fundamental measure of a parallel algorithm is its
“speed-up” over the sequential algorithms. The speed-up of a parallel algorithm A
over a sequential algorithm B is the ratio of the execution time of A to the execution
time of B with respect to the same input instance. We express the speed-up as a
function of the number of processors used by the parallel algorithm.

The assumption that processors are synchronized is for the convenience of de-

scribing and analyzing our algorithms. For the majority of our algorithms, the



correctness of the algorithm holds if the the processors are not synchronized. As a

result, most of our algorithms can be implemented directly on a distributed system.

1.4 Summary

In this section we summarize the content of this thesis. The thesis consists of three
parts, each of two chapters, on backtrack search, branch-and-bound method and
game tree search, respectively.

In the next two chapters we study backtrack search. In Chapter 2 we introduce
backtrack search and make an essential distinction between the backtrack search
that seeks only one solution and the backtrack search that seeks all solutions. The
latter will be called a backtrack enumeration. We shall only consider the paralleliza-
tion of backtrack enumeration. In Chapter 3 we present three simple algorithms
for parallelizing sequential backtrack search. The first algorithm is deterministic
but requires global control of the computation. The other two are randomized im-
plementations of the deterministic algorithm and they require no global knowledge
of the computation. We prove that, in case of a fully-connected network, both
randomized algorithms are likely to yield a speed-up within a small factor from
optimal in general and within a constant factor from optimal in some important
special cases.

In the subsequent two chapters we study the branch-and-bound method. In
Chapter 4 we introduce the branch-and-bound method and identify an inherent
lower bound on the execution time of any branch-and-bound algorithm. In Chapter
5 we present a randomized parallel branch-and-bound procedure. The procedure
is a parallel implementation of the “best-first” search strategy with no global data
structures or complex communication protocols. We prove that, in the case of a
fully-connected network, the execution time of this procedure is likely to be within
a constant factor of the inherent lower bound.

In the last two chapters we study game tree search. In Chapter 6 we introduce
the standard “left-to-right” sequential algorithm for evaluating AND/OR trees and
the well-known a-8 pruning algorithm for evaluating MIN/MAX trees. In Chapter
7 we present a class of parallel game-tree evaluation algorithms that parallelize
the left-to-right algorithm and the a-8 pruning algorithm. We show that, on any

instance of a uniform AND/OR tree, the algorithm achieves a linear speed-up over



the left-to-right algorithm when the number of processors used is close to the height
of the input tree. We conjecture that the same linear speed-up also hold for the a-3
pruning algorithm. In the last part of the chapter we discuss the implementation

of some of the algorithms we have presented.

1.5 Terminology

We fix some terminology that is basic to our presentation. We assume that we are
given a rooted tree with root r.

An ancestor of a node v is a node on the path from r to v. So a node is an
ancestor of itself. Node u is a descendant of v if v is an ancestor of u. A leaf is a
node with no children. A root-leaf path is a path from r to some leaf. Two nodes v
and u are siblings if v and u have the same parent.

A rooted tree is ordered if the children of each internal node are ordered. In an
ordered tree, v is a left-.sz'-bling (right-sibling) of u if v and u have the same parent
z, and v procedes (follows) u in the ordering of the children of z. Let ¥ be a set of
nodes such that no two nodes of T are on the same root-leaf path. For any such set
T, a left-to-right ordering upon the nodes of T is defined as follows. For v,u € X
and v # u, v is on the left of u if v has an ancestor v' and u has an ancestor u’
such that v’ is a left-sibling of u’; otherwise, v is on the right of u. In particular,
the leftmost (rightmost) node in T is the node that is on the left (right) of every
other node in £. A subtree T is on the left of of another subtree 1" if the root of
T is on the left of the root of T".



Chapter 2

Backtrack Search

2.1 Introduction

Backtrack search is an enumerative method for solving combinatorial search prob-
lems. Problems that yield to backtrack search have an essential property: it is
possible to determine that some initial choices cannot lead to a solution. This
property allows the search procedure to terminate an unproductive search and then
“backtrack” to a point where a new search can be started.

The idea of backtrack search is best understood in the context of finding an exat
in a maze: starting at the entry, keep extending the path from the entry until an
exit is reached; when facing a dead end, retreat one step and try to extend the
path in another direction. More formally, backtrack search works by continually
trying to extend a partial solution to a problem; when it is found that the current
partial solution can not possibly be extended to a complete solution, the algorithm
then backtracks to its previous partial solution and attempts to extend that partial
solution again in a way that has not been attempted previously. This process is
repeated until a solution is found or it is found that there is no solution.

Backtrack search is most useful for enumerating all the solutions to a given
combinatorial problem. We call a backtrack search that solves an enumeration
problem a backtrack enumeration. A backtrack enumeration can be much more
efficient than a brute-force method that generates all possible configurations in
some fashion and tests whether each of these configurations constitutes a solution.
A discussion of backtrack enumeration can be found in [RND77].

In essence, a backtrack search implicitly enumerates all the configurations associ-



ated with the given problem. The running time of a backtrack search, though small
in many cases, may be exponential in the size of the problem. Studies on the com-
plexity of backtrack search can be found in [CSW85] and [Ga76]. The latter shows
that a large class of search strategies, including backtrack search, are exponential

in the worst case.

2.2 Two Examples

Example 1: The Eight Queens Problem is to place eight queens on a 8 x 8 chess
board such that no queen can attack another, that is, no two queens are on the same
row or on the same column or on the same diagonal of the board. A non-attacking
arrangement of eight queens is possible.

The Eight Queens Problem can be solved by backtrack search. A (complete) so-
lution to the Eight Queens Problem is a non-attacking arrangement of eight queens.
A partial solution is the arrangement of some queens such that no two of them are
attacking each other. We call a row occupied if it contains a queen; otherwise, it 1s
unoccupied. To find a non-attacking arrangement, we proceed as follows. We will
place one queen on each row in the increasing order of rows. We shall mantain
the property that the arrangement of the queens that are currently on the board
is a partial solution, which is called the current partial solution. Given the current
partial solution, we try to extend it by placing a queen at the first position of the
first unoccupied row such that (i) the newly placed queen does not attack another
queen already on the board and (ii) this extension was not attempted previously. If
such a position exists, we place a queen at that position; otherwise, we know that
the current partial solution can not be extended to a solution. Notice that we may
still be able to add a queen in some other row such that the newly added queen
will not attack another queen. But the point is that we can no longer place all the
rest of queens without attacks. So we backtrack — remove the queen that was last
placed on the board. We then try to extend the current partial solution again in
some way that has not been attempted. This process is repeated until all queens
are placed on the board.

The above algorithm can be easily modified to solve the enumerative version of
the Eight Queens Problem in which one is asked to find all non-attacking arrange-
ments of eight queens. Instead of stopping at the first complete solution it finds,



the algorithm backtracks from each complete solution it encounters after it records
the solution. The algorithm stops when it finishes extending the partial solution

that consists of one queen on the last position of the first row.

Example 2: The Enumerative Satisfiability Problem (ESAT) is to enumerate all
satisflable assignments, if any, of a given boolean formula in conjunctive normal
form. We give a backtrack algorithm that solves ESAT.

Let f be the input formula and let z1,2z2,...,2Z, be all variables of f. Each
variable of f has a value which is either 0 or 1 or . Initially, each variable has the
value . A variable is fized if it has a value of 0 or 1. The present state conmsists
of the current values of the variables. We say f is falsified by the present state if
all the variables of some clause of f are currently fixed and that clause is evaluated
to 0 given the current values of the variables. Whether a formula in conjunctive
normal form is falsified by the present state can be checked in linear time in the
size of the formula.

We fix the variables of f in the increasing order. We maintain the property
that the set of fixed variables consists of z;,Z2,...,z for some £k < n and f is
not falisfied by the present state. We first consider the case k < n. In this case,
some variables are not fixed. We then attempt to fix the first unfixed variable z4..;.
There are three cases. Case 1: We have not attempted to fix zx4; previously under
the present state. In this case, we fix zz41 to 0 if f is not falsified by fixing Tiy tO
0; otherwise, we fix zx,1 to 1 if f is not falsified by fixing zi4, to 1. If both way
of fixing zx4, falsify f, we know that the current values of {z1,z2,..., 2k} cannot
possibly lead to a satisfying assignment of f. So we backtrack — “unfix” z; by
setting the value of zx to . Case 2: x4, was previously fixed to 0 but not to 1
under the present state. In this case, we fix zx41 to 1 if f is not falsified by fixing
Tr41 to 0; otherwise, we backtrack by setting the value of z, to x. Case J: ziy1 was
previously fixed to both 0 and 1 under the present state. In this case, we backtrack
immediately by setting the value of z; to *. In case that k = n, all the variables
are fixed, and the values of these fixed variables forms a satisfiable assignment of f.
The algorithm records this assignment and backtracks by setting k = n — 1. The
process halts when it attempts to backtrack from z,, and outputs all the recorded
assignments if f is satisfiable; otherwise, outputs “unsatisfiable”.

Figure 2.2 contains a procedure called ESAT describing the given backtrack
algorithm. ESAT takes f as its input and enumerates all the satisfying assignments



of f. Subroutine CHECK checks whether f is falisfied by the present state, and
returns 0 if only f is falisfied by the present state. The inputs to subroutine CHECK
are f and the values of the fixed variables in the present state. A call of CHECK

runs in a linear time in the size of f.

2.3 Abstraction of Backtrack Search

A backtrack search can be viewed as a search through a tree of partial solutions.
Given a problem instance, we associate with it a rooted tree as follows: the root
represents the empty solution; an internal node represents a partial solution; a child
of an internal node represents one possible minimal extension to the partial solution
represented by the internal node; a leaf of this tree represents either a solution or
a blocked partial solution, i.e., a partial solution that can not be extended to a
solution. A minimal extension in the Eight Queens Problem is to add a queen on
the first row that contains no queen, and a minimal extension in ESAT is to fix the
first unfixed variable. The execution of the backtrack search corresponds to a depth-
first search in this tree using the “node expansion” operation. When this operation
is applied to a node v, it either determines that v is a leaf or generates the children
of v, which are all possible minimal extensions of the partial solution represented
by v. The search terminates when it finds one or more leaves representing the
desired solution. The extensions to a particular partial solution depends solely on
the partial solution itself. In terms of the associated tree, the node expansions in
one subtree have no effect on the node expansions in another subtree. This property
is essential for executing backtrack search in parallel. We assume that the traversal
of the tree is lezicographic, i.e., the children of internal nodes are expanded in the
left-to-right order. !

A backtrack search that seeks only one solution may look at only a small portion
of the tree if a leaf representing a solution appears to the far left among all the
leaves of the tree. It would be difficult or perhaps impossible to parallelize such
a search with a guaranteed good speed-up. The situation is quite different when
we consider backtrack enumerations. A backtrack enumeration must generate the

entire tree associated with the input problem instance. The reason is that the

1The effect of a different traversal ordering can be achieved by arranging the order of the children

of the expanded nodes.



ESAT(f);

{
let z1,z,...,Z, be all the variables of f;
fori=1tondo z; — *;
i —1; FOUND+ 0

while (1 > 0) {
if (z; =) {
z; — 0;
if (CHECK(f,z1,22,...,%i) #0) i —i+1;
else {
r; «— 1;
if (CHECK(f,z1,22,...,2i) #0) 1 —1i+1;
else { /* backtrack */

Ti—* 1e=1-1;}

}
else if (z; =0) {
T; — 1;
if (CHECK(f,z1,22,...,2i)#0)i —1+1;
else { /* backtrack */
Ii—* 1e—i-1;}
}
else if (z; = 1) { /* backtrack */
T —% 1e—i-1;}
/* end of if */
if (i = n+1) { /* a solution found */
record the values of z;,z,,...,z, as a solution;
FOUND « 1; i =n; /* backtrack */ }
} /* end of while */

if (FOUND = 0) return(“unsatisfiable”);

else output all the recorded solutions;

Figure 2.2
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algorithm cannot tell whether a partial solution can be extended to a solution
unless the partial solution corresponds to a leaf in the tree. Hence, every node
in the tree must be expanded. To parallelize a backtrack enumeration, we can let
each processor generate a different subtree. As every node of the tree must be
expanded, there can be no wasteful node expansions. Therefore, a good speed-
up can be expected if the processors are kept busy performing node expansions.
In other words, the problem of achieving a good speed-up is really a problem of
achieving a good “load-balancing”. We shall show that a good load-balancing can
be achieved. This is the fundamental reason that backtrack enumeration admits

efficient parallelization.

2.4 Previous Work on Parallel Backtrack Search

There is little published literature on parallel backtrack search. The most relevant
paper is [FM87] which describes a software package called DIB, “distributed imple-
mentation of backtracking”, for writing distributed or parallel programs involving
backtracking, which includes backtrack search as well as branch-and-bound compu-
tation and game-tree search. This paper is closely related to what we will present
for parallel backtrack search. We shall focus our discussion on this paper in the
context of backtrack search.

Program DIB is given as its input the root of the tree representing the problem
to be solved. It solves the subproblem represented by a node v of the input tree
by solving all the subproblems represented by the children of v. The input tree is
searched concurrently in which each processor works on a different set of subtrees.
Each processor performs the depth-first search on its subtrees in the lexicographic
ordering. When a processor finishes traversing all its subtrees, it seeks new work
from other processors by sending requests for work to other processors. There
are two components in the work-sharing scheme of DIB. One component is the
“donation rule” which determines how one processor gives away some of its work to
another processor; the other is the “request rule” which determines how a processor
with no work seeks new work.

The donation rule of DIB, with some details left unspecified, is as follows. When
a processor receives a request for work, it does the following: If it has subtrees other

than its working subtree, the subtree it currently traverses, it donates some of the
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earliest ones in the lexicographic ordering to the requesting processor. If not, it goes
down along the depth-first-search path in its working subtree to find the first node
that has unvisited siblings. If this node is not at the end of the path, the subtrees
rooted at some of the leftmost siblings of that node are donated to the requesting
processor; otherwise, the request is not granted. The number of subtrees donated
in each donation is not specified. The donation rule for the case that a processor
receives more than one request at the same time is not discussed.

As to the request rule, two different methods are considered. One method is to
organize the processors into a ring. In this method, an idle processor seeks work by
going around the ring. More precisely, each processor has a “helper”. The helper
for processor i is initially processor (i + 1) mod p where p is the total number of
processors in the ring. An idle processor requests work from its helper; if its helper
has no work to share, the request is forwarded to the successor in the ring; the
request is forwarded along the ring until the request is granted and the helper of
the requesting processor is reset to be the successor of the processor that granted
the request. In practice, the requests for work tend to be distributed fairely evenly
in the ring. The main drawback of this method is that it is not fault-tolerant.
Another drawback is that the forwarded messages tend to flood the network near
the end of the computation, when many processors are idle.

The second method proposed in [FM87] for sending requests uses randomization.
This method is to let each idle processor send requests to k other randomly selected
processors for some constant k > 1, where the choice of k depends on the number
of processors used and on the application. Requests that cannot be granted are
ignored, not forwarded. This method tends to keep the number of messages small,
even near the end of the computation. With a proper choice of k, it is rare that an
idle processor remains idle through many cycles of sending requests, except close
to the end of the computation. The paper did not specify whether a requesting
processor would accept all the new work in response to its k requests when k > 1.
Interestingly, the special case with the choice of ¥ = 1 coincides with the so-called
“jdle-initiated” method we present in the next chapter.

The experimental results provided by the paper show that DIB performs excel-
lently on backtrack enumeration problems such as finding all non-attacking arrange-

ments of eight queens, but less impressively on game-tree search.
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Chapter 3

Parallel Backtrack Search

In this chapter we study parallel backtrack search. Our main result is a simple ran-
domized method for parallelizing sequential backtrack enumeration algorithms. We
present two implementations of this method, the Busy-Initiated Backtrack Search
and the Idle-Initiated Backtrack Search. The latter improves upon the former in
terms of efficiency. We show that, in the case of a fully-connected network where
each processor is directly connected to all other processors, both algorithms are

likely to achieve a nearly optimal speed-up on any instance.

3.1 A Generic Algorithm

We give a generic description of the parallel backtrack search algorithms we wish
to study. Specific algorithms are given in the next section.

We are given a sequential backtrack search algorithm we wish to parallelize. Let
H be the rooted tree of partial solutions associated with the given algorithm on
some given input instance. Let r be the root of H. Let n be the number of nodes
in H, and let h be the number of nodes in a longest root-leaf path in H. Then the
execution time of any algorithm is at least h, since the nodes along a path must be
expanded one at a time, and the execution time of any p-processor algorithm is at
least n/p, since all n nodes in H must be expanded and the algorithm can expand
at most p nodes at a single step. Thus max{n/p,h} is an inherent lower bound
on the execution time of any p-processor algorithm on the instance H. Our goal

is to design p-processor algorithms whose execution time comes close to this lower

bound.
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Let p be the number of processors and P; be the i-th processor. A frontier
node is a node that has been generated but not expanded. The frontier nodes are
distributed among the processors, with each frontier node belonging to exactly one
processor. The local frontier of P;, denoted by Fi, is the set of frontier nodes of H
possessed by P;. A processor is busy if its local frontier is non-empty; otherwise, it
is idle. A processor is overloaded if it is busy and has more than one frontier node.
The level of a node v, denoted by I(v), is the number of nodes on the path from r
to v. A top-node of P, is a frontier node of minimum level in F;. Let T denote the
set of top-nodes of P,. Let I'(v) denote the set of children of an internal node v.

Figure 3.1 contains a generic description of the kind of algorithm we consider.
A step of the algorithm is an execution of the while loop. Each step consists of
a Node Ezpansion Step in which each busy processor expands its leftmost frontier
node, a Decision Step in which some overloaded processors are paired up, one-to-
one, with some idle processors and a Donation Step in which each of the paired
overloaded processors transfers some of its top-nodes to its paired idle processor.
A donation is a set of frontier nodes transferred from one processor, called the
donating processor, to another, called the receiving processor. When the context
is clear we also use the word “donation” to refer to the transfer of a donation. We
call the set R in the Decision Step the pairing set. Our generic algorithm leaves the
pairing set unspecified. Different ways of specifying the pairing set lead to different
algorithms. We shall present in the next section some algorithms that use very
different approaches in specifying the pairing set.

At the Node Expansion Steps, a busy processor keeps expanding its leftmost
frontier node while receiving no new frontier nodes from other processors. The
computation of the processor corresponds to the lexicographic depth-first traversal
of some subtree. A busy processor would complete a traversal of a subtree, with a
possibility of donating some portions of the subtree to other processors, before it
starts to traverse another subtree. ‘

Each processor can manage its frontier nodes conveniently by using a stack in its
local memory. When a processor is idle, its stack is empty. By Proposition 1 of the
next section, the set of nodes in a donation is a set of (consecutive) sibling nodes.
After receiving a donation which consists of a set of siblings, a processor initializes
its stack by pushing the received nodes onto the stack in the reverse order of their

sibling ordering. When its stack is non-empty, the processor removes the node at
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Generic Parallel Backtrack Search
/* Initialization*/

F={r}

for:=2,3,...,p, F; —0;

while some F; # § do
/*Node Ezpansion Step*/
fori=1,2,...,p in parallel do
if F; # 0 then

let v; be the leftmost node in Fj;

expand v;;

Fi; — Fi\ {v};

if v; is not a leaf then F, — F;|JI'(v;);
/* Decision Step*/
N —{(,j) : |[F| >1,|F| =0,1<i<p,1<j<pki
Ni—{j:(,j)eN}for1<i<p; |
Nie—{i:(,j)eN}for1<j<p
determine a subset R C IV such that
IRNN:|<lfor1<i<pand |[RNN/|<1lforl<j<p;

/*Donation Step*/
for:=1,2,...,p in parallel do
let T; be the set of top-nodes in F};
let D; C T; be the set of the rightmost |D;| = [|T:|/2] nodes in Tj;
if (,7) € R for some j then /* i donates D; to j */
F, — F;\ D;;
send message “i donates D; to you” to j;
for j =1,2,...,p in parallel do

if j receives message “i donates D; to you” then F; « D;.

Figure 3.1
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the top of the stack, expands it, and pushes its children, if any, onto the stack in
the reverse order of the children. This ensures that the leftmost frontier node is
always at the top of the stack and the rightmost one at the bottom. Again, by
Proposition 1, the top-nodes of the processor, either received or generated, are the
rightmost nodes among the frontier nodes of the processor, hence, at the bottom of
the stack. We assume that we can remove a node at the bottom of the stack. To
donate, a processor removes about half of the top-nodes at the bottom of the stack,
which are the rightmost half of the top-nodes.

The pairing set R in the Decision Step imposes the following conditions for

donation:

(a) only idle processors may receive donations;

(b) only overloaded processors may donate;

(¢) a donating processor may donate to only one processor at a time:

(d) a receiving processor may receive donations from only one processor at a time;
(e) a donating processor donates about half of its top-nodes.

The motivation behind conditions (a)-(e) is as follows. As every node expansion
is helpful, there is no reason for a busy processor not to continue expanding its
frontier nodes. Thus a busy processor has no need for receiving a donation. This
gives (a). When a busy processor has only one frontier node, the processor can
expand its only frontier node immediately, which is better than giving the node
to another processor and leaving itself idle. This gives (b). There is no strong
reason for (c). Actually, it would be advantageous to allow a processor to donate
to more than one idle processor at the same time so that all these idle processors
can start to work. We adopt (c) for simplicity. Condition (d) is, however, necessary
for our analysis. In particular, Proposition 1 would not hold if we did not have
(d). There is asymmetry between (c) and (d). As an idle processor can start to
work after receiving a donation from one processor, relaxing (d) seems to give no
obvious advantage to the computation. The reason for (e) is less straightforward.
As we will see, it turns to be a good strategy for a processor to donate its top-
nodes. Furthermore, a donating processor should donate about half of its top-nodes,

because it shares evenly its top-nodes with the only processor it donates to.
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The size of the message required for a donation is important in practice. If the
donated nodes are unrelated to each other, the size of the message may have to
be proportional to the number of donated nodes. However, by Proposition 1, the
top-nodes of a processor are actually consecutive siblings. Hence, the collection of
the donated nodes in one donation permits a succinct description. One method to
ensure short messages for donation, though somewhat wasteful in terms of node
expansion, is to specify the parent of the donated top-nodes and the interval of
the donated top-nodes among their siblings; the receiving processor can create the
donated nodes by applying node expansion to the node specified in the message and
extracting the children of the expanded node in the specified interval. We call this
the parent-specified method.

