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Abstract

CURARE, the program restructurer described in this dissertation, automatically trans-
forms a sequential Lisp program into an equivalent concurrent program that executes on a
maultiprocessor.

CURARE first analyzes a program to find its control and data dependences. This analysis
is most difficult for references to structures connected by pointers. CURARE uses a new
data-dependence algorithm, which finds and classifies these dependences. The analysis is
conservative and may detect conflicts that do not arise in practice. A programmer can
temper and refine its results with declarations.

Dependences ccnstrain the program’s concurrent execution because, in general, two
conflicting statements cannot execute in a different order without affecting the program’s
result. A restructurer must know all dependences in order to preserve them. However,
not all dependences are essential to produce the program’s result. CURARE attempts to
transform the program so it computes its result with fewer conflicts. An optimized program
will execute with less synchronization and more concurrency.

CURARE then examines loops in a program to find those that are unconstrained or
lightly constrained by dependences. By necessity, CURARE treats recursive functions as
loops and does not limit itself to explicit program loops. Recursive functions offer several
advantages over explicit loops since they provide a convenient framework for inserting locks
and handling the dynamic behavior of symbolic programs. Loops that are suitable for
concurrent execution are changed to execute on a set of concurrent server processes. These
servers execute single loop iterations and therefore need to be extremely inexpensive to
invoke.

Restructured programs execute significantly faster than the original sequential programs.
This improvement is large enough to attract programmers to a multiprocessor, particularly
since it requires little effort on their part. Although restructured programs may not make
optimal use of a multiprocessor’s parallelism, they make good use of a programmer’s time.
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The style in which it was written was the curious jewelled style,

vivid and obscure at once, full of argot and of archaisms, of technical expressions
and elaborate paraphrases, that characterizes the work of some of the

finest artists of the French school of Symbolistes.

—Oscar Wilde, The Picture of Dorian Gray

Chapter 1

Introduction

Symbolic programs are very different from numeric programs. Nevertheless, both share
a common shortcoming: they often execute too slowly. Users of both types of programming
languages have sought to remedy this problem with more effective compilers and faster
computers. However, specialized, fast computers are expensive and their use is limited. In
addition, fundamental physical constants and difficult engineering problems limit the even-
tual speed of conventional, von Neumann-style computers. Inexpensive, shared-memory
multiprocessor computers offer a promising remedy because of their greatly increased per-
formance for programs able to take advantage of parallelism.

The Lisp community has not embraced these computers. Its reluctance stems in part
from Lisp’s complex data structures and its data-dependent execution behavior. These
factors complicate programming multiprocessors and automatically translating sequential
programs into parallel programs. Because the latter task is more difficult, most research
has concentrated on developing extensions to Lisp for controlling parallel execution. Para-
doxically, these extensions make multiprocessors less attractive because they introduce a
different program semantics for parallel execution and force programmers to rewrite their
programs to take advantage of these machines.

By contrast, CURARE, the program restructurer described in this thesis, automatically
transforms a sequential Lisp program into an equivalent concurrent program.! CURARE
can be seen as a compiler for a new type of computer that contains multiple, asynchronous
processing elements. The source language is Scheme, augmented with a few declarations.
CURARE detects a program’s data dependences and identifies its recursive functions that
could benefit from concurrent execution. Restructured functions execute their iterations
on concurrent server processes. The restructured program produces the same result as the
original program. Figure 1.1 depicts the translation process.

! Restructuring is the process of automatically preparing a sequential program for concurrent execution.
Parallelizing is a more descriptive but ugly word that sounds too much like paralyzing.
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Figure 1.1: CURARE restructures a sequential Lisp programs so that it executes concurrently on a

multiprocessor.

This transformation process is complicated by two of Lisp’s features. Its ubiquitous
pointers require extensive analysis to detect data dependences. And, Lisp’s dynamic ex-
ecution behavior requires optimizations to improve a program’s concurrency and flexible
scheduling of the parallel tasks to achieve good performance. This thesis describes the
methods CURARE uses to handle these problems. Measurements show that CURARE’s ap-
proach achieves good performance for many different styles of loops as well as for real
programs.

1.1 Programming Multiprocessors

Parallel computers are programmed in two ways. Either a programmer writes in a language
containing explicit features for controlling a program’s parallel execution or a restructurer
transforms a program written without these features into a concurrent program. Both
approaches have advantages. By carefully controlling a program’s parallelism and commu-
nication, a programmer can optimize the program to make maximum use of a particular
parallel computer. Also, some applications fit nicely on certain parallel computers so that
an explicitly parallel program is a natural expression of an algorithm. Finally, many pro-
grammers have more confidence in low-level languages that give a programmer substantial
control over the executed code than in more abstract translation processes in which an
imperfect, mechanical translator determines most of the details.
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On the other hand, languages without expﬁcit parallel constructs—conventional lan-
guages and languages designed for parallel processing—offer advantages as well. A program
written in these languages is not tied to a particular computer architecture, and, given
translators, will execute efficiently on a wide variety of machines. These translators per-
form low-level and machine-specific optimizations that a programmer would not attempt
because they are too error-prone or too destructive of a program’s structure. Finally, de-
veloping programs in these languages is easier since debugging can be done on a sequential
computer where the program can be deterministically reexecuted to understand the se-
quence of events leading to an error. In general, this approach makes multiprocessors more
attractive to the large group of programmers who are unwilling to rewrite their programs
for these machines.

The parallel execution of a restructured program is predicated on good translators that
produce efficient, parallel programs from sequential ones. The best examples today are
FORTRAN translators—for example, Parafrase [49], PFC [6], and PTRAN [4]—that trans-
form a sequential FORTRAN program into a concurrent program for a vector-processor,
multiprocessor, or other parallel computer [20]. Newer, and not yet as effective, are trans-
lators for side-effect-free, applicative languages [73] and single-assignment languages [24].

This thesis explores the process of restructuring another type of program: non-numeric
or symbolic programs with side effects. These programs are common and best characterized
by the programming language features that they use: data structures linked by pointers into
arbitrary graphs, conditional statements that give the programs an unpredictable control
flow, and many small functions that are frequently invoked. Programs with these character-
istics commonly are labeled as artificial intelligence (AI) programs, but the category is much
broader and includes compilers, CAD tools, simulators, etc. These features complicate the
translation process and are the subject of this dissertation.

The next section of the introduction briefly discusses the correct, concurrent execution
of programs with side effects. Section 1.3 describes the translation process used by CURARE
and outlines this thesis. Section 1.4 surveys previous work on multiprocessor Lisp.

1.2 Concurrent Execution

Intuitively, a transformed concurrent program should compute the same (correct) result as
its sequential version. In general, some sequential programs may be non-deterministic and
may produce many equally correct results. A concurrent program can produce any of these
answers. Each of these results is the product of a sequential execution of the program.
Therefore, we will focus on the more constrained task—producing the same result as a
deterministic program.

Researchers in the field of databases have extensively studied the problem of correctly
executing concurrent tasks with overlapping data. The theory from this area describes the

correct execution of a concurrent program. Assume that we have a set of statements to

execute concurrently. These statements read and write shared data, which introduces the
well-known problems that result when side effects and concurrency meet. For example, if
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our statements are £ « z + 4 and z « z * 7 and the initial value of z is 3, then, ignoring
the possibility of interleaved execution, the final value of z may be 49 or 25. Which answer
is correct and why?

Database theory compares a concurrent execution of the statements to their sequential
execution and declares the concurrent execution correct if the two are equivalent. Three
common definitions of equivalence are: final-state equivalence, view equivalence, and conflict
equivalence. A schedule is a list of statements from a program in the order in which they
actually execute. A statement may appear more than once. These equivalence relations
compare schedules from two executions of the same program.

Two schedules are final-state equivalent if the values of all variables are identical at
the end of the schedules. Schedules are view equivalent if the value of variables read by
the same occurrences of statements in each schedule are identical. Both definitions of
equivalence have some abnormalities, but their major flaw is that the problems of deciding
if a schedule is final-state or view equivalent to another schedule are NP-complete (see, for
example, Papadimitriou [61]).

The third relation, conflict equivalence is the criterion of choice because checking it is not
NP-complete. Two statement occurrences conflict if they both access the same location and
at least one of them modifies the value in the location. Two schedules are conflict equivalent
if they resolve all conflicts in the same way. In other words, the same statement from each
conflicting pair first reads or writes the location in both schedules. This definition permits
substantial freedom to rearrange statements in a schedule so long as conflicting statements
do not exchange order.

At this point, we diverge from database practice. In that area, the tasks are transac-
tions that arrive unannounced and execute concurrently with other transactions. A set of
transactions executes correctly if they are conflict equivalent to some sequential execution.
This standard is called conflict serializability. Deterministic programs, on the other hand,
have only a single execution order so their standard of correctness is conflict equivalence
with this order, which is known as conflict sequentializability.

It is easy to imagine situations in which this standard is too restrictive. For example,
consider a function that adds the integers in a list. The parallel version of this function need
not duplicate the sequential additions to produce the same result. However, if the sequential
function produces side-effects—if the partial sums are accumulated in a variable—then
conflict sequentializability would prevent reordering and concurrency. Most programming
languages do not provide a way of specifying that the order of operations is irrelevant, so a
restructurer must detect special cases such as these additions.

Database systems serialize their transactions by locking the data that a transaction reads
or writes to prevent other transactions from imposing their conflicting reads or writes among
those of the first transaction. Locking is a natural strategy when all accesses to shared data
go through a central data manager that is unaware in advance of each transaction’s data
requirements. More sophisticated schemes—such as one in the SDD-1 distributed database
[11] that preanalyze a transaction’s requirements and schedule tasks to reduce conflicts—
have been proposed but are not widelv nsed.
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On the other hand, a program transformation system has the source code of all tasks
and can, in theory, analyze the potential conflicts; find a correct, concurrent execution
order; and, ensure this order with less overhead than general locking. Locking overhead is
particularly important for programs in which the cost of a non-conflicting access, such as
a variable, array, or structure reference, is very small. However, the usual undecidability
questions about programs, the need to approximate answers during program analysis, the
unpredictability of execution times, and the large number of possible program behaviors,
force a transformation system into heuristic methods that guarantee a correct, but not
perfect solution. That is the case for CURARE, which does not attempt to find an optimal
schedule, just a correct one.

To restructure programs properly, we must classify conflicts precisely. A data dependence
is the relation introduced between two conflicting statements. There are three types of data
dependences: a flow dependence, in which one statement writes a value read by the other;
an anti-dependence, in which one statement reads a location subsequently written by the
other; and a def-order (or output) dependence, in which both statements write the same
location. Dependences can be loop-independent or loop-carried, depending whether the
conflicting statements execute in the same or different loop iterations. The distance of a
loop-carried conflict is the number of loop iterations separating the conflicting statements.
Another type of dependence occurs when two statements are control dependent because
the execution of one is contingent on the value of the other. Dependences are discussed in
greater detail in Section 4.1.

Program analysis can easily find control dependences and some data dependences, in
particular, those involving variables. Other dependences—for example, those between state-
ments referencing structures—are much more difficult to define precisely and are a major
focus of this thesis. The algorithms developed in this work detect a superset of the data
dependences among structure references and thereby ensure a program’s correct concurrent
execution. Sometimes the analysis is too conservative and a programmer must refine it
with declarations that increase the program’s potential concurrency by eliminating false
conflicts.

Once CURARE determines a program’s dependences, it can restructure the program
into a concurrent program. Restructuring has two phases. The first, called optimization,
changes the program’s structure dramatically to increase its potential concurrency by re-
moving dependences. These transformations do not preserve conflict equivalence and are
verified in other ways. The second phase, code-generation, finds areas of the program that
could benefit from concurrent execution and introduces low-level parallel constructs. These
transformations preserve conflict equivalence. These phases are called transformations be-
cause their results are expressed in the same language as their inputs (Lisp in this case).

This thesis concentrates on finding parallelism in the most likely area: program loops.
Other areas of potential parallelism, such as the parallel evaluation of expressions, can be
handled similarly.
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1.3 Overview of Thesis

This thesis describes the pieces of CURARE in the opposite order to the one in which they
are applied. This presentation results in a bottom-up description of CURARE that illustrates
how a component is used before explaining how it is constructed.

Chapter 2 describes how recursive functions can be transformed to execute concurrently
in spite of their control and data dependences—which must be detected by program analysis.
The transformed functions spawn portions of their bodies as concurrent tasks, which are
evaluated by servers running on multiple processors. Data dependences between these
tasks must be serialized with locks. This chapter also shows how to insert the fewest locks
necessary for sequentialization.

Chapter 3 describes transformations that eliminate data dependences and further reduce
the need for locks. These optimizations improve a program’s concurrent behavior by per-
mitting CURARE more freedom in scheduling and executing parallel tasks and by reducing
the cost and delays due to synchronization.

Both of these chapters assume that a program’s data dependences are known precisely.
Chapter 4 describes a data-flow framework for detecting and classifying data dependences.
This framework is independent of the way in which a program references objects. Chapter 5
applies this framework to the difficult problem of detecting dependences between references
to data structures connected by pointers.

Chapter 6 describes some declarations by which a programmer can refine the dependence
analysis and enable additional dependence-removing optimizations.

Finally, Chapter 7 presents some measurements that validate CURARE’s execution model
and show the performance of several transformed programs.

The index at the end of the thesis points to definitions of terms.

Figure 1.2 shows CURARE’s overall arrangement. The double boxes enclose components
of CURARE described in detail in this thesis. The components in the other boxes are
either well-known or beyond the scope of this work and can be explored by following the
appropriate references in the thesis. CURARE contains four major pieces.

1. Data-dependence analysis finds potential conflicts among statements in a program and
describes them in a program dependence graph (PDG) similar to the one described
by Ferrante et al. [21]. The data-flow analysis framework established in Chapter 4
carries over to the difficult problem of detecting conflicts among structure accesses.
which is discussed in Chapter 5.

2. This analysis, however, is conservative and can detect conflicts that do not occur.
Chapter 6 describes a set of programmer-supplied declarations that refine the analysis
by providing information that is not available in a program’s text and by correcting
conservative analytic results.

3. Program optimizations remove some dependences and increase potential concurrency
by eliminating synchronization. These optimizations are described in Chapter 3.
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Figure 1.2: Overview of CURARE’s transformation process. CURARE first analyzes a program to uncover
its control and data dependences. It then produces a parallel program that executes, with a small support
library, in almost any concurrent Lisp system. The double boxes enclose pieces of CURARE described in

detail in this thesis.
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4. The concurrent execution of a restructured program results from a combination of
program transformations that introduce parallelism and synchronization into a se-
quential program and run-time mechanisms that support this concurrency. Chapter 2
describes both.

The details of the target parallel Lisp system are not particularly important to CURARE,
since it only requires concurrent processes and inexpensive locks. However, the processes
must execute on a shared-memory multiprocessor so each task can access any object in the
heap. Lisp systems based on message-passing (for example, CCLISP running on hypercubes
[12]) require major changes to Lisp and CURARE.

1.3.1 A Note on Notation

The sample programs in this thesis are written in a slightly extended version of Scheme.
Because standard Scheme does not provide structures or a generalized location updating
mechanism, CURARE accepts the defstruct and setf constructs from Common Lisp [67].
This thesis does not discuss the analysis of Scheme-specific features, such as the use of
functions as general values or call-with-current-continuation. These constructs are
used and CURARE could analyze them with the techniques used in Scheme compilers [47]
or those proposed by Shivers [66], but their complications are orthogonal to this work.

The examples shift back and forth between Lisp structure accessors, e.g., (car x), and a
Pascal-like notation, x.car. In the latter notation, x contains a pointer that is automatically
dereferenced, so that it would be written x7.car in proper Pascal.

Almost all of the examples use cons-cells as their data structure. This bias is not because
our data-dependence analysis cannot handle more general structures—it can—but rather
because programs written with cons, car, and cdr are shorter and require less background
context.

The algorithms in this thesis are written either in a language tenuously related to SETL
[65] or in English, depending on the level of detail and the complexity of the data structures.
CURARE is written in Common Lisp and is, of course, less concise because of error-checking
and efficiency concerns.

1.4 Related Work

Although most research in multiprocessor Lisp systems has explored explicit parallelism, a
few researchers have investigated restructuring Lisp. We will discuss their approaches first
and then briefly survey language extensions for parallelism.

1.4.1 Restructuring Lisp

Gray investigated inserting futures into side-effect-free Lisp programs [29]. A future is a
construct in Multilisp [31] that creates a process to evaluate an expression and returns a
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token that synchronizes any process that reads the expression’s value. Gray sought concur-
rency in two places. The first was concurrent execution of syntactically parallel tasks, such
as the evaluation of actual arguments in a function call. The second was overlapping exe-
cution of a subexpression and its containing expression, for example, executing a function
concurrently with the computation of its arguments. Since side-effect-free programs contain
only simple flow dependences, data-dependence analysis was unnecessary and futures pro-
vided all synchronization. Her major difficulty was to avoid spawning too many processes.
A process is useless if the cost of its task is less than the cost of creating the process or if
another process soon waits for the first process’ result. The performance of Gray’s approach
is unclear since she only presented a speedup curve for one small benchmark.

Boyle et al. also transformed pure (side-effect-free) Lisp programs into concurrent pro-
grams [15]. They derived parallel FORTRAN programs from sequential Lisp specifications
by applying many small rewriting rules. Syntactic transformations of this type are easier
for applicative languages, which have the Church-Rosser property, than for languages with
side effects in which conflicts are not syntactically visible. Like Gray, Boyle also faced the
problem of producing too many processes for the available processors and made the crucial
distinction between a process and a server for a repeatedly executed task (see Chapter 2).
They presented impressive speedup curves for a non-trivial, transformed version of their
transformation system running on a multiprocessor.

Harrison was one of the first to propose a technique for concurrently executing non-
pure Lisp [32,33]. His transformation system, PARCEL, requires a new representation for
lists that allows the use of parallel algorithms normally associated with numeric programs.
This list representation, which is similar to cdr-coding [14], stores the car pointers of a
list segment contiguously, without the cdr pointers. The representation also contains the
number of elements remaining in the list. Its main advantage is that the ith element of a list
can be obtained in nearly constant time by treating the block of pointers as a vector. Given
this property, parallel prefix algorithms can apply an associative function to n elements of
a list in logn steps.

Harrison’s technique, however, is not general. The new list representation forbids direct
side effects on list cells because of the unpredictability that results from the extensive sharing
of sublists necessary to make these structures as flexible as conventional lists. Harrison
described replacements for many destructive list operations, such as nconc, but not for the
fundamental operation of replacing a structure field. His representation is also specific to list
structure and cannot extend to user-defined data structures. PARCEL’s data-dependence
analysis relies on the Scheme programming paradigm of implementing mutable objects as
collections of variables in function closures. By combining variable flow analysis with closure
lifetime analysis, Harrison can eliminate some dependences as infeasible.

Katz proposed the first general approach for concurrently executing Lisp programs with
side effects [42]. His system, ParaTran, relies on a combination of program transformations
and run-time error-checking to implement optimistic concurrency. In this scheme, which
is borrowed from databases, a transaction is assumed to have few conflicts with other
transactions. Transactions execute without regard to possible conflicts. A monitor examines
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the read and write traces for each transaction to detect conflicts and restart transactions
that violate serializability. A transaction commits its results when it can no longer conflict
with any other transaction.

To achieve good performance with this approach, few transactions should conflict and
need to be restarted, and testing for a conflict must be inexpensive. Katz depends on
undescribed program analysis to find the potential processes in a sequential program and
to encapsulate shared reads and writes with the appropriate tests. The results presented
in a recent paper are simulated speedup curves that appear to level off rapidly for a small
number of processors {73].

1.4.2 Explicitly Parallel Lisp Systems

The other approach to executing Lisp programs concurrently is to write them in a parallel
Lisp dialect and run them on a multiprocessor Lisp system. Several such systems operate
on a variety of computers.

Halstead’s Multilisp was the first operational parallel Lisp system [31]. This dialect
encourages functional programming with its two primary constructs of futures and parallel
argument evaluation. Multilisp, however, is a general Scheme implementation that provides
the usual side-effect-producing operations. Multilisp’s byte-code interpreter slowed program
execution substantially and the system ran on a one-of-a-kind multiprocessor. Nevertheless,
it demonstrated the potential of multiprocessor Lisp and the power of the future construct.

BBN’s Butterfly multiprocessor has three parallel Lisp implementations. The first is
Miller’s MultiScheme [58], which is a parallel Scheme dialect also based on futures. Miller
reimplemented Multilisp’s features in a higher-quality Scheme system and investigated the
appropriate primitive constructs for building parallel Lisp systems and supporting futures
and user-definable process scheduling. BBN extended MultiScheme with a compiler and
Common Lisp features to produce the first multiprocessor Common Lisp (3].

The third Lisp for the Butterfly is Portable Standard Lisp (PSL), which Swanson,
Kessler, and Lindstrom ported to the Butterfly [69]. Their initial system did not correctly
implement futures (programs had to touch futures explicitly to recover their values), but it
did demonstrate the feasibility of the operations necessary to build an efficient system.

Gabriel and McCarthy developed another major parallel Lisp dialect, Qlambda [23].
This language introduced concurrency into several Lisp commands. The extended variable
binding command can evaluate variables’ initial-value expressions in parallel and possibly
overlap their execution with that of the statements that use the bindings. The function
constructor can produce concurrent functions that execute asynchronously and read their
arguments from a queue. Lucid, Inc. is extending its commercial Common Lisp with these
features to produce a Lisp (Qlisp) for the Alliant multiprocessor [26]. Experience has
shown the inadequacy of Qlambda’s language extensions and has led to increasingly complex
language constructs [27)].

SPUR Common Lisp contains a set of multiprocessor features that take the opposite
approach [78]. These features are simple primitives that either can be used directly or can
form the basis of more complex language features. We will use these constructs, which are
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briefly described in Section 2.1, in the parallel versions of the transformed programs. Franz
Inc. is building a Common Lisp for the Sequent Symmetry with these features.
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Regarding the actual making of curare,
there are almost as many conflicting accounts
as there have been witnesses....

- Richard G. Gill, White Water and Black Magic

Chapter 2

Parallel Execution of Loops

Data-dependence detection algorithms and declarations expose a program’s dependences.
These dependences constrain the program’s concurrent execution but do not prescribe its
concurrent behavior. The program’s execution depends on its expected behavior, the fre-
quency of dependences, the target multiprocessor, and the program restructurer. In this
chapter, we describe Curare’s technique for executing loops (including loops formed by
recursion) concurrently on asynchronous, shared-memory multiprocessors.

Loops are a natural place to seek concurrency. They repeatedly invoke a piece of code
on a set of data, which raises the possibility of simultaneously executing the operations on
each value. If the task can execute concurrently, the loop’s execution time is reduced by
the number of parallel processes. Many programs spend most of their time in a few loops,
so concurrent execution can greatly improve the speed of the entire program.

Data dependences divide loops into four categories:

1. Naturally parallel loops with no loop-carried dependences.

2. Recurrences in which results from previous iterations are used in the current iteration.
In other words, the loop body contains loop-carried low dependences.

