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Effective Clustering and Buffering
in an Object-Oriented DBMS

Ellis E. Chang

ABSTRACT

Object-oriented databases provide new possibilities for inheritance and structural relation-
ships in data semantics. This dissertation examines how to use these additional semantics
to obtain more effective object buffering and clustering. We use the information collected
from real-world object-oriented applications, such as the Berkeley CAD Group’s OCT
design tools, as the basis for a simulation model with which to investigate alternative buffer-
ing and clustering strategies. Observing from our measurements that real CAD applica-
tions exhibit high data read to write ratios, we propose a run-time reclustering algorithm
whose evaluation indicates that system response time can be improved by a factor of 200%
when the read/write ratio is high. In our study, we have found it useful to limit the amount
of 1/Os allowed to the clustering algorithm as it examines candidate pages for reclustering
at run-time, and, because performance varies little according to the number of I/Os
involved, a low limit on I/O appears to be acceptable. We also examine, under a variety of
workload assumptions, context-sensitive buffer replacement policies with alternative pre-
fetching policies. Using these simulation results, we provide implementation hints for exist-

ing or future Object-Oriented DBMSs.
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CHAPTER 1

INTRODUCTION

1. OODBMS Trend and Barriers

While they are currently addressing different classes of business applications, such as
Engineering Information System (EIS) and on-iine transaction processing (OLTP), vendors
of relational DBMSs (ORACLE, RTI, Informix) and emergent suppliers of object-oriented
systems (e.g., Ontologic, Servio Logic) are both proclaiming that object-oriented approaches
to information systems development will dominate in the 1990s. The idea of "objects”
extends the conventional Entity-Attribute-Relationship modeling approach to allow finer
shades of meaning, the inheritance of characteristics, and the reflection of multiple states
(which is required in design applications). Whereas relational systems can cause poor per-
formance by forcing the definition of natural objects to be fragmented into multiple atoms
of meaning, object systems try to maintain the key facts about objects at the level of com-
position at which they are most used, thus avoiding excessive data aggregation [KIM87,

LANDS].

However, there are some major barriers object-oriented database management system
vendors and researchers need to overcome. First of all, there are too many object-oriented
data models, such as ORION [KIMS87], IRIS [FISH87], POSTGRES [ROWES7], and
VBase [LANDS86]. Each model adopts or invents different terminologies to describe its
model which has confused the potential object-oriented database users. Secondly, the per-
formance of these prototypes or products is only comparable to or worse than the relational
database system [CATT88]. Without observing large performance improvement from

object-oriented database system, users can not be convinced to use the object-oriented



database technology. Lastly, because no stable and good object-oriented design methodol-
ogy is available now, users cannot develop real-world applications using any object-oriented

database systems.

In this dissertation, we focus on the second object-oriented database system barrier,

performance, by exploiting data semantics provided by object-oriented database systems.

1.1. Inheritance in OODBMS

The key function of an object-oriented system is to map an application’s data manipu-
lation logic into a set of abstract data types, with associated operations and attributes. In
addition, object-oriented systems often support the concept of fype hierarchies, in which a
taxonomic classification is applied to instances, which belong to types, which in turn belong
to supertypes, etc. Operation and attribute definitions can be propagated along the lattice
formed by instances, types, and supertypes through inheritance mechanisms. Thus, opera-
tions and attributes defined within a type are callable and usable by all its subtypes and
instances, providing both a short-hand specification of definitions as well as a means of
information hiding.

The model of inheritance implemented in Smalltalk-80 [GOLDS3] has several desir-
able features. First, new object types can be introduced into the lattice without the type
definer needing to know all aspects of its supertypes, since inherited definitions can always
be overridden within the new type. Information hiding and independence are thus sup-
ported. Further, new types (or instances) can be created which inherit the properties and
behavior of their supertype (or type). Inheritance thus provides defaults for new type defin-

itions and creation of instances.
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Figure 1-1 -- Version Data Model

Design data is organized as a collection of typed and versioned design objects, interrelated
by configuration, version history, and correspondence relationships. Objects are internally
denoted by the triple namefi].type, where name is the object name, i is the version number,
and fype is its representation type. For example, ALU[4].layout is descended from
ALU[3]}layout and is the ancestor of ALU[S]layout. It is also a component of
DATAPATH]|2].layout and is composed of CARRY-PROPAGATE][2].layout. Additionally,
ALU[4].]layout corresponds to other objects, such as ALU[3].transistor.

Some aspects of CAD data, particularly the introduction of versions and composite
objects, complicate the Smalltalk-80 style of inheritance. For instance, in our Version Data
Model [KATZS86a], three structural relationships; configuration, version history, and
correspondence, are explicitly supported (see Figure 1-1). Note that objects are named by
the triple name(i].type, where name is the object name, i is the version number, and #ype is
its representation type. Version histories maintain is-a-descendent-of and is-an-ancestor-of
relationships among version instances of the same real world object (e.g., ALU[4].layout is-

a-descendent-of ALU[3].layout, both of which are versions of ALU.layout). A structural



version object is associated with each collection of version instances. Structural configura-
tion objects relate composite representational objects to their components via is-a-
component-of and is-composed-of relationships. Finally, correspondence identify objects
across types that are constrained to be different representations of the same real world
object, e.g., ALU[4].]ayout corresponds-to ALU[3].transistor if these are different represen-
tations of the same ALU design. More generally, correspondence can denote arbitrary
dependencies among representational objects They are explicitly represented bv structural
correspondence objects. These three relationships provide alternative hierarchical organiza-
tions for design objects. Embedding these structures into type-instance models while
extending the inheritance mechanisms to cover them becomes problematic. For example,
all versions of an object could be modeled as instances of the same generic type [BATOSS].
Thus, certain properties and beha\(iors, common to all versions, can be defined in the type

definition and inherited by each version instance.

However, there are some properties and behaviors (as well as structural relationships
and constraints) that an offspring version might wish to inherit directly from its parent ver-
sion rather than from its type. Consider the foﬂowhg example. If ALU[1].layout
corresponds to ALU[3].netlist, then a new descendant of ALUJ1].Jayout should inherit this
relationship as a default (see Figure 1-2). While it is possible to constrain all ALU layout
versions to correspond to some ALU netlist instance, it is not possible to specify particular
correspondences on an instance-by-instance basis (see Figure 1-3).

We can envision cases where it is desirable to inherit along relationships other than
version histories. For example, [BUCHS6] describes how constraints on a composite object
can be inherited by its components. In fact, it should be possible to inherit information

along any kind of relationship known to the system, be it type-instance, ancestor-
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Figure 1-2 -- Inheriting Instance Specific Correspondences

Correspondence relationships constrain two objects to be equivalent. A new version
typically inherits these relationships from its immediate ancestor. This is a good example of
inheritance along version relationships which are not easily modeled with conventional
type-instance inheritance.
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Figure 1-3 -- Handling Instance- to—Instance Inhentance wuh Subtypes

A subtype is created for each group of instances that shares a common atiribute or
constrainl. Obwiously this leads 1o an undesirable proliferation of subtypes.

descendent, or composite-component, or even among correspondent objects. Standard
type-instance inheritance cannot model these kinds of information propagations by itself.
While it is possible to implement the above inheritance semantics using user-defined opera-
tions, it is not desirable to do so, since the inheritance seﬁ1antics are not obvious from the
data model and cannot be exploited by the database system. Therefore, we have proposed
an alternative instance-to-instance inheritance which allows direct inheritance among

instances [CHANS7a].

1.2. Thesis Overview

In this dissertation, we are particularly interested in how clustering and buffering algo-
rithms can use structural relationships and inheritance semantics to improve DBMS

response time. For example, if a design browser walks through multiple representations of



the same design objects, clustering across correspondence will reduced the number of 1/Os
to retrieve all these representations and improve the response time. Alternatively, if a
simulation tool traverses the netlist representation hierarchy, clustering along the configura-
tion hierarchy is preferred. If information is frequently inherited along the version history,
the system may place the object near its ancestor object to save disk space. Moreover, the
buffer manager may accept hints from the clustering algorithm to keep candidate pages for

clustering in the buffer pool, to avoid 1/Os during clustering and to improve response time.

We will describe a run-time reclustering algorithm which we have observed to improve
the overall system response time by up to 200% when the read/write ratio is high. We have
found it useful to limit the amount of I/O allowed to the clustering algorithm as it exam-
ines candidate pages for clustering at run-time. We will also discuss how prefetching with
an alternative scope of candidate pages affects response time when different buffer replace-

ment policies are used.

We have instrumented an object-oriented Data Manager OCT, developed by the UC-
Berkeley CAD group [HARRS6], and have collected the access pattern information of
more than ten CAD tools running on top of OCT. About 5000 tool invocations, represent-
ing approximately 400 hours of design work, are recorded. We have observed very high
data read to write ratios from the OCT tools environment in the measurement results,
which implies that dynamic clustering and context-sensitive buffering can be very useful in

object-oriented applications.

The rest of the dissertation is organized as follows: Chapter 2 describes relevant work
on inheritance mechanisms and how they are exploited by database management systems.
Chapter 3 discusses how structural relationships and inheritance can be used in various

clustering and buffering algorithms. Chapter 4 describes the OCT tools’ access pattern,



read/write ratio, I/O rate and structure densities which are subsequently used to define the
workload in the simulation model. Chapter 5 describes the simulation model, constructed
in a modeling language called Performance Analyst’'s Workbench System (PAWS)
[PAWSS83] to evaluate the performance impact of various object clustering and buffer
management algorithms. The simulation results are discussed in Chapter 6 through “Two-
level factorial” analysis technique. Finally, our conclusions and future directions are given

in Chapter 7.



CHAPTER 2

RELATED WORK

2. Introduction

Two bodies of work relate directly to this research. The first concerns the alternative
inheritance semantics in data models. The second addresses techniques and algorithms to
implement such mechanisms. The following table (Table 2-1) summarizes representative
work done on the data modeling and implementation aspects of inheritance. The system

built by Ontologic Inc. provides the inheritance semantics closest to those proposed here.

System Authors Inheritance Semantics Techniques
ORION [KIM87] Type-Instance/Type flat schema
POSTGRES [ROWES86] | Type-Instance/Type caching
EXODUS [CARES86] | Type-Instance/Type clustering hint
PROBE [DAYA86] | Type-Instance/Type not known
IRIS [FISHS87] Type-Instance/Type none
CACTIS [KING86] | Derived/Attribute Graph | clustering, trigger
KEE [KEES6] Type-Instance /Type smart copy
ART [ART86] User-definable not known
Ontologic [ATWOS85] | Instance-Instance caching
GemStone [MAIE86] | Type-Instance/Type clustering
Smalltalk [GOLDS&3)] | Type-Instance/Type Hash Table
CommonLOOPS | /MITT86] Prototypical Objects Virtual Copies
Actor [LIEB86] Prototypical Objects Delegation

Table 2-1: Relevant Works Summary
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2.1. ORION

ORION [KIM87, KIM88], an object-oriented database management system developed
by the Microelectronics Computer Technology Corp. database group, supports inheritance
along the abstract data type lattice. An instance has only one associated abstract data type.
As a user defines a abstract data type which inherits attributes from other abstract data
types, the system flattens the inheritance hierarchy and stores only the flat form of the
schema in the database catalog. This approach improves run-time performance by eliminat-
ing the lookup overhead along the inheritance link. Consistency among abstract data types
is guaranteed because any schema changes cause the system to regenerate the flat form. In
other words, the notion of inheritance is known only to the schema processor and is used by
the front end application as an abstraction mechanism. The storage sysicm and butfer
manager have no knowledge about inkeritance. The ORION DBMS, however, also ignores
the inheritance semantics information, which is needed to support an instance-to-instance
inheritance mechanism efficiently.! The inheritance-based run-time clustering techniques
and the context-sensitive buffer replacement algorithm described in Chapter 3 will demon-

strate how inheritance semantics information can be exploited at run time.

22. POSTGRES

The current POSTGRES data model [ROWES7] supports objects that are abstract
data types and procedures. There is no direct support for inheritance in POSTGRES.
Although procedures can be used to emulate inheritance, the task is not trivial from user’s
point of view. In [ROWESG6], the shared type hierarchy is cached in users’ virtual memory

and constructed by an object manager upon applications’ request. We believe that this

! No inst: astance inheritance is supported by ORION.
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complicated cache consistency protocol can be avoided if the underlying system
(POSTGRES) supports inheritance directly. Furthermore, smart prefetching and run-time
clustering become feasible if both inheritance and structural relationships are known by
POSTGRES. Chapter 6 addresses how the storage system and buffer manager can use

inheritance and structural relationships to improve the overall system response time.

2.3. EXODUS

EXODUS [CARES6] is an extensible database system being developed at the Univer-
sity of Wisconsin, Madison. It is a "DBMS generator” that supports the rapid construction
of application-specific DBMS. The Type Manager maintains class hierarchies and allows
inheritance along the class lattice. No instance-to-instance inheritance is supported in
EXODUS. The Database Implementor can pass hints for object placement to the Storage
Object Manager through the E language interface. However, no detailed clustering tech-
niques are proposed in EXODUS, and structural relationships and inheritance semantics

are not used by the storage manager at run-time.

2.4. PROBE

PROBE [DAYAS6] is a knowledge-oriented DBMS being developed at CCA. Its data
model is an extension of the DAPLEX functional model. PROBE supports two basic types
of data objects: entities and functions. Entities are further grouped into collections called
entity types. Although PROBE can emulate the instance-to-instance inheritance semantics
through functions, the performance of such emulation is unclear at the present time. Most
of the research work done by PROBE is in multiargument and computed functions. No
detailed description about the implementation of PROBE’s inheritance mechanism is avail-

able.



2.5. IRIS

IRIS [FISH87], an object-oriented DBMS developed at Hewlett-Packard database lab,
adopts the DAPLEX functional model and supports type-instance inheritance through its
OSQL interface. No instance-to-instance inheritance is provided and structural relationships
such as versioning and configuration are not known to the storage manager. Since the
underlying storage manager of IRIS is very similar to the storage component of System R,

no navigation or complex objects are supported.

2.6. CACTIS

The goal of CACTIS, a DBMS that developed at the University of Colorado, is to
support very complex derived information in as efficient a fashion as possible. (See
[KINGB86]) One interesting property of the CACTIS data model is its ability to attach con-
straints to attributes. Although CACTIS does not. support any inheritance mechanisms
explicitly, it can emulate the instance-to-instance inheritance through its attribute evaluation
mechanism. CACTIS also addresses some implementation issues such as indexing and clus-
tering. However, its clustering algorithm is greedy in nature and does not consider the

inheritance semantics during its clustering process.

2.7. KEE

KEE [KEES86] is a sophisticated knowledge engineering tool that incorporates several
powerful and versatile Al methodologies for solving complex problems requiring non-
algorithmic solutions. It uses frame-based knowledge representation with inheritance for
representing domain knowledge. In KEE, a knowledge base is built up of five basic build-
ing blocks: units, slots, slot values, facets, and facet values. Units are objects. Slots are

attributes of units. Slots may have various values which describe different units. Facets



similarly describe slots.

The KEE’s inheritance algorithm is "smart” about making copies of slots that are
exactly like a parent slot. If a slot is created via inheritance and has no local information in
the child’s version, the parent and the child share the same slot data structure. If the child
slot is ever given any local information after creation, a separate data structure is created.

This data structure continues to exist, even if the slot loses all of its local information.

The KEE's implementation assumes the availability of an infinitely large virtual
memory. To emulate this assumption, most of the expert systems use the dwnp and load
utility programs to transfer objects between memory and disc, but because these utility pro-
grams do not normally support direct access capability, the system cannot update an object
in place without extensive storage reorganization. The clustering techniques we will pro-
pose in Chapter 3 will not work since KEE is not capable of storing objects at a prescribed
position. Without smart clustering techniques on the physical level, the resulting referential

locality will cause extra I/Os at run-time.

28. ATR

ART is an expert system development shell from Inference Inc [ART86]. It provides
two kinds of relationships: inheritance relationships and non-inheritance relationships. The
is-a and instance-of relationships are inheritance relationships and users can also define any
new relationships within schemas to be inheritance or non-inheritance relationships. Con-
ceivably, this feature allows applications to do instance-to-instance inheritance easily. How-

ever, the instance-to-instance inheritance is not directly supported in ART’s model.

No detailed implementation information is available at the present time.
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2.9. Ontologic

Vbase, an object-oriented database system being built by Ontologic [LADI86], sup-
ports type/subtype, type/instance inheritance and the following abstractions: is-a, a-part-of,
and an-instance-of, along with built-in support for both version and alternatives. Inheri-
tance within is-a and an-instance-of is exactly the type-instance inheritance found in most of
Al systems. The Object Manager also supports property inheritance along the a-part-of
abstraction which is similar to the iscomposed-of and is-component-of relationships
described in [KATZ87). However, no notion of corresponds-to relationship is supported,

and inheritance does not occur along the version histories relationship.

One interesting feature of the Vbase system is its clear distinction between abstract
types and storage classes. In Vbase, an abstract type defines a set of abstract behaviors,
such as operations, properties, attributes, and relationships. The storage class, on the other
hand, manages these abstract behaviors’ storage, including dereferencing, clustering and
object recovery. An abstract type provides a default storage class which implements these
behaviors and can have a wide range of storage classes. This simplifies adding a new

storage class for use by existing abstract types.

Raising the storage problem so that it is a semantically visible portion of the system
has another advantage for clustering. The Vbase storage managers all support a series of
clustering levels. A normal arrangement supports chunks (contiguous storage), segments (a
clustering of chunks) and areas (a clustering of segments); however any given storage
manager is free to support any number of leveB of clustering. In Vbase, objects may be
clustered at any clustering level, along semantic relationships. Typically, all of the separate
storage pieces required to implement an object are clustered within the same chunk, how-

ever, no run-time clustering is supported at this point. The detailed physical
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implementation information is not available at the present time.
2.10. GemStone and Smalltalk

GemStone is an object-oriented database server which supports a model of objects
similar to that of Smalltalk-80 [MAIE86). Inheritance is restricted to the type-instance and
type-type lattice, and no instance-to-instance inheritance is allowed. One interesting feature
of GemStone is that it allows users to control object placement explicitly. If the chosen
segment has no room for the target object, no segment splitting is invoked and another free
segment is used. Applications can cluster related objects together by the unit of segment,
which is mapped physically to a set of pages. However, the system does not automatically

cluster objects for the users.

2.11. Prototypical Object

[MITT86] and [LIEB86] have proposed the concept of profotypes to replace types.
Instances are associated with a prototype object, and are defined to behave like the proto-
type object unless the instance overrides some aspect of the prototype object definition.
The difference between prototypes and types is primarily conceptual. By providing mechan-
isms such as delegation [LIEB86], which is essentially message passing, it is possible to
implement inheritance-like propagation directly among instances. For example, the request
to obtain an instance’s attribute is forwarded to its prototype, if the attribute value is not

locally defined.

2.12. OBject Server

OBject Server, known as ObServer, is the storage manager of the ENCORE database
system [HORNS7]. One interesting feature of ObServer is its object clustering mechanism,

which utilizes two types of heuristics: transaction-oriented and single-object evaluation of
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object usage. Transaction-oriented heuristics monitor object usage within the context of a
transaction; that is, transaction-oriented heuristics monitor how objects are used together.
Single-object heuristics use three measurements amassed over a. period of time for monitor-
ing: the access count, the open count, and the access ratio. The access count refers to the
number of times an object is accessed in a given segment. The open count refers to the
number of times the segment is opened. The access ratio is the quotient between the
access count and the open count. Howevel, these heuristics and detailed statistics are only
used for database tuning.? No dynamic clustering is invoked at object creation time. Since
the ObServer has no knowledge of object-oriented semantics such as inheritance and struc-
tural relationships, it cannot exploit such information at the storage level. We claim that

such an ability is critical to OODBMS performance.

2.13. Object-based Clustering

A number of object-oriented database management systems, either prototypes or pro-
ducts, have implemented object-based clustering mechanisms. (See [MAIE86, ATWOS5,
ZDON84, KIM87].) Two characteristics are common to each of these implementations:
(1) a segment (a collection of pages) is used as a clustering unit, and (2) user’s hints are
utilized at object creation time. For example, if a user hint such as "nearby object XX" is
provided, the system tries to store the target object with object XX in the same page or
adjacent page. Otherwise, the first buffer page with available space is chosen even though
other buffer pages may contain the target object’s structural related objects, e.g.,‘ ancestor
or composite objects. Since these systems do not model structural relationships as first

class objects in their data models, the storage component has no information to exploit dur-

2 How these heuristics and statistics are used to make what kinds of decision is not addressed in
[HORN&7].



17

ing the clustering process. Users’ hints are the only useful semantics which can be used by
the storage component. Moreover, none of these systems do reclustering when object
structures are changed, e.g.,, new components are included in a composite object. Neither

do these systems exploit inheritance semantics.

2.14. File/Record-based Dynamic Restructuring

The problem of incremental file restructuring has been studied in [OMIES8S] and is
shown to be NP-hard. Omiecinski focuses on finding efficient heuristics to minimize the
number of pages swapped in and out of the buffer during the restructuring process. How-
ever, his algorithms consider neither the overall system response time and the applications’
characteristics, nor the rich semantics, such as structural relationships, captured by object-

oriented systems.

[CHANS?2] has proposed ways to cluster multiple record types for one-to-many or
one-to-one relationships in the storage manager of ADAPLEX, a semantic data model.
The paper introduced the notion of combining a physical pointer with a logical pointer to
form a hybrid. For example, when representing a function from course to student, it may
be useful to store both the student entity identifier, and the physical pointer to the student
record. Although ADAPLEX supports the notion of inheritance and relationships, the
storage manager does not use this information during the clustering or buffer replacement

phase.