The donation scheme governed by conditions (a)—(e) is in principle similar to
the donation scheme of DIB [FM87] discussed in the last section of the previous
chapter. However, the given description of DIB leaves some important details un-
specified, such as the number of nodes donated at one time and, in particular,
whether condition (d) is enforced. Hence, one cannot deduce with certainty that a
processor, according to DIB, donates only its top-nodes, though it seems to be the
case. In comparison, one may regard the conditions (a)-(e) as one specification of

the donation scheme considered in [FM87].

3.2 Properties of the Generic Algorithm

In this section we prove some general properties of the generic parallel backtrack
algorithm described in the preceding section.

The following proposition gives a fundamental property of our generic parallel
backtrack algorithm. This property is a consequence of conditions (a) and (d) and
the lexicographic depth-search traversal.

Proposition 1 At any time, (i) the top-nodes of each processor are consecutive
siblings and (i1) the top-nodes of each processor are the rightmost frontier nodes of

that processor.

Proof: We prove the proposition by induction. Initially, the root of H is the only
frontier node, and the proposition holds trivially. We assume inductively that the

proposition holds at step ¢ and show that it holds at step ¢t+1. Consider the actions
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of P; in step t, separately at the Node Expansion Step and at the Donation Step of
step t.

At the Node Expansion Step, consider three cases. Case I: P; is idle. In this
case, the inductive hypothesis implies that the proposition holds after the Node
Expansion Step. Case 2: P, is busy but not overloaded. In this case, F; = T; = {v}
for some v, and v is expanded at this step. Afterwards, F; = T; is either empty, if
v is a leaf, or consists of all the children of v. In both cases, the proposition holds
after v is expanded. Case 3: P, is overloaded. In this case, the leftmost node u of
F. is expanded at this step. As |F;| > 1, each node in F; that is a top-node of P,
after u is expanded was a top-node of P; before u is expanded. Then, no matter u
is a top-node or not, by the inductive hypothesis on (i), the top-nodes of P; after u
is expanded are consecutive siblings. The children of u, if any, are to the left of v.
Together with the inductive hypothesis on (ii), the top-nodes of P; are the rightmost
node in F; after u is expanded. So the proposition holds after u is expanded. In all
cases, the proposition holds after the Node Expansion Step.

At the following Donation Step, P; can either donate or receive or do nothing.
Case 1: P; donates. There are two subcases. Subcase 1.1: |T;| > 1. In this case, P;
keeps left half of its top-nodes after the donation. The inductive hypothesis implies
that the proposition holds after the donation. Subcase 1.2: T; = {v}. In this case,
P. donates v. The frontier nodes of P; after the donation are the nodes that are
generated in the lexicographic depth-first traversal of a subtree. Among these nodes,
those with minimal level must be consecutive siblings and appear at the end of the
lexicographic ordering. Hence, the proposition holds after v is donated. Case 2: P
receives a donation. By condition (a), the local frontier of P; must be empty prior
to this step. By condition (d), P; receives a donation from only one processor, say
P, and the received frontier nodes are a set of top-nodes of P;. By the inductive
hypothesis, the top-nodes of P, are a set of consecutive siblings. So the frontier
nodes of P; are consecutive siblings after the donation. So the proposition holds
for P, after P; receives the donation. Case 3: P; does nothing. In this case, the
inductive hypothesis implies that the proposition holds for P; after the Donation
Step. In all cases, the proposition holds after the Donation Step.

The induction is complete. O

Corollary 1 Suppose that H is a binary tree in which each internal node has ezactly

two children. Then a processor only domates one node at a time, its rightmost
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frontier node. O

A node is allowed to be donated more than once. The number of times a node

can be donated is limited by the number of siblings it has.

Proposition 2 A node can be donated at most [logd] times where d is the number
of children of its parent. In particular, for a binary tree H, any node of H can be

donated at most once.

Proof: By Proposition 1, the top-nodes are siblings. By condition (e), the set of
siblings together with any given node v is halved in each donation. Hence, v can
be involved in at most [log d| donations before either v is expanded or v is the only
node in a donation. In the latter case, v will be expanded immediately after v is
donated. O

A notion that plays an important role in our analysis is that of the “base node”
of a busy processor. The base node of a busy P;, denoted by b;, is defined as v if v is
the only frontier node of P;; otherwise, it is defined as the parent of the top-nodes
of P.. In the latter case, the base node is well-defined by Proposition 1. Different
processors may have the same base node; the base node of one processor may be
an ancestor of the base node of another processor. The level of a busy processor is

the level of its base node.

Proposition 3 Suppose that |F;| = 1 just after a Node Ezpansion Step. Then the
level of P; is greater than the level of P; before that Node Ezpansion Step.

Proof: Assume that F; = {v} just after a Node Expansion Step. Then v # r and,
by definition, b; = v after that Node Expansion Step. Let F;/ # 0 and b; be the
local frontier and the base node of P;, respectively, just before that Node Expansion
Step. We show that ! is the parent of v. Then I(b}) < I(v) = I(b;) as desired. There
are two cases: Case 1: |F!| = 1. In this case, we must have F} = {u} where u is the
parent of v. So b, = u by definition. Case 2: |F/| > 1. Then F! = {v,w} where w
is a leaf and was expanded at that Node Expansion Step. So v was the rightmost
frontier node in F!, and by Proposition 1, a top-node in F}. Hence, by definition,

b; is the parent of v. O

Proposition 4 Suppose that |Fi| > 1. Let u be the parent of the top-nodes of P.

Then the level of P; increases before P, donates [log d| times where d is the number

of children of u.
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Proof: As |Fi| > 1, u is the current base node. Each time P; donates, the number
of top-nodes of P;, the children of u, is reduced by at least half. So P; can donate
at most [logd] — 1 times before the number of the top-nodes of P; is reduced to
one. Let v be the only remaining top-node of P;. Consider two cases. Case I: P,
expands v. By Proposition 1(ii), at the time v is expanded, say, at time ¢, v will be
the only frontier node of P,. Hence, at time t, b = v and I(b;) > I(u). Case 2: P,
donates v. Then P; donates v in the next donation. Afterwards, the level of each
frontier node of P; is larger than {(v) and consequently, I(b;) > I(v) > l(u). O

We end this section with a proposition that is fundamental to our analysis. A unat
of work of our algorithm is taken as one of the following three operations: “expand”
by which a processor expands a frontier node, “donate” by which a processor donates
a node and “receive” by which a processor receives a donation. The total work of
an algorithm is the total number of work units performed by the algorithm. The

degree of a tree is the maximum number of children of any internal node of the tree.

Proposition 5 For any instance of H of degree d, the total work of our algorithm
on H is at most 3nflog d], even using the parent-specified method to encode the

messages for donation.

Proof: When the parent-specified method is used in encoding the messages for do-
nation, an expanded node is expanded again when some of its children are donated.
By Proposition 2, a node can be donated at most [logd] times. So any node can
be expanded at most [log d] times. Thus, the total number of “expand” units is at
most n[log d]. By Proposition 2, a node can be donated at most [log d] times, and
thus received at most [log d] times. So the total number of “donate” and “receive”

units is at most 2n[log d]. Hence, the total work is at most 3n{log d]. O

3.3 Parallel Backtrack Search Algorithms

In this section we present three algorithms. The first is deterministic but requires
global control of the computation. The other two are randomized variants of the

first algorithm that do not require any global knowledge of the computation.



3.3.1 A Deterministic Algorithm

Our first algorithm is called Full-Donation Backtrack Search (FDBS). The strategy

of this algorithm is to let as many overloaded processors donate as possible.

Rule for Full-Donation

Choose the pairing set as large as possible.

The above rule does not fully specify the pairing set when the number of over-
loaded processors is not equal to the number of idle processors. In a fully-connected
network, one idle processor is as good as any other idle processor in terms of shar-
ing the work of a overloaded processor. Thus, when there are more idle processors
than overloaded ones, an arbitrary maximal pairing set will do. On the other hand,
the overloaded processors can distinguish among themselves by various attributes
such as level number, size of local frontier, length of local depth-first-traversal path.
When there are more overloaded processors than idle processors, one may take
these attributes into account for giving preference of donation to certain overloaded
processors. But the Rule for Full-Donation does not explore the potential computa-
tional advantages in distinguishing overloaded processors by the attributes mentione
mentioned.

The following theorem states that the execution time of the Full-Donation Back-

track Search comes close to the inherent lower bound max{n/p,h}.

Theorem 1 Suppose that H 13 a tree of degree d. Then the ezecution time of
Full-Donation Backtrack Search is at most [logd](3n/p + h).

Proof: A step is perfect if every processor does at least one unit of work at that
step, i.e., it expands a node at the Node Expansion Step, or donates or receives at
the Donation Step; otherwise, the step is imperfect. By Proposition 35, the total
units of work is at most 3n{log d]. Hence, there are at most 3n[log d]/p perfect
steps. We show that there are at most h[log d| imperfect steps.

Let the search-level be the minimum level of all busy processors. We show that
the search-level increases after at most [log d] imperfect steps. Since the search-level
can increase up to at most h, which is the height of H, there are at most A [log d]
imperfect steps after all nodes of H are expanded. Consider an imperfect step.
There must be a processor which was idle at the Node Expansion Step. Then this

processor must have not received any donations at the preceding Donation Step.
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By the maximality of R, every overloaded processor must have donated at that
Donation Step. By Proposition 4, there can be at most [log d] such imperfect steps
before the level of each overloaded processor increases. For a processor that has only
one frontier node at a Donation Step, the level of the processor, by Proposition 3,
must have increased after the preceding Node Expansion Step.

Therefore, the level of every busy processor increases before there are [log d]
imperfect steps. Consequently, the search-level increases before there are [log d]

imperfect steps. The theorem follows. O

Remark: The proof of Theorem 1 suggests that, when there are more overloaded
processors than idle processors, it might be advantageous in practice to give prefer-
ence to the overloaded processors of smaller levels, because such a preference tends

to increase the search-level more rapidly.

Corollary 2 If H is a tree of constant degree, then the ezecution time of Full-
Donation Backirack Search is at most O(n/p + h).

By Theorem 1, FDBS is within a factor of O({log d]) from the inherent lower
bound max{n/p,h} on any instance H of degree d. The important special case is
that H is of a bounded degree, as in the Example 2 of Section 2.2. In such cases,
FDBS is optimal within a constant factor.

Though exhibiting optimality, Full-Donation Backtrack Search requires global
control to determine the pairing of overloaded processors with idle processors at the
Decision Steps. It turns out that the global control needed in FDBS can be replaced
effectively by randomization. The idea of randomization is to achieve a pairing of
some overloaded processors and some idle processors through random requests. We
present two implementations of this randomization, depending whether it is the
overloaded processors that initiate the requests or the idle ones that initiate the

requests.

3.3.2 Randomized Algorithm 1: Busy-Initiated

Our first randomized algorithm is called Busy-Initiated Backtrack Search (BIBS)
in which the overloaded processors initiate the requests for donation. The strategy
of BIBS is simple: each overloaded processor initiates a request for donation to a
random processor; a busy processor rejects all received requests; an idle processor

accepts an arbitrary request from the received requests, if any, and rejects the others;
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Decision Step of BIBS

/* Requesting Message Step */
for:i=1,2,...,p in parallel do
if i is overloaded then
dest(i) — a random element of {1,2,...,p};
send message “i has work to share” to dest(1);
/* Accepting Message Step */
for j =1,2,...,p in parallel do
if j is idle then
let D; = {i|i has received a message “i has work to share” };
if D; # 0 then
choose an arbitrary k from D;;
send message “j can share your work” to k.

/* k donates to j in the next Donation Step */

Figure 3.3.2

a overloaded processor whose request is accepted by an idle processor donates to
that idle processor. Figure 3.3.2 contains code describing the Decision Step of BIBS
in which the pairing set is implicitly determined. The corresponding modification
in the Donation Step in Figure 3.1 is to replace the line “if (¢,7) € R for some j

then” with “if i receives message ‘j can share your work’ then”.

Remarks: Following the previous remark, it may be advantageous in practice to
implement Busy-Initiated Backtrack Search with the provision that an idle pro-
cessor that receives more than one request accepts the request from the requesting
processor of the smallest level. The implementation of such a provision requires that
the request message contain the level number of the requesting processor and that
the receiving processor have a facility to select the request from the minimum-level

Processor.

The following is our main theorem. It states that, uniformly on all instances, the
execution time of BIBS is likely to be within a small factor of the inherent lower
bound max{n/p, h}, provided that n is sufficiently larger than p. In the case that
the degree of H is bounded, the execution time of BIBS is likely to be optimal up

to a constant factor.



Theorem 2 Let the random variable T(H) be the ezecution time of Busy-Initiated
Backtrack Search on H. Let d be the degree of H. Then for any instance H and
for any p > 2,

Pr[T(H) > TDogﬂ(% +h)] < ne~tenlogd/r,

Theorem 2 is an immediate consequence of the following theorem, combined with

the fact that H has n nodes.

Theorem 3 Let the random variable T(H,w) denote the number of steps of Busy-
Initiated Backtrack Search on instance H, up to the point when node w is ezpanded.
Let d be the degree of H. Then for every instance H, for every w in H and for any
P22
Pr(T(H,w) > Tﬂog‘ﬂ(% +h)] < e~ Tenlos /7,

Proof: Let L, be the path from r to w. Before w is expanded, there is a unique
frontier node s on path L,,. We call the processor possessing s the spectal processor,
denoted by S. Let b denote the base node of S. Initially, b = s = r. Let = be the
level of b when w is expanded. We analyze how many steps occur while the level of
b remains less than or equal to z. Before w is expanded, Fs # 0. In a Decision Step,
if |Fs| = 1, S does nothing; otherwise, S issues a request to a random processor.
By Proposition 3, there can be at most z < h steps at which [Fs| = 1. We call
a step at which |Fs| > 1 a trial step. We will show that, with the probability
indicated in the statement of the theorem, the number of trial steps is no more
than Tn{log d|/p + h{log d]. Then the theorem follows.

At a trial step, S attempts to donate by sending a request to a random processor
P.. We call a trial step successful if S donates at that step. A trial step is successful
if (i) P is idle and (ii) P; accepts the request of S given that P is idle. The
probability of (i) is §/p where § is the number of idle processors. Given (i), (ii) would
hold if no other overloaded processors sent requests to Pi. For p > 2, the probability”
that S is the only overloaded processor that sends request to Py is (1—1/p)*~! where

)\ is the number of overloaded processors. Therefore, independent of previous steps,

Pr{a trial step is successful] > %(1 - %)’\‘1. (3.1)

We call a trial step good if more than [p/2] processors do at least one unit of
work at that step; otherwise, it is bad. By Proposition 35, there can be at most

6nflog d]/p good trial steps. To bound the number of bad steps, we consider the
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probability that a bad trial step is successful. In a bad step, § > p/2 > A. So by

(3.1), independent of previous steps,

Pr{a bad trial step is successful ] > %(1 - -:;)”/2 > %, (3.2)
where the last inequality is by the facts that (1 — 1)* increases as z increases for
z > 1 and that p > 2.

By Proposition 4, the special processor can donate at most z[log d} times. So
there can be at most z[logd| successful steps. By (3.2), the probability that a
bad trial step is successful is at least 1/4 independently. Therefore, it is unlikely
that there will be too many bad trial steps. More precisely, let B(t, [V, p) denote
the probability that there are less than ¢ successes in N independent Bernolli trials
with each trial having probability p to be a success. By the fact that there can be

at most z[log d] < hflogd] successful steps and by (3.2),

Pr| more than [log d](n/p + k) bad trial steps]
< B(k[logd],[logd|(n/p+h),1/4). (3.3)
By the Chernoff bound [AV79], we have that for ¢t = (1 — ¥)N where 1 > v > 0,
B(t,N,p) = B((1 =7)N,N,p) < e™77N, (3.4)

Set t = h{logd], N = [logd|(n/p+ h)and t = (1 —v)N. Then v = (N —t)/N.
Hence,

o (lsde (ogd](2)
" ogd(2+h)  (2+h)

To bound 42N in (3.5) from below, we consider two cases. Case 1: n/p > h. In
this case, by (3.5),

2

(3.5)

72N > l'logd'l(%)z — nﬂogd‘\.
T+ 2p

Case 2: n/p < h. In this case, by (3.5),

S [log d1(3)* _ n[logd]

2
TN 2 h+h — 2p% °

as n > h. By taking the smaller lower bound in the two cases, we have

n{l
¥iN > —[—;ﬁﬂ. (3.6)
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By (3.3), (3.4), (3.6) and the fact that there are at most 6n[log d]/p good steps,
hence, at most 6n{logd]/p good trial steps,

Pr| there are more than 7n[log d]/p + h[logd] trial steps]
Pr{ there are more than [log d|(n/p + h) bad trial steps ]

1

<
< e—ﬁnlogd/pz‘ g

3.3.3 Randomized Algorithm 2: Idle-Initiated

Our second randomized algorithm is called Idle-Initiated Backtrack Search (I1IBS)
in which the idle processors initiate the requests for donation. IIBS is a reversal
of BIBS: each idle processor initiates a request for work to a random processor; a
processor that is not overloaded rejects any received requests; a overloaded processor
accepts an arbitrary request from the received requests, if any, and rejects the others;
the idle processor whose request is accepted by some overloaded processor receives
a donation from that overloaded processor.

The major advantage of IIBS over BIBS is efficiency. In IIBS, busy processors
need not interrupt their computation to seek idle processors to share their work
whenever they have more than one frontier node; instead, the idle processors, having
nothing to do, can spend all their time looking for new work.

Figure 3.3.3 contains the code describing the Decision Step of BIBS. The corre-
sponding modification in the Donation Step in Figure 3.1 is to replace the line “if
(i,5) € R for some j then” with “if i has selected j in the Accepting Message Step
then”.

The proof of the following theorem is similar to that of Theorem 2. It states that,
uniformly on all instances, the execution time of Idle-Initiated Backtrack Search is
likely to be within a small factor of the inherent lower bound max{n/p, h}, provided
that n is sufficiently larger than p. In case that H is of bounded degree, the execution

time of IIBS is likely to be optimal up to a constant factor.

Theorem 4 Let the random variable T(H) be the ezecution time of IIBS on H.
Let d be the degree of H. Then for any instance H and for any p > 2,

Pr(T(H) > 7|'10gd](% +h)] < ne-tnlosd/p?

Proof: The proof of Theorem 4 is similar to that of Theorem 2, except for a
difference in the lower bound on the probability that a bad trial step is successful. In
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Decision Step of IIBS

/*Requesting Message Step */
for j =1,2,...,p in parallel do
if j is idle then
dest(j) «— a random element of {1,2,...,p};
send message “j wants new work” to dest(j);
/* Accepting Message Step */
for:=1,2,...,p in parallel do
if 7 is overloaded then
let A; = {j|i has received a message “j wants new work”};
if A; # 0 then
select any k € A;;
send message “i can give you new work” to k.

/* i donates to k in the next Donation Step */

Figure 3.3.3

IIBS, a trial step of IIBS is a step in which the special processor is overloaded; a trial
step is successful if any idle processor requests work from the special processor. Let k
be the number of idle processors. In a bad step, k > p/2. Hence, the probability that
a bad trial step is successful is the probability that some idle processor randomly
“hits” the special processor, whichis 1—(1—-1/p)* > 1—(1-1/p)?/? > 1—e~'/2 > 2/5
where the second last inequality is by 1 + z < e® for z # 0. Consequently, the
corresponding constant in the exponent of the probability bound is 1/10. O

3.3.4 PRAM Implementation

Both BIBS and IIBS can be directly implemented on various PRAM models. Con-
sider the ARBITRARY model, a weak Concurrent-Write PRAM model. In an
ARBITRARY PRAM, when two or more processors write to the same cell simul-
taneously, an arbitrary processor succeeds in writing its value into the cell. To
implement BIBS in the ARBITRARY PRAM, each processor has a designated
cell in the shared memory. To send a request, an overloaded processor writes its

processor-id into the designated cell of a random processor; an overloaded proces-
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sor that succeeds in writing its value into the designated cell of an idle processor
donates to that idle processor. One can implement IIBS in a similar way.

Other weak PRAM models can also be used. One such a model is the COLLI-
SION model in which, when two or more processors write to the same cell simulta-
neously, a special value, the “collision symbol”, appears in that cell. To implement
our algorithms using a COLLISION PRAM, a request may be accepted if no other
requests were sent to the same processor. The proof of Theorem 3 actually works
for the implementation of BIBS in the COLLISION model. The same proof works
for the implementation of IIBS in the COLLISION model.

In the PRAM model equipped with a minimum-value-selection mechanism, the
minimum value appears in a cell when there are concurrent writes into that cell.
With such a PRAM model, BIBS can be implemented with more flexibility. The
minimum-value-selection mechanism enables an idle processor to accept the dona-
tion from the overloaded processor of minimum level, or with the largest number of
frontier nodes, or with a longest DFS path.

The shared memory of a PRAM allow more complex donation schemes than we
have used. A good example is the donation scheme described in [Ma86] which is
primarily designed for the shared-memory machines. This schemeis identical to ours
except that a processor donates a constant portion, about a half, of all its frontier
nodes, not just its top-nodes. Because each donation involves a large number of
nodes, this method tends to minimize the number of donations. The shared memory
is used to store all the frontier nodes. A shared-memory data structure is proposed
to implement donations efficiently. The local frontier nodes of each processor are
organized into a balanced binary tree. A donation entails splitting the binary tree
at the root into two subtrees and giving away one subtree. The transfer of a subtree
can be accomplished by giving the receiving processor a “pointer” to the segment
of the shared memory where the subtree of the donated nodes resides instead of
moving around the subtree itself. In this way, donations are managed efficiently.
In a message-passing system, all the donated nodes in one donation must be fully
specified by messages. The set of nodes in one donation may not necessarily be
closely related to each other in a way to permit a succinct description. Hence, long

messages may be needed in encoding donations in a message-passing system.

28



3.4 Open Problems and Further Research

We discuss some open problems and further research related to the parallel back-

track algorithms presented in this chapter.