3. Loops containing an anti-dependence in which a statement reuses a location read in
an earlier iteration.

4. Loops containing a def-order dependence in which statements in two iterations write
the same location.

Only the first type of loop can execute correctly without synchronization. Fortunately,
optimizations that change the locations used by statements can eliminate dependences in
some of the latter three types of loops. The remaining dependences must be serialized by
synchronization devices such as locks.

The execution cost of a loop body will vary if it preforms different operations on each
value. This variance requires a flexible, run-time scheduling mechanism to allocate tasks
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efficiently to the available processors. This mechanism should also schedule the iterations
to reduce delays due to synchronization.

This chapter describes a scheme for concurrently executing loops that do not contain
many data dependences. The approach is simple and can be efficiently implemented in most
concurrent Lisp systems. It only requires parallel processes, queues, locks, and function
closures.

Allloops that CURARE restructures are written as recursive functions. As Steele argued,
recursion is a more fundamental control structure than iteration since all explicit loops can
be rewritten trivially as tail-recursive functions [68]. Scheme programmers use recursion
heavily, so a program restructurer must handle this feature. Recursion also provides a
convenient and flexible framework for concurrently executing Lisp loops, particularly those
with dependences.

Because of the close relation between recursion and iteration, we use the terms inter-
changeably. An iteration or invocation of a recursive function is a single execution of the
function’s body.

The next section briefly describes several of SPUR Lisp’s multiprocessing features. Sec-
tion 2.2 describes the server model and shows how it executes simple recursive functions
that do not contain dependences. Section 2.3 expands the model to include functions with
data dependences. Section 2.4 discusses how locks synchronize the conflicts. The next two
sections expand the model to accommodate complex recursive functions and control depen-
dences. Section 2.7 describes how servers are allocated to loops. The final section surveys
related work.

2.1 Multiprocessor Language Features

The server model described in this chapter is not closely tied to a particular multiprocessor
or concurrent Lisp system. Nevertheless, we need a concrete language in which to demon-
strate the model. We primarily use SPUR Lisp’s multiprocessing extensions [78], which are
well-suited for this role. The features described below are slight extensions of the actual
constructs. The changes simplify the presentation but are not essential.

SPUR Lisp provides three sets of primitives: processes, mailboxes, and signals. We only
need the first two. A process is a concurrent thread of control created by the make-process
function to evaluate an expression. SPUR Lisp provides a variety of operations to control
processes, none of which we use.

Mailbozes are FIFO queues. The function make-mailbox() returns an unbounded mail-
box. The function send(item, mailbox) returns when the item is enqueued in the mailbox.
The function receive(mailbox) returns the next item from the mailbox. Each mailbox
also contains two user-definable fields, mb-barrier and mb-count.

We also use locks, which are not part of SPUR Lisp. make-lock(state) returns a
lock that is initially locked or unlocked, depending on the argument. The function
acquire-lock(l) returns when the process locks 1. If multiple processes simultaneously
try to lock a lock, only one process will succeed. The other processes wait. The function
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release-lock(l) atomically changes the lock’s status to unlocked. Locks are heavily used
and should be directly implemented with the low-level features provided by most multipro-
Cessors.

Another non-SPUR Lisp construct is counters. The function make-counter(n) returns
a counting semaphore initialized to n. The function decr-counter(s) reduces the value of
the counter s by 1. The function wait-counter(s) returns when the value of the counter
reaches 0. Counters are easily implemented with locks although some computers support
them directly.

2.2 Parallel Execution Without Data Dependences

Before describing the details of CURARE, we will present a simplified example that illus-
trates the main points. The simplest loop to execute concurrently is one in which no data
dependences extend between iterations. For example, consider the function:

(defun mapc (f 1lst)
(cond ((null? 1st))
(t
(f (car 1st))
(mapc £ (cdr 1st)))))

which applies a function, £, to each element of a list, 1st. If invocations of £ do not
conflict, then mapc contains no loop-carried dependences. Each iteration, however, is control
dependent on the termination test in previous iterations.

CURARE’s first step in restructuring mapc is to move the recursive call so that it occurs
as early as possible in each iteration. The recursive call will spawn a new process, so
the sooner it happens, the more concurrency is possible. Since there are no conflicts, the
invocation of £ and the recursive call have no dependences and can be exchanged without
affecting mapc’s result:?

(defun mapcl (f 1st)
(cond ((null? 1st))
(t
(mapcl £ (cdr 1st))
(f (car 1st)))))

CURARE then changes the recursive call into a parallel call, which, conceptually, spawns
a new process to evaluate the next iteration:

!The examples follow the convention that refinements of a function are numbered in increasing order:
e.g., mapc, mapci, mapc2, ...
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(defun mapc2 (f 1lst)
(cond ((null? 1st))
(t
(make-task mapc2 f (cdr 1lst))
(f (car 1lst)))))

The call may execute asynchronously because the code executed by the call does not conflict
with the statements following the call. mapc is now a parallel function. Each invocation
examines its arguments to see if all tasks are complete, and if not, spawns a task to attend
to the rest of the list and executes £ on the head of the list.

These tasks do not require full-fledged processes, which have potentially large overhead
in some systems. Instead, tasks are closures of functions over their actual arguments. They
are enqueued and executed by a server running on one of several processors. A server
executes a simple loop:

{defun server (queue)
(let ((task (receive queue)))
(apply (task-function task) (task-arguments task))
(server queue)))

make-task simply saves its arguments on the servers’ queue:

(defun make-task (function . arguments)
(send (make-task-object function arguments) task-queue))

where a task-object is a record of the function and its actual arguments and the variable
task-queue contains the servers’ queue.

2.2.1 Restructuring Simple Recursive Functions

Simple recursive functions have no loop-carried data dependences and are linearly recursive
(i.e., they have at most one recursive call on any path from the function’s entry to exit).
This section examines the restructuring process for simple recursive functions. The result
of this process is a concurrent function that distributes its work among a set of concurrent
servers. The servers can also execute more complex recursive functions, such as those with
data dependences (Section 2.3) and non-linearly recursive calls (Section 2.5).

Throughout this section, we assume that a function contains only a single recursive call
to simplify the discussion. The technique applies equally well to functions containing several
recursive calls along different paths.

The first step in restructuring these functions is to move the recursive call so it executes
as early as possible during an invocation of the function. Tle earlier the call occurs, the
sooner another concurrent task is created and the more parallelism results.
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Figure 2.1: In a sequential, simple recursive function, the function heads execute in order until the

recursion terminates. Then the function tails execute in reverse order.

A function’s head contains the statements that execute before a recursive call. These are
the statements along acyclic paths to the call statement. The tail contains all statements
that execute after a recursive call. These are the statements dominated by the call.

To reduce the size of a function’s head, we move statements to its tail. However, a
statement S cannot move after a recursive call C if:

1. There exists a control or data dependence (transitively) from S to C.

2. S has a loop-carried dependence with a statement T. Moving S from the head to the
tail reverses the execution order of S and T.

After moving the statements, the function’s head contains statements that must execute
before the recursive call either because the call is flow dependent on them or because they
have a loop-carried dependence. Since simple recursive functions do not contain loop-carried
dependences, the head only contains the former type of statements.

The next step checks that the recursive call may execute concurrently. Sequential re-
cursion imposes a single execution order on the statements in a function. Executing the
recursive call concurrently permits many orders, all of which must preserve dependences.
Although we claimed that simple recursive functions contain no loop-carried dependences,
we can relax this restriction to accommodate functions whose dependences are preserved
by concurrent execution.

Figure 2.1 shows the normal order of execution of a recursive function’s heads and tails.
Figure 2.2 shows the concurrent execution order. Concurrent execution preserves loop-
independent dependences and loop-carried dependences from a statement in the head to a
statement in a later iteration since the parallel call executes after the head. Figure 2.3 shows
the preserved dependences. However, loop-carried dependences leading to a statement in
an earlier tail are not preserved

Spawning the recursive call will make parallel those simple recursive functions with no
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Figure 2.2: In a concurrent, simple recursive function, the recursive call spawns a new process, so the
function’s tails overlap subsequent iterations. In this figure, a block indicates the earliest time at which a

tail can execute. The arrows show the range of time over which the code may execute.

A H; Hiya H; Hiia

T; T; Tisa T; Tita

Figure 2.3: The dependences between statements in a function’s head and other statements that are

preserved when a recursive call executes concurrently.

loop-carried dependences or with dependences that are preserved. A function modified
in this manner executes part of each invocation concurrently. However, functions that
invoke the restructured function may not want to see this concurrency because the results
of the computation may be incomplete. To avoid this, we add barrier synchronization to
wait for the servers to complete their tasks. A restructured function has two entry points: a
synchronous entry, which waits for all tasks to finish and preserves the sequential semantics;
and an asynchronous entry, which returns when all tasks are scheduled. (Figure 2.4).

H; Hita H; Hiia

T; Tita T Tiya

Figure 2.4: The dependences between statements in a function’s tail and other statements that are not

preserved when a recursive call executes concurrently.
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To continue the mapc example:

(defun mapc-sync (f 1lst)
(let ((task-queue (mapc-async f 1lst)))
(server task-queue)
(wait-counter (mb-barrier task-queue)))
nil)

(defun mapc-async (f 1lst)
(let ((task-queue (obtain-servers)))
(mapc3 task-queue f 1lst)
task-queue))

(defun mapc3 (task-queue f 1st)
(cond ((null? 1st) (terminate-servers task-queue))
(t
(make-task task-queus mapc3 task-queue f (cdr 1st))
(f (car 1st)))))

This example illustrates several important conventions. The function obtain-servers
gets the servers for a function and directs their attention to a new task queue, which it
returns. An optional argument to obtain-servers, omitted in the example, is the desired
number of servers (see Section 2.7). The asynchronous version of a function returns the
task queue, so the synchronous version can also service the queue. This function then
waits on the counter (in the queue’s mb-barrier field) for all servers to finish their tasks.
The function terminate-servers redirects the servers when they finish. It cannot execute
before scheduling the last iteration of the recursive function since it enqueues tasks that
redirect the servers.

Recursive functions that return a result to previous iterations contain a loop-carried
dependence and are discussed later.

2.2.2 Servers and Tasks

Servers are concurrent processes that execute function invocations. In a system in which
creating processes is extremely inexpensive, make-task could create a new process for each
task. However, in most systems, processes are likely to be much more expensive to create
and schedule than tasks, and make-task will not create actual processes. In particular,
the cost of creating and scheduling a process in machines with large register files, such as
SPUR [34], will be much longer than a function call time because of the cost of saving
and restoring registers. In general, the cost of creating a process will be higher than the
cost of enqueuing a task, which contains the absolute minimum information necessary to
execute the work concurrently. A fully general process mechanism requires more context
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information. Tasks are also not preemptable, which simplifies their implementation. The
server and queue approach is portable and can be used in any concurrent Lisp system.

Below, we describe a simple implementation of tasks and servers. A task is a pair
consisting of a function and its actual arguments:?

(defstruct (task-object
(:conc-name task-)
(:constructor make-task-object (function arguments)))
function
arguments)

A server is a concurrent process that executes the loop:

(defun server (queus)
(let ((task (receive queue)))
(cond ((task-object? task)
(apply (task-function task) (task-arguments task))
(server queue))

NN

A server reads an object from its queue. If the object is a task, the server executes the task’s
function and then looks for more work. Any other value causes the server to terminate.

The function obtain-servers finds idle servers for a loop, directs these servers to a
new queue, and returns the queue. The number of servers assigned to a loop is determined
partially by CURARE and partially by availablity of processors at execution time. For now,
we postulate an oracle, number-of-servers, which takes the requested number of servers
and returns the actual number of servers for a function (see Section 2.7). Idle servers are
found waiting on the *idle-server-queuex.

?In systems in which consing the argument list and applying a function to a list are expensive, a task
could be a closure that applies the function to the actual arguments. The choice depends on the cost of the
two operations in a particular Lisp system.
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(define *server-queue-lock* (make-lock ’unlocked))
(define *idle-server-queuex (make-mailbox))
(define *number-of-idle-servers* 0)

(defun obtain-servers (&optional desired-number)
(acquire-lock *server-queue-lock*)
(let ((n (number-of-servers desired-number)))
(set! *number-of-idle-servers* (- *number-of-idle-servers* n))
(release-lock *server-queue-lockx*)

(let ((queue (make-mailbox)))
(set! (mb-barrier queue) (make-counter n))
(set! (mb-count queue) (+ n 1)) ; Count this process also
(obtain-n-servers n queue)
queue)))

(defun obtain-n-servers (n queue)
(cond ((= n 0))
(t
(make-task *idle-server-queue* idle-server queue)
(obtain-n-servers (-~ n 1) queue))))

(defun idle-server (queue)
(server queue)
(decf-counter (mb-barrier queue))
(acquire-lock *server-queue-lock*)
(incf *number-of-idle-servers#)
(release-lock *server-queue-lockx*))

The function obtain-servers executes only one request at a time to eliminate a
race between computing the number of servers and obtaining them. The function that
obtain-servers enqueues invokes idle-server. When the call on server in this function
returns, it decrements the barrier for its task queue and increments the number of idle
servers. The process will then be back in the server loop for the idle server queue.

The server pool is initialized by assigning free processors to be servers:
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(defun initialize-servers (number-of-processes)
(set! *idle-server-queue* (make-mailbox))
(set! *number-of-idle-servers* number-of-processes)
(set! *server-processes* (initialize-n-servers number-of-processes))
(set! (mb-barrier *idle-server-queuex)
(make-counter number-of-processes))
(set! (mb-count *idle-server-queue) number-of-processes))

(defun initialize-n-servers (number-of-processes)
(cond ((= number-of-processes 0))
(t
(make-process (loop (server *idle-server-queuex)))
(initialize-n-servers (- number-of-processes 1)))))

where (loop @) = (letrec ((loop () (e) (loop)))). Theseservers execute an infinite
loop in which they wait to be assigned to a function, execute iterations for that function,
and then return to the *idle-server-queue* to look for more work.

The function terminate-servers returns servers to the idle queue when a function
finishes:

(defun terminate-servers (queue)
(terminate-n-servers (mb-count queue) queue))

(defun terminate-n-servers (n queue)
(cond ((= n 0))
(t
(send nil quaue)
(terminate-n-servers (- n 1) queue))))

It enqueues several nil’s, each of which terminate a server loop. The n servers from the idle
pool return and look for other tasks. When the call on server in the synchronous function
terminates, the function waits for the counter associated with the task queue to indicate
that all other tasks are finished.

2.3 Restructuring with Data Dependences

Not all functions are as amenable to concurrent execution as mapc. Some functions contain
loop-carried dependences that are not preserved by concurrent execution. These depen-
dences must either be synchronized or removed. The next chapter discusses eliminating
them. This section addresses the problem of serializing the conflicting statements.
Consider a dependence from statement Sy to statement S3. The simplest synchronization
is a lock that is initially locked. The earlier statement (S;) accesses the location and then
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Figure 2.5: Tasks spawned in the head of a recursive function execute concurrently with subsequent
iterations. However, the tails execute sequentially.

unlocks the lock. The other statement (Sz) tries to lock the lock and succeeds after Sy
finishes. Besides the cost of these additional operations, locking introduces the possibility
of deadlock and complicates the server model. Nevertheless, it is necessary to ensure the
correct execution of functions with data dependences.

The next subsection describes the concurrent execution of functions with loop-carried de-
pendences. It assumes the simple locking outlined above. Section 2.4 shows how to improve
the synchronization by inserting the minimal locks and by locking conflicting statements
instead of memory locations.

2.3.1 Concurrent Execution with Dependences

In addition to necessitating synchronizations, dependences reduce concurrency by prevent-
ing the movement of statements, thereby decreasing the size of a function’s tail. If the tail
is too small, it is not worth spawning the call concurrently. Therefore, we will examine
other approaches to scheduling functions with loop-carried dependences. These approaches
spawn portions of a function’s head or tail—not the recursive call.

The first technique spawns a task containing the statements from a function’s head that
have loop-carried dependences but are not the source of loop-independent dependences to
the call or statements in the tail. These tasks are scheduled in order and overlap subsequent
iterations (Figure 2.5). This technique is particularly appropriate for tail-recursive functions
with loop-carried dependences.

For example, consider the function:

(defun £ (1st)
(cond ((null? (cddr 1lst)))
(t
(set! (car (cddr 1st)) (+ (car 1st) 1))
(f (cdr 1st)))))
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Figure 2.6: Tasks spawned in the function’s tail overlap subsequent iterations.

The assignment statement has a loop-carried flow dependence of distance 2 with itself. The
restructured function spawns this statement as a separate task:

(defun f1 (task-queue 1lst)
(cond ((null? (cddr 1lst))
(terminate-servers task-queue))
(t
(make-task task-queue
(lambda ()
lock (1.car)
(set! (car (cddr 1st)) (+ (car 1st) 1))
unlock (1l.cddr.car))
)]
(£1 task-queue (cdr 1lst)))))

The lock and unlock statements protect the locations described by their arguments and are
discussed below. The first two locations in the list are initially unlocked. All other elements
are initially locked. Since £1 schedules tasks in order, they cannot deadlock.

All data dependences involving statements in the spawned region must be synchronized.
Dependences between statements in the rest of the function’s body are preserved without
synchronization, since these statements execute in the usual order.

A similar approach works for statements in the function’s tail (Figure 2.6). For example,
consider the function:
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(defun g (1st)
(cond ((null? (cddr 1lst)))
(t
(g (cdr 1st))
(set! (car (cddr 1st)) (+ (car 1st) 1)))))

which has a loop-carried anti-dependence between instances of the last statement. The
restructured function spawns and synchronizes this statement:

(defun gi (task-queue 1lst)
(cond ((null? (cddr 1st)))
(t
(g1 task-queue (cdr 1lst))
(make-task task-queue
(lambda ()

lock (1st.car)
(set! (car (cddr 1st)) (+ (car 1lst) 1))
unlock (lst.cddr.car))

0NN

The function traverses the list and schedules the tasks as the recursion unwinds. Because
the task queue is FIFO and dependences in the tail run from later to earlier iterations,
tasks do not deadlock. The elements of the list, with the exception of the last two, are
initially locked. Also, the servers cannot terminate until the recursion is fully unwound, so
the function terminate-servers reassigns servers when the restructured function returns:

(defun g-async (1lst)

(let ((task-queue (obtain-servers)))
(gl task-queue 1lst)
(terminate-servers task-queue)
task-queue))

The number of servers that can be profitably used by a function with dependences
depends on the distance of the smallest loop-carried dependence and the amount of code
not involved in the dependence. In f or g, no more than 2 servers are necessary or useful.

To estimate the potential speed improvement from spawning pieces of a function, we need
to know the execution cost of various statements. In general, assume that the concurrently
executed head or tail has the following form:
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where S are the statements executed between the two statements that conflict at distance
d, B are the statements executed before S, and A are the statements executed after S. Let
Ts, Ty, and T4 be estimates of the execution time of each group of statements. Then, the
upper bound on the number of concurrently executed server processes is

|z +elzl+e[z] - o0+ lz]+ 2D

where the first term comes from executing the epilogue (A) of the previous invocations
concurrently with the current d invocations of S; the second term accounts for those invo-
cations; and the third term comes from executing the prologue (B) of the next invocations.
If T4 > Ts or Tg > Ts, the amount of concurrency is not seriously limited by the locking.
However, if d is small or T4 ~ Ts and T ~ T, the tasks do not have much concurrency.
In the limit (as in £),d = 1, T4 = 0, T = 0, and the function should execute sequentially.
In the function g, B and A are empty, so Tp = T4 = 0. However, since d = 2, two tasks
can execute simultaneously.

If we ignore data dependences, which necessitate locking and introduce unpredictable
delays, we can compare the potential gains of spawning the head, the recursive call, or the
tail. Let Ty be the cost of the function’s head, Tr be the cost of its tail, n be the number of
iterations, and s be the number of servers. If we spawn the recursive call, then the earliest
completion time is (see Figure 2.2)

o o [22]).

If we spawn the function’s entire head (the best case), then the earliest completion time is
(see Figure 2.5)
[nTH

b

] 4+ nTr.

Finally, if we spawn the function’s entire tail, then the earliest completion time is (see

Figure 2.6)
nTr

nTy + [—] .
E
Spawning the recursive call is always better than spawning the tail since the recursive

calls partially overlap the concurrently executing code. Spawning the head may be better
than spawning the call when Tx > T so the expensive portion executes concurrently.

2.4 Inserting Locks

Synchronizing data dependences with locks requires a lock for each location and pair of
statements that conflict over the location. In addition to inserting the lock and unlock
statements described above, we must ensure that the lock is unlocked even if the protected
statement never executes, which requires additional unlock statements on alternative paths
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through the function. This approach has two flaws. First, it inserts too many locks in a
program since many of them are redundant. Second, the locks are too fine-grained since
each protects a single memory location. Let us first consider how to find the minimal set
of locks. Section 2.4.3 shows how to lock statements instead of locations.

A lock dependence graph (LDG) for a recursive function is a graph formed as follows:

1. Create d + 1 copies of the control-flow graph for recursive function £, where d is the
longest distance of a conflict between the statements of £. The arcs in the graphs are
flow arcs. Label the graphs Gy, ..., G4+1 and label statement S; in graph G; as S; ;.

2. Add a flow arc from the recursive call in G; to the entry point of G;41. Add another
flow arc from the exit of G j4; to the statement following the recursive call in G ;.

3. For each conflict for which there is a loop-carried dependence from S; to Sp,, add
every possible lock arc from S; j t0 Sm j+d,., Where d. is the distance of the conflict.

The entry of an LDG is the entry of G; and its exit is the exit of Gg41. A path from S, ; to
Sm,n asserts that statement S, , must execute after S; j, either because of serial execution
constraints or synchronization.

A lock (represented by a lock arc from S;j to Sm,n) is redundant if, excluding the arc
itself, there is a path from S;; to Sm . This path means that some other combination of
sequential statements and locks ensures the synchronization. We can compute the minimal
set of locks by finding the transitive reduction of the LDG.

The transitive reduction of a directed, acyclic graph G is the unique, smallest graph G’
whose transitive closure is equal to that of the original graph, GT = G'T. In other words,
G' is the graph with the fewest edges that has a path from node v to node v if and only
if G has a path between the nodes. Aho, Garey, and Ullman show the transitive reduction
of an acyclic graph is unique and is found by removing the graph’s redundant arcs in any
order [2].

An LDG must be acyclic since two statements in a dependence cycle have no legal
execution order. In computing the transitive reduction of an LDG, we cannot remove
control arcs, but this does not matter since removing only the lock arcs produces the graph
with the fewest lock arcs.

Theorem 1 The graph resulting from computing the transitive reduction of an LDG by
only removing redundant lock arcs has the fewest lock arcs of any graph whose transitive
closure is equal to that of the original graph.

Proof Let G be the graph found by a transitive reduction algorithm that removes only
lock arcs and H be another graph with the same transitive closure and fewer lock arcs. Let
e = {u, v) be a lock arc in G but not in H. Since e is not in H, there must be a path in
H fromu — z — v. Thepathsu—-»:canda:—>vmustbeinGsinceGT=HTsoeis
redundant in G. But G has no redundant arcs and e does not exist.

After finding the minimal set of locks, we must insert unlock statements so that every
lock is unlocked after the first conflicting statement either executes or is bypassed. Below
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Figure 2.7: The first step in finding the minimum set of arcs to unlock is to split the graph G at the

block u that contains the unlock statement.
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are two algorithms for inserting the additional unlock statements, which are called bypass
unlocks.

