Massive Information Storage, Management, and Use

(NSF Institutional Infrastructure Proposal)

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California 94720

January 1989
Report No. UCB/CSD 89/493

Abstract

This report is an edited version of a proposal submitted to the NSF Institutional
Infrastructure program in September 1987 and funded in July 1988. The financial data
and other supplementary information have been omitted, but the technical sections are
unchanged.

The proposal builds on the current research of a broad spectrum of the Computer
Science faculty and at the same time expands our computing paradigm in the direction
of current and future changes in technology. The funded project,subsequently named
the Mammoth project, provides the infrastructure (equipment, its maintenance, and sup-
port staff) to investigate many questions concerning the management of massive
amounts of information, its efficient storage and fast retrieval on large capacity secon-
dary storage media, its movement in high-storage high-capacity networks, and the facili-
tation by fast large-main-memory machines of its complex manipulation.

The Mammoth project both enhances and integrates various independently funded
research projects that are summarized in the technical sections of this report. The
reader can gain an overview of the Mammoth-related aspects of much, but certainly not
all, of the research activities of the Computer Science faculty as they existed in the fall
of 1987.

Massive Information Storage, Management, and Use

Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California
Berkeley, California

September 1987

Project Director: Susan L. Graham

Faculty Investigators: David Anderson
Brian A. Barsky
Richard J. Fateman
Domenico Ferrari
Susan L. Graham
Michael A. Harrison
William Kahan
Richard M. Karp
Randy H. Katz
Jitendra Malik
John Ousterhout
David A. Patterson
C.V. Ramamoorthy
Lawrence A. Rowe
Stuart Russell
Raimund Seidel
Carlo H. Séquin
Alan J. Smith
Michael J. Stonebraker
Robert Wilensky

September 1987 NSF Infrastructure Proposal

Table of Contents
A. Introductory Material
B. Executive Summary

C. EQUIPIMENT ...ooiiiiiieiiicicii et
C.1 Computing Facilities Currently Available for Research
C.2 Description of Equipment and Accessories Requested

C.3 Rationale for Selected Equipment

C.4 Maintenance Costs per Year and Method of Computation
C.5 Installation Costs per Year and Method of Computation
D. Budget '

D.1 Summary of Project Costs

...

D.2 - University Contribution ...
D.3 Project Budget - NSF form 1030
D.4 Management Structure and Plan for Operating the Facility
D.5 Certification Statement
E. Staff Credentials
E.1 Curriculum Vitae

E.2 Current and Pending Research Support
F. Research
1. Introduction

..
..

2. Design and Analysis of a Massive Storage Facility

2.1. Operating System Research (David Anderson, Domenico Ferrari, John
Ousterhout, Alan J. Smith) ...

2.2. Research in Computer Architecture (Randy H. Katz, David A. Patter-
103 1) [T ROUOSUO U OUUORUPUVORSYPPRPSPIROPRO RSN PSPSPS P R S

2.3. Network Event Management (C. V. Ramamoorthy)ccccoiiininn,

2.4. Algorithmic Issues in Massive Information Storage (Richard Karp,
Raimund Seidel)

3. Use of a Massive Storage Facility ...
3.1. Research on Very Large Knowledge Bases (Stuart Russell, Robert
WILEDSKY) ovienietmsieiececececeetetes s se s e
3.2. Object Management in Databases (Michael J. Stonebraker, Lawrence
AL ROWE) oottt
3.3. IC-CIM — An Application for POSTGRES and OBJFADS (Lawrence A.
RROWE) oorieieeieieiectceeeeestee e e e LS
3.4. Integrated Interactive Development of Complex Objects (Susan L.
Graham, Michael A. HarriSon) ...
3.5. Computer Graphics for the Visualization of Complex Objects (Carlo H.
SEQUIN) oottt
3.6. Research in Computer Vision (Jitendra Malik) ..o
3.7. Using Gigabyte Storage for the Visualization of Shape and Control
Parameters (Brian A. Barsky) ...
3.8. Symbolic Scientific Computing (Richard J. Fateman, Wm. Kahan)

September 1987 NSF Infrastructure Proposal

O WO W O O 00 WO -

b bk bk e pd e
W NN = e O

3.9. Run-Time Support for the Integrity of Huge Software Collections

(Wm. Kahan)
4. References
G. Results for Prior CER or II Award(s)

H. Research Environment Study
H.1 Faculty List

H.2 Ph.D. Graduates

H.3 Metrics for the Research Environment

September 1987

R R R R R R P R S R T R Y P P PP

..

...

..

..

...

..

NSF Infrastructure Proposal

41
43
49
50
50
50
50

A. Introductory Material

A.1 Standard Cover Page
omitted

A.2 Form 1225 (on original only)

omitted

September 1987 NSF Infrastructure Proposal

B. Executive Summary

Introduction

Recent advances in storage systems and high-speed data communication are changing the
face of computer technology. Within the next few years it should be possible to fit a thousand
megabytes (one gigabyte) of random-access memory within a single chassis. Compact units con-
taining half-gigabyte magnetic disks will soon be available for under $1000, and cheap noneras-
able optical disks can provide seemingly unlimited amounts of backup and archival storage. A
single two-gigabyte optical disk can store two thousand color pictures, eight thousand engineer-
ing diagrams, a half-million pages of text, or twenty-four hours of high-quality sound; systems
with several hundred such disks are expected to become available. And developments in fiber-
optic technology will provide the bandwidth to allow a community of users to access massive
amounts of storage and, in the process, share their data, their programs and their knowledge.

The Computer Science Division at Berkeley proposes to develop a massive hierarchical
storage facility, to investigate a number of approaches to the design of systems software for
such an environment, and to use the environment in a number of application areas, including:

i) The construction of large knowledge bases and their application in machine learning and
natural language processing; :

ii) The manipulation of complex objects such as designs, large programs, and multimedia
documents;

iii) The processing of geometric and pictorial information such as images, surfaces and
mathematical functions of several variables;

iv) The integrated storage of scientific program libraries, mathematical tables and pro-
cedures for the transformation and manipulation of symbolic information.

The Computer Science Division is a unit within the Department of Electrical Engineering
and Computer Sciences. Our proposal has support from the Department and enjoys the strong
backing of the campus administration. The University stands ready to provide substantial
new resources, including three new faculty members over the next five years, faculty release
time, staff positions, funds for space renovation and equipment maintenance, discretionary
funds and a substantial overhead exemption. More information about the University’s financial
contribution is given in Section D.

The facility will be developed in stages. In the first year we plan to acquire a high speed
fiber-optic network and two “information servers”, each equipped with 128 megabytes of main
memory, 10 magnetic disk drives and 6 optical disks. During this period we will also assemble
some prototyping systems for development work. These systems will be obtained by upgrading
existing equipment. We will acquire further information servers in the second year. Then,
building on the experience of the first two years, we will acquire a ‘“‘super information server”
containing an 80 MIP processor, 100 disk drives, a gigabyte of primary memory and a terabyte of

optical disk storage.

The development of such a system will require innovations in distributed operating sys-
tems, computer architecture, performance analysis, database system design and algorithm
design. The availability of the system will enhance our research in artificial intelligence, text
processing, programming systems, graphics, computer vision and scientific computation. The
Division has the experience, the expertise and the management skills to carry out this project.
We have strong research groups in all the relevant areas, and new recruiting will continue to
strengthen our faculty. We have demonstrated the ability to successfully mount large,

September 1987 NSF Infrastructure Proposal 1

experimental research projects. The tangible results of such projects include Berkeley BSD UNIX,
the INGRES relational database system and one of the first RISC processors. Most impor-
tantly, the discussions leading to this proposal have engaged the enthusiasm of the entire
Computer Science faculty, and have led us to a shared vision of our goals and a consensus as
to the infrastructure we need. The support we are requesting will allow us to create a
shared facility that could not be obtained through individual research grants, and will weld
our Division into a single community with a common research focus, much as the UNKX pro-
ject did for our systems faculty in earlier times.

The following paragraphs summarize the specific research we propose to conduct:
Design and Analysis of a Massive Storage Facility

Operating System Research (David Anderson, Domenico Ferrari, John
Ousterhout, Alan J. Smith)

We will explore several issues in operating system design that arise in connection with the
new massive storage facility:

Performance Studies (Smith and Ousterhout) The proposed hierarchical mass storage sys-
tem presents novel storage management problems because of the many levels and types of
storage involved. We will investigate basic issues concerning the scheduling of file transfers so
as to maximize performance, including user-transparent mechanisms for automatic file migra-
tion, together with the associated problems of providing access to previous file generations
stored on nonerasable optical disks, ensuring the consistency of caches at various levels of the
hierarchy, and developing suitable user interfaces to storage-related information.

Time Travel (Ousterhout) Exploiting the fact that the large capacity of optical disks makes
it feasible to store several years of backup data, we will implement a “time-travel” mechanism,
in which a user can issue a command that will cause the system to behave as if it had been
restored to its state at a specified time in the past.

Replacing Magnetic Disks (Ousterhout) We will investigate whether, in certain application
environments, optical disks can replace magnetic disks altogether. This study will be a continua-
tion of current work to implement a file system without magnetic disks in connection with the
Sprite operating system.