[SELL87] has proposed and evaluated various caching policies to maintain pre-
computed SQL tables. Using a cache, the cost of processing a query can be reduced by
preventing multiple evaluations of the same SQL procedure. Problems associated with

cache organizations, such as replacement policies and validation schemes are examined.
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However, because Sellis’ proposal is based on relational model, structural relationships and

inheritance semantics are not exploited to improve overall system performance.

2.15. Sun Benchmark

Sun Microsystem has proposed benchmarks for engineering DBMS, with emphasis on
response time [RUBES87, CATTS88]). The group has constructed a benchmark to run
against: a relational DBMS, (i.e. RTI INGRES), an object-oriented DBMS, (i.e. Ontologic
VBase), and a simple in-memory data structure manager from Sun Microsystem. The
group strongly believes that the operations engineering applications perform on data cannot
be expressed in the abstract form provided by SQL or other high-level DMLs. Simply
adding transitive closure to the query language cannot meet the 1000 operations per second
requirement from CAD or CASE applications. In this benchmark, no clustering or buffer-

ing mechanisms are discussed.

The following benchmark characteristics proposed by Sun Microsystem are related to
this dissertation: (1) the read/write ratio is set at 10, (2) three basic operations are meas-
ured: traversal, lookup, and insert, (3) each object has at most three connections with other
objects, and (4) the database size ranges from 3 MBytes to 300 MBytes. However, none of
the numbers used in this benchmark has any supporting data as no formal process has been
used to collect these statistics from real user environments. Further, as admitted by Duhl
and Damon in [DUHLS88], the benchmark mode] does not attempt to approach the com-
plexity that an object-oriented application normally includes. For instance, the structural
relationships and type-hierarchy discussed in Chpater 1 are not modeled in this benchmark
at all. The benchmark results show that the simple in-memory data structure manager per-
forms best in all cases. However, without concurrency control and recovery support, such a

simple data manager is not suitable for object-oriented applications.



CHAPTER 3

EFFECTIVE CLUSTERING AND BUFFERING

3. Introduction

Engineering design, manufacturing and CASE applications demand high performance
object management systems. These applications utilize structural relationships and inheri-
tance mechanisms to effectively model their complex environments. Because conventional
relational database management systems do not support such modeling primitives explicitly,
the storage components cannot take advantage of them at run-time. In addition, these
complex applications frequently perform materializations of an object hierarchy. For
instance, a VLSI simulator or a software structure analysis tool needs to flatten an object
hierarchy before a simulation run. Loading a large object hierarchy into memory becomes
a problem. This section describes how to obtain better bandwidth and response time by
exploiting inheritance and structural semantics in buffering and clustering for object-

oriented applications.

3.1. Smart Clustering

The objective of clustering is to place frequently co-referenced objects near each other
in physical memory. For static clustering, the system is quiesced, and the database adminis-
trator decides on a partitioning of objects. Static clustering is not effective for applications
such as manufacturing which requires high availability. Dynamic clustering, on the other
hand, is done at object creation and updating time when concurrent accesses are permitted.
Although dynamic clustering may degrade the response time of writers, such degradation to

writers can be offset by a large improvement of readers’ response time as the simulation
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results in Chapter 6 show. Dynamic clustering, therefore, becomes very attractive in

object-oriented applications where reads dominate writes (Refer to Chapter 4).

The inputs to our clustering algorithm can be user’s hints such as "access by configura-
tion", inter-object access frequencies, or characteristics of inherited attributes. The user’s
hints are registered into the system through a procedural interface. The interobject access
frequencies are inherited from the type at object creation time. For instance, in CASE
applications, the run-time debugger frequently navigates from the object code to the source
code and not in the other direction. Such information can be predefined at type creation

time and used by all instances.

The clustering algorithm chooses an initial placement for each newly created instance
based on which of the instance’s relationships is most frequently traversed. This frequency
information is available in the corresponding'data type and is inherited by the newly created
instance. These frequencies may be affected by the implementation of the instance’s inher-
ited attributes. For inherited attributes, the clustering algorithm uses an additional set of
cost formulas to choose between implementation by copy versus by reference. The aug-

mented access frequencies may change the initial placement of the instance.
The following set of parameters is used to control our clustering algorithm:

(1) Candidate page pool. Since the information used by the clustering algorithm is on an
instance basis, the clustering algorithm needs to retrieve the physical page in order to
get the corresponding information for clustering decision. Notice that the free space
map in the page table is not sufﬂciént to determine the potential candidate page.
When looking for a candidate page for placement, the clustering algorithm may use
only the pages available in the buffer pool, avoiding any I/Os during the clustering

process. Or, the algorithm may search a limited number of pages on disk.
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Alternatively, the algorithm may use the entire database as the candidate page pool.

The candidate page pool can be: Within_Buffer, With_IO_limit, or Within_DB.

(2) Page splitting policy. When the preferred candidate is full, the storage manager must
either split the page to make room for the new object, or choose the next best candi-
date page which has space for the new object. The page is split if the expected access
cost resulting from the page-split is better than the cost of putting the new object in
the next best candidate page. Otherwise, the next candidate page is examined, and the

decision process recurses if there is insufficient room on the chosen page.

The problem of estimating the cost resulting from the page-split is similar to the
Graph Partitioning Problem. However, this is known to be NP-complete and may not
be suitable for a run-time clustering algorithm. [CHANS87a) proposes a greedy algo-
rithm that partitions the nodes of the inheritance-dependency graph into two subsets
each of which can fit into a page. At the same time, the greedy algorithm tries to
minimize the total accessing cost. Because the algorithm does not try to find the
optimal partition and only scans through the set of arcs once, the total running time is
guaranteed to be linear. If the degree of connection and the number of nodes are
small, the complexity of the page splitting algorithms should have no major impact on
the overall system response time. Therefore, the page splitting policy can be:
No_Splitting, Linear_Split, or NP_Split.

(3) User Hints Policy. Many computer-aided design applications make frequent use of con-
figuration relationships, for example, a design rule checker walks thé configuration
from leaves to root as it performs its checks. However, most inheritance references
are along version history relationships, since a descendant version typically obtains

information from its ancestor. If users can make this reference information known to
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the system, it can cluster objects based on the characteristics of the application. In
our simulation model, we assume that users are responsible for making new reference

information available to the system when access patterns are changed at run-time.

User hints can be simple, such as "place near object XX," or complicated, like "place
near configuration X used in project P." To determine the set of candidate pages for
run-time clustering, these user hints are translated into one or a set of object identif-
iers including page identifiers by looking up all objects specified by the corresponding
user hint in the object table. The translation of simple user hints can be very fast.
However, the handling of complicated user hints may require several I/Os. For exam-
ple, the system needs to traverse the complete configuration hierarchy to translate the
complicated user hint "place near configuration X" into a set of object identifiers. To
avoid poor writer’s response time during clustering process, the complicated user hint
can be precomputed, permanently stored, and used at run-time. (This is very similar
to the view materialization mechanisms studied in [HANS87].) Due to the complexity
of materialized view validation protocols, we assume the simulation model translates
every user hint, either simple or complicated, on-line without any precomputation.

The user hint policy, therefore, can be designated as User_Hints or No_Hints.

3.1.1. Algorithm Details

The clustering algorithm is presented in pseudo code in Figure 3-1. The system calls
the cluster_object() procedure to do clustering for a target object, either a newly created
object or an updated object. In the latter case, if the change is a structural update to the
target object, the system also calls cluster_object() to do clustering based on the latest statis-

tics.
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A detailed description of the five steps in the cluster_object() follows:

(1) Before choosing a candidate page on which to place the target object, the algorithm
needs to know whether the clustering policy is to split the candidate page if it is out of

space or to choose the next candidate page instead.

By examining all the inherited attributes of the target object, the algorithm determines
the implementation strategy for every inherited attribute. Inheritance can be imple-
mented by copy or by reference, ie., the inherited value can be cached with the
instance or the inheriting instance can point to the type (or source instance) that
defines the value. The former approach has the advantage of fast access, but slow
propagation of changes. The latter has better update performance, but exhibits slow
access. A one-byte counter is used to monitor the update frequency of each attribute.
When the counter is overflowed by the number of updates, it is permanently set to be
255 (ie., 28-1). Using this one-byte counter, the system can make the inheritance
implementation decision on an instance basis. If an inherited attribute has been
updated frequently, by reference implementation is used. Otherwise, the algorithm will
implement this inherited attribute by copy. These implementation decisions are made
by calling ger by_copy_set() and get_by_ref set(), and the results are returned in

copy_set and ref_set.

The system also needs to determine the placement strategy within the physical space.
All pages which contain source instances for these inherited attributes are returned in
inh_page_set by calling get_all_inh_page(). Similarly, pages which contain the target

object’s interrelated objects, for example, its ancestor instance and component



PROCEDURE cluster_object(target_object)
BEGIN
/* step 1: get initial information */
cluster_policy := get_policy(); /* Is page splitting enabled? */

copy_set := get_by_copy_set(); /* Inherited attributes implemented by copy.
ref_set := get_by_ref_set(); /* Inherited attributes implemented by reference.*/

inh_page_set := get_all_inh_page(); /* Source pages for inherited attributes.*/
struct_page_set:= get_all_struct_page(); /* Source pages for structural objects.*/

user_hint_set:= get_all_hint_page(); /* Source pages from user hints.*/
page_set := inh_page_set + struct_page_set + user_hint_set;
/* step 2: calculate ref_set lookup cost for each page */

FOR p IN page_set /* If by-reference attribute r is */
FOR r IN ref_set /* not in page p, storing target object */
IFr NOT_INp /* in page p requires one run-time */
BEGIN /* lookup for attribute r. */

weight(p) := 1/(prob(p,struct_rel));
Ref_LookUp(p):= Ref_LookUp(p)+weight(p);

END;
/* step 3: calculate copy_set lookup and storage cost for each page */
FOR c IN copy_set /* If by-copy attribute c is not in page*/
FOR p IN page_set /* p, we could either cache it in page p*/
IF ¢ NOT_IN p /* or change its implementation to be*/
BEGIN /* by-reference. */

weight(p) := 1/(prob(p,struct_rel));
Copy_storage(p) :=Copy_storage(p) +sizeof(c);
Copy_LookUp(p):= Copy_LookUp(p)+weight(p);

END; ,
/* step 4: calculate total cost of every page. If by-copy attributes are ~ */
/* implemented by reference, the total cost of storing target object  */
/* in page p is represented by Total_cost(p,1). Otherwise, the cost */
/* is represented by Total_cost(p,2). */

FOR p IN page_set
Total_cost(p,1) := Ref_LookUp(p)*Lookup_cost + Copy_LookUp(p)*Lookup_cost;
Total_cost(p,2) := Ref_LookUp(p)*Lookup_cost + Copy_storage(p)*Storage_cost;
/* step 5: pick up best candidate page and try to insert the object */
candidate_page := Minimum (Total_cost);
IF (cluster_policy EQ no_split)
WHILE (NOT_FIT(candidate_page)
candidate_page := Next_Min (Total_cost);
IF ( (cluster_policy EQ page_split) AND ( NOT_FIT(candidate_page))
Split_page(candidate_page);
END;
Figure 3-1 -- Pseudo Code for cluster_object
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instances, are returned in struct_page_set by calling get_all_struct_page( ).3 User hints
provide another source of candidate pages and are returned in user_hint_set by calling
get_all_hint_page(). The union of inh_page_set, struct_page_set, and user_hint_set creates

a set of candidate pages for placement in later steps.

(2) If a by-reference attribute is not in a chosen candidate page p, the system needs to look

it up at run-time. As mentioned in sectior. 3.1, the probability of accessing an indivi-
dual structural relationship plays a vital role in modeling the run-time look up cost.
We define weight (p) to be the inverse of this structural relationship access probability
and the cost of storing the target object in page p, modeled by Ref_lookUp (p), to be

the summation of all weight (p) of by-reference attributes of the target object.

(3) Inherited attributes which can be implemented as by copy, are either copied to a can-

didate page p or looked up at run-time. There are two cost variables involved:
Copy_storage( p ) is used to model the cost of storage and is incremented by the size
of the by-copy inherited attribute, while Copy_lookUp( p ) is used to model the cost of

by-reference implementation and is incremented by weight(p) as Ref_lookup(p).

(4) To determine the candidate page, the system needs to transform all the lookup and

storage costs into the same scale for comparison. The lookup cost, Lookup_cost, is
represented by Pp;*Cpup + (1-Ppit)[Cip +Pio* o), Where Py, is the probability of buffer
hit, P,, is the probability of doing 1/O during buffer replacement,* C, is the cost of
1/O, Cpyy is the cost of searching through buffers, Cyooiayp is the cost of catalog lookup

and C,, is the cost of getting a free page from 0.S.3 The storage cost, Storage_cost, is

3 We assume that both the ancestor instance and components instances information are

available from the target object, and that no 1/Os are introduced by this procedure call.

4 Both P,, and P,, are based on the statistics collected during a simulation run.

5 All these parameters use the number of instructions as the basic cost unit.
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represented by Lookup_cost* scale_factor, where scale_factor is determined by users.

(5) If the clustering policy does not permit page-split, and the candidate page is out of
space, the clustering algorithm chooses the next minimum cost candidate page on
which to insert the target object. Otherwise, the system tries to split the candidate
page to minimize the new run-time lookup cost. When the candidate page_set becomes

empty, the system will allocate a new page for the target object.

The Split_page() procedure described in Step (S5) tries to minimize the look up cost
from the page-split. If a page contains N inherited attributes, its look up cost is
represented as N*Lookup_cost, as described in Step (4). The detailed algorithm for pro-

cedure Split_page() follows:
Page_split Algorithm: Assume that the arc costs C,; (potential run-time lookup costs)
are always maintained and sorted in the page header. The node capacity Cap,, (the object

size) is available from the object header which is maintained by the system. Subset A and
B represent the new page layout after page-split. Both subset A and B are empty at the

beginning, and the available capacity of A and B is set to be (maximum_page_size * 0.75).

(1) Select the maximum value arc from E as e,gp; and set E to be (E - {e,zge}). Let

Vhead and v,y be the head and tail nodes of arc €,z

(2) Suppose both Vs and v,y are new to subsets A and B. Insert v,y and vy into
subset A if Cap,, , plus Cap,, is less than the remaining capacity of subset A.
Otherwise, insert v,,; and v,y into subset B if subset B has space for these
nodes. If neither subset A nor B can accommodate both vp,,; and v,y, a broken

arc is found, and Cem is added into Cpy.
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(3) Suppose Vj,q is in subset A, and v,4; is not in subset A or B. Insert v,y into sub-
set A if there is room. Otherwise, a broken arc is found, and C,m is added into
Coal-

(4) Suppose both v,.,; and v,y are visited before, then a broken arc is found and

Cororger

is added into C,,.
(5) Loop back to (1) until arc set E is empty.

Algorithm Analysis: This algorithm is greedy. Since we only scan through the edges |

once, the total running time is guaranteed to be O(n) where n is the number of edges in G.

Target Object X

(506
2
Candidate Page
A (650) > (490)
(- 1 3 / \
O 4 OC (S00)
F E 2
(1000) (500) _
OD (700)

Figure 3-2 - Page Split Example
Each node represents an object, and the number associated with it is the size of the
corresponding object. The arc represents either the inheritance dependency or the
structural relationship, and the number associated with it is the potential run-time look up
cost. All the nodes within the box are on the same page, and the target object X is too
large to fit into the candidate page in this example.
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A page split example is shown in Figure 3-2. The clustering algorithm described in
Figure 3-1 has chosen a candidate page shown in Figure 3-2 to store the target object X.
Suppose that the maximum page size is 4000 bytes and the clustering policy is to split the
page when it is out of space. Because the target object X is too large to fit into the candi-
date page, the clustering algorithm invokes the page splitting algorithm to determine a new
page layout for these objects. The page splitting algorithm first places object B and D on
the same page since the potential run-time look up cost from B to D is the largest. Object
E is then chosen to be on the same page since the potential run-time look up cost from B
to E is the next largest. However, due to the limitation of the available capability of a page,
object A and F are placed on another page. After scanning through all the arcs in the
inheritance dependency graph, the page splitting algorithm produces the final page layout
shown in Figure 3-3. Notice that the actual run-time look up cost of the new page layout is
1 (from object A to E), represented by the dotted line in Figure 3-3,° whereas the actual
run-time look up cost of the no-splitting layout is 2 (from object X to B). Therefore, split-

ting the candidate page has reduced the actual run-time look up cost by 1.
Discussion

To avoid the extra cpu time caused by the clustering mechanism, users may disable
automatic dynamic clustering when the system is heavily loaded. Or they may
enable/disable clustering based on the characteristics of their operations and data. For
instance, operations like check-in/out require a large amount of data to be inserted into
workspaces. With clustering enabled, better response time will be provided for future

accesses at the expense of extra cpu time during check-in/out. Users can therefore tune

¢ All the potential run-time look up cost values are still the same as before. That is, the
potential look up cost from B to E is still 3 and from A to F is still 2.
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the context-dependent clustering policy to provide reasonable response time for their appli-

cations. The interaction between access frequency and clustering policy is evaluated in

Chapter 6.

page 2

Empty

page 2

Empty

page 2

Figure 3-3 — New page layout after page splitting
After page splitting, objects A and F are on page 2 and the rest of objects are stored on
page 1. The dotted line between object A and E represents the actual run-time look up
cost after page splitting. All the potential run-time look up cost values are still the same as
before. That is, the potential look up cost from B to E is still 3 and from A to F is still 2.
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3.2. Smart Buffer Replacement

The most common operations of object-oriented tools are navigation along the struc-
tural relationships and simple retrieval of design objects. For example, a macro cell router
may navigate all the terminals and paths associated with an individual net. A computer-
éided software engineering configuration manager may need to find all the composite
modules of a particular component module during the integration phase. In general,
object-oriented tools have fairly static access patterns (Refer to Chapter 4). Unfortunately,

these are ignored by most database systems.

To obtain better response time, the buffer manager must determine prefetching and
buffer replacement strategies by exploiting knowledge about the structural and inheritance
relationships. Response time is improved if appropriate objects can be prefetched before
they are needed, or if related objects can be kept in the buffer pool even if the relationships
span disk pages. For example, if buffer X contains an object that references some attri-
butes in buffer Y through an inheritance link, the buffer manager should try to keep buffers

Y and X in the buffer pool at the same time.
The following set of parameters is used to control the buffering algorithm:
(1) Buffer Pool Size.

(2) Buffer Replacement Policy. An unsophisticated buffer manager uses a simple LRU
buffer replacement policy whereas a more sophisticated approach uses a priority
scheme which replaces the lowest priority pages first. The key challenge is to use the
semantics of the interrelationships among objects on the buffered pages and hints
about the access patterns to set the priorities intelligently. Frequently accessed pages
have their priority increased. Infrequently accessed pages have their priority reduced,

but this may be modified by their interrelationships with other pages, especially if



31

those are frequently accessed. Whenever an object is accessed, its related pages
(these pages containing its component objects and its inherited attributes) might be in
the buffer pool already. A good buffer replacement policy should keep these pages in
the buffer pool, thus accruing no additional I/Os to bring them in later on. This is
accomplished by using the usage pattern as well as the corresponding context of an
individual page during the buffer replacement process. We call this new buffer
replacement policy Context-sensitive and describe it in detail in Section 3.2.1. The
other two algorithms examined in this study are: LRU algorithm [BELAG66,
DENN72], which removes the page that has not been referenced for the longest
period of time, and the Random algorithm [BELAG66}, which randomly selects a page

for replacement when a butfer page is needed.

(3) Prefetch Policy. At the beginning of an interaction with the database, the users pro-
vide the buffer manager with access hints such as “my primary access is via configura-
tion relationships.” This information influences the buffer manager’s prefetch stra-
tegy. Touching an object causes the page containing it and the pages containing its
immediate subcomponents to be brought into the buffer pool and given the same high
priority. For example, such a prefetching strategy achieves extremely good perfor-
mance for applications that walk the configuration hierarchy. Similar prefetch hints
can be used to obtain a version object, its immediate ancestor, and its immediate des-
cendents. Also, correspondence relationships can be used to obtain all objects
corresponding to the one being accessed. Inheritance is treated in a similar fashion
for determining prefetch groups. The candidate pages for prefetching can be con-
strained to either the buffer pool or the entire database. Notice that prefetching

within the buffer pool does not create any extra logical I/Os. However, prefetching
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will cause the buffer priority to be adjusted to the requesting applications.

PROCEDURE Fetch_Object(ObjID, structural_rel, prefetch)

BEGIN

/* step 1. fetch the base page of target object. */
IF (ObjID NOT_IN BufferPool)
BEGIN

buffer_id := Get_bufferframe();
Get_page(ObjID, buffer_id, HighPri);

END;

/* step 2: get structural and inheritance links used by the target object.  */

/* If their containing pages are in buffer pool, set their priority */

/* to be HighPri. */

structural_links := Get_struct_links(ObjID, structural_rel);
FOR link IN structural_links DO
IF (link TN BufferPool)
Set its bufferframe to be HighPri;
inh_links := Get_inh_links(ObjID);
FOR link IN inh_links DO
IF (link IN BufferPool) .
Set its bufferframe to be HighPri;
/* step 3: If prefetch option is on, prefetch all related pages into memory. */
IF (prefetch)
BEGIN
FOR link IN structural_links DO
IF (link NOT_IN BufferPool)
BEGIN
buffer_id := Get_bufferframe();
Get_page(link, buffer_id, HighPri);
END;
FOR link IN inh_links DO
IF (link NOT_IN BufferPool)
BEGIN
buffer_id := Get_bufferframe();
) Get_page(link, buffer_id, HighPri);
END;
END;
Figure 344 -- Pseudo Code for Fetch_Object
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3.2.1. Algorithm Details

For every fetch object operation, users can provide access path information and pre-
fetch hints along with the target object identifier. The pseudo code of procedure

Fetch_Object() is shown in Figure 3-4 and a detailed description follows:

(1) If the target object is in the buffer pool, the buffer manager sets the priority of the
containing buffer as HighPri Otherwise, the buffer manager allocates a buffer frame,

fetches the object into it, and sets the priority as HighPri

(2) To avoid useful pages being replaced, the buffer manager locates all buffer frames
which contain either structural or inheritance information from the target object and

sets these buffer frames as HighPri.