The first algorithm inserts the minimum unlock statements necessary to ensure that
exactly one of these constructs executes on any path through the function. The second
and more practical algorithm may insert more unlock statements but ensures that a lock is
unlocked as early as possible, thereby increasing the possible concurrency.

2.4.1 Min-Cut Bypass Unlock Algorithm

Consider a function f that has a control-flow graph G with entry block s and exit block e.
Block u contains the unlock statement following the first conflicting statement. To find the
minimum bypass unlock statements, this algorithm finds the smallest set of arcs that must
be removed to partition G into two pieces, one of which contains s and the other e. If we
insert unlock statements along these arcs, any path from s to e will execute exactly one of
these constructs.

The first step splits G at block u to account for the unlock statement in that block. It
forms a new graph G’ (see Figure 2.7). The next step finds the minimum cut-set necessary
to partition block s from block e. This set is found by standard network-flow techniques
under the assumption that every arc in G’ has weight 1. Let the minimum cut-set be C.

The simplest way to insert an unlock statement along an arc in C is to split each arc
into two arcs and put a new block containing the unlock between these arcs (see Figure 2.8).
However, if the destination of the arc has only a single predecessor, the unlock statement
can be the first statement in that block.

2.4.2 Earliest Bypass Unlock Algorithm

Another algorithm also inserts unlock statements along each path through a function and
has the advantage of ensuring that locks are unlocked as early as possible. This means that
a lock is unlocked as soon as control reaches a block that cannot lead to the original unlock
statement.

Again, we start with an acyclic flow graph G = (V, E) with start block s, final block e,
and an unlock statement in block u. Partition V into two disjoint, mutually-exclusive sets
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Figure 2.8: Each arc in the min-cut set C must have an unlock statement inserted along it. The easiest

way to accomplish this is to split the arc and add a new block containing the statement.

B and A:

B = {v€V |G has an acyclic path s - v — u}
A = V-B.

The notation z — y indicates there exists a (possibly empty) path from node z to node y.
B is the set of blocks executed no later than block u. A is the set of blocks executed after
block wu.

In this algorithm, the cut set contains the edges that have an endpoint in both sets,
C ={(z,y) |z€ B, y€ A, and z # u}. The unlock statements are inserted along these
edges in the same manner as above.

Theorem 2 Inserting locks along arcs in C ensures that there is ezactly one unlock state-
ment along each acyclic path from a node n € B (in particular s) to e.

Proof When |V| = 1, the graph contains a single block. This block must contain an unlock
statement, so any path through the flowgraph (i.e., the block) encounters this statement.

Assume the theorem for all graphs with |V| < k. Counsider a graph G with k blocks.
Consider each successor z of node n € B. If z € A, then either n = u or the algorithm
would insert an unlock statement along the arc (n, z). Therefore, there is exactly one unlock
along all paths from s to z. Since z € A4, it cannot have a successor in B. The algorithm
would not insert any more unlock statements along paths beginning with (n, z).

If z = u, no lock statement is inserted along the arc {(n, z} = (n, u), since both nodes
are in B, or along any arc leaving u, by the definition of C. However, u contains the original
unlock statement so paths from z to e will release the lock.

Otherwise, z # u and z € B, so there is no unlock statement along the path s — z.
Consider the subgraph headed by z. Since u is unchanged, B. = BNV, 4, = AN V., and
C. = C NV, where V, contains the nodes in the graph headed by z and B, 4., and C,
are the respective sets for this graph. Since G is acyclic, the subgraph contains fewer than
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k blocks and the induction assumption applies. The paths from z to e contain exactly one
unlock statement. il

This algorithm is more desirable than the minimum-cut algorithm because the additional
unlock statements that it may introduce only increase the static size of a program by a small
amount. Both algorithms cause the same number of unlock statements to execute in each
invocation, but this algorithm may increase the potential concurrency by releasing locks
earlier.

2.4.3 What Are We Locking?

In the description above, locks serialize accesses to a location in memory. On most com-
puters, it is difficult to lock a single memory location. An alternative is to add locks to the
data. However, sets of locks are difficult to preallocate for Lisp programs since the size of
data structures, such as trees and linked lists, cannot be precomputed.

By slightly shifting our perspective, we can find a more manageable approach to this
problem. A lock serializes the execution of two statements d iterations apart. The location
plays no part except to determine the constant d. Therefore, we divorce a lock from a
location and pass the lock between the statements.

Let the statements S; ; and Sm n have a non-redundant conflict over location [ and let
d = n — j. To serialize these statements, add the following code to the function containing
them:

1. Add formal parameters [y, ..., g and new local variable lo. Non-recursive calls on
the restructured function must pass correctly initialized locks as the initial values of
the new parameters.

2. Before the recursive call, add the assignment
lo — make-lock(’locked)
3. In the recursive call, pass /o as the new value of Iy, I as the value of [, and so on.
4. Before S, n add the statement
acquire-lock(lo)
5. After S;; add the statement
release-lock (1)
6. Add the statements
release-lock(l1);

release-lock(l4);

to the termination test of the recursive function.
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For example, the correctly locked version of the function from Section 2.3.1 is:

(defun f2 (task-queus 11 12 1lst)
(cond ((null? (cddr 1lst))
(release-lock 11)
(release-lock 12)
(terminate-servers task-queue))
(t
(let ((10 (make-lock ’locked)))
(make-task task-queue
(lambda ()
(acquire-lock 10)
(set! (car (cddr 1lst)) (+ (car 1lst) 1))
(release-lock 12))
0))]
(£2 task-queue 10 11 (cdr 1st))))))

2.5 More Complex Functions

The linear recursive functions discussed above execute at most one recursive call in each
invocation and correspond to a simple loop. However, functions that execute more than
one recursive call per invocation can also execute concurrently. Their primary problem is
that concurrent execution does not preserve any order among the statements so all conflicts
must be serialized.

Non-linearly recursive functions may execute multiple recursive calls in a single invo-
cation and consequently do not have a well-defined ordering among their statements. Al-
though the series of invocations from a call site are ordered, each invocation spawns other,
unsynchronized series of recursive calls. For example, consider the function:

(defun traverse (tree)
(cond ((leaf? tree)
(set! (value tree) (+ 1 (value tree))))
(t
(traverse (left trea))
(traverse (right tree)))))

The recursive calls from traversing the left children can be treated like conventional recur-
sion. However, each invocation also begins a series of calls down the chain of right children.
These calls, in turn, traverse the left and right children of subtrees. The heads and tails of
traverse execute without any apparent order.

traverse also illustrates the difference between a pair of nested loops and a pair of
consecutive recursive calls. Nested loops alternate: the inner loop runs to completion
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before each iteration of the outer loop. Consecutive recursive calls are interleaved in a
data-dependent manner.

Ensembles of mutually-recursive functions share this problem as well. For example, if
function f invokes function g, which calls f, then the call on g is, in effect, a recursive call
on f. Recursion introduced through another function presents no new problems and may
improve the program’s concurrent execution by increasing the amount of work done by each
task.

In functions without data dependences between iterations, the absence of ordering is
not a serious problem since no conflicts must be serialized. Each recursive call can execute
concurrently. For example, if traverse is applied to a tree (not a DAG), the function may
be rewritten:

(defun traversel (task-queue tree)
(cond ((leaf? tree)
(set! (value tree) (+ 1 (value tree))))
(t
(make-task task-queue traversel task-queue (left tree))
(make-task task-queue traversel task-queue (right tree)))))

Another approach to restructuring these functions is to transform only one recursive
call. This increases the amount of work each task performs (by a data-dependent amount),
but does not restore order among statements.

Non-linearly recursive functions with data dependences are much more difficult to exe-
cute concurrently within the server model. Synchronization and the lack of order between
statements require that the servers be preemptable so that a server can turn its attention
to other tasks when a task waits for a lock. Preemptable servers are general processes. In
concurrent Lisp systems that provide inexpensive processes, these servers are easily imple-
mented by spawning a process to execute each task. In systems with expensive processes,
this approach is impractical and these functions must execute sequentially.

2.6 Control Dependences

Control dependences impede parallelism more than data dependences because they offer less
flexibility in executing statements concurrently. If statement B’s execution is contingent on
statement A4’s result, the two statements can execute concurrently only if: B has no side
effects, its side effects do not matter, or the side effects delay until A terminates. We will
examine the third option to speed evaluation of the most common control dependences in
recursive functions.

These functions frequently have the form:

(defun £ (...)
(cond (testl bodyl)
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(t;stn bodyn)))

where the tests may be elaborate expressions involving most of the work in the function.
Even if the tests do not have data dependences, test; is control dependent on test; through
test;_1. In addition, body; is control dependent on test; through test;. For the rest of the
section, assume that there are no conflicts between the tests, which is reasonable since the
predicates are frequently side-effect-free.

Below is a simple scheme for evaluating the tests concurrently. The goal is to find the
first test in the sequence that succeeds. As soon as a predicate succeeds and all earlier
predicates have failed, the corresponding body can execute.

Consider a cond statement:

(cond (testO bodyO)

(testn-1 bodyn-1)
(t bodyn))

in which the last test always succeeds. If the last test is not constant, add a new final clause:
(t nil). Clause ¢ is earlier than clause j if i < j.

When a predicate terminates with a true result, we want to know if all earlier predicates
have failed. Let the result of predicate p; be i if the predicate is true and n if false. Therefore,
when p; succeeds, we want to know if its result is minimum among {po, ..., p:}-

The restructured conditional statement becomes:

(let ((heap (make-vector (* 2 n))))
(defun body (i)
(case i
((nil))
(0 body0)

(n bodyn)))
(make-task cond-queue

(lambda ()
(body (find-first heap
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0
(if (test0) 0 n)

n))))
(make-task cond-queue
(lambda ()
(body (find-first heap
n-1
(if (testn-1) n-1 n)
n)))))

Concurrent tasks evaluate the n non-trivial tests by executing their predicates and passing
the result and predicate’s index to find-first, which returns either the index of the earliest
true clause or nil. If this value is non-nil, the server executes the appropriate clause body.
At this point, the server should terminate the other processes.

This scheme is practical for conditional statements in which several predicates execute
non-trivial, but side-effect-free tasks. Program analysis of type described later can identify
these predicates.

2.7 Allotting Servers

Earlier in this chapter, we deferred decisions about allotting servers to loops by postulating
a function number-of-servers that accepts a loop’s desired number of servers and returns
an allotment less than or equal to this quantity. This section discusses the behavior of this
function.

The simplest case is a concurrent recursive function that is not nested in another con-
current function. At execution time, this function should be given all available servers,
up to the number that it requests. These servers would otherwise sit idle until the loop
terminates. On the other hand, number-of-servers should not allocate more servers than
requested since servers assigned to a loop, but not used, incur a slight but unnecessary
overhead.

The requested number of servers should not be larger than the number of tasks for the
same reason. The most general approach is to count the number of tasks (e.g., the number
of items in a list) before calling obtain-servers. Other ways of determining this quantity
are to rely on programmer-supplied declarations or to empirically measure the value by
profiling the program.

The situation is more complex when recursive functions nest within recursive functions,
either because of simple nested loops or non-linearly recursive functions. These two cases
are different and will be discussed separately. In properly-nested recursive loops, the outer
loop should be favored in allotting servers since its body takes longer to execute and better

Chapter 2 33



amortizes the overhead of parallelism. This bias occurs naturally with the scheme describe
previously. The outer loop first obtains its allotment of servers. Any remaining ones may
be used by inner loops that start subsequently.

On the other hand, non-linearly recursive functions do not have clear inner and outer
loops. For these loops, the best policy is to be sparing in requesting servers so every loop
fully utilizes all processors that it obtains. The other general rule—to assign servers to
large tasks—is difficult to apply since it depends on the algorithm and data. For example,
a depth-first search may quickly reach the small tasks at the leaves of a tree and assign
them to servers. In the same problem, breadth-first search would have assigned servers to
the larger subtrees higher in the original tree.

If a loop does not receive any servers because they are busy with other tasks, the function
could fall back on the original, non-parallel code and avoid the overhead of enqueuing tasks
for a single processor. This scheme requires only a few small changes to the framework
described above.

2.8 Related Work

The server model is similar to the Uniform System for BBN’s Butterfly Multiprocessor [72],
although both are used in different manners. The Uniform System is a library of routines
that hide the structure of a multiprocessor by concurrently executing a set of tasks produced
by a user-supplied generator. A programmer calls system routines to initialize the generator
and writes the task bodies. None of the code is automatically generated.

An early version of the techniques in this chapter was presented in a paper on Curare
[53]. This paper discussed concurrent execution in which dependences were preserved but
did not describe the servers.

Midkiff developed an algorithm for removing redundant locks similar to the one in
Section 2.4 [56,57]. His algorithm, however, was limited to straight-line code without con-
ditional statements. Although his scheme was similar to transitive-reduction, he incorrectly
claimed that the problem was NP-hard (instead of being equivalent to computing the tran-
sitive closure of a graph). In attempting to extend his algorithm for conditional statements,
he did not realize that the locking relation is preserved by the bypass unlocks. Thus, he
had to build an LDG for every possible path through the function body.
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As far as we can judge, the voluntary muscular system of the entire body
is completely paralyzed—the utterly limp, flaccid, dishraggy kind

of paralyzed—the opposite of the rigid, convulsive spastic kind.

- Richard G. Gill, White Water and Black Magic

Chapter 3

Optimization of Concurrent
Programs

This chapter briefly describes some optimizations that are in CURARE or that could eas-
ily be added to it to improve the performance of concurrently executed recursive functions.
The goal of these optimizations is to remove data dependences, for, as we saw previously,
dependences require additional synchronization and prevent concurrent execution. The
optimizations remove dependences by changing a program to perform its actions in a dif-
ferent manner or order. Obviously, dramatic changes, such as rewriting a program in an
applicative style, are beyond the ability of a general transformation system.

The optimizations are transformations that take a Lisp function and produce an equiv-
alent function. The two functions are equivalent because they produce the same result, not
because they compute the result in the same manner. In fact, a goal of the transforma-
tions is that the two functions are not conflict equivalent. The transformations preserve
final-state or view equivalence so the two statements compute the same result.

There are many possible transformations that could eliminate dependences. The trans-
formations that improve a particular program depend on its structure and dependences.
This chapter describes five generally useful transformations: anti-dependence elimination,
destination-passing, associative composition, recursion-removal, and loop-splitting. The
final section surveys related work.

3.1 Anti-Dependence Elimination

Some anti-dependences can be eliminated by copying values. Assume statement Sy modifies
a location, /, read by a preceding statement Sg. These statements do not have a dependence
if the value from [ is saved in another place (by statement S p/) before either statement
executes (see Figure 3.1). Sg is modified to read from this new location. The head of the
function is the natural place to save this value since it executes before either statement. For
example, the function:
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Figure 3.1: The anti-dependence between Sp and Sw can be eliminated by saving the conflicting
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Figure 3.2: Anti-dependence removal transforms a loop-carried anti-dependences (on the left) into a

flow dependences {on the right). The new dependences are preserved when the recursive call is spawned.

(defun £ (1st)
(cond ((null? (cdr 1lst)))
(t
(£ (cdr 1st))
(set! (cadr 1st) (+ (car 1lst) 1)))))

contains an anti-dependence because the assignment modifies the location (car 1st) reads
in the next invocation. This dependence is easily removed:

(defun f1 (1st pv)
(cond ((null? (cdr 1st)))
(t
(f1 (cdr 1st) (cadr 1st))
(set! (cadr 1lst) (+ pv 1)))))

This transformation eliminates anti-dependences with the following characteristics (see
Figure 3.2):

1. Sg has a loop-carried anti-dependence of distance d with statement Sw, which is in
the tail of the function.

2. The conflicting location is referenced by the access path v;.a; in Sg and v3.3 in Sw,
where v; is a variable and «; is a sequence of structure field names.

3. The reference v,.a3 cannot cause an error if executed at the recursive call.
4. No other statements conflict with S or Sw over the location (this condition can be

relaxed to no flow or output dependence over the location).
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The transformation is:
1. Add d additional arguments to the function: pv,, ..., pvq.

2. Pass the appropriate values for these new arguments at all non-recursive calls on the
function.

3. At the recursive call, pass vo.ap as pvi, pvy as pvg, etc.
4. Change all references to vy.1 in Sg to use pvg.

This transformation (which is not part of CURARE) is clearly beneficial for
anti-dependences over a small number of iterations since they normally greatly reduce the
concurrency and because the transformed function gains only a few new arguments. How-
ever, when d is large, the cost of passing many arguments, particularly through a concurrent
call, may outweigh the benefits of increased parallelism.

3.2 Destination-Passing

A common and crippling data dependence occurs when a statement in the tail of a recursive
function uses the result of the recursive call. This loop-carried flow dependence constrains
the statement to execute after the subsequent iterations and prevents server-based execution
since the call returns a value. For example, consider the function:

(defun mapcar (f 1lst)
(cond ((null? 1lst) ()
(t
(cons (£ (car 1st))
(mapcar £ (cdr 1st))))))

which returns a list of results from applying £ to the elements of a list. The recursive
call returns a result to the call on cons, so the function cannot be restructured, even if it
contains no other data dependences.

This section describes CURARE’s transformation that removes this type of flow depen-
dence. The transformation, destination-passing, is limited to functions in which a recursive
call’s result is passed to a structure-allocation function (such as cons).

A destination-passing function receives, as one of its arguments, the location in which
its result is to be stored. The function can produce and store its result and does not need to
return a value. It is easy to change recursive function calls embedded in calls to allocation
functions into this form. The destination-passing version of mapcar is:
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(defun mapcar-dp (dest f 1lst)
(cond ((null? 1st)
(set! (cdr dest) ()))
(t

(let ((tmp (coms nil nil)))
(set! (car tmp) (f (car 1st)))
(mapcar-dp tmp £ (cdr 1lst))
(set! (cdr dest) tmp)))))

The new argument, dest, contains a cons cell whose cdr will receive the result from the
function’s invocation. All destructive operations in mapcar and mapcar-dp occur in the
same order, so the functions are conflict equivalent.!

The recursive call no longer returns a result so that mapcar-dp can execute concurrently:

(defun mapcar-dpl (task-queue dest f lst)
(cond ((null? 1st)
(set! (cdr dest) ()))
(t

(let ((tmp (coms nil nil)))

(make-task task-queue
mapcar-dpl task-queue tmp f (cdr lst))

(set! (car tmp) (f (car 1lst)))
(set! (cdr dest) tmp)))))

The recursive call and the preceding assignment in mapcar-dp can be exchanged because
subsequent iterations of the function cannot modify the car of the cons cell (which is not
even allocated when those iterations execute in mapcar). The absence of data dependences
over the cons cell is clear in the original function and is preserved by the conflict-equivalent
transformation.

More generally, let alloc(vy, ..., vn) be an allocation function that produces an object
with n fields, fi, ..., fn, that are initialized to the values vy, ..., vn, respectively. f is a
recursive function with formal parameters a1, ..., @, in Which each recursive call is either
tail recursive or is the i*h argument to a call on alloc. CURARE forms the destination-passing
version of f, f-dp, as follows:

1. Add a new, first formal parameter, dest, to f.
2. Replace calls on alloc in which the recursive call is the ith argument

tmp « alloc(vy, ..., f(€r, ..., €m)s -+ 5 Un)

!The destructive operations in mapcar are hidden by the definition of cons, which must destructively
assign the fields of the new cons call.
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tmp — alloc(nil, ..., nil);
tmp.fi « vy;

f-dp(tmp, €1, ..., em);

tmp'fn — VUn;

3. Replace each tail-recursive call, f(eq, ..., em) by: f-dp(dest, e1, ..., em).
4. Replace each return statement, return v, by an assignment: dest.f; « v.
5. Create a wrapper function for f with the following body

function f(ay, ..., am)
tmp — alloc(mil, ..., nil);
f-dp(tmp, a1, ..., am);
return imp.f;;

The explicit assignments introduced into f-dp do not conflict with each other. However,
they may conflict with other uses of fields of the newly created object.

Generalizing this technique to functions other than allocation functions is difficult be-
cause it relies on the non-strictness of allocation functions, which provide a place for a value
without examining the value itself. Strict functions, which examine their arguments, impose
more constraints since the function cannot execute until its arguments are available.

3.3 Associative and Commutative Composition Functions

The reduction of a set of values by an associative, commutative, and side-effect-free function
does not depend on the order in which the operations are applied. The composition z¢ 0
1 0...0z, forms a linear recurrence in which the partial sum is given by s; = s;_; o z;.
Asymptotically efficient techniques for evaluating these recurrences in parallel are well-
known. These techniques, however, use random-access, fixed-size data structures to store
intermediate results without synchronization and so are ill-suited to Lisp programs and
data. Fortunately, CURARE adapts the approach to Lisp programs.
Consider a function that returns the sum of the elements of a list:

(defun add-all (1st)
(cond ((null? 1lst) 0)

(t
(+ (car 1st) (add-all (cdr 1st))))))
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Because of a loop-carried flow-dependence, no addition occurs until subsequent terms are
summed. However, the order of addition does not affect the final result.? Therefore, if we
had locations to store intermediate results, the additions could execute concurrently. The
area for temporary results must accommodate a varying number of values and must be
concurrently accessible, so we use a queue (mailbox). The rewritten function is:

(defun add-all (1st)
(let ({(num-queue (make-mailbox)))
(send 0 num-queue)
(add-alll num-queue 1lst)
(receive num-queue)))

(defun add-allil (num-queue 1lst)
(cond ((null? 1st))
(t
(send (car 1st) num-queue)
(send (+ (receive num-queue) (receive num-queue))
num-queue)
(add-alll num-queue (cdr 1st)))))

If add-alll executes sequentially, it adds the list’s elements in reverse order, but the
result is unchanged. More importantly, to execute this function concurrently, we enlarge
its tail and spawn the recursive call:

(defun add-all (1st)
(let ((num-queue (make-mailbox))
(task-queue (obtain-servers)))
(send 0 num-queue)
(add-all2 task-queue num-queue 1lst)
(server task-queue)
(wait~counter (mb-barrier task-queue))
(receive num-queue)))

?Except for non-associative floating-point addition.
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(defun add-all2 (task-queue num-queue lst)
(cond ((null? 1st)
(terminate-servers task-queue))
(t
(make-task task-queue
add-all2
task-queue num-queue (cdr 1lst))
(send (car lst) num-queue)
(send (+ (receive num-queue) (receive num-queue))
num-queue))))

This function traverses the list, creating processes that enqueue an item from the list,
add two items from the queue, and enqueue their sum. To achieve concurrency, we need
the two statements in the tail. Combining them into a single statement

(send (+ (car 1st) (receive num-queue)) num-queue)

prevents more than a single process from executing simultaneously. If the list contains n
items, n/2 processes can execute the first round of addition concurrently. These processes
do not begin executing simultaneously but are offset by the time spent in the function’s
head. The entire reduction requires logn rounds of addition.

The composition operator, in this case +, must be commutative because values are
enqueued in an arbitrary order. Standard techniques for solving recurrences avoid this
requirement by providing a fixed set of locations for intermediate results so operands are
not commuted. To allocate this set for data structures linked by pointers, a program must
traverse the structure to find the number of elements and initialize the temporary area. This
approach may be useful for expensive operations that are associative but not commutative
(such as append), but will not be described here.