Communication Architectures for Access to Large Objects (Ferrari and Anderson) For
most applications involving large read-write memories and a large optical store, large amounts
of data will have to be communicated over high-speed fiber-optic links. A hierarchy of software
protocols to provide the needed communication mechanisms will be developed as part of the
DASH distributed operating system. The DASH communication facility will be integrated with the
virtual memory and process scheduling components of the system so as to provide performance
guarantees to the user. '

Bastic Operating System Enhancement To support the facility we will extend Berkeley UNIX
to support very large memories and secondary storage, and will provide new kernel support for
optical disks, which are not supported by our present system.

Research in Computer Architecture (Randy Katz and David Patterson)

Opportunities for innovation in I/O system design have arisen because of the drastic reduc-
tion in the size and cost of medium-capacity disk systems. It will now be possible to provide
information servers with very large quantities of small-capacity inexpensive disks, and to gain
large 1/0 bandwidth through parallel access to such disks. Because of its limited capacity, such

September 1987 NSF Infrastructure Proposal 2

a “disk farm” will have to be backed up by a very-large-capacity optical store. We propose to
study the use of such an architecture for a transaction processing environment built on top of
the POSTGRES database system. The fundamental technical problems will be to make such sys-
tems reliable and crash-proof, devise file migration strategies, overcome latency problems
through buffering and parallel access schemes, and reduce bus traffic by attaching I/O devices
directly to processor caches rather than main memory. Our goal is to achieve a low-cost system
capable of handling 1000 transactions per second.

Network Event Management (C. V. Ramamoorthy)

We will build a network server that monitors events within a distributed computing sys-
tem and triggers appropriate action when certain system states are entered. The transmission of
status information between processors will require the high-speed network and communication
architecture being developed; the large memory will be used to store the complex system state,
and the optical disks will be used to store a history database for the evaluation of event
management strategies.

Algorithmic Issues in Massive Information Storage (Richard Karp, Raimund
Seidel)

The efficient use of very large memories obliges us to reexamine the fundamental algo-
rithmic techniques and data structures that we employ for data storage and retrieval and the
solution of combinatorial problems. We will explore search methods based on partitioning data
into buckets, large-scale sorting methods based on distribution rather than merging, sorting
methods suitable for nonerasable memories, data structure techniques for storing history data,
the application of dynamic programming to DNA sequence analysis, and combinatorial algo-
rithms based on dynamic programming and branch-and-bound techniques that require very
large memories. The interactions with our colleagues fostered by the shared facility will be a
source of both users of our methods and new algorithmic questions for us.

Use of a Massive Storage Facility

Research on Very Large Knowledge Bases (Stuart Russell, Robert Wilensky)

We plan to to construct a large, heterogeneous knowledge base that will enable progress in
a number of different research projects in machine learning and natural language. The process of
creating, managing and accessing this knowledge base will require fundamental research on the
representation and use of meta-knowledge that describes the structure and content of the
knowledge base, and on the goal selection and planning algorithms of an intelligent knowledge
base manager and interface.

The breadth of a large common-sense knowledge base allows it to be used as a test bed for
studies of the inductive acquisition, representation and use of abstract knowledge. The
knowledge base will also contain a large amount of sensory data acquired in a simulated real-
time environment; this data can be viewed as the life history of an autonomous agent with lim-
ited sensory powers, and we will use it to study how such agents can derive theories for dealing
with the world from experience. Finally, the knowledge base will be used to study the process of
making the common-sense inferences that must be used translate, summarize and understand
natural language text.

September 1987 NSF Infrastructure Proposal 3

Object Management in Data Bases (Michael. J. Stonebraker, Lawrence A.
Rowe)

We are developing a database system called POSTGRES that will handle a conventional rela-
tional presentation of data, but will also be capable of dealing with more complex data such as
documents, CAD objects, computer programs, icons and bitmaps. POSTGRES employs abstract
data types for the description of complex data and the construction of access methods. It sup-
ports the procedural description of complex data objects. For real-time applications it incor-
porates an integrated rules system that triggers a response whenever a particular event occurs.
Because the POSTGRES storage manager never overwrites old data, history queries can be sup-
ported; this facility is only possible because of the optical disk technology. POSTGRES will require
the high I/O bandwidth achievable through a large cluster of magnetic disks and a large main
memory for buffering. Associated with POSTGRES is an object-oriented programming environ-
ment called OBJFADS, which will support the development of multimedia applications.

POSTGRES and OBJFADS will be used to develop the IC-CIM software system to manage the
Microfabrication Laboratory at Berkeley. Three subsystems are currently under development: a
facility management system to maintain information about facility layout, equipment locations
and utility connections; a work-in-progress system to schedule the facility, guide operators
through processing steps, perform automated measurements and store the results of measure-
ments; a wafer checking system based on visual scanning of wafers; and an equipment mainte-
nance system. The use of optical disks and large memories will be crucial for this application
because of the large volume of data, much of it in the form of images.

Integrated Interactive Development of Complex Objects (Susan L. Graham,
Michael A. Harrison)

Pan is an interactive editing system that combines a text editing capability with support
for high-level manipulation of structured language-based objects such as programs, designs, pro-
cess descriptions, interface definitions and document specifications. It supports syntactic editing,
logic-based and free-form semantic annotation, browsing and viewing of such objects. It has
potential application to software modification and reusability. Its continued development entails
research on semantic specification and analysis, incremental updating of semantic information,
and the management of a combination of stable and ephemeral information within a storage
hierarchy.

VorTeX is an integrated document preparation environment for the interactive develop-
ment of high quality technical documents that involve mathematics, text and graphics. Future
work on the system entails research on integrated user interfaces, multiple representations of
documents, support for composite objects, animation and bibliographic assistance.

Pan and VorTeX are being integrated to use a common text editing capability, a common
window manager and other shared utilities. Further research will enable the power of both sys-
tems to be brought to bear on user-constructed objects, by treating them simultaneously as
linguistic objects understood by Pan, and as documents understood by VorTeX.

Storage and Interactive Display of Pictorial Realistic and Dynamically Vary-
ing Images (Carlo H. Sequin, Brian A. Barsky, and Jitendra Malik)

In problems such as optimizing multi-parameter analog integrated circuits or understand-
ing the convergence behavior of a neural network, there is a need to visualize a cost function or
energy surface, and to display lower-dimensional views of that surface. A related problem, aris-
ing in Sequin’s UNIGRAFIX geometric modeling and rendering system, is to display interactively a

September 1987 NSF Infrastructure Proposal 4

complex 3-dimensional object such as a building or a mechanical part, as surface modeling
parameters such as color, reflectivity and index of refraction change in real time. We are
developing computer graphics techniques to satisfy these needs. Our methods will depend
heavily on the use of a massive memory hierarchy.

The Beta-spline was introduced by Barsky as a tool for the representation of curves and
surfaces. It has two shape parameters, called bias and tension. Users of graphics systems readily
are able to adjust these parameters to achieve the desired representation. The Beta-spline has
been generalized by allowing these shape parameters to vary locally along a curve or surface,
and the use of further control parameters is under investigation. We will develop a library of
images produced with various specifications of these parameters, together with a facility for the
interactive animated display of such images, so that we can determine which control parameters
are the most useful, and can provide users with the support they need to be able to adjust these
parameters.

Even with gigabyte memories these problems cannot be solved by the brute-force method
of storing all the possible pictures that might be displayed; it is the goal of our research to find
practical methods of generating such images. Data compression techniques will be essential in
this connection.

The storage of a color image of a scene typically requires a megabyte of memory. There are
significant problems in computer vision that require the storage of hundreds of such images
simultaneously in main memory, and thousands more on optical disks. One such problem, stu-
died by Malik, is the analysis of time-varying images; relative motion permits a scene to be seg-
mented and objects to be recognized much more reliably than is possible with a few isolated
views. A library of several thousand images would also be used to test computer vision systems,
to determine the parameters, such as specularities and sharpness of shadow edges, that best
describe the world, and to provide training sets for learning algorithms.

Scientific Computing (Richard J. Fateman, William Kahan)

The availability of gigabyte storage systems will enable symbolic manipulation systems to
perform new classes of optimizations and program transformations. One simple technique is to
store known input-output pairs for a complex function, and to determine the output by table-
look-up when an input is repeated. When a function of several variables is to be tabulated with
some arguments fixed and the others varying, it should be possible to simplify the computation
by symbolic transformations exploiting the fixed parameters. In the case of a function capable of
running on diverse data types, it may be useful to store specialized algorithms for particular,
frequently occurring data types such as “truncated power series in z with coefficients in the quo-
tient field of polynomials in x and y over the integers”.

With very large memories it should be possible to store large bodies of mathematical
knowledge such as tables of integrals. Such knowledge is often difficult to index; it is not clear
how to determine rapidly which table entries might be relevant to a particular integration prob-
lem. The problems of organizing and accessing such hard-to-index data will be a major com-
ponent of our research.

We intend to develop tools for maintaining the integrity of very large scientific software
libraries. We shall focus on documenting the bugs that arise because of the implicit limitations
of numerical computation on finite-capacity machines, and developing retrospective diagnostics
to enable users of multiple layers of software to trace the effects of software modifications and
determine what went wrong.

September 1987 NSF Infrastructure Proposal 5

C. Equipment
C.1 Computing Facilities Currently Available for Research

omitted

C.2 Description of Equipment and Accessories Requested

In keeping with our theme of massive memory systems, we propose to assemble several
configurations of “information servers”, by a combination of new systems and upgrades to exist-
ing equipment. Our equipment purchases will take place during the first four years of the
grant, in order to obtain the latest equipment for each stage of the effort. Section C.3 gives the
rationale for this equipment plan.

