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ABSTRACT

Tarmac is a language system substrate on which systems for distributed parallel program-
ming can be built. Tarmmac provides a model of shared global state called mobile memory. The
basic unit of state in this model can be viewed as both 1) a block of memory that can be directly
accessed by machine instructions, and 2) a logical entity with a globally unique name that may be
efficiently located, copied and moved. To support higher-level synchronization models, the
movement of a memory unit may optionally enable computations.

Mobile memory is more flexible than models such as distributed virtual memory, shared
tuple space, or distributed objects. It avoids the limitations of fixed page size, fixed data place-
ment policy, and type-system or language dependence. This flexibility allows Tarmac to support
a wide range of parallel programming models efficiently






1. INTRODUCTION

We are concemed in this paper with distributed parallel programming on a network of com-
puters (uniprocessors, multiprocessors, or both). A variety of possible models exist for this type
of programming, each with its own advantages: functional, object-oriented, and dataflow
languages, parallelizing compilers for sequential languages such as FORTRAN, parallel database
systems, and so on. Our main goal was to identify the functionality common to these models,
and implement it in a single system layer, thereby facilitating the implementation (and interac-
tion) of different models. While these models differ in many important ways, they all provide
some form of *‘state’’ that is shared and communicated among the parts of the computation. The
resulting system, Tarmac, is a toolkit for building systems that incorporate shared state. Tarmac
is a language system substrate: a layer interposed between language systems and operating sys-

tems (see Figure 1).
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Figure 1: Tarmac is a language system substrate
interposed between programming language systems and operating systems.
This figure shows the dependencies among the runtime software components.




Examples of systems for distributed parallel programming include Amber [5], Linda (8],
and Ivy [12]. These systems represent different models, but they have two important and desir-
able properties in common: 1) global shared state is encapsulated and explicitly manageci by the
underlying system (language, runtime system, and operating system); 2) the system handles the
movement of parts of the shared state between computational nodes. These properties eliminate
the need for the programmer to design and program message-passing protocols for maintaining

and replicating shared state.

The above systems, however, have properties that limit their range of applicability. Shared
virtual memory systems such as Ivy have page granularity. Entire pages must be moved between
nodes even if only single bytes are referenced, and some global access pattems may cause thrash-
ing. Implementations of the Linda system have embedded policies for tuple transmission and
placement. Most object-oriented systems are tied to a single programming language or type sys-

tem, and cannot easily be used from other languages.

The goal of Tammac is to provide a facility for managing shared state with the beneficial
features of existing systems (encapsulation of small and large state units, mobility, global refer-
ence and location, and replication), but without language dependence and system-enforced data
placement policies. One of Tarmac’s central contributions is that it supports a dual view of state
units. Clients can view state both as ‘‘black boxes’’ that can be named and moved, and as virtual

memory segments that can be manipulated by statements in arbitrary programming languages.

With this goal in mind, we designed a model of shared state that we call mobile memory. In
this model, clients can create, access, move and copy arbitrary-size memory units. Tarmac pro-
vides only mobile memory; any notion of ‘‘type’’, as well as policies for data location, move-
ment, and concurrent access, are left up to the client. Tarmac’s level of abstraction is high
enough to hide details of communication and allocation (thus simplifying language system

development) yet low enough so that few restrictions are made on these systems.



The remainder of this paper is organized as follows: Section 2 describes the Tarmac model,
and Section 3 gives examples of its use. Section 4 describes a prototype implementation of Tar-
mac and gives some performance measurements. Section 5 discusses related work, and Section 6

gives conclusions.

2. Mobile Memory

Tarmac is designed around a mobile memory abstraction. Mobile memory is a model of the
communication and storage resources available in a distributed computing network. The model

involves the following types of entities:

memory unit (MU): a region of memory.
habitat: a set of memory units (generally an address space)
label: a tag, attached to MUs, with client-determined interpretation

Tarmac uses unique identifiers (UIDs) to identify all of these entities. UIDs have an immutable
part, used to establish object identity, and a location hint part. UIDs are always passed by refer-
ence to Tarmac, so that Tarmac can update their hint part whenever they are used.