Contention for the queue is limited if the number of concurrent processes (servers) is
low, the cost of the composition operation is high, and queue operations are inexpensive. If
queue contention is a problem, the queue can be split into multiple queues at the expense
of some complexity.

The general form of this transformation modifies a function f in which all recursive calls
are either tail-recursive or are an argument to an associative, commutative function, g. It
produces a new function f1 and wrapper function f.

1. Rename f to f1 and add a new, first argument, ¢.
2. Replace each call on f that is an argument to the function g

g(f(ala ceey am), U)
by
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fl(q7 aiy -+« a'm);
enqueue(v, q);
enqueue(g(dequeue(q), dequeue(q)), )

3. Replace each tail-recursive call

fla1, ..., am)
by

fi(q, a1y ..., am).

4. Replace each return statement, return v, by
enqueue(v, q).

5. Create a new wrapper function

function f(a1, ..., @m)
g — make-queue();
engueue(0, q);
fl(Q7 A1y -« am);
return dequeue(q);

where 0 is the identity element for g.

The transformed function contains no data dependences among the engueue and dequeue
operations and may be rewritten as a concurrent function.

Determining that function g is associative and commutative is impossible in general. A
programmer must supply this information through declarations such as those in Chapter 6.
Without this knowledge, CURARE cannot apply the transformation since the result would
be undefined if g does not have those properties.

3.4 Recursion Removal

Transformations (other than destination-passing) that produce tail-recursive programs from
properly recursive ones are well-known [13,19,40]. These transformations can aid in restruc-
turing programs. For example, the iterative version of the function:

(defun reverse (1lst)
(cond ((null? 1st) ()
(t
(append (reverse (cdr 1lst) (list (car 1st)))))))

is:
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(defun reversel (1st r)
(cond ((null? 1lst) r)
(t
(reverset (cdr 1lst) (cons (car lst) r)))))

and can be developed by applying these transformations. The iterative version of a pro-
gram may be better suited to concurrent execution because the flow dependence between
iterations is removed (reversel is still not suitable).

The difficulty with these transformations is that they require specific information about
the properties, such as associativity, of the operators that they manipulate (see the ap-
pendix of Huet and Long’s paper [40] for one of the few systematic presentations of the
preconditions on transformations). This information must be provided by the programmer
who wrote a function; it cannot be inferred in general. Hence, a set of declarations—similar
to CURARE’s—is necessary.

3.5 Loop-Splitting

Of the transformations developed for restructuring FORTRAN programs, loop-splitting is
the most useful for Lisp programs. This transformation breaks a single loop containing a
data dependence into two loops. The two loops execute concurrently, one after the other,
thereby assuring that the dependence is respected. Usually, partial results from the first
loop are collected in a new data structure that the second loop uses. CURARE does not yet
implement this optimization.

For example, consider the function:

(defun £ (1st)
(cond ((null? (cdr 1st)))
(t
(set! (car 1lst) (+ (car 1lst) (cadr 1lst)))
(f (cdr 1st)))))

that replaces each element in a list by the sum of it and the next element. It contains a
loop-carried anti-dependence between the reference (cadr 1st) and the subsequent assign-
ment to (car 1st). The loop cannot execute concurrently since exchanging the call and
assignment reverses the dependence. However, this function produces the same result and
can execute concurrently:

(defun f (1st)
(defun f1 (1st)
(cond ((null? (cdr 1st)))
(t
(cons (+ (car 1lst) (cadr 1lst))
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(f1 (edr 1st))))))

(defun £f2 (sums 1lst)
(cond ((null? (cdr 1lst)))
(t
(set! (car lst) (car sums))
(f2 (cdr sums) (cdr 1st)))))

(£2 (£f1 1st) 1st))

Function £f1 produces the new values. It can execute concurrently after being modified to
use destination-passing. Function £2 replaces the list elements by their new values.

This transformation breaks anti- and def-order dependences in which values do not flow
between iterations. Flow dependences still require synchronization between the production
and use of a value. In general, let f be a recursive function with a single anti- or def-order
dependence from statement S; to statement S2 (S, assigns the location and §), may use or
assign the location, depending on the type of dependence). The transformation produces
two new functions f; and f; and a new definition for f.

1. fi creates a new list containing results from the invocations of §;.

function f1 (a4, ..., a,)
if done then return nil;
else return cons(SL,, f1(...));

The code in SL; is the slice of f with respect to statement §; [38]. This slice is the
code in f that may produce a value necessary for S;. The results from S are collected
in a list, which is returned.

2. f, takes this list and the original arguments and computes the function, using the
previously computed values of S; in place of that statement. Hence f; is the original
function f, with a new argument values, and occurrences of S; replaced by values.car.

3. f becomes the expression f2(f1(a1, ..., @m), @1, ..., @m). The resulting function no
longer has a dependence between S; and S; and f; can be transformed to destination-
passing. f, may execute concurrently, depending on the remaining dependences. The
new argument values is distinct from the existing arguments so no statement conflicts
with the references values.car.

3.6 Related Work

Transforming programs to facilitate parallel execution has loag been used to prepare pro-
grams for parallel machines. The specific transformations described in this chapter are
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not original, although few have been previously applied to restructuring Lisp programs for
concurrent execution.

The anti-dependence and loop-splitting transformations are particular examples of
Cytron’s and Ferrante’s more general technique [18]. Their algorithm can eliminate all
anti- and def-order dependences in a program by “renaming” the locations referenced by
statements, but it may greatly increase the amount of storage consumed by the program.

Wadler previously and independently described destination-passingin his dissertation on
eliminating intermediate lists from applicative programs [76]. He called the transformation
tail recursion modulo cons and used it as a technique for producing tail-recursive functions.
He, however, did not consider its potential for producing concurrent functions.

Fast algorithms for solving recurrence problems on parallel computers have long been
known [45,46]. The essential idea of these algorithms is to use associativity to rearrange
the expression zgo x; 0...0 I, from a long, stringy tree into a bushy one and then to
operate on parallel branches. These algorithms heavily rely on arranging the data in an
array so that the operands can be efficiently partitioned among the processors. Kruskal,
Rudolph, and Smir described an equally efficient solution to the data-dependent version of
the problem in which the data is in an array, but the next item in the sequence is designated
by a pointer and is not the next array element [48]. Their solution will not work for Lisp
programs without a pretraversal of the data to collect it into an array, in which case the
slightly faster, conventional algorithm can be used.

Harrison’s PARCEL parallel Lisp system depends on the parallel solution of recurrences
[32]. To use the technique, he proposed a new data structure that contiguously allocates
elements of a list. However, this structure only works for linear lists, not general structure
objects, and does not permit destructive operations.

The technique of loop-splitting was first described by Kuck et al. [50] and has been used
in translators since at least PARALYZER for the ILLIAC IV [62]. Its use in Section 3.5
is similar to its use in FORTRAN programs, except for the dynamic construction of the
intermediate result.
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If two contrary actions be excited in the same subject,
a change must necessarily take place in both,
or in one alone, until they cease to be contrary.

~ Benedict de Spinoza, Ethics, Part Five (Axiom 1)

Chapter 4

Detecting and Classifying Data
Dependences

A data dependence constrains the execution of two statements because both expect to
use a common storage location that can accommodate only one value at a time. Statements
S, and S either read from or write to a location /, which leads to the three data dependences
named by Kuck [49]:

1. Flow Dependence. Sy writes a value into location ! that is subsequently read by S5.

2. Anti-Dependence. S; reads a value from location [ and S subsequently modifies /.

3. Def-Order Dependence (Output Dependence). Sy and Sz write values to location I.

Two statements conflict if they share a data-dependence. Changing the execution order of
conflicting statements may affect a program’s result.

Most programming languages specify a single execution order for most of their con-
structs, thereby permitting programmers to control the order of side effects within their
programs. In some circumstances, however, it is necessary to know a program’s depen-
dences. For instance, optimizing compilers commonly take the liberty of rearranging non-
conflicting statements. Many traditional compiler tools, such as reaching definition data
flow and use-definition analysis, detect or represent data dependences.

Restructuring programs requires more precise data-dependence analysis than does sim-
ply compiling programs. To take advantage of concurrency, large portions of a program
must be carefully analyzed because their execution order will be indeterminate. Compilers
traditionally regard dependences in aggregate objects, such as arrays and data structures,
to be too difficult to analyze. They treat a collection of locations as a single location.
This shortcut is not feasible for restructuring since the simple analysis finds many false
dependences that prevent concurrent execution.

A wide range of techniques has been proposed to overcome the two fundamental prob-
lems that limit dependence analysis: aliases and imprecise references. Aliases occur when

Chapter 4 46



there are different ways of referencing an object. Explicit pointers in data structures and
language features, such as reference parameters or FORTRAN COMMON blocks, cause
aliases. An aggregate reference is imprecise if the exact location accessed is unknown. Non-
constant array subscripts and pointer variable references cause imprecise references since
they permit a statement to access many different locations.

This chapter discusses the data-dependence problem in general and presents a frame-
work for determining the dependences between two statements. The next chapter uses this
framework to solve the structure-access dependence problem. The first section of this chap-
ter defines the terminology for this problem. Section 4.2 describes an abstract formulation
of the data-dependence problem that encompasses variable, array, and structure references.
Section 4.3 describes complications that arise in real programs. The final section surveys
related work.

4.1 Definitions

A location is an unspecified place in which a program can store and retrieve values. Differ-
ent languages provide different ways of aggregating and accessing locations, but the most
common are variables, arrays, and data structures. Assume that the locations accessed
through these mechanisms are disjoint. So, for example, we cannot treat a structure as a
vector or access variables through pointers.

A statement accesses a subset of L, the set of all locations. Each location may be read,
in which case its value is examined, but not modified; or it may be written, in which case
the value in the location is replaced. A statement may access locations from more than one
partition of L. For example, a[1, 2] reads the value of variable a and a value from the
array contained there.

The variables accessed by a statement are usually easy to determine, though some
language constructs, such as dynamic binding or the use of functions as first-class values,
complicate the analysis. Determining the locations referenced by an array access is more
difficult, but the problem has been the subject of considerable work since Banerjee’s original
paper [7]. Determining the locations referenced by structure accesses is an even more
difficult problem, as we will see in the next chapter. For now, assume that we know the
locations accessed by a statement.

The three data dependences were informally defined above. More precise definitions
(after Horwitz, Prins, and Reps [37]) are below. To simplify the definitions, assume that
a statement does not read and write the same location. Split statements that violate this
prohibition (e.g., z « z + 1) into two statements (¢ « z 4+ 1;  « t). Statement S is
flow-dependent on statement Sy over a location [ if:

1. S, writes to! and S, reads from the same location.

2. There exists a path in the control-flow graph from Sy to S, along which no statement
writes to location [. In the traditional compiler terminology, there is an l-definition-
free path from S; to Ss.
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Statement S is anti-dependent on statement S; over location ! if:
1. S; reads from I and S, writes to the same location.

2. There exists a path in the control-flow graph from S, to S along which no statement
writes to [.

Finally, statement S is def-order dependent on Sy over location [ if:
1. Statements §; and S7 both write to location /.
2. There is a third statement S3 that is low dependent on S; and Sz over location I.
3. S, occurs first in a canonical sequential execution of the program.

Dependences can be further classified as loop-independent or loop-carried, depending
on whether the conflicting statements execute in the same or different iterations of a loop.
A flow or anti-dependence is loop-carried if, in addition to the conditions above:

3. S; and S, are both contained in a loop.
4. There is an [-definition-free path from S; to S3 that includes a back edge of the loop.

A loop-carried conflict’s distance is the number of loop iterations between the execution of
51 and 520
A flow or anti-dependence is loop-independent if, in addition to the conditions above:

3. There is a definition-free path from $; to S, that includes no loop back edges in the
control-flow graph.

A def-order dependence is- loop-independent if both flow dependences are
loop-independent. It is loop-carried if either low dependence is loop-carried. If a def-order
dependence is loop-independent, the definition above can be strengthened by the additional
constraint:

4. The execution of §; and S; is not mutually exclusive. Precisely determining the
property is impossible in general. However, a simple approximation is that both
statements are in the same branch of every conditional statement that encloses both
of them.

4.2 Computing Dependences

A data-flow calculation, similar to reaching-definition flow analysis, will detect flow and
anti-dependences. Classifying a dependence as loop-independent or loop-carried requires a
slightly more elaborate computation but does not fundamentally change the problem. The
flow dependences determine the def-order dependences. These calculations are known (e.g.,
[4,39]), but are worth restating in a problem-independent manner.
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4.2.1 Computing Flow Dependences

In computing dependences, we group together locations that are accessed in the same man-
ner, for instance those containing different instances of a dynamic variable. Let L be a
(finite) set of names of locations accessed by the statements in a program. For example,
L may be the set of variable names or, as we shall see in the next chapter, labels for data
structure fields. In this chapter, I will use the term “location” interchangeably with “name
of location” when describing the computation. Let S be the set of statements in the pro-
gram and G = (S, E) be the control-flow graph of the program. The set of definitions,
D = S x L, contains pairs of statements and the locations they modify.

For each statement s € S, let R, be the set of locations read by s and W, be the loca-
tions written by s. Two other sets describe a statement’s effects on the definitions. GEN; =
{{s,1)e D |1eW,} are  the  definitions created by  executing  s.
KILL, = {{t, ) e D |l€ W, and | € W, forsome t € S} are the definitions killed when
8 executes.

The definitions that reach statements in a program are calculated by solving the follow-
ing equations with any of the standard techniques:

pp» = |J DDg* (4.1)
pEpred(s)
DD = (DDR-KILL,)U GEN,. (4.2)

The reaching definitions for statement s, DDin| determine its flow dependences. If s
reads location ! and (t, [) € DD®, then there is an I-definition-free path from the definition
at t to the use in s, and hence s is flow dependent on ¢.

Computing whether a flow dependence is loop-independent or loop-carried requires a
more complicated calculation. The first step is to identify the loop heads and back edges
in a program’s control-flow graph. If this graph is reducible, the back edges are found by
computing the dominators in the flow graph and finding the edges whose target dominates
their source. Let B be the set of back edges.

Loop-independent dependences are found by solving the reaching-definition problem
over E — B, in other words, replacing Equations 4.1 and 4.2 by

Lrr = U e
pEpred(s) and (p, s)¢B
LIt = (LI®~KILL,)U GEN,.

The resulting set contains only definitions that did not traverse a back edge and identifies
loop-independent flow dependences.

Loop-carried dependences are found from the kill-free paths in a program. A kill-free
path at statement ¢ is a pair, (s, I), that indicates there exists a path from statement s
to statement ¢ along which no statement modifies location /. Kill-free paths are found by
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solving the following equations with standard data-flow techniques:

e o= |J [Ezu{p D) I1eL}]
pEpred(s)
Ko® = EKn_{(t1)|teSandleW,}

There is a loop-carried flow dependence over location ! between S1 and 5, if:
i. S; and S; are contained in a loop L.

2. S, writes to location [ and S reads from location .

3. There is a kill-free path for ! from S, to H, i.e., (S1, I) € Kin.

4. There is a kill-free path for ! from H to S, ie., (H,l) € KB.

5. H does not kill l.

Since S; and S arein £, a path §; — H — S; must include a loop back edge, and because
the path is [-definition-free, there is a loop-carried flow dependence from S to Ss.

4.2.2 Computing Anti-Dependences

Anti-dependences are flow dependences in the reverse control-flow graph. The reverse of
graph G = (V, E) is a graph GR = (V, ER) where ER = {(v, u) | (u, v) € E}, in other
words, the graph with its edges reversed.

Theorem 3 A program has an anti-dependence in its control-flow graph G if and only if
it has a flow dependence in GE.

Proof Assume there exists an anti-dependence over ! between S; and S;. Then Sy reads
! and S, writes [ and there is a definition-free path from S, to S;. In GR, there is a
definition-free path from S, to S; and hence a flow dependence. By a similar argument, a
flow dependence in GR means there is an anti-dependence in G. |

The reverse of a reducible flow graph is not necessarily reducible. The faster algorithms
for solving data-flow equations may not work for these graphs. Nevertheless, the equations
can still be solved by node-splitting or with standard iterative techniques.

4.2.3 Computing Def-Order Dependences

Def-order dependences can be computed from the results of the flow dependence calculation.
The def-order dependences at statement s, which uses location /, are computed:
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/* u and v are statements in S */
if (u, I) € DDi" and (v, l) € DD® and u # v then
if (u, I} or (v, I) are loop-carried
or same-common-conditional-arms?(u, v) then
if occurs-first?(u, v) then
v is def-order dependent on u;
else u is def-order dependent on v;

The predicate same-common-conditional-arms? returns true if both statements are in the
same arm of every conditional statement that encompasses both statements. For example,
in:

(set! x 1) . ; S1
(if p (set! x 2)) ; S2
(print x)
(if p
(set! x 1) ; S3
(set! x 2)) i Sa
(print x)

S, and S, are def-order dependent, but S3 and S4 have no loop-independent data depen-
dence.

4.3 Aliases and Imprecise References

The discussion above presumes that finite representations of the locations accessed by each
statement (R, and W,) are known. However, many statements access unknown locations
because of aliases and imprecise references. Aliases cause problems because a reference to
one location may affect locations known under other names. By calculating the aliases and
approximating the accessed locations with a superset of the true locations, we can find
a conservative solution. Imprecise references cause different problems because accesses to
locations in an aggregate cannot be distinguished, so several non-overlapping references can
appear to conflict. These problems are solved by more precisely characterizing the subset
of locations referenced by a statement.

Variable references are precise because they access a non-aggregate, but they are subject
to aliases. The earliest published interprocedural data-dependence problem is side-effect
determination, which is a low-insensitive conflict-detection problem. TLis analysis finds the
variables potentially modified by a function call. Banning found the modified variables by
first computing the aliasing due to call-by-reference parameter-passing and then propagating
a corrected set of modified locations through the call graph [8].

Array references are imprecise but usually not aliased. The dependence problem is to
determine if two accesses to an array can touch the same element. Since this analysis
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is usually performed intraprocedurally on nested loops, dependences are often classified
by ad hoc techniques—such as Allen and Kennedy’s and Wolfe’s pairwise comparisons of
statements containing array references [6,77]—instead of by a data-flow framework such as
the one described above. The precision of these comparisons is increased by Banerjee’s test,
which determines if two array index expressions overlap by comparing their ranges.

Array dependence analysis is complicated by procedure calls, which introduce composite
statements that access many array locations. This reduces the precision of the analysis
since it is difficult to compare these sets. Triolet et al. and Li and Yew propose describing
locations as sets of linear inequalities or descriptions of the index expressions [74,54].

Aliasing between array references can arise because of globally accessible variables (e.g.,
COMMON blocks) and parameter passing. Burke and Cytron suggested transforming the
affected array references into the underlying memory reference and comparing the resulting
expressions [16]. The transformed references are not aliased and can be directly compared.

The other aggregate dependence problem is references to data structures, which are con-
nected by pointers into structure graphs. These references are both imprecise and aliased.
Larus and Hilfinger proposed a technique (see Chapter 5) for determining potential conflicts
by creating a finite model of the structure graph and comparing the nodes that statements
access within this alias graph [52]. Horwitz et al. improved this approach in two ways: by
combining the construction and analysis phase and by classifying the type of dependences,
in effect solving the flow-sensitive version of this data-dependence problem [35].

These techniques for improving the analysis are necessary because the mapping from
program quantities (variables, array accesses, etc.) to memory locations are necessarily
imprecise. Therefore, the data-flow framework alone may not produce accurate enough
results.

4.4 Related Work

Bernstein [10] identified the relations between the locations read and written by two data-
dependent statements. Appropriately, he developed the equations to express the constraints
on two statements that execute concurrently on a parallel computer. Bernstein’s paper did
not describe how to compute the locations accessed by a statement or account for aliasing or
aggregate references, nevertheless it clearly presented the essentials of the data-dependence
problem.

Kuck published the modern formulation of this problem and identified the three types
of dependences [49]. He did not show how to calculate these dependences in general and
did not distinguish loop-carried and loop-independent dependences. This distinction was
first drawn by Allen [5].

The first published, systematic solution to the reaching-definition problem was in Kil-
dall’s paper on data-flow analysis [44]. Faster techniques for solving data-flow equations
have since been published. A

The first interprocedural data-flow calculation was side-effect analysis, which finds the
variables potentially modified by a function call, taking into account the aliasing introduced
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by call-by-reference parameters. Barth and Banning published solutions to this problem,
which is simpler than data-dependence analysis since it is flow-insensitive [8,9].

Horwitz, Prins, and Reps presented an attribute grammar that computed the reaching
definitions, flow dependences, and def-order dependences in a program [36]. Their solu-
tion is fundamentally equivalent to the formulation in this chapter, although the outward
appearances are different.
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Total grandeur of a total edifice,

Chosen by an inquisitor of structures

For himself. He steps upon this threshold
As if the design of all his words takes form
And frame from thinking and is realized.

— Wallace Stevens, To an Old Philosopher in Rome

Chapter 5

Dependences Among Structure
Accesses

This chapter applies the data-dependence framework from the preceding chapter to
the problem of detecting dependences among structure-accessing statements. Informally,
a structure is a collection of named fields that contain either values or pointers to other
structures. A structure graph is a group of structures linked by pointers. Variables con-
tain the root pointers into a structure graph. A program may: read or write a field in a
structure instance, dereference a pointer leading to a structure, or create new structures;
however, it may not do anything else to pointers. These operations correspond to Tarjan’s
pointer machine model [70] and to Lisp’s behavior. Other languages, most notably C, allow
arbitrary operations on pointers. Programs using this feature cannot be analyzed in the
framework of this thesis.

A statement specifies its path through the structure graph with a structure reference or
access, which is a variable and a sequence of structure field names. The statement reads
the contents of the fields specified by the reference, up to the last field, which the statement
may modify or read.

The primary problem in detecting dependences among structure accesses is identifying
the locations accessed by a structure reference. This set is potentially unbounded, as for
example:

(defun £ (x)
(set! (car x) 2)
(f (cons 1 2)))

The locations also depend on aliases in the structure graph. For example, in:
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(if p
(set! x y)
(set! x 2))
(set! (car x) 3)

the structure assignment modifies either location y.car or z.car as well as the location called
z.car. ‘

To determine which locations a statement accesses, we must know the aliases that reach
the statement and have a way of labeling locations. CURARE uses alias graphs, which
are finite representations of the structures visible at a point in a program. Locations in
alias graphs are uniformly labeled, so the alias graph location accessed by a statement can
represent the referenced structure locations in the data-dependence computation.

This chapter has eight sections. The first defines terminology. The next section de-
scribes alias graphs. Section 5.3 returns to the data-dependence problem and shows how
alias graphs provide a basis for solving this problem. Section 5.4 and Section 5.5 describe
alias graphs and present some examples. Section 5.6 show how to compute alias graphs.
Section 5.7 describes a faster technique for computing alias graphs. Section 5.8 shows how
to improve the precision of conflict detection with alias graphs. The final section surveys
related work.