(3) If the prefetch option is enabled, the buffer manager does the prefetching for all the

structural and inheritance related objects on behalf of the target object.

The example shown in Figure 3-5 further illustrates these steps. Suppose the target
object X is located on page A, and its component objects are on pages B, C, and D. The
prefetch option of this Fetch_Object() call is disabled and the structural_rel parameter is
specified as configuration hierarchy. Before calling the Fetch_Object() to fetch the target
object X, the buffer pool has already prepared pages B and D for replacement because of
their low priority status. To fetch object X into the buffer pool, the buffer manager first
needs to allocate a free buffer. Since both pages B and D have low priority status, either
one of them could be chosen to be replaced. However, such a decision is not desirable
because object X may reference these pages very soon. To avoid this, the Fetch_Object()
procedure considers information provided by callers. The structural_rel parameter is set to
be configuration hierarchy, and the contents of all buffers, e.g., page B and D contain com-

ponent objects of object X are considered. The buffer manager tries to keep page B and D
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Figure 3-5 -- Smart Buffer Management Example

Each box represents a page frame, and a circle within a box represents an individual object.
The arc between circles is the configuration relationship. In this example, object X is
composed of objects Y, Z and W. The replacement priority is represented as "low pri" and
"high pri.” Two buffer layouts are shown to illustrate the difference before and after

calling Fetch_Object().

in the buffer pool by increasing their priority status. The final buffer pool layout after this

Fetch_Object() call is also shown in Figure 3-5.

Discussion

Note the close interplay between the clustering algorithm and buffer management. If the



35

clustering algorithm is efficient, then interrelated objects will be placed on the same page or
in a small collection of pages. If not, and if access along these relationships is frequent,
then the clustering algorithm will adapt to the access patterns by reorganizing the place-
ment of objects. The buffer manager can alert the clustering algorithm about the need to

reorganize.

3.3. Summary

In this Chapter, we have shown how inheritance and structural semantics can be
exploited by clustering and buffering algorithms at run-time. Three parameters, candidate
page pool, page splitting mechanism, and user hints are used to control the clustering policy.
Another three parameters. buffer pool size, buffer replacement algorithm, and prefetch
mechanism are used to define the overall buffering policy. Part of these parameter values
are influenced by the actual oSservation from the OCT design environment. For example,
to determine an appropriate candidate page pool, the clustering algorithm needs to under-
stand the target object’s structural relationships with other objects. If the target object has
only two structural relationship links, then the maximum size of the potential candidate
page pool is two and the clustering with 2 1/0 limit policy may be sufficient (Refer to Sec-
tion 6.1 for more detailed discussion). In the following Chapter, we will report the OCT

design tools’ access pattern in detail.
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CHAPTER 4

OBJECT-ORIENTED APPLICATION ACCESS PATTERN

4. Introduction

This Chapter presents the access pattern information of an object-oriented data
manager, OCT, which is being used extensively (about 20 client applications) in the Berke-
ley CAD community. Even though OCT provides only a subset of object-oriented concepts,
we felt that OCT would give us a very good starting point in understanding the access pat-
tern of object-oriented applications as well as helping us evaluate various clustering and
buffering mechanisms for object-oriented applications. The access pattern information we
collected covers about 5000 tool invocations representing approximately 400 hours of design
work. We have observed very high data read to write ratios from the OCT tools environ-
ment in the measurement results, which implies that dynamic clustering and context-
sensitive buffering discussed in the previous Chapter can be very useful in object-oriented

applications. The following section reports on our findings.

4.1. OCT Data Manager Overview

OCT, data manager for VLSI/CAD applications [HARRSG6], supports a set of primi-
tive object types which are used frequently by VLSI CAD tools and arbitrary attachments
among these objects. Figure 4-1, for example, shows a net attached to a facet which is a
basic design unit, four terminals attached to the net, and three paths attached to various
terminals. Every attachment creates a link between two objects. These links are bidirec-
tional and provide basic composition hierarchy information. However, users are responsible

for maintaining the legal attachment among objects, and the system does not provide any
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structure validation. Further, OCT does not allow user-definable operations to be associ-

ated to the object type and no explicit inheritance mechanisms is supported.’

4.2, Information Collected

When an OCT tool is invoked, either in a batch mode or interactive mode, its OCT
data access information is accumulated in several local variables and logged to a file at the
octEnd() time. To obtain the access pattern information for each individual tool, several
OCT routines are modified. However, no OCT routines’ external interface is affected by

the instrumentation. All the ten OCT tools we measured only need to relink with the new

Figure 4-1 - MOSAICO Access Pattern

The run-time navigation path is represented by the arc direction from one object to
another. A net is attached to the facet which is basic unit of design cell. Terminals are
attached to the net whereas paths are attached to the terminals.

7 However, upon creation of the interface, the formal terminal definitions are included in the
interface facet automatically by OCT. This situation, the only one where OCT uses inheritance, is
not available to OCT users.
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OCT library and a tool specific file. The tool specific file is used to set up the tool identifier
information in a global variable. At octEnd() time, the tool identifier is logged together
with the corresponding access pattern information. To synchronize concurrent update to
the log file, we used the UNIX flock() primitive to guarantee one writer at a time. The

measurements are done on the VAX 8600 machine with the Ultrix operating system.
For each OCT tool invocation, we recorded the following information:

(1) The tool Identifier, such as “SPARCS” or “VEM?”, helps us understand the run-time
behavior of an individual application and also allows us to relate the tools’ functionali-
ties to their overall run-time behavior. For example, this make it possible for us to

know whether all the placement and routing tools have similar read/write ratios.

(2) Read and write activities. When objects are retrieved through "attachment”, they are
recorded as structure read. Any relationships created between objects via “attachment”
are viewed as structure write. Remaining read or write operations are viewed as simple
read or simple write. We also recorded the object type information for every read and

write operation.

(3) Session time. A session is defined as the time interval between octBegin() and
octEnd(). With this, we can measure the /O rate per session® and thus better under-
stand the correlation between the session time and the applications’ functionalities.
For example, the layout tool like "VEM" tends to have longer sessior; than placement

and routing tools.

(4) Fan-out of upward and downward structural access. Reading a composite object may

only trigger the retrieval of a subset of its component objects. Similarly, reading a

® Since octEnd() is called at the end of each tool invocation, we cannot measure the actual I/0
rate and the 1/O distribution within a sesstion is not measured either.
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component object may cause the return of several of its composite objects. For exam-
ple, a netlist simulator would only navigate along the <cell>, <net>, and <seg-
ment> path, leaving the remaining component objects attached to <cell> totally
untouched. In other words, not all of the component objects are typically read when

an application is traversing a composite object at run-time.

(5) OCT object usage profile. OCT supports various object types which are primarily
useful for VLSI CAD applications. This object usage profile provides tool developers

with information such as how OCT objects are being used at run-time.

4.3. R/W ratio

For every tool invocation, we collected the number of structure read, structure write,
simple read, and simple write operations, all of which are at the logical level. We define the
read/write ratio of every tool invocation to be the total number of structure reads and sim-
ple reads divided by the total number of structure writes and simple writes. Figure 4-2
shows the read/write ratio of nine OCT tools. VEM, a graphical editor not included in Fig-
ure 4-2, has the highest read/write ratio of 6000. The rest of the OCT tools’ read/write
ratios vary from 0.52 to 170. Each of these read/write ratios is the average read/write ratio
of a specific tool. One interesting note is that different phases of the same application may
have wide variations in the read/write ratio. For instance, the macro cell router MOSAICO
is composed of atlas, cds, cprep, PGcurrent and mosaico. Figure 4-2 shows the read/write
ratio within one run to vary from 0.52 to 170.° This is quite unusual compared to traditional
debit/credit applications, in which the read/write ratio is quite stable throughout an appli-

cation. Due to this dynamic of the applications’ read/write ratio, the clustering algorithm

9 Within each phase, the read/write ratio is fairly stable.
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must be adaptive to achieve adequate response time during the different phases of an appli-

cation.

Figure 4-3 shows the 1/O rate of various OCT tools, calculated by counting all logical
read and write operations and then dividing by the session time. All the tools except VEM
are run in batch mode, and the session time does not include think time. Notice that most
of the OCT tools have the following pattern: a read phase, a CPU intensive processing

phase, and a writc phase. When the CPU intensive part becomes smaller due to the MIPS
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Figure 4-2 -- OCT Tools’ Read-Write Ratio

Ten OCT tools are measured. The highest read/write ratio 6000 belongs to VEM, a
graphical editor. The rest of the OCT tools’ read/write ratios are shown here. Wolfe is a
standard cell placement and global router. SPARCS is a symbolic layout spacer. Misll is a
multiple-level logic optimizer and bdsim is a multiple-level simulator. MOSAICO is a
macro cell router which is composed of atlas, cds, cprep, and mosaico. All these read and
write operations are recorded from the buffer manager’s point of view.
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per CPU may double every year, the rest of the operations, read and write, will then be the
determining factor of the application’s performance. Although the I/O rates shown in Fig-
ure 4-3 only demonstrate which tool is the most 1/O intensive, they still provide an useful

information for future OODBMS design.

4.4, Structure Density

Figure 4-4 shows the downward access structure density of ten OCT tools. Although
both upward and downward accesses are measured at run-time, we have observed that most
of the upward accesses have only one object returned. Theretore, we only report the fan-
out of downward accesses here. The structure density is broken into three categories: 0 to

3 for low density, 4 to 10 for medium density and above 10 for high density. Observing
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PGecurrent atlas cds cprep mosaico sparcs wolle bdsim misil VEM

Figure 4-3 - OCT Tools’ Object I/O Rate

The Y axis is derived from the total number of logical 1/Os including read and write
operations and the session time. The X axis shows the 10 representative OCT tools.
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Figure 4-4 -- OCT Tool Structure Density Distribution

The structure density is broken into three categories: 0 to 3 for low density, 4 to 10 for
medinm dencitv and above 10 for hich dencity. The X axis represents the usage of everv

category for each tool.

from our measurements, the distribution of structure density above 10 has a very large vari-
ation and the next structure density higher than 10 may be 30 or 400. Therefore, we chose

structure density 10 as the the breakdown point between medium and high density.

Most of the OCT tools’ downward access, except VEM, are dominated by a low struc-
ture density (0 to 3 objects). VEM has the highest structure density, since it typically
displays all the objects attached to the composite object. The VEM’s downward access
structure density can be viewed as the static structure density of the OCT data being meas-
ured. Averaging the VEM’ downward access structure density, we estimate that the aver-
age static structure density of the OCT data being measured is between 3 to 9, which is

quite different from the actual downward access structure density, 0 to 3 objects.
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4.5. Access Pattern
After interviewing several OCT tool developers, we observed the following:

(1) Structural object-oriented applications!® emphasize navigation rather than ad-hoc
queries. For example, in Figure 4-1, the macro cell router MOSAICO navigates along
the configuration to find all the paths used by a certain net. An ad-hoc query like

"select all nets having 6 or more terminals” is not needed in MOSAICO.

(2) Certain access patterns can be eliminated if the underlying system supports integrity
constraint. For instance, the cell compactor SPARCS scans through the entire design
to make sure that no two terminals have more than one path between them. Such
checking assures that SPARCS will not run into a loop at run-time, but also intro-
duces a number of unnecessary I/Os. The SPARCS'’s average read/write ratio will

only be affected by 0.4 if such checking is eliminated.

(3) Most of the access patterns are predictable. Certain objects, such as the net instance

in Figure 4-1, are accessed several times during navigation.!! Once this access pattern
is known, the buffer manager can increase the priority of the object’s containing page

to improve the buffer hit ratio.

4.6. Object Usage

Several OCT object types are predefined for the OCT users. For example, octFacet,
the fundamental unit in OCT, consists of a collection of objects that are related by attach-
ing one to another. OctTerminal describes a terminal of an instance whereas octNet

represents a logical connection between the terminals that it contains. OctPath describes a

10 Since OCT does not allow user-definable operations to be associated to the object type, it
only represents a part of the object-oriented applications.

1 The re-read ratio information is not captured by our measurements.
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‘wire' of certain width and octBag describes an object whose only purpose is to hold other
objects. Figures 4-5 and 4-6 show the profile of OCT object usage for both downward and

upward access. Some key observations are:

(1) Bounding box (i.e. BOX as labeled in the Figure) is the most frequently accessed
OCT object in both downward and upward retrievals. This is quite consistent with the
OCT tools’ characteristics; the router, layout compactor and graphic editor need

bounding box information all the time.

(2) The low usage of <Facet> (labeled as FAC in Figures) is due to the fact that most
OCT tools only work within the contents of a <Facet>, not across different
<Facets>. Once a <Facet> object is retrieved, it is unlikely accessed again by the

same application. However lots of its component objects are accessed..

(3) Both <terminal> and <path> have a similar amount of usage in downward access.
Since <terminal> is connected by <path>, any navigation pattern will produce such

a usage pattern.

(4) Almost no OCT tools use <string>, <real array>, <integer_array>, and <objec-
tID>. This object usage profile can be used to decide which OCT object should not

be supported in future extension of OCT.

(5) Most OCT tools use more downward access than upward access. This information
can be used by the clustering and buffering algorithm, described in Chapter 3, to

improve overall system response time.

4.7. Summary

This Chapter presents the OCT object access pattern information, broken down into

read/write activities, session time, downward and upward structural access pattern, and
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Figure 4-5 -- OCT Downward Access Object Usage Pattern
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Figure 4-6 -- OCT Upward Access Object Usage Pattern

The X-axis represents the OCT object type: facet (FAC), terminal (TER), net (NET),
instance (INS), polygon (POL), bounding box (BOX), path (PAT), label (LAB), property
(PRO), bag (BAG), layer (LAY), point (POI), edge (EDG), integer (INT), real (REA),
string (STR), real array (R_A), integer array (I_A), and object identifier (OID). The Y-
axis represents the number of times the object type is used at run-time.

OCT object usage profile. Based on the measurements, we have the following observations:
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(1) Different phases of the same application may have wide variation in the read/write

ratio. However, within each phase, the read/write ratio is fairly stable.

(2) Most of the upward accesses have only one object returned and most of the OCT
tools” downward access, except VEM, are dominated by the low structure density (0 to
3 objects).

(3) Supporting integrity constraint can reduce some physical I/Os while the overall

read/write ratio is not dramatically affected.

These real-world object-oriented applications’ access patterns are used to construct

the simulation model described in the folowing Chapter.
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CHAPTER 5§

SIMULATION MODEL

5. Introduction

This Chapter presents a simulation model for engineering database application
environments composed of several workstations and file servers. A user activity file, includ-
ing data access function (open/close/read/write), data access mode (database and files),
and data volumes, is constructed by using the previous Chapter’s measurement resuits.

Several questions we like 1o answer by running this simulation:

(1) How do different clustering and buffering algorithms affect the performance while

varying the characteristics of applications?

(2) What is the relationship between the choice of the clustering algorithm and frequency

parameters such as inheritance density and read/write ratio?

We used the Performance Analysis’s Workbench System (PAWS) to construct our
simulation model because PAWS supports a number of high level primitives; for example,
various queuing disciplines and a set of detailed statistics outputs. PAWS also allows us to
refine and enhance the model easily. In the following section, we discuss the workload and
our model in terms of PAWS primitives. We summarize all the modeling parameters in

Chapter 5.2.



5.1. The Engineering DB Model

We represent our model of engineering database interaction in the PAWS language
which allows the user to simply declare the characteristics of the system being modeled
instead of coding detailed simulation algorithms. An example of CPU node definition in

the PAWS language is shown in Figure 5-1.

The simulation model consists of several interacting model blocks. Transactions
representing user requests flow between these model blocks carrying information about the

work units. The major blocks, shown in Figure 3-2, are:
(1) Workstation Cluster: a set of workstations representing interactive users and think
times
(2) Workload Definition: workload characteristics
(3) 1/0 subsystem: a set of related components describing the I/O configuration

(4) Buffer Manager: the buffer management module

CPU
TYPE SERVICE
QUANTITY 1

QD RRFQ 10.0
REQUEST <BATCHALL> HYPER(10.0, 14.1);
Figure 5-1 -- Example Node Definition in PAWS

Here, the name of the node is CPU, the node type is SERVICE, there is one server, the
queueing discipline is round-robin with a fixed quantum of 10 time units, and all BATCH
transaction regardless of phase request service times draw from the hyper-exponential
distribution with mean 10.0 and standard deviation 14.1.
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Figure 5-2 -- Simulation Model Overview

(5) Cluster Manager: various clustering algorithms management modules
(6) CPU: the processor

Figure 5-2 shows the relationship between these blocks. A transaction starts at a
workstation cluster node and submits a request to the file server after a predefined think
time. The request is defined in the workload definition node. If the request is a read opera-
tion, the buffer manager searches through the buffer pool and issues a physical 1/O if
needed. The buffer searching phase flushes out some dirty pages as well as some transac-
tion log records. Therefore, in the worst case, a logical 1/O, generated in the workload
definition node, can be translated into zero to 3 physical I/Os; one I/O flushes the dirty

page, one 1/O logs the transaction, and one I/O brings in the data.

A few notes of our simulation model:
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(1) We model not only the buffer pool activities but also the transaction logging details to
obtain realistic log I/O rates. A log record is constructed based on the size of the
newly created or modified object. A circular in-memory log buffer is used and log

records are flushed when the circular log buffer is full.

(2) Object information such as object size, structural links with other objects, and contain-
ing page identifier, is maintained explicitly, allowing us to construct a realistic sample

database used by all the buffering and clustering algorithms.

(3) Actual physical I/O activities are modeled through the 1/O subsystem node. The 1/0

path length and the disk service time are also modeled by the system.

The detailed model description. shown in Figure 5-3, uses the following PAWS primi-

tive and concepts:

(1) Each transaction is associated with a category and a phase. The category of a transac-
tion is a name (denoted by any string of alphanumeric symbols) and it is permanent; a
transaction has one unique category throughout its lifetime. The phase of transaction
(denoted by an integer) may be changed as the transaction progresses. Two transac-
tions of the same category and phase are processed identically at every node. Thus,

the notion of category and phase is used to distinguish between various transactions.

(2) The service node, represented by a black circle, is used by a transaction to acquire
active resources like terminal and CPU. A transaction arriving at a service node
requests the use of a server for a specified length of time. If all servers at the node
are busy, the transaction may have to wait in the node’s queue until that transaction is
selected for service. Transaction leaves the service node when its request is satisfied.

A service node definition consists of a node name followed by a TYPE SERVICE
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field: a QUANTITY field, which specifies the number of servers at the node; a QD
field, which specifies the queueing discipline used to select transactions from the
node’s queue for service; and a REQUEST field, which specifies by category and

phase with a queueing priority and a service time distribution.

(2) The user node, represented by a black box, is used by a transaction to invoke a user-

written FORTRAN subroutine.’? A transaction arriving at a user node requests that a
specific user function be performed. The simulation is suspended and a user subrou-
tine is invoked tu pertorm the requested function. At the same time, all the system's
global variables, the transaction’s local variables, the transaction identifier and the
present simulation time are passed into the corresponding user function. The request-
ing transaction will leave the user node when the user subroutine returns control to
the PAWS system. In our simulation model, the user node is used to: 1) interact with
the user activity file to define each individual transaction, 2) control clustering and
buffering policies, 3) implement various clustering and buffering mechanisms, and 4)

emulate the transaction manager function.

(3) The fork and join nodes, represented by triangles, are used by a transaction to create
children transaction. The children transactions are created immediately and leave the
fork node. The parent transaction remains behind at the fork node until its children
transactions arrives at the same common join node, at which time the parent transac-
tion replaces its children and proceeds from the join node. In our simulation model,
the fork and join nodes are used to analyze the following services: 1) transaction

management, 2) window management like terminal display, 3) virtual memory paging,

2 FORTRAN is the only language supported by PAWS. Since PAWS is written in FORTRAN,
this limitation simplifies the PAWS’ implementation of user node.
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and 4) disk I/0.

(4) The compute node, not shown in Figure 5-3, is used by a transaction to interrogate
and alter variables and to report the statistics. Operations, such as assignment,
sequence-control, and simulation-control, requested in compute node are performed

immediately and the transaction leaves the compute node without any delay.

The workload definition node is intended to capture the workload characteristics. The
OCT workload is defined by the distribution of OCT procedure calls and each OCT pro-

cedure call can have an average path length, 1/O content, and lock request behavior.

StartNode forkTermWrite joinTermWrite forkTermRead joinTermRead
— @ ’I>
Setup | CPU CcPU CPU
Transaction
cleanup
torkUserCPU JoinUserCPU  node
—
cPU Transaction
SelectLoad forkTranMgr joinTranMgr anager
S
ClusterNode CPU
forkiO CPU  DISK JoinlO

forkPageOut CPU  pigsk  joinPageOut

Figure 5-3 -- Simulation Model Detail
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The fundamental units of recovery and concurrency control are the object and compo-
site object. An object can be read by specifying a unique name or navigating along struc-
tural relationships from other objects. If the target object for a read operation is composite,
several logical 1/Os may occur to retrieve the complete object. Alternatively, the write
operation would only create or update a single object. Based on our measurements, we

choose that every tool invocation (user session) is composed of 100 to 10000 queries with

various read/write ratios.!

