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ABSTRACT

Three adaptive neuronal models based on neural analogs of behavior
modification episodes are proposed, which attempt to bridge the gap between
psychology and neurophysiology. The proposed models capture the predictive
nature of Paviovian conditioning, which is essential to the theory of adaptive
systems. The models leam to anticipate the occurrence of a conditioned
response before the presence of a reinforcing stimulus when training is com-
plete. Further, each model can find the most nonredundant and earliest predic-
tor of reinforcement. The behaviors of our models account for several aspects
of basic animal leaming phenomena in Paviovian conditioning beyond previous
related modeis. Computer simulations show how well our models fit empirical
data from various animal learning paradigms.
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l. Introduction

Animal learning is inferred from observed behavior and constitutes carefully testified postu-
lates regarding elemental processes of learning. Recent research into animal learning can be
separated into two categories: the behavioral and neural substrates of learming, namely, the
psychological and physiological levels of learning. One way to bridge such a gap is to postulate
neural anaiogs of behavioral modification paradigms. Hebb's postulate [15] for synaptic plasticity
was the first trial as a neural analog of associative leaming, which attempted to bridge psychol-
ogy and neurophysiology. The theory of adaptive networks originated with [15] and continues to
be influenced by plausible neural analogs of behavioral conditioning [8,17,9,26,24,27,18,25,2,
19,11,20].

Contemporary artificial neural networks are frequently referred to as connectionist models,
parallel distributed processing (PDP) models, and adaptive/self-organizing networks. Basically, it
is @ complex system of neuron-like processing units that operate asynchronously but in paraliel
and whose function is determined by the network topology of connectivity. Artificial neural net-
works provide a new computational structure, a plausible approach for information processing
because of its adaptivity/learning as well as massive parallelism.

Although new learning algorithms and VLSI technologies have recently rejuvenated neural
network research, many problems still exist. Among them, the comprehensibilty of neural net-
works, theoretical parsimony/enormous cost, and few empirical successes are maijor issues of
the limitations of current neural networks. The learning behavior of such networks cannot be
well understood, and the role of generic elements and subnetworks is unclear. Furthermore,
most of these networks lack a theoretical foundation. The time and effort required to develop
neural network architectures (network topology) and training is very high. Researchers have
been devoted to "modeling applications”, while relatively few ‘fieided applications” have
emerged [3]. Most of such applications are restricted to pattern recognition, categorization, and
realizations of associative memory. They are still toy research problem, at the proof-of-concept
stage. Among the few exceptions, the Adaptive Channel Equalizer (developed by Bernard
Widrow) is perhaps the most commercially successful of ail neural network applications to date.
it is a single-neuron device used now in virtually all long-distance telephone systems to stablize
voice signais [3].

Klopt [18] has postulated that, "An intelligent system will have to build on a foundation that
amounts to a highly detailed, immense microscopic knowledge base, a knowledge base that can
be interfaced effectively with higher functional levels.” From this perspective, a neural substrate
could develop into the microscopic knowledge base. The macroscopic capabilities of intelli-
gence could then be built on top of this. Given the limitations of current neural networks, a plau-
sible scheme is to incorporate capabilities previously found on the macroscopic, network level
into the microscopic, neuronal level.

In this article, we introduce three adaptive neuronai models that coincide with existing
animal leaming theory. Each proposed model provides a basis for understanding and explaining
Paviovian (classical) conditioning, which is the best understood animal learning process. After
discussing the taxonomy of leaming and Paviovian conditioning, we briefly review previous
related works for modeling Pavlovian conditioning. We then present our models by using the
theories of Pavlovian conditioning in animal learning studies and justify their convergent
behavior. Finally, we report computer simulations of these models and show how well our
models fit empirical data from various animal learning paradigms.