5.1 Structures and Structure Graphs

This section describes a model of structure instances and defines some basic notation. It also
explains why the model is not a suitable basis for data-dependence analysis. A structure is
an object composed of a collection of named fields. Each field may contain either a pointer
to a structure or a non-pointer value. A collection of structures is modeled by a labeled,
directed graph G = (N, E) called a structure graph. Each node in the graph, n € N,
corresponds to an instance of a structure. ACCESSORS is the set of names of the fields in
structures in G. Program variables contain pointers to nodes in this graph.

An edge in G is a triple (n, f, s) € E, where n and s are nodes in N, and f is a field
name. This edge indicates that the structure represented by node n contains a pointer in
field f to the structure represented by s. A node has at most one arc with a given field
name.

For example, the following structure graph describes a list of the integers from 1 to 4:

cdr cdr cdr cdr 1
v ni n2 n3 T4 D

car car car car
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Variable v contains a pointer to the list.

An access path in G, n.a, is a pair consisting of a node n and a string of fields o =
ai...ap for I > 0, such that if n = ny, {{n1, a1, n2), ..., (n1, a1, ni+1)} C E.} Node ny
is the source and niy, is the destination of the path. Let dest(n.a) denote the destination
of path n.a. In the graph above, dest(n;.cdr.cdr) = ns.

Define a;.; to be the sequence of field names: «;...a;. Let n.& be n.a;_g-y), in
other words, an access path up to its last field. For example, if n.a is v.cdr.cdr.car, n.G is
v.cdr.cdr. By definition, n.é = n for the empty string e.

A location in the graph is a pair, (2., 8), consisting of an access path and a field in
the destination of the path: loc(z.ay.;) = (z.&, a;). To continue the previous example,
loc(n.a) = (v.cdr.cdr, car). Two locations are equal if their destinations and final fields are
identical

(z.a, B) = (y.7, §) = dest(z.a) = dest(y.y) and 8 = 4.

Paths z.a and y.8 are aliases, written z.a ~ y.0, if dest(z.a) = dest(y.8). In the
example, ny.cdr.cdr ~ ny.cdr. Since aliases paths lead to the same node, dest(z.a.f) =
dest(y.B3.6) for all 6§ in ACCESSORS*, the closure under concatenation of the field names. An
alias z.a ~ y.8 is minimal if no proper prefixes of the paths are aliased.

Structure graphs are an abstraction of the data manipulated by a program, but they
are too concrete to determine the locations that the program accesses. They represent
a particular datum and do not abstract the commonality of a collection of values. For
example, the function:

(defun copy-list (1st)
(cond ((null? 1st) nil)
(t
(cons (car 1st) (copy-list (cdr 1lst))))))

terminates for arguments in the unbounded set of proper, noncircular lists. A structure
graph can describe one list, but a description of all such lists requires an unbounded set of
structure graphs. The other shortcoming of structure graphs is that they do not provide a
uniform way of labeling locations for the dependence analysis described in Chapter 4.

5.2 Alias Graphs

A solution to these problems is to abstract structure graphs into alias graphs. These finite,
labeled graphs represent the potential aliases in an unbounded set of structure graphs and

'In a strongly-typed language, legal access paths are constrained by the type system. Type information
can be used to reduce the number of valid paths and potential conflicts (see, for example, Ruggieri and
Murtagh [64]) but does not change the algorithms.

The term “path” is also used by Cartwright et al. in a similar context [17]. However, they propose paths
as a replacement for pointers in high-level programming languages and do not discuss data dependences.
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Figure 5.1: Sample alias graph.

uniquely label nodes within the graphs. However, the abstraction process removes some
details, so an alias graph may not distinguish all distinct locations. Nevertheless, alias
graphs are a good basis for dependence analysis.

The alias graph A, at point pin a program contains all aliases that occur in the structure
graphs that reach p during the program’s execution. Therefore, if z.a ~ y.3 in some struc-
ture graph at p, the paths z.« and y.# form an alias in A,. The converse is not necessarily
true since alias graphs may conservatively overstate the aliases.

Alias graphs also uniformly label locations in structure graphs. Consider two points p
and ¢ in a program. If path z.a at point p leads to a structure instance I and path y.5 at
point g leads to the same structure, the path z.a in A, should lead to an alias graph node
with the same label as a node pointed to by path y.3 in 4,. Therefore, by observing the
labels of nodes accessed in A, and A4, we can find data dependences with the framework
from the previous chapter.

For example, the alias graph in Figure 5.1 describes the minimal aliases:

z.cdr ~ gy
z.cdr.edr ~ y

z.cdr.car ~ «zr.cdr.cdr.car

Nodes in these graphs represent structures. Each node is labeled with the path along which
it was first encountered. Arcs are labeled with the name of the field in the structure in
which they are contained. If this graph reaches the statement (set! (car (car y)) 5),
then, the assignment modifies location (z.cdr.car, car)—the car field in the node labeled
z.cdr.car. We can deduce that this statement does not conflict with another statement
(set! z (car x)), which reads location (z, car).

Formally, an alias graph is a labeled, directed graph, A = (N4, E,1, V4). The nodes,
N4, represent one or more structure instances and are labeled with path expressions (see
Section 5.5.1). label(n) denotes the label of a node n € N 4. The edges, E4, are triples,
(n, f, s), where n,s € N4 and f is a field name from ACCESSORS. A node may have more
than one outgoing edge labeled with a field name, so long as their destinations are distinct
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(i.e., the graph is not a multigraph). V4 is a map from program variables to nodes and
identifies the entry points into the graph. These arcs are not labeled.

A path in an alias graph is similar to a path in a structure graph, except that nodes
in an alias graph may have more than one outgoing arc with the same label, so that an
alias graph path can lead to more than one node. If z is a variable and @ = a;...a; is
a string of field names, define dest(A, z.a) to be the set of nodes reachable along a path
labeled z.a from the nodes pointed to by variable z in alias graph A. Two paths are aliases
if dest(A, z.a) N dest(A, y.8) # {}.

An alias graph A correctly represents a structure graph S at a point p in a program if:

1. Every minimal alias, z.a ~ y.0, in S has an equivalent transitive alias in A so that
dest(A, r.a) N dest(A, y.3) # {}. Aliases in A are transitive if they are transitive in
S,s50 z.00 ~ y.0 ~ 2.7 => dest(A, z.a) N dest(A, y.8) N dest(A, z.7) # {}.

2. The labeling of nodes in A is consistent with all other alias graphs for the program.
Let A’ be another alias graph that correctly represents structure graph S’ and assume
that both structure graphs contain a node n. Further assume that dest(z.a) = n in
S and dest(y.0) = n in S’. Then, A contains a node r in dest(A, z.a) with label {,
A’ contains a node r’ in dest(A’, y.3) with label I/, and the labels intersect.

An alias graph at point p is correct if it correctly represents all structure graphs that reach
p during the program'’s execution.

5.3 Detecting Dependences Using Alias Graphs

Alias graphs provide a basis for comparing the locations accessed by each structure--
referencing statement in a program. A location in an alias graph is a pair (z.a, f), where
z.a is the label of a node and f is the label of an arc leaving the node. This pair represents
the field f in the structures denoted by the node with label z.c. Define

loca(z.ay.y) = {l|1= label(n) for some n € dest(A, z.&) X {a1}}.

Since nodes with intersecting labels represent overlapping sets of structure instances, alias
graph locations provide the basis for the data-dependence tests described in the previous
chapter.

Consider a statement t. Let A, be the alias graph immediately before ¢ executes. If ¢
has the form z.ay._ ., < ¥.01..m, then

n—1 m
Ry = |Jloca,(z.01.5)U | loca,(y.Bu..5)
i=1 j=1

Wy = locy,(z.0)

are the locations read and written by ¢, respectively. The locations enable the equations
from Chapter 4 to find the dependences among statements.
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5.4 Examples of Alias Graphs

The following examples show how alias graphs are built and summarized. Section 5.6
presents the rules for constructing alias graphs from a program. In these examples, the
limit ! = 2. Consider a function £, which walks down a list:

(defun £ (1st)
(cond ((null? 1st))
(t
(f (edr 1st)))))

and assume that it is applied to the alias graph:

—0

In the first iteration of the recursive function, the variable 1st points to the same node as

the actual parameter:
v
Ist :

The next iteration extends the alias graph:

0T
v ,
Ist

The following iteration also extends the graph. However, in the fourth iteration, the alias

graph contains a node with a label that is too large:

The summary of v.cdr.cdr.cdr is v.cdr.cdr * so the graph contracts to:
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A slightly more complex example is the function g, which traverses a tree of cons cells:

(defun g (tree)
(cond ((pair? tree)
(g (car tree))
(g (cdr tree)))
§9D))

If g is also applied to the graph:

—0)

then the alias is built as follows. The alias graph is propagated through the first recursive
call until the graph stabilizes:

tree
Then, propagating this graph through the second recursive call produces:

car

v.car.car*.cdr
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The label v.car.car*.cdr is too long and is summarized by v.car*.cdr, so the graph contracts
to:

tree

.car*.cdr.car

The path v.car*.cdr.car is summarized to v.(car|cdr)*, so the graph reduces to:

car

[/
o D,
N\
tree cdr

which is the only finite representation of all paths in a tree. This graph, although full of
spurious aliases, consistently labels all nodes in the tree so that data-dependence analysis
reaches a conservative conclusion. .
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5.5 Details of Alias Graphs

The next few subsections describe the expressions that label alias graph nodes and define
the operations on these graphs. These operations are used by the semantic equations in
Section 5.6 to construct alias graphs for a program.

5.5.1 Path Expressions

The path ezpressions that label nodes are right-dominant regular expressions over the
set of field names, ACCESSORS. In these path expressions, ‘.’ denotes concatenation,
‘ denotes alternation, and ‘s’ denotes the reflexive, transitive closure under concatena-
tion. A right-dominant regular erpression (RDRE) is a regular expression in which the
Kleene star operator subsumes terms to its right, so, for example, z.z* = {z, z.z, ...} but
z*.z = z* = {¢, z, z.z, ...}. More precisely, the interpretation of a RDRE r is the set of
strings that it produces, £(r):

1. If a € ACCESSORS, then L(a) = {a}.

2. If r; and ro are RDREs, then

L(a.p*.6) if 1y = .8, 12 = 7.4,
L(ry.ry) = and L(v) C L(B)
{v.6 | v€ L£(ry) and § € L(r2)} otherwise

In other words, the prefix of term r; that matches a closure at the end of term r; is
dropped.

3. L(r}) = U0 C(r?) where £(9) = {} and £(r}) = L(r{".r1).
4. L(r|re) = L(r1) U L(12).

RDRE, like ordinary regular expressions, have a unique minimal representation as a
deterministic finite-state automata (FSA). This representation is found by constructing a
deterministic but not minimal automata. Terms dominated by closures can be found and
removed by first finding all cycles in the FSA, and then repeatedly matching the body of
a loop against all paths leading from an exit of the loop. The matched paths represent
dominated terms and can be removed. The reduced FSA is then canonicalized with the
usual techniques.

A simple path ezpression is a string of field names that does not contain closures or
alternatives. A path expression is compound if it is not simple.

5.5.2 Labeling Nodes

The labels on most nodes in an alias graph are the path through the graph to the node. If
the node is reached by two or more paths, then the first path followed to the node determines
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its label. This rule produces a consistent labeling. Ignore for the moment newly allocated
nodes. A node with two or more predecessors must be contained in a correct alias graph.
Therefore, any node not in the graph has a single path from its immediate predecessor. The
new node’s label is the concatenation of its predecessor’s label and the field followed to the
new node. For example, following the path v.cdr in the left alias graph extends it into the

right alias graph:
—() (e
\' v

As long as the new node is reachable (and hence part of the alias graph), it retains its label.

An arc is continuous if the destination node’s label is the concatenation of the source
node’s label and the arc’s label, as in the previous example. If an arc is not continuous, it
is discontinuous. For example, the operation v.cdr.car «— v produces:

car

and contains a discontinuous arc.

The function nezt-nodes either returns the successors of a node (n) along arcs with a
given name (f) in alias graph (A4) or augments the graph and returns a new node:

function nezt-node (4, n, f)
if 3s such that (n, f, s) € E4 then
return {3 I (TL, f’ 3) € EA};
else let s = a (new) node in A with label label(n).f in
add arc (n, f, 3) to A;
return {s};
tel;

The function dest(A, z.a) invokes nezt-nodes to follow or create a path through an alias
graph.

function dest (4, z.ay..1)
return destination (A, n, a;. ;) where (z, n) € V4

function destination (4, n, ai._y)

if/ = 0 then return {n};
else return Uyenest—node(4, n, oy) d€Stirnation (4, g, a2.1);

Chapter 5 63



A node labeled with a simple path expression is a simple node and denotes a single
structure instance. A node labeled with a compound expression is a compound node and
denotes more than one structure instance.

5.5.3 Limiting the Size of Alias Graphs

An alias graph is [-limited if no node has a label longer than [. The size of a path expression
p, size(p), is the number of accessors that it contains. Limiting an alias graph requires
summary nodes that replace nodes with labels that are too large and possibly other nodes
whose labels are matched by the summary node.

The function summarize-pe tries to find a short, compound path expression that matches
a path expression that is too large. It returns L if it fails.

function summarize-pe (pe, l)
if size(pe) < ! then return pe;
else let new-pe = summarize-cat(pe) in
if pe # new-pe then return summarize-pe(new-pe, l);
else let new-pe = summarize-alt(pe) in
if size(new-pe) > | then return L;
else return new-pe;

The function summarize-cat tries to find an expression of the form a.3*.y that matches
a path expression. Expressions of this form are well-suited to describing linear lists or
elements of a list.

function summarize-cat (pe)
ifpe=z.0.8...8.yreturn z.a.5...8 .6%y
—— N e’

i -2
else return pe;

The function summarize-alt attempts a more drastic summary.? It returns a path expression
that matches all strings over the alphabet of field names in the original path expression.
This is the shortest expression that matches the original expression.

function summarize-alt (pe)
if pe contains field names {1, ..., @,} then return (ay...|a,)*;

A summary node replaces (subsumes) all nodes in an alias graph that it matches. Path
expression a matches path expression 8, written match(a, 8), if L£(3) € L(a). Since path

2In some applications, it might be worthwhile to change summarize-alt so that it does not produce
the shortest path expression, but rather to treat it like summarize-cat, which tries to match only nodes
beyond the summarized node. In the example in Section 5.4, the change would not make a difference since
size((carfcdr)) = 2, but if I was larger, then the tree structure up to the summary node would be explicit.
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expressions are regular expressions, this property can be efficiently computed by the identity
L(B) C L(a) += L(B)NL(e)={}.

The three operations on the right side—complementation, intersection, and testing for an
empty accepting set—are basic, efficient operations on automata.

When replacing node n by summary node 3, arcs entering and leaving node n move to
node s. The function replace-node(A, n, s) replaces node n by node s in alias graph A.
moving all edges to the new node.

5.5.4 Union of Alias Graphs

The union of two alias graphs is an alias graph that contains all aliases in either graph.
Conceptually, this operation is the graph union of the two graphs. However, the operation
must preserve nodes’ labels by ensuring that a summary node subsumes nodes from the
other alias graph:

AjUuAdy; = (N, E,V) where

N = {n = subsume(q, NyUN;) | g€ NyUN;}

E = {(subsume(p, N1 U N3), f, subsume(s, Ny U N2)) | (p, f, s) € E1 U Ey}

V = {{v, subsume(n, NyUN2)) | (v, n) e V1UV,}
subsume(n, N) = { g€ N if g # n and match(label(n), label(q))
n otherwise

5.6 Computing Alias Graphs

CURARE computes the alias graph at a point in a program by solving a set of data-flow
equations. These equations use three auxiliary functions, AGen, AKill, and A New, which are
described first. Intraprocedural alias computation is infeasible since the effects of a call on an
unknown function must be the extremely pessimistic assumption that the function modifies
every reachable portion of the alias graph. The first three subsections define auxiliary
functions. Section 5.6.4 shows how to extend control-flow graphs to entire programs. Finally,
Section 5.6.5 presents the flow equations.
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5.6.1 AGen

The function AGen(z.a, y.3, A) returns the new arcs added to alias graph A for the as-
signment z.a « y.5:

AGen(z.aq. 41, y.B, A) = {(n, oy, 8) | n € dest(A, z.a) and s € dest(A, y.0)}.

This set contains an arc labeled o, from each node in dest(A, z.&) to each node in dest( A4, y.0).

5.6.2 AKill

The function AKill(z.7, A) returns the arcs in alias graph A removed by the assignment
2.41.1 — .... This set is not simply the arcs labeled ; leaving the nodes in dest(A4, z.7).
The problem is that an arc in an alias graph asserts that a link may exist between the
structures. Removing an arc from the alias graph asserts that a link does not exist. Using
“may” information to compute “must” information is difficult.

For example, assume that the alias graph:

car
y
x ‘—-@

car
z

reaches the statements:

(if p
(set! x 2)
(set! x ¥))

(set! (car x) 5)

The alias graph reaching the structure assignment is:

car
y

car
Z — b
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The assignment cannot remove the arcs labeled car from both nodes y and z because,
depending on which arm of the conditional is executed, one of these arcs is removed and the
other is left alone. Removing both arcs would produce an incorrect alias graph. Removing
neither arc produces a conservative but correct graph.

When dest(A, z.7) contains a single, simple nodes, only one structure field can be
modified and the alias graph arc may be safely removed.

|dest(A, z.7)| = 1 and dest(A, 2.9) = {n} }

AKill(zm.1, 4) = {(n, M, 8) € Ea and label(s) is simple

5.6.3 ANew
The function ANew(4, S, z.a, a1, ..., Gn) returns a subgraph containing a node for a new
structure instance of type T created by the statement z.a — allocr(ay, ..., an) at call

site S. The difficulty is to label the new node so it is distinct from the nodes for other
structures.

One approach labels all nodes produced at a call site with the same label. This labeling is
correct since different call sites produce distinct structures, but it is extremely conservative.
For example, with this rule, copy-list (Section 5.6.3) produces the following alias graph:

cdr

where the node labeled site! represents the results of the call on cons.

Another simple approach is incorrect. If ANew returns a new, distinctly labeled node
for each call, the resulting flow equations are not monotone and are difficult to solve. A
flow equation f is monotone if for all z and y, f(z Ay) < f(z) A f(y). To see why this
version of Anew is not monotone, consider the statements:
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(if p
(set! x y)
(set! x 2))
(set! w (cons x x))

The alias graph after the consequent and alternative clauses are A; and A;, respectively:

A y: Ay z:
X x

Let f be an A New function that creates a new node for each invocation. Then, f(A;)A f(42)
is:

c

\

ar
y
X w
cdr

where ¢; and ¢, are the labels of the new nodes. The problem arises because f(A4; A Ag) is:

\

y re—gar
< _a o
=

and therefore, f(A1) A f(A2) 2 f(A1 A A3) so f is not monotone.

CURARE labels a freshly allocated node with a label derived from the labels of the nodes
to which it points. This is the opposite of the convention for an existing node, whose label is
derived from its predecessor’s label. To distinguish the two, we put bars over the accessors
in allocated node’s labels, e.g., ar.

The rules for forming these labels are simple. Each call site that invokes an allocation
function has a default label. Consider call site ¢ with label ¢;. ANew examines its arguments
to find the sites at which they were allocated. If no nodes were allocated at site 7, then
ANew produces a node labeled c;. If several nodes were allocated at this call site, ANew
chooses the one with the longest label. Let this node have the label ¢;.@ and assume that
field f of the new node will point to it. ANew labels the new node ¢q.0.f.
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For example, consider call site 1: (cons x y) with label c1. If the graph reaching this
statement is:

—0
0O
H car °
cdr Q
which, when added to the previous graph produces:

X ° car
O

If the graph reaching the statements is:

ANew produces the subgraph:

which, when added to the previous graph produces:
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This labeling scheme produces a correct alias graph. Nodes from the same call site have
the same default label unless one of ANew’s arguments was an older node from the same
site. In this case, nodes with different labels must be distinct since a call on an allocation
function cannot produce a circular structure. By considering the node with the shorter
label to be older, the argument applies transitively to distinguish nodes from the same site
with different labels.

The labeling is also consistent between alias graphs. Two nodes, in different alias graphs,
represent the same object only if they have matching label. These two nodes must have
originated at the same call site—in the same graph—and would have the same label there.
Operations on alias graphs do not change a node’s label, except to summarize it, which
preserves the match relation.

One complication is that this labeling scheme is not monotone when the arguments
to the allocation function point to more than one node. A solution is to examine each
permutation of the arguments and produce a node with the appropriate label for it. This
approach produces a monotone function, since f(z) C f(zAy), but introduces some spurious
aliases.

ANew is defined:

function ANew(4, S, z.a, a1, ..., an)
return Udedest(A, a1)x..xdest(4, an) anew-sub(4, S, z.a, d)

function anew-sub(A4, S, z.a, d)
let ¢ = other-node(s, d)

r = new node with label label(q).3; where q is the i*} component of d and

B; is the accessor for the i*P field of the structure allocated at S
in
return ({r}, {{r, Bi, d:) | di € d}U {(p, au, 7) | p € dest(4, z.)});

function other-node(s, d)
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cail f

cail f

AN

Figure 5.2: A basic block is split immediately after a call statement and new arcs are added to reflect
the call and return.

return {d; ed

d; is allocated at site s and
-3d; € d such that size(label(d;)) > size(label(d;));

5.6.4 Extended Flow Graphs

Alias graphs are computed over the interprocedural ertended flow graph of a program.
This graph connects each function’s control-flow graph to other functions through arcs
for calls and returns. CURARE builds this graph from the functions’ flow graphs. Let
fi, ..., fn be functions in the program and Gy = (B1, E1), ..., Gn = (Ba, Epn) be their
control-flow graphs. Assume that each graph has a unique entry and exit node and that
the functions invoked at each call site sy, ..., s, are known.? The extended control graph,
G, is the union of the individual graphs with new arcs to represent function calls and
returns: G = add-call-edges(|J_, G:). Let block(s;) be the basic block containing call site
si, entry(s;) be the entry nodes of functions possibly invoked from site s;, and ezit(e) be
the exit node of the function with entry point e. ;

function add-call-edges(G)
foreach call site s € G do
split block(s) into blocks B, and B,;
foreach e € entry(s) do
add call arc from B, to e;
add return arc from ezit(e) to B,;

od

Splitting a block after a call site requires a new block for the statements following the call in
the block. If B is the old block, B, is a new block containing statements up to and including

31f the functions are unknown, we can assume that any function can be invoked. However, if 2 program
creates and invokes new functions during its execution, interprocedural flow analysis is impossible without
declarations.
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the call site s; B, is a new block containing statements following s; the control-flow arcs
incident on B lead to B.; and, arcs leaving B emanate from B, (see Figure 5.2).

If the result from a call is used, as in z.a — f(ay, ..., a,), then separate the call and
assignment into two statements: f(ay, ..., a,) and z.a « (result), where (result) is a
placeholder and the statements are in blocks B. and B,, respectively. If a call’s result is
not used, then insert the pseudo-operation discard({result)) as the first statement of block
B,.

