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ABSTRACT

A graph G = (V , E ) is said to be weakly triangulated if neither G nor G¢,
the complement of G, contain chordless or induced cycles of length greater than
four. Ryan Hayward showed that weakly triangulated graphs are perfect. Later,
Hayward, Hoang and Maffray obtained O (e -v?) algorithms to find a maximum
clique and a minimum coloring of a weakly triangulated graph. Performing these
algorithms on the complement graph gives O ( v3) algorithms to find a max-
imum independent set and a minimum clique cover of such a graph.

It was shown in [13-16] that weakly triangulated graphs play a crucial role
in polygon decomposition problems. Several polygon decomposition problems
can be formulated as the problem of covering a weakly triangulated graph with a
minimum number of cliques. Motivated by this, we now improve on the algo-
rithms of Hayward, Hoang and Maffray by providing O (e -v?) algorithms to
find a maximum clique and a minimum coloring of a weakly triangulated graph.
We thus obtain an O (v*) algorithm to find a maximum independent set and a
minimum clique cover of such a graph. We also provide O (v ) algorithms for
weighted versions of these problems.
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1. Introduction

Polygon decomposition refers to the breaking up of a polygon into a minimum number of
simpler polygons. The simpler polygons most commonly used are convex and star polygons. A
decomposition is called a covering if the simpler polygons are allowed to overlap. An orthogonal
polygon, P, is a polygon with each of its boundary edges parallel to one of the two Cartesian
coordinate axes. Let n denote the number of boundary edges of P. Two probiems of interest in
computational geometry are to find a minimum cover of P by orthogonally convex polygons
(OCP’s) and by star polygons [2,3,13-15,17]. The problem of finding a minimum OCP cover of
P can be formulated as the problem of finding a minimum clique cover of an associated visibility
graph, called the source graph [13,15,17]. Similarly, the problem of finding a minimum star
cover of P can likewise be formulated as the problem of finding a minimum clique cover of an
associated visibility graph, called the star graph [14,15]. For an important special class of
orthogonal polygons called class 3 polygons, the source graph is a weakly traingulated graph on
O (n ) vertices {13,15]. For the most general class of orthogonal polygons, the star graph is a
weakly traingulated graph on O (n?) vertices [14]. Therefore, the problem of finding a minimum
clique cover of a weakly triangulated graph is of crucial importance in polygon decomposition.

In this paper, we obtain fast algorithms for the problems of finding a maximum clique, a
minimum vertex coloring, a maximum independent set and a minimum clique cover of weakly
triangulated graphs. Specifically, we present an algorithm which runs in time O (e -v?)to find a
maximum clique and a minimum coloring in weakly triangulated graphs. We also present an
O (e -v?) time algorithm which solves the weighted versions of these problems. Performing
these algorithms on the complement graph give solutions to the unweighted and weighted ver-
sions, respectively, of the maximum independent set and minimum clique cover probiems. By
the above results, a minimum OCP cover of a class 3 polygon can be found in O (n*) time, and a
minimum star cover of an orthogonal polygon can be found in O (n %) time.

A simple undirected graph G =(V , E ) is said to be perfecr [1,6,11] if the size of a max-
imum independent set of every induced subgraph H of G is equal to the size of a minimum
clique cover of H. Ryan Hayward [9] defined weakly trianguiated graphs and showed that they
are a subclass of perfect graphs. Weakly triangulated graphs will be referred to in the rest of this
paper as W.T. graphs for short.
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Before going any further, let us put the above results in perspective. All the above listed
problems are NP-hard for general graphs [4]. However, for the important special class of perfect
graphs, each of the above problems can be solved in polynomial time [7]. W.T. graphs are a sub-
class of perfect graphs [9]; it is this perfectness property that permits polynomially bounded solu-
tions for each of the above problems.

Historically, triangulated graphs (also known as chordal graphs) were the first class of per-
fect graphs to be studied [1,8]. Triangulated graphs are defined to be graphs that do not contain
chordless cycles of length greater than three. It is easy to see that the chordless cycle with five
vertices is isomorphic to its complement, and that the complement of every chordless cycle with
at least six vertices contains a chordless cycle with four vertices. Hence triangulated graphs are
W.T., and the complements of triangulated graphs are also W.T. F. Gavril [5] has provided linear
time algorithms to find a maximum clique, a minimum vertex coloring, a maximum independent
set and a minimum clique cover of triangulated graphs.