Year One

(a) Two “information servers” consisting of the following:

Sun 4 class machine with 128 megabytes memory
10 magnetic disk drives (5 1/4 inch)

6 optical disks (2 gigabyte capacity each)

60 platters

(b) Three prototype systems for development efforts needing dedicated hardware. We expect to

assemble these systems by upgrading existing equipment with needed components such as opti-
cal disks.

(c) High speed network. We intend to replace much of our ethernet based LAN by a faster,
higher bandwidth fiber-based network.

Year Two

(a) Two additional information servers. We assume the cost is the same as for Year One. If
prices drop, we will use the savings to acquire larger amounts of storage or faster machines.

(b) Additional upgrades to our existing equipment, for compatibility with the emerging
configuration. Again, we assume that the cost is the same as for Year One and that any savings
will be used to increase capacity or speed.

Years Three and Four

(2) One “super information server’” consisting of

high-speed machine (80 mips)

100 magnetic disk drives (5 1/4 inch)

optical disk system (1 terabyte capacity)
and platters

We can only estimate the cost of the system, since the equipment we want is not yet on the
market. We will determine the system configuration and the vendors during Year Two of the
grant. The decision will be determined by the results of our research in the first two years and

September 1987 NSF Infrastructure Proposal 6

by availability at that time. In addition to speed, the requirements for the machine will include
massive primary memory and, most likely, a shared memory multiprocessor architecture. The
system must run 4BSD or whatever operating system is standard in our environment at the time.

(b) Additional upgrades to existing equipment, for compatibility with the emerging
configuration. We again assume that the cost is the same as for Year One. However, by this
time, we will be able to upgrade to larger and more powerful systems than in Year One.

C.3 Rationale for Selected Equipment

Computer science research at Berkeley has always taken place in a shared computing
environment. Initially, that environment consisted of terminal access to time-shared main-
frames, mostly PDP/11’s and VAXes. More recently, we have migrated to a workstation/server
environment in which Sun and MicroVax workstations (and a few other varieties from time to
time) have been connected via local networks to compute servers and print servers.

The proposed facility will be a major enhancement to that environment and will change its
character. The use of a shared facility will force us to develop compatible solutions to the vari-
ous storage-intensive problems we are pursuing. We will continue to maintain network access to
shared equipment and to use a common operating system at the client level. In addition, we
will continue to use high-performance workstations of various kinds as our primary interface to
the computing environment. New workstations are not part of the budget for this proposal.
We anticipate acquiring new workstations and upgrading the ones we have through the other
grants and contracts that support our research.

The proposed facility must meet various requirements:

a) The configuration must provide a massive storage system organized in a memory hierarchy
for use in various application domains. Here, a usable, accessible system is the goal.

b) We must provide an environment for software developers who require dedicated systems
with prototype quantities of the components of interest. These systems will be particularly
important for operating systems work and for some aspects of data base software develop-
ment.

¢) We need an environment in which several approaches to object management can be
explored. Both distributed solutions and hierarchical organizations should be supportable.

d) We are striving for an environment where high I/O throughput is possible. Experiments
with disk striping and parallel file systems will require a substantial number of disk arms.

e) Rapid high-bandwidth communication between the workstations and the servers is essen-
tial.

The researchers building experimental systems software will sometimes run systems that
have bugs and that cause system crashes. Consequently it is important that they do their
experiments on separate hardware from those groups whose software is at the application level.
The latter group needs reliable system software and steady predictable access to computing.
Therefore we plan to have multiple smaller hardware systems in the early years.

We predict that many projects will migrate to a large-primary-memory environment in the
early years, but that the projects that are primarily clients of secondary storage subsystems will
move to the massive memory environment only after some initial work has been done by the
systems researchers to provide the fundamental capabilities. Consequently, we plan our “super
information server” for the third year of the proposal, not the first. The information servers
purchased during the first two years will enable the projects to do the experimental software

September 1987 NSF Infrastructure Proposal 7

development that will position them to exploit the large information server when it arrives.

We anticipate additional years of use of our more recently acquired existing equipment;
notably many of the workstations and the upgradeable file servers. However, our existing main-
frames and some of our peripherals are old and no longer ‘“state-of-the art’”. In addition, our
ethernet-based local network is both overloaded and significantly less powerful than the emerg-
ing fiber-based technologies. We propose to replace them with the new equipment.

C.4 Maintenance Costs per Year and Method of Computation

omitted

C.5 Installation Costs per Year and Method of Computation

omitted

Septec:ber 1987 NSF Infrastructure Proposal 8

D. Budget

D.1 Summary of Project Costs

omitied

D.2 - University Contribution

omitted

D.3 Project Budget - NSF form 1030

omitted

D.4 Management Structure and Plan for Operating the Facility

Professor Susan L. Graham will serve as the Project Director. She has experience as Pro-
ject Director for the DARPA tasking contract for “Productivity Engineering in the UNIX Environ-
ment”’, which has provided research and/or infrastructure support to most members of the
Computer Science Division at various times. She will chair a steering committee consisting of
Professors Fateman, Karp, Ousterhout, Russell, Sequin, and Stonebraker. This group is
representative of the faculty - each faculty investigator has a close colleague on the committee.
Professors Karp and Sequin are former departmental Associate Chairs for Computer Science;
Professor Fateman is the current Associate Chair. Professor Fateman is also a former depart-
mental Vice-Chair for Computing. Professor Stonebraker has considerable experience directing
the former INGRES project and the current POSTGRES project. Professor Graham serves on the
departmental Computer Needs and Resources committee (as do Professors Wilensky and Patter-
son). All of the steering committee members are actively involved in research supported by the
proposed infrastructure.

The steering committee will be responsible for setting policy concerning sharing the facil-
ity, for making specific purchasing decisions, and for supervising the programmers. It will also
serve as a focal point for technical interaction among the research groups.

The staff for the proposed facility will consist of four technical people, a business manager,
and a grant administrator. The technical people, whose salaries will be paid either directly by
the campus, or indirectly by virtue of the overhead exemption, will consist of a hardware
engineer, a system manager, and two professional programmers. Initially the programmers will
carry out the UNIX development needed to make the facility usable. In later years they will
transfer the research technology we develop to the systems used by our “user-level” projects.
One of the programmers will also have some system management responsibility. The business
manager (the AAIIl in the budget) will be Ms. Joan Slobin, who currently has the same respon-
sibility for the DARPA project mentioned above. She was formerly on the staff of the campus
Sponsored Projects Office and is familiar with the various campus and government procedures.
She will supervise a full-time grant administrator (the AAII in the budget) who will take care of
the day-to-day business and clerical needs of the facility. - We have used a similar structure in
all of our large multi-investigator projects in the department and have found it to be very suc-
cessful.

We will also have the help of the Computer Systems Support Group (CSSG), which pro-
vides hardware and software services to the department on a recharge basis. Professor Richard
Newton of EECS ably directs CSSG, and has been instrumental in establishing effective

September 1987 NSF Infrastructure Proposal 9

recharge procedures, budgetary controls, and work scheduling. The existence of CSSG has
enabled the department to benefit from a pooled collection of spare parts, from shared mainte-
nance arrangements, and from the flexibility to move staff around as needed. CSSG also pro-
vides senior staff supervision of hardware and software technicians employed by a particular
project or research group, if requested. The faculty sets direction and policy in all cases.

D.5 Certification Statement

omitted

September 1987 NSF Infrastructure Proposal 10

E. Staff Credentials

E.1 Curriculum Vitae

omitted

E.2 Current and Pending Research Support
omitted

September 1987 NSF Infrastructure Proposal

11

F. Research

1. Introduction

Advances in computer technology are providing not only smaller and faster processors and
faster communication among them, but also significantly denser and less expensive storage
media. Particularly in the realm of storage, we are on the threshold of some very important
developments.

The first 4-megabit random access memory chips have been demonstrated in a few
development labs and will soon be available on the market. These components will make it pos-
sible to fit a gigabyte (8 billion bits) of fast random access memory into a standard chassis.

While the storage density of magnetic disks is increasing at a steady rate, optical disks are
finally emerging as a highly competitive product. Systems having large disks at the cost of
$10-15,000 are already available. Compact units with small disks with storage capacities of
about 0.5 gigabytes, based on organic coatings will soon be available for less than $1000.

While progress in high-performance magnetic disks has been slow but steady, costs of small
magnetic disks have been dropping rapidly because of the volume demand from personal com-
puters and workstations. With inexpensive hard disks and single chip disk controllers now
becoming commercially available, it will soon be possible to package a large number of “personal
computer” magnetic disks in a small space and at a small cost. Since the small disks are almost
as fast as the expensive ones, it may be possible to provide high bandwidth 1/O, by taking
advantage of the potential parallelism of many small disks, with compact disks covering any
shortfall in storage capacity of these smaller disks. This presents the opportunity to dramati-
cally increase the system I/O bandwidth while simultaneously reducing system cost.

The availability of these new devices will have a significant impact on computing systems
of the future and on the ways that the users will interact with them. The effects of these tech-
nological advances will be felt throughout the breadth of computing research.