5.6.5 Alias Graph Equations

This section presents the data-flow equations used to compute alias graphs. The operation
A, © A; is the graph resulting from removing subgraph 4, from alias graph A,. The
operation A; ® Aj is the result of adding graph A, to alias graph 4;. AGen!,(a;, 7, 4) is
an abbreviation for AGen(ay, z, A)®...® AGen(a,, z, A). node(l, A) is the node labeled
! from graph A along with its outgoing and incident arcs.

In the descriptions below, z, vy, ay, ..., a, are variables, a and § are possibly-empty
sequences of accessors, and Sy, ..., Sy, are statements. Ain is the alias graph immediately
before the execution of statement s. A9 is the corresponding alias graph immediately
following the execution of s.

o z.a — Y.0

A% = AR g AKill(z.o, AD) @ AGen(z.a, y.3, AP).

z.o — (literal):

A = AiMg AKill(z.c, AP) © AGen(z.a, (lit), AP).

o z.0 — allocr(ay, ..., an):
alloct is the allocation function for structures of type T.

A% = A9 AKill(z.0, A") ® ANew(AlR, S, z.a, ay, ..., a,).

begin Si;...S, end:

in _ in
A = A,
AR = ATt forl<im
t ut
A%t = A

call f(ay, ..., an):
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Assume that fi, ..., fn are the formal parameters of f.
A" = AP @ AGenl,(fi, ai, AD).

e call f(ay, ..., an):

f is a function with unknown effects.
A% = ARg AGenT(ai, N1, A") ® AGen(g, N1, AY)
for all global variables g. N is the bottom node described below.

e return r.a:
Let (result) be a node label.

A% = A" @ AGen((result), z.a, AlP)

o r.a — (result):

A% = [AR g AKill(z.a, A) @ AGen(z.a, (result), A*)]© node((result), Alm),

o z.a — discard((result)):

A = A" g node((result), AM).

5.6.6 Data-Flow Considerations

The meet operator, A, for alias graph equations is union-ag (Section 5.5.4). The bottom
element in the lattices of alias graphs, L, is the bottom node NV :

231

Qn

By definition match(L, a) = true for all path expressions and ACCESSORS = {a1, ..., ar}.
Therefore, AAL = LAA = L for all alias graphs A. The bottom graph contains all possible
aliases since every path leads to the same node.
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5.6.7 Initial Values

The initial value of the alias graph propagated through a program must contain all aliases
among the initial values of the program’s variables. L is a conservative approximation if
nothing is known about these aliases. However, a more precise value will produce a better
description of the possible aliases.

For example, if a global variable v contains a proper list, the declarations in Chapter 6
permit a programmer to declare this fact with:

(declare (distinct-loc v.cdr*))

5.7 Fast Computation of Alias Graphs

Fast data-flow solution techniques, such as Graham-Wegman data flow or interval analysis,
can solve a slightly modified form of these equations. Since alias graphs grow large and
operations on them become expensive, these techniques, which Kennedy has shown to usu-
ally require fewer operations than iterative techniques [43], can greatly reduce the cost of
solving the data-dependence problem.

This section shows how to use the Graham-Wegman data-flow technique [28] to solve
alias graph equations. We first show that alias graphs are tractable representations of the
effects of a collection of statements. Next, we show that, although the equations are not
Graham-Wegman fast, they can be modified to work with this technique.

5.7.1 Summary Graphs

Alias graphs can serve both as values propagated to solve the data-flow equations and as
representations of statements’ effects on propagated values. This dual role is analogous to
the use of bit-vectors in data-flow problems to represent sets of values and data-flow GEN
and KILL sets.

A summary graph is an alias graph that represents the effects of some statements.
The statements’ summary graph is computed by applying their data-flow equations to an
initially empty alias graph and recording the order in which discontinuous arcs are added.
The resulting graph describes the effects of the statements, except for the effect of AKill.
However, AKills effects are limited and can be ignored. The discontinuous arcs in the
summary graph describe the statements’ effects.

Consider a single statement ¢ and an empty alias graph. Let ¢t be z.a « y.5. The
resulting alias graph has a discontinuous arc (n, a,, s) where label(n) = z.& and label(s) =
y.3 (unless z.a = y.8, in which case the statement has no effect and the alias graph remains

empty):
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This discontinuous arc contains all information necessary to apply statement ¢ to any other
alias graph: the nodes at dest(z.&) get an arc labeled @, to the nodes in dest(y.3).

A summary graph can also describe the effects of a sequence of statements. These effects
need to be ordered, so discontinuous arcs must be marked with the order in which they were
added to a summary graph.

Let ¢ be a sequence of statements, S; be its summary graph, u be another statement,
and S, be its summary graph. The effect of statements: begin t; u end is Sy;y = Sy 0 Sty
where S; o S; denotes the application of summary graph §; to alias (or summary) graph
S,. The function apply-summary-graph destructively applies summary graph S to an alias
graph A:

function apply-summary-graph (S, A)
foreach discontinuous arc (n, f, s) in S in order do
foreach z € destination+(n, f, A) do
foreach y € destination(s, A) do
add arc (z, f, y) to graph A4;
return A;

function destination+(n, f, A)
let d = dest(A, label(n)) in
foreach z € d do
add arc labeled f from z to a node with label label(z).f;
return d;

function destination(n, A) = dest(A, label(n))

The function destination+ ensures that each node in dest(A, z.&) has a continuous arc to
its successor along an arc f. The destination of a compound path expression, z.a, is the
union of the destinations of the simple path expressions of size [ or less matched by a.
Newly allocated nodes are discussed below.

To see that this function is correct, we must prove that the composition of alias graphs
is associative, so that S;y0 4 = (S,085;)0A4 = §,0(S5;0A) for any graph 4.

Theorem 4 Let S, be the summary graph for the statement u: z.c « y.B3, S; be the
summary graph for a sequence of statements, and A be an alias graph. Then (Sy0S)od =
S5.0(St0A).
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Proof S, contains at most a single discontinuous arc a = (n, f, s), where label(n) = z.4,
f = a, and label(s) = y.0. We will show that applying this arc to S; produces arcs that
have the same effect on A as directly applying arc a to (S; o A). We will only consider the
interaction between z.& and S;; a similar argument applies to y.3 and S,.

First consider the effects of © on S; when computing (S, 0 S;). If no node in S, along
the path z.& is modified, dest(S;, z.@) contains a single node with label z.&. Since arcs
from this node are added to the summary graph after arcs from statements in ¢, they are
applied to A in the correct order—after arcs from these statements. Therefore, the effects
of u are the same if they are applied to S; or to S; 0 4.

If, on the other hand, dest(S;, z.&) contains more than one node, some statement in ¢,
say s : z.¥ «— 2.5, must have modified the graph and & = 7.4 for some ¢ € ACCESSORS™.
Assume the destination of this path contains only two nodes (the same argument is easily
applied to more than two). The graph S, o S, contains the subgraph:

O €D,
z
When applied to A, these arcs cause apply-summary-graph to create arcs from dest( 4, 2.6.9)
and dest(A, z.@) to nodes in dest(A, y.0).

Now consider the other expression Sy o (S;0 A). When S; is applied to A, the arc
introduced by statement s will cause apply-summary-graph to create arcs from nodes in
dest(A, z.5) to nodes in dest(A, z.6). When S, is subsequently applied to the resulting
graph, the path z.a will find nodes in both dest(A, z.6.¢) and dest(A, z.@). These sets are
the same as the sets found by (S, 0 S;), so both summary graphs have the same effect on
Al

Allocated nodes slightly complicate the process of applying a summary graph. The
labels of these nodes are not paths to be followed. Instead, apply-summary-graph must

invoke ANew to produce a new node with the correct label derived from the nodes in the
alias graph.

5.7.2 Fast Functions

A function is Graham-Wegman fast if (f(z) A z) C f(f(z)) for all z, in other words, if
propagating a value once through the equations for a loop produces a minimal answer. The
equations for alias graphs are not fast, as can be seen from the function:

(defun £ (x) (f (cdr x)))

If the initial value of z is:
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then, f(z) Az is:

« —((= ooy
R

but the correct solution (for [ = 2) is:

Graham and Wegman suggest computing the fastness closure for non-fast functions.
Define

@) = =
fi(a) = fle)ne | |
fi) = FIF7H@) = ST @D A T (R)-

The fastness closure of f, f, is f(z) = fi(z) such that f1(f(z)) = f(z). The semantic
functions for alias graphs (without A Kill) have the property that z C f(z) so that f(z)Az =
f(z). Therefore, the fastness closure reduces to a simple closure of f, F(z) = f()(z) such
that f()(z) = f(i+1)(z) where f(¥) is the i-fold composition of f.

In practice, the number of iterations to compute this closure is difficult to bound because
it depends on how the values are passed between iterations and the parameter /. But, for
many programs, the result converges in a small number of iterations. Moreover, the cost of
the operations is small since it is only applied once per loop.

5.8 More Precise Analysis of Structure Dependences

If used directly, alias graphs cause many unnecessary dependences because of the compound
nodes that summarize a series of locations. For example, if the function:

(defun £ (a b)
(set! (car a) 1)
(set! (car b) 2)
(print (car a))
(f (cdr (cdr a)) (cdr (cdr b))))
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is invoked (£ 1st (cdr 1lst)), where 1st is a proper list, then the alias graph (for 7 = 3):

cdr

reaches the assignment statements. The statements appear to conflict over the location
(Ist.cdr.cdr.cdr*, car), although they do not actually modify the same location.

The precision of the analysis can be increased by examining the sequences of nodes
referenced by two statements. A sequence of nodes, N = {ny, ..., nm} is a collection of
nodes labeled z.a.v, z.a.8.7, z.a.8.8.7, ... for a,7 € ACCESSORS* and 3 € ACCESSORst.
For example the nodes labeled Ist, Ist.cdr, Ist.cdr.cdr, Ist.cdr.cdr.cdr * are a sequence. The
last node in a sequence, n,, is its summary node. Assume statement S, accesses subset
Ni € N and statement S, accesses another subset N, € N. If the sequences only overlap
at the summary node, we want to know if the statements might access the same node if the
sequences were longer.

To determine if such a node exists, we describe the nodes in each subsequence by a
linear equation and check if there exists a common, integer solution to the equations. Let
N1 = N; — {n} be the subsequence of non-summary nodes accessed by ;. We try to
find a linear equation, i; = mj + b, that predicts the index, i;, of the j th glement in N;. If
no such equation exists, assume that ¢; = j and the statement accesses every node in the
sequence. The statements in the example have the equations

i; = 2j
2k + 1.

ik

If the equations are i; = aj + b and ix = ck + d, then if there exist integers j and k such
that
aj +b=ck+d,

the statements conflict. If no integers exist (as in the example), the statements do not
access the same structure instance. The bounded form of this problem occurs in detecting
conflicts between array accesses and is partially solved by Banerjee’s test. The unbounded
equation is a linear diophantine equation that can be solved by Euclid’s algorithm for the
greatest common divisor.

If the statements conflict, the distance of the conflict is the difference in loop iterations
between the statements that access the same location. Let ¢ j and 7 be the first non-negative
solution to the equations. Then the conflict distance is d = j — k.
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To perform this test, we must find an equation that describes the nodes in the sequence
accessed by a statement. Either the equation is linear or we assume that the statement
accesses all nodes in the sequence. An assignment statement modifies one node for each
iteration of the surrounding loop. The distance between modified nodes is determined by
the way in which the loop iterates over structures. The multiplier in the equation, m, is the
greatest common divisor of the distances between sequence nodes passed at the recursive
calls that form the loop. For example, if the function f contains recursive calls (£ (cddr
x)) and (f (cdddr x)), then m = gcd(2, 3) = 1. The constant b is the offset into the
sequence of the first node passed to the function. These values can be found by observing
the position, in the sequence, of the nodes modified by the assignment.

On the other hand, a statement may read many nodes in one invocation. If more than
one of these nodes belongs to the sequence, the subsequence cannot be described with a
linear equation. We then assume the statement reads every node. If only one node is in the
sequence, the equation can be found like the one for an assignment statement.

5.9 Related Work

Two areas of previous work relate to alias graphs and their use in detecting data dependences
among structure accesses. The first is work on describing the shape of structure graphs.
The second is other attempts at solving the structure data-dependence problem.

5.9.1 Shape of Structure Graphs

Reynolds demonstrated a set of recursive equations, which he called a data-set definition,
that describes the possible values of variables at points in side-effect-free Lisp programs
[63]. He constructed the definitions for individual statements as functions of their input
parameters. In a program containing a loop, these equations are recursive and can be
simplified by substitution. The resulting recursive equations describe the range of possible
values for a variable and the aliasing among variables.

Jones and Muchnick solved a similar problem [41], but used a more systematic approach
that is the starting point for most subsequent work, including alias graphs. Their goal
was a finite description of the structure graphs visible at each point in a program. They
formulated the problem as data-flow equations for both side-effect-free and destructive Lisp
programs and showed how to compute finite approximations as solutions. Their graphs did
not directly provide enough information for data-dependence analysis, since they did not
label locations. However, their equations have been extended for this analysis in this work
and by Horwitz, Pfeiffer, and Reps (see below).

Ruggieri and Murtagh applied the Jones and Muchnick framework to the problem of
determining the lifetimes of objects by computing a description of the sources of the objects
(their allocating statements) [64]. Ruggieri’s data-flow equations are similar to those for
alias graphs, although both were developed independently. However, Ruggieri’s equations
do not label locations and cannot solve the data-dependence problem.
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5.9.2 Dependences in Structures

An earlier version of this work described alias graphs and showed how to determine if
two statements potentially conflict [52]. Its description of alias graphs is slightly more
complicated than the one in this thesis. Its data-dependence test is markedly inferior
as it did not classify dependences or improve the precision of the analysis by examining
sequences of nodes. However, as this chapter showed, alias graphs can be extended to label
locations and, along with the dependence framework from the previous chapter, to classify
dependences.

Guarna discussed a technique for analyzing the data dependences due to pointers in C
programs [30]. The problem of analyzing general C pointers is more difficult than analyzing
Lisp structures because C programs can perform arbitrary computations on pointer values.
Guarna does not address this aspect of C, so his work can be compared to CURARE. His
technique is very different from alias graphs because he tries to maintain sets of equiva-
lent paths (aliases) visible at each point in the program. Maintaining this information is
expensive since a single assignment may create and destroy many aliases. Paths are also
insufficient to compare the locations accessed by two statements since they do not label
the locations. Finally, his paper does not show how paths can be computed for programs
containing loops.

Horwitz, Pfeiffer, and Reps described an elegant technique for directly computing the
data dependences in structure-accessing programs [35]. They use Jones and Muchnick’s
data-flow equations to compute a finite description of the structure graph at each point
in a program. While computing this graph, they label each field with the last statement
that modified its contents. By observing these labels before a statement reads or writes
a field, they can directly find statements that have data dependences. This approach is
simpler than CURARE’s technique, but should be roughly comparable in efficiency since the
major cost in both is the computation of the alias graph. Also, their technique will share
the problem of spurious conflicts at summary nodes and require some external method for
improving its precision at these points.
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If decisions never had to be made,

life would be much easier,

and so would programming.

~Donald Knuth, The METAFONT Book

Chapter 6

Declarations of Data Dependences

Automated detection of data dependences, as discussed in the previous chapters, is one
approach to detecting the constraints in parallel programs but is insufficient by itself. The
results of this analysis may be conservative enough to prevent restructuring of a program.
Rather than discard this analysis, we will enhance it with declarations by which program-
mers can assist the analyzer and correct its overly conservative conclusions. This approach
relieves programmers of the burden of detecting and declaring the majority of data depen-
dences and allows them to concentrate on refining the analysis of the most critical portions
of their programs.

Before turning to the syntax and semantics of the declarations, it is worth exploring why
they are necessary. The analysis algorithms previously presented have intrinsic limitations
that must be understood and respected. The next section examines these limits. Section 6.2
describes a set of declarations.that assist the data-dependence analysis and correct its
conclusions. The final section of this chapter surveys related work.

6.1 Shortcomings of Data-Dependence Analysis

Data-dependence analysis for structure reference has some intrinsic shortcomings. These
limitations reduce the precision of the analysis since two distinct locations may not be
distinguished by the algorithm. However, they do not affect its correctness since merging
locations creates spurious dependences but does not hide real ones. This section presents
reasons why the analysis is not precise but does not propose remedies. The next section
explores the solution of programmer-supplied declarations.

The first problem with this analysis is that precise (up to symbolic execution) compu-
tation of structure graph aliases is NP-complete, even within a single function. The proof
is a simple variation of the argument Myers used to show that precise interprocedural flow
analysis is NP-complete [60].

The structure alias problem, STALIAS, is defined as follows. Statements in a pro-
gram have two effects on a structure graph (not on an alias graph). The first effect is
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AGen(z.ay._m, y.B), which changes field a,, in the object at z.G to point to the object at
y.0. The other effect is AKill(z.71..,), which destroys all aliases that traverse the field v, of

the object at 2.5. At statement S in a program, z.a is an alias for y.3, written z.c 2 y.0
ifs

1. A statement G in the program has the effect AGen(z.a, y.3).

2. There exists a path in the control-flow graph from G to S along which there is no
statement K that kills the alias.

The STALIAS problem is, given z.c and y.3, to find a path from the function entry to
a point p such that r.a L y.6.

Theorem 5 STALIAS is NP-complete for programs consisting only of a single function,
conditional statements, and structure and variable assignment.

Proof STALIAS is in NP because given a solution, we can quickly check that z.a Ryp
is generated and not subsequently killed along the path by simulating the effects of the
statements along the path. We will show that STALIAS is NP-complete by reducing it to
the 3SAT problem.

Let X be the variables {z}, ..., £} and X be their complements {Z1, ..., Tn}. Let
z;; € X UX. The 3SAT problem is to find a consistent truth assignment to the variables
in X that satisfies an equation E = /\f-‘=1(x,-,1 V 2;2Vzi3). We will show how to construct
a program flow graph in which STALIAS has a solution if and only if E can be satisfied.

The flow graph, G, consists of basic blocks B;j, program variables T, F, X, Y,
Ty, ..y Tny Ty -, Tn, and a structure with the field f. Figure 6.1 contains the flow
graph. If E has a satisfying assignment, at least one literal in each clause in F is true,
say z;j for 1 < ¢ < kand 1 < j £ 3. Therefore, 7, ; is false and there exists a path in
G along which F; ; ~ F. Hence, the structure assignment T; ;.f « 0 modifies the location
F.f. Combining these paths produces a path through G along which 7' f is not modified so
that T.f ~ X.f at Q. Conversely, if T.f ~ X.f at Q, there exists a path through G along
which 7.f is not killed, so that a literal Z; ; ~ F in each clause along this path.

The next problem is caused by summary nodes in alias graphs, which make these graphs
finite and permit their computation by data-flow analysis. However, they also represent
many structure instances with a single node, which can cause spurious dependences. Certain
regular access patterns, such as traversing a list, can be characterized by examining other
alias graph nodes and so can rule out spurious dependences (see Section 5.8). Other access
patterns, such as traversing a tree or an arbitrary graph, are difficult to characterize or
analyze more precisely. Two accesses to a summary node may appear to conflict, even if
they reference different structures.

Another problem with alias graphs occurs at function entry points in the extended call
graph, where the incoming alias graphs are combined into a single graph. This union may
introduce spurious aliases. Aliases are also combined at basic blocks, but the two situations
are different. Each call arc entering a function has a complementary return arc. Aliases
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Figure 6.1: Program flow graph used to show that STALIAS is NP-complete. The question at the

bottom is answerable if and only if the 3SAT problem is solvable.
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Figure 6.2: Each call arc entering a function f in an extended flow graph has a corresponding return
arc leaving the function.

ay az

{

ag ay

/

Figure 6.3: An arc entering a basic block b does not have a corresponding arc leaving the block.

entering along the call arc should only leave along the return arc. No analogous property
holds for other control arcs. For example, in Figure 6.2, when control enters function f
through call arc c;, it leaves f along return arc ry. However, in Figure 6.3, when control
enters block b along arc ay, it may leave through any exit arc.

Combining the alias graphs upon entering the function has two undesirable effects. The
graph reaching statements in the function has all possible dependence-causing aliases, so
that conflict-causing calls are indistinguishable from benign calls. Also, the alias graph
leaving the function contains the union of the aliases, which may affect dependence analysis
of statements that use the function’s result.

For example, consider the function

(defun £ (x y)
(cond ((null? x))
(t
(set! (cadr x) 1) ; S1
(print (car y)) ; S2
(f (cdr x) (edr y)))))

If £ is invoked with the arguments (f 1 1), then statement S2 has a loop-carried flow
dependence on S1. If £ is invoked (£ 1 (cdr 1)), then S2 has a loop-independent flow
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dependence on S1. If £ is invoked at both call sites, the combined alias graph makes it
impossible to distinguish the cases.

There is no alternative to merging aliases, since this permits data-flow analysis to com-
pute the effects of a function simultaneously for all call sites. An impractical alternative
is to compute the aliases along each of the potentially exponential number of paths among
functions. Another approach would label aliases with the call arc upon which they entered
a function and then try to separate the resulting alias graph upon exit from the func-
tion. Since a value can flow through many functions, the length of these paths cannot be
bounded. Tarjan’s path expressions [71] use regular expressions to describe paths in a flow
graph. However, they summarize all paths from the program’s entry to a point and do not
describe a single path.

Finally, the data-dependence calculation requires a precise call graph. For some lan-
guages and programming styles, computing such a graph is not difficult. However, for Lisp,
and particularly Scheme, in which functions are first-class data objects, computing a precise
call graph may be difficult or impossible. In this case, a call graph will be a superset of
the actual call graph. The additional call and return arcs decrease the precision of the alias
graph computation by introducing spurious aliases.

6.2 Declarations

The goal of the declarations described below is to improve CURARE’s performance by refin-
ing the data-dependence analysis to eliminate spurious or unnecessary dependences and to
provide additional information that is useful in transforming programs. Most declarations
specify the absence of dependences, though a few declarations provide affirmative infor-
mation that is difficult or impossible to infer. This bias is natural since the dependence
algorithm finds a superset of the dependences and only needs to be made less conservative.

The declarations trade the precision and detail of the information that they provide
against the difficulty of providing the information. At one extreme is a direct declaration
that statement S; has a loop-carried anti-dependence of distance 2 with statement S;. At
the other extreme is a higher-level declaration that an argument to a function is always a
tree. The second declaration is easier to provide since it is probably part of the programmer’s
unwritten knowledge about a program and may be necessary to the reasoning process that
produced the first declaration. Nevertheless, detailed declarations have a role in specifying
the precise dependence between two statements when an analyzer cannot refine its results
even with the assistance of other declarations.

The consequences of providing these declarations are similar to those of other Lisp
declarations. A correct declaration does not affect a program’s result; it only increases the
speed with which the result is calculated. The converse is that an incorrect declaration may
change a program’s result since the declaration overrides any analysis.

The syntax of the declarations is also based on Common Lisp. There are three con-
structs:

e (declare property) asserts that the property holds within the nearest enclosing scope.
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(path expression) :: = "%’ |
(accessor) |
(path expression) .’ (path expression) |
(path expression) "*’ |
(path expression) | (path expression) |
({path expression))

Figure 6.4: Syntax of path expressions in declarations. % is the empty string.

o (locally property body) asserts that the property holds within the statements in the
body.

e (the property erpression) returns the expression’s value and asserts that the prop-
erty holds for the expression’s result.