1. Our results are proved under the strong assumption that the network is fully-
connected. The algorithms can be implemented on a sparsely interconnected
network such as a hypercube or butterfly network by routing the messages,
but some of their advantage is lost in that case, since the message-routing
delay will grow with the diameter of the network. One approach to avoiding
that message-routing delay would be to modify the algorithms so that, when-
ever a processor performs a random selection, it randomly selects one of its
neighboring processors instead of a random processor from the entire network.
The effectiveness of these modified algorithms will depend critically on the
interconnection structure. The main open problem is to analyze these mod-
ified algorithms in the hypercube, the butterfly or other interesting sparsely

interconnected networks.

2. When the degree d of H is not bounded, the proven upper bounds on the
execution time of our algorithms are off by a factor of O([log d]) from optimal.
It would be desirable to get rid of the O([logd]) factor, perhaps, by using
more complex schemes for donation. One possibility is to allow a processor to

donate to two or more idle processors at one time.

3. As we have remarked, some priority rules may be adopted in implementing Full-
Donation Backtrack Search and Busy-Initiated Backtrack Search. It would
be interesting to conduct simulations to compare different priority rules for

donation on some real applications.



Chapter 4

Branch-and-Bound Procedure

4.1 Introduction

Branch-and-bound algorithms are the most frequently used method in practice for
the solution of combinatorial optimization problems [(LW66,PS82,Bad5]. In this
section we give a general discussion of this method.

The fundamental ingredients of a branch-and-bound method are a branching
procedure and a bounding procedure. The branching procedure takes a given combi-
natorial optimization problem A and either solves it directly or derives from it a set
of subproblems, A4,, A,,..., Aq, such that an optimal solution to problem A can be
found by solving each of A;, A,,..., Aq and then, among these d solutions, taking
the one of least cost. The bounding procedure computes a lower bound on the cost
of an optimal solution to a given problem or subproblem A; such lower bounds
can be used to guide the order in which subproblems are solved, or to determine
that certain subproblems need not be considered at all. A branch-and-bound com-
putation can be viewed as a search through a tree of subproblems, in which the
original problem occurs at the root, and the children of a given subproblem are
those subproblems obtained from it by branching. A leaf of the tree corresponds to
a subproblem that can be solved directly by the branching procedure. The object
of the search is to find a leaf of minimum cost. One can view the primitive step
as the expansion of a given node of the tree to produce its children and their cost
bounds.

The lower bounds computed by the bounding procedure possess the monotonic-

ity property: if subproblem A; is derivable from subproblem A by the branching
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procedure, the lower bound on A; is at least as large as the lower bound on A. This
property of the lower bounds allows the algorithm to rule out certain subproblems
from further consideration and to determine when it has found the solution of the
least cost. Suppose that the algorithm have found a solution of cost c. By the
monotonicity of the bower bounds, any subproblem A with a lower bound greater
than or equal to ¢ cannot give a solution of cost less than ¢, thus can be discarded
from further consideration. To terminate, the algorithm must ensure that all the
remaining subproblems have lower bounds as least as large as the cost of some found
solution, and if so, return one solution of least cost among the found solutions.

In addition to the branching and bounding procedures, a selection rule is needed
in deciding the order by which subproblems are branched on. In view of a tree
search, such a rule determines the order in which the nodes of the tree are explored
and the portion of the tree that will be generated. The “best-first” rule is to branch
on the subproblem of least lower bound. An algorithm using the best-first rule may
return the first solution it finds, which must be a solution of minimum cost. The
best-first rule tends to minimize the number of subproblems that are branched. The
set of subproblems present at any given time can be kept in a priority queue so that
the subproblem of least lower bound can be easily found. The size of this queue
may be large at times. On the other hand, the “depth-first” rule is to branch on
a latest generated subproblem. This rule tends to minimize the memory required
in executing the algorithm, but may explore subproblems that would not render
the least-cost solutions. One may combine these rules into some mixed rule so that
a trade-off between time and space can be achieved. A recent study on the time-
space trade-off of the sequential branch-and-bound computation can be found in
[KSW8s|.

We are interested in executing branch-and-bound method in parallel. The funda-
mental problem in a parallel branch-and-bound computation is to allocate the sub-
problems to the processors so that they can all be performing useful work. Unlike
the parallel backtrack search algorithms discussed in the previous chapter, a par-
allel branch-and-bound algorithm may not achieve an effective speed-up by merely
achieving a good “load-balancing”. A successful solution must ensure that pro-
cessors will not spend much time explore useless subproblems. Furthermore, the

overhead for interprocessor communication must not be excessive.
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4.2 An Example

An instance of the Traveling Saleman Problem (TSP) is a complete directed graph
on n nodes in which each directed edge (i, ;) is associated with a real number ¢; ;
called the cost of edge (i,). A tour is a traversal of the graph in which each node
of the graph appears exactly once. The cost of a tour is the sum of the costs of the
edges in the tour. A solution to the TSP is a tour of least cost.

We shall describe a branch-and-bound procedure for solving the TSP. The bound-
ing procedure is a procedure that solves the Assignment Problem (AP). The problem
instance of AP is the same as that of TSP. The objective of AP is to find a per-
mutation ¢ on the set {1,2,...,n} such that ¢(¢) = ¥ ¢ () is minimized. AP can
be solved by the Hungarian method in at most O(n?®) steps [PS82]. A tour induces
a permutation on {1,2,...,n} by mapping ¢ to j if (¢,j) is an edge of the tour.
Hence the cost of a solution to the associated AP is no larger than the cost of a
minimum-cost tour. To bound a problem or subproblem A of TSP, we solve the AP
associated with A. If the solution o to the AP has only one cycle, then return o as
the solution to A; otherwise, A is not solved and ¢(o) is returned as a lower bound
on the solution to A.

The branching procedure is based on the following fact: if a cycle contains less
than n edges, then not all the edges on the cycle can be in the same tour. Suppose
that the solution ¢ to the AP associated with a problem or subproblem A has more
than one cycle. Let D be a smallest cycle in o and ey, ez,...,eq be the edges of D.
To branch on A, we create d subproblems A4;, Az, ..., Aq by “breaking” cycle D as
follows: for 1 < i < d, A; is derived from A by deleting edge e; (by setting the cost
of e; to +00). Since not all edges of cycle D can be in the same tour, any tour of
A must be also a tour in some A;, 1 <i < d. So a solution to A can be found by
solving subproblems A;, 1 < i < d, and among the d solutions, taking the one of
least cost. The lower bounds obey the monotonicity property: deleting an edge can

only increase the cost of a minimum-cost permutation.

4.3 Generic Branch-and-Bound Algorithms

In this section we give an abstract generic description of the branch-and-bound
algorithms we consider.

Let H be a rooted tree in which each node has a finite number of children. Let
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V be the set of nodes of H. Associated with each node v € V is a cost ¢(v) such
that

(1) if v # w then ¢(v) # c(w);
(ii) (ii) if w is a child of v then ¢(v) < c(w).

Tree H is intended to model the tree of subproblems associated with a branch-
and-bound algorithm on a given problem instance. The nodes of H correspond to
the subproblems that can be generated by the branching procedl.lre on the given
problem instance. The children of node v correspond to the subproblem that can be
derived by the branching on the subproblem represented by v. For v € V that is not
a leaf, c(v) is the lower bound computed by the bounding procedure of the algorithm
on the subproblem represented by v; for a leaf v, ¢(v) is the cost of a solution to the
subproblem represented by v. The monotonicity of the lower bounds is reflected by
(ii). Moreover, the lower bounds on different subproblems are required by (i) to be
distinct. The requirement of (i) can be too restrictive in application. For instance,
a branch-and-bound computation for determining the chromatic number of a graph
may produce many subproblems of the same lower bound. The purpose of (i) is
for technical convenience. Later in the paper we will discuss the consequences if we
allow equal lower bounds.

We consider algorithms whose objective is to generate the leaf of least cost in
H, using the node ezpansion operation. When this operation is applied to a node
v it either determines that v is a leaf or produces the children of v and makes their
values known to the algorithm. A node can be expanded only if it is the root of H
or if it is a child of some node previously expanded. This model is similar to one
introduced for a different purpose in [KSW86].

Figure 4.3 is a generic description of the kind of algorithm we consider. For any
set $ C V let I(S) denote the children of the nodes in S. The frontier, denoted by
variable F', is the set of nodes that have been generated but not expanded, and the
variable B denotes the minimum cost of any expanded leaf. We think of the nodes
in S in Figure 4.3 as being expanded simultaneously; thus the execution time of the
algorithm is defined to be the number of executions of the body of the while loop.

There is an inherent lower bound on the execution time of the algorithms de-
scribed. For a given problem instance (H,c) let v* be the leaf of minimum cost in

H. Let H be the subtree determined by the nodes in H of cost less than or equal to
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Generic Node Expansion Algorithm

Fe{r};
B «— oc;
while F # 0 do
select a set of nodes S C F;
expand the nodes in S;
F — {F\S}UT(S);
B — min({B} U {c(v) : v € S and v is a leaf });
F—{veF:cv)<B} '

Figure 4.3

v*. Every node expansion algorithm that determines the minimum-cost leaf must
expand every node of H. This can be seen as follows. Suppose that the algorithm
did not expand u € H. Let H’ be the tree that differs from H in having a leaf w in
the subtree rooted at u such that ¢(u) < c(w) < ¢(v*). On input H’, the algorithm
would still identify v* as the least-cost leaf of H’. But this is wrong, since the cost
of w is less than the cost of v* in H'. Hence, a correct algorithm must expand every
node of H. Let n be the number of nodes in H, and let & be the number of nodes in
a longest root-leaf path in H. Then the execution time of any algorithm is at least
h, since the nodes along a path must be expanded one at a time, and the execution
time of any p-processor algorithm is at least n/p, since n nodes must be expanded
and at most p nodes can be expanded at a single step. Thus max{n/p,h} is an
inherent lower bound on the execution time of any p-processor algorithm on the
instance (H,c). Our goal is to design the p-processor algorithms whose execution

time would come close to the lower bound max{n/p,h}.

4.4 Previous Work on Parallel Branch-and-Bound

In this section we survey some previous work on parallel branch-and-bound. Most
were reported in the last five years.

Lai and Sahni {LS84] studied the anormaly that a parallel algorithm may achieve
a super-linear speed-up over its sequential counterpart. This type of anormaly

occurs when a high-quality solution found late by the sequential algorithm is found
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early in the parallel algorithm. Li and Wah [Li85] suggest an execution order
of a parallel algorithm that tend to maximize the number of super-linear speed-
up anormaly. Though having some theoretical interests, the study of anormaly
does not offer direct insights to the effective parallelization of branch-and-bound
computation.

A number of parallel implementations of branch-and-bound computation have
been proposed. In the days the computer memory was still expensive, Imai et
al [IYF79] proposed an implementation of parallel depth-first search in which k&
processors explore the k most recently generated subproblems where the set of sub-
problems generated are kept in a shared memory for global access and updates.
Wah and Ma [WM84] proposed an architecture for implementing global-best-first
search in which k processors explore the k best active subproblems. Further discus-
sion on the global-best-first search can be found in (WLY85]. They found that the
selection of the globally best subproblems represents significant system overhead.
Kumar and Kanal [KK84] suggested the scheme in which each processor performs
the same branch-and-bound search but with a different pre-set lower bound to
started with. The processor started with a high pre-set lower bound may finish
fast, and if it ever finds any solution, that solution must be an optimal solution.
In 1985, a simulation tool for performance evaluation of parallel branch-and-bound
algorithms was developed at the University of Colorado at Boulder in an attempt to
understand the significance of various parameters involved in a parallel branch-and-
bound computation through experimental means. A report of this research can be
found in [BRT87]. More recently, Kumar et al [KRRSS] considered several parallel
formulations of the best-first branch-and-bound algorithm based on different data
structures.

There are some recent efforts on achieving effective speed-up. Grandine [Gra87]
implemented the branch-and-bound algorithm given as the example in Section 4.2 on
a 18-processor shared-memory Sequent, using the global best-first strategy, and re-
ported speed-up about 6 on large input instances. Vornberger [Vo87a] implemented
a sequential branch-and-bound algorithm for solving the Vertex-Cover Problem on
a network of 8 computers and reported a nearly perfect speed-up. In their paper of
DIB [FM87], Finkel and Manber also reported a good speed-up achieved by DIB in
parallelizing a branch-and-bound algorithm for solving the TSP.
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Chapter 5

A Randomized Parallel

Branch-and-Bound Procedure

In this chapter we present and analyse a universal randomized method called Lo-
cal Best-First Search for parallelizing sequential branch-and-bound algorithms. The
method is a parallel implementation of the “best-first” search strategy, and it uses no
global data structures or complex communication protocols. The computation alter-
nates between node expansion steps, in which each processor expands the cheapest
node in its possession, and the node distribution steps, in which the children of the
nodes that were expanded in the previous node expansion step are sent to random
processors. Our main result is that, with high probability, the execution time of
Local Best-First Search is unlikely to exceed the inherent lower bound.

5.1 Local Best-First Search

Among algorithms that expand at most p nodes per step, the following best-first
rule for selecting the set S at each step is a direct extension of sequential “best-first”
search.

Best-First Rule

if [ F]<pthenS=PF

else S consists of the p nodes in F' of least cost

The algorithm that implements this rule will be called Global Best-First Search.

One can easily show that the execution time of Global Best-First Search comes close
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to the inherent lower bound.
Proposition 6 The ezecution time of Global Best-First Search 1s at most n/p+ h.

Proof: Let w be any node in H and P(w) be the path from the root of H to w.
Let v be the node on P(w) that is currently in the frontier F. Consider the next
node expansion step. If v does not get expanded next, then by the best-first rule,
all p nodes expanded in this step are in H. There can be at most n/p such steps.
If v gets expanded next, the child of v on P(w) will be in F' next. There can be
at most h such steps. So w will be expanded within n/p + h steps. Since w is an
arbitrary node in H, all the nodes in H will be expanded within n/p + h steps. O

However, in order to implement Global Best-First Search, it seems necessary to
keep the set F in a global priority queue so that, at each step, the p nodes of least
cost in F' can be selected, assigned in one-to-one fashion to the p processors, and
distributed to their assigned processors. The implementation of these selection and
distribution operations using messages is costly; to avoid this overhead, we propose
a more local algorithm, called Local Best-First Search, which uses no shared data
structures. Instead, the unexpanded nodes are distributed among the processors,
with each unexpanded node belonging to exactly one processor. The computa-
tion alternates between node ezpansion steps, in which each processor expands the
cheapest node in its possession, and node distribution steps, in which the children of
the nodes just expanded are sent to random processors. More precisely, processor ¢
maintains a set of nodes F}, its local frontier, and a cost bound B;, which is certified
to be the cost of some leaf. F} is the set of nodes of cost less than or equal to B;
which have been received from other processors but not yet expanded. At each step

every processor ¢ does one of two things:

(i) if F} is not empty then it expands the node of minimum cost in ¥; and sends its

children to processors chosen at random;

(ii) if F; is empty then it sends the message “there is a leaf of cost B;” to a processor

chosen at random.

The processors then update the sets F; and bounds B; on the basis of the messages
they have received. The computation continues until all sets F; are empty: at that

point the minimum cost of a leaf is given by min({B;,i = 1,2,..., p}). The execution
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Local Best-First Search

/* Initialization™®/
F={r}
for:=2,3,....,p, F: —0;

fori=1,2,..,p, B; — oo;
while some set F; # § do
/*Node Ezpansion Step*/

fori=1,2,..,p in parallel do
if F; # 0 then
let v; be the node of least cost in Fj;
expand v;;
F; — F;\ {vi};
if v; is a leaf then B; «— c(v;)
else
for each child w of v; do
dest(w) «~ a random element of {1,2,...,p};
send w to dest(w)

else

send “there is a leaf of cost B;” to some designated destinations;

/*Message Arrival Step*/
for:=1,2,...,p in parallel do
Fi = FU{w: dest(w) = i};
fori =1,2,...,,p in parallel do
B; — min(B; U {z : 7 has received a
message “there is a leaf of cost z”});

fori =1,2,...,p in parallel do
F, — {v € F;: ¢(v) £ Bi}.

Figure 5.1
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time of the algorithm is the number of node expansion steps it performs. The code
of Local Best-First Search is contained in Figure 5.1. The code of Figure5.1 does
not specify the designated destinations for a processor to send its message when its
local frontier is empty; and it also omits the details of how messages are used to
notify all processors of the minimum cost and turn the computation off. We will
deal with this in section 5.4.

On each fixed problem instance (H,c) the execution time of the randomized
algorithm Local Best-First Search is a random variable. We will prove that there
exists a universal constant d such that, for every instance (H, ¢) the following holds
with high probability: the ratio between the execution time of the Local Best-First
Search and the minimum possible execution time of any p-processor algorithm is less
than d. Thus Local Best-First Search is a universal method of executing branch-
and-bound algorithms efficiently in parallel without shared data structures.

The following is the main theorem of the paper. It states that, uniformly on
all instances, the probability that the execution time of our method is within a
constant factor of the inherent lower bound max{n/p, h} converges rapidly to 1 as
n tends to infinity.

Theorem 5 (Main Theorem) There ezist positive constants «, 3, v and d such
that the following holds for every instance (H,c): Let n be the number of nodes in
H and let h be the mazimum number of nodes in a root-leaf path of H. Let the
random variable T(H,c) denote the ezecution time of Local Best-First Search om

the instance (H,c). Suppose that n > p3, then
n 2 ﬂ a
Pr[T(H,c) > d(; +h)] < ypn exp(—;n ).

Theorem 5 is an immediate consequence of the following theorem, combined with

the fact that H has at most n nodes.

Theorem 6 For every instance (H,c) and for every node w in H, let the random
variable T,,(H,c) denote the number of steps of Local Best-First Search on instance

(H,c), up to the point when node w is ezpanded. Suppose that n > p°, then
n B
Pr[T.(H,c) > d(; + h)] < 7pnexp(—; n%),

where a, 3, v and d are the constants stated in Theorem 5.
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5.2 Proof of Theorem 6

In this section we give a proof of Theorem 6. The proof given here is the complete
version of the proof given in [KZ88]. Though lengthy and somewhat complicated,
the proof contains several ingredients that appear to be of considerably mathemat- -
ical interest in their own right. Recently, A. Ranade [Ra89] had found a clever
argument that greatly simplifies the proof given here. However, for the purpose of .
the thesis, only the original proof is given here.

In analyzing the time required by Local Best-First Search to expand the nodes -
in H we can disregard all nodes of H that do not lie in H, since no processor will
ever choose to expand such a node when it has a node of H available. We divide
the nodes of H into two types: special nodes, which lie on the path from the root to
w, and regular nodes, which do not lie on that path. At each step, there is exactly
one unexpanded special node s present, and we concentrate on the processor that

owns 3. We can distinguish among three possible actions by that processor:
(i) The processor expands s.

(ii) The processor expands a node that was generated after s was generated; such

a step is called a post-delay.

(iii) The processor expands a node that was generated earlier than s was generated,

or at the same time. Such a step is called a pre-delay.

Action (i) can occur at most h times, since there are at most h special nodes. A
node can cause a post-delay only if, at the time it is generated, it is sent to the unique
processor containing a special node. Since the destinations of newly generated nodes
are drawn independently at random from {1,2, ..., p}, the probability distribution of |
the number of nodes capable of causing a post-delay is stochastically no greater than
the number of successes in a Bernoulli process with n trials, where the probability
of success at each trial is 1/p. By the Chernoff bound [AV79], the chance that the
number of post-delays is greater than 2n/p is at most e~"/°?,

Thus the crux of the proof of Theorem 6 lies in bounding the number of pre-

delays. To approach this bound we view the computation as a queueing process.
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5.2.1 A Queueing Process

To describe the execution of Local Best-First Search as a queueing process, we
regard each processor as a server and each node in H as a customer. Customers
corresponding to special nodes are called special customers, and those corresponding
to regular nodes are called regular customers. Associated with each customer is a
number called his cost. Initially, queue 1 contains one special customer, and queues
2,3,...,p are empty. The queueing process alternates between service steps and
arrival steps. At the beginning of each service step there is exactly one special
customer in the system, and the queue containing that customer is called the special
queune. At each service step, the customer of least cost in each nonempty queue is
served. At each arrival step, a sequence of customers arrives at the queues. If a
special customer was served at the preceding service step then exactly one of the
arriving customers is special; otherwise, all the arriving customers are regular. The
total number of customers arriving during the entire process is n, and at most h of
these are special. The cost of the process is the number of service steps in which a
customer is served who is in the special queue and arrived there before the current
special customer did.

The relationship between the queueing process and the execution of the algorithm
is apparent. The service steps correspond to node expansion steps in the algorithm,
and the arrival steps correspond to message arrival steps in the algorithm. The cost
corresponds to the number of pre-delays.

Define a destination sequence as an infinite sequence ay, as, ... of elements from
{1,2,...,p}. The intended meaning is that .ak is the destination of the kth node of
H to be generated (to obtain a well-defined ordering we use the convention that,
among the nodes generated simultaneously at a single node expansion step, the
special node, if any, is placed last, and the regular nodes are arranged in order of
increasing cost). It should be clear that the following data completely determines
a run of the queueing process: an n-node tree H in which no root-leaf path is of
length greater than h, a function ¢ assigning a cost ¢(u) to each node u in H, anode
win H (w is the end point of the path of special nodes) and a destination sequence.
Since the algorithm chooses the destinations of the generated nodes independently
at random, it is appropriate to assume that the components of the destination
sequence are drawn independently from the uniform distribution over {1,2,...,p}.

We may think of H, cand w as being chosen by an adversary whose goal is to
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maximize the probability that the cost of the queueing process exceeds d(n/p + k)

for some suitable constant d.

We now modify the rules of the queueing process in favor of the adversary.
At each step, the adversary chooses one of five types of events: the arrival of a
special customer, the arrival of a regular customer, and three types of service events,
depending on who in the special queue gets served: the special customer, a regular
customer who arrived before the special customer did, or a regular customer who
arrived after the special customer did. The two types of arrival events are denoted S
and R (for special and regular), and the three types of service events are denoted s,
pre and post (the service of the special customer, a pre-delay or a post-delay). When
an S-event or an R-event occurs, an element is drawn from the uniform distribution
over {1,2,...,p} to determine the queue at which the arrival will take place. When
a service event occurs one customer from each nonempty queue is served, with the
type of the event determining whether the customer served from the special queue
is the special customer, a customer who arrived before the special customer, or a
customer who arrived after the special customer.