Il. Learning and Paviovian conditioning

A. Learning

Leaming, the acquisition of knowledge about the real world, is the most fundamental
environmental factor in altering behaviors in animals. Leaming denotes changes in the system
that are adaptive in the sense that they enable the system to do the same task or tasks drawn
from the same population more effectively the next time [23]. It is one of the remarkable abili-
ties that animais possess, and it has been fruitfully studied by psychologists, neurophysiologists,
biologists, artificial intelligence and cognitive science researchers. Traditional theories of learn-
ing and behavioral conditioning have been associative in nature. From this perspective, it has
been useful to distinguish two major classes of learning: nonassociative learning and associative
learning. Nonassociative learning, which includes habituation and sensitization [5], is said to
result from experience with a single type of event (stimulus). Associative leaming, which
includes Paviovian conditioning and operant conditioning [22,5], is said to result from the rela-
tionship of one event (stimulus or response) to another (stimulus). The theory of Paviovian con-
ditioning is a landmark in the study of learning and is the most weil understood animal learning
process.

B. Pavlovian Conditioning

Paviovian conditioning was introduced by Ivan Paviov in 1927. It invoives establishing a
contingency between a relative neural conditioned stimulus (CS) and a significant, response-
eliciting, unconditioned stimulus (US), or more precisely, the learning of a predictive relationship
between these two stimuli. The most well-known exampie of Paviovian conditioning comes from
Paviov's own research: the study of the conditioned reflex of salivation by dogs. Prior to condi-
tioning, when a dog hears the sound of a bell, it picks up its ears. And when food is presented
to it, it salivates only after food has entered its mouth. It this sequence of events--ringing the
bell before food is served to the dog--is repeated, the dog soon starts to salivate just by the
sound of the bell. The dog has in effect been "conditioned.” it salivated. Figure 1 illustrates the
conditioning of Paviov's dogs.

Prior To Conditioning

leads to
Sound of a Bell »  Picking Ears up
Food in Mouth > Salivation
After Conditioning
leads to
Sound of a Bell ¥»  Salivation

Fig. 1. Conditioning of Paviov's dogs. Prior to conditioning, when the dog heard a bell
sound, it picked up its ears. When food was in its mouth, i salivated. After conditioning,
when the dog heard the bell sound, it salivated.
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Early Learning

Sound of a Bell (CS) I l

Food in Mouth (US) | l
Salivation (UR) ] |

After Learning

Sound of a Bell (CS) I |

Food in Mouth (US) I l
Salivation (CR) l I

Fig. 2. Schematic paradigm of conditioning procedura. A US was repeatedly paired
with the presence of a CS during early conditioning. After conditioning, the CS can
predict the occurrence of the CR before the presence of the US.

Since food induces salivation by reflex, without training, the food is called the unconditioned
stimulus (US) and the salivation is the unconditioned response (UR). Since, the sound of a bell
elicits salivation after training, it is called the conditioned stimulus (CS). The salivation resufting
from the sound of the bell is the conditioned response (CR). The paradigm for this leamning pro-
cedure is illustrated in Figure 2. As can been seen, a CS can be used to predict the occurrence
of a CR before the presence of a US. From animal learning theory literature, in addition to the
the contiguity--temporal characteristics of the CS and the US during Pavlovian conditioning--we
cannot overemphasize the importance of the contingency--a truly predictive relationship between
the CS and the US.

lll. Previcous Models of Paviovian Conditioning

Modeling Paviovian conditioning serves as an analytical tool for evaluating axiomatic princi-
ples of associate learning. It makes vague and complex ideas explicits, and it is precise enough
to predict implications revealed through empirical research. Many researchers have explored
modeiing methods for this purpose since Hebb’s work [15] . The development of models for
Paviovian conditioning can be classified into two main streams: neural and psychological
(behavioral) substrates. The former includes the work of Hawkin and Kandel [13,14], Kleso and
Brown [16], Gluck and Tompson {7]. The latter can be further subdivided into neural network
models and single neuronal modeis. Network models were reported by S. Grossberg in a series
of his work [8,9,10,11]. Single neuronal modeis, which rely less on detailed anatomies than
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Grossberg's models and more on complex processing at the neuronal level, were proposed by
Rescorla and Wagner [26,28), Frey and Sears [6], Pearce and Hall [24,12,25], Sutton and Barto
[27.2], and Klopf [17,18,19,20]. These single neuron models have been a particularly active
area for modeling Paviovian conditioning. In this article, a special attention is paid to the single
neuronal models, and a brief review of previous related works is given as follows.