Within the following descriptions, v, v1, v2, ... are variables and pe, pel, pe2, ... are
path expressions with the syntax in Figure 6.4. An object is reachable from a variable V" if
there is a sequence of pointers beginning at V' that lead to the object.

6.2.1 Alias Declarations

These declarations refine the alias graph by specifying the connectivity among objects in
the alias graph.

e (declare (distinct-loc v.pe))
Asserts that the locations along the compound path v.pe are distinct from each other.
For example, a non-cyclic list is declared
(declare (distinct-loc 1lst.cdrx))
and a tree is declared
(declare (distinct-loc tr.(caricdr)*)).
e (declare (distinct-loc vi.pel v2.pe2))
Asserts that the locations along path vl.pel do not intersect locations along path
v2.pe2. For example, two distinct lists are declared

(declare (distinct-loc 1lstil.cdr* 1lst2.cdr*))

and the arguments to the example in Section 5.8 are distinguished by
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(declare (distinct-loc a.car b.car)).

e (the distinct-loc expr)
Asserts that the value returned by the expression is distinct from a.ll previously reach-
able values. For example,

(declare (distinct-loc (cons x y))).

e (declare (unique-obj v.pe))
Asserts that the objects along the path v.pe are not reachable along any other path
within the scope of the declaration. For example,

(declare (unique-obj x))

asserts that the object contained in variable x cannot be accessed except through this
variable and

(declare (unique-obj lst.cdr*))

specifies that the cons cells in the list are only accessible from the previous item in
the path.

e (the unique-obj expr)
Asserts that the value returned by the expression is not reachable along any path.
For example,

(the unique-obj (cons x y)).

As a larger example, consider the function in Figure 6.5, which destructively concate-
nates each sublist in a list to its successor. A programmer can supply two useful assertions.
First, each sublist must be distinct (or the algorithm will loop forever):

(declare (distinct-loc lists.cdrx.car)).
Second, cells in each of these lists must be distinct for the same reason:
(declare (distinct-loc lists.cdr*.car.cdr*)).

With these two assertions, or the equivalent knowledge of the structure of the actual pa-
rameter, the data-dependence algorithm can conclude that the assignments do not conflict.
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(defun nconc (lists)
(defun last-cell (x)
(cond ((null? x) nil)
((null? (cdr x)) x)
(t (last-cell (cdr x)))))

(cond ((null? lists) nil)
(t
(set! (cdr (last-cell (car lists))) (cadr lists))
(nconc {cdr lists))
lists)))

Figure 6.5: Definition of the nconc function, which destructively appends each list in its argument.

6.2.2 Dependence Declarations

These declarations override the data-dependence algorithm and directly specify dependences
between statements. They are particularly useful for programs that manipulate complex
data structures, in which a simple description of the aliases is impossible but the programmer
carefully controls potential conflicts. An example is a graph traversal algorithm in which
each node is examined once although it may be visited many times. These declarations can
also specify cases in which data dependences can be ignored since they cannot affect the
eventual result. An example is adding a sequence of numbers. If the addition is atomic and
associative, the order of additions does not matter.

o (the sole-access expr)
Asserts that no other statement within the function containing the expression accesses
the result of the expression. For example, in nconc, the assignment could be written

(set! (the sole-access (cdr (last-cell (car lists))))
(cadr lists)).

e (the sole-read expr) (the sole-write expr)
Asserts that the result of the expression is not read (written) by any other statement
within its function containing the expression. Other statements, however, may write
(read) the location.

e (the no-dependences expr) (the no-lc-dependences expr)
Asserts that the result of the expression does not cause any (loop-carried) dependences
with another statement within the function containing the expression. The assignment
from nconc could also be written
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(set! (the no-dependénces (cdr (last-cell (car lists))))
(cadr 1lists)).

e (declare (no-dependences £))
Asserts that invoking function £ does not cause any conflict with any statement within

the scope of the declaration. For example,
(declare (no-dependences last-cell))

specifies that this function does not conflict with the assignment in nconc.

e (declare (no-dependences f g))
Asserts that invocations of functions £ and g within the scope of this declaration do
not conflict.

(declare (no-dependences f f))

asserts that multiple invocations of function £ do not conflict with each other.

o (the (dependence name type {func}) expr)

Asserts that the expression is involved in a dependence with another statement, which
must be labeled with a declaration containing the same name (an arbitrary symbol).
The type of the dependence is one of FD(n), AD(n), or DO(n), where FD specifies a
flow-dependence, AD is an anti-dependence, and DO is a def-order dependence. The
integer n is the distance of the dependence and may be omitted, if unknown. If n # 0
(i-e., a loop-carried declaration), the name of the recursive function heading the loop
must be given. This declaration overrides all dependences identified by the analyzer
between the two statements.

6.2.3 Other Declarations

These declarations declare properties of programs that are difficult to infer but are useful
for transforming programs for concurrent execution.

e (the atomic expr)
Directs that the expression should execute atomically with respect to other invocations
of itself. For example, one way to compute the length of a list is shown in Figure 6.6.
The assignment statement does not conflict with itself if it executes atomically since
integer addition is associative and commutative.

o (declare (associative f)) (declare (commutative f)) (declare (ac f))
Asserts that function f is associative, i.e., f(f(a,b),c) = f(a, f(b,c)), commutative
f(a,b) = f(b,a), or both. These properties are of use in transforming programs since
they remove constraints on solving recurrences (see Chapter 3).
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(defun list-length (1st)
(let ((length 0))
(defun count (1st)
(cond ((null? 1st))
(t

(the no-conflict

(the atomic
(set! length (+ length 1))))
(count (cdr 1st)))))

(count 1st)))

Figure 6.6: The function 1ist-length returns the number of elements in a list.

6.3 Related Work

Declarations of data dependences are rare in both theory and practice. Their paucity is not
surprising since their primary role is to facilitate aggressive optimizations that rearrange
operations in a program. These optimizations require automatic data-dependence analysis
to support the declarations unless the dependences are infrequent enough that a programmer
could declare all of them. Analysis of variable references is precise enough that no additional
declarations are needed. On the other hand, analysis of aggregate references is difficult
enough that it was considered impractical until the advent of parallel computers made
these dependences impossible to ignore.

An example of weak dependence declarations used in practice are those in Symbolics’
Common Lisp [59]. These declarations, which are undocumented and only used by system
programmers, do not distinguish the location in a dependence, but only indicate whether a
function produces or is affected by side effects.

The programming language Euclid [51] provides collections as a means of specifying the
absence of data dependences. A collection is a region of memory that contains dynamically
allocated objects of the same type. Pointers to objects specify, as part of their type, the
collection to which the objects belong. Pointers to different collections never point to
the same object, so some dependences are impossible because of the collections to which
accessed variables belong. The drawback of collection is that a programmer must introduce
new types and change type declarations to introduce data-dependence information.

A more precise and useful set of declarations is provided by the FX programming
language [25] and is discussed in Lucassen’s thesis [55]. This work proposes an effect
system to parallel a language’s type system. An effect is a subset of the operations
{(read p), (write p), (alloc p)}. A region, p, is a user-defined name for a collection of objects.
Lucassen describes an entire type system built on programmer-supplied declarations of the
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effects of functions in a Scheme-like language.

These declarations could replace both the dependence analyzer and the declarations
proposed in this work. Computing dependences among statements in a fully “effected”
system is not difficult, though the precision of the analysis depends on the programmer
paying attention to defining separate regions. The main objection to this approach is that a
programmer must declare large quantities of information in many places. These declarations
promise fewer benefits than type declarations, since they do not help a compiler find errors
in a program. They only facilitate optimizing the program. Programmers are unlikely to
declare their programs fully for this reason and so may unintentionally limit the areas in
which a restructurer can find concurrency.
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Is it not strange that desire should
so many years outlive performance?

-~ William Shakespeare, Henry IV, Part II

Chapter 7

Performance Evaluation

This chapter presents measurements that validate CURARE’s runtime system and demon-
strate a performance improvement for several transformed programs. The experiments were
conducted in Qlisp running on an Alliant FX/8 multiprocessor [27]. Qlisp is a high-quality
port of Lucid’s commercial Common Lisp system to that multiprocessor.

CURARE’s runtime system did not use high-level Qlisp constructs, such as qlet or
qlambda. Instead, it used the low-level primitives for creating and synchronizing processes
that underlie Qlisp. The Qlisp-specific code implemented the necessary SPUR Lisp mul-
tiprocessor features. It is presented in Appendix A together with the system-independent
code.

The Qlisp system permitted stable, repeatable measurements, but it had several flaws.
The timing function (time) did not function properly when executing concurrently. The
only way to time parallel tasks accurately is to time the call on the parallel evaluation
function (geval). This function switches into parallel mode, establishes processes on the
other processors, evaluates its argument, and cleans up. The overhead of these actions
depends on the number of processes, but it is around 40 milliseconds in most cases (see
Table 7.1). These overhead times have been subtracted from the reported times in this
chapter.

Qlisp’s other major flaw was that its synchronization primitive (a spin lock) was ex-
pensive, which increased the cost of sends and receives and the barrier synchronization. A
send to and receive from an initially empty mailbox, without memory contention, takes
57.6 usec. The calls on acquire-lock and release-lock necessary to synchronize these
two operations consume 27.8 usec. (48%) of this time.

The tests of the runtime system measured the cost of mapping the function £ib (which
computed Fibonacci numbers) over a list of integers. This function was chosen because its
execution cost varied greatly depending on its argument. Its sequential execution time was
measured by: (time (mapc #’fib 1st)), which uses the mapc function supplied by Qlisp.
Parallel times were measured by:

(time (qeval (progn (initialize-servers n)
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Table 7.1: Time to execute:
(qeval (progn (initialize-servers n) (identity t) (terminate-servers sidle-server-queue*)))
This time measures the overhead required to switch into parallel mode, establish servers on n processors,

execute a trivial task, and clean up.

(mapc-sync #’fib 1lst)
(terminate-servers *idle-server-queuex))))

The overhead of establishing and terminating the servers was subtracted from the reported
times. The detailed measurement code is contained in Appendix B.

Unless otherwise noted, each test executed 100 or 1000 times and the execution times
were averaged. The tests were conducted on a lightly-loaded S processor Alliant FX/8 using
Qlisp Prototype Version 1.0 of January 4, 1989. All timing code was compiled.

The multiprocessor times are compared against two baselines. The first is the time to
execute a sequential version of the code in Qlisp. In this mode of operation, Qlisp runs on a
single processor, but it still incurs the (unknown) costs of multiprocessor-specific code built
into the system. The ratio of the sequential time to the parallel time is the sequential speed
up. It is larger than 1 when the parallel program runs faster than the sequential one.

The second baseline is the parallel code running in parallel mode on a single processor.
This code incurs the cost of CURARE’s runtime system but does not gain any advantage
from parallelism nor incur any costs from memory contention. The ratio of the parallel time
with 1 processor to the parallel time with n processors is the parallel speed up.

7.1 Performance of the Runtime System

This section presents measurements of simple test cases that demonstrate that the overhead
of the runtime system is small for moderate sized tasks. Because this cost is small, parallel
execution can achieve significant performance gains on loops with small bodies and loops
that execute only a few times. These measurements do not represent CURARE’s performance
on real programs; they only show how well it works for isolated loops.

The first test measures the cost of mapping the function identity over a list. This
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Figure 7.1: Timing results from mapping the function identity over lists of 5, 10, and 25 elements.
Times are the average of 1000 trials. The sequential time is the one with 0 parallel processors.

function is perhaps the least costly one possible as it simply returns its argument. It
executes in 12 usec. Figure 7.1 shows that the overhead of mapc-sync is very large in
comparison to mapc. The speed-up curves (Figure 7.2) show that two processors execute
slightly faster than a single processor. Additional processors do not reduce the execution
time because they spend most of their time contending for the task queue. When the cost
of a task is much smaller than the cost of dispatching the task, additional tasks do not
produce greater concurrency. The dispatch cost must be reduced to allow more loops to
execute profitably.

By examining the time to map identity over lists of various lengths, we can estimate
the overhead of creating and scheduling tasks. With only 1 processor executing mapc-sync,
it takes 240 + 133n usec. to map identity over an n element list. Of the 133 usec., 57.6
(43%) is spent enqueuing and dequeuing the task.

When each iteration performs more work and is more like a typical loop, the overhead
of the runtime system is less important. Figures 7.3 and 7.4 show the cost and performance
improvement from mapping (£ib 5). This task requires 166 usec., which is slightly longer
than the dispatch time.

Parallel evaluation of this task utilizes upto three processors effectively. Additional
processors increase the contention for the queue and prevent each processor from running
at maximum efficiency. Again, the task queue is the bottleneck. Note that for lists of more
than ten elements, parallel execution with two processors is faster than sequential execution.

Figures 7.5 and 7.6 show similar results from mapping (£ib 10) over various lists.
This computation requires 1.93 msec.—roughly 15 times the loop overhead. With two or
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Figure 7.2: Speed-up curves from mapping the function identity over lists of 5, 10, 25, and 100 elements.

100- Mapping (fib 5)

9.0 4

7.0 9

o g o=

6.01

5.0

4.0 1
25 elements

o o0 w3

3.09

204 10 elemeats

Parallel Processors

Figure 7.3: Timing results from mapping the function (£ib 5) over lists of 5, 10, and 25 elements.

Result for 100 elements is omitted. Times are the average of 100 trials.
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Figure 7.5: Timing results from mapping the function (£ib 10) over lists of 5, 10, and 25 elements.

Result for 100 elements is omitted. Times are the average of 50 trials.
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Figure 7.6: Speed-up curves from mapping the function (£ib 10) over lists of 5, 10, 25, and 100 elements.

more processors, parallel execution is much faster than sequential evaluation and additional
processors produce a roughly linear improvement for the longer lists (25 and 100 elements).

Finally, Figures 7.7 and 7.8 illustrate a problem that occurs when the cost of a com-
putation varies greatly between iterations. In this test, we mapped fib over the integers
from 1...n. (fib 1) requires 13.7 usec. and (£ib 25) requires 2.7 sec. so the cost of each
task varies widely. Since fact(n) = fact(n — 1) + fact(n — 2), each task requires as much
execution time as its two predecessors. mapc is synchronous so the longest executing task
determines the total execution time. Because the last task is so much larger than all other
tasks, it—along with the two preceding tasks—dominates the execution and renders more
than three or four processors useless.

7.2 Measurements of Programs

This section presents measurements of the execution of several programs restructured by
CURARE. These results demonstrate that CURARE can restructure non-trivial programs so
their parallel version execute significantly faster than the sequential code. The speed im-
provements of a factor of 2-4 are excellent for mechanically-applied program optimizations.

The first program is the Boyer-Moore theorem prover from the Gabriel Lisp benchmarks
[22]. This program is a simple, rewrite-rule based simplifier and tautology checker. It ap-
plies 106 lemmas to rewrite a formula into an identity. CURARE converted the function
rewrite-args to the destination-passing style and spawned its recursive call concurrently.
This function is the heart of the program since most of its execution time is spent applying
rewrites. In fact, CURARE introduced parallelism in the same place and manner as did hu-
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Figure 7.9: Time to execute the Boyer-Moore theorem prover benchmark. The various lines show

different strategies for allocating servers to loops. Times are measurements from a single trial.

man researchers demonstrating their parallel Lisp systems [3,27]. CURARE required around
a half hour of CPU time on a Sun 3/75 to analyze and restructure this program.

The version of Boyer transformed by CURARE was translated into Scheme by Seth
Steinberg of BBN. The only non-trivial change was to collect the set of lemmas in an
association list rather than storing them on symbols’ property lists (standard Scheme does
not provide property lists). Measurements show that this change increased the program’s
execution time but did not affect its speed up.

Figure 7.9 shows the benchmark’s execution time for a variety of policies for allocating
servers to loops. Since rewrite-args is non-linearly recursive (its call on rewrite can also
lead to another call on rewrite-args), the demand for servers is much greater than the
number of processors and many loops execute sequentially. We tried a variety of policies
for allocating processors to loops:

e 1 server/loop. Each loop was given one processor, if available, in addition to the one
executing the call on rewrite-args.

2 servers/loop. Each loop was given up to two additional processors, if available.

1/2 AN servers/loop. Each loop was given half of the available processors.

N/2 servers/loop. Each loop was given up to half of the total number of processors.

N servers/loop. Each loop was given all available processors.
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Figure T7.10: Speed-up curves from executing the Boyer-Moore theorem prover benchmark with different

numbers of processors.

As can be seen from this data, the best strategy allocated half of the available servers to
each loop. This policy gave the loops executed earlier (those higher in the expression tree)
most of the servers, which favored the loops with the most expensive bodies.

The speed-up curves (Figure 7.10) show that, for the best allocation strategy, eight
processors execute over twice as fast as a sequential processor. Since the parallel version
had significant overhead costs (it ran at roughly half the speed of the sequential code), the
parallel speed-up was actually much larger—a factor of four. Reducing these overhead costs
would improve the sequential speed-up. These costs could be reduced in two ways. The first
is to improve the runtime system to reduce the cost dispatching tasks. This improvement
requires changes to Qlisp to provide access to machine-level primitives for synchronization.
The second (discussed in Section 2.7) is to fall back on the sequential code, which has less
overhead, when no parallel processors are available. Figures 7.11 and 7.12 demonstrate that
this strategy improves the program’s performance.

The parallel speed-up curves in Figure 7.10 or 7.12 compares favorably with Goldman’s
results for a hand-modified version of the benchmark running in Qlisp. His program pro-
duced a similar improvement of 3-4 with seven processors. The program, however, was
considerably more complex since it used a depth-based cutoff to limit the spawning of
parallel tasks.

The disparity in the rewrites’s execution costs limit the potential parallel improvement
of the Boyer-Moore benchmark. The simplest rewrites require only a few operations, but the
more complex ones traverse large expression trees. Depth-first application of the rewrites
compounds the problem since servers are likely to be assigned to small tasks near the leaves
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Figure 7.11: Time to execute the Boyer-Moore theorem prover with the optimization of falling back on

the sequential code when no parallel processors are available. Times are measurements from a single trial.
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Figure 7.12: Speed-up curves from executing the Boyer-Moore theorem prover with the optimization of

falling back on the sequential code when no parallel processors are available.
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of the tree. The disparity in costs ensures that some processors are underutilized and limits
the gains possible with concurrency.

The other test program is a Scheme version of Gabriel’s frpoly benchmark. This program
raises polynomials to powers. The original program was written for efficiency—with many
special variables and goto statements—so we used the polynomial arithmetic operations
from Abelson and Sussman [1]. These Scheme routines are similar to Gabriel’s code in
functionality.

CURARE found parallelism in two places in the polynomial routines. The first was the
function:

(defun *-term-by-all-terms (t1 1)
(if (empty-termlist? 1)
(the-empty-termlist)
(let ((t2 (first-term 1)))
(adjoin-term (make-term (+ (order ti) (order t2))
(*coeff (coeff t1) (coeff t2)))
(*-term-by-all-terms t1 (rest-terms 1))))))

which CURARE changed to the destination-passing style (adjoin-term is simply cons)
and spawned its call recursively. The second parallel loop required a programmer-supplied
declaration. In the function:

(defun *terms (11 12)
(if (empty-termlist? 11)
(the-empty-termlist)
(+terms (*-term-by-all-terms (first-term 11) 12)
(*terms (rest-terms 11) 12))))

the composition operation of polynomial addition (+terms) is associative and commutative.
With the assistance of a declaration, CURARE transformed the function so it performs a
parallel reduction in the manner described in Section 3.3. CURARE required about 15
minutes to analyze and restructure this program.

The test case raised the polynomial 1% 4 222 +1 to the 20*} power. Figure 7.13 shows
the time required to compute this result with the server allocation strategies described
previously. Unlike Boyer-Moore, the best strategy for this problem allocated all available
processors to a loop. This strategy assigned the processors to the outer loop (the addition
of subterms in *terms) rather than allotting any servers to the other, smaller loop.

Figure 7.14 shows the sequential and parallel speed-up curves for this test. As can be
seen, the overhead of parallel execution is small. Unfortunately, the speed improvement is
limited by the restructured form of *terms, which has & speed up of n/logn since it is a
parallel reduction.
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7.3

Conclusion

The measurements in this chapter show that CURARE can detect and exploit parallelism in
real programs. The speed improvements that CURARE produces are large enough to make
a multiprocessor attractive to many programmers. The cost of using CURARE is roughly
comparable to a conventional compiler and is much smaller than the cost of rewritting a
program. More important, the speed improvement produced by CURARE is much larger than
the improvement typically produced by switching compilers. Even though the restructured
programs do not make optimal use of a multiprocess’s parallelism, they take advantage of

it.

These measurements also identified several potential bottlenecks that limit a program’s
concurrent execution.

The cost of CURARE’s runtime system. A restructured loop’s parallel behavior is
strongly dependent on the cost of scheduling iterations. If each iteration’s execution
cost is larger than the loop overhead, CURARE can produce effective speed improve-
ments.

The operations applied by a loop. If the execution times of loop iterations varies
greatly, all processors will not be fully utilized and the speed improvement will be less
than linear.

The amount of parallelism inherent in the data manipulated by a program. If a
parallel loop traverses short lists, then it will create few tasks and not much speed
improvement.

A restructured loop’s contribution to a program’s execution time. If the parallel loops
only consume a fraction of the time, no amount of parallelism will greatly reduce the
total execution time.

Algorithmic limits on speed improvements. If a loop computes a parallel reduction,
additional processors will not produce a linear reduction in the program’s execution
time.

These factors limit every manual and automatic scheme for introducing parallelism at a low
level. From this data, we can conclude that CURARE performs best for programs in which
a few loops, with expensive bodies, consume most of the execution time.
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Of making many books there is no end;

and much study is a weariness of the flesh.

Let us hear the conclusion of the whole matter....
— Ecclesiastes 12:12-14

Chapter 8

Conclusion

CURARE demonstrates that symbolic programs can be automatically restructured for
concurrent execution. The obvious problems—pointers, conditional execution, and
recursion—can be resolved efficiently. The restructured programs show a valuable speed
improvement because of concurrency. The major remaining question is whether many
programs contain dependences and loops that make concurrent execution impossible. If
programmers write programs that do not permit concurrent execution, then no restructurer
will be able to take advantage of multiprocessors. However, this thesis contains many ex-
amples of common idioms and several large program that demonstrate that Lisp can be
effectively restructured.

In summary, this thesis describes a simple approach to restructuring Lisp programs.
CURARE first analyzes a program to find its control and data dependences. This analysis is
most difficult for references to structures connected by pointers. CURARE uses a new data-
dependence algorithm, which finds and classifies dependences between structure-accessing
statements. This analysis is conservative and may detect conflicts that do not arise in
practice. However, a programmer can temper and refine its results with declarations.

Dependences constrain the program’s concurrent execution because, in general, two
conflicting statements cannot execute in a different order without affecting the program’s
result. A restructurer must know all dependences in order to preserve them. However, not
all dependences are essential to produce the program’s result. Some approaches to comput-
ing a value cause more conflicts than others and are poorly suited for parallel execution.
CURARE attempts to transform the program so it computes its result with fewer conflicts.
An optimized program will execute with less synchronization and more concurrency.