For a perfect graph G, a maximum clique, a minimum coloring, a maximum independent
set and a minimum clique cover can be found in polynomial time by an algorithm due to
Grtschel, Lov asz and Schrijver [7]. This algorithm of Grdtschel, Lovasz and Schrijver is based
on the Ellipsoid method of linear programming. Since W.T. graphs are known to be perfect, the
algorithm of GmStschel, Lov'asz and Schrijver provides polynomial time solutions for the above
mentioned problems on W.T. graphs. However, the Ellipsoid method of linear programming is
well-known to have severe problems with rounding in computer implementations [18]. There-
fore, their algorithm cannot be considered practical by any means. Motivated by this, Hayward,
Hoang and Maffray [10] devised O (e -v3) algorithms for the problems of finding a maximum
clique and a2 minimum coloring in W.T. graphs. They also provided O (e -v*) algorithms for the
weighted versions of these problems. These algorithms are purely combinatorial in nature and
therefore do not suffer from the same drawbacks as the Ellipsoid method. In this paper, we retain
the basic algorithms of Hayward, Hoang and Maffray while speeding up a crucial step to obtain
O (e -v?)and O (e -v?) algorithms for the unweighted and weighted cases respectively.

2. W.T. graphs and Two-Pairs

An even pair is a pair of (non-adjacent) vertices in a graph G, such that any chordiess path
that joins the two vertices in G has an even number of edges. Meyniel [12] defined a graph G to
be strict quasi-parity if every induced subgraph H of G is either a clique or has an even pair. A
graph is said to be guasi-pariry if for every induced subgraph H of G, at least one of H or H¢,
the complement of H, is either a clique or has an even pair. Quasi-parity and strict quasi-parity
graphs are known to be perfect [12].

A rwo-pair is a pair of (non-adjacent) vertices in a graph G, such that any chordless path
between them has exactly two edges. One important theorem of Hayward, Hoang and Maffray
[10] states that every W.T. graph that is not a clique contains a two-pair. Their proof is existen-
tial in the sense that it does not afford an easy implementation to find such a two-pair in polyno-
mial time. In this paper, we prove a stronger theorem that helps us obtain the desired speedup to
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the algorithms of Hayward, Hoang and Maffray.

Theorem 1. Every W.T. graph that is not a clique satisfies the following two properties.

(1) If G has a minimal cutset C that is not a clique, then C contains a two-pair of G,

(2) G contains a two-pair.
Proof: Our proof works by induction on the number of vertices. The base case of (1) is easily
established by noting that the smallest graphs that are W.T. and have a non-clique cutset are P4,
the path on four vertices, and C,, the chordless cycle on four vertices. The base case of (2) is
also established by considering the trivial graph on two vertices. By the induction hypothesis, we
now have that every W.T. graph with fewer vertices than G satisfies properties (1) and (2).

Let C <V be a minimal cutset of G. Let H. denote the subgraph induced by C. We
have two cases.

CASE I. H is a clique. We need to show that G contains a two-pair. Let B, --- ,B, be
the vertex sets of the components of G —C. If some G - B; is not a clique, then by the induc-
tion hypothesis G — B; contains a two-pair. This is a two-pair of G, since every chordiess path
in G with both endpoints in G — B; is fully contained in G — B;. Hence, we may assume that
each G - B; is a clique. Thus, 7 =2, and we have that {x ,y } is a two-pair whenever x € B,
andy € B,.

CASE II. Hc is not a clique. We need to show that C contains a two-pair of G. Here
again, we distinguish between two cases. Let H-¢ denote the complement of H.

Case Ila. Let H-¢ be disconnected. Let D be the set of vertices of some component of
H¢ with at least two vertices (since C is not a clique, there must be such a set D). Since D isa
connected component of Hc ¢, every vertex of C — D is adjacent to every vertex of D. For the
same reason, it is clear that D is not a clique. We further assert that D is a minimal cutset of
G-(C-D) Ifnot, D’ ¢ D isacutset of G —(C =D ). We then have that (C ~D )\ D’
is a cutset of G, contradicting the minimality of C. By inductive assumption, D contains a two-
pair, {x ,y}, of G = (C =D ). Since every vertex of D is adjacent to every vertex of C =D,
{x ,y} is a two-pair of G.