A. Rescorla-Wagner Mcdel

Rescorla and Wagner [26] proposed that the associative strength of a CS depends in part
on the differential effect of unexpected vs. expected responses. Their model confirms to various
Paviovian conditioning paradigms, such as blocking, conditioning with compound stimuli, and the
other stimulus context effects. it extracts appropriate correlation between reliabie, nonredundant
CS and US. Also, Sutton and Barto [27] showed that the Widrow-Hoff (Adaline) model is essen-
tially equivalent to this model. Despite many successes of this model, it has several well- known
limitations and shortcomings. First, there is no evidence to support the extinction of conditioned
inhibitors predicted by this model [29].- Second, it does not explain the retardation of conditioning
produced by prior presentation of the CS alone (latent inhibition) [1]. Third, the simple acquisi-
tion curve is strictly negatively accelerated while the typical leamning curve is sigmoid in shape
[22]. Finally, the temporal dynamics of conditioning and decay terms are not included.

B. Pearce-Hall Mode!

Pearce and Hall based their models on ideas originated by Mackintosh [21] and Wagner
[28], namely that variations in @ CS processing determine the course of conditioning and that
predictive power is inversely proportionally to the "expectedness” of the events. They postulated
that the associative strength of a CS is partly determined by an associability specific to that
stimuius. The associability of a CS on one trial depends on the absolute value of the
discrepancy experienced on the immediately preceding trial between the actual elicited and
expected USs. One impetus for the Pearce-Hail model is that it more successfully describes the
latent inhibition and surprising omission of the second shock [4], which could not be sufficiently
addressed by the Rescorla-Wagner model. However, the simple acquisition curve is purely
negatively accelerated. The intratrial temporal relationship between the CS and US was taken
no further until [25]. In addition, while conditioning with compound stimuli, the Pearce-Hall model
will be unstable once the sum of the associative strengths of all CSs is greater than the
expected US. This is due to the use of absolute value in the associability for their modei.

C. Sutton-Barto Model

Sutton and Bano’s [27] model is based on ideas from Rescorla and Wagner{26] and Kiopf
[17], that variations in a US processing determine the course of conditioning, and synaptic plasti-
city becomes eligible under a certain synaptic activity and remains eligible for a period of time.
They proposed that the associative strength of a CS be dependent upon the discrepancy
between the actual activity and expected activity responses plus an eligibility trace. This trace
strengthens whenever a CS signal occurs and decays exponentially. Their model is in strong
agreement with the behavior data regarding the effects of stimulus context, since it is a tem-
porally refined extension of the Rescorla-Wagner model [27]. Hence, it shares the shortcomings
of the Rescorla-Wagner model regarding the extinction of conditioned inhibitors and the shape of
acquisition curve. One important aspect of the Sutton-Barto model is to express the
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contingency, a predictive relationship between the CS and US in a formal way, and eiicits a CR
before the occurrence of the US. Also, it captures more temporal dynamics of Paviovian condi-
tioning than the Rescorla-Wagner model.

V. Adaptive Neuronal Models

in this section, we discuss the theories of our models and formulate those ideas
mathematically. Then, the convergent behaviors of the proposed models are analyzed.

A. Theory

Basically, the theories of our models originate from many animal learning literatures and
previous related models. We abstract and adopt underlining principles from such literatures for
which we consider essential for adaptive neural models with maximum consistency.

in [28], Wagner first postulated that the associative strength of a CS depends not only
partly on the variations of a CS effectiveness but aiso on the variations of a US effectiveness,
but this is taken no further. This will be known as the CS-US effective theory in this article.
Before that, Rescorla and Wagner [26] emphasized on the variations in a US as a result of CS-
US parings. We shall refer to this as the US effective theory. Altemately, Pearce and Hall [24]
postulated that the variations in a CS processing (associability) determines the course of condi-
tioning. Further, the associability of a CS is experienced on the immediately preceding trial.
This will be referred to as the CS effective theory. After introducing these three fundamental
theories, we would like to convey some properties of the associability from the Mackintosh atten-
tion theory [21], which are essential to adaptive neuronal models. That is, the associability
depends on the nature of the stimulus (the correlation of a stimulus with reinforcements), and
each associability varies independently. These have been implicitly adopted by various related
models [26,27], especially in the conditioning of compound stimuli, including ours. A parameter
is usually set to capture these properties, such as the stimulus salience in [26] and the learning
rate in [27]. One important aspect of this theory is that the associability may change with a
subject’s experience. We propose that this is not limited oniy by the immediately preceding trial.
We shall call it the experienced effective theory. As mentioned above, Sutton and Barto [27]
incorporated two essential features of Paviovian conditioning into their model, namely, the
predictive nature and temporal intratrial dynamics of the CS and US. These features were
implemented using the notion of the eligibilty trace and the predictive version of the
adaptive/learning rules. This shall be known as the temporal prediction theory. Finally, we
abstract an idea from Klopf [19], Klopf's postulate, that a change in the associative strength of a
CS is proportional to its current associative strength.