Observing from our measurements, we decided that engineering design applications’
procedure calls can be categorized into seven query types which are assigned to transactions
in the workload definition phase: (1) Simple object lookup. (2) Component object retrieval,
(3) Composite object retrieval, (4) Descendant version retrieval, (5) Ancestor version
retrieval, (6) Corresponding objects retrieval, and (7) object insertion/deletion/updating.
The probabilistic usage distribution of these query types is determined by the read/write

ratio parameter described in Section 5.2.

In our simulation model, the checkin and checkout operations are modeled by these
seven query types. For example, a transaction consisting of several component object
retrievals can be viewed as a checkout operation. Similarly, a checkin operation is emulated

by a transaction consisting of several object insertions and updates.

The complete PAWS implementation of the Engineering DB model is given in Appen-

dix A, and a subset of the PAWS’ output is listed in Appendix B.

B One tool invocation is viewed as one user session in our simulation model.



5.2. Parameters

Table 5-1 shows all the parameters modeled by the simulation model and their operat-
ing levels. They are divided into static parameters, which are fixed for all the simulation

runs, and control parameters, which have various operating levels.

Static Parameters | Default Value

Database Size ] 300 Mbytes

Page Size . 4 Kbrtes

Number of active sessions 10

Think Time 4 seconds

Control Parameters l Operating Levels

Structure Density low-3,med-5,high-10

Read-write Ratio 5,10,100

Clustering Policy No_Cluster,Cluster_within_Buffer
2 10_limit,10_1O_limit, No_limit

Page Splitting Policy No_Split, Linear_Split, NP_Split

User Hint Policy No_hint, User_hint

Buffer Replacement Policy | LRU, Context-sensitive,Random

Buffer Pool Size 100,1000,10000

Prefetch Policy No_prefetch, Prefetch_within_buffer_pool
Prefetch_within_Database

Table 5-1: Simulation Parameters

The operating levels of the control parameters are partially influenced by the structure
density and read/write ratio observed in Chapter 3. The default values of the static param-
eters are influenced by the fact that the ultimate goal of this dissertation is to study the
control parameters’ impact on the overall system response time. The number of active ses-
sions sharing the same database is assumed to be 10 since most of the CAD/CAM designs
can be partitioned into small units shared by less than 10 engineers. We assumed the page
size is 4 Kbytes and the number of disks of the server, not interested by this simulation
study, is set to be 2 with a 30 ms mean disk access time. The database size is 300 Mbytes

which is the maximum database size in Sun engineering application benchmark described in
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Chapter 2 [CATT88]. The 4 seconds think time for each user we believe represents what is

the average think time in interactive computer-aided design environments.

We studied eight control parameters to understand their impacts on the overall system
response time. Out of these eight control parameters, structure density and read/write ratio
determine the workload characteristics, clustering policy, page splitting policy, and user hint
policy control the clustering policy. and buffer replacement policy. buffer pool size, prefetch
policy define the buffering strategy. We based the operating levels of Structure Density on
actual observation from OCT tools access patterns. "Low-3" means that every structural
retrieval returns fewer than or equal to three component or composite objects. "Med-5"
means that more than 3 but fewer than 10 objects are returned through structural retrieval,

and "high-10" means that 10 or more objects are returned.
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CHAPTER 6

SIMULATION RESULTS

6. Introduction

The control parameters listed in Table 5-1 are not independent from one another.
For example, a higher structure density means more candidate pages to consider during the
object placement phase. A higher read/write ratio means that the extra [/Os caused by the
writers during the clustering phase may be amortized by the readers and, consequently, that

the overall system response time improves.

In Section 6.1 we discuss the Tun-time clustering effects using alternative clustering
policies under a fixed set of buffering control parameters. We then analyze the effects of
the various page splitting policies on response time in Section 6.2. In Section 6.3 we exam-
ine the effectiveness of User hints. After discussing various buffer control parameters
effects on response time in Section 6.4, we complete our study with an overall effect
analysis in Section 6.5. For every set of control parameter settings, at least ten simulation

runs are used to produce the average response time.

6.1. Run-Time Clustering Effect
The operating levels of buffering control parameters used in this clustering policy

effects study are: No prefetch, 1000 buffers,' and LRU buffer replacement policy. The No
Split page splitting and No User hint policies are also used, insuring that when the preferred

candidate page is full, the storage manager chooses the next best candidate page with

4 This is the standard configuration in Sun Benchmark.
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enough space.

Figure 6-1 shows how various clustering policies affect system response time under

different workloads. Some key observations are:

(1) Run-time clustering always improves overall system response time. When both the
structure density and read/write ratio are high, the response time is improved by

200%.

Response Time (sec)

ow3-5 jow3-10 low3-100 med5~5 med5—10 med5-100 hI0-5 hNO-10  hNO-100
Transaction Characteristics

Figure 6-1 -- Clustering Effects Analysis

The buffering control parameters are fixed to 1) No prefetch, 2) 1000 buffers and 3) LRU
buffer replacement policy. Five different clustering policies are studied: 1) No clustering, 2)
Clustering within buffer pool, 3) Clustering with a 2 I/O limitation, 4) Clustering with a 10
I/O limitation, and 5) Clustering without 1/O limitation. The X axis represents various
transaction characteristics. "Low3-5" means the transaction has a low structure density
fewer than or equal to 3 and read/write ratio 5. "Hil0-100" means the transaction has a
high structure density which is greater than or equal to 10 and read/write ratio 100.
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(2) Setting 1/O limits on potential candidate pages search is valid. When the structure
density is low, clustering with 2 1/O limitation performs better than or comparably to

clustering without 1/0O limitation.

(3) Clustering within buffer pool performs reasonably well when the structure density is
low, but degrades to the No_Clustering case when the structure density is high. The
buffer hit ratio also affects the performance of clustering within buffer pool. When the
it ratio 1s low, clustering within buffer pool’s performance is close to No_Clustering.
However, its performance improves when a better buffering policy is used (Refer to

Chapter 6.4)

(4) In general, the ordering of the clustering strategies is not changed under various
read/write ratios. Clustering with 2, 10, or unlimited I/Os always performs better

than clustering within buffer pool which is better than the No_Clustering case.

However, what is the point in read/write ratio where the clustering mechanisms begin
to become effective, i.e, the point at which the clustering mechanisms lead to similar
response as the no clustering case? We compare No_Clustering with clustering without ary
1/0 limitation. The results are summarized in Table 6-1 under alternative prefetching pol-
icy, page splitting policy, and various structure densities. Different structure densities have
different break-even points, due to the amount of logical 1/Os caused by writers duriné the
clustering phase. More detailed analysis on prefetching and page splitting policies is in Sec-

tion 6.2 and 6.4.
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I No Prefetch [ Prefetch

| Nosplit | Split | No Split | Split
low-3 3.0 32 2.8 2.9
med-5 3.6 3.7 34 34
high-10 | 4.3 4.5 4.0 4.1

Table 6-1: Read-write ratio break-even points

Figures 6-2. 6-3 and 6-4 show both the structure density effect and the prefetching

effect on response time when the read/write ratio is fixed. Notice that the ordering of the

clustering strategies is not changed under alternative prefetching policies.’® In all cases, the
response time rises sharply between medium structure density and high structure density
when no clustering is done. Since a composite object retrieval may trigger 10 or more logi-
cal 1/Os under high structure density and that these are less likely to hit in the buffer pool,
the increasing physical 1/Os result in a higher response time. However, the response time
rises slowly from a low structure density to a high structure density when any of the cluster-
ing mechanisms except clustering within buffer pool is used. Both the clustering within buffer
pool and the No_Clustering cases have sharp rise of the response time from a low structure
density to a high structure density. The low variation of response time over different struc-
ture densities is critical, especially when applications’ dynamic structure densities are not

fully predictable.

Clustering within buffer pool cannot perform well if the buffer pool hit ratio is low dur-
ing the candidate page searching phase. By tracing the buffer pool usage, we found that the
native LRU replacement policy frequently overlays the potential candidate page for new

object placement and decreases the hit ratio. The buffer manager, if it understands the

B More detailed analysis on prefetching effect is in Section 6.4.
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Figure 6-2 — Clustering Effect Under R/W ratio 5

The buffering control parameters are fixed to 1) No prefetch for the top graph and
prefetching for the bottom one, 2) 1000 buffers and 3) LRU buffer replacement policy. The
read /write ratio is set to 5. Five different clustering policies are studied: 1) No clustering,
2) Clustering within buffer pool, 3) Clustering with a 2 1/O Limitation, 4) Clustering with a
10 I/O limitation, and S) Clustering without 1/O limitation. The X axis represents various
transaction characteristics. "Low-3-5" means the transaction has a low structure density
which is less than or equal to 3 and read/write ratio 5. "High-10-5" means the transaction
has a high structure density which is greater than or equal to 10 and read/write ratio 5.
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Figure 6-3 — Clustering Effect Under R/W ratio 10

The buffering control parameters are fixed to 1) No prefetch for the top graph and
prefetching for the bottom one, 2) 1000 buffers and 3) LRU buffer replacement policy. The
read/write ratio is set to 10. Five different clustering policies are studied: 1) No clustering,
2) Clustering within buffer pool, 3) Clustering with a 2 1/O limitation, 4) Clustering with a
10 I/0O limitation, and 5) Clustering without 1/O limitation. The X axis represents various
transaction characteristics. "Low-3-10" means the transaction has a low structure density
which is less than or equal to 3 and read/write ratio 10. "High-10-10" means the
transaction has a high structuredensity which is greater than or equal to 10 and read/write
ratio 10.
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Figure 6-4 -- Qlustering Effect Under R/W ratio 100

The buffering control parameters are fixed to 1) No prefetch for the top graph and
prefetching for the bottom one, 2) 1000 buffers and 3) LRU buffer replacement policy. The
read/write ratio is set to 100. Five different clustering policies are studied: 1) No
clustering, 2) Clustering within buffer pool, 3) Clustering with a 2 I/O limitation, 4)
Clustering with a 10 I/O limitation, and 5) Clustering without 1/0 limitation. The X axis
represents various transaction characteristics. "Low-3-100" means the transaction has a low
structure density which is less than or equal to 3 and read/write ratio 100. "High-10-100"
means the transaction has a high structuredensity which is greater than or equal to 10 and
read/write ratio 100.

relationships among objects, may increase both the priority of these pages and the hit ratio.
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We will discuss the various buffering policies in Chapter 6.4.

When the read/write ratio is low, clustering with a 2 1/Os limitation provides the best
response time in all structure densities, as shown in Figure 6-2. For low structure density,
clustering with a 2 1/Os limitation has the same response time as clustering with no 1/0 limi-
tation. Notice that a low structure density implies fewer candidate pages to choose and
fewer logical I/Os needed during the clustering phase. As the structure density increases.
the number of 1/Os caused by searching candidate pages also increases. Such extra 1/Os
introduced in the clustering phase cannot be amortized by readers when the read/write
ratio is low. Therefore, clustering without I/0 limitation performs worse than clustering with

a 2 I/0 limitation in high structure densities.

Figure 6-3 shows that clustering with a limitation of 10 I/Os has the same response
time as clustering with no I/O limitation for a medium structure density. Since the [/O
limitation is larger than the maximum possible structure density, 10 I/Os behaves like no

1/0 limitation.

Clustering without I/O limitation performs consistently better than other clustering
mechanisms when the read/write ratio is 100, as shown in Figure 6-4. Selecting a clustering
mechanism based on the read/write ratio at run-time affords the best response time of

both, setting either small 1/O limitation or no 1/O limitation at all.

If the transaction logging is done at the physical level, using clustering may reduce the
number of I/Os in the transaction logging phase. This is shown in Figure 6-5 where we
compare the number of transaction logging I/Os between no clustering and clustering
without I/O limitation under different structure densities. When multiple updates occur on
the same page within a transaction, the log manager needs to flush the original page only

once. Since related objects are clustered on the same page, the probability of having
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Figure 6-5 -- Clustering Effect on Transaction 1/Os

The read/write ratio is fixed at 5 and the buffering control parameters are 1) no prefetch,
2) 1000 buffers and 3) LRU buffer replacement policy. The Y axis represents the number
of 1/Os caused by transaction logging, and the X axis is the structure density.

multiple updates on the same page within a transaction increases, thus reducing the number
of physical logging 1/Os. Notice that the number of logging 1/Os under high structure den-
sity is smaller than the one under medium structure density when clustering is used. After
examining the log records from the simulation runs, we conclude that such slight decreasing
of logging 1/Os is caused by the effective clustering policy.

One interesting thing we learned from the access patterns of the OCT tools is that the

read/write ratio may vary across different phases of the same application. Therefore, we

wanted to find out how the read/write ratio affects response time when the structure den-

sity is fixed.
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Figure 6-6 -- Clustering Effect Under Low Structure Density

The X axis represents various transaction characteristics. "Low-3-5" means the transaction
has a low structure density which is less than or equal to 3 and a read/write ratio of 5.

Figure 6-6 shows that any of the clustering mechanisms perform better than no clus-
tering in the low structure density case. Clustering with and without 1/O limitation perform
similarly, and the variation of response time is very small. Therefore, for high read/write
ratio applications having low structure density, clustering with a 2 1/0 limitation may be the
best choice. For applications having medium structure density, as shown in Figure 6-7,
clustering without 1/O limitation performs the best when the applications’ read/write ratio is
greater than 10. Notice that the response time of clustering without I/O limitation case
changes little for all read/write ratios. Such a stable response time may be required by

some real-time applications.
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Figure 6-7 -- Clustering Effect Under Medium Structure Density

The X axis represents various transaction characteristics. "Med-5-5" means the transaction
has a medium structure density which is greater than 3 but less than 10 and a read/write
ratio of 5.

Figure 6-8 shows the clustering effect on response time when the structure density is
high. Notice that the difference between the clustering within buffer case and the other
clustering mechanisms becomes larger. This is due to the lack of potential candidate pages

in the buffer pool, which reduces the effectiveness of run-time clustering.

Factor Interaction Analysis

Two control parameters, say A and B, are said to “interact” if the effect of A varies as
a function of B. They can be r.Sepresented on an X-Y diagram where the X axis
represents the different operating levels and the Y axis represents the effect (the response

time). If two lines are parallel, there is no interaction between the corresponding control
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Figure 6-8 -- Clustering Effect Under High Structure Density

The X axis represents various transaction characteristics. “High-10-5" means the
transaction has a high structuredensity which is greater than equal to 10 and read/write
ratio 3.

parameters. For intersected lines, we know there is a strong interaction between control
parameters. If two lines do not intersect in the parameter range but are also not parallel,
we say there is a minor interaction between the control parameters. The corresponding

factor interaction analysis graphs are shown in Figure 6-9.

Figure 6-10 shows the interaction between the clustering policy and the read/write ratio.
The Y-axis value (the response time), is calculated from averaging all the experiments
which have the same control parameter under analysis. For example, in Figure 6-4, we
have three data points for clustering withowt 1/0 limitation and read/write ratio 100: low-
100, med-100, and hi-100. Averaging these three data points, we get one Y-axis value in the

interaction graph. Similarly, we can derive the other three response time values and draw
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Figure 6-9 -- Factor Interaction Analysis Graph Samples

two lines in the graph. Since these two lines in Figure 6-10 do not intersect, but are not
parallel either, we conclude that the clustering policy and the read/write ratio have minor
interaction between them. That is, the clustering policy cannot be set without understand-

ing the read/write ratio in application environments.

Figure 6-11 shows the interaction graphs between the clustering policy and the structure
density. The left graph shows minor interaction when both clustering policies are using
run-time clustering. This is consistent with the earlier observation that when the stmdme
density is low, clustering with 2 /O limitation performs better than or comparably to cluster-
ing without 1/0 limitation. Further, when the clustering policy is changed to either run-time
clustering or no clustering, there is also a minor interaction between the clustering policy and
the structure density, as shown in the right interaction graph in Figure 6-11. Notice that the

right graph has a larger slope than the left one. This is due to the run-time clustering
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Figure 6-10 -- Clustering vs. Read/Write ratio Interaction Analysis Graph

The X-axis represents the different clustering policies: clustering without I/O limitation and
with a 2 I/O limitation. The Y-axis represent the response time for high read/write ratio
and low read/write ratio under these two clustering policies. Two lines in paralle] imply
no interaction. Two lines intersecting mean major interaction. In this graph, we have a
minor interaction case.

effect becoming more significant when the structure density is changed. Finally, Figure 6-12

shows that there is no interaction between the structure density and the read/write ratio.

6.2. Page Splitting Effect

When the chosen candidate page overflows with the newly inserted object, the system
needs either to split the target page or to pick the next best candidate page. To split the
target page, a page splitting algorithm is invoked, a new page is allocated, both the target
page and the new page are modified, and the changes are logged by the system. Page split-

ting requires one extra I/O than no splitting to flush the newly allocated page and one extra
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Figure 6-11 -- Clustering vs. Structure Density Interaction Analysis Graph

The X-axis represents the different clustering policies: clustering without 1/O limitation and
with a 2 I/O limitation for the left graph, no clustering and use clustering for the right
graph. The Y-axis represents the response time for high and low structure densities under

these different clustering policies.
minor interaction cases.

Both of these interaction analysis graphs represent
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Figure 6-12 -- Structure Density vs. Read/ Write Ratio
Interaction Analysis Graph

The X-axis represents the different structure densities: low and high. The Y-axis represents
the response time for high and low read/write ratios under different structure densities.
Two lines in parallel imply no interaction. Two lines intersecting mean major interaction.
In this graph, we have a no interaction case.

log record that may trigger an 1/0.} Moreover, the page splitting algorithm needs extra

CPU time, and the new page allocation may cause buffer pool contention.

As mentioned in Chapter 3, we have evaluated two different page splitting algorithms
in the simulation model: Linear Split and NP Split. The operating levels of buffering con-
trol parameters used in this page splitting effects study are: No prefetch, 1000 buffers, and

LRU buffer replacement algorithm. No User hints are used.

Figure 6-13 shows the effect of various page splitting algorithms when the clustering

policy is clustering without 1/0 limitation. When the read/write ratio is low, No Split

16 Physical logging is assumed here.
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performs better than either splitting case. However, Linear Split provides the best response
time when both the read/write ratio and the structure density are high. Both NP Split and
Linear Split perform similarly when structure density is low, because the number of arcs in
the dependency graph is small, and the minor difference between the NP-complete solution

and the linear solution is offset by other factors.

The objective of the page splitting algorithm is to minimize the expected access cost
resulting from the page split. Ideally, the object partition having the minimum access cost

should have the best response time. However, due to the extra I/Os and CPU time caused
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Figure 6-13 -- Page Splitting Effects Analysis

The clustering policy is clustering without I/O limitation and no user hints are provided.
The operating level of buffering control parameters are no prefetch, 1000 buffers, and LRU
buffer replacement policy. The solid line represents the response time for the no page
splitting case. The dotted line with plus sign is the response time when the linear page
splitting mechanism is applied. The dotted line with cross sign is the NP split case.
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by the minimization process, the page splitting algorithm finding the minimum cost parti- -
tion of objects may not perform best overall. Figure 6-14 shows the total cost difference
between NP Split and Linear Split under different transaction characteristics. Notice that
although the NP Split algorithm finds the minimum access cost partition of objects, its

overall response time is worse than the Linear Split under high structure density.

Factor Interaction Analysis

Figures 6-15, 6-16, and 6-17 show the interaction graphs for the page splitting policy.

Both the structure density and the read/write ratio have minor interactions with the page
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Figure 6-14 -- Cost Difference between NP Split and Linear Split

The X axis represents various transaction characteristics. "Lowl0" means the transaction
has a low structure density which is less than or equal to 3 and a read/write ratio of 10.
"Hil00" means a high structure density and a read/write ratio of 100. Accessing cost
difference, represented by the Y axis, is measured in terms of logical 1/0.
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splirting policy. This agrees with the observation we made in the previous section that
Linear Split provides the best response time when both the read/write ratio and the struc-

ture density are high.

But, why do we see no interaction between the page splitting policy and the clustering
policy in Figure 6-177 Both policies try to improve the referential locality of objects by
either splitting page or retrieving more candidate pages from disk. However, each policy is
applied in different phases of object write operation: the clustering policy determines
where and when to retrieve the candidate page whereas the page splitting policy is invoked
once the candidate page is chosen. Therefore, no interaction between them is possible at

run-time.

6.3. Impact of User Hints

In this section, we study the user hint effect under different buffering control parame-
ters and various page splitting policies. The operating level of clustering policy is fixed at

clustering without 1/0 limitation and the buffer pool size is 1000.