A memory unit (MU) is a region of memory with a definite size. MUs can contain code or
data; there is no Tarmac-defined notion of type. Tarmac provides the following interface for

creating MUs:

UID-list = create_memory_units (number_of units, size);
make_immutable (UID);

2.1. Labels
A label is a client-defined tag for MUs.

label UID = create_label();
bind_label (label_ UID, UID);

One can associate zero or more labels with a particular MU. Applications can use labels to

represent MU types or other information. Copies of the same application on separate hosts must



agree, by some higher level mechanism, on the interpretation of label UIDs. The location hint
part of a label’s UID refers to the location of an arbitrary MU that has been bound to that label, so

that clients can access MUs associatively through labels.

Habirats represent the physical location of a MU. A habitat may be a virtual address space
on a particular host, or a file system (only address space habitats are supported in the current
design). Processes running in a habitat can also interact with the local operating system to create
non-shared data structures. Every MU has a single current location which is a habitat. MUs can

be moved or copied from one habitat to another, using

move (UID, target UID);
copy {(UID, target_UID);
virtual_move (UID, target UID);
virtual_ copy(UID, target_UID);

An MU A can be moved to any other MU B, after which A’s current location becomes B’s habitat.
If the MU has been designated immutable, Tarmac may maintain a copy of the MU in both the
source and destination habitats, for more efficient access. Copy creates a new MU and then
behaves like move. UIDs act as capabilities to MUs; any MU A which knows the UID for an MU

B can specify B as a target for a move.

MUs located in the same habitat can reference each other directly, using memory addresses.
The memory address of an MU is made available when it is first moved to a habitat (see Section
2.3). If an MU containing direct references to other MUs is moved, it is the responsibility of the

language system to patch up its references.

Tarmac supports an alignment facility, similar in intent t0 Emerald’s notion of attached
objects [10]. If A and B are aligned, and A moves to a new habitat, Tarmac will move B 10 join A.
Furthermore, the relative addresses of A and B will remain the same. Tarmac tries to place
aligned MUs in the same physical page, increasing the efficiency of moves involving large

numbers of small, aligned MUs. The interface for alignment specification is



align(UID1l, UID2);-

As an example of the use of alignment, if a user-level computation creates a binary tree in which
all nodes are aligned with their parent, a move of any node will cause the subtree rooted at that

node to move.

2.2. Lazy Information Transfer

Suppose that one is writing a compiler that will execute in parallel. The compiler breaks a
program into separate procedures and has a different processor compile each procedure. How-
ever, for convenience, the compiler would like to use only a single symbol table data structure.
Because all processors will refer to the symbol table, it should be efficiently accessible from any-
where in the network. To achieve this, the programmer can make a copy of the symbol table on
each processor participating in the computation. However, this will result in unnecessary mes-
sage traffic on the network as each processor will only modify a small, disjoint part of the table.
Tarmac provides facilities to transfer only the portions of a data structure actually used, and to
re-merge modifications to the data structure from multiple locations. Language systems can use

this facility to implement a wide variety of data replication policies.

A virtual move of MU A to habitat H creates a new MU A* in H, but does not actually
transfer any state from A. A is now called the backing MU for A*. When A* tries to access a
location within its state, Tarmac moves that part of the state from A to A*. A virtual move of A*
back to A causes the modified parts of A* to be written to A. Tarmac may also periodically write

modified parts of A* to A if it has no more space in A*’s habitat or upon explicit request.

A program can virtual move an MU to more than one habitat. In the symbol table example,
the compiler could virtual move the symbol table to all habitats participating in the computation.
Each processor could act independently. As processors finish their portion of the computaition,
they virtual move their symbol table MU to the backing MU, causing Tarmac to merge their

changes into the state held by the backing MU. Finally, a program can move a backing MU to a



new habitat with no effect on the backing MU’s semantics. However, if the program moves a
backing MU MB to an MU MVM created by a virtual move on MB, then MVM’s changes will be

merged with MB.

A virtual copy on MU A creates a new MU B. None of A’s state is transferred to B until B

is referenced or A is written (copy-on-write).