After introducing the theoretical background for our models, we can now describe three
proposed models employing these theories. Basicaily, the theory behind Model | originates from
the CS-US effective theory, experienced effective theory, temporal prediction theory, and Klopf's
postulate. The theory behind Model Il is from the US effective theory, experienced effective
theory, temporal prediction theory, and Klopt's postulate. This model can be viewed as a
simplification of the Model | or an extension of the Sutton-Barto model [27]. The theory behind
Model ill is similar to that of Model |, except the CS effective theory is used instead of the US-
CS effective theory. It is a simplification of Model | or an extension of the Pearce-Hall model
[24].
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Fig. 3. A generic adaptive neuronal modei with n conditioned stimuli CS; with associa-
tive strengths w;, i=1,2,...,n, a unconditioned stimuius US with its fixed strangth wy,
"~ and an output y.

B. Mathematical Formuiation

" To summarize the theories behind the proposed models discussed thus far, it is helpful to
define these ideas in mathematical terms. Figure 3 illustrates a generic adaptive neuronal
model which is used as a reference for describing the proposed models. It shows a model with
an input pathway for each CS, an input pathway for the US, and an output pathway for the UR
and CR. Basically, the generic adaptive neuronal model is characterized by an activation rule
and a learning rule. The former combines the impinging inputs to produce a new level of activa-
tion. The latter is used to modify the associative strength of each input CS using its own experi-
ence. The dynamic behavior of this model with these rules simulates functions of Paviovian
conditioning paradigms.

Activation Rule

Before defining the activation rule, a neural analog of Paviovian conditioning needs to be
addressed. The presence or absence of each CS; at time t, i=1,2,...,n, is represented by the
activity on the corresponding signal x;(t). Similarly, the presence or absence of a US at time t is
denoted by xo(t). The associative strength of each CS; with respect to the US is indicated by
wi(t), CS-US synaptic weights. The fixed strength for the US is denoted as w,. The strength of
the CR at time t is represented by y(t). In particular, y(t) is a special combination strength of
the CR and UR during various conditioning episodes. An activation rule is then characterized by
the following equations:

n

y(t) = (X 0i(t)x(t)),

=0
where f is an activation mapping function. In this article, an identity tunction is adopted. How-
ever, a hard limiter, a threshold logic, or a sigmoid-shaped function is a possibie candidate.



Learning Rule

The learning rule plays an important role in our models, since it captures many essential
features of the Paviovian conditioning paradigm. Some other variables are introduced o charac-
terize this rule. The associability of each CS, conceptually similar to the eligibility in [17,27], ini-
tiates a local prolonged trace by the presence of that stimulus, which captures the notion of the
CS effectiveness. We also incomporate the idea from Klopf's postulate. The associability a;(t) of
each CS; at time t is then impiemented by an averaging theory, an exponentially weighted mov-
ing average which calculates the weighted average of the values of x;(t)w;(¢) during a time
interval immediately preceding t. Further, we acknowledge the possibility that the nature of the
US may influence the CS associability (the term y(t)-y(t) as follows). Similarly, an averaged
expected aclivity response y(t) is computed by the values of y(t) over some time period
preceding t. Furthermore, the nature of the associability of each CS; is separatedly denoted by a
constant parameter ¢;, a learning rate parameter. Therefore, the learning rules of our models
are defined by the following equations:

Model i
y(t) =By (t-1) + (1-P)y(t-1),
a;(t) = ylo;(t-1)x (- Ly (t)-F(t) | + (1-Va,(t-1),
oi{t+1) = 0;(t) + Ga;(t)y (1)-F(y)).
Model il
y(t) =By (t-1) + (1-B)y(t-1),
a;(t) = vl (t-1)x;(t-1) | + (1-v)e,;(t-1),
oi(t+1) = w;(t) + o (H)(y (H)-F(¥)),
Model i

y(t) =By (t=1) + (1-B)p(t-1),
a;i(t) = vl;(t=1)x(t-1) | (y (1)-F(1)) + (1-7)c;(t-1),
w;i(t+1) = 0;(t) + cia; )y (L),

where f§ and y are constants with the values of 0 <, < 1. We require w,(t), to be nonzero ini-
tially, though it can be chosen arbitrarily close to zero.