In selecting each event the adversary knows the random choices made at all
earlier events, and is thus able to calculate which customers reside in each queue.

The adversary is constrained by the following rules:

(a) The first event is an S-event.

(b) S-events and s-events must alternate;

(c) the number of R-events and S-events is n, and at most h of these are S events;

(d) a pre-event can occur only if the special queue contains a regular customer who

arrived before the last S-event;

(e) a post-event can occur only if the special queue contains a regular customer

who arrived after the last S-event.

In the modified queueing process the adversary preserves the ability to simulate
an instance given by the triple (f:f ,¢,w); i.e., he has the freedom to specify the
events as they would occur for that instance, given the destinations of the successive

arrivals, so that the number of pre-events is the number of pre-delays in the instance

(H,c,w).
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The adversary succeeds if the number of pre-events exceeds d(n/p + k). Thus
we can prove Theorem 6 by showing that the adversary’s chance of success in the
modified queueing process is exponentially small.

We will show that the adversary has an optimal strategy in which the following

rules are respected:

Rule 1 Always serve the regular customers in the special queue before the special

customer;
Rule 2 Schedule no arrivals when the special customer is present.

Schedules respecting these two rules are completely described by the sequence of
arrival events. Service always occurs just after an S-event, and continues until all
customers in the special queue get served, with the special customer being served
last, and no arrivals would occur during the period of these services. Post-delays
never occur, and the cost of the process is simply the number of regular customers
who are in the special queue when they are served. Equivalently, the cost is the

sum of the lengths of the queues at which the special customers arrive.

Recall that a destination sequence A = aj,a.,... is a sequence of elements of
{1,2,...,p}; a; gives the number of the queue at which the ith arrival occurs. A
strategy S for the adversary is a rule that determines the sequence of events as a
function of the arrival sequence. The rule must respect causality: i.e., the sequence
of events that occur before the kth arrival must be determined by a;,as,...,ak-1.
Any strategy S determines which of the arrivals are regular and which are special.
This information can be encoded as an arrival pattern B = by, bs,..., where b; =1
if the ith customer to arrive is special, and b; = 0 if the ith customer to arrive is
regular. Given the destination sequence A and the arrival pattern B, the behavior
of a strategy respecting Rules 1 and 2 is completely determined. The proof that
the strategy respecting Rules 1 and 2 is optimal is a consequence of the following

proposition.

Proposition 7 For each n and each choice of the destination sequence A and the
arrival pattern B of n arrivals, the unique sequence of events consistent with A, B
and Rules 1 and 2 yields at least as large a number of pre-events as any sequence

of events consistent with A and B.
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Proof: Fix a choice of destination sequence A and arrival pattern B of n arrivals.
Let L = L(A, B) be the unique sequence of events consistent with 4 and B and
Rules 1 and 2. Let L be any sequence of events consistent with A and B. Let Q
and Q be the set of queues associated with L and L, respectively.

Let k be the number of special customers among the n arrivals and let s; denote
the ith special customer. Let d; and d; be the number of the pre-delays to s; that

occur in L and L, respectively. We want to show that

: k
Zdi > Zcii- (5.1)

The state of a set of p queues is denoted by (g(1),¢(2),...,q(p)) where ¢(j) is
the length of the jth queue. Let Q; = (gi(1),...,4(p)) and Q: = (G(1),...,&(p)
denote the states of Q and @, respectively, upon the arrival of s;. Set

o; = max {§(j) - ()}

1<j<p

Notice that a; = 0. We will show that

Jk < dp + ai (5.2)

and for: =1,2,...,k =1,
i1 < ai — d; + d;. (5.3)
With (5.2) and (5.3) one can easily show (5.1) by starting with (5.2) and then

repeatedly using (5.3).
We first show that fori =1,2,...,k,

d; < di + i, (5.4)

which includes (5.2) as a special case.

Let us fix i and assume that s; arrives at the 1st queue. Then, by Rule 1,
d; = ¢i(1). Since there can be at most §;(1) pre-delays to s; in Q, d; < §(1). But
G(1) — ¢:(1) L ai, s0 d; < §(1) € ¢(1) + a; = di + a;, which proves (5.4).

To prove (5.3), let ai(j) be the number of arrivals to the jth queue between 3;
and s;41 exclusively. a;(j) is determined by A and B. Then, by Rules 1 and 2,

gi+1(J) = max{0, ¢(j) — di} + ai(J)
and
Gis1(j) = max{0, G(5) + ai(§) — di},

44



for j =1,2,...,p. Since max{a,b} — ¢ = max{a — ¢, b—c},

max{0 — gis1(j), Gir1(J) + a(j) — di — g1 (4)}

Gi+1(7) = @iv1(J)

< max{0, &(J) - d; - ¢:(j) + di}
< max{0, o; — d; + d;}
S ai—(‘ii"}'dia

where the last inequality is by (5.4). Hence
aipr = max{gi1(Jj) - gnlf)} S i - di + di,
1<1<p

which proves (5.3) and completes the proof. O

5.2.2 A Continuous-Time Model

The imposition of Rules 1 and 2 simplifies the queueing process and enables us
to give the following clean description of it. A sequence of n customers arrives
at a system of p queues. When each customer arrives he is assigned to a random
queue. An adversary who observes the arrivals decides, after each arrival, whether
to trigger a service phase. The total number of service phases is at most h. When
a service phase is triggered a random queue is chosen. If the queue contains m
customers then the adversary receives a payoff of m and m + 1 service events occur;
at each service event one customer in each nonempty queue is served and deleted
from his queue. No arrivals occur during a service phase. The adversary’s goal is
to maximize the probability that his total payoff exceeds d(n/p + h), where d is
independent of p, n and h. We wish to prove that his probability of achieving this
goal goes exponentially to zero as n tends to infinity.

To facilitate the analysis, we embed this process in continuous time by assuming
that customers arrive according to a Poisson process with rate Z over the time period
[0, [4n/p]]. At each arrival, the queue where the customer arrives is drawn from
the uniform distribution over {1,2,...,p}. Thus, by a basic property of the Poisson
process, the arrival processes for the p queues are mutually independent, and each
is Poisson with rate % When a service phase is triggered, the service events occur
immediately, with no lapse of time. It should be clear that letting customers arrive
according to a Poisson process has no effect on the payoff received by the adversary

in the course of the first n arrivals. Moreover, by the following Proposition 3(i),
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the probability that the number of arrivals over the time period [0, [4n/p]] is less
than n goes exponentially to zero as n tends infinity. Thus it suffices to prove that,
in this continuous-time set-up, the adversary has an exponentially small chance of

achieving a payoff greater than d(n/p + h).

Proposition 8 Let N(t) be the number of arrivals in a Poisson process with rate

p over the time interval [0,t]. Then

(i) PrN(t) < [4]] < exp(-0.31%]);
(if) Pr{N(t) > [2ut]] < exp(-0.09[2ut]).

Proof: Let S,, = "7, X;, where X; are independent identically distributed expo-

=1

nential random variables with mean 1/u. Then
N)Sm& Sn >t

The following elementary large deviation bounds hold for an arbitrary random

variable Z:

Pr(Z > 2] £ gr>1£ e % Eef? (5.5)
Pr[Z < 2] < inf e?Ee% (5.6)

We apply these bounds to S,,, obtaining (i) with § = u/2in (5.5) and (i) with

9 = 2u in (5.6) via routine calculations. O

Now we define a modified continuous-time process that incorporates a mecha-
nism, which we call amortization, to keep the queue lengths small. In addition to
the service phases scheduled by the adversary, we schedule random service events
according to a Poisson process with rate 1. At each random service event, one
customer is removed from each nonempty queue, and the adversary receives one
unit of payoff. The effect of these random service events on the total payoff is that
we amortize some of the payoff that the adversary would otherwise receive in the
service phases. We show next that the adversary is better off with the amortization,
namely, the payoff the adversary gain from the random service events is at least as
large as the payoff the adversary is deprived of by the random service events. On
the other hand, by Proposition 8(ii), the probability that more than [8n/p] random

service events occur over the time period [0, [4n/p]] goes exponentially to zero as
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n tends infinity. Thus it suffices to prove that, in the modified continuous-time
process in which random service events occur according to a Poisson process with -
rate 1, the adversary has an exponentially small chance of achieving a payoff greater

than d&'(n/p + h), for some suitable constant d'.

Proposition 9 Let U and U be the number of units of payoff the adversary receives
in the process with and without random service events, Tespectively. Let R be the
number of random service events that would occur. Then U < U + R, as random

variables.

Proof: The proof is similar to that of Proposition 7. We choose an arbitrary
instance of arrivals and random service events and show that I < U + R holds for
the chosen instance. We assume that all the arrival events and the random service
events occur at different times, as it holds with probability one.

Let Q and Q denote the set of queues associated with the processes without
and with random service events, respectively. Let k, s;, d; and d;, be defined as
in Proposition 7. So U = Lici<k d; and U = T i<ick di- Let R; be the number
of random service events that occur before the arrival of s; and let r; = R; and
ri=Ri—Ri.yfor1<i<k. SoR=Ycickri- We want to show that

S dis S di+ YT (5.7)

1<i<k 1<i<k 1<i<k

As in Proposition 7, let Q; = (gi(1),...,4¢(p)) and Q: = (&(1),...,d(p)) de-
note the states of Q and Q respectively upon the arrival of s; and set a; =
maxi<j<p{Gi(j) — ¢(Jj)}. Notice that a; = 0. We will show that

Jk < di + ok (5.8)
and for: =1,2,...,k -1,
@i o —di+di + i (5.9)

From (5.8) and (5.9) one can easily derive (5.7).

The proof of (5.8) is similar to the corresponding one in Proposition 7. To prove
(5.9), we fix ¢ and let Qi = (g{(1),...,¢i(p)) and Q! = (di(1),...,d\(p)) denote the
states of Q and Q respectively upon the time the service phase triggered by s; is

completed. Let
i —_ ..;. . _ , .
o = g%{q,(y) :(7)}- (5.10)
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As before, let a;(j) be the number of arrivals to the jth queue between s; and s;;
exclusively. Then a;(j) = ¢i+1(j) — ¢/(j), as no random service events occur’in Q.
Set a'(j) = gi+1(J) — ¢4(J). Then ai(j) < ai(j) + ri+1, as one random service event

may serve at most one arrival in each queue. Hence, for 1 < j < p,
Gir1(3) — gn1(4) < G0U) — €(7) + rina,

which gives
Qg1 S a: + Tigl. (511)

Also we have ¢/(j) = max{0, ¢:(j) — di} and §i(j) = max{0, &(j) — J,} Hence,

IN

max{0, §(j) — a(j) — di + di}
max{0, a; — d; + di}
< oaj—di+d;, [by(5.8)]

@(J) — ¢:0)

IN

which gives, by (5.10),
aﬁSa;-J;+di- (5.

(W1}
)
S
N—r

The combination of (5.11) with (5.12) gives (5.9), completing the proof. O

The effect of random service events on the lengths of the queues is significant.
For each queue, the arrival rate is 1/2, which is less than the rate of random service
events, which is 1. So the length of a queue is likely to be small, without even con-
sidering the effect of the service phases. Let M be the number of service phases in
which the adversary receives a payoff of at least k. These service phases correspond
to instants when the special customer arrives at a queue of length at least k. Let m;
be the number of service phases in which the adversary receives a payoff of exactly

k. Then the total payoff received by the adversary is

kak iim, = lek- (5.13)
k=1 1= k=1

Our analysis of the adversary’s total payoff begins by studying the probability
distribution of M for a fixed k. For this analysis we make the pessimistic assump-
tion that the adversary’s sole purpose is to maximize My, the number of times the
special customer arrives at a queue of size at least k. In Section 7 we investigate
the frequency with which queues of length at least k occur. This is preceded by

Section 6, in which we determine how often the adversary can expect to arrive at
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a queue of length at least k, knowing how frequently such queues occur. Section
8 combines the results of Sections 6 and 7 to show that the adversary’s chance of

achieving a payoff greater than d(n/p + h) is small.

5.2.3 Shooting Gallery Game

We introduce a game called the Shooting Gallery Game. The player of this game is
a marksman who possesses m targets and k bullets. Before each shot the marksman
may set up any number of targets from 1 to p. If he sets up ¢ targets, then his chance
of success is ¢/p. If he succeeds then his score increases by one and the ¢ targets are
destroyed. If he fails, then no targets are destroyed. He is allowed A shots, and the
total number of targets available is m. The goal of the marksman is to maximize
his final score.

The shooting gallery game is intended to model the situation of an adversary
who watches the fluctuations of the queues, with the goal of scheduling the arrivals
of special customers at times when they are likely to arrive at a queues of length at
least k. A shot in which ¢ targets are set up is intended to represent the arrival of a
special customer at a time when ¢ of the p queues are of length & or greater. Thus
m, the number of targets, corresponds to the number of moments when some queue
reaches size k, and h, the number of shots, represents the number of special arrivals.
Our analysis favors the adversary by giving him complete freedom to allocate the
targets to shots, subject to a restriction on the total number of targets and the
number of shots.

The marksman has a dilemma: setting up more targets gives him a better chance
of success; but such a success would also destroy more targets. Suppose that a fixed
number of targets, say a, are set up each time. Then m targets allows a score of
at most m/a and h bullets achieves a score of ha/p on average. These two limits

on the marksman’s score become approximately equal when a = [ /mp /h 1. Such
a choice enables the marksman to achieve an expected score close to \/mh/p. We

show that the marksman has an exponentially small chance of achieving a score
that is substantially better than \/mh/p no matter how he sets up the targets.

Theorem 7 Let S denote the marksman’s final score. Then

Pr[S > 3y/mh/p] < exp(—%\/mh/p ),

no matter how the marksman selects the number of targets at each step.
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Proof: If h < 9m/p, then 3,/mh/p > h > S and the proposition trivially holds.
We assume that h > 9m/p. Let a = 1,/mp/h < p.

We change the scoring rules in the marksman'’s favor as follows. Let us say that
a shot is of type 1 if more than a targets are set up, and of type 2 if a or fewer
targets are set up. Then we count each type 1 shot as a success, and give each type
2 shot a chance of success a/p. The number of successes in type 1 shots is at most
m/a = 2,/mh/p. Let B(n,q) denote the number of successes in a Bernoulli process
with n trials, each having a chance of success g. Then the number of successes in
type 2 shots is stochastically dominated by B(h,a/p). Then

Pr(S > 3y/mh/p] < Pr[B(h,a/p) > \/mh/p]| < exp(—-;-\/mh/p),

where the final inequality follows from the Chernoff bound on the tail of the binomial
distribution. O

5.2.4 A Simple Process

Continuing our analysis of the random variable M}, we investigate the frequency
with which the length of a given queue is greater than or equal to k. Disregarding
the service phases caused by the adversary, each queue has Poisson arrivals with
rate 1/2 and Poisson service with rate 1. This queueing process is a simple birth-
and-death process. Let an event be either an arrival event or a service event in
the process. Associated with this process is a Markov chain {X;} where X; is the
number of customers in the queue after the ith event. The Markov chain {X;} is
a simple random walk on nonnegative integers, started at Xo = 0, with transition

probabilities
Pop =3 = 1 —poo
and

Dji+1 =

[SY

=1- Pji-1, fOI‘j > 0,

where p; ;; = Pr[X;;1 = /| Xi = j]. This Markov chain has a stationary distribu-
tion {m;},i=0,1,..., with
mo=1/2" (5.14)

Let B, be the set of states {i : i > k}. Let Ux(m) denote the number of times
that {X;} is in By up to step m, given that the state at time 0 is 0. The following
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is the main theorem of this section. It gives an upper bound on the probability of
a large deviation of Ux(m) from E[Um)].

Theorem 8 For any fized k > 0,

z?

Pr(|Ux(m) - E[Ux(m)]| 2 =) < exp(—g5—

).

We need three lemmas. A sequence of random variables {Y; : i = 0,1,...} is a
martingale if, for i > 0, (i) E[|Y;|] < oo and (i) E{Yi:1|Yo,..., Y] =Y.

Lemma 1 (Martingale Tail Inequality [SS87]) Let {¥; : i =0,1,...} be a martingale
such that |Yipn = Y| <c for 0 <i<n. Then

Pr(Y, > Y5 + cay/n) < e=/?,

Let T,o be the expected number of steps {X;} takes to reach state a from state
0. Notice that T,5 = aTyo.

Lemma 2 Ty = 3.

Proof: By conditioning on the next state,

T20 2T10
To=1+—=1 .
10 + 3 + 3

a

Let E?(m) denote the expected number of times that {X;} is in B up to step
m, given that the state at time 0 is a. By definition, Ef*'(m) > E(m) and
Em) < Ef(m +1) < Eg(m) + 1.

Lemma 3 For|a—b| <1,
|ER(m) — E{(m —1)| < Tho.

Proof: There are three cases:

(i) @ =b, |Ef(m) — Ef(m - 1)| < 1;

(i) b=a-1, Eg7'(m —1) < Ef(m) < Tio + E{7'(m —
T(10)) < Tio + Ef~'(m — 1);

(i) b=a+1, EYm)—1< Eff'(m —1) < Ty + Ef(m). O
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Proof of Theorem 8: For 0 <: < m, let
Y; = E(U(m)| Xo, X1, ..., X).

Then {Y,,Yi,...,Yn} is a martingale (see e.g. [Do53, p92]) with Yy = E[Ui(m)]
and Y;, = Ux(m). By the Markovian property,

Y; = Uk(3) + Efi(m —1).
Since |Uk(i +1) — U(3)| < 1,
Vi1 = Yil < 1+|E* (m—i—-1) - Ef(m ~9)|. (5.15)
But |X;41 — Xi| < 1. By Lemmas 3 and 2,
Yisi =Yl <1+ T <4 =c. (5.16)

By setting a = zm~'/? in Lemma 1,

22

Pr(Uk(m) — E[Ux(m)] 2 2) < exp(—=5—

).

a
Proposition 10 E[Ux(m)] < 2=*m.

Proof: By the ergodic theorem for Markov chains and (5.14),

lim ElUx(m)] _ f: m =275 (5.17)

m—+c0 m

We claim that E[Ui(m)] < 2=*m. for all m > 0. Suppose on the contrary
that E[Ux(m)] > 2~*m for some mq. Let m = tmg be a multiple of mg. Since
E%(mg) = E[Uk(mo)] and EE(mo) < E}(my) for b > a,

E[Um)] _ ZjZo Zolo Pr(Xime = a)Ef(mo)
m tmg
> tER(mo) _ E[Ux(mo)] > 9=k
- tmo my

Since m is an arbitrarily large multiple of mq, this contradicts (5.17). O

The following is an important corollary of Theorem 8 and Proposition 10.
Corollary 3

] < exp(—or

Pr{Uk(m) 2 ok-1) = 22k+5)'

Proof:

Pr{U(m) 2 ] < Prilim) = BU(m)] 2 2] < expl~53055)



5.2.5 The Distribution of M;

We shall study the distribution of M, for a fixed k. Having fixed k, let us focus on
the history of a particular queue i. The events affecting the queue are arrivals, the
random service events, and the service phases triggered by the adversary.

In the absence of service phases caused by the adversary, the process in queue
t becomes the birth-and-death process studied in the previous section. The events
are arrivals, which occur with rate 1/2, and random service events, which occur
with rate 1. Thus events in queue ¢ occur according to a Poisson process with rate
3/2. There are p queues. Thus, by Proposition 8(ii), the probability that more than

mgo = [12n/p] events occur in some queue is at most
o = pe” /P, (5.18)

We shall assume that no more than mg arrival and random service events occur

in any queue, and study the distribution of M) under this assumption.

A service phase is k-profitable if it results in a payoff of at least k for the ad-
versary. The time interval between successive k-profitable service phases is called
a k-interval. Queue ¢ is said to be k-eligible during a given k-interval if, at some
point during the interval, the length of queue 7 is at least k. Let the random variable

X(k,?) denote the number of k-intervals during which queue ¢ is k-eligible.

Proposition 11

Pr{X (ki) > ‘l":"-] < exp(——2), (5.19)

where mg = [12n/p].

Proof: We give the adversary extra power by assuming that the adversary observes
the stream of arrivals and service events, is able to trigger service phases whenever he
wishes, and has complete freedom to specify the payoff associated with each service
phase. Then the adversary maximizes the number of k-intervals during which queue
t is k-eligible by scheduling a service phase with payoff k£ every time the length of
queue ¢ reaches k, and otherwise leaving the queue alone. Under this policy for
the adversary, the number of k-intervals during which the queue is k-eligible is just
the number of times the queue length reaches k£ and drops instantaneously from
k to zero, which in turn is no larger than the number of times that the state of

the underlying birth-and-death process rearches a value greater than or equal to k.
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Under our assumption that there at most mg arrival and random service events,
X(k,4) is stochastically no more than Ui(mg). By Corollary 3,

N m m mo_
Pr{X(k,) > -27‘-_-07] < Pr[Uix(me) > 5,';(')'1'] < exP(_-zzkj—s)'

a

Corollary 4 Let T, = Y0, X(k,1). Then

=1
() Te > T if k< K

(ii) Pr[ Tk > 24n2"‘] < pexp(_%z—(zlﬁ-l)).

Proof: The fact that X(k,i) > X(k’,¢) if k < k' implies (i) whereas (ii) is direct
consequence of (5.19) by noting me = [12n/p]. O

Now we are ready to analyze the random variable M, which is the number of
times the adversary achieves a payoff of at least k. We draw an analogy between
the Shooting Gallery Game and our continuous-time model. The number of bullets
h corresponds to the number of service phases that the adversary can trigger. The

targets correspond to pairs (I, i) where I is a k-interval and i is a queue that is k-
P

eligible during interval I. Therefore, at most T = 37, X(k, ) targets are available
to the marksman. The act of setting up t targets and taking a shot corresponds
to executing a service phase at a time when t queues are of length at least k. A
successful shot corresponds to the arrival of the special customer at a queue of
length at least k. The marksman’s score corresponds to My, the number of times
the adversary receives a payoff of at least k.