A FORTRAN compiler that detects parallelism might generate code that uses these Tarmac
primitives to efficiently synchronize data sharing. Suppose that the compiler has two processes,
PI and P2, execute code that modify some common data. Further assume (as is often the case in
practice) that the compiler can partition the common data between P/ and P2 such that both
processes are mostly accessing local storage. Such a compiler can identify critical sections
involving the modification of shared data structures. For example, a compiler could detect situa-
tions in which P2 must modify data held in PI’s habitat. It could then preface each critical sec-
tion of this type with a virtual move to transfer the relevant MUs from P/I’s habitat to P2’s habi-
tat. Using motion events (see Section 2.3), P/ would block until the MUs retumed. Only those
pages of the MUs modified by P2 would ever be transferred across the network. Further, the
com;;iler could recognize data structures that become read-only after some initial computation

phase, and increase efficiency by designating these data structures immutable.

Primitives such as virtual move and virtual copy are not supported by current object-
oriented distributed systems (some operating systems, e.g. Tenex [4] use copy-on-write for other
purposes). These primitives significantly extend the usefulness of object motion mechanisms;
they support such requirements as temporary motion with mutual exclusion and partial replica-
tion of large objects. Clients can use these facilities to implement higher level virtual memory
models, or to simplify the construction of mechanisms such as efficient call_-by-reference in an
RPC system. In addition, virtual move helps when a processor with few storage resources must

refer to a large amount of data, as when a diskless workstation must swap virtual memory pages



across the network. Finally, Tarmac clients can specify the size granularity (in pages) at which
sections of an MU will be transferred, to help minimize the total number of messages sent. If a
client does not specify a granularity, Tarmac heuristically chooses one (based on page size on the

host and network data packet size).

2.3. Events

MU motions can trigger computations in the source or destination habitats. For example,
an MU move could correspond to an RPC request. Tarmac clients may indicate which MU

moves are to trigger computations by registering events.

event UID = add_event (target_UID, label UID, ...);
remove_event (target_UID, label UID, ...);

An event is an ordered tuple of one or more UIDs. The first field in the tuple names a move
target T. The remaining fields are labels. For an MU move to generate an event E, the move tar-
get T must match the first field in E and each of the remaining fields of E must be a member of
the moved MU’s set of label UIDs. The first field of an event can be the special label *’, which

matches any move target.

Events are transferred to the Tarmac client either through a queue in the habitat or through a
software interrupt. In either case, an event descriptor is passed to the client. Event descriptors
contain the event_UID of the event, the virtual address of the MU in the source and destination

habitats, and the UIDs of both habitats.

Language systems can base decisions to suspend and resume processes on The event

mechanism is sufficient to support any currently popular technique for synchronization.

For example, object-oriented systems can use events and MU motion to implement the
invocation of operations on objects. A simple system would define an operation object type as an
appropriately labeled MU. Moving an operation object O to an MU T would denote invocation

of the operation represented by O on the object represented by T. The state of an operation object



could include information such as the type of the target object and an operation number for that
type. The language’s runtime system would define an event <*, operation>, where operation is
an agreed upon label for MUs representing operations. Occurrences of this event could then
trigger the local invocation of the represented operation (plain RPC would work similarly). We

plan to implement a version of the object-oriented language Sloop [13] using this general stra-

tegy.

3. IMPLEMENTATION

The Tarmac implementation is divided between a Tarmac server (one per host) and a run-
time library present in each habitat. The server can reside in the operating system kemel or run
as a user process. To implement virtual move and virtual copy the server requires notification

whenever a page fault occurs in a local habitat.

Habitats are generally implemented as virtual address spaces loaded by a local mechanism.
Through the runtime library, the application registers with its local Tarmac server and can begin
interacting with the global mobile memory network. For efficiency, the runtime library handles
MU allocation without contacting the Tarmac server. Each copy of the library maintains the
mapping between UIDs and virtual addresses for its habitat. Library code can request multiple
UIDs from the Tarmac server, so that it does not have to make such a request for every MU allo-

cated.

The Tarmac library matches incoming MUs against a set of currently active event types.
The library uses either a software interrupt or a special queue to transmit events to processes run-

ning in the habitat.

Tarmac maintains information that allows it to recognize when multiple aligned MUs exist
in a contiguous region of memory (part or all of a physical page). When it recognizes this situa-
tion, it can transfer the region directly to the destination host. Otherwise it packs the aligned

objects into a new page and sends that page. The receiving server always tries to allocate



contiguous memory for the aligned MUs.