In general, the activity x; and associative strength o, on an input pathway directly affect
the output activity y. At the same time, they elicit a local prolonged trace (associability) on that
pathway for possible synaptic modification. Particularly, for Model | and Ilf, the associability also
depends on the discrepancy of the actual activily y versus averaged expected activity 7. A
CS-US synaptic modification of Model Il is possible whenever it has non-zero values for the
associabilty a; and output activity y. A CS-US synaptic weight of Model | or Model Il is
modifiable whenever it has a nonzero associability and a difference between y and y.

C. Convergent Behavior of Simple Acguisition

In this section, we show the convergent behaviors of our models with application to simple
acquisition (with only one input CS). For simplicity, we shall take the value of B equal to 1 which
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Fig. 4. Temporal relationship between the CS onsat and US onsat in basic conditioning
paradigms. (a) simultaneously, (b) delay, (c) trace, and (d) backward conditioning.

results in y(t)-y(t)=y(t)-y(t-1), tirst difference of y at time t. We also assume rectangular sig-
nals for the CS and US. Furthermore, the duration of the US is assumed long enough to have
the CS lose its associability by the time of the US offsets. Finally, the initial value of the associa-
bility is set to zero. These assumptions will apply to the following discussion and the simulation
in the next section.

As known in Paviovian conditioning, the temporal dynamics of the CS and US are essen-
tial to forming a predictive relation. The CS-US temporal reiationship is usually termed by the
interstimulus interval (1Sl), which is the time interval between the CS onset and US onset.
Depending on the time course of CS-US pairings, conditioning is identified as forward condition-
ing (when ISI is nonnegative) and backward conditioning (when IS! is negative). Here, we shall
focus on forward conditioning since backward conditioning usually does not occur. Three types
of forward conditioning are possible: the simuitaneous conditioning, delay conditioning, and
trace conditioning. Figure 4 shows a schematic digram of forward and backward conditioning.

Simultaneous Conditioning

Simultaneous conditioning results when the CS and US occur concurrently (1SI=0). In this case,
our models do not iearn any association from conditioning since the associability is always zero
when y(t)-y(t-1) is nonzero (as y(t) in Model i11).

Delay Conditioning

Delay conditioning results when the US onsets before the CS offsets. The variation of the CS
strength is strictly increased until it reaches an asymptotic associative strength. This conver-
gence is ensured by the differential term y(t)-y(t-1). Once y remains a constant, the
differential term becomes zero and ceases the learning process. However, different values of the
IS1 in all models influence learning speed substantially. ‘

Trace Conditioning

Trace conditioning results when the US onsets after the CS offsets. Figure 5 illustrates a trace
conditioning paradigm with related variables. Let the duration of the CS be lopr Simutiation time
steps. Then the ISI is represented by /,,+k time steps. We note the associability at point a
can be represerted by:

(@) = ologer) = H(1=1)"2'M(0) + - - - + M{lopr)],

where m(t) represents the corresponding term in each model, such as the absolute value of
Wi (I=1)x;{t-1){y (t)-y(t-1)) in Model I. Furthermore,
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Fig. 5. Time coursas of model variables for a conditioned trial in trace conditioning, in
which a CS offset precedes a US onset by k simulation time steps. The duration of the
CS is /o time steps and the US is of sufficient duration to ensure zero associability at
the US offset. After some trials, the associative strength is positively strengthed. The
new associative strength directly changes y and hence y—¥. The CS offset with a posi-
tive associability causes a decrease in the associative strength, while an increase is
caused by the US onset. At equilibrium, these two changes are balanced.

a(b) = Aloprekar) = (1-1* (@),

since the values of M(lyp.;). j=1,2, - - -, are all zeros. In Model | and Mode! I, the dynamic
equilibrium, wg, of the associative strength CS is attained when the increase of its strength
equals its decrease, namely,

a(a)b + a(c)d =0,
a(a){0-w,) + (1-Y*a(a)1 = 0,

s = (1-p*
Hence, the asymptotic associative strength is proportional to (1-v) raised to the powers of k.
However, the same property does not hold for Model IIl. Its asymptotic associative strength

eventually reaches zero since negative values of the associability are always produced. If we
take its absolute value, the asymptotic strength eventually becomes unbounded.