6.3.1. User Hint Effect Under Prefetch within Database

Figures 6-18, 6-19, and 6-20 show the effects of user hints under different buffer
replacement algorithms and various page splitting policies when the Prefetching within data-
base is used. In most cases, User hint improves overall system response time. The best
improvement, of 25%, occurs when the structure density is high and the read/write ratio is
10, with the Random buffer replacement algorithm and the No page splitting policy. How-
ever, when the buffer replacement algorithm is Context-sensitive, user hint effect has only
1% to 4% improvement, as shown in Figures 6-21, 6-22, and 6-23. Several factors contri-

bute to the small size of this improvement:
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Figure 6-15 -- Structure Density vs. Page Splitting Interaction Analysis Graph

The X-axis represents the different structure density: low and high. The Y-axis represents
the response time for Linear Split and NP-Split under these structure densities. In this
graph, we have a minor interaction case.
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Figure 6-16 -- Read/Write Ratio vs. Page Splitting Interaction Analysis Graph

The X-axis represents the different read/write ratios: 5 and 100. The Y-axis represents the
response time for Linear-Split and NP-Split under these different read/write ratios. This
graph shows a minor interaction case.
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Figure 6-17 -- Clustering Policy vs. Page Splitting Policy
Interaction Analysis Graph

The X-axis represents the different clustering polices: clustering without 1/O limitation and
no clustering. The Y-axis represents the response time for Linear-Split and NP-Split under
these different clustering policies. In this graph, we have a no interaction case.
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Figure 6-18 -- User Hint Effect Under Context-sensitive
Buffur Replacenient Policy

The buffering control parameters are fixed to 1) prefetching within database, 2) 1000
buffers and 3) Context-sensitive buffer replacement policy. The clustering control
parameter is set to clustering without 1/0 limitation. All the user hint policies and page
splitting policies are studied under this environment: no user hint with no page split
(NoH,NoSplt), no user hint with linear page split (NoH,L-Split), no user hint with NP page
split (NoH,NP-Splt), user hint with no page split (UH,NoSplt), user hint with linear page
split (UH,L-Splt), and user hint with NP page split (UH,NP-Splt). The X axis represents
various transaction characteristics. "Low5" means the transaction has a low structure
density which is less than or equal to 3 and a read/write ratio 5. "Hil00" means the
transaction has a high structuredensity which is greater than or equal to 10 and a
read/write ratio 100,
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Figure 6-19 -- User Hint Effect Under Random Buffer Replacement Policy

The buffering control parameters are fixed to 1) prefetching within database, 2) 1000
buffers and 3) Random buffer replacement policy. The clustering control parameter is set
to clustering without 1/0 limitation. All the user hint policies and page splitting policies are
studied under this environment: no user hint with no page split (NoH,NoSplt), no user hint
with linear page split (NoH,L-Split), no user hint with NP page split (NoH,NP-Spit), user
hint with no page split (UH,NoSplt), user hint with linear page split (UH,L-Splt), and user
hint with NP page split (UHNP-Splt). The X axis represents various transaction
characteristics. "Low5" means the transaction has a low structure density which is less than
or equal to 3 and a read/write ratio 5. "Hil00" means the transaction has a high
structuredensity which is greater than or equal to 10 and read/write ratio 100.
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Figure 6-20 -- User Hint Effect Under LRU Buffer Replacement Policy

The buffering control paramcters are fixed to 1) prefetching within database, 2) 1000
buffers and 3) LRU buffer replacement policy. The clustering control parameter is set to
clustering without 1/0 limitation. All the user hint policies and page splitting policies are
studied under this environment: no user hint with no page split (NoH,NoSplt), no user hint
with linear page split (NoH,L-Split), no user hint with NP page split (NoH,NP-Splt), user
hint with no page split (UH,NoSplt), user hint with linear page split (UH,L-Splt), and user
hint with NP page split (UH,NP-Splt). The X axis represents various transaction
characteristics. "Low5" means the transaction has a low structure density which is less than
or equal to 3 and a read/write ratio 5. "Hil00" means the transaction has a high structure
density which is greater than or equal to 10 and a read/write ratio 100.
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Figure 6-21 -- User Hint Improvement Under Context
Buffer Replacement Policy

From Figure 6-18, we calculate the response time improvement when user hint is used.
The Y axis represents the improvement over not using user hint. "0.2" means 20%
improvement. The X axis represents various transaction characteristics. "Low5" means the
transaction has a low structure density which is less than or equal to 3 and a read/write
ratio 5. "Hil00" means the transaction has a high structure density which is greater than or
equal to 10 and a read/write ratio 100.
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Figure 6-22 -- User Hint Improvement Under Random Buffer Replacemen: Policy

From Figure 6-19, we calculate the response time improvement when user hint is used.
The Y axis represents the improvement over not using user hint. "0.2" means 20%
improvement. The X axis represents various transaction characteristics. "LowS" means the
transaction has a low structure density which is less than or equal to 3 and a read/write
ratio 5. "Hil00" means the transaction has a high structure density which is greater than or
equal to 10 and a read/write ratio 100.

The context-sensitive buffer replacement algorithm has already increased the buffer hit
ratio tremendously. Running the clustering algorithm improves the overall referential
locality, as shown in Chapter 6.1. Although User hints may save some logical I/Os for -
readers, the real saving of physical 1/Os does not greatly improve overall response
time.

Translating user hints to object identifiers consumes both CPU time and 1/Os. If the
real saving of physical I/Os is comparable to the physical 1/Os caused by the transla-

tion process, User hints cannot greatly improve the overall system response time.
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(3) When the buffer pool size is large, such as 1000 buffers, User hint does not save many

physical 1/Os, and its effect is not significant.

However, when the buffer replacement algorithm is not Context-sensitive, the response
time improvement contributed by User hint becomes significant. In Figure 6-22 where the
buffer replacement is Random, the improvement ranges from 2% to 25%. Taking the aver-
age of three different page splitting policies, we see the average improvement is 5% for a
read/write ratio of 5 and 15 for a read/write ratio of 100. This 109% difference in aver-
age improvement is because the extra 1/Os introduced by user hint processing cannot be

amortized by readers when the read/write ratio is low.

Notice that this average number is independent of the structure density. From Figure
6-22, we can conclude that User Ainr will improve the system response time by at least 5%
under the following environments: Random buffer replacement algorithm, prefetching

within database, and clustering without 1/O limitation.

Figure 6-23 shows the user hint effect under the LRU buffer replacement algorithm.

Some key observations are:

(1) The average response time improvement ranges from 2%, when the transaction
characteristics are high structure density and low read/write ratio, to 22% when the
transaction characteristics are the medium structure density and high read/write

ratio.
(2) A negative user hint effect, less than 1%, occurs under the high structure density, low
read/write ratio, and No page split policy.

(3) The best user hint effect, of more than 30%, also occurs under No page split policy

but with the medium structure density and high read/write ratio (i.e. 100).
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Figure 6-23 -- User Hint Improvement Under LRU Buffer Replacement Policy

From Figure 6-20, we calculate the response time improvement when user hint is used.
The Y axis represents the improvement over no user hint is used. "0.2" means 20%
improvement. The X axis represents various transaction characteristics. "LowS5"” means the
transaction has a low structure density which is less than or equal to 3 and a read/write
ratio of 5. "Hil00" means the transaction has a high structure density which is greater
than or equal to 10 and a read/write ratio of 100.

Factor Interaction Analysis

Complicated user hints, such as "place near configuration X", require more CPU time
and I/Os to do object identifier translation. When the read/write ratio is low, these extra
I/Os caused by user hint processing cannot be amortized by readers and may contribute
negatively to the overall system response time. Under the LRU buffer replacement algo-
rithm, we observe a negative user hint effect for high structure density and low read/write
ratio transactions. We also observe that in Figure 6-22, under the Random buffer replace-

ment algorithm, a 6% response time improvement occurs for the same set of control
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parameters.

Using the factor interaction graph shown in Figure 6-24 we can conclude that there is
a major interaction between buffer replacement algorithms and User hints under high struc-
ture density, low read/write ratio and No Split policy. Notice that in Figures 6-19 and 6-20,
the LRU buffer replacement algorithm provides a better response time than the Random
buffer replacement algorithm in most cases. Even when User Hint is used and the page

splitting policy is No Split, the LRU still has a better response time in all cases.

Response Time(sec)

A
3.0+
Random
LRU

1.5+

LRU Random

0.0 =
No User Hint Use User Hint

User Hint Policy

Figure 6-24 -- User Hint Policy vs. Buffering Policy Interaction Analysis Graph

The X-axis represents the user hint policy: No user hint and Use user hint. The Y-axis
represents the response time for the LRU and Random buffer replacement policies under
these different user hint policies when the structure density is high, the read/write ratio is
low, and no page splitting is used. The smaller the response time, the better the buffering
policy. This graph shows a major interaction case.
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From Figures 6-20 and 6-23, we observe some interactions between page splitting pol-
icy and structure density, and page splitting policy and read/write ratio. The corresponding

interaction analysis graphs have been shown in Figures 6-15 and 6-16.

6.3.2. User Hint Effect Under Prefetch within Buffer

In the previous section, we discussed the user hint effect with Prefetching within data-
pase under various buffer replacement algorithms and page splitting policies. If the User
hint can dramatically improve the buffer hit ratio, Preferching within database may perform
comparably to Prefetching within buffer. Since a high buffer hit ratio reduces the number of
logical 1/Os for Prefetching within database, the difference in response time improvement
between Prefetching within databuse and Prefetching with buffer becomes small, especially
when large buffer pool is used. To verify this hypothesis, in this section, we examine the

user hint effect under the Prefetching within buffer policy.

Figures 6-25, 6-26, and 6-27 show the User hint effect under different buffer replace-
ment algorithms and various page splitting policies. The first interesting observation is that
there is no negative user hint effect under the Prefetching within buffer policy. One simple
explanation for this is that user hint has significantly improved the buffer hit ratio and extra
1/Os caused by the user hint processing are amortized by readers’ response time improve-
ment. However, under high structure density, low read/write ratio, with a No Page Split
policy and the LRU buffer replacement algorithm, Prefetching within buffer has a positive
user hint effect of 129% whereas Prefetching within database has a negative effect of 1%

(refer to Figures 6-23 and 6-30). So, why do we have such a wide variation?

Notice that the response time difference in Preferching within database case (refer to

figure 6-20) is very small. This is because Prefetching within database has already improved
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the overall response time, and the user hint cannot further improve the buffer hit ratio.
When the user hint processing overhead cannot be offset by the improvement in buffer hit

ratio, we observe small response time degradation.

In Figures 6-21 and 6-28, we observe the average response time improvement is 2% to
4% for Prefetching within database, and 3% to 13% for Prefetching within buffer. This wide
variation in response time improvement is caused by a situation similar to that explained
before; since Prefetching within databuse has improved the response time effectively, there is
not much room for further improvement. However, Prefetching within buffer can still utilize

user hint to improve its buffer hit ratio and overall response time.

From the above discussion, we can easily explain why Figure 6-31 has shown some

munor interaction between preferching policy and User hunt.

When the buffer replacement algorithm is Random, we observe a "random” (or wide
variation) user hint effect in Figure 6-22 and 6-29. However, there is some similar behavior

between these two different prefetching policies:

(1) Linear Split performs best in both prefetching policies under low structure density and

high read/write ratio.
(2) NP Split excels under high structure density and low read/write ratio.
(3) No Split performs consistently well under medium structure density.

Figure 6-32 shows that there is a minor interaction between the user hint policy and
the page splitting policy when the buffer replacement algorithm is Random. This is because
using User hints can greatly improve the referential locality when a No Split page splitting

policy is used, whereas only a small improvement occurs when a Linear Split policy is used.
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In Figures 6-23 and 6-30, where a LRU buffer replacement algorithm is used, we
observe no improvement for Prefetching within database and a 13% improvement for Pre-
fetching within buffer under a high structure density and low read/write ratio. At the same
time, under medium structure density and high read/write ratio, we observe a 20%
improvement for Prefetching within database and only 9% improvement for Prefetching
within buffer. Why does the user hint effect change so rapidly under different transaction

characteristics?

Let's use an example to understand the relationship between the buffer hit ratio and
the response time improvement. Assuming that the buffer hit ratio is 0.8 when no user hint
is used, if the user hint can improve the hit ratio by 12.5%, we will have a 0.9 buffer hit
ratio. If we suppose that the total number of logical I/Os invoked by applications is 100,
the real physical I/Os are then reduced to 10 from 20, a 50% improvement Since the
response time is tightly related to the number of physical I/Os at run-time, the improve-
ment in physical I/Os can be translated into a response time improvement. Therefore, the

response time improvement can be defined as formula (1):

(1) (X*A)/(1-A)

where X is the user hint effect on buffer hit ratio, and A is the base buffer hit ratio. For
example, when the base buffer hit ratio is 0.8, and the user hint effect on buffer hit ratio is
10%, the response time improvement will be 40%. If the base buffer hit ratio is 0.5, we

will only have a 10% response time improvement under the same user hint effect.

Figure 6-33 shows the buffer hit ratio of Prefetching within database and Prefetching
within buffer under the LRU buffer replacement policy and different transaction characteris-
tics. Notice that under medium structure density and high read/write ratio, we get a 0.9

buffer hit ratio for Prefetching within database and a 0.8 for Prefetching within buffer. The
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corresponding user hint effects on buffer hit ratio, using formula (1), are 0.022 and 0.021.
This result supports the hypothesis that the user hint effect on buffer hit ratio should stay

constant under the same transaction characteristics.
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Figure 6-25 -- User Hint Effect Under Context-sensitive
Buffer Replacement Policy

The buffering control parameters are fixed to 1) prefetching within buffer, 2) 1000 buffers
and 3) Context-sensitive buffer replacement policy. The clustering control parameter, set to
clustering without 1/0 limitation, is used for all the user hint policies and page splitting
policies: no user hint with no page split (NoH,NoSplt), no user hint with linear page split
(NoH,L-Split), no user hint with NP page split (NoH,NP-Splt), user hint with no page split
(UH,NoSplt), user hint with linear page split (UH,L-Splt), and user hint with NP page split
(UH,NP-Splt). The X axis represents various transaction characteristics. "Low5" means
the transaction has a low structure density which is less than or equal to 3 and a read/write
ratio of 5. "Hil00" means the transaction has a high structure density which is greater than
or equal to 10 and a read/write ratio of 100.
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Figure 6-26 -- User Hint Effect Under Random Buffer Replacement Policy

The buffering control parameters are fixed to 1) prefetching within buffer, 2) 1000 buffers
and 3) Random buffer replacement policy. The clustering control parameter, set to
clustering without 1/0 limitation is used for all the user hint policies and page splitting
policies: no user hint with no page split (NoH,NoSplt), no user hint with linear page split
(NoH,L-Split), no user hint with NP page split (NoH,NP-Splt), user hint with no page split
(UH,NoSplt), user hint with linear page split (UH,L-Splt), and user hint with NP page split
(UH,NP-Splt). The X axis represents various transaction characteristics. "Low5" means
the transaction has a low structure density which is less than or equal to 3 and a read/write
ratio of 5. "Hil00" means the transaction has a high structure density which is greater than
or equal to 10 and a read/write ratio of 100.
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Figure 6-27 -- User Hint Effect Under LRU Buffer Replacement Policy

The buffering control parameters are fixed to 1) prefetching within buffer, 2) 1000 buffers
and 3) LRU buffer replacement policy. The clustering control parameter, set to clustering
without 1/0 limitation is used for all the user hint policies and page splitting policies: no
user hint with no page split (NoH,NoSplt), no user hint with linear page split (NoH,L-
Split), no user hint with NP page split (NoH,NP-Splt), user hint with no page split
(UH,NoSplt), user hint with linear page split (UH,L-Splt), and user hint with NP page split
(UH,NP-Splt). The X axis represents various transaction characteristics. "Low5" means
the transaction has a low structure density which is less than or equal to 3 and a read/write
ratio of 5. "Hi100" means the transaction has a high structure density which is greater than
or equal to 10 and a read/write ratio of 100.
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Figure 6-28 -- User Hint Improvement Under Context
Butter Replacement Policy

From Figure 6-25, we calculate the response time improvement when user hint is used.
The Y axis represents the improvement over not using user hint. "0.2" means 20%
improvement. The X axis represents various transaction characteristics. "Low5" means the
transaction has a low structure density which is less than or equal to 3 and a read/write
ratio of 5. "Hil100" means the transaction has a high structure density which is greater than
or equal to 10 and a read/write ratio of 100.
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Figure 6-29 -- User Hint Improvement Under Random Buffer Replacement Policy

From Figure 6-26, we calculate the response time improvement when user hint is used.
The Y axis represents the improvement over not using user hint. "0.2" means 20%
improvement. The X axis represents various transaction characteristics. "Low5" means the
transaction has a low structure density which is less than or equal to 3 and a read/write
ratio of 5. "Hil00" means the transaction has a high structure density which is greater than
or equal to 10 and a read/write ratio of 100.
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Figure 6-30 -- User Hint Improvement Under LRU Buffer Replacement Policy

From Figure 6-27, we calculate the response time improvement when user hint is used.
The Y axis represents the improvement over not using user hint. "0.2" means 20%
improvement. The X axis represents various transaction characteristics. "Low5" means the
transaction has a low structure density which is less than or equal to 3 and a read/write
ratio of 5. "Hil00" means the transaction has a high structure density which is greater than
or equal to 10 and a read/write ratio of 100.
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Figure 6-31 -- User Hint Policy vs. Prefetching Interaction Analysis Graph

The X-axis represents the user hint policy: No user hint and Use user hint. The Y-axis
represents the response time for prefetching within database and prefetching within buffer.
Two lines in parallel imply no interaction. Two lines intersecting mean major interaction.
This graph shows a minor interaction case.
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Figure 6-32 -- User Hint Policy vs. Page Splitting Policy
Interaction Analysis Graph
The X-axis represents the user hint policy: No user hint and Use user hint. The Y-axis
represents the response time for different page splitting policies when the Random buffer
replacement algorithm is used. This graph shows a minor interaction case.
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Figure 6-33 -- Buffer Hit Ratio for P_DB_LRU and P_BUF_LRU

The Y axis represents the buffer hit ratio for prefetching within database (P_DB_LRU)
and prefetching within buffer (P_BUF_LRU) when the LRU buffer replacement algorithm
is used. The X axis represents various transaction characteristics. "Low5" means the
transaction has a low structure density which is less than or equal to 3 and a read/write
ratio of 5. "Hil00" means the transaction has a high structure density which is greater than
or equal to 10 and a read/write ratio of 100.

6.3.3. User Hint Effect Under Varying Clustering Policies

User hints, in general, provide a set of potential candidate pages for clustering based
on applications’ characteristics at run-time. If there #re only one or two candidate pages,
Clustering without 1/0 limitation may perform comparably to Clustering with 2 1/0 limita-
tion. Further, Clustering within buffer pool may perform well if we have a large number of
candidate pages, some of which are cached in the buffer pool. In this section, we study the
User hint effect under various clustering policies, focusing especially on the interaction

between user hint and clustering policy.
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Figures 6-34, 6-35, 6-36, 6-37 show the User hint effect on response time under dif-

ferent clustering policies with varying page splitting policies. Some key observations are:

(1) User hint improves the response time by 40% when the Clustering within buffer pool
policy is used. Since User hint increases the number of candidate pages for clustering,
it also increases the probability of buffer pool hit at run-time. Because the clustering

algorithm can then place objects more effectively, the overall response time improves.

(2) The response time variation becomes smaller for all clustering policies when User
hints are used. Such a stable response time may be required by some object-oriented

applications.

(3) On the average, Clustering without 1/0 limitation performs much better than Clustering
with 2 1/0 lnutanon when the User hints 15 used. [he lett graph in Figure 6-38 shows
the interaction analysis graph for these two clustering policies under different user
hints policies.

(4) From observation (1) and Figure 6-1, we can also conclude that there is a minor

interaction between clustering policies and user hints, as shown in the right graph in

Figure 6-38.

6.4. Impact of Smart Buffering

Three buffering control parameters are studied in this section: Buffer replacement
policy, Prefetching policy, and Buffer pool size. The operating levels of clustering control
parameters used in this study of buffering effects are: clustering without 1/0 limitation and
splitting page when the candidate page overflows. We first discuss the prefetching effect on
response time under various buffer replacement policies and user hint in Chapter 6.4.1.

The effect of the buffer pool size on prefetching policy and buffer replacement policy is



99

NoHint,NoS % NoHint,Un = NoHint, NP~
UserHint,N & UserHint,L & UserHInt,N &
Response time (sec)
6 B
5~ -

1 i 1 L i 1 I 1 L I

lowS low10 low100 medS medi0  med100 hid hi0 hHOO

[ransaction characiesucs

Figure 6-34 -- User Hint Effect Under
Clustering within Buffer

The buffering control parameters are fixed to 1) no prefetching, 2) 1000 buffers, and 3)
LRU buffer replacement policy. The same clustering control parameter, set to clustering
within buffer is used for all the user hint policies and page splitting policies: no user hint
with no page split (NoH,NoSplt), no user hint with linear page split (NoH,L-Split), no user
hint with NP page split (NoH,NP-Splt), user hint with no page split (UH,NoSplt), user hint
with linear page split (UH,L-Splt), and user hint with NP page split (UH,NP-Splt). The X
axis represents various transaction characteristics are evaluated. "Hil00" means the
transaction has a high structure density and the a read/write ratio of 100.
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Figure 6-35 -- User Hint Effect Under
Clustering 2 1/0 limitation

The buffering control parameters are fixed to 1) no prefetching, 2) 1000 buffers, and 3)
LRU buffer replacement policy. The same clustering control parameter, set to clustering
with 2 1/0 limitation is used for all the user hint policies and page splitting policies: no
user hint with no page split (NoH,NoSplt), no user hint with linear page split (NoH.L-
Split), no user hint with NP page split (NoH,NP-Splt), user hint with no page split
(UH,NoSplt), user hint with linear page split (UH,L-Splt), and user hint with NP page split
(UH,NP-Splt). The X axis represents various transaction characteristics are evaluated.
"Hil00" means the transaction has a high structure density and the a read/write ratio of
100.
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Figure 6-36 -- User Hint Effect Under
Clustering with 10 I/O limitation

The buffering control parameters are fixed to 1) no prefetching, 2) 1000 buffers, and 3)
LRU buffer replacement policy. The same clustering control parameter, set to clustering
with 10 1/0 limitation is used for all the user hint policies and page splitting policies: no
user hint with no page split (NoH,NoSplt), no user hint with linear page split (NoH,L-
Split), no user hint with NP page split (NoH,NP-Splt), user hint with no page split
(UH.NoSplt), user hint with linear page split (UH,L-Splt), and user hint with NP page split
(UH,NP-Splt). The X axis represents various transaction characteristics are evaluated.