Case IIb. Let H- be connected. Let B, - - , B, be the vertex sets of the connected com-
ponents of G — C. Now, it follows from Theorem 1 of [9] that in each of B, - - -, B,, there is
some vertex that is adjacent to all of C in G. Let z (B; ) denote one such vertex for each ;.

Case IIb.1. First, let | B i | =1 for all j. Thus, each B ; consists of exactly one vertex,
namely z (B; ). Since H¢ is a W.T. graph that is not a clique, by inductive assumption H. con-
tains some two-pair {x ,y }. {x,y } is clearly a two-pair of G, as both x and y are adjacent to
z (B;),forall j.

Case IIb.2. Now, let | Bp f22forsomep e {1, ---,t}. We now confine our attention
on this specific B,. Let us denote by A (C , B, ) the set of vertices of C that are adjacent to
some vertex of B, —z (B, ).
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First, suppose that G, , the subgraph induced by A (C , B, ) is not a clique. It is easy to see
that A (C , B, ) is not empty and is a minimal cutset of G ~z (B, ). By inductive assumption,
A (C, B, ) contains a two-pair {x ,y } of G —z (B, ). Since z (B, ) is adjacent to both x and
y,wehave that {x ,y } is a two-pairof G.

Next, suppose that G4 is a clique. Consider the subgraph G'=G - (B, —z (B, )). Since
C is a minimal cutset, not a clique, of G’, C contains a two-pair { x ,y } of G’ by the induction
hypothesis. We now assert that {x ,y } is a two-pair of G. If {x,y } is not a two-pair of G,
then there exists a chordless path P in G connecting x and y with at least three edges. Clearly,
P has to include vertices of B,. P cannot use z (B, ), since z (B, ) is adjacent to both x and y.
Let u; and u, be the two vertices of B, on P that are closest to x and y, respectively, along P. If
there is exactly one vertex of B, on P, then », and u, can, in fact, be identical. It is clear that u,
and u, are adjacent in P 10 vertices ¢, and ¢, respectively, such that ¢; and c, are non-adjacent
in P and ¢;,c, € C. By definition, ¢, and ¢, are in A (C ,B, ). By assumption, G, is a
clique. Thus, edge <c;,c,> exists in G, and P is not a chordless path. This contradiction
establishes that {x ,y } is a two-pairof G.

Q.ED.

Before we move on to implementation details, we remark that Theorem 1 establishes that
W.T. graphs are strict quasi-parity graphs. By Meyniel’s theorem, we have thus obtained an
alternate proof that W.T. graphs are perfect.

3. An O (e -v) Algorithm to find a Two-Pair

The algorithm we present in this section to find a two-pair in a W.T. graph is a direct imple-
mentation of the proof of Theorem 1. We will assume throughout this paper that a simple un-
directed graph G is represented in a computer by the adjacency-lists (or edge-lists) of the vertices
of G.

Algorithm Two-Pair ( G ).
Input: A W.T.graphG.
Output: {x,y},atwo-pairinG.

Step 1. Find the connected components of G. Let the components be G, - - ,G;. If I > 1,
return *‘{x ,y } is a two-pair of G’’, where x is a vertex in G and y is a vertex in G,.
STOP.



Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Step 8.

Step 9.

Step 10.
Step 11.
Step 12.

Step 13.

Step 14.
Step 15.

Step 16.

-5.

{G is connected} Check if G is a clique. If yes, then return “‘G is a clique’’. STOP.
C « Min~Cutset (G ) {C is a minimal cutset of G }
Find the connected components of G — C. Let their vertex sets be B, - - , B,.

Let H, be the subgraph induced by C. Run through the edge-list of each vertex in C
to check whether H,- is a clique. If H. is not a clique, go to Step 9. If H. is a clique
and ¢ > 2, setk =1 and go to Step 8.

{H¢ is aclique and ¢ =2} Check if G — B is aclique. If not, set £ =1 and go to Step
8. Next, check if G — B, is a clique. If not, set k¥ =2 and go to Step 8.

{t=2. G —B, and G — B, are both cliques} Return “‘{x ,y } is a two-pair of G”’,
where x is a vertex in B and y is a vertex in B,. STOP.

{G - B, is not a clique} Return Two-Pair (G - B, ). STOP.