The Computer Science faculty at Berkeley has a wide variety of research interests and
accomplishments in the areas of software, architecture, theory, and applications. In the early
years of our program, one of the important factors in fostering research collaboration and infor-
mal technical interactions was the commonality of our involvement with UNIX, which was then
at the forefront of systems innovation. We propose to strengthen our internal research ties and
infrastructure by again pursuing a common emphasis in our research. Our theme is the design,
analysis, and use of a hierarchical massive storage facility based on the emerging storage techno-
logies. Sharing of the storage components will be facilitated by a high speed network.

Our attention to storage and data management issues encompasses Very large main
memories, significant quantities of magnetic disks, and vast quantities of write-once-réad-many
storage (WORM devices). Our intent is not simply to increase file space or to decrease swapping,
but rather to investigate a major paradigm shift inspired by the forthcoming storage com-
ponents.

The discussion that follows is divided into two major sections. The first summarizes those
projects whose major emphasis is on the technology needed to provide the computing environ-
ment that supports massive storage; the second describes those projects that rely on use of the
facility.

Nine faculty will be involved in projects that primarily concern the design and analysis of
the massive storage facility. These studies include the design of an archiving and version-
management system, an investigation of trade-offs among the various kinds of storage, the

September 1987 NSF Infrastructure Proposal 12

development of communication mechanisms in such a distributed system, the design of fast I/O
architectures, and the study of fundamental algorithms used in such systems. Performance stu-
dies will provide essential feedback for later phases of these projects. In addition to the research
activities, some development work by technical stafl will be needed to support the facility.

A group of about a dozen additional faculty will profit from the enhanced environment as
users, developing a wide variety of approaches, algorithms, and techniques that depend on the
availability of massive storage. Large, reasonably priced secondary storage systems will permit
the creation of knowledge bases of significant sizes for research in artificial intelligence, natural
language understanding, and machine learning. The storage of large numbers of readily accessi-
ble high-resolution raster images for use in computer vision, computer graphics and geometric
modeling will also be exploited. Rich representations and powerful manipulations of complex
objects will be developed, supported by a sophisticated next-generation data base system and a
variety of new user interface capabilities.

2. Design and Analysis of a Massive Storage Facility

2.1. Operating System Research (David Anderson, Domenico Ferrari, John
Ousterhout, Alan J. Smith)

The operating system component of the proposed work has two major aspects: basic sup-
port and research. The first portion consists of a collection of relatively mundane tasks that
must be completed to provide basic access to the massive memories. These include extensions
to existing systems to support memories and disk farms of the envisioned size, plus new kernel
support for optical disks, which are not currently supported by our systems at all. This portion
will be carried out primarily by the project support staff, except where use of the system
exposes interesting new research problems.

The second (and more interesting) portion of the operating system work consists of new
research areas that the envisioned system will open up. The paragraphs below describe some of
the projects we currently plan to pursue, which center around the file system and the communi-
cation system. We first describe the research in performance evaluation that will be necessary
to obtain the desired (basic) properties from the system; following that are outlines of planned
work on more radical designs which include the ability to reset the system state to some earlier
period, and the possibility of such a system without magnetic disks as staging devices. Com-
munications aspects of the system are described last.

System Overview

As described elsewhere in this proposal, we envision a massive multi-level file system, con-
sisting of a large number of smaller (3.57, 57, 8”) high density magnetic disks, backed by a very
large optical storage system. Each disk will hold on the order of .5 x 10° bytes, and the optical
storage system will hold between 10'! and 10'2 bytes. The optical storage media are particu-
larly inexpensive, and can be written to as an almost free resource, although eventually not all
optical storage will be kept on line. We refer to each optical disk as a “WORM” (write once,
read many).

In normal operation, information will be read from and written to magnetic storage, and
will be migrated, either automatically or by user request, to optical archival storage. Optical
disk will also be used as a replacement for magnetic tape for the purpose of incremental (daily)
and full (periodic) disk backup. A WORM is considerably more convenient than tape, and
backup and retrieval can be accomplished largely without an operator, by using a large on-line
juke-box for the WORM.

September 1987 NSF Infrastructure Proposal 13

Performance Studies (Smith, Ousterhout)

A hierarchical distributed storage system, as described in this proposal, is effective to the

extent that

(a)
(b)
(c)
(d)

The capacity appears to be that of the largest level,
the average access time is close to that of the fastest level,
reference to data is (almost) transparent as far as its storage location or storage level, and

all levels and location have sufficient bandwidth to satisfy average transaction loads and
adequately handle peak loads. Ideally, such a system would also have reliability mechan-
isms such that data is never lost or destroyed, and integrity mechanisms, such that mult-
ple, inconsistent versions of the same information were not permitted.

In this sub-section, we discuss the management of the distributed hierarchical mass storage

system, with regard to performance evaluation studies and the implementation of effective
management algorithms. The research proposed here is unique because of the availability of a
large mass storage system from which measurements may be taken, experiments run, and algo-
rithms and mechanisms implemented.

Our proposed research on the development of high performance algorithms for the manage-

ment of such a file migration system will address questions such as:

()

When do we (automatically) push files from fast to slow storage? (seeBlac87a, Smitéla for
earlier research on this topic.)

When a file is referenced, should a group of files be fetched instead?

No file system is infinite, and the existence of a huge “bit bucket” will simply result in
everyone saving everything. A mechanism is needed to compact the file system around
those files actually still in use, as opposed to earlier versions of files. How and when to
compact the file system, and how to physically organize the files after compaction is an
interesting problem for study. To the extent that the system supports the ‘“time travel”
described below, it will be necessary to preserve almost all file versions, but the likely rar-
ity of such time travel suggests that we emphasize access to current and recent versions.

In line with (a) and (c) above, we note that files will be periodically migrated from ‘‘on-
line” to “ofi-line” as the mass store fills up - we do not believe that the storage will be
“infinite”. The 10'% bit photostore formerly in use at Lawrence Livermore National
Laboratory represented only a 9 month on-line buffer, before data was moved to the
“shelf.” The problem is to select the files for movement to the shelf and to reorganize the
file system afterward so as to maximize performance. (We do not just want to migrate
“platters” offline, treating the store as a FIFO buffer, as did LLNL.)

We will look at the data structure and organization issues in a file system of the envisioned
size and structure. Some of the interesting research issues derive from the novel nature of
the media: for example, WORMs will require new approaches to managing file maps and
directory structures, since they cannot be rewritten in place. Other issues stem from the
sheer size of the system: for example, are there eflicient ways of managing generation data
sets (such as are used in MVS), where all previous file generations remain because of the
nonerasable nature of optical disk? Finally, there are user interface issues, since we not
only want to avoid cluttering memory with ineflicient structures; we want to avoid confus-
ing the user with the display of undesired information. (See SmitBIb for 5 discussion of 1/0
and file system optimization techniques.)

September 1987 NSF Infrastructure Proposal 14

(f) 'The file system described will be a distributed system with caching and file migration
throughout. There are performance issues in selecting when and where to move files when
they are in use by multiple users or by a sequence of different usersKure87a, Porc82a Closely
related is the subject of multiple cache consistency, which has been (is being) studied in
the context of shared main memory S¥ead62 . we also have several projects underway to
explore cache consistency in the very different environment of a shared file system (prelim-
inary results already appear inNels87a 5, (Thom87a)

(g) Such a system will also implement disk caches in main memory (seeSmit85a g5 (Nels87a)
providing another level to the hierarchy. We will study algorithms for the design and
management of disk caches (fetch and replacement algorithms, block sizes, cache size deter-
mination, consistency and locking considerations, etc.). We will consider in this study the
issue of multiple caches, both horizontally (multiple machines) and vertically (caches at the
file server, and caches at the worker machines).

Time Travel (Ousterhout)

The role of optical disks depicted in the previous section is a relatively conventional one,
where WORMs replace tapes as the slowest layer in a storage hierarchy. This section and the
next describe two unconventional roles that optical disks might play in a file system.

One of the most interesting aspects of using optical disks instead of tapes for backup and
file migration is that they allow the backed-up information to be kept on-line and easily accessi-
ble. For example, recent measurements of usage patterns suggest that a jukebox holding 50-100
WORMSs can hold several years of backup data for a community of substantial size. This offers
the possibility of providing eflicient version management facilities as an integral part of the file
system. We propose to implement automatic version management in the Sprite operating
system©OUst872 through the notion of time travel. Time travel will restore a user’s view of the file
system to what it was at a particular time in the past. For example, there might be a ‘“‘ct”
command analogous to the UNIX “cd” command except that it changes the current time instead
of the current directory. “Ct 30-Jan-85” would cause the entire file system to appear to the
user as it did on January 30, 1985. The operating system would automatically select files and
directories from optical archive or magnetic disk in order to sustain the illusion of backing up
time. This facility could be used in a variety of ways, from restoring a software project to the
time of a previous release in order to chase a bug in that release, to recovering mail received
several years ago but since deleted. In comparison to traditional version control systems, time
travel has the advantages of being automatic (users need not specify when to archive new ver-
sions), and providing easy access to consistent groups of files (as long as there is a time when
such a consistent group existed).

Three of the most important questions we hope to answer are: can time travel be imple-
mented in a transparent and efficient fashion? are there sufficient uses for it to justify the costs
associated with its implementation? and does time travel provide a superior form of version
control in comparison to existing version control mechanisms?