"Hil00" means the transaction has a high structure density and the a read/write ratio of
100.
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Figure 6-37 -- User Hint Effect Under
Clustering with no I/O limitation

The buffering control parameters are fixed to 1) no prefetching, 2) 1000 buffers, and 3)
LRU buffer replacement policy. The same clustering control parameter, set to clustering
with no 1/O limitation is used for all the user hint policies and page splitting policies: no
user hint with no page split (NoH,NoSplt), no user hint with linear page split (NoH,L-
Split), no user hint with NP page split (NoH,NP-Splt), user hint with no page split
(UH,NoSplt), user hint with linear page split (UH,L-Splt), and user hint with NP page split
(UH,NP-Splt). The X axis represents various transaction characteristics are evaluated.
"Hi100" means the transaction has a high structure density and a read/write ratio of 100.
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Figure 6-38 -- User Hint Policy vs. Clustering Policy
Interaction Analysis Graph

The X-axis represents the different user hint policies: No user hint and Use user hint. The
Y-axis represents the response time under clustering with 2 1/0 limitation and clustering
with no 1/0 limitation for left graph and clustering within buffer and clustering with no 1/0
limitation for the right graph. Both of these interaction analysis graphs represent minor
interaction cases.

studied in Chapter 6.4.2.

6.4.1. Prefetching Effect

Three buffer replacement strategies, Context-sensitive, Random and LRU, are studied
with three different prefetching strategies: prefetching within database, prefetching within
buffer pool, and no prefetching. The buffer pool size is fixed at 1000 and no user hints are
provided.

Figure 6-39 shows how various buffering policies affect system response time under

different workloads. Some key observations are:
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(1) The context-sensitive buffer replacement policy always improves the overall system
response time. When both the structure density and read/write ratio are high,
Context-sensitive with prefetching within database outperforms LRU with no prefetching

by 150% in response time.

(2) Setting the scope on prefetching is a valid idea. When using prefetching within the
buffer pool, the performance of the LRU and Random buffer replacement strategies

is comparable to that of Context-sensitive without any prefetching in all workloads.

(3) Context-sensitive with prefetching within database performs best, whereas LRU with no
prefetching performs worst. A similar conclusion on the LRU buffer replacement stra-

tegy has been drawn in relational database systems.

Figures 6-40. 6-41. and 6-42 show the prefetching etfect on response time when the
buffer replacement algorithm is fixed. In all cases, prefetch within database performs best.
This may not be intuitive since prefetching may bring in some pages not used by applica-
tions due to changing access patterns. However, because prefetching has made data avail-
able in memory to applications ahead of the request, the overall response time is improved.
For object-oriented applications, paying extra 1/Os to achieve better response time may be

acceptable.

When the context-sensitive buffer replacement algorithm is used, as shown in Figure
6-40, prefetch within buffer has the same response time as no prefetch for transactions having
low and medium structure densities. Notice that prefetch within buffer does not trigger any
I/Os but only changes the buffer priority to reflect the future needs of data contained in
these buffers. Since the context-sensitive buffer replacement algorithm would set up the
appropriate priority based on knowledge of structure relationships and inheritance, no pre-

fetch only causes very few buffer misses relative to prefetch within buffer. However, when
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Figure 6-39 -- Buffering Effects Analysis
under 1000 buffers

Six experiments are reported here: Context-sensitive buffer replacement policy with
prefetching within database (C_p_DB), Context-sensitive with prefetching within buffer
(C_p_buff), Random buffer replacement policy with prefetching within database (R_p.DB),
Random buffer replacement policy with prefetching within buffer (R_p_buff), LRU buffer
replacement policy with prefetching within database (LRU_p_DB), and LRU with no
prefetching (LRU_no_p). Various transaction characteristics are evaluated. "Hil00" means
the transaction has a high structure density and the a read/write ratio of 100.

the structure density becomes higher, prefetch within buffer better reflects the dynamics of
the access pattern in how buffer priorities are set than no prefetch and has a better

response time.

When the buffer replacement algorithm is not context-sensitive, as shown in Figures
6-41 and 6-42, prefetching becomes the only way to reflect the knowledge of structure rela-
tionships and inheritance in the buffer priority setting. Both prefetrch within database and

prefetch within buffer improve the buffer hit ratio and improve applications’ response time.
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Although prefetch within database has more logical 1/Os than prefetch within buffer, their

overall response time is similar.

Figures 6-43, 6-44, and 6-45 show the combined effect of User hints and Prefetching

under varying transaction characteristics and page splitting policies. Some key observations

are:

(1) Prefetching within database with User hints has the best response time in all cases.

This is consistent with the results shown in Chapter 6.3.
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Figure 6-40 -- Prefetching Effect under Context-sensitive
Buffer Replacement Policy

Three prefetching policies are evaluated here under a Context-sensitive buffer replacement
algorithm with various transaction characteristics. "Hil00" means the transaction has a high
structure density and a read/write ratio of 100.
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Figure 6-41 -- Prefetching Effect under LRU Buffer Replacement Policy

Three prefetching policies are evaluated here under a LRU buffer replacement algorithm
with various transaction characteristics. "Hil00" means the transaction has a high structure
density and a read/write ratio of 100.
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Figure 6-42 -- Prefetching Effect under Random Buffer
Replacement Policy
Three prefetching policies are evaluated here under a Random buffer replacement

algorithm with various transaction characteristics. "Hi100" means the transaction has a high
structure density and a read/write ratio of 100.

(2) The relative performance among these six combined effects is very similar in all these
figures. This implies that there is no interaction between Prefetching policy and User

hints.

6.4.2. Buffer Pool Size Effect

The buffer pool size is fixed at 1000 buffers, 4k byte per buffer, in all the previous
analyses. In this section, we expand Figure 6-39 to consider the effect of the buffer pool
size on overall response time. Figures 6-46 and 6-47 show the same set of experiments

under 100 buffers and 10,000 buffers. Three interesting observations are:
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Figure 6-43 -- Prefetching and User Hint Effect
under No Split

Six experiments are reported here: prefetching within database with no user hints
(P_DB_NOH), prefetching within database with user hints (P_DB_UH), prefetching within
buffer with no user hints (P_BUF_NOH), prefetching within buffer with user hints
(P_LBUF_UH), no prefetching without user hints (NO_P_NOH), and no prefetching with
user hints (NO_P_UH). The clustering policy is clustering without 1/O limitation, and the
buffer replacement policy is LRU. Various transaction characteristics are evaluated.
"Hil00" means the transaction has a high structure density and the a read/write ratio of
100.
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Figure 6-44 -- Prefetching and User Hint Effect
under Linear Split

Six experiments are reported here: prefetching within database with no user hints
(P_DB_NOH), prefetching within database with user hints (P_DB_UH), prefetching within
buffer with no user hints (P_BUF_NOH), prefetching within buffer with user hints
(P_BUF_UH), no prefetching without user hints (NO_P_NOH), and no prefetching with
user hints (NO_P_UH). The clustering policy is clustering without 1/0O limitation, and the
buffer replacement policy is LRU. Various transaction characteristics are evaluated.
"Hil00" means the transaction has a high structure density and the a read/write ratio of
100.
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Figure 6-45 -- Prefetching and User Hint Effect
under NP Split

Six experiments are reported here: prefetching within database with no user hints
(P_DB_NOH), prefetching within database with user hints (P_DB_UH), prefetching within
buffer with no user hints (P_BUF_NOH), prefetching within buffer with user hints
(P_BUF_UH), no prefetching without user hints (NO_P_NOH), and no prefetching with
user hints (NO_P_UH). The clustering policy is clustering without 1/0 limitation, and the
buffer replacement policy is LRU. Various transaction characteristics are evaluated.
"Hil00" means the transaction has a high structure density and the a read/write ratio of

100.

(1) Using a smaller buffer pool increases the difference among all six experiments. Pre-
fetching within database performs much better than Prefetching within buffer pool, and
No Prefetching has the worst response time overall.

(2) Under 40 Mbyte of buffer pool, the prefetching effect becomes less important, as
shown in Figure 6-47. Both Random and LRU buffer replacement algorithms per-

form similarly under Prefetching within database.
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(3) Based on these two observations, we can conclude that the buffer pool size has a
minor interaction with both the buffer replacement algorithm and the prefetching pol-

icy. The corresponding interaction analysis graph is shown in Figure 6-48.

6.5. Overall Effect Analysis

The eight control parameters specified in Table 5-1 have different effects on the sys-

tem response time. They interact with each other and combine to cause still different

C_p_DB 4 C_p_buff = R_p_DB X%
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Figure 6-46 -- Buffering Effects Analysis
under 100 buffers

Six experiments are reported here: Context-sensitive buffer replacement policy with
prefetching within database (C_p_DB), Context-sensitive with prefetching within buffer
(C_p_buff), Random buffer replacement policy with prefetching within database (R_p_DB),
Random buffer replacement policy with prefetching within buffer (R_p_buff), LRU buffer
replacement policy with prefetching within database (LRU_p_DB), and LRU with no
prefetching (LRU_no_p). Various transaction characteristics are evaluated. "Hi100" means
the transaction has a high structure density and a read/write ratio of 100.
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Figure 6-47 -- Buffering Effects Analysis
under 10,000 buffers

Six experiments are reported here: Context-sensitive buffer replacement policy with
prefetching within database (C_p_DB), Context-sensitive with prefetching within buffer
(C_p_buff), Random buffer replacement policy with prefetching within database (R_p_DB),
Random buffer replacement policy with prefetching within buffer (R_p_buff), LRU buffer
replacement policy with prefetching within database (LRU_p_DB), and LRU with no
prefetching (LRU_no_p). Various transaction characteristics are evaluated. "Hil00" means
the transaction has a high structure density and a read/write ratio of 100.
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Figure 6-45 -- Buffer Pool Size vs. Prefetching Policy
Interaction Analysis Graph

The N-axis represents the buffer pool size: 100 and 10,000. The Y-axis of the left graph
represents the response time under Random and LRU buffer replacement algorithms when
the prefetching within buffer pool is used. The right graph represents the minor interaction
case when the prefetching within database is used and the buffer replacement algorithms are
Random and LRU. Both interaction graphs represent some minor interactions among the
buffer pool size, the prefetching policy, and the buffer replacement algorithm.

effects. To understand interactions among these parameters, we used the interaction
analysis graph in all the previous sections. However, the interaction graph does not show
the average change in response time when a parameter, or combined parameters, is moved
from its low level value to its high level value. In this section, we study these combined
effects to evaluate which parameter(s) has the most effect on the overall system response
time.

Table 6-2 summarizes the operating levels used in this overall effect study. The

abbreviations are used later in the effect analysis graph. We combine the two buffering
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control parameters: buffer replacement policy and prefetch policy. into one parameter,
Buffering Policy, and include the user hint effect in the Clustering policy. The buffer pool
size is fixed to 1000 in this study. For every parameter, two operating levels are used.

Table 6-3 shows all the experiments used in this study.

Name Abbrev Levels
Structure_Density s low_3 high_10
RW_ratio A 5 100
Clustering policy c 210 _limit  NolO_limit with User Hints
Page_split policy P Linear NP-alg
Buffering policy b LRU Context with Prefetch

Table 6-2: Factorial Operating Levels
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Factors Response
I.D. | StrucDen | RW_ratio | Clus_policy | Page_split | Buf_policy | Resp_time
(arc) (sec)

(1] | low_3 5 | NolO_limit | Linear context 133
(21 | low_3 5 | NolO_limit | NP-alg LRU 1.63
[3]1 | high_10 5 | 2I0_limit Linear context 1.65
(4] | low.3 100 | 2IO_limit NP-alg context 0.85
[51 | low_3 S | 2I0_limit Linear context 1.32
[6] | high_10 S | 210_limit NP-alg LRU 2.34
{71 | high_10 5 | NolO_limit | NP-alg context 1.93
{81 | high_10 100 | 2IO_limit Linear context 1.19
(9] | low.3 5 | 210_limit Linear LRU 1.63
[10] | low_3 100 | NolO_limit | NP-alg LRU 1.34
[11] | low_3 100 | 2IO_limit Linear LRU 1.30
[12] | high_10 5 | NolO_limit | Linear LRU 2.63
{13] | low_3 100 | NolO_limit | Linear LRU 1.30
(14] | high_10 100 | 2IO_limit NP-alg LRU 2.13
(15} | low_3 5 | NolO_limit | Linear LRU 1.63
| {16] | high 10 5 | 210_limit NP-alg context 1.65
' [17) 1 high_10 100 | NolO_limit | NP-ulg context 0.98
[18] | high_10 5 | NolO_limit | NP-alg LRU 2.63
(19] | high_10 100 | NolO_limit | NP-alg LRU 1.88
[20] | high_10 S | 2I1O_limit Linear LRU 2.35
[21] | low3 100 | NolO_limit | Linear context 0.80
[22] | high_10 5 | NolO_limit | Linear context 1.93
(23] | high_10 100 | NolO_limit | Linear LRU 1.82
[24] | low.3 5 | NolO_limit | NP-alg context 1.32
[25] | high_10 100 | 210_limit NP-alg context 1.24
[26] | high_10 100 | 2IO_limit Linear LRU 2.09
[27] | low_3 100 | 21O_limit NP-alg LRU 1.35
[28] | low.3 100 | 2IO_limit Linear context 0.80
[29] i high_10 100 | NolO_limit | Linear context 0.93
(30] | low_3 5 | 210 limit | NP-alg context 1.33
{31] | low 3 5 | 2IO_limit NP-alg LRU 1.63
(321 | low_3 100 | NolO_limit | NP-alg context 0.85

Table 6-3: 32 Runs for Overall Effect Analysis
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Table 6-4: Overall Effect Analysis

Larger absolute effect value means major effect on response time. A zero effect value
implies that the corresponding control parameter(s) has a minimum effect on the
overall response time. The left part lists all the effect values and the right part shows
the effect analysis graph. We use "sW" to represent the combined effect of structure
density (denoted by s) and read/write ratio (denoted by W). Each blob in the effect
analysis graph represents the effect of a parameter or combined parameters on
response time. For example, "structure density+buffering policy” represents a
combined effect of the Structure density and the buffering policy whereas "Read/Write
Ratio” is a single parameter effect. Most of the parameters or combined parameters
have a small response time change and are represented by a line of blobs centered in
the middle of the effect analysis graph.

Combined Effect
Average 15575
StructDensity (s)  .5600
RW_ratio (W)  -.5050
Clustering_policy (¢)  -.0050
Page_split (P) .0250
Buffering policy (b)  -.6000
sW  -.1000
sc  -.0050
sP .0000
sb -.2000
We 1350 ,
WP 0250 el etering Paley &
Wb -.1000 StructureDensity | :
cP.0000 +RW ra“t:o;Cluster:rlwg Policy | ®
¢b  .0000 Structure . StructureDensity
Pb  .0000 Dené:ty ) : +butfering Policy Ratio
sWc 11350 - ° , o ° o
SWP 0000 i ! - s ~in
sWh 0000 0.5C 0.2 0.0C -0.22 -C.oo
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WcP 0000
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sWcb  .0000
sWPb  .0000
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Table 6-4 shows the overall effect analysis for the five control parameters specified in
Table 6-2. There are 32 possible combinations, and for each one, we calculate the average
response time change when the combined parameters go from a low operating level to a
high operating level. Although the response time change can be positive or negative, only
the absolute value is useful in this effect analysis.!” Two interesting observations are: (1) the
structure density and buffering policy most influence the system response time, and (2) dif-

ferent page splitting algorithms have little influence on the response time.
The key observations for the interaction analysis graphs are:

(1) There is no major interaction between any two factors. This means the control

parameters we have chosen are quite independent.

(2) There are minor interactions between: structure density and buffering policy,
read/write ratio and clustering policy, read/write ratio and page splitting policy, struc-
ture density and clustering policy, structure density and page splitting policy, page
splitting policy and clustering policy, buffer pool size and prefetching policy, buffer
pool size and buffering policy, user hints and clustering policy, page splitting policy,

prefetching, and buffering policy.

(3) There is no interaction between: buffering policy and clustering policy, buffering policy
and page splitting policy, structure density and read/write ratio, read/write ratio and

buffering policy, and page splitting policy and clustering policy.

6.6. Summary and Conclusions

This chapter presents the simulation results of various clustering and buffering stra-

tegies’ effect on overall response time. All these strategies are evaluated under different

V7 These values are used to determine the characteristics of control parameter interactions.
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sets of control parameters to ensure an adequate interpretation of the simulation results.
For example, the control parameter clustering policy (clustering with I/O limitation, no clus-
tering and etc.) is evaluated under various structure densities, read/write ratios, and alter-
native prefetching policies. To understand the interactions among these eight control
parameters, we use the interaction analysis graph to show whether two parameters interact
strongly, interact weakly, or exhibit no interaction. We also study the overall effect on
response time of these control parameter unde: various combinations. In the following, we
summarize these findings in a set of tables, and show how these recommendation tables can

be used to determine the best policy under a given workload.

Each table represents our recommendation for one clustering/buffering control
parameter. For example, Table 6-5 represents the clustering policy (clustering with I/O limi-
tation. no clustering, etc.), whereas Table 6-6 represents the page splitting policy. The first
column of each table indicates the interaction between the various control parameters with
the table’s corresponding control parameter. For example, the three control parameters:
buffer replacement policy, prefetching policy and clustering policy have minor or major
interactions with user hint policy in Table 6-7. The number in the box represents our
recommendation based on the simulation results: the smaller the number, the stronger the
recommendation. The same recommendation number is used if two policies have compar-
able response time. For example, Table 6-5 shows that all three clustering policies: Clus-
tering with 2 1/0 limit, Clustering with 10 1/O limit, and Clustering without I/0O limit, have
similar response time under various read/write ratio, structure density, and prefetching pol-
icy, and they all outperform the other two clustering policies: Clustering within buffer pool

and No Clustering.
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For a given workload, such as low structure density and read/write ratio 5, how do we
use these tables to choose the appropriate policy for every clustering/buffering control
parameter? Using Table 6-5 and 6-8, we choose Clustering without I/O limit and Context-
sensitive as the object clustering and buffer replacement policies. We then use Table 6-9 to
determine that Prefetching within database is the preferred prefetching policy, since we are
using Context-sensitive buffer replacement. Based on these decisions and Table 6-7, we
decide not to use User Hint, which is consistent with the observations discussed in Section
6.3.1. The three page splitting policies have the same desirability if we examine the two rows
labeled by R/W 5 and lowDensity in Table 6-6. Using the more detailed effect analysis

graph of Figure 6-12 in Section 6.2, we choose Linear Split as the page splitting policy.

Clustering Policy

Eond/write Ratio | Conolimit | €210 | C_1010 __| C_withinBuf | No Cluster
R/W 5 1 1 1 2 3
R/W 10 1 1 1 2 3
R/W 100 1 1 1 2 3
Structure Density

lowDensity 1 1 1 2 3
medDensity 1 1 1 2 3
highDensity 1 1 1 2 3
Prefetching Policy

No Prefetching 1 1 1 2 3
Prefetching 1 2 3

Table 6-5: Clustering Policy Summary
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Page Splitting Policy
Read/Write Ratio | Linear Split | NP Split No Split
R/W S 2 2 1
R/W 10 2 2 1
R/W 100 1 2 3
Structure Density
lowDensity 1 2
medDensity 1 2 3
highDensity 1 3 2
Table 6-6: Page Splitting Policy Summary
User Hints Policy
Buffer Replacement Policy Use User Hints No User Hints
Context-sensitive 2 1
LRU 1 2
Random 1 2
Prefetching Policy
Prefetch within Buffer 1 2
Prefetch within DB 2 1
Clustering Policy
Clustering without I/O limit 1 2
Clustering within Buffer 1 2

Table 6-7: User Hints Policy Summary

Buffer Replacement Policy
Read/Write Ratio | Context-sensitive LRU Random
R/WS 1 2 2
R/W 10 1 2 2
R/W 100 1 2 2

Table 6-8: Buffer Replacement Policy Summary
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Prefetching Policy
Buffer Replacement Policyv | Within DB i Within Buffer l No Prefetch
Context-sensitive 1 3 3
LRU 1 1 3
Random 1 1 3

Table 6-9: Prefetching Policy Summary
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CHAPTER 7

CONCLUSIONS AND FUTURE DIRECTIONS

Engineering design applications use structural relationships and inheritance mechan-
isms to effectively model their complex environments. By explicitly modeling these struc-
tural and inheritance semantics as first class objects in an object-oriented DBMS, this
dissertation shows various ways to exploit them in the buffering and clustering phase to
improve the overall system response time. To understand the characteristics of object-
oriented applications. we have collected the access pattern information of more than ten
CAD tools running on top of OCT, a structural object-oriented data manager developed by
the UC-Berkeley CAD group. Based on the measurement results, we constructed a realis-
tic sample database and an engineering DB model to evaluate the effectiveness of our clus-
tering and buffering strategies. The proposed run-time clustering algorithm, under certain
conditions, can improve the system response time by up to 200%. We also showed the
effectiveness of limiting the amount of I/Os allowed to the clustering algorithm as it exam-
ines candidate pages for reclustering at run-time. We studied the prefetching effect on
response time under various buffer replacement policies and transaction characteristics, and
concluded that the context-sensitive buffer replacement policy with prefetch within database
performs best whereas the LRU with no prefetching performs worst. We also studied the
effectiveness of User hints and showed that User hings processing overhead must be taken

into account in the overall system response time measurement.
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Based on the simulation results shown in this dissertation, we have the following

recommendations and research directions for existing or future object-oriented DBMSs:

(1) It is important to model the structural relationship and inheritance links as first class
objects so their semantics can be exploited by the storage manager during the cluster-
ing and buffering phase. However, the physical implementation of structural relation-
ships and inheritance links among objects needs further research. Moreover, an
object-oriented query optimizer, such as OSQL [FISH87], needs to understand how
structural relationships and inheritance links can be used to generate efficient access
plans.

(2) Use Clustering with 2 1/O limitation as the default clustering policy, and change to
Clustering without 1/0 limitation when stable response time is required.