{H is nota clique} Let H-© be the complement of H.

D « Connected—Component (Hy ) {D is the vertex set of a connected component of
H¢ with at least two vertices }

D =C goto Step 11.

{HcC is disconnected} Return Two-Pair (G —(C =D )). STOP.

{H¢° is connected} If | B, | >1forsomep € {1, ---,¢} goto Step 13.
{1B; | =1,forall j} Return Two-Pair (Hc ). STOP.

{1B;1>1 for some j =p} Run through the edge-list of each vertex in B, to locate
z (B, ) that is adjacent to all of C. Next, run through the edge-list of each vertex in
B, -z (B,)tofind A (C,B,). {4 (C,B,)is the set of vertices in C that are adja-
cent to some vertex of B, ~z (B, )}

Check if G, , the subgraph induced by A (C , B, ), is a clique. If yes, go to Step 16.
{G,4 is not a clique} Return Two-Pair (G, ). STOP.

{G4 is a clique} Return Two-Pair ( G¢ ). STOP.
Q.ED.
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The correctness of Two-Pair is obvious, given the proof of Theorem 1. We now show that
Two-Pair runs in time bounded by O (e -v ).

First, note that the steps that make recursive calls on Two-Pair are Steps 8, 10, 12, 15 and
16. At each stage of recursion, only one of these steps is executed. Each time, the recursive call
is made on a graph with at least one less vertex. Therefore, the total number of recursive calls is
bounded by O (v ). Let us now try to estimate the running time of each stage of recursion. Steps
1, 2,4,5,6,7, 11, 13 and 14 are easily implemented in O (e +v ) time, given that G is
represented by the edge-lists of the vertices of G. The steps that have been left out so far are
Steps 3 and 9. We now show how to implement these two steps in O (e +v ) time. We start
with Step 3.

Algorithm Min-Cutset ( G ).
Input: A connected, non-clique graph G
Output: C, a minimal cutset of G

Step 1. Find a vertex v;, such that deg (v, )¢ v — 1. {Since G is not a clique, there is a vertex
that is not adjacent to every other vertex of G }

Step 2. Let u,, ---,u, the set of vertices adjacent to v,, be denoted by N (v, ). Find
Cy, =, C,, the vertex sets of the connected components of G —N (v, ). {Since
deg(v,)#v —1,wehaveg > 1}

Step 3. {Initialize} For i=1, ---,q, set rank(C;)=0. For j=1, - ---,1, set
label (4; ) =0.
{rank (C; ) counts the number of distinct vertices in N (v, ) that are adjacent to vertices
in C;. label (u; ) indicates the highest index of the C; such that u; is adjacent to some
vertex in the corresponding C; }

Step4. Fori =1, -, q repeat the following in order.

For every vertex v, € C;, find all the vertices in N (v, ) that it is adjacent to. Call this
setﬁ(vp ). Now, for every u; € ﬁ(vp ), if label (u; ) <i, make label (#; ) =i and
increment rank (C; ) by 1.

Step 5. Let C, be the component with minimum rank. In other words,
rank (C, )=min {rank (C; )}. Let C denote the set of vertices in N (v, ) that are adja-
cent to vertices in C,. Return C. STOP.

Q.ED.
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It is fairly easy to see that Min-Cutset ( G ) works in O (e +v ) time. The following
lemma shows that it finds a minimal cutset of G .
Lemma 1. Algorithm Min-Cutset (G ) returns C, a minimal cutset of G.

Connected-Component, below, is an implementation of Step 9in O (e + v ) time.
Algorithm Connected-Component ( G ).
Input: A non-clique graph G

Output: D, the vertex set of some component (with at least two vertices) of G¢, the comple-
ment of G.

Step 1. Find a vertex v;, such that deg (v, ) is minimum in G. Let d =deg (v, ).

Step 2.  Find the v — & — 1 vertices in N° (v, ), the set of vertices that are adjacent to v; in G°.
Let T be the tree where vertex v, is adjacent to every vertex in N¢ (v, ).

Step 3. Construct the graph H which consists of 7 and all the edges of G¢ that are incident on
the vertices in V = (N€ (v, )\ (Vi) ).

Step4. Find a connected component of H. Let its vertex set be D . Return D . STOP.
Q.ED.