The massive amounts of archival storage available will also permit a “version” file system
such as DEC’s VMS to be used as it was originally intended. In such a system, whenever a file i1s
stored, a new version is created. In most systems, those old versions are rapidly erased, since
disk space is at a premium. We expect to be able to keep versions indefinitely, until explicitly
erased for reasons other than lack of storage. Conversely, we also expect our implementation to
include a mechanism for truly “erasing” a file, most easily by zeroing the WORM region (if the
physical write mechanism so permits), or by recopying and compacting the disk. It must be

September 1987 NSF Infrastructure Proposal 15

possible to destroy information irrevocably.

Replacing Magnetic Disks (Ousterhout)

Another innovative study will address the question of whether optical disks can replace
magnetic disks altogether. A study of file accesses on timeshared UNIX systemsouswsa suggests
that file system working sets are small: if a few tens of megabytes of main memory are dedi
cated to a cache of recently-used file data, it will rarely be necessary to access disk (assuming a
few tens of typical users). In such a system, the primary purpose of magnetic disk would be as
backup in case of a crash or power failure. Yet magnetic disks are themselves subject to catas-
trophic failures (head crashes) so they also have to be backed up. Why not eliminate the mag-
netic disk entirely, and replace it with a large main-memory cache for fast access and an optical
archival store for backup and versioning?

The most important issue in this approach is the rate at which file data would have to be
written to optical store in order to provide an adequate degree of crash protection. Would opti-
cal disks fill at a rate that would be economically or administratively infeasible? Fortunately,
the file access study suggests that with current file access patterns and a write-through policy,
only about .01 optical disk would be consumed per user per day (hence a jukebox of 50 optical
disks could satisfy the needs of about 15 users for about a year before some of the disks would
have to be replaced).

We propose to implement a file system without magnetic disks as part of the Sprite
operating system and measure whether it can support a user community of reasonable size with
acceptable performance and resilience. This project will have to address several interesting
research problems, such as how to organize the optical disks, what writing policy to use for the
main-memory caches, and how to selectively copy information from full disks to new empty
ones in order to keep the most useful information most accessible. For very large files being
slowly modified, such as large databases, frequent copying may be impractical; fortunately, our
measurements inOUst852 indicate that the great majority of files are small. One of the goals of
the research will be to identify the range of file sizes and access patterns where an optical-disk-
only approach is most useful, and to investigate techniques for handling even the largest files
(e.g. permit updates to part of a file without copying the entire file). We will also consider the
interaction between this work and the time travel research discussed in the previous section.

Communication Architectures for Access to Large Objects (Ferrari and Anderson)

Another operating system research project will address the communication issues assocl
ated with very large memories. The proposed hierarchy of very large memories will be used for
a range of experimental applications. For many (perhaps most) of these applications, the follow-
ing will hold:

(1) Data will be communicated over a network, either because the information manager and
object data are on different machines, because the client is on a remote machine, or
because the object data itself is distributed.

(2) Object interfaces will require the efficient communication of very large amounts of data.
We anticipate that very large memories must be accessible by correspondingly high speed
communication in order to be generally useful.

(3) In many cases, the object interface will have real-time constraints. This will hold for
digitized audio and video data.

(4) Eventually, access to large objects will often occur through long-distance high-delay net-
works.

September 1987 NSF Infrastructure Proposal 16

Current communication architectures (such as the TCP/IP networking system in 4.2 BSD UNIX)
probably cannot meet the communication performance needs of many potential applications of
the proposed large information facility. The implementation of TCP/IP in 4.2BSD, for
instance, cannot transmit data at a sustained rate greater than 1.5 Mb’s when running on 1
MIPS machines circa 1984. Also, it has no real-time capabilities. We therefore propose to con-
duct research in communication architectures at both the network and operating systems levels
to address these needs. This research will be undertaken as part of the DASH project““’des%1 ,
and will involve the development of prototype operating system kernels on both the “prototype
information servers” and the client workstations.

The central component of this new communication architecture is the hierarchy of software
protocols. Such protocols have a range of reliability, performance and complexity properties. In
some applications request/reply protocols are appropriate, while in others stream-oriented proto-
cols are preferable. Bandwidth, delay, buffering, caching, flow control, and communication secu-
rity requirements will be dependent on the application. In addition, more sophisticated proto-
cols will be needed for use over high-delay networks.

For performance reasons, it is generally necessary for protocols to run in the operating sys-
tem kernel. Therefore, the operating system used to access the large memory system (at both
the client and server ends) must provide a flexible and efficient framework for protocols.

The DASH project is investigating a new general-purpose communication architecture for
distributed systems. This architecture is based on ‘‘real-time message streams” having
guaranteed performance properties (delay and bandwidth). Streams can be bound together into
“hundles”, and can be dynamically bound to “protocol processes” and “filter processes”’. The
DASH communication facility is integrated with the virtual memory and process scheduling com-
ponents of the system to remove performance bottlenecks and provide performance guarantees
at the user level. It can also utilize shared-memory multiprocessors for faster communication.

We believe that a new approach to communication is crucial for the proposed large-object
facility, and that the DASH approach is a viable approach. The availability of the large-object
facility will allow us to experiment with the new communication architecture, using it to con-
struct protocols suitable for the major applications. We will therefore be able to evaluate its
flexibility, its adequacy for supporting such a large variety of requirements, and the effectiveness
of the resulting protocols in the local-area environment as well as in its extension to high-
performance wide-area networks.

2.2. Research in Computer Architecture (Randy H. Katz, David A. Patter-
son)

The architectural research community has made great strides forward in the last few years
in the areas of processor architecture and memory system design. Considerably less effort has
been directed towards the issues of I/O system design. The proposed research is concerned with
the general questions of how to achieve very high performance I/O subsystems. I/O is often
viewed as an arcane art by the academic community, and the opportunity is ripe to reexamine
/O subsystems in the light of advances in VLSI and central processor architecture. In particu-
lar, we are interested in the technological issues of how to dramatically increase the available
1/O bandwidth. We plan to use the proposed equipment to perform experiments to explore new

organizations of 1/O systems.

For many years disks have been getting bigger but not faster. Is 1/0 therefore destined to
be the bottleneck that prevents us taking advantage of exponential growth in CPU speed and
memory size? We think not, for while disks are not much faster, the push from the personal

September 1987 NSF Infrastructure Proposal 17

computer marketplace has created much cheaper disks. With inexpensive hard disks and single
chip disk controllers now becoming commercially available, it is possible to build a high
bandwidth disk system from several personal computer disks, if parallelism can be exploited.

We do not believe that it is possible to study hardware problems in a vacuum. We believe
the recent success Berkeley has had in the systems area may be due to our emphasis in building
and measuring real hardware and software systems. To drive our experiments, we must choose
a well-understood and well-instrumented application that requires a large I/O bandwidth.
Because of its need for large 1/O capabilities and the local expertise in database technology at
Berkeley, we have chosen high-performance database transaction processing as our target appli-
cation. In many other environments, one can simply provide massive amounts of main memory
to reduce 1/O bandwidth requirements through buffering. However, this tactic usually fails in
transaction processing systems. In addition, so called “hot spots” provide a significant stress
test of the data manager’s ability to remove performance bottlenecks. Consequently, this pro-
posal focuses on transaction processing as the ultimate client of our efforts. The transaction
processing environment will be built on top of an extension of POSTGRES, an object-oriented
data manager currently under development (see Section 3.2). A proposal for this study is being
submitted separately.

An extremely challenging performance target, requiring significant CPU and I/O activity,
is 1000 transactions per second, where each transaction is a debit/credit style transaction. By
relying on many small/inexpensive disks instead of a few large/expensive ones, system 1/O
bandwidth can be increased while simultaneously reducing the system cost.

Assuming for now that the processing power exists for the 1000 transactions per second,
the question is then whether the I/O power exists. For the style of debit/credit transaction we
are considering, estimates have been made of 2 to 8 1/O’s per transaction. If we vary the
number as well as the speed of the disks, we can estimate the number of disks that must be
actively servicing 1/O requests to achieve 1000 transactions per second (TPS):

Number of active disks for 1000 TPS

21/0 per trans 5 I/O per trans 8 I/O per trans
“Minicomputer’’ Magnetic Disk 50 126 201
“Personal Computer’” Magnetic Disk 86 214 343

Between 50 and 350 active disks are needed to service 1000 TPS. If restricted to conventional
mainframe disk technology, it is beyond reasonable cost or physical limits to build in this
fashion. Because of the small size of the personal computer disks and because of the single chip
disk controllers, 6 or 8 disks could be packed per board, thus making it feasible to include these
disks on or near the CPU boards. Using current prices, the system cost is estimated to vary
from $150,000 to $980,000 using today’s technology:

Cost for 1000 TPS system
2 1/O per trans 5 1/O per trans 8 1/O per trans
“Minicomputer” Magnetic Disk $280K $630K $980K
“Personal Computer’” Magnetic Disk _ $150K $300K $460K

This “back-of-the-envelope” calculation suggests the potential of fast computers and cheap
disks, as comparable performance systems are quadruple processor mainframes with large disk
farms. This leads us to the experiments and questions we will explore to determine the practi-
cality of these ideas: '

September 1987 NSF Infrastructure Proposal 18

(1) What is the reliability of a rack of inexpensive disks? What error correction techniques
are appropriate in this environment? How many extra inexpensive disks are needed to
‘exceed the reliability of mainframe disks?