Recall that the payoff received by the adversary is T3>, My by (513} The

following theorem completes the proofs of Theorems 5 and 6.

Theorem 9 Suppose that n > p°. There ezist constants o', §', v and d’ such that
p p J 2

0 !/
Pr[z M > d'(g- +h)] £ ¥'pn exp(—-%n“').
k=1

Proof: We break 322, M into three parts and each part separately. Let

PN lalogn) [n®] co
S My <Y M+ Yo M+ Y M,
=1 =1 k=[alogn] k=[nt]

where a < 1 and b < 1 are positive constants to be specified later.
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Let & be the event that Ty > 24n2~* for some k,1 < k < |alogn|. By Corollary
4,

1 = Pr[ 51]
|lalogn}
< Y pexp(-=27*Y)
k=1 p
< aplognexp(—0.5n'"%/p), - (5.20)

which goes exponentially to zero, if
a<1/2. (5.21)

Let &, be the event that for some k¥, 1 < k¥ < |alogn|, a marksman with T}
targets and h bullets achieves a score of at least 3,/Tih/p. Then by Theorem 7, the

probability of event &; given that event £ does not occur is

g = Pr[&|& does not occur |
lalogn|

<Y exp(—gy/Tih/p)

k=1

1
alognexp(_g\/ Tl_alognjh/p ) .
< alognexp(~0.25\/hni-2/p ), (5.22)

which goes exponentially to zero, since a < 1.

IN

The probability that either event & or event &; occurs is at most g + g2, which
is exponentially small. We assume that neither event &; nor event & occurs. By

Theorem 7, viewing M, as the score of the marksman,

lalognj lalogn] Teh
Y. M, < Z 3,/
k=1

< l 23\/2 -(k+1)3
p

k=1

< ¢ (; + h), (5.23)

where ¢’ < 9 and the last inequality follows from the fact that \/nh/p<n /p+h.
Since the score cannot be larger than the number of targets, M; < T;. Also
Ti > Tit1. Thus, by Corollary 4,

ln°]
Z M, < n® T[alogn] < 24n’nl-® = c”P- , (5.24)
k=[alogn] p
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where ¢ = 24pnt~® and the second inequality follows from our assumption that

event £ does not occur. Thus
' <24, if p<neb. (5.25)
Lastly we show that with high probability
M, =0, (5.26)
for all k£ > [n®]. Since My < Ty < T for k > K/,

M > 0, for some k > [n?]
= T >0 -

= X([n*1,i) >0, for some i.

But X{([n*],i) < Upne(mo),

il

q3 Pr[ Z Mk > 0]

k={n?]
P PI‘[Urnb] (mo) > 0]

PE[Upnsy(mo))
302", (5.27)

INIA

IN

To meet the constraints on a and b in (5.21) and (5.25), together with the as-
sumption that n > p®, we may take

a=4/9 and b=1/9

so that
«'=1/9, B >1/4 and v <35,

according to qo, 1, g2 and g3 in (5.18), (5.20), (5.22) and (5.27). By (5.23), (5.24)
and (5.26),
d=c+c" <33

The proof of Theorem 6 is complete.
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5.3 PRAM Implementation

In this section we describe a PRAM implementation of our algorithm in the case
that H is a binary tree and show that the Main Theorem holds for this PRAM
implementation.

Our model is a CRCW PRAM using the ARBITRARY concurrent-write con-
vention; this means that, if two or more processors try to write simultaneously into
a cell of the shared memory, the processor that succeeds is chosen arbitrarily. We
assume that a processor can detect whether it has succeeded in a write and that
the value a processor writes is the value of a node together with the necessary infor-
mation for further expansion of that node. There are p processors and the shared
memory consists of 4p cells which are divided into p blocks of 4 cells each. For
convenience, we shall allow a processor to attempt two writes simultaneously in one
write step. A node is called distributed if the value of the node has been successtully
written into the shared memory.

We modify our previous communication protocol as follows.

(i) In the Node Ezpansion Step, processor ¢ with a nonempty F; executes the fol-

lowing segment, replacing the corresponding segment in the original protocol:

let v; be the node of least cost in Fj;
expand v;;
if v; is a leaf then
B; — c(v;);
Fi — Fi\ {w};
else
let w and w’ be the children of v;;
if neither w nor w’ was distributed then
select two random cells;
write w into one cell and w’ into the other;
else /*one of w and w’ is not distributed*/
select one random cell;

write the child of v; who is not distributed into the cell;

if both w and w' are distributed then F; — F;\ {v};
(ii) In the Message Arrival Step, processor i receives new nodes by reading the
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newly written values from the 4 cells of block .

The modified protocol maintains the property that each generated node is equally
likely to be received by any processor.

We call a node expansion successful if both children of the expanded node are
distributed after that expansion. There are at most 2p writes attempted simulta-
neously, each selecting a random cell from 4p cells. Thus the chance that a write
is successful is at least 1/2, independently of other writes. So the chance that a
node expansion is successful is at least 1/4. The success number of a node v is the
number of times v is expanded until a .successful node expansion occurs. Since the
successive node expansions of v are independent of each other, the success number

of v is stochastically no larger than a geometric random variable with mean 4.

We show that Theorem 1 holds with this PRAM implementation by reducing
the analysis of the PRAM implementation to our previous analysis. Again our goal
is to prove Theorem 2.

The modified protocol maintains the property that each processor expands its
best node at each node expansion step. So we may focus on the nodes in H. We
call a node a pre-node if it causes pre-delays, or a post-node if it causes post-delays
and a node expansion step a special-step if a special node is expanded at that step.
We observe that the node expansions of the special nodes, the pre-nodes and the
post-nodes all occur at different times, thus the node expansion processes of these
nodes, maybe intertwined in time, are mutually independent. There are at most A
special nodes and, by the Chernoff bound, the chance that there are more than 2n/p
post-nodes is at most e~"/3?. Given that there are at most 2n/p post-nodes the sum
of post-delays and special-delays is stochastically no larger than a sum of A + 2n/p
independent geometric random variables with mean 4. But the latter sum, by the
Chernoff bound again, has an exponentially small probability to exceed d'(n/p+h)
for a suitable constant d'.

It remains to bound the number of pre-delays. In the queueing model of our
process, we observe that the strategy consistent with Rules 1 and 2 remains optimal
for the adversary. This can be seen as follows. In the modified protocol, an instance
consists of a sequence of arrivals with their destinations and their success numbers.
An instance in the modified protocol can be viewed as an instance in the original
protocol by replacing each arrival in the modified protocol by a multiple of the

arrival itself with the same destination, where the multiple is the success number of
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that arrival. The fact that the strategy consistent with Rules 1 and 2 is optimal for
any instance in the original protocol implies that the same strategy remains optimal
for any instance in the modified protocol.

Given the optimality of the strategy consistent with Rules 1 and 2, we may
instead study our queueing process in continuous time by assuming that customers
arrive according to a Poisson process with rate 1/8 over the time period [0, [16n/p]],
and further amortize the payoff of the adversary, the number of pre-delays, by
scheduling random service events according to a Poisson process with rate 1.

To bound the additional pé,yoﬁ‘ that the adversary may receive in the amortized
process, we focus on the frequency with which the length of a fixed queue is large
under the amortization. For this purpose, we may assume, to the advantage of the
adversary, that the random service events are the only service events that occur and
that the chance that a service is successful is exactly 1/4. We fix a queue and let
an event be either a random service event or an arrival at that queue. Let X; be
the length of the queue after the ith event. Then {X;}, 7 =0,1,2,..., is a Markov
chain with X, = 0. By the fact that the process of arrivals is Poisson with rates 1/8
and the process of services is Poisson with rates 1, the chance that the next event is
an arrival or a service is 1/9 or 8/9, respectively. Hence, the transition probabilities
of {X;} are

Pop===1—Dpop

O

and for j > 0,
1 7
Piin1 =g, Pij=7g and pi1 =g,
where p;;; = Pr{ X1 = 7| Xi = j].

It is easy to check that =, = 1/2*! ¢ > 0, is the stationary distribution of the
above Markov chain. The remaining analysis of this Markov chain follows exactly as
we did in Section 5.2.4 and Section 5.2.5 with only minor changes, such as Ty = 9
in Lemma 2. We can conclude that the probability that the number of pre-nodes
exceeds d”(n/p + h) for some constant d” goes to zero exponentially fast, which
implies that the same conclusion holds regarding the number of pre-delays, thus

proving Theorem 6.
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5.4 Remaining Issues

In this section we specify some details omitted in our description of Local Best-First

Search and discuss the consequences of allowing two nodes to have the same cost.

5.4.1 Some Omitted Details

In the code for Local Best-First Search given in Section 5.1, we left unspecified the
designated destinations for a processor to send its message when its local frontier
is empty and how messages are used to notify all processors of the minimum cost
and turn the computation off. We now specify these details.

We configure the processors into a uniform binary tree of preassigned structure.
When a processor has an empty local frontier, it sends the message containing its
bound B; to all the neighbors in the tree. Let 7 be the time when all nodes of H have
been expanded and B be the minimum cost of a leaf of H. At time 7, at least one
processor will possess the bound B. From time 7 onward, each processor that has
received the bound B will have an empty local frontier, and will use each subsequent
node expansion step to send the bound B to its neighbors in the tree. Thus, all
processors will receive the bound B by some later time o, where 0 < 7 + 2log n.
From time o onward, all local frontiers will be empty.

The computation will stop as soon as each process learns that a point has oc-
curred at which all local frontiers are empty. In a PRAM, this information can
be conveyed by executing occasional verification steps according to a preassigned
schedule known to all processors. At each verification step, each processor with a
nonempty local frontier tries to write its name in a designated cell. All the pro-
cessors then read that cell to determine whether a value has been stored. On a
message-passing network, the same objective can be achieved by scheduling occa-
sional broadcast phases, in which each processor with a nonempty frontier sends its
name to the root processor along the edges of the tree, and the root processor then
broadcasts the information it has received to all nodes of the tree. The intervals
between verification or broadcast steps can be chosen so that these steps have no

appreciable influence on the overall execution time.
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5.4.2 Consequence of Equal Costs

We have assumed that the nodes of H have distinct costs. When the nodes of H are
allowed to have the same cost, the statement of Theorem 5 needs some modification,
together with some minor changes in the Local Best-First Search.

The level of a node v in H, denoted by I(v), is the distance from v to the root of
H. Given a problem instance (H,¢c), we define a new order “<” among the nodes
of H such that v < u if (i) ¢(v) < c(u) or (i) c(v) = c(u) and I(v) < I(u) or (iii)
c(v) = ¢(u) and I(v) = I(u) and v is to the left of u in H. We say that the priority
of v is higher than that of u if v < u. In the Local Best-First Search, the following is
the selection rule: each processor selects the node of highest>priority from its local
frontier.

Let © be the leaf of highest priority in H. Let H be the subtree consisting of
those nodes in H whose priorities are no higher than the priority of 4. Notice that
% is a leaf of minimum cost. Let S be the set of nodes u € H such that c(u) < c(9).
Every node expansion algorithm that determines a leaf v’ of minimum cost in H
must expand every node in S and v'. Let n; be the number of nodes in §, and let
ny be the number of nodes that are not in H and let h be the number of nodes in
a longest root-leaf path in H. Then max{(n, + 1)/p, h} is an inherent lower bound
on the execution time of any p-processor algorithm on the instance (H,c). On the
other hand, by the Main Theorem, the Local Best-First Search is likely to locate
the leaf ¢ within d(n/p+ h) number of steps where d is a constant and n = n; +n,.

5.5 Open Problems and Further Research

We discuss some open problems and possible further research related to the algo-

rithm presented in this chapter.

1. The main open problem of this chapter is similar to that of Chapter 3. Like
the previous parallel backtrack search algorithms, Local Best-First Search as-
sumes a fully-connected network. One can implement the algorithm in a sparse
network by routing messages. But this would lose some of the advantage of
the algorithm. To avoid that message-routing delay, one can modify the algo-
rithm so that, whenever a processor expands a node, it sends the children of

that node to random neighbors, rather than to random processors anywhere
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in the network. The effectiveness of this modified algorithm will depend crit-
ically on the interconnection structure. The main open problem is to analyse
the modified Local Best-First Search on the hypercube, the butterfly or other

interesting sparsely interconnected networks.

. In practice, distributing the children of the expanded node afte each node
expansion may be execessive and unnecessary. It would be desirable to find
some way to reduce the frequence of the interprocessor communications while

not jeopardizing the effectiveness of the algorithm.

. We have completely ignored the cost of managing the local frontiers. The
frontier nodes of each processor can be kept in a priority queue to facilitate
the selection of the node of least cost; each removal or insertion incurs a cost
proportional to the logorithm of the size of the queue. The size of each queue
depends very much on the cost function c¢(v). In analyzing the costs of updating
the priority queues, we can no longer disregard the nodes that are not in H,
as we did in analyzing the node expansion steps of the algorithm. The nodes
that are not in H can be kept in the queues, and thus influence the costs of

updates of the queues.

62



Chapter 6

Game Tree Search

6.1 Introduction

A game tree is a finite rooted ordered tree in which each leaf has a real value, the
root is a MAX-node, the internal nodes at odd distance from the root are MIN-nodes
and the internal nodes at even distance from the root are MAX-nodes. A Boolean
game tree is a game tree in which the value on each leaf is 1 or 0, and is called an
AND/OR tree. The value of a MAX-node (MIN-node) is recursively defined as the
maximum (minimum) of the values of its children. The value of node v is denoted
by val(v). The value of a game tree is the value of its root. The evaluation problem
is to determine the value of a game tree from the given values on the leaves.

Game trees traditionally occur in the game-playing applications of Al such as
chess, and game tree evaluation is a central problem in AI. The evaluation problem
for AND/OR trees is closely related to the problem of efficiently executing theorem-
proving algorithms for the propositional calculus based on backward-chaining de-
duction.

The best known heuristic in practice for evaluating MIN/MAX trees is the a-3
pruning procedure [KM75]. For AND/OR trees, a similar but simpler “left-to-right”
algorithm can be used instead. Both algorithms are effective sequential search
methods. Within certain models of computation it has been shown that these two
algorithms are optimal among all the sequential game-tree evaluation algorithms
for evaluating uniform MIN/MAX trees and AND/OR trees, respectively.

There is a great deal of interest in the prospect of speeding up game-playing

programs and theorem-proving programs through parallel computation, and conse-
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quently there has been a considerable research effort on parallel game-tree search
over the past decade. Most of this research is concerned with implementation and
experimentation with parallel game tree search. Apart from a recent paper [Alth89],
which is discussed in Section 6.3, there has been little theoretical study in this
area. We contribute to the study of the parallel game-tree evaluation algorithms
by presenting a paradigm for parallelizing a class of parallel game-tree evaluation
algorithms, including the left-to-right algorithm and the a-3 algorithm.

6.2 Models of Computation

We shall base on our study of the game tree evaluation algorithms on the leaf-
evaluation model in which the unit of computational work is the evaluation of a
leaf, all other computation being considered free. The basic step of an algorithm
in this model is to evaluate a set of leaves of the input tree simultaneously; and
the algorithm decides its next step from the values observed at previous steps. The
execution time of an algorithm is the number of basic steps it requires to determine
the value of the root. Our primary interest in a parallel algorithm is its speed-up
factor over the sequential ones as a function of the number of processors used.

The leaf-evaluation model, however, fails to reflect the reality that the game tree
occurring in an application is usually generated by the algorithm that evaluates
it. To capture the process of generating the input tree, we also consider the node-
ezpansion model in which the algorithm is given only the root of the input tree, and
it generates the other nodes of the tree by using an operation called node ezpansion.
When this operation is applied to a node v it either evaluates v if v is a leaf or else
produces the children of v. The unit of computational work in this model is a
node expansion, all other computation being considered free. The basic step of an
algorithm in this model is to expand a set of nodes simultaneously in one step.
The execution time of an algorithm is the number of steps at which it performs
node expansions. The number of processors used by an algorithm is the maximum
number of nodes expanded at one step of the algorithm.

These two models are different in nature. An algorithm that can be easily de-
scribed in one model may not be easily described in the other model. However,
for all the algorithms discussed in this chapter and the next, the description of

an algorithm in one model can be translated straightforwardly into a counterpart
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description of the algorithm in the other model.

6.3 Sequential Algorithms

In this section we discuss two well-studied sequential game-tree evaluation algo-
rithms, the “left-to-right” algorithm for evaluating AND/OR trees and the a-8
pruning a.lgorithxﬁ for evaluating MIN/MAX trees.

There are a number of other game tree evaluation algorithms. The most notable
ones include SCOUT [Pe80], which is a combination of the “left-to-right” algorithm
and the a-8 pruning algorithm, and SSS5* [Sto79], a best-first search in the space
of solutions trees. There is also the interesting heuristic based on “MIN/MAX
approximation” [Ri88]. As we do not intend to discuss the parallelization of these
algorithms, we shall not describe them here.

We shall use B(d,n) to denote the set of uniform d-ary AND/OR trees of height
n and M(d,n) to denoate the set of uniform d-ary MIN/MAX trees of height n.

6.3.1 Sequential SOLVE

For convenience, we present an AND/OR tree as a NOR-tree by replacing each
AND-node or OR-node by a NOR-node. The value of a NOR-node is 0 if any of
its children is 1; otherwise, it is 1. An AND/OR tree is equivalent to its NOR-tree
representation up to complementation of the value of the root and possibly the
values on the leaves.

The following are some basic facts about NOR-tree evaluation.

Fact 1 Any deterministic algorithm for evaluating NOR-trees has to evaluate every

leaf in the worst case.

Proof: Given a fixed NOR-tree, the leaf-values of the tree can be assigned in such
a way that the given deterministic algorithm is forced to look at every leaf before 1t
can determine the value of the root. Let r be the root of the tree. Suppose that v
is the leaf to be evaluated next. If v has unevaluated siblings, then assign the value
of v to 0; otherwise, let u be the node closest to r on the root-leaf path ending at v
such that u has only one unevaluated child, and assign the value of v to the value

with which u is evaluated to 0. Under this assignment, every leaf will be evaluated.
a
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The total work of an algorithm, sequential or parallel, is the number of leaves
evaluated. For a NOR-tree T, a proof tree of T is a smallest tree contained in T that
verifies the value of T. Any evaluation of 7' must be able to exhibit a proof tree of
T in which each leaf has been evaluated. The following fact gives an inherent lower

bound on the total work of any algorithm which evaluates any instance of B(d,n).

Fact 2 For any T € B(d,n), the total work of any algorithm to evaluate T 1s at
least ™2,

Proof: For T € B(d,n), a proof tree of T has degree 1 and d on alternate levels.

The number of leaves in a proof tree of T is at least dl"/2}. O

Let T be any rooted tree with root r. Let v be a node in T. The value of v
is determined if val(v) can be computed from the values of the leaves that have
been evaluated. We say v is dead if the value of some ancestor of v is determined;
otherwise, v is live. A simple sequential algorithm for evaluating NOR-trees is the
“left-to-right” algorithm, called Sequential SOLVE, which evaluates the leaves from
left to right while skipping over dead leaves.

Sequential SOLVE
At each step, evaluate the leftmost live leaf.

The following program S-SOLVE describes Sequential SOLVE recursively. Let v
be the root of the subtree to be evaluated.

S-SOLVE (v: node): boolean;
if v is a leaf then

evaluate v;
return(val(v));
else
let uq,uq,...,uq be the children of v;

for: =1toddo
b — S-SOLVE(w;);
ifb=1 then

return (0);

return (1).
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We shall study the properties of Sequential SOLVE. By Fact 1, any deterministic
algorithm that evaluates AND/OR trees would have to evaluate all the leaves. To
avoid this worst-case behavior, researchers have taken probabilistic approaches. One
approach is to make some probabilistic assumptions on input instances and study
the expected number of leaves evaluated in a random input. In the ii.d. model,
the value on each leaf in a NOR-tree is determined by an independent coin flip
with a fixed bias q, 0 < ¢ < 1. Let I4(d,n,q) denote the expected number of
leaves evaluated by a deterministic algorithm A that evaluates random uniform d-
ary NOR-trees of height n in the i.i.d. model where the bias is g. The quantity
Ra(d, q) = imn .o [I4(d,n,q)]}/™ is called the branching factor of algorithm A. We
abbreviate Sequential SOLVE as S-SOLVE. The following theorem can be found
in [Pe84].

Theorem 10 Let £, be the unique positive root of the equation z¢+z~1=0. Then

(i) if g = &, Is—sorve(d,n,q) = [£/(1 - &))"
(ii) if g # &4, Rs-sorve(d,q) = Vd.

Theorem 10 shows that Sequential SOLVE exhibits a “threshold” phenomenon
in the ii.d. model. When the bias does not coincide with the special value &g,
Sequential SOLVE has the best possible asymptotic performance by Fact 2; when
the bias coincides with ¢4, Sequential SOLVE performs worst, as one can show
that £&5/(1 — &) > Vd. In particular, & = (v/5 —1)/2 = 0.618..., which is the
“golden ratio” and greater than /2 = 1.414..., and Is_sorve(2,n) = (1 + &) =
(1.618...)"

In the i.i.d. model with bias ¢, a deterministic algorithm A is said to be optimal
for evaluating random uniform trees if for all d, n, ¢ and any deterministic algorithm
A’ Ii(d,n,q) < La(d,n,q). In 1983, M. Tarsi showed that Sequential SOLVE is
optimal for all values of g, in particular, for the threshold value §;. The proof
technique of Tarsi is to show that for any algorithm A’, another algorithm 4" can
be constructed inductively such that I4#(d,n,q) < I4(d,n,q) and A” is equivalent
to Sequential SOLVE.

Theorem 11 (Tarsi) Sequential SOLVE is optimal in the 1.1.d. model with any

bias.
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Proof: See [Ta83]. O

The optimality of Sequential SOLVE suggests that Sequential SOLVE be a good
candidate for parallelization. A recent paper by Althofer [Alth89] gives a proba-
bilistic analysis of a certain algorithm for evaluating uniform binary AN D/OR trees
in the i.i.d. model where the bias ¢ is equal to the critical value (V3 -1)/2. He
states that, when the number of processors is moderate, the expected speed-up
over Sequential SOLVE is proportional to the number of processors. We will show
that Sequential SOLVE can be parallelized in such a way that, uniformly on every
instance of a uniform tree, a linear speed up can be achieved. Consequently, our
result holds in the i.i.d. model automatically.