Tarmac assumes that given a UID, a language system (or Tarmac itself) may need to locate
an MU'’s host from among thousands of hosts on a network. When an MU M moves from habitat
H1 tw habitat H2, Tarmac holds a forwarding address for M on HI's host. When the system
attempts to move another MU to M at its old location, the kernel forwards the move to M’s new
* location, and updates the host initiating the errant move. The details of the forwarding algorithm,
such as when to update backward hosts along a chain of forwarding addresses, are essentially

identical to those of the Sloop {13] forwarding algorithm.

3.1. Performance

We have implemented a prototype Tarmac system on top of 4.3 BSD Unix. The system
implements all primitives described above but must simulate external paging by using odd
addresses. This enables us to take measurements of the system’s performance, but complicates
the use of virtual movement primitives in actual applications. We plan to implement a system
using DASH [2], which provides external paging as well as useful facilities for network commun-
ication.

Our measurements indicate that the prototype system can provide efficient execution of all
the Tarmac primitives. Tables 1 and 2 give some specific measurements. Note the speedup given
by use of the virtual movement facilities. All timings are given for MUs of 1K bytes, and do not

include the cost of Unix IPC.

Table 1: Tarmac Primitive Execution Times

Primitive Average Execution Time(usec)
Move 187
Copy 213
Virtual Move 107
Virtual Copy 123
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Table 2: Memory Unit Location Times
Location Task Average Execution Time (usec)
Locating MU Following One Forwarding Link 456
Locating MU Following Three Forwarding Links 1476
Locating MU Corresponding to Label 245

4. RELATED WORK

In this section we contrast Tarmac with other systems for parallel distributed programming.
We evaluate these other system in terms of Tarmac’s goals: those of providing a language-system
substrate for parallel distributed computation in a variety of programming modeis. The limita-
tions we point out in these systems are relative to this goal, and are not intended as criticisms of

the systems in general.

The key property of Tarmac is that it allows a memory unit to be viewed as both 1) an
abstract entity that can be named, moved, copied, erc., and 2) an array of bytes that can be
directly manipulated by statements of an arbitrary programming language. Other systems do not

afford this flexibility.

4.1. Distributed Virtual Memory

Distributed virtual memory provides the abstraction of a consistent virtual address space
shared by processes running on separate hosts. A protocol similar to the cache consistency proto-
cols used in shared-memory multiprocessors governs page movement and replication. Examples

of systems providing distributed virtual memory include Ivy [12] and Apollo Domain [11}.

The distributed virtual memory model has severﬂ possible drawbacks as a general sub-
strate. First, because the resolution of page-table mapping is that of a fixed-size page (typically
8KB to 32KB on current machines) the granularity of state operations (movement and replica-
tion) is fixed. For programs that put many small data items on a single page, this granularity may

be too large, causing increased contention and excessive data movement. Second, the model’s
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concurrency control mechanism (single-writer, multiple-reader) dictates the data movement pol-
icy. Clients have no direct control over data movement, and it may be difficult to prevent ‘‘data
thrashing’’ (situations in which a shared data structure is moved frequently between clients, each
of which accesses it only briefly). Finally, distributed virtual memory is not scalable. The sys-
tem cannot keep track of pointers within a page to other pages, so when a non-resident page is

accessed the request must, in some cases, be broadcast.

4.2. Shared Tuple Space

Linda [8] is a system based on the abstraction of tuple space shared among multiple con-
current processes. Its goals are similar to those of Tarmac: to provide a multiple-language sub-
strate for parallel computing. The Linda model has the following limitations. First, the client has
no direct control over tuple placement or communication pattern. Each Linda kemel implemen-
tation dictates a particular policy, determined by when and where in() and out() messages are
sent. A language system substrate should not dictate policy, since a fixed policy cannot work

well for all possible applications.

Second, the Linda model requires all shared state to be encoding into tuples. This imposes
extra work on some applications. Finally, the model does not scale well in all cases. Linda ker-

nels must resort in the worst case to either broadcast or centralization.