(2) While a farm of inexpensive disks has high bandwidth, the individual latency is much
worse than that of a mainframe disk. What is the latency of queries for data spread
over dozens of disks? Can full-track-buffer disk controllers overcome the latency prob-
lems?

(3) Inexpensive disks also have much lower capacity than mainframe disks. Can databases
separate slowly changing data so that a WORM jukebox can inexpensively make up the
loss in storage capacity? What will be the impact on performance of relying on WORMs?

(4) Not surprisingly, reducing 1/O’s per transaction reduces the number of required active
disks in the system and this is the most significant way to reduce cost. A major source
of the I/O activity in a database (or file system) is just putting data on disk in case of a
power failure. We propose to utilize a battery backup system for the gigabyte main
memory. Can the database and operating system software treat main memory as stable
storage? If so, how is I/O traffic reduced? Will a one-gigabyte main memory need better
error correction schemes if data are not touched for several days?

(5) If the CPU performance and I/O bandwidth seems adequate, the key issue is whether
the bus can support that amount of I/O activity. We will investigate several schemes to
reduce the I/O bus bandwidth demands by an order of magnitude. This includes what
we believe is a promising organization of attaching I/O devices directly to the processor
caches in a multiprocessor rather than the more conventional approach of connecting
them to shared memory. This allows the caches to act as multiple I/O ports to the main
memory. This in turn opens another set of interesting issues: How will I/O into the
cache affect the performance of each processor since I/O displaces data from its cache?
Do caches need to be enhanced with software options to prevent such interference? Can
smaller 1/O blocks be loaded from full-track-buffer controllers and acted upon directly by
a program in the local CPU, so I/O never goes to main memory?

In summary, this equipment gives us the opportunity to examine a long neglected area of
computer architecture. By using POSTGRES as the driving force, we have a challenging I/O
intensive application to drive this new study. As our first example of past neglect and new
opportunities, we see that promising new levels of high performance and low cost can be
achieved by observing that: (1) the largest disks are not that much faster than the slower disks,
and (2) the price of the smaller disks has been reduced because of the volume demand from per-
sonal computers and workstations. The proposed equipment provides a testbed that will
uncover the strengths and weaknesses of new approaches to I/0.

2.3. Network Event Management (C. V. Ramamoorthy)

In a distributed computing environment, events occur asynchronously on all computing
nodes. Each event brings the computing environment from one global state to another. In order
for network clients to properly respond to the changing network state, it is desirable to have the
following services available in the network environment:

(1) Answering queries about the system state: Availability of the state information allows
clients to evaluate the current situation before taking actions.

(2) Notifying clients of state changes: A client may wish to fire actions when certain predi-
cates on the system state are true. Instead of -having all clients monitor the system
status, it is desirable to have a distinguished agent that notifies interested clients when

September 1987 NSF Infrastructure Proposal 19

the system enters certain states so that the status collection effort is not replicated.

(3) Maintaining desirable states by invoking proper actions: A system may occasionally enter
undesirable states due to design errors, poor distribution of resources, or hostile attacks.
It is crucial that the system be able to reconfigure itself in some way to maintain the sys-
tem goals or to bring the system back to desirable states.

We intend to build a network server that maintains a network status database and fires
actions when certain predicates on the network state or its history become true. Such a network
service would support applications that require fast responses to rapidly changing network state
and protection against design errors, such as air traffic control, industrial process control, stock
exchange markets and battle management.

Our group has been working on several research issues that are relevant to solutions to the
global state management problem, including Reconfiguration Control in Dynamic
NetworksRama822 and Global Information ManagementRamast' Gane84a Qyr previous work will
be integrated into our framework for event management, which is described next.

Proposed System Layering

We will build the target system using a layered approach. Each layer presents an abstrac-
tion and reduces the complexity visible to upper layers. Our research effort will concentrate on
the third, fourth, and fifth layers.

The first layer is the communication subsystem layer. It provides primitives for setting up
reliable communication channels between processes on the same host or different hosts. This
layer is well supported by the Berkeley 4.3 BSD UNIX as it implements the DARPA Internet pro-
tocols and provides a socket facility Lefl83a {or processes to establish communication among each
other in a convenient way.

The second layer is the clock synchronization layer. It guarantees that clocks of all non-
faulty nodes are well synchronized. We intend to adopt the Berkeley TEMPO clock synchroniza-
tion a]gorithmGuseg3a' Guse852 which satisfies many nice properties such as close synchrony
among clocks, closeness to real time, local causality, and fault tolerance.

The third layer is the status-maintenance layer. A status maintainer is responsible for
maintaining a network status database by collecting status reports from local status maintainers
on individual nodes. The history of status changes is also recorded for detecting event
sequences and various inference needs. Each status report is time-stamped using the local clock
time. The status collected must be presented in various abstractions to network clients to
expedite the decision making process. Derived abstractions must be updated continuously since
the network state changes dynamically. To solve this problem, knowledge of the system status
must be structured in a way that would facilitate real-time processing, reasoning and planning.

The fourth layer is the event management layer. A network event manager accepts service
requests from network clients (processes or users). A request is of the form {event, action}.
When a registered event occurs, the corresponding action is taken on behalf of the client. The
action can be as simple as sending a notification to the client, or as complex as initiating a plan-
ning process to construct the detailed action sequence.

The event manager can be extended from a request-driven system to a goal-driven system.
Instead of registering a set of specific requests at the network event manager, a client can
specify only its goal. The event manager can continuously verify that the goal is achieved in
the network environment; if not, the event manager can generate plans automatically to achieve
that goal. However, in a dynamic environment, a time-consuming plan generation process

September 1987 NSF Infrastructure Proposal 20

would not be able to respond eflectively. Real-time distributed planning, which might include
learning from experience or situation matching, must be developed to meet the response time
requirement.

The fifth layer is the distributed computation and application layer. Based on the infor-
mation provided by the event manager, distributed computations or other applications can
adapt to the changing network status. Initially, we would like to use the event manager to
assist in certain resource management functions and provide event notification services to net-
work clients. Our future plan is to use the event manager in three research areas: (1) as an on-
line monitor for distributed simulations, (2) as an interactive debugger for distributed programs,
and (3) as a project coordinator in a distributed software development environment.

The proposed facility will provide essential support for our research. We propose to have
individual local status maintainers maintain a shared network status database. This approach
eliminates the need for a global status maintainer and the processing of status report packets at
the network event manager. Moreover, multiple event managers with various access control poli-
cies, accuracy requirements, and caching strategies can easily share the network status database
and provide proper services to different classes of clients. Sufficient memory, accessible over the
network, is essential. With a high speed network, status reports can be transmitted more fre-
quently and the network status database can be kept more accurate. Currency of the status
information is critical for making real-time decisions on resource management such as process
migration or process allocation.

The optical disks will be used to record the history of the network status database. The
history database can be utilized in many ways: (a) Statistics of critical system parameters can
be calculated from the history database. (b) A system administrator may trace the origin of
system failures or degraded system performance by studying event sequences recorded in the
history database. (c) Ample data would be available for carrying out trace-driven simulations.
All the above information would facilitate the studies of the behavior of distributed systems and
_give birth to better algorithms for resource management.

Implementation Summary

Although certain research issues still require further investigation, to gain some concrete
experience, we have already implemented a prototype network event manager on VAX 780
machines and Sun-3/50 workstation clusters; both systems run Berkeley UNIXChen86a — We
adopted the entity-relationship-attribute model proposed by ChenChen832 with procedural
attachment to model the objects and relations in the network environment. On our Sun works-
tation clusters, the network status database is kept by individual local status maintainers at a
shared file server, which simulates a huge shared memory accessible to all network nodes. To
avoid performance degradation, the network event manager automatically migrates from a
heavily loaded host to a lightly loaded host when necessary. The event manager has been used
to provide event notification services, support allocation of dynamically created processes, and
assist in migration and rebooting of transaction-based servers. Our preliminary implementation
experience has provided many insights to the event management problem and proved the feasi-
bility of the approach.

2.4. Algorithmic Issues in Massive Information Storage (Richard Karp,
Raimund Seidel)

The efficient use of very large memories obliges us to reexamine the fundamental algo-
rithmic techniques and data structures that we employ for data storage and retrieval and the

September 1987 TI7F Infrastructure Proposal 21

solution of combinatorial problems, and to pay serious attention to new regions of the time-
storage tradeoff curves that arise in these problems. The following paragraphs outline some of
the issues that we will investigate.

Searching

The fundamental problem here is to access those parts of a large knowledge base or data
base that are relevant to a particular task or query. Novel issues will arise because of the com-
plexity, longevity and heterogeneity of the data objects being stored and the sheer size of the
files being searched.

In one class of problems we can assume that each data object is described by many
different access keys or attributes, and that the relevance of a given data object to a query will
depend on several of these attributes. Important special cases will include partial-match queries,
in which it is desired to access all those objects possessing a certain set of attributes, as well as
close-match queries, in which we seek all objects whose vector of attributes is close, in some
metric, to a given vector. The eflicient implementation of such searches can be approached by
bucket techniques, in which the collection of data objects is partitioned into subsets, or buckets,
only a few of which will be relevant to a given query. Some work has been done on the con-
struction of such partitioning schemes based on various kinds of combinatorial designs, but
much more work remains to be done.