Another probabilistic approach is through randomized algorithms. This ap-
proach avoids imposing any assumptions on inputs and hence is more robust. A
randomized algorithm is allowed to flip coins, and the actions of the algorithm may
depend on the outcomes of these flips. The complexity of a sequential randomized
algorithm is the expected number of nodes expanded on a worst input. There is
a natural way to randomize Sequential SOLVE: repeatedly choose an unevaluated
child of the root at random and evaluate the child recursively until the value of the
root can be determined. It turns out that randomization helps achieve a substantial
reduction in the number of leaves evaluated. Moreover, it has been shown that ran-
domized Sequential SOLVE is optimal among randomized sequential algorithms for
evaluating uniform NOR-trees. Precise statements of these results and their proofs
can be found in [SW86].

6.3.2 -0 Pruning

The most well-known method for evaluating MIN/MAX trees is o-3 pruning. Mc-
Carthy thought of this method in early 60’s and later coined the name “a-3” prun-
ing. In 1976, Knuth and Moore published a paper on the analysis of a-3 pruning
method, which remains to this day a definitive reference.

The power of a-3 pruning lies in its ability to detect certain subtrees whose values
can no longer influence the value of the root and, consequently, the algorithm prunes
away those subtrees from further evaluation. The algorithm traverses the input tree
in a depth-first search and backtracks when it prunes a subtree. During the search,
it maintains two parameters, the a-bound, denoted by «, and the 3-bound, denoted

by B, with the invariant property that a < 3. The a-bound is updated by the

68



returned values on the MAX-nodes and the 3-bound is updated by the returned
values on the MIN-nodes. The internal [a, 8] is called the search-window. The a-3
pruning algorithm is described by the following procedure alphabeta (v,a,3) where
[a, ] is the search window and v is the root of the subtree to be evaluated. To
evaluate a MIN/MAX tree T with root r, the a-3 pruning algorithm calls procedure
alphabeta (r, —00, +00). The current value of a MAX-node (MIN-node) v is the
maximum (minimum) of the returned values of the evaluated children of v. Initially,
the current value of a MAX-node (MIN-node) is —oo (+00).

alphabeta (v, a, 8);
{
if (v is a leaf) return(val(v));
else {
/*initialize current value*/
if (v = MAX) 8 « —oc;
else s — 4oo;
let uy,us,...,uq be the children of v;
fori =1 tod do {
t — alphabeta (u;,a,3);
if (v = MAX) _
if (t > B) return(t); /* prune remaining children */
else { a «— max{a,t}; s~ max{s,t};}
if (v = MIN)
if (t < a) return(t); /* prune remaining children */
else { B — min{3,t}; s« min{s,t};}
} /* end of for */
} /* end of if */

return(s).

}

A more compact form, called “negmax”, of the procedure alphabeta (v, a, 3) can be
found in [(KM75].

The correctness of a-3 pruning follows from the following proposition given
in [KMT5].
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Proposition 12 (Knuth and Moore [KM75]) Lett be the value returned by a
procedure call alphabeta (v,a,8) where a < B and v is the root of the MIN/MAX
tree. Then

(i) t < o, ifval(v) < o;

(i) ¢ > B, f val(v) 2 B,
(iii) ¢t = val(v), if a < wval(v) < B.

In particular, alphabeta (v, —oo, +00) returns val(v).

It is easy to comstruct instances of uniform MIN/MAX tree such that the o-g
pruning algorithm would have to evaluate all the leaves. As for the AND /OR trees,
one can make some probabilistic assumption on the input instance and study the
expected number of leaves evaluated on such a random input. In the i.1.d. model,
the leaf-values of a MIN/MAX tree are drawn independently from some common
continuous distribution. Let I4(d,n, F) denote the expected number of leaves eval-
uated by a deterministic algorithm A4 on a random uniform d-ary MIN/MAX-tree of
height n where the leaf-values are drawn independently from a common distribution
F. The quantity Ra(d, F) = lim,_[la(d,n, F)]'/™ is called the branching factor
of algorithm A. The determination of the branching factor of the a-3 pruning algo-
rithm, R,_3(d, F), was resolved by Pearl [Pe82]. Notice that R,_3(d. F') does not
depend on F.

Theorem 12 (Pearl) For any continuous distribution F,

Ro-a(d F) = 1 idéd’

where €4 is the unique positive root of the equation z" +z —1=0.

Proof: See [Pe82| or [Pe84]. O

To verify that a continuous-valued MIN/MAX tree T has value val(T) = c, one
needs to check that val(T) > ¢ and val(T) < c. The task of verifying the value
of a continuous-valued MIN/MAX tree is equivalent to the task of evaluating two
NOR-trees of identical structure. The evaluation of any NOR-tree can be seen as
a part of verification of the evaluation of some continuous valued MIN/MAX tree.
Since verification cannot be more complex than evaluation, the evaluation of NOR-

trees cannot be more complex than the evaluation of continuous-valued MIN/MAX

70



trees. Therefore, Theorem 11, together with Theorem 10 and Theorem 12, es-
tablishes the asymptotic optimality of the a-8 pruning algorithm for evaluating
uniform MIN/MAX trees in the i.i.d. model among all deterministic MIN/MAX
tree evaluation algorithms.

One can also randomize the a-3 algorithm by letting the algorithm randomly
select an unevaluated child to evaluate next in its depth-first search. Though we
don’t know whether this randomized a-3 pruning algorithm is optimal among all
randomized algorithms for evaluating uniform MIN/MAX trees, a randomized ver-
sion of algorithm SCOUT was shown in [SW86] to possess such an optimality.

We end this section with a well-known fact about the MIN/MAX trees, which is

the counterpart of Fact 2.

Fact 3 For any MIN/MAX tree T € M(d,n), d"/?! +d™? —1 i3 an inherent lower

bound on the number of leaves evaluated by any algorithm that evaluates T.

Proof: Let r be the root of T. Let a and b be any two numbers such that a <
val(r) < b. An algorithm that evaluates T must be able to verify both statements
“q < val(r)” and “val(r) < b” by viewing T as a Boolean tree. Since r is a MAX-
node, a proof tree for verifying “a < val(r)” has d\"/2l leaves and a proof tree for
verifying “val(r) < b” has d*/?! leaves and, moreover, these two proof trees have

exactly one leaf in common. The lemma follows. O

6.4 Previous Work on Parallel Game-Tree Search

In this section we survey previous work on parallel game-tree search. As game-tree
search has a prominent place in artificial intelligence, parallel game-tree search has
accumulated a substantial literature and is currently an active field of research.
Most of the work on parallel evaluation of game-trees is to parallelize the -3
pruning method. An early approach is the “window decomposition” by Baudet in
1978 [Bau78|. Theideais to divide the initial search window [—o0, +o0] into as many
nonoverlapping subintervals as the number of processors available; in parallel, each
processor evaluates the same input tree using each subinterval as its initial search
window; the processor whose search window contains the value of the tree will return
the value of the tree. It was hoped that the narrower initial search window would

result in a much better speed-up for a single processor. Baudet found that this
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approach offered only limited speed-up, typically, a factor of 5 or 6, regardless of
the number of processors used. The reason is that no matter how narrow the search
window containing the value of the input tree is, the minimal number of leaves that
have to be evaluated is still large. '

Later approaches are all under the general scheme of “tree decomposition”. The
idea is to decompose the input tree into subtrees and let each processor work on a
different subtree. This approach provides potentially unlimited parallelism. Finkel
and Fishburn [FF82] proposed a method called “tree-splitting” that maps the input
tree onto a tree of processors in such a way that the root of the input tree is mapped
to the root-processor and the children of a node in the input tree is mapped to the
children of the processor mapped to that node. As a result, each leaf-processor in the
processor-tree evaluates a subtree of the input tree; when a leaf-processor finishes its
subtree, it returns the value to its parent-processor which communicates this value
to its other leaf-processors to update their search windows. The processor-tree is
static with no processor-reallocation. The pruning effect is not considered in the
construction of the processor-tree. The paper predicts a speed-up at least /1 using
n processors on uniform trees.

Akl et al [ABD82] proposed a method, later called “mandatory-work-first” by
Finkel and Fishburn [FF83], based on the following observation: when the sequential
a-f pruning algorithm evaluates a game-tree, it has to evaluate a certain “minimal
tree” in any case. The idea of mandatory-work-first is to evaluate the minimal
tree in parallel in the first phase; and in the second phase, the rest of the tree is
evaluated using the information obtained in the first phase. This approach works
well for the input tree with the “best-ordering” in which each node assumes the
value of its leftmost branch, but may lose its advantage for the input tree with
the worst-ordering. Another related approach is to study the behavior of the a-f
pruning under the assumption that the input tree is “strongly ordered”, so that
each node is like to assumes its value among its first few leftmost branches [MC82].

Parallel evaluation of AND/OR trees in connection with logic programming has
also been extensively studied. A discussion of architectural issues concerning the
execution of parallel logic programs can be found in [WLY85,Li85].

There are also works on parallelizing the SSS* algorithm for evaluating game
trees. SSS* is a sequential best-first search algorithm for evaluating game-trees. It

is as effective as the a-8 method on random trees, but it requires a large amount
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of space for its execution. Kumar and Kanal [KK84] have formulated SSS* as a
branch-and-bound algorithm and presented two parallel implementations of SSS*.

As the field of distributed computing grows, there is a development in distributed
game-tree search. The distributed program DIB of Finkel and Manber [FM87]
discussed in the context of parallel backtrack search was used to perform game-
tree search, but the speed-up obtained was not impressive, due to the exhaustive
nature of DIB. Vornberger [Vo87b] implemented both the a-8 pruning and SSS*
in an asynchronous multiprocessor network in a chess application. Processors are
allocated dynamically during the computation. A speed-up of 8.15 was obtained for
the a-3 pruning and only a speed-up of 1.9 over SSS* on a 16-processor network.
The paper concluded that the a-3 pruning method is much better suited for parallel
processing than the method of SSS*. Recently, Vornberger et ol [FMMV89] reported
an impressive speed-up of 11.5 for the a-# pruning on a 16-processor network in
a chess application. The improved speed-up is due to a new dynamic processor
allocation scheme. Ferguson and Korf [FK88] developed a general distributed
algorithm called Distributed Tree Search (DTS) and applied it to game-tree search.
Dynamic processor allocation is used in DTS to achieve efficient load-balancing
on irregular input trees. But the pruning effect was not considered when DTS is

applied to the a-8 pruning algorithm.



Chapter 7

Parallel Game-Tree Evaluation

Algorithms

In this chapter we present some parallel game-tree evaluation algorithms. Our main
algorithm is called Parallel SOLVE; it parallelizes Sequential SOLVE in a natural
way. We prove that Parallel SOLVE achieves a linear speed-up on uniform trees
when the number of processors used is about the height of the input tree. Parallel
SOLVE is later extended to an algorithm called Parallel a-g that parallelizes the
sequential a-3 pruning algorithm for evaluating MIN/MAX trees.

All the paralle]l algorithms we present are based on the same strategy. This
strategy is a general and effective paradigm for parallelizing a class of sequential
tree search algorithms, and it is suitable for efficient implementations on various
parallel computer architectures. We hope that the parallel algorithms presented
here will suggest some efficient parallel programs for evaluating the game trees

occurring in practice.

7.1 Parallel SOLVE

We first study the parallel evaluation of AND/OR trees. We present a parallel
algorithm called Parallel SOLVE for evaluating AND/OR trees. Parallel SOLVE
parallelizes Sequential SOLVE in a natural way and, on every instance of uniform
AND/OR tree, it achieves a linear speed-up over Sequential SOLVE, when the
number of processors used is close to the height of the input tree. We assume that
AND/OR trees are represented as NOR-trees.
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We first present another algorithm, called Team SOLVE, which parallelizes Se-
quential SOLVE in the most direct way and achieves a square-root speed-up.

Team SOLVE with p processors

At each step, evaluate the leftmost p live leaves.

Proposition 13 Let d be fized and p be such that 0 < p < d". Then, on any
instance of B(d,n), Team SOLVE with p processors has a speed-up of Q(,/p) over
Sequential SOLVE.

Proof: It suffices to prove the result for p = d* where 0 < k < n. We think of a
subtree of height k as a super-leaf and the d* processors used in Team SOLVE as
a team which evaluates one super-leaf at each step. Sequential SOLVE and Team
SOLVE evaluate the same set of super-leaves. By Fact 2, Sequential SOLVE takes
at least dl*/% steps to evaluate each super-leaf. The proposition follows. O

On the other hand, for any n, p and fixed d, it is easy to construct a tree in
B(d,n) on which Team SOLVE with p processors achieves a speed-up of at most
O(,/p) over Sequential SOLVE.

Our main contribution to the parallel evaluation of AND/OR trees is the fol-
lowing algorithm, called Parallel SOLVE, which achieves a linear speed-up over
Sequential SOLVE on uniform trees, using a moderate number of processors. A
central notion to the design of Parallel SOLVE algorithms is the “pruning number”
of a live leaf. The pruning number of a live leaf v is the total number of live left-
siblings of the ancestors of v. The significance of the pruning number is that a live
leaf with small pruning number is “likely” to be evaluated by Sequential SOLVE.
In particular, a live leaf with pruning number 0 is the leftmost live leaf, which is
the one evaluated by Sequential SOLVE.

The strategy of Parallel SOLVE is to evaluate live leaves with small pruning
numbers. Parallel SOLVE has a parameter width to control its parallelism.

Parallel SOLVE of width w

At each step, evaluate all live leaves with pruning number at most w.

In particular, Parallel SOLVE of width 0 is identical with Sequential SOLVE.
When viewed top-down, Parallel SOLVE can be seen as a set of “left-to-right”

sequential algorithms running in parallel, coordinated in a cascading structure. Let
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T(v) be the subtree rooted at v. Let v be the root of the subtree to be evaluated
and w the leftmost live leaf in the subtree. To illustrate the top-down view, the
progra.m P-SOLVE in Figure 7.1 describes Parallel SOLVE of width 1 on a binary
NOR-tree in which P-SOLVE has v and w as its parameters.

We analyze the effectiveness of Parallel SOLVE of width 1. We show that Parallel
SOLVE of width 1 has a linear speed-up over Sequential SOLVE on every instance
of a uniform NOR-tree.

Theorem 13 [Main Theorem| For ¢ NOR-tree T, let S(T') be the number of leaves
evaluated by Sequential SOLVE to evaluate T and P(T) the number of steps that
Parallel SOLVE of width 1 takes to evaluate T. Then, for any d > 2, there is an
ng, on the order of dlogd, such that for any T € B(d,n) with n > ny,

3D s .,

P(T) :

where ¢ > 1/52 and n + 1 is the number of processors used by Parallel SOLVE of
width 1 on T.

Corollary 5 For T € B(d,n), let W(T) denote the total work of Parallel SOLVE
of width 1 on T. Then there is an ng, on the order of dlogd, such that for n >
max{ny, 3}, ‘

W(T) < ' S(T),

where ¢’ < 104.

Proof: At each step, at most n + 1 leaves are evaluated. So W(T')

< (n+1)P(T).
By Theorem 13, P(T) < S(T)/cn where ¢ > 1/52. Hence, W(T) < 2¢7!

-1S(T). O

7.2 Proof of Main Theorem

For a NOR-tree T, let L(T) be the set of leaves that are evaluated during the
execution of Sequential SOLVE on T. Thus S(T') = |L(T)|. Let Hr denote the
NOR-tree obtained from T by deleting the nodes that are not ancestors of leaves in
L(T). We call Hr the skeleton of T. Note that for a node v in Hr, v has the same
set of left siblings in T and in Hr.

The running time of Sequential SOLVE on T is the same as on Hr. A funda-

mental relation between T and its skeleton Hr is that the running time of Parallel
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P-SOLVE(v, w: node): boolean;
if v is a leaf then
evaluate v;
return (val(v));
else
u; « left child of v;
ug « right child of v;
if w is a leaf in T(u;) then
r —P-SOLVE(u,, w); return (1 —r);
else
in parallel do
| — P-SOLVE(u;, w); /*parallel on left subtree*/
r «— S-SOLVE(u;); /*sequential on right subtree*/
if P-SOLVE(%,, w) returns first then
if /=1 then
abort S-SOLVE(u,); return (0);
else
u « leftmost live leaf in T'(u.);
abort S-SOLVE(u,);
r — P-SOLVE(us, u); /*finish evaluating T'(u,) in parallel*/

return (1 —r);

if S-SOLVE(u2) returns first then

if r =1 then
abort P-SOLVE(u,, w); return (0);
else

wait until P-SOLVE(u;, w) returns; return (1 —1I);
if P-SOLVE(u;, w) and S-SOLVE(u;) return simultaneously then

return (nor(l,r)). /* “nor” is the NOR-function*/

Figure 7.1



SOLVE on Hry is at least as large as the running time of Parallel SOLVE on T'. This
is because the evaluations occurring in some subtrees of T that are not present in

Hp may accelerate the evaluation of 7.

Proposition 14 Let P,(T) denote the number of steps Parallel SOLVE of widih
w takes to evaluate a NOR-tree T. Then, for any width w and any NOR-tree T,

Proof: We run Parallel SOLVE of width w on both T and Hr side by side. This
process has the following invariant property which implies the proposition. Note

that any node of Hr is also a node of T'.

Property A
At any time, if v € Hr is dead in Hr, then v is dead in T.

We prove Property A by induction. Property A trivially holds initially. Assume
inductively that Property A holds up to step t. We show that Property A holds
after step t. Consider v € Hr such that (i) v is live in both Hr and T before step ¢
and (ii) v is dead in Hr after step t. We want to show that v will also be dead in
T after step t. Without loss of generality, we may assume that the value of v in Hr
is determined at step t. We use induction on the height of v.

Basis: v is a leaf. Since the value of v is determined in Hr at step ¢, v must be
evaluated in Hyp at step t. Thus, at step ¢, the pruning number of v in Hr is at
most w. Suppose that a left-sibling u of some ancestor of v is dead in Hr at step ?.
By the assumption that Property .A holds up to step ¢, u must also be dead in T
at step t. Hence, at step t, the pruning number of v in T is no larger than that of
v in Hr. Hence, v will also be evaluated in T at step t and, therefore, will be dead
in T after step t.

Inductive Step: Assume inductively that Property A holds for any node of height
at most h — 1 after step t. Let v be of height h. Let D be the set of children of v in
Hp whose values are determined in Hr at step t. Since the value of v is determined
in Hr at step t, we must have (a) D # 0 and (b) the value of v can be determined
by the values of its children in D. Since each u € D is dead in Hr after step ¢ and
is of height A — 1, by our inductive assumption, u must be dead in T after step
t. Thus, the value of some ancestor v’ of u must be determined in T after step ?.

If v’ is also an ancestor of v, then v is dead in T after step t; otherwise, we have
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v’ = u. Suppose that the latter case holds for each u € D. Then, for each u € D,
the value of u is determined in T after step ¢. By (b), the value of v in T must also
be determined, and therefore v must be dead after step ¢.

The induction step is complete. O

By Proposition 14, Theorem 13 will be proved if we can show that Parallel
SOLVE of width 1 has a linear speed-up over Sequential SOLVE on the skeleton of
any tree in B(d,n). The advantage of focusing on Hr instead of T is that the total
work of Parallel SOLVE of width 1 on Hr is at most the total work of Sequential
SOLVE on Hr. Therefore, the effective speed-up follows if we can show that when
Parallel SOLVE of width 1 executes on Hr, it evaluates a large number of leaves for
a large portion of its running time. The rest of section is devoted to showing this.

The parallel degree of a step is the number of leaves evaluated at that step.
A step of small parallel degree is considered as “bad”. We want to bound the
number of bad steps of Parallel SOLVE of width 1. The following proposition gives
such bounds. Let ¢,(T) denote the number of steps of parallel degree k& during the
execution of Parallel SOLVE of width 1 on a NOR-tree T

Proposition 15 For any T € B(d,n),

ten (Hr) < (k)(d - 1),

where k =0,1,...,n.

Proof: Let w, denote the leftmost live leaf of Hr at step t. For each step ¢ of
Parallel SOLVE of width 1 on Hr, the base path at step t, denoted by P,, is the
root-leaf path in Hr ending at w,. Because w; changes at each step, the base paths
at different steps are distinct.

Consider base path P, = vy,v,,...,v, at step t. The code of P,, denoted by
C(t), is a vector (¢1,¢2,...,¢q) € {0,1,...,d — 1}*, where ¢; is the number of live
right-siblings of v; prior to step t. We show that the codes of different base paths
are distinct. Let i = min{:| value of v; is known after step t}. Since leaf v, = w,

is evaluated at step ¢, io < n. Let C(t +1) = (c},¢c5,...,¢,). Then
Ciy < Cig- (7.1)

Fori=1,2,...,190—1, if the value of a right-sibling of v; is not determined before

step t but is determined after step ¢, then ¢! < ¢;; otherwise, ¢, = ¢;. So

’ ’ /
cl S Clvc‘z S C'Za--'vcio_l S Cig—1- ( :

-1
o
~—
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By (7.1) and (7.2), C(t+1) precedes C(t) in the lexicographic order of {0,1,...,d—
1}, which implies the distinctness of the codes.

The code (c1,¢2,---,¢n) of base path P, = v1,vs,...,vn “encodes” the parallel
degree of step t. Let R = {i[l < i < n, and¢; > 0}. For: € R, let T; be the
subtree whose root is the leftmost right-sibling of v; that is live at step . Then the
leftmost live leaf in T} is evaluated at step ¢. Also, w; is evaluated at step ¢. Hence,
the parallel degree of step t is |R| + 1. Let o be the total number of vectors in
{0,1,...,d — 1}* with exactly k non-zero components. Clearly, 5 = (:)(d — 1)k
From the distinctness of the base paths and the distinctness of the codes of the base
paths, we can conclude that tiy1(Hr) < o%. Hence, tipa(Hr) < (’,:) (d-1)%. O

By Proposition 15, the number of steps with small parallel degrees is limited. So
are their contributions to the total work. The inherent lower bound on the total
work would imply that much of the total work is contributed by the steps of large
parallel degrees. This is shown by the following two lemmas.