V. Simulation Resulits

Cur models were implemented on a Sun workstation, and some basic conditioning
phenomena were simulated. After describing parameter conditions for our simulation, we investi-
gate the effect of conditioning with a single stimulus, including the simple acquisition of a CR,
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time courses of the signals during conditioning, and the ISI effect. We then observe the effects
of stimulus comext, such as overshadowing, blocking, and second-order conditioning.

A. Parameter Conditions

In general, the behaviors of our models depend on the timing (ISI), magnitudes, shapes,
and durations of the CS and US, the averaging theory for the associability a; and expected
response ¥, and the initial value of the associative strength. For simplicity, we assumed rec-
tangular signals for the CS and US. The duration of the CS and US is 3 and 30 simulation time
steps, respectively. The duration of the US was long enough to assure zero associability by the
time of the US offset. Furthermore, the initial value of an associability was set to zero and that
of each associative strength was set to 0.001. The other parameters for conditioning with a sin-
gle stimulus were B=1.0, y=0.8, and ¢;=0.01. For conditioning with muitipie stimuli, leaming rate
parameters, c;, were set to 0.1 instead of 0.01. In addition, the initial associative strengths of the
CS1 and CS2 in the second order conditioning were set to 1.0 and 0.1, respectively.

B. Results

Simple Acquisition

Repeated reinforcement with a US resulted in the acquisition of a CR. Figure 6 shows simu-
lated results for such a simple acquisition. Ail of these three models produced the sigmoid-
shaped acquisition curves found in animal learning experiments.

Acguisigon
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Fig. 6. Simulation of simple acquisition. The durations of the CS and US are 3 and 30
time steps, respectively. The time of the CS offset is the time of the US onset. A
sigmoid-shaped acquisition curve is obtained by esach model.
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Fig. 7. Time courses of the signals of Modsl | in conditioning. (a) time courses of
model signais during the first trial. The associative strength is increased due to the non-
zero associability and positive diffarence of y—y caused by the US onset. (b) time
courses of model signals during the second trial. An increased associative strength
diractly changes y and then y-J as waell as the associability. (c) time courses of modal
signals after sufficiently conditioning. Sinca there is no change in y—¥, the associability
becomes zerc and no further conditioning occurs.
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Fig. 8. Time coursas of the signais of Model Il in conditioning. (a) time courses of model
signals during the first trial. The associative strength is increased due to the non-zero
associability and positive difference of y~F caused by the US onset. (b) time courses of
model signals during the second trial. An increased associative strength directly changes
y and then y-¥ as well as the associability. (c) time courses of model signals after
sufficiently conditioning. The associability reaches its maximum since the associative
strength is at the asymptotic level. There is no change in y—¥ and then no further condi-
tioning occurs.
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First Trial of Condltioning
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Fig. 9. Time courses of the signals of Modsi lil in conditioning. (a) time coursas of

modal signals during the first trial. The associative strength is increased due to the non-
zero associabilty and positive difference of y—¥ caused by the US onset. (b) time
courses of model signals during the second trial. An increased associative strength
directly changes y and then y—¥ as well as the associability. (c) time courses ot modal
signals after sufficiently conditioning. Since there is no change in y-¥, the associability
becomes zero and no further conditioning occurs.
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Time Courses of Signals

The model behavior in classical conditioning with a single CS is traced by computer simulation.
Figure 7, 8, and 9 illustrate the time courses of model variables corresponding to each model. it

is worth noting that the variation of the associability differs not only from trial to trial but also
from model to model.

ISI Effects

Conditioning depends critically on the temporal relationship of the CS and US {IS1). Figure 10
shows the asymptotic associative strength for a series of simulation varying the ISi. It shows an
ISI dependency with an inverted U-shaped curve, which is consistent with experiment data.
Furthermore, the learning speed of each model is strongly affected by this variation of the ISI.