(3) Adopt Linear Split as the basic page splitting policy when the target page is overflowed
at run-time, and move to No Split when the read/write ratio is low.

(4) Do not use User hints if the Context-sensitive buffer replacement algorithm is used.
Otherwise, User hints should be the default. The processing of complex user hints,
such as "place object near this configuration”, needs more study.

(5) Integrate the Context-sensitive buffer replacement algorithm with tunable prefetching
policies. Use Prefetching within database as the default, and change to Prefetching
within buffer if a larger buffer pool is used.

Based on the access patterns collected from OCT tools, an object-oriented application,

we strongly recommend that OODBMS vendors and researchers to:

(1) Build the data collection process into the product/prototype so that the object usage,

access pattern, and read/write ratio can be monitored and studied.
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(2) Provide mechanism for users to register their access pattern information into the

Object-Oriented DBMS so that underlying systems can be fine tuned.
(3) Refine the basic data types based on the object usage information.
(4) Propose benchmarks for object-oriented applications in a network environment.

The work reported in this dissertation represents an initial effort to validate the per-
formance advantage claimed by object-oriented database researchers and vendors. How-
ever, more detailed validations should be done to understand the interactions among vari-
ous clustering and buffering strategies. This is best accomplished by implementing these
strategies in real world object-oriented DBMS products. I believe that the key to attaining
better bandwidth and response time in both present and future database management sys-
tems is to effectively utilize the structural relationships and inheritance semantics in both

clustering and buffering phases.
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APPENDIX A

PAWS IMPLEMENTATION

The PAWS implementation of the Engineering DB model is listed in the following:

global variables

gi(1) .. gi(1000) contains the page id in that buffer.

gi(1001).. gi(2000) contains the lock mode. (1 is read lock, 2 is write lock)
gr(1) .. gr(1000) contains the buffer priority.

gb(1) .. gb(1000) contains the dirty bit and other info.

local variables

1i(1) contains the query type

li(2) contains the target object id

1i(3) contains object size

li(4; contains page id fur larget object

li(5) contains source page id of its ancestor object

Ib(1) is true if there is an ancestor object

Ib(2) is true if there is a component object

1b(3) is true if there is a composite object

1b(4) is true if the transaction is done

Ib(7) is true if the transaction is done with all I/Os

Ib(8) 1s true if the transaction is not done with all buffer paging
Ib(9) is true if the transaction is not done with all its I/O
Ir(1) = terminal read/write priority(high)

Ir(2) = disk i/o reads (next high)

Ir(3) = transaction processing and write

Ir(4) = not used (low priority)

Query Types:

declare

: simple object lookup (no structural relationship involved)
: version history retrieval (descendant)

: version history retrieval (ancestor)

: configuration retrieval (component)

: configuration retrieval (composite)

: object insertion

[= BT I LI A

integers

nterm, nobuffer, oowtph, oordph, ioph, buffscanph,
termrdph, termwtph, pageinph, pageoutph, xmph, logph,
ntrans, ndisk, objidcount, cpuph, oldobjid, ooph,
tempindex, querytype, hasstruct,tempinteger

r



reals

think, xmlogpath,
termrdpath, termwtpath, transpath, pageinpath, pageoutpath,
iopath, ips, tempreal,markbufpath

y

nodes
startopen,
startnode,
opensetup,
xactsetup,
fktermwt,
<py,
jotermwt,
term,
fktermrd,
jntermrd,
selectload,

examload,
getweb,
hufferscan,
storeweb,
clusternode,
fwrite,
fread,
fkxm,
anIn,

Xm,
fkpageout,
disk,
japageout,
sendio,
diskout,
fkio,

jnio,
doneio,
lock, -
unlock,
fkusercpu,
jnusercpy,
wkin,
wkout

categories

! user node, open pagefile and objfile
! set up priority for individual transaction

! select the work load for individual xaction.

! consists of few reads and writes.

! determine the clustering strategy and read/write.
! user node, convert objid into pageid.

! user node, update objfile and pagefile

! parent transaction,

! transaction manager catagory,
! in page in state,

! in page out state,

! in terminal related state,

! transaction i/o state,

! user and other cpu burn.



tokens

pages,bufferpool;

topology

define

startopen
opensetup
startnode
xactsetup
fktermwt
cpu
jntermwt
term
fktermrd
cpu
jotermrd
wkin
selectload
examload
getweb
getweb
bufferscan
cpu
clusternode
clusiernode
clusternode
clusternode
storeweb
storeweb
storeweb
storeweb
fkxm

cpu

joxm

xm

xm

fkio
fkpageout
cpu

cpu
sendio
disk
diskout
diskout
jopageout
jnio
fkusercpu
cpu
jousercpu
wkout

startopen

type
quantity 1

opensetup
startnode
xactsetup
fktermwt
cpu
jotermwt
term
fktermrd
cpu
jotermrd
wkin
selectload
examload
getweb
bufferscan
clusternode
cpu
clusternode
storeweb
storeweb
storeweb
storeweb
fkio
fkpageout
fkusercpu
fkxm

cpu

jnxm

Xm

fkio
fkusercpu
cpu

cpu
sendio
sendio
disk
diskout
jopageout
jnio

fkio
clusternode
cpu
jnusercpu
wkout
fktermwt

service

<allall> 1.0;
<allall> 1.0;
<xtermwtph> 1.0;
<xtermwtph> 1.0;
<xterm,termwtph>1.0;
<xterm,termwtph>1.0;
<xtermwtph> 1.0;
<xtermwtph> 1.0;
<xterm,termrdph>1.0;
<xterm,termrdph>1.0;
<xtermwitph> 1.0;
<xtermwtph> 1.0;
<xtermwtph> 10;

<x,00ph> 1.0;
<x,00ph> 0.0;
<x,00ph> 1.0;
<x,buffscanph> 1.0;
<x,buffscanph> 1.0;
<x.ioph> 1.0;

<x,pageoulph> LU,
<xcpuph> 1.0;
<xxmph> 1.0;
<xioph> if 1b(9);
<x,pageoutph> if Ib(8);
<x,cpuph> if Ib(7);
<xxmph> 1.0;
<xxmjxmph> 1.0;
<xxm,xmph> 1.0;
<xxmph> 1.0;
<x,logph> 1.0;
<xxmph> 1.0;
<xio,ioph> 1.0;
<xout,pageoutph>1.0;
<xio,joph> 1.0;
<xout,pageoutph>1.0;
<allall> 1.0;
<allall> 1.0;
<xout,pageoutph>1.0;
<xio,ioph> 1.0;
<x,pageoutph> 1.0;
<xall> 1.0;
<xuser,cpuph> 1.0;
<xuser,cpuph> 1.0;
<xall> 1.0;
<xtermwtph> 1.0;



qd delay

request

startnode
type
quantity 1
qd
request

xactsetup

type

request
add
add
add
leteq

leteq
leteq
leteq
leteq

»

opensetup

<xtermwtph> expo(eps);
Ishort launching time.

service

delay
<xtermwtph> expo(eps);

compute

<xtermwtph>

ntrans atrans 1 Istore tids
tempindex nobuffer ntrans
tempindex tempindex 1
gi(tempindex) tid

rQ) 1.0
Ir(2) 20
r(3) 3.0
Ir(4) 40

! open objfile and pagefile
!

type
request

fktermwt
type

request

jntermwt

type

fktermrd
type

request

jntermrd

type

cpu

type
quantity 1
qd

user

<allall> 1;

fork
<xtermwtph> constant(1.0)<xterm,termwtph>;

join;

fork
<xtermwtph> constant(1.0)<xterm,termrdph>;

join;

service

preemptive priority

request <xterm,termrdph> Ir(1)  expo(termrdpath)
<xterm,termwtph> Ir(1)  expo(termwtpath)

<xio,ioph> Ir(3)  expo(iopath)
<xout,pageoutph> Ir(2)  expo(pageoutpath)
<xuser, cpuph> Ir(3)  expo(markbufpath)

<xxm,xmph> Ir(3) expo(xmlogpath);



disk

type service

quantity ndisk

qd fcfs

request <xio, ioph> uniform(0.025,0.04)
<xout,pageoutph> uniform(0.025,0.04);

sendio

type branch;

diskout

type branch;

term

type service

quantity nterm

qd delay

request <xtermwtph> expo(think);

wkin

type change

request <xtermwtph™ termwtph 1.0

wkout

type change

request <xxmph> termwtph 1.0
<x,pageoutph> termwtph 1.0
<x,ioph> termwtph 10
<xcpuph> termwtph 1.0

examload

type compute

request <xall>
leteq tphase ooph

clusternode

type user

request <x,all> 4;

selectload

! randomly select read or write. If read, randomly select
! an object id from existing objects.
! If write, increment the objectid counter.
! For write, we also generate object size and structural relationships.
! Then, the system would record these info in a user node.

type
request

€q
eq
leteq

compute

<xall>

Ib(4) 2 1

b)) 1 1

querytype fix(empirical(0.25,1.0,1.1,

0.05,2.0,2.1,
0.053.03.1,



0.25,4.0,4.1,
0.15,5.0,5.1,
0.25,6.0,6.1))
leteq li(1)  querytype ! remember it.
neq Ib(10) querytype 6 ! object insertion
leteq li{2)  objidcount
leteq 1L(3) fix(expo(100.0))! obj size
exit;

getweb
! for read query, determine the page-set containing its results.
! for write query, convert objid into pageid and attach to the transaction.

type user
request <x,00ph> 2
bufferscan

! scan through the buffer pool.

! If there is a hit, change the tphase to lock the buffer.

! If there is no hit, we will determine a buffer to be reused
! and tphase may be changed to i/o if buffer is dirty.

! Otherwise, we will issue a lock for this buffer.

type compute
request <<x, cpuph>

leteq  tempindex 1
storeweb

! update objfile and pagefile
1

type user

request <x,all> 3;

fkio

type fork

request <x,ioph> constant(1.0)  <xio,ioph>

<x,pageoutph™ constant(1.0)  <xio,ioph>
<xJogph> constant(1.0)  <xo,ioph>;

jmio

type join;

floxm

type fork

request <xxmph> constant(1.0) <xm,xmph>;
jnxm

type join;

xm

type compute

request <xxmph>

leteq tempinteger iuniform(0,1)
eq Ib(10) tempinteger 1



leteqif tphase logph Ib(10)

fkpageout
type

request

jnpageout
type

fkusercpu
type

request

jousercpu

type
doneio

type
request

fread

leteqif tphase xmph  1b(10)
exit;

fork
<x,pageoutph> constant(1.0) <xout,pageoutph>;

join;

fork

<xxmph> constant(1.0) <xuser,cpuph>
<x,ioph> constant(1.0) <xus: - cpuph>
<x,cpuph> constant(1.0) <xuser,cpuph>
<x,pageoutph> constant(1.0) <xuser,cpuph>;

join;

change
<xall> cpuph 1.0;

! if there is no free, set tphase pageoutph

type

request
leteq
exit;

fwrite

compute
<x,all>
tempindex 1

!if xm exist, set tphase to xm
! else set tphase to oowtph

type compute
request <x,all>
leteq tempindex 1
exit;
lock
type allocate
quantity 1 bufferpool
qd fefs
request <allall> constant(1) bufferpool;
initial
population
<xtermwiph> 1 startopen
<xtermwtph> nterm startnode;

statistics report



ql cpu
response startnode startnode;

run
leteq  objidcount 559
leteq nterm 10
leteq nobuffer 1000
leteq ips 5180000.0 ! ipsval

leteq termrdph 1
leteq termwtph 2
leteq cpuph 3
leteq  pageinph 4
leteq pageoutph S
leteq xmph 6
leteq logph 7
leteq  oowtph 8
leteq oordph 9
leteq ioph 10
leteq  buffscanph 11
leteq ooph 12
leteq ndisk 1
leten  ntrans 0
leteq  think 4.0

div  termrdpath 952450  ips ! termrdval
div termwtpath  42785.0 ips ! termwtval
div  pageinpath 200000  ips !ioval

div  pageoutpath 190000  ips !ioval

div markbufpath 1000.0 ips

div  iopath 36800.0 ips ! fwrite + post

div xmlogpath  5000.0 ips
go 200.0 20.0
dump
clear
go 800.0 50.0
dump
exit;

end;



APPENDIX B

page 1 1r 3 P aws - v3 .0 PAWSREPORTS summary s tatistices

preduced bY:
paws 3.0.06 - performance analysts workbench system,
information research associates, austin, texas.

1

page 2 1r e paws - v3.0.06 (02-06-87) x summar.y s tatistices part 1

XXX Datch number: 1 batch duration = 200.000 (from 0.000 to 200.000) ==xx
throughput queue length queueing time service
rate count min mean max end min mean max mean ut:l

node: /startopen ( 1& = ® x

cat /x .S00E-02 1. = 0 .376E-08 1 0 = .7S3E-06 .753E-06 .7S3E-06 = .7S3E-06 000
cat /all .S00E-02 1. = 0 .376E-08 1 ¢ = _7S3E-06 .753E-086 .753E-06 = .7S3E-086 .00
node: /startnode { 1% * X * b4

cat /% .205E+00 4. = 0 .175€-06 40 0 x .256E-07 .8S6E-06 LA425E-05 = .8S6E-08 .000
cat /all .20SE+0Q0 41, = 0 .175E-06 40 0 = .2S6E-07 .BSE6E-06 A25E-0S = .856E-06 .000
node /opensetup (1) b ® x

cat x 008 1. = = =

cat /all 00s 1. % = *

node /xactsetup ( 1) L 4 »

cat /% .20% 41. = x b

cat /all .208 41. = x x

~ode Jfrtermet ig ® b b

at yaterm B80S 1361. = x b

cat /all €.80S 1361. * =

node /cpu ( 11 x * *

cat /xxm L285E<01 $32. « o] 4639E+00 4 2 x» . 229€-C4 .176E+00 LA31E-01 = 886E-03 236
cat Srnat 4.7E+00 gz 0 327E-0 3 0 = 1€38-74 98CE-02 491g-C1 % L391E-02 1€0
cat /xtrerm L13%E+02 2694 . = 0 227E+0Q0 41 0 = .S72E-CS 169E-01 .30BE~C0 = L130E-01 17.567
cat /=xic L144E402 2879, = 0 250£+01 7 4 = _B87E-Q4 .1 7T4E+00 L1B2E+01 = .708E-02 10.161
cat /ruser 3.945 788. « 0 .576 S 1= .004 .247 1.641 = .073 28.933
cat /x<luster .26SE-01 §31. = 0 72CE+00 4 1 = [273E-03 .271E+00 L133E401 = 144E+00 38 120
cat /ail .375E+02 7507. = 0 490E«01 41 8 » .572E-0S .130€+00 .164E+01 = 254E-01 95.167

node : /fxktermrd { 1) b x
cat /xterm 6.68S 1333. = * x
cat /al €.665 1333, = ®
cat premre Ut ees y333. w . .
ca x .
cat /all 6.66S 1333, x x 'Y
nece /selectlcad( 1% 665 1333 x :
cat /x . x
cat /al 6.665 1333. = b
node: /examload { 1) * x x
page 3 iroa P aws - v3.0.06 (02-06-287) x summar.y statistices partt 1
xxx batch number: 1 batch duration = 200.000 (from 0.000 to 200.000) »xx
throughput queue length queueling time service
rate count min mean max end min mean max mean util

cat /x 6.665 1333. = 4 L3
cat /all 6.66S 1333 x x
ggge x/geweb ( g 665 1333 : : :
cat 7811 665 1333 = * * )
node y /clusternod( % 035 4207 : : :
cat x
cat /31l 21.03% 4207. = b =
node /fkxm ( 1% b x = l
cat /xxm .870 §34. x x
cat /a1l 2.670 §34. = L »
gg?e /x/jm‘m ( ‘% 660 5§32 : : :
cat 7211 2.660 532. = s * L
node /xm (1 x = =
cat /% % 660 §32. = = ®
cat /all 2.660 §32. x : ___________________
ncge: /fTkpageout (1) b * =
cat /xout .410 82. = L d *
cat /all 410 82. % x _“f _____________________

isk L x x
gg(tje /xégis ¢ b 1 82. = .0238 0= 092 228 » 034 1.380
cat /=310 14 .39 2879. = 0 1.304 8 0= 025 091 265 = 032 46 .563
cat /a1l 14,808 2961. = [+] 1.342 [ S 091 ____g??_: ________ (_)13% _____ f?;_‘33
no?e ; /jnpageout { 1) 410 82 : : :
ca x .
cat /all 410 82. % = i
node: /sendio ( 1) x 4 :

cat /xout 410 82. = *




cat /xio 14.385 2879. » L4 *
cat /all 14.80% 2861. ¥ = x
node y fdiskout ( 1) 410 82 * L x
cat xout . . ® x =
cat /xio i4.395 2879, = x =
cat /all 14 .80% 2661, = & *
noge. /frio { i s 2883 z ] =
ca /xio .41 x ) x
cat /all 14,415 2883. = 5 =
page 4 ir oa paws = v 3 0 .06 ({02 -06-87) x Ssummary statistics part 1
*xx patch number: 1 batch duration = 200.000 [from 0.000 to 200.000) xax
throughput queye length queueing time service )
rate count min mean max end min max mean util
node / /inie { 11 5 2878 * * *
cat x 14 .39 . = x
cat fall 14.39% 2879, = = =
node: /leck { 1% = = x
cat /% .54Q i328. * 0 8.181 23 5 = ¢.000 1.22% 4,496 »
cat /all 6.640 1328. Q g.151 23 S = 0.000 1.225% 4.496 ¥
node : , funlock { é 600 320 ® x x
cat x . i . ¥ x x
cat sall 6.600 1320. = = x
node / funlockuser( 1& 600 1320 * * x
cat x . . X = *
cat /all 6.600 1320, = * x
cat PRALAL LY PV . .
Kuser . .
cat /xcluster 2.660 £32. = ® =
cat fall £.610 1322. = * ®
m?e / faresercns Ié 866 1320 . . :
<a X . . ¥
car /all 6.600 1320, = b4 =
node Jwkin 1 * = *
cat /x g.BGS 1333. = * x
cat /all 6.665 1333, = b *
node ; fwrkout { lg 126 * = =
cat x .B00 1 . % * b
cat /all 6.800 1320. = = x
r—‘_a " -e--:c T ‘i' - - P = N B x
cat ix 6.665 1333. = x x
cat /all 6.665 1333, bd 5
i
page S ir e paws - v3 .0 .08 (02 -06-87) x Ssummacry statistices part F4
*x¥ Hateh number: 1 batch duration = 200.000 (from 0.000 to 200.000) *xx
response time
min mean max
from /}ermrd { 1} to /w;g};t é 1% 6.210 & .
cat x x S . .
cat /all x .107 2,153 6.210 * ®
1
page B ira paws - v 3.0 06 (02 - 06 - 87 ) * summary statistics par: 3 '
*xx batch number: i1 batch duraticn = 200.000 (from 0.009 to 200.000) =*x
token utilizatien
token: /pages
category s utiligaégon mean (') Bséd
X . .
;xxn‘\ 0.00 0.000
/»in 0.00 0.000
/xout 0.00 0.000
/xterm Q.00 0.000
/xia 0.00 0.000
/RuUser 0.00 0.000
/xcluster 0.00 £.000
all 0.00 0.000
token: /bufferpool
category ; utilisaagon mesn 3 ESéd
x N .
/xmm 6.20 1.881
/xin 0.00 0.000
/xout .61 .182
/xterm 0.00 0.000
/xio 6i.27 $8.382
/RUSEr 13.92 4.178
/ncluster §.90 2.970
all 91.90 27.570
1
page 1 ira paws - v3.0.06 (02 -086-287) * summary statistics part 1
*3% batch number: 2 batch duratien = 200.000 (from 200.000 to 400.000) »xx
throughput queue length queueing time service
rate count min mean max and min mean max mean util
Egct,e / {f“ermt ( lg 510 1302 : : :
xterm .
cat /all 6.510 1302. * * x
node /cpu ( 1& x * x
cat £ xxm .270£+401 40, x 0 ABSE+CO s 0 = _Q0QE+00 .180E+0Q LJI3E+QL ¥ L102E-02 278