Lemma 4 Ford > 2, let
k, = max{k : <Z> df < dlray. (7.3)

Then for n > 13,
ki > Tl/13
Proof: For z > 13, (2ze)? < 2%. Then, for n > b = 13, one can derive

(be)[n/b] S 2("/2]"["‘/5]. (74)

Let m = [n/b]. So b > n/m. Then

(n> < (L)m < (be)y™ < dlr/2-m, (7:5)

m m

where the last inequality is by (7.4) and the condition d > 2.
By (7.3) and (7.5), we have k; > m > n/13. O

Lemma 5 Ford > 2, let

ky = max{k : zk:(z + 1)(?)((1 — 1) < a3y, (7.6)

1=0

Then for n > no, where ng is on the order of dlogd,

k2 > n/13
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Proof: Without loss of generality, we assume k2 < 2. Let k be less than ky. Then,
for all k' < k, (1) < (})- Thus,

k n : n
Z(i+1)(i)(d—1)' <(k+1)2<k)(d—1)". (7.7)

1=0

Let

z0 = inf{al(z +Nd -1 < &)

’ 1 1 1
= i -_— < -— — . -
z11>1g{:z:|2:log(:::-i-l) < 2log(l-{- d-l)} (7.8)
Since f(z) = 1log(z + 1) is decreasing in z > 0,
(k+1)*(d-1)F <d*, ifk> = (7.9)
Let ng = 13z9 > 13 as zo > 1. Then, by Lemma 4,
ky >n/13 >z, ifn2>ng. (7.10)
By (7.7), (7.9) and (7.3), we have
k1 n 4 n
S+ 1)( .)(d -1y < ( )d"‘ < d/, (7.11)
i=0 ! " \ky

Hence, by (7.6), (7.11) and (7.10),
kg Z kl 2 n/13

Finally, we show that zo = O(dlog d), which implies ng = O(dlog d). We only
need comsider the case that d is large. For small z # 0, log(1 + z) ~ z. Hence,
for large d, log(1 + 7£7) = 1/d. Also, for large z, log(z + 1) = logz. To make
2log z < z/d, it is sufficient that z = O(dlog d). Hence, by (7.8), zo = O(dlog d).
a

Proposition 16 For any d > 2, there is an ng, on the order of dlogd, such that
for any T € B(d,n) with n > ng,
T
P(Hr) < 28

n

where ¢ < 52.
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Proof: The proof is a combination of Proposition 15 and Lemma 5. We have
n41
P(Hr) =Y t:(Hr). (7.12)

i=1
We maximize (7.12), subject to two constraints:
(a) tia(Hr) < (3)(d - 1)
(b) =i ti(Hr)i < S(T).

=1

Constraint (a) is by Proposition 15 and constraint (b) is by the fact that the total
work of Parallel SOLVE on Hr cannot exceed the total number of leaves of Hr,
which is S(T').

It is clear that, subject to (a) and (b), P(Hr) is maximized when

(i) tina(Hr) = (7)(d = 1), for i =0,1,..., ko,
(ii) ti+2(Hr) = (] and

(iii) ¢t;(Hr) =0fori > ko + 2,

where
ko = max{k : i(z + 1)<?>(d - 1) < S(T)} (7.13)
and z satisfies @ )
Z(i + 1)<?>(d — 1) + (ko + 2)z = S(T). (7.14)
Hence, by (7.12) and (i)-(iii),
ko
P(Hr) < Z (?)(d - 1) + [z]. , (7.15)

By Fact 2, S(T) > d\*/?!, Then, by Lemma 5 and (7.13), there is an no, on the
order of dlog d, such that for n > ny,

ko > n/13. (7.16)
Let
oo /n .
A= Y (.)(d—-l)‘+[z]. (7.17)
i=lko/2) \?
Thus, by (7.15) and (7.17),
P(Hr) < 24. (7.18)
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By (7.14),
ko . n i kO
S(T)> > (i+1) . (d=1) + (ko +2)[z] > -4 (7.19)
i=ko/2)
Hence, by (7.18), (7.19) and (7.16), for n > ng,

52 S(T)

n

P(Hr) <24 < =S(T) <
0

Theorem 13 follows immediately from Propositions 14 and 16.

The proof of Theorem 13 given in this section reveals that the absolute uniformity
of the input tree is not required. The conditions that make the proof work are (i)
the lower bound on the sequential time is large, exponential in the height of the
input tree, and (ii) the upper bound on the number of possible steps of small parallel
degrees is relatively small. These conditions holds for trees that are “close” to be

uniform. The following corollary is just one example.

Corollary 6 Let 0 < a <1 and 0 < 8 < 1. Let T be a NOR-tree such that the
number of children of any non-leaf node in T 13 between ad and d and each rbot-leaf
path in T has a length between Bn and n. Then there is an ng, depending on d,
and B3, such that for n > ngy, the conclusion of Theorem 13 holds for T for some

absolute constant c.

7.3 Parallel a-03

We turn to the problem of evaluating MIN/MAX trees in parallel. The strategy
used in Parallel SOLVE applies to the evaluation of MIN/MAX trees. The re-
sulted algorithm is called Parallel -3 which parallelizes the sequential a-3 pruning
algorithm.

We shall describe a general method for evaluating MIN/MAX trees, which in-
cludes the sequential a-3 pruning algorithm and Parallel a-3 as special case. This
method is a pruning process which evaluates the input tree while pruning away
certain nodes whose values cannot affect the value of the root.

Let T be the input MIN/MAX tree with root r. At a general step of the pruning

process, we have a pruned tree, denoted by T, which is a tree obtained from T by
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deleting some subtrees of T. Let valx(v) denote the value of node v in T. This
pruning process maintains the invariant property that val=(r) = valr(r). Initially,
T = T and no leaves are evaluated. At a general step, certain leaves of T are
evaluated. A node v € T is finished if every leaf in the subtree rooted at v in T is
evaluated; otherwise, v is unfinished. For each finished node v in T, the pruning
process is able to compute valx(v), the value of v in T.

A general step of the pruning process consists of a leaf-evaluation step in which
one or more leaves are evaluated and a sequence of pruning steps in which certain
subtrees are pruned away and propagation steps in which the values of the newly
finished nodes are computed. The value of the pruned tree is returned as the value
of the input tree when the root is finished.

The pruning steps are governed by the pruning rule. The pruning rule is based
on two bounds, the a-bound and the 3-bound. The a-bound of v in T, denoted by
az(v), and the 3-bound of v in T, denoted by B#(v), are defined as follows:

az(v) = max{—oco, max{valz(u)|u is a finished sibling of a MIN-ancestor of v}}.

Bz(v) = min{+o0, min{valx(u)| u is a finished sibling of a MAX-ancestor of v}}.

Notice that the a-bound never decreases and the 3-bound never increases.
At each pruning step, the subtrees rooted at certain unfinished nodes are deleted

by the following pruning rule.

Pruning Rules

 Prune a subtree rooted at an unfinished v from T if ax(v) = Bz(v).

The pruning rule allows a node to be deleted when it cannot influence the value
of the root. This ensures that the root of the pruned tree remains unchanged. More

precisely, we have the following theorem.

Theorem 14 At any time, we have valy(r) = valr(r). Hence, when root r is

finished, the pruning process returns valp(r).

Proof: Consider a pruning step at which a subtree H rooted at an unfinished node v
is pruned from T. Without loss of generality, we assume that H is a maximal subtree
pruned at that step and H is the only subtree pruned at that step. Let T' denote
the tree obtained from T by deleting H. We want to show that valz,(r) = valx(r).
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By the pruning rule, az(v) > Bz(v). Thus, ax(v) # —oo and Bx(v) # co. Let u
be a MAX-ancestor of v and w a MIN-ancestor of v such that ax(v) > B5(v).

f7(w) -] max{valz(u')|u’ is a finished child of u} = ax(v)

and
gT(w) mJn{valT(w')lw is a finished child of w} = Bx(v).
Hence,
f#(u) > gx(w). (7.20)
By symmetry, we may assume that u is an ancestor of w. By the assumption that
H is maximal, v must be a child of w. If valx(w) = valz,(w), then valg,(r) = valz(r).

Assume that valx(w) # valz(w). Aswisa MIN-node, the deletion of a child of w

would not increase the value of w. Hence,

valx(w) < valz,(w). (7.21)

As the values of the finished children of w remain unchanged, gz(w) > valz (w).
Moreover, as u is a MAX-node, valz(u) > f5(u). Then by (7.20),
valz(u) > vali.-,(w). (7.22)

Let y be the MAX-ancestor of w closest to w such that valz(y) > valz(w).
By (7.22), y is well-defined. We show that valz(y) = valz (y), which implies that
valz(r) = valz,(r) as desired. There are two cases. Let S(w) be the set of siblings
of w.
Case 1: y is the parent of w. By the definition of y and (7.21), valx(y) > valz(w).
Thus, valx(y) = maxX,¢s(w) valz(z) = max.esw) valz,(z). Hence,

valy,(y) = max{ max {valy,(2), valy,(w)} = max{valz(y), valz,(w)} = valz(y),

where the last equality is by the definition of y.

Case 2: yis not the parent of w. Let zg be the child of y that is an ancestor of w. Let
t = valz(z0) and t' = valz,(20). Let r (') be the maximum of the value of a2 MAX-
node between z and w in T (T”). We have t < r < valg,(w) < valx(y), where the
second strict inequality is by the choice of y. Hence, valz(y) = max,es(w) valz(z) =
max.es(w) valy,(z). Moreover, t' <7’ < valz (w) < valx(y). Thus

valz (y) = ma.x{ max {va.lT z)},t'} = max{valz(y),t'} = valz(y). O
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The sequential a-3 pruning procedure, in the leaf-evaluation model, is the follow-
ing Sequential a-B. The correctness of the algorithm is guaranteed by Proposition 12
and also by Theorem 14.

Sequential a-3

At each step, evaluate the leftmost unfinished leaf of the current pruned tree.

The pruning number of an unfinished leaf v is the total number of unfinished left-
siblings of ancestors of v. The following parallel algorithm, Parallel -3, parallelizes
Sequential a-3. Like Parallel SOLVE, Parallel a-3 has a width parameter to control
its parallelism.

Parallel o-3 of width w
At each step, evaluate all unfinished leaves of the current pruned tree whose

pruning numbers are at most w.

In particular, Parallel a-3 of width 0 is identical with Sequential o-3. The correct-
ness of Parallel a-3 is guaranteed by Theorem 14.

When viewed from top down, Sequential a-3 can be seen as a depth-first search
that traverses the input MIN/MAX tree from left to right while maintaining the
a-bound and the B3-bound for the currently visited node v. It may backtrack from
v upon discovering that the children of v meet the condition of the pruning rule.
Parallel a-3 can be seen as a set of Sequential a-3 algorithms running in parallel,
each having its own a-bound and 3-bound, coordinated in a cascading structure.

One would certainly hope that Parallel a-3 of width 1 would achieve a linear
speed-up over Sequential a-3 as the Parallel SOLVE vs. Sequential SOLVE in the
case of AND/OR trees. But we are unable to prove this. The problem is that
one cannot extend Proposition 14 to the MIN/MAX trees !. Here we show what
prevents such an extension. For a MIN/MAX tree T, let L(T) be the set of leaves
evaluated during the execution of Sequential a-8 on T. So S(T) = |L(T)|. Let
Hr denote the MIN/MAX tree obtained from T by deleting the nodes that are not
ancestors of leaves in L(T). Let P,(T) denote the running time of Parallel a-8 of
width w on a MIN/MAX tree T. The extension of Proposition 14 to the MIN/MAX
trees would be the following statement: P,(T)) < P,(Hr) for any width w and any

1We erroneously claimed such an extension in our report at the SPAA of 1989 [KZ89] and were

led to conclude that Parallel a-3 of width 1 achieved a linear speed-up over Sequential a-3.
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MIN/MAX tree T. But this statement does not hold. In particular, it does not
hold in the case of w = 1 which we are most interested in. The following is a small

counter-example.

Counter-Example: T € M(2,4) has 16 leaves whose values are 1, 2, 3, 4, 1, 2, 3,
4,1,5,4,3,5,5, 5,5 in the left-to-right order. The root of T is a MAX-node. We
show that P\(T) =4 > P,(Hr) = 3.

Sequential a-3 evaluates precisely those leaves that are not 5. In particular, the
first leaf of 5 was pruned because the pruning condition was satisfied by the fact
that its sibling leaf was evaluated to 1 and the left child of the root was evaluated
to 3. Let T and T, be the left and right subtrees of T, respectively. Let ﬁ} and
ﬁ% be the left and right subtrees of Hy, respectively. We have T} = H}. Let A be
the algorithm Parallel a-3 of width 1. A evaluates both T and ﬁ}- in 3 steps. f—f%
has only 3 leaves. Hence, A evaluates Hrin 3 steps. On the other hand, during
the evaluation of T by A, the first 3 leaves of T3, which are 1, 3,4, are evaluated
sequentially after T) is evaluated. The leaf of 5 was evaluated in this case because
that T, was not evaluated yet to provide the pruning information. After 3 steps,
T, is not evaluated yet and can not be pruned either. One more step is needed to

complete the evaluation of T. So T is evaluated in 4 steps. O

The above example shows what goes wrong. When Parallel -3 of width 1
evaluates T, the first leave of 5 was evaluated because the pruning information,
the left child of the root is evaluated to 3, is not available yet. The evaluation
of that leaf delayed the whole evaluation by one step. In general, when Parallel
a-3 evaluates a MIN/MAX tree T, a subtree 7" of T that are not in Hr may be
evaluated until the information for pruning 7" is obtained. But this information
may come from the nodes that are at the top of the path from the root of T to 1"
and may not be obtained until the algorithm has already spent much time in 7”. In
other words, the algorithm may “trap” in 7" and fail to make the progress it would
make otherwise in Hr. On contrast, the pruning condition in case of AND/OR
trees is “local”, which eliminates the problem.

In the case of AND/OR trees, Proposition 14 allows us to consider Hr instead
of T so that the total work of Parallel SOLVE is at most that of Sequential SOLVE
with respect to the evaluation of Hr. The key point is the ratio of the total work
of the parallel algorithm and that of the sequential counterpart. From the proof of

the Main Theorem, one can see that Parallel a-3 of width 1 would achieve a linear
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speed-up over the Sequential a-3 if the following conjecture holds. Conjecture:

Let Wi(T) be the total work of Parallel a-f of width 1 in evaluating T. Let |Hr|
be the number of leaves in Hy. Then there is an absolute constant c such that for
every T € M(d,n), ,

Wi(T) < c|Hr.

We have tested this conjecture on some randomly generated game trees. The
results of our tests, though limited, showed supporting evidence to the conjecture.
We generated uniform binary trees T in which the leaf-values were drawn from the
the uniform distribution over certain range. The ratio of Wi (T') over |Hr| quickly
converged to somewhere in the internal between 1.6 and 1.7 as the height of the

tree increased to 30.

7.4 Node-Expansion Model

The algorithms Parallel SOLVE and Parallel a-3 can be extended in several ways.
In this and the subsequent sections we shall discuss these extensions. We shall only
consider the evaluation of AND/OR trees. The extensions to the MIN/MAX trees
can be extrapolated accordingly.

So far we have been using the leaf-evaluation model in presenting and analyz-
ing our algorithms. In this section we consider the node-expansion model intro-
duced in Section 6.2. We shall describe the node-expansion versions of both Se-
quential SOLVE and Parallel SOLVE, called N-Sequential SOLVE and N-Parallel
SOLVE, respectively, and show that the counterpart of Theorem 13 holds in the
node-expansion model. ,

Consider a node-expansion algorithm on input tree T. Let T* denote the tree
consisting of the nodes of T that have been generated so far by the algorithm in
consideration. Initially, T* consists of only the root of T. A node v € T is dead if
the value of any ancestor of v is determined in T*; otherwise, v is live. A frontier
node is a live node that is not expanded. The pruning number of a frontier node v

is the total number of live left-siblings of ancestors of v.

N-Sequential SOLVE
At each step, ezpand the lefimost frontier node.

88



N-Parallel SOLVE of width w

At each step, ezpand all the frontier nodes with pruning number at most w.

In particular, N-Parallel SOLVE of width 0 is identical to N-Sequential SOLVE.
In Section 7.7, we shall discuss the implementation of N-Parallel SOLVE of width
1. As a preparation, we present the algorithm as a program. For convenience, we
assume the input tree to be binary. The following program S-SOLVE* describes
N-Sequential SOLVE. Let v be the root of the subtree to be evaluated.

S-SOLVE*(v: node): boolean;
expand v;
if v is a leaf then
return(val(v));
else
uy — left-child of v;
uy «— right-child of v;
[ — S-SOLVE*(u,);
if /=1 then
return (0);
else
r — S-SOLVE*(u,);

return (1-r).

‘The program P-SOLVE*(v, g) in Figure 7.4 describes N-Parallel SOLVE of width
1 on a binary NOR-tree. P-SOLVE*(v, g) is similar to program P-SOLVE in Sec-
tion 7.1. P-SOLVE*(v, g) has two parameters, v and g, where v is the root of the
subtree to be evaluated and g is the base path in the subtreei.e., the path from v to
the leftmost frontier node in the subtree. Initially, g consists of only v. We assume
that g carries with it the right-siblings of the nodes on g.

The following theorem is the counterpart of Theorem 13 in the node-expansion

model.

Theorem 15 For a NOR-tree T, let S*(T) be the number of nodes ezpanded by
N-Sequential SOLVE to evaluate T and P*(T) the number of steps that N-Parallel
SOLVE of width ! takes to evaluate T. Then, for any d > 2, there is no, depending

89



P-SOLVE*(v, g: node): boolean;

if v is the only node on g then
expand v;
if v is a leaf then return (val(v));
else
uy « left child of v; ug — right child of v;
g — {u1}; g records u; as the right-sibling of u,;
else /* v has a child on ¢ */
g —g\{v}; u « the child of v on g;
if u is the right child of v then
return(l — P-SOLVE*(u, g));
else /* u is the left child of v */

uy — u; ug « right child of v;

in parallel do
I — P-SOLVE*(uy, g);
r — S-SOLVE*(u,);
if P-SOLVE*(u,, g) returns first then
if =1 then
abort S-SOLVE*(u,); return (0);
else
g — base path in subtree rooted at uy;
abort S-SOLVE*(u,);
return (1 — P-SOLVE*(u,, g));

if S-SOLVE*(u;) returns first then

if r =1 then
abort P-SOLVE*(u,, g); return (0);
else

wait until P-SOLVE*(u,, g) returns; return (1 —1);
if P-SOLVE*(u,, g) and S-SOLVE*(u,)

return simultaneously then return (nor(l,r)).

Figure 7.4
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on d, such that for any T € M(d,n) with n > ng,

5+(T)
P(T) ~

cn,

where ¢ > 0 is an absolute constant and n + 1 is the number of processors used by

N-Parallel SOLVE of width 1 on T.

The proof of Theorem 15 goes as that of Theorem 13. It can be easily checked
that the counterpart of Proposition 14 in the node-expansion model holds without
change. The only part in the proof that needs to be changed is Proposition 15.
The parallel degree of a step in the node-expansion model is the number of nodes
expanded at that step. Let ¢3(7') denote the number of steps of parallel degree
k during the execution of N-Parallel SOLVE of width 1 on T. The skeleton Hr
defined in Section 7.2 consists of precisely those nodes of T that are expanded by
N-Sequential SOLVE on T.

Proposition 17 For any T € B(d,n),

faltr) < (=) )@= 1"

where k =0,1,...,n.

Proof: At each step of N-Parallel SOLVE of width 1 on Hr, the base path is the

path from r to the leftmost frontier node. By the same argument in Proposition 15,
the number of base paths of length m with parallel degree k+1 is at most (;’:) (d—1)F,

where m > k. Hence, t;,,(Hr) is at most

> (T)a-1r<m-n})a-1r

m=k

.|
The bound in Proposition 17 is larger than the one in Proposition 15 by a factor

of O(n). It is easy to check that the asymptotics of the subsequent analysis is only
affected up to a constant factor. Therefore, Theorem 15 holds.

7.5 Fixed Number of Processors

In this section we present a modified N-Parallel SOLVE in which the number of

processors available is fixed. We shall use the terminology of Section 7.4.
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There is a natural way to modify N-Parallel SOLVE of width 1 when only a
fixed number of processors is available. Let F} be the set of frontier nodes whose
pruning numbers are less than or equal to 1. All nodes in F; would be evaluated
by N-Parallel SOLVE of width 1 at the next step. In case that there are only p

processors available, at most p nodes in F} are evaluated at next step.

N-Parallel SOLVE with p processors
If |F1| < p, evaluate all nodes in Fy; otherwise, evaluate the lefimost node

in Fy and p — 1 rightmost nodes in Fi.

Let w be the leftmost frontier node. The base path is the path from the root
to w. A right-hanging subtree is a subtree rooted at a right-sibling a node on the
base path. A right-hanging subtree is active if it contains a frontier node of pruning
number 1. The structure of N-Parallel SOLVE with p processors can be described
as follows: let one processor perform N-Sequential SOLVE on each active hanging-
subtree along the base-path from the root downwards until either (i) there is only
one processor left, in that case, let the last processor expands w or (ii) there are
more than one processor left, in that case, let any processor evaluate w. In other
words, allocate the processors off the base path as the tree is being generated: when
there is only one processor left, let the last processor evaluate the remaining subtree
by itself.

To describe N-Parallel SOLVE with p processors in code, we will use the proce-
dures S-SOLVE* and P-SOLVE* of Section 7.4 with some straightforward modifi-
cations such as adding a parameter to P-SOLVE* to indicate how many processors
available to P-SOLVE*. We shall not omit the exact code.

The following theorem states that N-Parallel SOLVE with p processors achieves

a linear speed-up in p over N-Sequential SOLVE on uniform trees.

Theorem 16 For a NOR-tree T, let P*(T,p) be the number of steps N-Parallel
SOLVE with p processors takes to evaluate T. Then, for any d > 2, there 1is an ny,
depending on d, such that for any T € B(d,n) with n > n,,

5H(T)
P~(T.p) 2c¢p,

where ¢ > 0 is an absolute constant.