Stimulus Configuration:

INTERSTIMULUS INTERVAL
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Fig. 10. (a) A stimuius configuration of the interstimulus interval (ISI). The durations of
the CS and US are 3 and 30 time steps, respectively. (b) Asymptotic associative
strength vs. the IS| in a simulated conditioning. An invertad U-shaped curve results
from Model | and Mode! 1. No conditioning occurs in trace conditioning of Modal il.
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Stimulus Configuration:
BLOCKING and OVERSHADOWING

phase |

cst 3

cse

us | 30
phase !l

cs1 3

cs2 3

us 30
phase Il

cs1 3

cs2 I 6

us 30

Fig. 11. A stimulus configuration of blocking and overshadowing. A blocking experiment
consists of phase | and il. In the phasa |, CS, is sufficiently conditioned as usual. In the
phase i, CS; and CS; are paired with the US. The phase Il is a possible stimuius
configuration of an overshadowing experiment.
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Overshadowing | Blocking
Overshadowing of one CS by another is affected not only by their relative stimulus salience, but
also by their relative predictive power [22]. The former one is simulated by using different iearn-
ing rate parameters in our models. The latter could be interpretated as follows: a better predictor
of the US will overshadow a less predictive one. A possibie stimulus configuration is depicted in
the third phase of Figure 11. In Figures 12, 13, and 14, the third phase of conditioning demon-
strates this phenomenon for the three models. It implies that our models can find the most non-
redundant and earliest predictor of reinforcement.

Blocking Overshadowing

1 T T \ T ;
09+ f l -

08+ /’

0.7( ;

0.6
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0.4+

Associative Strength

03r

0 500 1000 1500 2000 2500 3000 3500 4000

Trials
Fig.12. Simulation of a blocking and overshadowing experiment by Model I. The associ-
ative strengths at the end of each trial are illustrated. Biocking. In trials of 0-1000, a
CS, is sufficiently conditioned by a US at its asymptotic level. In trials of 1000-2000,
CS,; and CS, present simultaneousiy and are paired with the US. No conditioning
occurs to the CS,. Overshadowing. I trials of 2000-4000, the earlier predictor CS, of

the US overshadows the less predictive CS;.
Blocking Overshadowing

Associative Suength
=3
th
I
L

0 100 200 300 400 00 600

Fig. 13. Simulation of a blocking and overshadowing experiment by Mcdel! l{. The asso-
ciative strangths at the end of each trial are illustrated. Blocking. In trials of 0-200, a
CS, is sufficiently conditioned by a US at its asymptotic level. In trials of 200-250, CS,
and CS; present simultaneously and are paired with the US. No conditioning occurs to
the CS;. Overshadowing. In trials of 250-600, the earlier predictor CS, of the US
overshadows the less predictive CS,.
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Blocking Overshadowing
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Fig. 14. Simuiation of a blocking and overshadowing experiment by Model lil. The asso-
ciative strengths at the end of each trial are illustrated. Blocking. In trials of 0-200, a
CS, is sufficiently conditioned by a US at its asymptotic level. In trials of 200-250, CS,
and CS, presant simultaneously and are paired with the US. No conditioning occurs to
the CS,. Overshadowing. In triails of 250-600, the earlier predictor CS, of the US
overshadows the less predictive CS,.

Blocking is the most well-known overshadowing. A stimulus configuration is shown as phase |
and Il in Figure 11. In the first phase of a blocking experiment, a CS is sufficiently conditioned
as usual. in the second phase, a second CS is added to the previous CS and the compound
stimuli is paired with the US. This paradigm results in no conditioning occurring to the second
CS since the second CS is redundant. Phase | and Phase Il in Figures 12, 13, and 14 show
simulated results of blocking for each of the three models.