It is easy to see that Connected-Component ( G ) finds D, the vertex set of a connected
component of G¢ with at least two vertices. The following lemma establishes that it runs in time
O (e +v).

Lemma 2. Algorithm Connected-Component (G ) runs in time bounded by O (e +v ).

This completes our analysis of the complexity of Two-Pair. We have thus established that
its running time is bounded by O (e -v ).



4. Identification and Quasi-Identification

The algorithms for W.T. graphs are based on the crucial concepts of identification and
quasi-identification. Identification is used in the construction of algorithms for the aforemen-
tioned optimization problems without weights and quasi-identification is used in the construction
of algorithms for the corresponding problems with weights. Note that given a W.T. graph that is
a clique, all of the above optimization problems can be solved easily. If the given W.T. graph is
not a clique, the algorithms of [10] repeatedly find a two-pair, each time transforming the graph
in question into a smaller W.T. graph by ‘‘identifying’’ the two-pair. Eventually the original
graph is transformed into a clique; the optimization problem is solved for the clique, and the
two-pair identification process is reversed, transforming the solution of the optimization problem
for the clique to the solution of the optimization problem for the original graph. We now formal-
ly define identification.

Definition 1. Let x and y be vertices of G. Let G (xy — z ) be the graph obtained by replacing
vertices x and y of G by vertex z, such that z is adjacent in G (xy — z ) to exactly those ver-

tices of G — {x , y } that were adjacent to either x ory in G. The identification of x andy in G
is the process of replacing G by G (xy — z).

The following result from [10] states that the W.T. property of G is maintained in
G (xy =z ),if x and y formed a two-pairin G.

Lemma 3. Let G be a W.T. graph with two-pair {x ,y }. Then, G (xy — z )is also W.T.

Having shown that identification preserves the property of being W.T., we next show that it
also preserves the size of the maximum clique. In the following, let ® (G ) represent the size of a
largest clique in G. We first invoke a lemma of Meyniel [12].

Lemma 4. [12] If vertices x and y of a graph G are not joined by any chordless path with exactly
three edges, then W (G (xy =5z ))=0(G).

Lemma 5 follows as a corollary of Meyniel’s result, and states that identifying a two-pair in
a W.T. graph leaves the size of a maximum clique unchanged.

"Lemma 5. [10]  {x ,y } isa two-pairin a W.T. graph G, then @ (G (xy =z ))=w0(G).

We now turn out attention to the concept of quasi-identification. Let us denote by
G (u - vw ) the graph obtained from G by replacing the vertex ¥ by vertices v and w, such that
u,v and w are adjacent to the same set of vertices of G —u, and by then adding the edge
<v ,w > This process is called duplication.

Definition 2. Let G (xy — za ) be the graph H (xb — z ), where H =G (y = ab ). The pro-
cess of replacing G with G (xy — za ) is called quasi-identification.
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Our treatment of quasi-identification parallels our treatment of identification. The follow-
ing lemma of [10] establishes that quasi-identification also preserves the property of being W.T.

Lemma 6. Let G be a W.T. graph with a two-pair {x ,y }. Then G (xy - za )is W.T.

As mentioned earlier in this section, quasi-identification is used in the construction of algo-
rithms for the weighted versions of the optimization problems for W.T. graphs. We will formally
define these problems in a later section. For the moment, we only introduce the notion of weights
and of maximum weighted cliques. For each vertex v; in G, let us attach a positive integer
w (v; ). w (v; ) will be referred to as the weight of vertex v;. Let V (K ) be a subset of the ver-
tices of G such that V (K )inducesaclique XK inG. |V (K ) |, the weight of V (X ), is defined

by IV(K)i= ¥ w(v;). Let Q(G) denote the weighted clique number of G, that is,
veV(K)

the maximum weight of any subset of the vertex set of G that induces a clique in G. The next
lemma of [10] proves that quasi-identification preserves the weighted clique number of G .

Lemma 7. Let G be a W.T. graph with weights on its vertices. Let {x ,y } be a two-pair of G
such that w(x)Sw(y). Let F=G(xy—>za) and let w(z)=w(x) and
w(a)=w(y)-w(x). Then, Q(F)=Q(G).