4.3. Master/Slave Systems

In the master/slave model, a single master process generates and accepts asynchronous
function calls that are performed in parallel on a set of slave processors. There is no communica-
tion between the slaves. Marionette [14] is an example of such a system. Marionette provides
shared global state that is read/write by master and read-only to slaves. Because the master pro-
cessor is a bottleneck, the master/slave model has a limited range of values of the (grain-size,

number of slaves) pair in which it performs well.



12

4.4. Object-Oriented Systems

Many system have used the object model for parallel distributed computation. Some of
these systems, such as Matchmz;lker [9], and the Apollo Network Computing Architecture (NCA)
[7], are intended as a structuring mechanism for permanent storage and client/server interactions,
They provide an interface description language to specify both halves of what is essentially an
RPC connection. Other systems, such as Clouds [6] and Eden [1] implement objects as separate

address spaces, leading to prohibitive performance penalties when many small objects are used.

We focus our attention, therefore, on systems that support small objects, efficient access to
both local and remote objects, and object mobility. Examples include Emerald [10], Amber [5],
Distributed Smalltalk [3] and Sloop [13]. These systems suffer from several drawbacks relative

to the goals of Tarmac:

Parallel object models have difficulty accommodating typical numerical data structures
such as arrays. Is one expresses the array as a single object, than all operations on the array must
pass through a single processor, which is likely to become a bottleneck in communication or
computation. If each of the array elements is a separate object, the latency of individual opera-
tions increases. In addition, most object-oriented systems are coupled to a fixed type system, and
usually to a single programming language.

The Tarmac location hint forwarding scheme is similar to the Hermes location independent
invocation mechanism, with two important exceptions. First, the Hermes system fits object loca-
tion into an operation invocation mechanism with a fixed request/reply protocol. This precludes
higher level systems from expressing higher level requests, such as a search for a whole group of
objects or for any member from a group. Tarmac supports such requests. For example, one can
use a label_UID to specify the target of a move. The moved MU will end up in the habitat of

some object labeled with the label _UID.
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Second, the Hermes system requires the program to explicitly specify, for each object T, all
other objects to which T holds references. Hermes uses this interobject reference information to
maintain a cache of location hints at each host. The cache contains a hint for each object for
which a local object holds a reference. Hermes, however, does not make full use of the interob-
ject reference information. References to objects may be either UIDs or virtual addresses. The
latter occurs because objects can share an address space. However, when an object T moves from
address space A/ to address space A2, objects in A/ holding virtual address references to T will
have to replace these references with UIDs (the reverse for reference holders in A2). Hermes
does not do this reference patching, because its designers wanted to make it a language indepen-
dent facility. At the same time, it is dependent on higher level language support in that it requires

interobject reference information for its location independent invocation mechanism.

Tarmac avoids this dichotomy by keeping a location hint with each UID. This approach
makes UIDs larger and causes memory units to contain possibly redundant location hint informa-
tion. However, it releases language systems from the need to specify anything about a memory
unit’s intemnal structure. This makes memory unit creation more efficient, andrdecouples Tarmac
from the type systems of its clients. Further, using this approach does not increase network traffic

because each Tarmac server maintains a cache of hint updates.

5. CONCLUSIONS

Tarmac is a language system substrate: a foundation on which language systems for parallel
distributed programming can be built. Tarmac provides a model of shared distributed state called
mobile memory. Its client language systems determine the process structure, data placement poli-
cies, synchronization, and programming syntax by which this state is manipulated. Simply put,

mobile memory provides two views of shared state:

e A state unit is simply a block of memory of arbitrary but fixed size. It can be accessed

directly by arbitrary machine instructions, with no prescribed type system.
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° All state units are encapsulated as logical entities with unique global names. These entities

can be efficiently located, moved between processors, replicated, and so on.

In addition, mobile memory introduces some mechanisms not found in existing systems:
virtual movement and copying, motion events, and label-directed data movement. The mobile
memory model facilitates the dynamic allocation, redistribution, naming, and organization of the
resources of a distributed computing system. Further, it provides language systems with the

means to construct and maintain distributed data structures.

We have shown by example that mobile memory is sufficiently flexible to support a wide
range of high-level models (object-oriented, datafiow, functional, database, etc.). Because it sub-
sumes most details of management and communication of shared state, Tarmac greatly simplifies
the implementation of such models. Finally, we have shown that the basic operations of Tarmac

are efficient relative to typical network communication.
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