CURARE’s next examines loops in a program to find those that are unconstrained or
lightly constrained by dependences. By necessity, CURARE treafts recursive functions as
loops and does not limit itself to the narrower class of explicit program loops. Recur-
sive functions offer several advantages over explicit loops since they provide a convenient
framework for inserting locks and handling the dynamic behavior of symbolic programs.
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Loops that are suitable for concurrent execution are changed to schedule and execute their
iterations on a set of concurrent server processes.

These servers are the final part of CURARE. They execute single loop iterations and
therefore need to be extremely inexpensive to invoke. This constraint leads us to reject the
processes provided by most concurrent Lisp systems and to design non-preemptable servers.

Restructured programs execute significantly faster than the original sequential programs.
This improvement is large enough to attract programmers to a multiprocessor, particularly
since it requires little effort on their part. Although restructured programs may not make
optimal use of a multiprocessor’s parallelism, they make good use of a programmer’s time.

The major contributions of this work are:

e A clearer understanding of data dependences and their effect on concurrently executed
programs. The data-dependence framework in Chapter 4 has not previously been
described independent of particular dependence problems and has not been applied
to the structure-reference problem. In addition, most program restructuring has not
articulated a standard by which the transformed program can be compared to the
original program. Conflict equivalence, which is described in Chapter 1, is the only
generally-applicable standard and is implicit in most other work in this area.

e A technique for detecting and classifying data dependences among structure-accessing
statements. The algorithm presented in Chapter 5 builds on previous work in de-
scribing data structures, but it is the first algorithm for detecting and classifying
dependences among structure-accessing statements.

e Declarations for refining dependence analysis. This approach has not been necessary
in other data-dependence problems, but it is important for structure graphs, which
contain more aliases and are more difficult to analyze precisely. Chapter 6 describes
the declarations.

e A technique for executing recursive functions concurrently. Previous work either
treated recursive functions as conventional loops or used ad hoc techniques for intro-
ducing parallelism. The server mechanism described in Chapter 2 efficiently executes
functions lightly constrained by dependences.

¢ Optimizations for removing data dependences from Lisp programs. The transforma-
tions in Chapter 3 are not fundamentally new, but they have not been previously
applied to improve concurrent Lisp programs. Lisp’s dynamic data structures require
some major changes to the earlier versions of these transformations.

8.1 Future Work

Experience in applying CURARE to real programs will determine how many programs it can
transform and how much concurrency is within this code. There are several areas that need
to be explored further.
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o Where are the bottlenecks in transformed programs? In particular, do the untrans-
formed loops limit the speed up? Are the transformed loops large enough and do they
have enough concurrency to use a multiprocessor effectively?

e Can the precision of the structure-dependence algorithm be further increased?

e Can the execution time required for this analysis be reduced, perhaps by an incre-
mental algorithm that does not need to reanalyze an entire program when a portion
of it changes?

e Are there additional transformations that can remove dependences in programs?

e Can the cost of locking be reduced so more functions with dependences can execute
concurrently? Or alternatively, is there another approach to synchronization, such as
optimistic concurrency, that offers better performance?

8.2 Is This the Way to Go?

It is worthwhile to step back and ask whether program restructuring, as exemplified by
CURARE, is the proper way to program multiprocessors or whether it is just a temporary
measure until a better technique is found. I believe that restructuring is a valuable technique
that will be widely used to prepare programs for multiprocessors.

Programming languages that allow side-effects are natural and expressive and will con-
tinue to predominate. Programs written in these languages contain data dependences,
which need to be detected and protected during concurrent execution. Programmers have
difficulty finding and serializing these conflicts and, in doing so, introduce many errors.
Data-dependences analysis, on the other hand, reliably detects all potential conflicts in a
wide variety of programs and language features.

CURARE is weaker in areas that require a high-level view of the entire program, such
as dividing the program into several large concurrent phases. This is an area in which
a programmer can aid a restructurer since the programmer has a much higher-level view
of the program and may better understand how to divide a problem. CURARE can assist
by scheduling and synchronizing tasks that the programmer identifies. CURARE is also
well-suited to introducing fine-grained parallelism within loops. Although a programmer
could also transform these functions, there is no need for him to complicate and obscure a
program by introducing low-level parallelism.

On the other hand, Lisp has major shortcomings as input to a restructurer. It does
not provide an analyzer with much information about the types or effects of operations,
so additional declarations must be grafted on to the language. A better language would
incorporate this information in a manner that facilitates the analyzer’s and programmer’s
tasks.

In addition, Lisp’s fundamental data structure, the linked lists, is poorly suited to
parallelism because items are not uniformly accessible. Abstract set operations could replace
many uses of lists, thereby reducing explicit dependences and permitting a freer choice of
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underlying data structure. Languages such as SETL have demonstrated the power of this
abstraction for sequential programs.

From a broader perspective, concurrency complicates a program’s semantics at the same
time as it improves its performance. These complications can be directly addressed by a
programmer who writes in a conventional language augmented with processes and synchro-
nization devices. These programs are difficult to write, to debug, and to maintain because
low-level implementation details complicate a program’s structure. A better approach is to
build tools that translate programs written at a higher semantic level to run on whatever
type of computer is most efficiently constructed. These programs can be written to be
understood, not just executed.

CURARE changes programs written in a simple, deterministic semantics to run on asyn-
chronous computers. Perhaps more important than the details of its translation process,
CURARE demonstrates that the data dependences and execution behavior of symbolic pro-
grams do not preclude concurrent execution. Restructuring is not just for numeric programs.
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Appendix A

Source Code for Qlisp Runtime
System

;;; —*- Mode: LISP; Syntax: Common-lisp; Package: CURARE; —*-
;3; runtime.cl
;:; Copyright (C), James R. Larus, 1988 and 1989. All rights reserved.

2

;;; Runtime package for programs restructured by Curare.
(provide ’runtime)
(in-package ’curare)

(export ’(make-task
server obtain-servers initialize-servers terminate—-servers
find-first

make-process

acquire-lock release-lock make-lock
make-mailbox send receive mb-barrier mb-count
make-counter wait-counter decf-counter))

(use-package ’())

(detvar *runtime-version* "$Revision: 1.6 $")
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;73 This file contains the runtime system for programs restructured by Curare.
;3; It contains a section for each parallel Lisp, which implements the SPUR
;;; parallel features; a section containing system-independent; and some test
;35 cases.

;+; Options:

;;; #+conservative -— Makes the allocator conservative about handing out
;i processes.

;i #+debug -- Enable debugging printing of values.

;;; #+tspawn-call -- Spawn the recursive calls concurrently.

;;; #+spawn-head ~~ Spawn the recursive function’s body concurrently.
;;; #+struct~task -- Tasks are built from structures

;;; #+closure-task -- Tasks are built from closures

(eval-when (compile load eval)
(pushnew :spawn-call *features+*))

;;; Optimize the code!

(proclaim ’(optimize (speed 3) (safety 0) (space 0)))
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;3 Code for Lucid Qlisp.

#+(and lucid qlisp)
(progn
Closures are much faster than structures in Lucid CL.

(eval-when (compile load eval) (pushnew :closure-task *features*))
(when (eql sys:*processes-in-use* 1)

(sys:change-memory-management :expand 50 :growth-limit 400)
(sys:change-process-stack-size (* 50 1024)))

(defmacro record-history (&rest args) ‘(lucid::record-history ,Qargs))
(defun available-processors () sys:*number-of-processorsk)
(defmacro def-global-var (&body body) ‘(sys:defglotalvar ,@body))

;35 Processes:
(defmacro make-process (body)
‘(sys:spawn t
{progn
#+debug

(record-history "Making Process')
,body)))

;3 Locks:

;3; Go directly to the raw primitives. GET-LOCK and RELEASE-LOCK are too
;. slow.

(defmacro acquire-lock (lock) ‘(lucid::¥%get-lock ,lock ’lucid::lock-lock))

(defmacro release-lock (lock) ‘(setf (lucid::lock-lock ,lock) 0))

(defun make-lock (state Zoptional name)
(declare (ignore name))
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(let ((iock (sys:make-lock :type :spin)))
(if (eq state ’locked) (acquire-lock lock))
lock))

;;; Mailboxes:

(defstruct (mailbox (:conc-name mb-) (:print-function print-mb))
(lock (sys:make-lock :type :spin))
(entries-head ())
(entries~tail ())
(barrier nil)
(count nil))

(proclaim ’(inline mb-lock mb-entries-head mb-entries-tail mb-barrier
mb-count))

(defun mb-length (mb) (length (mb-~entries-head mb)))

(defun print-mb (mb stream depth)

(declare (ignore depth))

{format stream “<Mailbox “D: "D items, count: ~D, locked: “A, barrier: ~A>"
(lucid: :%pointer mb)
(mb-length mb)
(mb-count mb)
(not (sys:check-lock (mb-lock mb)))
(mb-barrier mb)))

(defun send (item mailbox)
(let ((entry (cons item nil))) ; Allocate out of critcal section
(acquire-lock (mb-lock mailbox))
(cond ({(null (mb-entries-head mailbox)) ; Empty if head -> NIL
(setf (mb-entries-head mailbox)
(setf (mb-entries—tail mailbox) entry)))
(t
(setf (mb-entries-tail mailbox)
(set? (cdr (mb-entries-tail mailbox)) entry))))
(release-lock (mb-lock mailbox))))

(defun receive (mailbox)
(cond ((null (mb-entries-head mailbox))
(sys:check-need-to-gc)
(receive mailbox))
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(t
;; Mailbox had something in it. Get lock and check again.
(acquire-lock (mb-lock mailbox))
(cond ((null (mb-entries-head mailbox))
(release-lock (mb-lock mailbox))
;; Wait for something to be enqueued.
(receive mailbox))

(t
;; Got lock on a full mailbox. Remove and return first item.
(let ((value (pop (mb-entries-head mailbox))))
(release~lock (mb-lock mailbox))

value))))))
;;; Counters:
;;; Can’t use events since signals before wait are ignored.

(defun make-counter (n) (cons (sys::make-lock :type :spin) n))

:;; Raw access to counter value.

(defmacro decf-counter* {counter) ‘(decf (the fixnum (cdr ,counter))))

(defun decf-counter (counter)
(acquire-lock (car counter))
(progt

(decf-counter* counter)
(release~lock (car counter))))

(defun clear-counter (counter) (setf (cdr counter) 0))

(defun wait-counter (counter)
(sys:check-need-to-gc)
(if (> (the fixnum (cdr counter)) 0)
(wait-counter counter)))

;3; Use history mechanism for debugging.
(defun replay-history (&optional (stream t))

(dolist (event (lucid::reset-history-queue))
(format stream "Process: “A, Processor: A “D~% “7UTU"
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(lucid:
(lucid:
(lucid:
(lucid:
(lucid::

:history-process—id eveat)
:history-processor event)
:history-timestamp event)
:history-format-string event)

history-args event))))

;;; To invoke and time a test.

(defmacro test (n &rest form)

‘(sys:qtime

(progn
#+debug

(lucid: :reset-history-queue)
(initialize-servers ,n)
(multiple-value-progi

,0form

(terminate-servers *idle-server-queuex)))))

);; End of Lucid Qlisp
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;33 System—independent code.

i;; A task is a function and its actual arguments. It is either represented
;i3 as a structure or a closure.

#+struct-task
(defstruct (task-object
(:conc-name task-)
(:constructor make-task-object (function arguments)))
function
arguments)

;;; Enqueue a function and its arguments on a queue.

#+struct-task

(defmacro make-task (queue function &rest arguments)
‘(send (make-task-object ,function ,arguments) ,queue))

;3 Invoke the object from the queue.

#+struct-task

(defmacro invoke-task (task)
‘(apply (task-function task) (task-arguments task)))

#+closure-task
(defmacro make-task (queue function &rest arguments)
‘(send #’(lambda () (funcall ,function ,Qarguments)) ,queue))

#+closure—~task
(defun task-object-p (obj) (compiled-function-p obj)) ; Better predicate???

#+closure-task
(defmacro invoke-task (task) ‘(funcall ,task))

;;; List of processes running the servers.

(def-global-var *server-processes* nil)
:;; Idle servers look for work on this queue. The lock protects the queue, so
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;;; that only one process grabs servers at once.
(def-global-var *server-queue-lock* (make-lock ’unlocked))
(def-global-var *idle-server-queuex (make-mailbox))
(def-global-var *number-of-idle-servers* 0)
(proclaim ’(fixnum *number-of-idle-servers*))
;:; A server repeatedly: dequeues a task, applies a function to its arguments,
:;; and looks for more work. A server quits if passed anything but a task.
(defun server (queue)

(let ((task (receive queue)))

(cond ((task-object-p task)
#+debug

(record-history "Queue “A -> task "A" queue task)
(invoke-task task)

#+debug

(record-history "Task ~A (“A) done" task queue)
#+allegro

(mp: process-allow-schedule)

#+qlisp

(sys:check-need-to-gc)

(server queue))
(t

#+dedbug

(record-history "Quiting (~A) ~A" task queue)))))

;;; This function is executed by a process from the IDLE-SERVER-QUEUE. It
;;; invokes a server and maintains to bookeeping information for that queue.

(defun idle-server (queue)
(server queue)

(acquire-lock *server-queue-lock#) ; And more processes are idle
;; Use raw form to save additional lock/unlock:
(decf-counter* (mb-barrier queue)) ; One fewer process serving queue

(incf *number-of-idle-servers*)
(release-lock *server—queue-lock#))

;;; Obtain between 1 and the desired number of servers. Create and return a
;;; new queue on which all of the servers are waiting. The actual number of
;;; servers depends on the number of free processes.
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(defun obtain-servers (&optional desired-number)
(acquire-lock *server-queue-lock¥)
(let ((n (number-of-servers desired-number)))
(decf *number—of-idle-servers#* n)
(release-lock *server-queue-lock*)

(let ((queue (make-mailbox)))
#+debug .
(record-history "Obtain "D (asked for ~A) servers" n desired-number)
(setf (mb-barrier queue) (make-counter n))
(setf (mb-count queue) (1+ n)) ; Additional for sync process
(obtain-n-servers n queue)
queue)))

;;; Assign N tasks from the idle server pool to run servers waiting on a given

;33 queue.

(defun obtain-n-servers (n queue)
(declare (fixnum n))
(cond ((= n 0))
(t
(make-task *idle-server—queue* #’idle-server queue)
(obtain~n-servers (- n 1) queue))))

;;; Initialize N processes run the server task on the idle server queue.

(defun initialize-servers (number-of-processes)
(setq *idle-server-queue* (make-mailbox))
(setq *number-of-idle-servers* number-of-processes)
(setq *server-processes* (initialize-n-servers number-of-processes))
(setf (mb-barrier *idle-server—queue*) (make-counter number-of-processes))
(setf (mb-count *idle-server-queue*) number-of-processes))

(defun initialize-n-servers (n)
(declare (fixnum n))
(cond ((= n 0) Q)
(t
(cons (make-process (server *idle-server-queue*))
(initialize-n-servers (- n 1))))))

;;; Terminate all servers for a given queue. The server return to the idle
;35 queue.

(defun terminate-servers (queue)
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#+debug
(record-history "Terminate servers for ~A" queue)
(terminate-n-servers (mb-count queue) queue))

;i3 Terminate the N servers for a queue by enqueuing a task that decrement the
;i; queue’s counting counter then enqueues a "killer" value onto the queue.

(defun terminate-n-servers (n queue)
(declare (fixnum n))
(cond ((= n 0))
(¢
(send nil queue) ; The last task
(terminate-n-servers (- n 1) queue))))

;;; Find the minimum non-NIL value in a heap. This function is called when a
;3; value is added to the heap. The value for slot I+N can either be I,

;i; indicating the clause I returnmed non-NIL; or N, indicating that clause I
;:; returned NIL. When clause I is the first non-NIL value, then return I.
;;; Otherwise, return NIL.

(defun find-first (heap i value n)
(declare (simple-vector heap)
(fixnum i value n))
(setf (svref heap i) valune)
(cond ((= i 1)
value)
((evenp i) ; Left child
(let ((right-value (svref heap (+ i 1))))
(if right-value
(find-first heap (floor i 2) (min value right-value) n)
(if (= value n)
nil
(2ind-tirst heap (floor i 2) value n)})))
(t ; Right child
(Let ((left-value (svref heap (- i 1))))
(if (and left-value (<= value left-value))
(find-first heap (floor i 2) value n)
nil)))))
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;;; Framework for testing runtime system.

;;; Return the number of servers to actually use, given a desirable number.

(defun number-of-servers (desired-number)

{declare (fixnum desired-number *number-of-idle-servers*))

(cond ((null desired-number)
#+conservative (the fixnum (ceiling *number-of-idle-servers* 2))
#-conservative *number-of-idle-serverss)
((<= desired-number *number-of-idle-servers*)
desired-number)
(t
#+conservative (the fixnum (ceiling *number-of-idle-servers* 2))
#-conservative *number-of-idle-servers#)))

;;; Don’t optimize test code.

(proclaim ’(optimize (speed 1) (safety 1)))

;;; Write a header for a test to a stream.

(defun display-test-header (stream)
(multiple-value-bind (second minute hour date month year)
(get-decoded~time)

(format stream "Date: ~“D/"D/°D ~2,’0D:72,’0D:~2,’0D"%"
date month year hour minute second)

(format stream "~A, “A on “A~Y"
(lisp-implementation-type)
(lisp-implementation-version)
(machine-instance))

(format stream "Runtime ~“A~%"%" *runtime-versionx)))

;;; Body of a test routine. Test the code sequentially and in parallel with
;33 varying numbers of processors. Run the tests the specified number of
;33 times.

(defmacro test-body (stream times &key sequential parallel (gc-each nil))
‘(progn
(if ,gc-each (sys::gc))
(format ,stream “Sequential: (x ~D)" ,times)
(time (dotimes (i ,times) ,sequential))
(format ,stream "~ %")
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(dotimes (num-proc (available-processors)) ; Plus one rumning this code
(it ,gc-each (sys::gc))
(format ,stream "1 + ~D Processors: {x “D)" num-proc ,times)
(test num-proc (dotimes (i ,times) ,parallel))
(format ,stream "~%"%"))))

;;; Measure the cost of the test framework.
(defun test-identity (&key (stream t) ; Stream for output
(times 1)) ; Runs of test
(display-test-header stream)

(test-body stream
times
:sequential (identity 1)
:parallel (identity 1)))

;7; Make and return a list with N elements. If the value of the elements is
;i; not specified, the list contains the integers from 1...N.

(defun make-n-list (n &optional value)
(it (= n 0)
nil
(cons (or value n)
(make-n-list (1- n) value))))

;;; The fibonnaci function.

(defun fib (i)
(cond ((eql i 0) 1)
((egql i 1) 1)
(t (+ (£ib (- 1 1)) (£ib (- 1 2))I0)))

;;: The factorial function.
(defun fact (i)
(if (eql i 0)

i
(* (fact (-1 1)) i)))

(defun n-time-it (times func arg &key (stream t))
(format stream "~% % D iterations of empty loop~%" times)
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(time (dotimes (i times) nil))
(format stream "~%"D iterations of "A("A)~%" times func arg)
(time (dotimes (i times) (funcall func arg))))

(defun time-send-receive (q)
(send 1 q)
(receive q))

(defun time—lock-unlock (lock)
(acquire-lock lock)
(release-lock lock))
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Appendix B

Source Code for Loop Timings

;;; -*- Mode: LISP; Syntax: Common~-lisp; Package: CURARE; -*-

;33 test-map.lisp
;;; Copyright (C), James R. Larus, 1989. All rights reserved.

;i; Code to test mapping functions with Curare runtime system.

(require "runtime")

(in-package ’curare)

;;; Don’t optimize test code.

(proclaim ’(optimize (speed 1) (safety 1)))

;;; Use all processors as servers.

(defun number-of-servers (desired-number)
(cond ((null desired-number)
*number-of-idle-servers#*)
((<= desired-number *number-of-idle-servers*)
desired-number)
(t
*number-of-idle-servers*)))

;5 MAPC:

(defun mapc-sync (f 1lst)



(let ((task-queune (mapc-async f 1st)))
(server task-queue)
(wait-counter (mb-barrier task-queue)))
nil)

(defun mapc-async (£ 1st)
(let ((task-queue (obtain-servers)))
{mapc3 task-queue f 1st)
task-queue))

#+spawn-call
(defun mapc3 (task-queue f 1st)
(cond ((null 1st)
(terminate-servers task-queue))
(t
(make-task task-queue #’mapc3 task-queue f (cdr 1lst))
(funcall f (car 1st)))))

#+spawn-head
(defun mapc3 (task-queue f 1lst)
(cond ((null 1st)
(terminate-servers task-queue))
(¢
(make-task task-queue
#'(lambda (£ 1st) (funcall f (car 1lst)))
1
1st)
(mapc3 task-queue f (cdr 1lst)))))

;;; Measure the cost of sequential and parallel MAPC.

(defun test-mapc (length &key (stream t) ; Stream for output
(times 1) ; Runs of test
(value nil) ; Initial value of list
(func #’fact)) ; Mapped function
(let ((1st (make-n-list length value)))
(display-test-header stream)

(it value
(format stream "MAPC of "A on "D ... "D ("D)"%"
func value value length)
(format stream “"MAPC of A on O ... “D°%" func length))

(test-body stream
times
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:sequential (mapc func lst)
:parallel (mapc-sync func 1st))))
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;3 ; MAPCAR:

(defun mapcar-sync (f lst)
(let* ({dest (cons nil nil))
(task-queue (mapcar-async dest f lst)))
(server task-queue)
{wait-counter (mb-barrier task-queue))
(cdr dest)))

(defun mapcar-async (dest f lst)
(let ((task-queue (obtain-servers)))
(mapcar-dp2 task-queue dest f 1st)
task-queue))

#+spawn-call
(defun mapcar-dp2 (task-queue dest f lst)
(cond ((null 1st)
(setf (cdr dest) ())
(terminate-servers task-queue))
(t
(let ((tmp (coms nil nil)))
(make-task task-queue #’mapcar-dp2 task-queue tmp f (cdr 1lst))
(setf (car tmp) (funcall f (car 1st)))
(setf (cdr dest) tmp)))))

#+spawn-head .
(defun mapcar-dp2 (task-queue dest f lst)
(cond ((null 1st)
(terminate-servers task-queue)
(setf (cdr dest) ()))
(t
(let ((tmp (coms nil nil)))
(make-task task-queue
#’(lambda (dest f 1st)
(setf (car tmp) (funcall f (car 1lst)))
(setf (cdr dest) tmp))
dest
b4
lst)
(mapcar-dp2 task-queue tmp f (cdr 1st))))))

Test the cost of sequential and parallel MAPCAR.

.« e
2
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(defun test-mapcar (length &key (stream t) ; Stream for output
(times 1) ; Runs of test
(value nil) ; Initial value of list
(func #’fact)) ; Mapped functiomn
(let ((1st (make-n-list length value)))
(display-test-header stream)

(if value
(format stream "MAPCAR of "A on "D ... "D ("D)"%"
func value value length)
(format stream "MAPCAR of "A on O ... ~D"%" func length))

(test-body stream
times
:sequential (mapcar func 1lst)
:parallel (mapcar-sync func 1lst))))
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