There are other retrieval problems in which the relevance of a data object cannot be
specified in terms of a match on a finite preassigned list of attributes. For example, the data
objects might be rules in an expert system, and relevance might be determined by a term
matching algorithm; or the data objects might represent scenes or pictures, and relevance might
be determined by the presence of some particular object in the scene. Typically, very few of the
objects in the data base will match, and the keys to rapid search are (i) to partition the data
base so that the potentially relevant data objects are localized to a few regions or buckets and
(i) to devise an algorithm for term or picture matching that terminates very rapidly in the typi-
cal case, where there is no match.

Sorting

Although there is an immense literature on sorting, the selection of a sorting method in a
given situation is not a routine matter. The method of choice depends on a multitude of factors:
the structure, size and number of the records to be sorted, the nature of the key on which sort-
ing is done, the statistical distribution of the keys, the size and nature of the mass storage
medium, the size of main memory, the transfer rate between mass storage and main memory,
the speed of the central processing unit or units being used, and so forth. In practice, merge
sorting is the most commonly used method for large data sets, but it is our belief that distribu-
tion, or bucket sorting methods, will prevail in the realm of extremely large problems. In such a
method the range of values of the keys is partitioned into intervals, and the keys are distributed
into buckets according to the intervals in which they lie. Then, in later passes through the
data, the keys in each bucket are sorted, and, finally, the contents of the several buckets are
reassembled into a single sorted file. In order for this method to compete favorably with more
conventional methods, two preconditions must be met: i) The distribution of the keys must be
well understood, so that interval boundaries can be chosen that will ensure an even distribution
of keys among the intervals; this will require the development of suitable on-line techniques for
sampling and estimation. ii) The memory system must support fast random access to many
buckets; a large disk farm would be suitable for this purpose.

September 1987 NSF Infrastructure Proposal 22

Algorithms for Write-Once Memories

The use of a large write-once memory for sorting and searching poses novel questions of
algorithm design. When standard read-write memories are used, methods such as Quicksort or
Heapsort enable sorting to be done efficiently using very little storage other than the array that
holds the keys being sorted. However, these methods may rewrite the contents of a given
memory cell many times. Similarly, fast algorithms for implementing abstract data types such
as dictionaries, priority queues and double-ended queues achieve space efficiency only at the cost
of rewriting the same pointer field many times as the structure evolves.

We have begun to investigate how sorting and searching might be performed in a write-
once memory. If unlimited storage is available we can implement the dictionary data type using
a kind of balanced search tree, in such a way that each insertion into a n-element dictionary
requires time O(log n), but may annex as many as log n new storage locations. In the case of
sorting there appears to be a time-space trade-off. One can sort in linear space and quadratic
time, but the fastest sorting methods seem to require space n log n. We will attempt to prove
lower bounds showing that this trade-off is inherently necessary. ‘

The Maintenance of Histories

The problem of recording the history of a complex data object over time arises in many
contexts. In another section, John Ousterhout proposes to maintain the history of an entire file
system, so that it may be backed up to its state at any past time, for purposes of debugging or
error recovery. On a more limited scale, scan-line algorithms in computational geometry pose
similar problems; in that case, time corresponds to the position of the scan line as it sweeps
across a scene, and one needs the ability to recover a snapshot of the data that was recorded by
the scan-line algorithm at any point during the sweep. The recreation of past versions of com-
plex, changing documents poses similar problems. Driscoll, Sarnak, Sleator, and TarjanDriss6a
have initiated the study of persistent data structures, enabling the retrieval of data from past
incarnations of dictionaries or priority queues. We propose to continue the study of eflicient
data structures for maintaining histories; we expect that there will be an inherent trade-off
between time and space, so that the availability of a massive storage facility will lead to a great
reduction in the time required to perform operations on past versions of a data structure.

The Maintenance of Views

Applications of massive storage systems to problems in vision, graphics and multidimen-
sional optimization often require the storage and retrieval of a set of closely related data objects.
Examples of such sets are the various lower-dimensional projections of a multidimensional sur-
face, or successive snapshots of a time-varying image or scene. A fundamental problem in data
structure design is to represent such an ensemble of data objects so that any one of them can
easily be retrieved or regenerated, and then displayed. Often, the number of objects in the
ensemble is infinite, as in the case of the projections of a multidimensional surface, or else
extremely large, so that it is not possible to represent each data object explicitly in storage. One
possible solution is to store a selected set of reference objects explicitly, and then to generate
other objects by a process of interpolation. This approach has been used in computational
geometry in connection with the hidden-surface problem that arises in generating two-
dimensional views of three-dimensional scenes. It is also possible to use data compression tech-
niques to reduce the space needed to store a reference view, and thus increase the number of
reference views stored, at the cost of greater complexity in the regeneration and display of any
given view. We intend to study the time-storage trade-offs that occur in connection with such
problems.

September 1987 NSF Infrastiuci.are Proposal 23

DNA Sequence Analysis

The revolution in DNA sequencing techniques has made available a massive amount of
data whose analysis may unlock some of the secrets of heredity and evolution and enable us to
understand the nature of certain genetic malfunctions and hereditary diseases. The analysis
requires string-matching routines that reveal similarities among the various sequences. A typical
problem is that of string-matching with errors: given a short pattern z and a much longer string
y, find all those blocks of y that coincide almost perfectly with z. Problems of this kind can be
solved by dynamic programming algorithms that tend to be storage-limited. The combination
of an optical disk to store a database of DNA sequences, together with a very large read-write
memory to provide the large amounts of workspace required for dynamic programming algo-
rithms, might enable significant advances in this field. New algorithms are needed to support
more ambitious efforts to detect patterns and similarities in these sequences. There is a possibil-
ity for cooperation in this endeavor with the Genome Project proposed by the Lawrence Berke-
ley Laboratory.

Combinatorial Optimization

The availability of massive memories will enable new approaches to the solution of large
combinatorial optimization problems. One example is the use of dynamic programming
methods which have, up to now, been considered impractical because of their large storage
requirements.

A second example is the implementation of the branch-and-bound method. In this method
the possible sequences of choices in the solution to a combinatorial problem are represented by a
tree, and the leaves of the tree represent possible solutions. In addition, each solution has a
cost, and, associated with each node, there is a lower bound on the cost of any solution compati-
ble with the choices made in reaching that node. The object is to find a leaf of minimum cost.
The primitive operation is node expansion, in which the children of a node are created and their
cost bounds evaluated.

Two contrasting approaches to implementing the branch-and-bound method are depth-first
search and best-first search. In depth-first search, a single path through the tree is under con-
sideration at any time, and the deepest node in that path is the one to be expanded next. In
best-first search, the next node to be expanded is the one which has the lowest cost bound.
Depth-first search minimizes storage requirements, while best-first search minimizes time, at the
cost of a great increase in storage requirements. In today’s practice depth-first search is the
method of choice, because of its modest storage requirements. With the advent of massive read-
write memories it will be possible to consider a whole spectrum of methods intermediate
between depth-first and best-first search, and to choose an optimum point along the resulting
time-storage tradeoff curve.

3. Use of a Massive Storage Facility

3.1. Research on Very Large Knowledge Bases (Stuart Russell, Robert Wilen-
sky)

Several areas of Artificial Intelligence research require large fast memories and backup
storage, mainly because of the need for large amounts of knowledge. The proposed facility will
make possible important new research efforts in the creation, management and use of very large
knowledge bases, and allow investigation of methods in an unexplored region of time/space
tradeoffs.

September 1987 NSF Infrastruci = Prisposal 24

Creating and Managing Very Large Knowledge Bases

The major barrier to further progress in many areas of Artificial Intelligence is the lack of
a sufficiently large body of common-sense knowledge about -the worldlena87a This is particu-
larly true in the areas of natural language processing, knowledge-based learning, computer-aided
instruction, and planning.

Until recently, there have been no attempts to create large, heterogeneous knowledge
bases. The CYC project Lena86a cyrrently underway at MCC, is a long-term attempt to create
just such an encyclopaedic knowledge base. Despite a major commitment of resources, it is
already clear that current hardware and software technologies are inadequate for dealing with
the amount of information involved, especially since it forms a highly interconnected network
requiring large parts of the knowledge base to be in fast memory at one time. A skeletal
knowledge base containing less than 1% of the projected contents strains the limits of a 24-
megabyte machine with two gigabytes of magnetic disk storage. Maintaining consistency and
rapid accessibility will also require a large increase in processing power. The proposed
configuration offers a possibility for progress in solving these problems. We plan to use the facil-
ity in order to construct a large, unified knowledge base which will enable progress in a number
of different research projects in machine learning and natural language, as well as involving
several research efforts in the creation, management and accessing of the knowledge base itself.

1) Meta-knowledge

In order to maintain consistency and correctness in a large knowledge base, the system
itself requires knowledge about what the data is (meta-knowledge). The system must ensure
consistency of vocabulary, usage and structure of knowledge even when it is being entered by
many users simultaneously. We will therefore study the design of a knowledge base description
language capable of supporting all of the processes for which the knowledge can be used.