5. The Unweighted Case

In this section, we provide the algorithm of Hayward, Hoang and Maffray [10] to find a
maximum clique and a minimum coloring in a W.T. graph G. We then show that the algorithm
indeed correctly outputs the desired objects. Finally, we analyze the running time of the algo-
rithm based on our implementation of Two-Pair and show that it runs in time bounded by
O (e -v?). This improves on the running time of O (e -v>) obtained in [10]. Note that running
the same algorithm on G provides us with a maximum independent set and a minimum clique
cover for G.

In the following algorithm, we specify a coloring by a function f that assigns some integer
from 1 to ¢ to each vertex, such that adjacent vertices are assigned different integers.

Algorithm Opr ( G ).
Input: A W.T.graph G
Output: The vertex set of a maximum clique V (K ) and a minimum coloring f s

Step 1. If G is a clique, set V(Kg )=V, where V is the vertex set of G. For
i=1, - ,1V i, setfg(v;)=i.STOP.
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Step 2. {G is nota clique}
{x,y} & Two—Pair (G)

Step3. {{x,y}isatwo-pairin G} LetJ denote G (xy —z ).
Return Opt (J ).
{We now have V (X, ), the vertex set of a maximum clique in J, and f;, a minimum
coloring of J }

Step4. Ifz ¢V (K;) thensetV (Kg )=V (X;).
If ze€e V(X;), then if x 1is adjacent to all of V(K;)-z, set
V(Kg)=V (K;)=z +x,otherwisesetV (K )=V (K;)-z +y.
{We will prove below that if z € V (K ) then one of x ,y is adjacent to all of
V(K;)-z}

StepS. Setfg(x)=fe(y)=fs(z).

For every other vertex v; in G, set fg (v; )=f; (v; ). STOP.
Q.ED.

We now show that Opt (G ) correctly computes a maximum clique and a minimum color-
ingof G.

Lemma 8. Algorithm Op#( G ) computes the vertex set of a largest clique and a minimum color-
ingof G.

A corollary of Lemma 8 is that the size of a maximum clique if G is equal to the size of a
minimum coloring of G. G¢, the complement of G is also W.T. By applying this corollary to
G¢, we have that the size of a maximum independent set of G is equal to the size of a minimum
clique cover of G. Since every induced subgraph of a W.T. graph is W.T., we have that this pro-
perty holds for every induced subgraph of G. This yields yet another proof that W.T. graphs are
perfect.

We now analyze the complexity of Opt. Step 2 takes O (e ‘v ) time, as we have shown
earlier. Steps 1, 4 and 5 clearly take O (e +v ) time. Since Step 3 is executed at most v times,
the running time of Opt is bounded by O (e - v2).
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6. The Weighted Case
In this section, we present the algorithm of Hayward, Hoang and Maffray [10] to solve the

weighted versions of the problems solved in the previous section. We then show the correctness
of their algorithm. Finally, we analyze the algorithm based on our implementation of Two—Pair
and show that it runs in time O (e -v3). This improves on the running time of O (e -v*) ob-
tained by Hayward, Hoang and Maffray.

In each of the following problems, each vertex v; of G has a positive integer w (v; ) associ-
ated with it. w (v; ) is called the weight of v;.
The Maximum Weighted Clique Problem. Find a subset V (K ) of the vertices of G, such that
V (K ) induces a clique X in G and such that the sum of the weights of the vertices in V (X ) is
maximum over all such subsets that induce cliques in G .

The Maximum Weighted Independent Set Problem. Find an independent set S in G such that the
sum of the weights of the vertices in S is maximum over all independent sets in G .
The Minimum Weighted Coloring Problem. Find independent sets S, --- ,S, and integers
Xy, -, X, such that
(1) For every vertex v;, the sum of integers X; of all sets S; such that v; € §; is at least
w (v; ), and
(2) the sum X ; + - - - + X, is minimum over all sets of integers that satisfy property (1).
The Minimwm Weighted Clique Cover Problem. Find vertex subsets V (K ), - -,V (K, ), such
that each V (K; ) induces a clique in G, and integers X ;, - - - , X, such that
(1) For every vertex Vi, the sum of integers X; of all sets V (K; ) such that v; € V(K;)is
atleast w (v; ), and
(2) the sum X, + - - + X, is minimum over all sets of integers that satisfy property (1).
Note that an algorithm which solves any of the above weighted problems can be used to

solve the corresponding unweighted problem. Such a solution is, however, less efficient than the
direct implementation shown in the previous section.