Compound Stimulus Conditioning

A special experiment with compound stimulus conditioning is designed to demonstrate the capa-
bility of appropriate association with nonredundant CSs. Trials for one CS1 are paired with a US
with strength 0.6. Trials for compound stimuli CS1 and CS2 are paired with a US with strength
1.0. Two schemes are trained alternatively. Figures 15, 16, and 17 show that the asymptotic
associative strength of the CS1 and CS2 reaches 0.6 and 0.4, respectively.
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Compound Stimuli
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Fig. 15. Simulation of a compound stimuli conditioning by Modael 1. Trials for one CS,

are reinforced by a US with the strength 0.6. Trials for compound stimuli CS, and CS,
are reinforced by a US with the strength 1.0. Two schemes are alternatively conditioned.
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Fig. 16. Simulation of a compound stimuii conditioning by Model !l. Trials for one CS,

are reinforced by a US with the strength 0.6. Trials for compound stimuii CS, and CS,
are reinforced by a US with the strength 1.0. Two schemas are afternatively conditioned.
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Compound Stimuli
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Fig. 17. Simulation of a compound stimuli conditioning by Modei Ill. Trials for one CS,
are reinforced by a US with the strength 0.6. Trials for compound stimuli CS, and CS,
are reinforced by a US with the strength 1.0. Two schemes are alternatively conditioned.

Second Order Conditioning

Figure 18 illustrates the stimulus configuration of a second-order conditioning. In the first phase,
an effective US is used to reinforce the associative strength of an initially inetfective CS1. In the
second phase, the CS1 served as a new US is used to strength a new CS2. Evidence of condi-
tioning is provided by the occurrence of CRs to CS2. Simulated results of the second-order
conditioning are depicted in Figures 19, 20, and 21 for Models |, II, and IlI, respectively.
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Stimulus Configuration:
SECOND ORDER CONDITIONING
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Fig. 18. A stimulus configuration of second-order conditioning. CS, is paired with a US,
CS; is then paired with the CS,, and evidence of conditioning is provided by the
occurrence of CRs to CS,.
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Second Order Conditioing
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Fig. 19. Simulation of second-order conditioning by Modei |. The associative strengths
at the end of each trial are plotted. CS, is first conditioned by a US and reaches its
asymptotic value. Then, CS, is served as a US for reinforcing CS, in the absence of the
previous US. Since CS, is not reinforced by the US, its strength is weakened and hence
the strength of the CS, is decreased.
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Fig. 20. Simulation of second-order conditioning by Model II. The associative strengths
at the end of each trial are plotted. CS, is first conditioned by a US and reaches its
asymptotic value. Then, CS, is served as a US for reinforcing CS, in the absence of the
previous US. Since CS, is not reinforced by the US, its strength is weakened and hence
the strength of the CS, is decreased.
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Second Qrder Conditioing
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Fig. 21. Simulation of second-order conditioning by Mode! lll. The associative strangths
at the end of each trial are plotted. CS, is first conditioned by a US and reaches its
asymptotic vaive. Then, CS, is served as a US for reinforcing CS, in the absence of the

previous US. Since CS, is not reinforced by the US, its strength is weakened and hence
the strength of the CS, is decreased.

V1. Conclusion

In the preceding sections, we developed our adaptive neuronal models and investigated
their behaviors by computer simulations. We postulated neural analogs of behavior modification
episodes to bridge the gap between psychology and neurophysioclogy. Given the limitations of
contemporary neural networks, a plausible trend is to shift the emphasis placed on the macros-
copic capabilities from the network level into the neuronal ievel. Our models present one step
toward this direction and no attempt is made to be exhaustive.

The behaviors of our models strongly agree with animal behavior data for Paviovian conhdi-
tiening, although our models are not compiete for modeling Paviovian conditioning. Our models
account not only for the effects of conditioning with a single stimulus, including simple acquisi-
tion with a sigmoid-shaped curve, conditioned inhibition, extinction, forward conditioning, and the
IS! effects, but also for the effects of conditioning with multiple stimulus context. Examptes are
blocking, overshadowing, latent inhibition, second-order conditioning, and higher order condition-
ing. The development of latent inhibition predicted by our models would be much faster than that
in the case of animais since no learning would occur on the first conditioning trial. Further
Model | can explain the surprising omission of the second shock{d] by acknowiedging that the
nature of the US may influence the CS associability. We also incorporate the predictive nature
of Paviovian conditioning in our models, which is essential to the theory of adaptive systems.
Further, our models capture the temporal intertrial relationship of the CS and US beyond the
Rescorla-Wagner, Pearce-Hall, and Sutton-Barto models.
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