Proof: First of all, one can check that the counterpart of Proposition 14 holds for
N-Parallel SOLVE with p processors. We need to a counterpart of Proposition 16.
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Let t3(T,p) denote the number of steps of parallel degree & during the execution
of N-Parallel SOLVE with p processors on T. By the same argument of Propdsi-
tion 15 é.nd Proposition 17, we have that for any T € B(d,n) and1 < p<n+1,
ti . (Hr,p) < (n— k)(:)(d —~1)* for for 1 < k < p. This is enough to prove the
theorem by the argument of Proposition 16. O

There does not seem to be a similar modification to N-Parallel SOLVE of widths
greater than 1, given that there are fixed aAumber of processors. This probably does
not matter in practice. When the number of processors is limited, the width-one

algorithm would be the choice anyway.

7.6 Randomization

In this section we briefly discuss the randomization of Parallel SOLVE. We assume
the node-expansion model.

We have already described the randomized Sequential SOLVE in an early section.
The description was top-down. So it would be more natural to randomize the node-
expansion version of the Sequential SOLVE, namely, the N-Sequential SOLVE. The
randomized N-Sequential SOLVE, called R-Sequential SOLVE, is as follows: expand
the root; repeatedly choose an unexpanded child of the root at random and evaluate
the child recursively until the value of the root can be determined. Conceptually, R-
Sequential SOLVE is like Sequential SOLVE acting on a randomly permuted input
tree, i.e., a tree obtained from the input tree by randomly permuting the children
of each node.

We can extend the randomization to N-Parallel SOLVE to obtain the randomized
algorithm R-Parallel SOLVE. Conceptually, R-Parallel SOLVE is equivalent to the
execution of N-Parallel SOLVE on a random permuted input tree. In practice, of
course, the entire randomly permuted tree is not explicitly constructed; instead,
randomizations are performed only to the extent necessary to determine the steps
of the algorithm.

Theorem 17 For a NOR-tree T, let P5(T) and Si(T) denote the random variables
that are the number of steps that R-Parallel SOLVE of width ! and R-Sequential
SOLVE take to evaluate T, respectively. Let E(Pi(T)) and E(Si(T)) denote the
ezpectations of Pa(T) and Sp(T), respectively. Then, for any d > 2, there is an ng,
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depending on d, such that for any T € B(d,n) with n > no,
E(Si(T))
— >cn.
E(Py(T))

where ¢ > 0 13 an absolute constant.

Proof: Follows from Theorem 15 by averaging. O

{

7.7 Implementations

Although the node-expansion model is more realistic than the leaf-evaluation model,
it omits important details as to how the invocations of procedures S-SOLVE* and
P-SOLVE* are assigned to processors, how the results of such invocations are passed
from one processor to another, and how pruning occurs. In this section we discuss
these implementational issues in the context of implementing the algorithms N-
Parallel SOLVE of width 1 and N-Parallel SOLVE with p processors.

We propose an implementation of N-Parallel SOLVE of width 1 by the “level-
allocation” method in which each processor is in charge of one level of the input tree.
This method has the advantage of conceptual simplicity. But it is inflexible when
the number of processors is fixed, and it works at its best under the assumption
that each message is delivered in unit time. As a complement to the level-allocation
method, we propose an implementation of N-Parallel SOLVE with p processors
by the “dynamic-allocation” method in which only p processors are used. The
dynamic-allocation method can also be adapted to a distributed environment where
no assumption on message-delivery is made. Both implementations avoid passing
complex data structures and maintain the linear speed-up of the original algorithms.
For convenience in exposition we restrict ourselves to the case that the input NOR-
tree is binary, i.e., each internal node has exactly two children.

In our implementations, the procedure S-SOLVE* of Section 7.4 will not be im-
plemented recursively. Instead, the processor responsible for executing S-SOLVE*(v)
simply executes a depth-first search of the subtree rooted at v, -skipping over sub-
trees whose leaves are all dead. A pushdown stack is used to control the search. At
each step the stack contains a description of the path g from v to the node currently
being expanded. Along with each node in the path are stored the names of its two

children, and an indication of whether its successor in the path is its left child or
its right child.

94



7.7.1 Level-Allocation Method

In this section we describe the level-allocation method for implementing N-Parallel
SOLVE of width 1.

We shall implement procedure P-SOLVE* of Section 7.4 differently from its orig-
inal description. In its original description P-SOLVE* has two parameters: a node
v and a path g from v to the leftmost frontier node of the search. In our implemen-
tation, only the parameter v will be passed; the processor executing the procedure
will always have enough information available to determine g for itself. Additional
procedures P-SOLVE** and P-SOLVE*** will be required. These procedures are
variants of P-SOLVE* and, like P-SOLVE*, require a single parameter v, giving
the root of the subtree to be searched. Procedure P-SOLVE**(v) is called instead
of P-SOLVE* when it is known, at the time of invocation, that node v has already
been expanded but the value of its left child has not been determined; procedure
P-SOLVE***(v) is called when it is known that v has already been expanded and
that the value of v’s left child is 0. The circumstances under which these variants
of P-SOLVE* come into play will be described later in this section.

Let d(v), the level of node v, be defined as the distance of node v from the root.
Our processor allocation method is extremely simple. Each level of the NOR-tree
has a processor assigned to it. The processor assigned to level d is responsible for pre-
cisely those invocations of S-SOLVE*, P-.SOLVE* | P-SOLVE** and P-SOLVE***
in which the root node v is at level d.

Because of pruning, the execution of a procedure may have to be aborted before
its completion. For example, suppose that nodes w and z are siblings, and that both
P-SOLVE*(w) and S-SOLVE*(z) are being executed. If one of these procedures
returns a 1 then the execution of the other procedure should be aborted. If P-
SOLVE*(w) returns a 0 then the execution of S-SOLVE*(z) should be aborted and,
instead, an execution of P-SOLVE*(z) should be initiated, with a base path g equal
to the path that was on the stack at the time S-SOLVE*(z) was aborted. The
desired behavior can be achieved without explicit messages directing procedures
to abort, provided that the following “pre-emption” rule is obeyed: processor d
works only on the most recent invocation of S-SOLVE* whose root node is at level
d and on the most recent invocation of P-SOLVE*, P-SOLVE** or P-SOLVE***
whose root node is at level d; moreover, it works on S-SOLVE(v) only if it has not

been directed to execute P-SOLVE*(v); all other invocations automatically become
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terminated and the space allocated to these invocations is released. The only point
at which one processor directs another to halt some invocation occurs at the end of
the computation, when the value of the root is determined. At that point, a “halt”
message is broadcast by processor 0 to all other processors.

We now describe the implementation in greater detail. A processor may send
or receive messages of six types: S-SOLVE*(v), P-SOLVE*(v), P-SOLVE**(v), P-
SOLVE***(v), val(v) = 1 and val(v) = 0. Processor d may receive a message of one
of the first four types only if d(v) = d. A message of one of the last two types is
always directed from processor d(v) to processor d(v) — 1.

”

When processor d(v) receives the message “S-SOLVE*(v)” it begins a nonre-
cursive execution of the left-to-right sequential NOR-tree evaluation algorithm on
the subtree rooted at v. The execution continues until one of the following events
occurs: i) the execution terminates and the value of v is reported to processor

”n

d(v) — 1; ii) processor d(v) receives a message of the form “S-SOLVE*(w),” where
d(w) = d(v) and w # v. In this case processor d(v) terminates the execution of S-
SOLVE*(v), as val(v) is no longer relevant; iii) processor d(v) receives a message of
the form “P-SOLVE*(v).” In this case it terminates the execution of S-SOLVE*(v)
and begins executing P-SOLVE*(v), as described below.

When processor d(v) receives the message “P-SOLVE*(v)” its behavior depends
on whether an execution of S-SOLVE*(v) is in progress. This gives two cases. The
first case is that no execution of S-SOLVE*(v) is in progress. In this case, v is
not expanded and processor d(v) does the following: it expands v; if v is a leaf
then it evaluates v,. sends the value to processor d(v) — 1 and halts; otherwise, it
obtains a left child w of v and a right child z of v. It then sends the messages
“P-SOLVE*(w)” and “S-SOLVE*(z)” to processor d(v)+ 1, and waits for messages
giving the values of w and z. If it learns that one of these values is 1 then it sends the
message “val(v) = 0” to processor d(v) — 1 and halts; if the first message it receives
is “val(w) = 0” then it sends the message “P-SOLVE*(z)” to processor d(v) + 1.
As soon as it has received the two messages “val(w) = 0” and “val(z) = 0” it sends
the message “val(v) = 1” to processor d(v) — 1 and halts.

The second case is more complicated. In this case, processor d(v) receives the
message “P-SOLVE*(v)” when it has already received the message “S-SOLVE*(v).”
This is the case in which it must switch from executing the sequential left-to-right

evaluation algorithm on the subtree rooted at v to coordinating the execution of
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the width-1 algorithm on that subtree. Processor d(v) continues the execution of
S-SOLVE*(v) until it is ready to expand a node. At that point, its pushdown stack
contains a path g from node v down to the node being expanded. Processor d(v)
traverses that path, starting at v, and sends messages corresponding to the nodes
it encounters, as follows. Let u be a node in the path g (the case u = v is not
excluded), let w be the left child of u, and let z be the right child of u. If w is on
the path g then processor d(v) sends the message “P-SOLVE**(u)” to processor
d(u) and the message “S-SOLVE*(z)” to processor d(u) + 1. If z is on the path g
(in this case it is known that the value of w, the left child of u, is 0) then processor
d(v) sends the message “P-SOLVE***(u)” to processor d(u). If u is the terminal
node of the path g then it sends the message “P-SOLVE*(u)” to processor d(u).
When the traversal of the path is complete and all the required messages have been
sent, the execution of P-SOLVE*(v) terminates.

When processor d(v) receives message “P-SOLVE**(v)”, it behaves as in case
one of “P-SOLVE*(v),” except that v is already expanded and so there is no need to
expand v and send the messages “P-SOLVE*(w)” and “S-SOLVE*(z)”. It simply
waits for the messages giving the values of w and z and then takes its subsequent
actions.

The message “P-SOLVE***(v)” is similar to “P-SOLVE**(v)” except that, in
addition, it is known that the value of the left child of v is 0. Thus, the task
of processor d(v) is to wait until it receives a message of the form “val(z) = b,”
where z is the right child of v. Upon receipt of this message it sends the message
“val(v) =1 — b” to processor d(v) — 1.

This completes our description of the implementation of N-Parallel SOLVE of
width 1 for binary NOR-trees.

As it is, the level-allocation method uses as many processors as the level of the
input tree. One can simulate the method using p processors by dividing levels
of the input trees into “zones” of p consecutive levels, and letting processor d be
responsible for level d in each zone. To simulate, each processor has to divide its
attention to its levels in different zones by multiplexing, which may not be efficient
In practice.

We show that the “pre-emption” rule achieves the correct pruning behavior given
the assumption that message-delivery takes unit of time. For processor d, it only

receives messages containing nodes of the level d. We say that processor d receives
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messages of type S-SOLVE*() in the left-to-right order if whenever processor d
receives a message S-SOLVE*(v) and later receives a message S-SOLVE*(u) of the
same type, then v is to the left of u at level d of the tree. The correct pruning
behavior is ensured if each processor receives the messages of the same type in the
left-to-right order. We show that this is indeed the case. The major case that needs
to be checked is the case that processor d(v) receives the message “P-SOLVE*(v)”
after it has already received the message “S-SOLVE*(v)”. In that case, processor
d(v) walks down its path g and sends messages to each of the processors at the levels
along the path until reaching the end of the path. Among those processors receiving
messages from processor d(v), processor 7 will receive its messages before processor
j does, if j > i, by the assumption that message-delivery takes unit of time. So
processor ¢ works on a node that is on the right of path g before processor j processes
the message containing node w received from processor d(v). Consequently, it is
not possible for processor i to send a message containing node w’ to processor j
afterwards such that w’ is to the left of w.

The assumption of unit-time message-delivery is not necessary if we are willing
to pass in the message the address of a node, which is the binary string coding the
path from the root of the input tree to the node. Using the address, a processor
can ensure the correct pruning behavior by always working on the right-most node
on its level received so far. The address-passing allows the level-allocation method
to be implemented in a distributed environment.

The major time delays introduced in our implementation occur with the actions
of processor d(v) in case two of “P-SOLVE*(v)”. In this case, it has to traverse the
path g maintained on its stack and send messages as it traverses. This traversal is
considered as instantaneous in the node-expansion model. We show that the delays
caused by these traversals can be incorporated into the path-counting in the proof of
Proposition 17 of Section 7.4. Consequently, the conclusion of Theorem 15 holds for
N-Parallel SOLVE, implemented as described. With each time step T we associate a
“base path” as follows. Let X(1) = {y| P-SOLVE*(y) is being executed at time 7}.
Let v be the rightmost node in X (7). Let u be the node most recently visited by
processor d(v) during the execution of P-SOLVE*(v) (There are two cases; either
u = v or u is the last node reached in the top-down traversal of the path g held on
processor d(v)’s stack). The base path is the path from the root of the NOR-tree to

u. This base path has the following properties: (i) the number of processors that are
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evaluating the right-siblings of the nodes on this base path is equal to the number
of 1's in the “code” of the base path; (i) it has not been counted as a base path
before; (iii) it is a path counted in Proposition 17. By these properties, the base
paths associated with the steps of the traversal will not increase the bounds stated

in Proposition 17. One can conclude that our implementation does not compromise
the linear speed-up of N-Parallel SOLVE over N-Sequential SOLVE.

7.7.2 Dynamic-Allocation Method

In this section we describe the dynamic-allocation method for implementing N-
Parallel SOLVE with p processors. We shall mainly focus on the structure of the
method rather than the details. A more detailed account of the method is contained
in [YZ89].

Central to the dynamic-allocation method is a linear ordering of the p processors.
Each processor that has a subtree to evaluate executes the procedure S-SOLVE*. A
processor is working if it is evaluating some subtree; otherwise, it is free. N-Parallel
SOLVE with p processors imposes a natural ordering on the working processors:
the processor evaluating the top active right-hanging subtree of the base-path is
the first in the ordering and the processor evaluating the end of the base-path is the
last. We append the free processors, if any, to the end of the ordering of the working
processors in an arbitrary way to form a complete linear ordering of p processors.
We shall organize the p processors as a linked list, a “processor structure”, according
to this linear ordering. This linked list is maintained dynamically. Interprocessor
communication occurs only between consecutive processors in the linked list.

The last working processor in the linked list has a special significance. It main-
tains the trailing part of the base path and can give away subtrees off the base-path
to other free processors. Because of its role of giving away subtrees, we call this
processor the donor. A free processor asks the donor for new work. The donor relin-
quishes the topmost right-hanging subtree for the requesting free processor, which
subsequently becomes the parent of the donor in the linked list. For example, if
processors A,B,C and D enter a computation alphabetically with A as the starting
processor, the resulting order will be B-C-D-A, with B evaluating the top right-
hanging subtree and A being the donor. After A donates to another free processor
E, E becomes the parent of A and the child of D, and A remains as the donor. We

observe that such a work assignment avoids passing complex data structures such
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as the trailing part of the base path.

When a processor other than the donor finishes its subtree, its action depends on
the value of its subtree. If the value is 1, then it reports the value to its parent and
waits for new work; and in this case, all the subtrees of the processors below that
processor should be pruned. If the value is 0, then that processor should “swap”
down along the linked list to reach the donor for new work, and if it gets new work,
it becomes the parent of the donor as indicated before. When a child-processor
reports a value to its parent-processor, the parent interprets the value according to
the parity of the distance between the subtree of the parent and the subtree of the
child. The work assignments contain the parity information.

When the donor finishes its subtree, the base path moves to some right-hanging
subtree along the base path. The new donor is the processor possessing that right-
hanging subtree. The trailing section of the base-path now coincides with the local
sequential search path of the new donor. The new donor walks down its local search
path and gives aways the right-hanging subtrees of its local search path as the new
work assignments to the processors below it along the linked list; at the end of this
process, the new donor becomes the child of the last processor to which it gives work,
and it maintains the rest of the trailing part of the base path. In other words, the
donor “swaps” downwards along the linked list of processors to give away new work
assignments to the processors encountered. No complex data structure is passed in
this process. For example, let 4-B-C-D be the linked list where D is the donor.
Suppose that the subtree containing C and D is finished and the base path moves
into the subtree of B. Then B becomes the new donor and it donates to C and D.
The linked list becomes A-C-D-B with B remaining the donor.

The problem with this method is that a processor cannot know whether it should
take the role of the new donor without global knowledge of the computation. A
processor can potentially be a new donor if the processor itself did not finish its
subtree and its child-processor did. Our strategy is to let all such processors assume
the role of the new donor. So there can be multiple donors at one time. As we have
described, a processor gets a new subtree by either seeking a donor when it finishes
its subtree or receiving a subtree from a donor. In the latter case, if the processor
is free, it starts to evaluate the received subtree; if the processor is working, it has
to decide whether the received subtree is “valid”, because of multiple donors, and

if the subtree is valid, the processor abandons or “prunes” its current subtree and
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works on the received subtree. We shall discuss how to decide whether a received
subtree is valid. _

To ensure a proper pruning behavior, a working processor needs a “pre-emption”
rule to decide whether to prune its current subtree when it receives a new subtree.
This pre-emption rule depends on our assumption about message-delivery. The
simplest situation is to pass the absolute address of the subtree in the message. In
this case, we can use the “rightmost subtree” rule: alway works on the lexicograph-
ically rightmost subtree received so far. This clearly ensures the proper pruning
behavior in any circumstances. Suppose that we are unwilling to pass the absolute
address of a subtree in the consideration of efficiency and instead require that a
message be delivered in unit time. In this case, we can use the “most-recent” rule:
alway work on the latest received subtree. A proof of the correctness of this rule
follows the same line as the one for the level-allocation method. Suppose that 4
is above B in the linked list. If a processor receives a subtree from A at time {4
and a subtree from B at time tg, then it is fairly clear that t4 < tp. But it could
happen that t4 = 5 if we are not careful. To avoid this, we require that when a
processor “swaps” downwards on the linked list of processors to give the swapped
processors new work, it should give the work to a processor before swapping with
that processor. This ensures that a processor will not receive two subtrees at the
same step.

We now consider the distributed environment in which processors operate asyn-
chronously and th?re are no assumptions on. message-delivery. In this case, races
can occur. A new subtree can arrive at a processor earlier than some older subtrees.
Hence, proper synchronization is crucial. The address-passing can solve the prob-
lem but we assume no address-passing. The linked list structure of the processors
gives us an additional parameter of a processor, namely, the “rank”. The rank of
processor A is the number of processors preceding A in the linked list. It turns
out that the rank is a convenient mechanism for synchronization. With the proper
protocols, we can use the “lower-rank” rule: alway work on the subtree received
from a processor of a lower rank. A message contains the rank of the sender, which
is O(log p) bits long. We shall not elaborate on the details of the proper protocols.
The mechanism of rank can also solve other synchronization problems that arise in
the distributed implementation.

There are two sources of major additional delays. The first is the situation in
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which the topmost donor walks down its local search path as it assigns new work
to other processors. This traversal is considered as instantaneous in the node-
expansion model. This type of delay was analyzed in the level-allocation method
and was shown to be incorporated into the path-counting argument.

The second source of delay is the situation in which a non-donor processor has
evaluated its subtree to 0 and subsequently walks down the linked list to seek
the donor for new work. This traversal is considered as instantaneous in the node-
expansion model. These delays cause an increase in the number of “bad” steps. But
we show that we can still use the upper bound given in the proof of Proposition 17
of Section 7.4. Let A be a non-donor processor that has evaluated its subtree T
to 0. Let T be the (left) sibling subtree of T,4. In the same effect as using the
“coding” of the base path, we reflect the trailing part of the base path that lies in T7
into the subtree T4. As A walks down the base path, we associate with the current
step the path from the root to where A is, and regard this new path as the base
path of that step. This base path has the following properties: (i) the number of
working processors at that step is at least as large as the parallel degree of the path
in the node-expansion model; (i) it has not been counted before and will not be
counted later as a base path; (iii) it is a path counted in Proposition 17. Notice that
property (i) means that the step is counted as a step with worse parallel degree.
These properties imply that we can still use the bounds stated in Proposition 17 to
reach the same conclusion of Theorem 16 for our implementation as for the original

algorithm.

7.8 Open Problems and Further Research

There are many open problems and possible further topics to pursue. We list a

number of them.

1. The main open problem is the conjecture that the work of Parallel a-8 of
width 1 is within a constant factor of the work of Sequential @-3 on uniform
MIN/MAX trees. This conjecture would imply a linear speed-up of Parallel
a-3 of width 1 over Sequential a-3 on uniform MIN/MAX trees.

2. The major weakness of Theorem 13 is that linear speed-up is proved only in

the case of width 1. When the width is 2 or 3, the number of processors used
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on a uniform tree of height n is O(n?) and O(n?®), respectively. We believe
that the speed-up of Parallel SOLVE on uniform trees should remain linear in
the number of processors used for any fixed width. It appears that new proof

techniques are needed for the analysis of higher widths.

. Our results are asymptotic in the height of the input tree. Theorem 13 requires
the height of a d-ary uniform tree to be on the order of dlogd. This should
be contrasted with the “wide-and-shallow” game trees encountered in chess

programs, which have relatively large branching factor and limited depth.

. In Theorem 13 the provable lower bound on constant ¢ in the linear speed-
up ratio is small (¢ > 1/52). Some simulations we did indicate that a larger
lower bound on c is achievable. It would be highly desirable to establish this
theoretically.

. We have suggested two implementations of the width-one algorithms on NOR-
trees. There is no conceptual difficulty to modify these implementations for

MIN/MAX trees. But it is not clear how to extend these implementations to
the higher widths.

. There is almost a total lack of experimental results on the algorithms pre-
sented. To try out these algorithms on real applications would give valuable
evaluations of the practical usefulness of these algorithms. We did a prelimiary
testing of a program implementing the dynamic allocation scheme on a local
network of SUN’s, and found that there was significant communication over-
head [YZ89]. We suspect that our program would perform better in tightly

coupled multiprocessing environments.

. The evaluation of AND/OR trees is closely related to the execution of logic |
programming languages such as Prolog. However, parallel execution of Prolog
programs gives rise to “binding conflicts”. It is not yet clear how useful Parallel

SOLVE could be for parallel execution of Prolog programs.
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