We present an algorithm W-Opr that solves the maximum weighted clique problem and the
minimum weighted coloring problem. As before, running W-Opt on G provides solutions to the
maximum weighted independent set problem and the minimum weighted clique cover problem.
In W-Opt, the weighted coloring f consists of independent sets S; , - - * , S, and the associ-
ated positive integers X , - - , Xg,.
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Algorithm W-Opt (G ).

Input:

Output:

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step S.

A W.T. graph G and a weight function w on the vertices of G .

The vertex set of a maximum weighted clique V (K ) and a minimum weighted color-
ing f

If G is a clique, set V(K; )=V, where V is the vertex set of G. For
i=1, -, 1V isetSg=(v;}andXg =w (v; ).

ReturnV (Kg ), fg. STOP.
{G isnotaclique} {x,y } « Two—Pair (G)

{{x,y}isatwo-pairin G}

Ifw(x)=w(y)thenset/ =G (xy >z )andsetw (z )=w (x).

If w(x)<w(y) then set J=G(xy—>za), w(z)=w(x) and
w(a)=w(y)-w(x).

Return W-Opt (J ).
{We now have V (K ), the vertex set of a maximum weighted clique in J, and f,, a
minimum weighted coloring of J }

Ifz ¢V (K;) thensetV (Kg )=V (K;).

Ifz € V(K;), thenif x is adjacentto allof V (K; )—-{a ,z},
setV(Kg)=V (K;)={a,z}+x,

otherwise setV (Kg )=V (K;)—{a ,z} +Yy.

For each set §;, of f; perform all of the following.
If z € §; then set Sg =S85, -z+{x,y}. If z é5; and if a € S; then set
Sg,=8j,—a +y. I neither z nora is in §; , then set Sg, =S;..

Set XG,~ = XJ; . STOP.
QED.

The proof of correctness of W-Opr parallels the proof of correctness of Opt.

Lemma 9. Algorithm W-Op#(G ) correctly finds a maximum weighted clique and a minimum
weighted coloring in a W.T. graph G .
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We now analyze the complexity of W-Opt. We have established that Step 2 can be done in
time O (e v ). Steps 1, 4 and 5 can be done in O (v ) time. In Step 3, the graph J is either
G (xy > z)or G (xy = za ). In the former case, J has one vertex fewer than G. In the latter v
case, J has at least one edge more than G. To see this, we reason as follows. z is adjacent to
every vertex of G — {x ,y} that x is adjacent 1o, @ is adjacent to every vertex of G — {x , y} that

y is adjacent to, and edge <z ,a > is in J whereas x is non-adjacent to y. Thus, Step 3 is exe-
v-(v-1)

2 — e times. Therefore the running time of W-Opr is bounded by

cuted atmostv -1 +

O (e -v3).

7. Conclusions and Open Problems

The main contributions of this paper are Theorem 1 and the implementations of Section 3.
We have retained the basic algorithms of Hayward, Hoang and Maffray, while speeding up the
crucial step that finds a two-pair in W.T. graphs.

One interesting observation to make is that Two—Pair is executed O (v ) times. In each
execution of Two —Pair , all we need to assume is that we are given a W.T. graph as input. How-
ever, we observe that the input W.T. graphs in each successive execution of Two—Pair are
closely related to each other. For instance, in Opt, two successive input graphs are identical
except that a two-pair in one is identified in the other. Thus, it seems likely that one can find the
v /2 two-pairs of a W.T. graph in time less than O (e -v?) by making use of the information
obtained in each run of Two —Pair . This brings us to the first open problem.

Open Problem 1. Can we find v /2 two-pairs of a W.T. graph in O (e -v ) time?

The other open probiem concerns strict quasi-parity and quasi-parity graphs. As mentioned
earlier, these are closely related to W.T. graphs. Further, it has been conjectured {15] that the
visibility graph for another version of polygon decomposition problem is a strict quasi-parity
graph. Yet, the only known polynomial algorithm to optimize these graphs is the algorithm of
Grotschel, Lov‘asz and Schrijver. Thus, we pose the following problem.

Open Problem 2. Can we design a combinatorial algorithm to find maximum clique, a minimum
coloring, a maximum independent set and a minimum clique cover of strict quasi-parity and
quasi-parity graphs that runs in polynomial time?
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