cat /xout .585E+00 117. = 0 .$20€-02 2 0 = .916E-04 .888E-02 .S41E-01 .364E-02 213
cat /xterm 13.08S 2611, « 0 .18% 4 0= 0.000 .015 L120 = .014 17.638
cat /x10 14.230 2846. = 0 2.488 8 2 % 0.000 .17% 1.717 = 007 10.508
cat /xuser .382E+01 763. = 0 L947€+CO S [ ] 122E-03 .248E+00 112E+01 = L187E-01 30.021
cat /xcluster L269£4+01 $39. = ¢ LT37E+00 S 2 ® 113€E-02 L273E+00 170E+01 = L134E+00 36.130
cat /all 37.080 7416, = 0 4.858 11 4 0.000 .131 1.717 % .026 94 784
node /intermet lg 10 L * T
cat /= .91 1302. = s x
cat /al 6.510 1302 = =
nsde /term ( lg = “; ------------------------------ ; --------------------
cas /% 545 13C8. = 14 26.728 40 21 = 021 4.047 29.033 = 4.047 2648 .571
cat /ail 6.54S 1309. = 14 26.728 40 21 = 021 4.047 29.033 = 4.047 2648.571
node : /fktermrd 1% s L = xTTTTTTTTTETme
cat /xterm .545 1308, = L =
cat /ail 6.545 1309. = 13 x
node /intermrd 1% sas 1309 ® « TTTTTTTTTTmmTTmmTmmmmes ; ---------------------
cat x = L ] x
cat /all 6.54S 1309. = x x
noce /selectload( lg sas 108 * . TTTTTTTTTTTTTTTmTmImTeTTT ; ---------------------
cat x 1 x x x
cat /all 6.545 1309, = x x
node /examload ( 1& sas 309 b . TTTTTTTTTTTmTTTmmmmmIIT ; ---------------------
cat x 1 , % = x
cat /all 6.545 1309. = = x
iy S PP : S '
x .
cat /all 6.545 1309. = = x
noae p /clusternod( % 120 a1ea b L4 x
cat x » x x
: /all 20.720 4144, % x M
et / e €1 eg0 530, . :
ca xxm . .
cat /ail 2.690 528. « = bd
RS e (1} * * *
i
page 2 172 caws - v3.0.06 (02-06-287) * summasar.y statistics part 1
sxx pa‘'ch rumber: 2 patch duration = 200.000 (from 200.000 to 400.000) =xx
throughput queue length queueing time service
1 count min mean max engd min mean max mean util
cat Ca0., = = x
-2 €4). = x *
mode:  gem Ty T s T T - T
cat S40. = x *
cat 540C. = = *
ncge: /fxpagecut { 1) cgs 2 ® = x
cat /xout . 117. = x x
cat /al? .585 117. = = x
node /disk ( 1) x = x
cat /xout 58S 117, = .01 3 x 028 .086 249 = 0 1.83¢
cat /%10 14.220 2844, = 0 1.382 S 2 02% .085 260 = 033 46.287
cat /all 14,805 2861. = 1.402 9 = 025 .09% 260 = 033 48 218
noct!e /inpageout ( 1) sgs "7 : : :
ca x .
cat /all 585 117. = x =
ncde /sendio { 1) css 17 ® * =
cat xout =z x =
cat fxio 14,230 2846. = = x
cat /all 14.815 2963, = x b
node: /disxout ( 1) 585 - : x :
cat xout . . =
cat 5)(1: 14.220 2844, x x x
cat /all 14 .805 2961, = = =
no?e / /i;klo ( { 220 2844 : : :
ca x .
cat /all 14.220 2844 . = b b
e T PR : :
cat 7a11 14.220 2844, = * =
node /lock ( 1% = = = <
cat x .$00 1300. =2 0 8.011 21 14 = 0.000 1.226 3.038 x I
cat /all 6.500 1300. = 0 8.011 21 14 = 0.000 1.226 3.038 =

page 3 ira paws - v3 .0 .06 (02-06-287) L4 summary statistics part 1
sxx batch number: 2 batch duration = 200.000 (from 200.000 to 400.000) =xx
throughput queue length queueing time service
rate count min mean max end min mean max mean util

node: /fkusercpu ( 1), x x ®
cat /xuser 3.810 762. % x *
cat /xcluster 2.700 540. = * *
cat /a 6.51C 1302. = b4 x

node: /jnusercpu (1} x x *




cat /% 6.510 1302, = x b
cat /all 6.510 1302, = x x
node fwkin {1 % ® ®
cat /% &.545 1309, = x x
cat /all 6,545 1308, = x x
ggge. / fuxout ¢ 1% S10 1302, = x .
x - >
cat fall 6.510 1302, = * =
node / ftermrd { 1% sas 1308 = = x
cat X . . x x )
cat /all 6.545 1308, = L x
page & iroa pPaws - v3,0,06(02-06-87) x summary statistices part 2
#x2 batch number: 2 batch durgtion = 200.000 (from 200.000 to A400.000) =xx
. response time
min maan ax
o lpme Lt M LR 5.298 s
Cat! 721} x 137 Z.178 §.298 » =
page -1 ira paws = va.o.OS(oz-os-ev) * sSummar y 51t atistices part 3
*%x hatch number: 2 batch duraticn = 200.000 (from 200.000 w0 400,000) =xx
/ token utilization
Lwhen: pages
category / s u:jligaéeion mean 3 ggéd
x < -
/ ®xm 0.00 0.000
/=in 0.00 0.000
/aout 0.00 0.000
/Hterm 0.00 0.000
/xio 0.00 0.000
/xuser 0.00 0.000
/xcluster 0.00 0.0C0
all 0.00 0.000
token: /bufferpoecl .
categery p utJJ:geééon mean 3 gséd
X . .
S mxm 6.59 1.877
F%in 0.0¢ 0.000
Sxout .98 .287
Lrtenm 0.2 ¢oLil
ES -} 61.80 18.57¢0
[Ruser 12.04 3.913
/xcluster 10.03 3.010
all 92.5¢ 27.787
page 1 it oa paws - v3.0.06(02-06-8‘.’) = Summar.y statisities pacet 1
*%x batch number: 2 batch cduratien = 400.500 (frem 200.000 to §00.000) =ux
throughput queue length queveing time service
rate count min mean max end min mean max mean util
™ s e : :
ca x . N -
cat /all 6.375 2550. % = *
node Jepu 1& x = *
cat JS=xm 2SIE+01 1024, = 0 A31E+00 S 0 x  00QE+0Q -18TE+00 1S3E+01 = 98BE~03 . 258
cat /xout .B80 272, & 007 2 Q= 0.000 L0111 .119 » .Q04 277
cat /xterm 12.740 5098. = 0 191 4 1= 0.00Q .01% .129 = G113 17.127
cat /xie 14 618 5847. % © 2.382 8 L 0.000 , 163 1.717 = .007 10.709
cat /xuser .3T9E+01 1515. = ¢ LBLIE+GD S Q0 x  305E-04 L241E+00 L112E+01 = LIBIE-0L 29.588
cat /xcluster J259E+401 1035. = ¢ -BYSE+CO S 0 & _122E-03 +269E+00 L1T0E+0] = V139E+00 35.977
cat /all 36.998 14799, x O 4.618 11 S x 0.000 .128 1.717 = .025 93.832
2:?: / /3ntermet lg 3712 2549 : : :
X v
cat /all 6.372 2549, x b L]
node: fterm { lg = 1 =
cat /% L3867 2547, = 13 25.703 41 30 = . 004 4.031 38.012 = 4,031 2566.936
cat /all 6.367 2547. % 13 25.703 a1 30 = .004 4.031 39.012 » 4.031 2566.936
node / [Tktermrd [ Ié 357 2547 : : :
cat xterm . .
cat fall 6.367 2547, = * x
ggge' /x”"“rm { 1& 367 2647 % x :
cat 7all §.367 2547, = = x
node: ; feelectload( 1% 267 2547 : : :
cat x . .
cat /all 6.387 2547. » x x
node / /examload Ié 367 2547 : : :
cat = N
cat /alil 6.23867 2547, = *® *®
gg?e / /g tued ¢ 1& 357 2547 : : :
x «
cat /all 8,367 2547, » x x _ o
node felusternod( I& 983 8393 : : :
cat x .
cat ,';all 20.883 8393. «x x ) S
no?e 7 /r;kxm ( é 5¢0 1032 : : :
ca xx . .
cat fall 2.58¢Q 1032, x * _
node /inxm ( 13 x ¥




2 ira paws - v3.0.06 (02-08- 87 ) = Summary Statistices part 1
¥XX Batch number: 2 batch duration = 400.000 (from 200,000 to 600.000) ®xx
throughput . queye length queueing time service
/x rgfgss ?gg:f . min mean max end . min - mean max . Mean util
__________ /all 2.585 1024 x = *
/xm (1 T e e e
/% 505 1034, 3 * .
______________ /all 2.585 1034, x x *
PRt (), E T T T e FTTTTTT e
. .
__________ /all 680 272 & : 3
/xég%sk Cn 680 272 : o ; --------------------------------- ; ---------------------
. = .06 S
e I R T A SR R F S S
-------------- ffff--_--_--_-__1?;??9___§1f§__f__,9________ff:"_____9 3¢ -025 .097 268 » 033 4884
Jinpageout (1 0 27z T TTTTTTees P N
_____ 7al1 680 272 » . :
/sendio {1 x TTTTTTTmmee et T T R TR LT
/xout 680 272, % = *
/xio 14 .618 $847. x x *
cat /all 15.297 6119, = * L
pbEiskot Oy op. LT e TR BT
xou . 2. =
“xio 14 €10 $844 . 2 : :
Lal /all 15.290 6116, » * *
node ; /fTkio ¢ 13  TTTTEETTeTmesees T e [T e
tat /i 14 618 5847, «x x =
tat /all 14 818 5847, = * x
node /inio (1 x T T e T e P
cat b3 14 810 5844, x x x
tat /all 14 .610 5843, a ® =
* noge /lack € 1) x T TTTITTTITIemm oo e s T e P
23] /= .372 2549, * 0 9.203 22 3 x 0.000 1.445 4.329 %
cat /all 6,372 2542 . x [+] §.203 22 3= 0.00¢C 1.445 4.329 x
nede funlock { 1% x = i o TTTTIRTIT e
cat /% .37% SSO. = x x
zar /all 6 37§ 25ET . 0« * *
| no?e Jurilockuser 1% P * | 7 ® T | [
ca x x x x
tat /all 6.375 2550, x x *
o o e e
|L
y
| page 3 ira P aws - v3 .0 .0 (02 -06-87 ) * Summary Sstatistics part 1
! Xxx batch number: 2 batch duration = 400.000 (from 200.000 +to 600.000) =xx
‘ throughput queue length ) queveing time service .
f rate count min mean max end min mean max mean util
| node: ffkusercpu {( 1% b hd x
! cat /xuser LT85 15i4, x x *
| 3t /xcluster 2.58% 1034, = * x
cat /all 8.37¢ 2548, = x *
| e (st (] s s : :
X .
cat /fall B.37%  2550. «x x x
s I I : :
ot 7all 6.367 2547. = » x .
| gge fwkout ( 1% 378 2550 : : :
et /211 $.375 3550, x ) e e Y e
! ?fe /termrd { }& 367 2547 : : :
] .
cat fatil 5.367 2547. = x *
Tt N
o .
%93994 ira Paws - v3 L0068 (02 -06-87) * summary statistics peart 2
L
» 22 batch number: 2 batch duration = 400,000 (from 200.000 to 600.000) =x»
response time
min mean max
frgmz /}emrd £ te x /w;tggt é 39% 7.471 % *
¥ at: . . .
cat: fann * (128 EE L L
1
: page S ira Paws - v3.0.08 (02-06-287) * Summary statistics part 3
¥xx batch number: 2 bateh duration = 400.000 (from 200.000 to 600.000) #xx
token utilization
token; pages
k tategery /o3 utilisaééon mean # gséd
x - -
¥ ;:xxrn 0.00 0.000
/xin 0.00 0.000

/xout 0.00 0.000




all
token:
category

all
page 1

i T tktermrd { 1
/xterm 4
/all

Frig&rm
Fxric
/ruser
/xcluster

/bufferposl

utili

Vi ]

/xXxm
frin
/xout
/xterm
/=io
/Ruser
/xcluster

iroa paws

**x batch number:

/Tktermut
/xterm
fall

/examlead |

N Coooo
DOOOO
OO0

—

-m
SRNLBOO OMOR SO0O0O0O

NOWRNO=OO

©o
L]

o
[

(02 -06 -87) x

2 batch duration = 800.000 (from

queue length
mean max end

.258E+02 41
L258E+02 41 35

summary

800.000) =ax

queueing time

mean max

L164E+QD .1S3E+D1
-011 .

service
mean util
Y
=
x
=
x 866E-03 251
* 004 247
215 L3190 » .014 17.380
. 162 1.717 = .Q07 10.712
CZAIE+DQ L1B7E+QL ® T7T4E-0% 29.527
-Z2BBE+D0 170E+01 = 13BE+OQ 35.938
124 1.757 = .023 84 .058%
x
=
x
L]
LA01E+01 IGQE+Q2 = LAQIE+G] 2568.307
L401E+Q1 390E+02 = AQIE+Q! 2568.307
x
x
x

tEtTatistics par 1

/clusternod|
VL
fall

[/ fhxm {
£=xm
fall

£ inxm {

¥2x batch number:

oo

{02-06-87) =

duration = 600.000 (from

Queue length
mean max end

058 | 0
1.426 9 ]
1.482 g o

800.000) =x=

service A
mean util

x
x -033 2.083
®
x

.033 47.953
033 50.018




| node /inia { 1} = * x
| cat /% 14,710 £826. = L x
| cat /all i4.710 8826. = b x
node /lock { ié b 4 =
©ocat ILs .408 3845, x 0 9.091 22 0= 0.000 1.420 4.329 =
cat /all 6.408 3845, s 9 9.091 22 0= 0.000 1.420 4.329 =
‘ node funleck { 1& x x "
| cat /% .&12 3847, » b *
| ezt /all 6.412 3847, * x
nede: funlockuser Ig ¥ i T xR e e ; ---------------------
iocat /= L4112 3847, x * x
cat /all 6.412 3847, = = *
£ OSSR
il
| .
! page 3 ir a pPaws - v3.0.06(02-06-87) x Suyummary Statistics part 1
| ®X: batch number: 2 batch duration « B0G.000 {from 200.000 to 800.000) =2
i
i throughput . Queue length qQueueing time service
rate count min mean max end min mean max mean util
il node */Thkusercpy | 1‘)‘ L = *
| cat /xuser 813 2288, x * x
It eat /xcluster 2.598 1589, = L= x
cat fall 65.412 3847, = = *
.| node /inuserepu 1 x " -; ------------------------- ; -------------------
| cat /% ( é.uz 3847, = * ]
| cat 7all 81412 3847 » s :
| node fwkin { 1) * x *
U ozat /% 400 3840, = L =
e sall €.400 3840. = x x
I| noge: Jwkeut { 1& ® b *
rocat x 412 3847, = x x
cat /all 6.412 3847, » L4 =
noge: flermrd { lé * * x
i| cat /% L4090 3840, = x x
i| cat /all 6.400 3840, » * x
1 .
+page 4 ir e pa&w s - v 3 0.06(02-06-87) x Summar y St atistices part 2
;‘ *xx hatch number: 2 batch duration = 800.000 {from 200.000 to 800,000) =xx
. response time
min mean max
‘ from ftermrg {( 1) 1o fwkout é l%
cat /% = 1186 .36 7.471 x x
éli cat 7all x 116 2,368 7471 » *
W
L
pige s ira P aws - v3.0.06(02-06-8’7j x summary S 1Tatistices part 3
i x*% batch number: 2 batch duration = 600.000 (from 200.000 1o 800.000) %=x
‘ token utilizetion
token: /pages
Category utilizatign mean % held
/x 0.00 0.000
/xxm 0.00 0.000
/xin 0.00 0.000
/xout 0.00 0.000
/xterm 0.00 0.000
/xie 0.¢0 0.00¢
/xuser 0.00 0.000
/xcluster 0.09 0.000
211 0.00 0,000
token: fbufferpool
Category utilization mean ¥ helg
/= 0.00 0.000
7 xxm 6.12 1.838
/xin 0.00 C.000
/xout 1.04 .312
Sxterm 0.06¢ 0.000
/xio 62.34 18.702
/xuser 13.13 3.929
frcluster 6.84 2.9%!
. all 92 .47 27.740 1‘
Spige 1 ira Paws - v3.0.06(02~06-87) * summary Stastistices gart 1
X%x batch number: 2 batch duration = 800.000 (from 200.000 to 1000.000) =xx
throughput qQueue Jength queuesing time sefvice
rate count min mean max end min mean max mean util
node ffitermwt | lg I * =
ot /xterm .368 5086, = = *
cat fall 6.358 5086, = * L
nogle : /epu 1), b x *
tat / xxm .2STE«01 2053. v 427E+00 S 0 x  _OCOE+00 ABTE+0Q L153E+0) = .G66E-03 .248
ot /xout 668 534, x [+ L0007 2 0 = 0.009 010 177 = L0048 .254
cat /xterm 12.7¢7 10174, * ¢ .190 4 0 x 0.000 .015 .190 = 013 17.155
cat fxio 14.861 11889, ¥ 4] 2.340 8 S = Q.000 L1587 1.717 = .007 10.716
tat /xuser IT8E+01 3032. = 9 W9UBE+QQ S 3= 305E-04 L23I8E+00 L167E+01 TT4E-01 29.351
£ /=xcluster 25TE+Q1 2054, =x 0 .BTSE+DQ 3 QO x 122€-03 .2E63E+00 L1TQE+01 = 139E+QQ 35 .641
cat /all 37.170 28736, [} 4.548 11 8 = 0.000 .122 1.717 = 025 93.365
fode ; fintermwt (1} = x *
fat '3 $.358 5086, = = x
gt fall 6.358 S0g6. = x x
Node fterm (1 = x *
4




cat /% .836E+01 5088, x 12 .25SE+02 41 28 »  S49E-43 JAQIE+DL LS17E+Q2 = L4Q1E+Q1 2549.008
cat fall LB3BE+D1 s088. x 12 L255E+02 4% 26 * | B48E-03 LA0LE+Q1 S17E+02 x LA01E+01 2545.00S
node /fktermrg | 1% ¥ x
cat /xterm .380 $088. = * x
cat /all 6,360 5088. = x *
node /jntermrd 1% x « o TTTTTTTTTReenees =
cat x L3690 5088, x * 13
cat fall B.3860 5088, x » *
node /selectlvad( 1& " = ” - i
cat x . 360 5088, » ® x
cat /all £.360 $088. * = 13
node /examload 1% x * i x )
cat x .360 S088. « x =
cat /all 6.360 5088, x = ) %
node /getweb { 1% = xTTTTTTTTRnTmeeees P
cat /% 360 5083, = ] ]
cat /all E.360 5083. = =
node fclusternod( 1} * ; * i
cat /= 21.219 16875. x ] x
cat fail 2t.219% 18875, = = =
node F fexm ( 1% ® = - -; -------
cat /xxm 64 2051, = = *
cat /all 2.564 2051, = x =
node /inxm { 1) = H x "
page 2 ira paws - ¥v3.0.08 (02-06-87) = summary statistics part i
¥%x batch number: 2 batch duration = 800.000 (from 200.000 1o 1000.000) ®xx
throughput X queue length queusing time servica
rate ceunt min mean max end min mean max mean vtil
ca? x .S88 2053. = [ =
cat /all 2.568 2053, = » ]
node /xm { 1% L] x *
cat .568 2053. = x x
cat /all 2.568 2053, = x =
node /Thpageout (1) x * *
cat /xout 13-} 538, = x x
cat /ail €68 534, x * =
node /disk (1) x H x
cat /xout .E668 534, » o] 061 x 025 091 249 = 033 L197
<at /xio 14 861 11889, » 0 1.458 g o r 028 08 287 = 033 48,452
cat /all 15.528 12423, = o] 1.51% o= g2s g8 287 % 033 £0.838
node /inpagegut { 1) * x x
cat x : ¢ 668 534 = ® *
cat /all .688 534, = * x
node : /sendio ( 1} * » x
cat /xout .668 $34, = ® *
cat /xio 14 .861 11889. = x x
cat Jall 15.529 12423, = =
node Jdiskout { 1) x ] x
cat /xout 658 $34, = % x
cat /xio 14 861 11889, = x ®
cat Jall 15.529 12423, «x x x
node /fiio { 1 = x 2
cat /xio 14 863 131890, = ] =
cat /all 14.863 11890, = =
node /inie {1 x * x
cat 14 .861 11889, = = =
cat /all 14 861 11889, » = =
node /lock { 1& x x ®
cat x .358 $086, = 0 9.400 22 7= 0.000 1.479 4.329 =
cat fall 6.358 B0ge. = 4] $.400 22 7= 0.000 1.479 4.329 =
hode JFunlotk { 1& z x =
cat x 358 5086, = 5 ®
cat fall 6.358 5086, = = x
node funlockuser( 1% x x x
cat x .358 5086, % ® x
cat Jfail 6.358 S086. x x *
1
page 3 ira pPaws - ¥v3.0.08 (02-06-287; = summary statistics part i
*xx batch number: 2 batch duration = 800.000 (frem 200.000 to 1000.000) »=x
throughput queus length Queyeing time service
rate count min mean max end min mean max mean util
node @ /Tkusercpu [ !% * x E
cat /xuser .793 3034. = = =
cat /x¢cluster Z.568 2053, = x x
cat fall 6.359 s087. x x *
node /inusercpu 1 * L =
cat x 3 pu g.zsa S086. = x x
cat /all §.3%8 5086, = * =
node fwkin { Ié = x x
cat x .360 §088. = = %
cat fall 6.360 5088. x * x
node Fwkout [ 1 x x *
cat x é,358 5086. x x x
cat /all 6.358 5086. = ® *
hode Jflermrd ( 13 ¥ * ]




cat /x 6.350 5088, » * *
cat fall B.360 SCER. = x *
1
page 4 ir a P ews - v3.0,06 (02-06-87 ) ® sSummary statisctics par 2
%% batch number: 2 bateh duration = 800.000 (from 200,000 10 1000.000) ==
¥
response time
min mean max
from /termrd [ 1) 1o fwkout é 1
cat x x 118 42 7.471 = =
cat fall 116 2.428 T.471 » ®
1
page 5 ira Paws - ¥3 .0 .06 (02 -06-87 ) x Summary s1tatistices part 3
s **¥ bateh number: 2 batch duration = 800.000 (from 200,000 to 1000.000) xxx
token utilization
ioken: /pages
category utilization mean % held
/x 0.00 c.000
/xxm ¢.00 0.000¢
Sxin 0.0 0.000
/xout .00 0.000
/xterm Q.00 0.000
Snie Q.00 0.¢00
f /xuser 0.00 0.000
; /xcluster 0.00 0.000
: [ 3D 0.0¢C 0.000
| token: /bufferpeol .
category utilization mean ¥ held
/= .00 0.000
7/ xxm £.24 1.872
/xin G.00 0.000
[ Jmout 1.12 338
/xterm 0.09Q 0.000
| Ixio 62.50 18,749
i /muser 13.03 3.gi0
| /xcluster 9.68 2.9086
892.57 27.772

ﬂ| all
|