Persons adding knowledge to the system must be given strong guidance for the task to be
humanly feasible. We will therefore prime the system with knowledge sufficient to make it an
expert on the methods of its own augmentation, as inP2vi7% The knowledge base will contain a
representation of the knowledge entry process, involving the transfer of facts from humans to
the system; a representation of the interface, to enable the system to take appropriate actions to
guide the user in entering facts; and a representation of the system’s goals and specific informa-
tion needs, to enable it to generate strategies for speeding up the knowledge entry process.

The meta-knowledge itself, which underlies these abilities, will come from three sources:

a) Explicit provision by the user; this is only possible for sophisticated users.

b) Inductive abstraction from the base-level data by the system; this is possible, but
difficult, for ‘machine-readable’ databases.

¢) The appropriate solution may be a cooperative process, involving automatic produc-
tion during the knowledge generation phase; we will design and build knowledge entry
tools with highly structured generation ‘contexts’ that produce information about the
data being generated, as well as producing the data itself. A trivial, existing example 1s
a document processor which tags its output with the appropriate filetype. Less trivial
examples might include symbolic annotations associated with the output of a graphics
scene and animation generator, a symbolic mathematics manipulation system, and an
expanded version of the data fields used by a mail system, including ‘transaction
type’Wino86a The research described subsequently by Graham and Harrison will be

September 1987 NSF Infrastructure Proposal e 25

important for this aspect of the problem.
2) Intelligent manager and interface

During the creation phase, the system’s goals for self-augmentation are paramount. For the
knowledge base to be useful, for instance for users to obtain any leverage from a massive data-
base containing such things as the Library of Congress, advances will have to be made in intelli-
gent interfaces that respond to the user’s needs.

The Unix Consultant (UC) system WileB42 s designed to ascertain user goals from natural
language dialogue, and to form plans which the user can execute to achieve those goals. It thus
provides a useful prototype for an intelligent knowledge system aide. We will continue research
into approaches to modelling the user (also requiring a large common-sense knowledge base) to
ascertain the user’s goals and abilities, not just his or her explicit commands, and into planning
methods that can achieve those goals. The knowledge base manager will also perform inductive
reasoning on user session records and data characteristics (including usage records) in order to
schedule resources and perform appropriate data migration.

Managing a large knowledge base therefore requires research on the representation and use
of meta-knowledge that describes the contents of the knowledge base, and on the goals and
planning algorithms of an intelligent knowledge base manager and interface. For small, uniform
knowledge bases with a single creator, consistency and retrieval /presentation problems are
manageable using ad hoc techniques, but experience on the CYC system has shown that a more
principled approach is necessary in order to scale up to real-world knowledge bases. We plan to
work in collaboration with MCC on these problems, and to implement a system on the proposed
facility, concentrating primarily on the issues involved in creation and management of
knowledge, leaving the generation of content to the MCC group.

Using Very Large Knowledge Bases

1) Inductive reasoning over large knowledge bases

Inductive reasoning involves finding regularities in observations. Small knowledge bases
allow the possibilities of finding simple regularities at a slightly higher level of generality than
the observations themselves. However, work in philosophy and Al Good83a Russ86a }a35 shown
that much more general, abstract kinds of knowledge are possible, and indeed necessary for
good performance in complex worlds, and their acquisition is only possible from large bodies of
knowledge, either heterogeneous (as above) or specialized, as in NIH medical databases. For
example, from a database of Spaniards we can induce the rule that, generally speaking, people
born in Spain speak Spanish. It would require a much larger database to discover that people
born in a country generally speak the same language as their fellow-citizens. A still larger data-
base is needed to learn the general knowledge necessary to actually explain this observation, the
knowledge being at an abstract level concerning social groups, communication and life histories;
but this knowledge would enable sense to be made of thousands of other, more specific observa-
tions, and represents exactly the kind of unexplicated common sense that Al systems currently
lack. The computational problems we will tackle include the use of knowledge to reduce the
combinatorics of the search for regularities, and the generation of goal-directed foci for the
search.

The ability to store and rapidly access large knowledge bases will therefore enable, and
motivate, fundamental research in machine learning, continuing the theoretical approach begun
inRuss86b We will study the inductive acquisition, representation and use of abstract knowledge
from large knowledge bases, both general and domain-specific. (Negotiations are underway for a

September 1987 NSF Infrastructure Proposal

joint project with NASA Ames involving inductive inference on a set of 29,000 aircraft accident
reports.)

2) Life histories for autonomous intelligent agents

The RALPH project (Rational Agents with Limited Performance Hardware) is a long-term
project recently initiated at Berkeley to study software architectures and algorithms for
situated, autonomous agents in a simulated, real-time environment, in which the agents derive
their theories for dealing with the world from experience. This requires storing away enormous
amounts of sensory data for subsequent analysis, essentially a complete ‘life history’. Current
hardware restrictions limit the length of simulation runs and the complexity of the sense data
that can be used; unlimited and easily accessible storage would eliminate this problem. We plan
to use the facility to do research on the abstraction of high-level representations and regularities
from a large stream of sensory snapshots.

Other Al methods, particularly truth maintenancePo¥!792 and uncertainty management
have been inadequately investigated because of their large storage requirements. We will use
the facility to allow incorporation of these methods in the architecture of the autonomous
agents, and to investigate the storage, retrieval and usage problems that actually arise when
reasoning traces are kept for a significant proportion of the system’s activities.

Initial funding for this research is already in the pipeline from Lockheed; Rockwell Science
Center intends to support this work when money becomes available; a larger proposal will be
submitted to NSF later this year.

8) Inference for natural language understanding

To build a system capable of understanding an interesting amount of text, an enormous
knowledge base needs to be created. This knowledge is needed for making the common-sense
inferences that readers of natural language texts must make in order to understand those texts.
Applications include machine translation, automatic summarization of texts, and creation of
knowledge bases from free text (for example, scientific articles or medical studies). Natural
language dialogue (for example, as part of an intelligent interface) requires additional
knowledge, beyond the domain itself, concerning conversational conventions and user goals.

The principal research area concerning the use of large amounts of common-sense
knowledge in natural language understanding is its role in making inferences beyond the facts
stated explicitly in the text, thereby allowing the meaning of the text to be correctly ascer-
tained. We have developed techniques for making such inferences. Our approach involves a
form of parallel search through the knowledge baseNorv872 - Since the connectivity of the data is
high, a very large fragment of knowledge needs to be readily accessible to perform such
searches. Thus, in addition to coping with the volume of knowledge already discussed above, the
proposed facility will be crucial in allowing real-time access to the knowledge for natural
language dialogue. To make this practical, we will study algorithms for efficient network traver-
sal when the size of the knowledge base is substantial.

3.2. Object Management in Databases (Michael J. Stonebraker, Lawrence A.
Rowe)

There is common consensus that relational database systems are appropriate for business
data-processing applications where there is a large volume of fixed format, relatively simple
data. However, they fail badly when asked to manage data that is more complex in nature.
Examples of non-business data with this property include documents, CAD objects, computer

September 1987 NSF Infrastructure Proposal 27

programs, and spatial objects such as icons or bitmaps.

We are developing a next-generation database system and applications programming
environment whose objective is to manage conventional business data as well as to manage
efficiently the sorts of objects that are used in non-business applications. This database system,
POSTGRES, builds on the notions of abstract data types, extendible access methods, and pro-
cedural representation of objects to provide required support and is described in the next sub-
section. The construction of POSTGRES has been in progress for a year, and we hope to have a
working prototype by the end of 1987.

The POSTGRES system will be enhanced by an object based programming environment for
database applications called OBJFADS. The OBJFADS system will impose performance and func-
tionality requirements on POSTGRES that will provide a good test of the successful use of the
proposed facility. An overview of OBJFADS follows the description of POSTGRES.

POSTGRES

POSTGRES is designed to leverage four major ideas: abstract data types, procedures, rules,
and a no-overwrite storage manager. Our abstract data type system borrows heavily from the
programming language community, where the same idea has been extensively investigated.
However, in a database environment, it is also crucial to provide fast access paths to new kinds
of objects. For example, spatial objects such as boxes, lines, and polygons require specific spa-
tial access methods such as R-trees Gutm®42 and KDB-trees Robigla jn order to be efficiently
searched. Hence, POSTGRES is designed so that normal access methods such as B-trees and
hashing can be included, as well as any access methods that a knowledgeable user wishes to
write. In this way specific optimized access paths can be provided by the implementor of a new
type.

Procedures have been widely used in frame-based languages in the Al community such as
FRLRobe772 354 SRLFox842, I POSTGRES, procedures are used as a representation tool to model
objects with a complex internal structure, as well as a vehicle to support transactions consisting
of several query language statements, such as TP1Tand85a [astly, they can be used to model
objects with unpredictable composition. In POSTGRES, the query language has been extended
with constructs to allow the efficient exploitation of procedural objects.

The third major concept that POSTGRES is exploiting is the notion of an integrated rules
system. There are many applications, such as real time control of physical plants and
automated trading of stocks on an exchange, where human expertise must be integrated into
data management capabilities. For example, an expert system that assisted a human plant
operator would want to be alerted when specific events happen (for example the reading on
meter A is greater than twice meter B). Such a program wishes to store rules in a database sys-
tem and have the data manager automatically fire them. POSTGRES rules are, in fact, query
language commands which provide the illusion that they run indefinitely. Hence, they are easy
for a user to grasp, since he or she must already know the query language. Also, they are
powerful enough to perform most rule management functionsSton8ia, :

Lastly, the POSTGRES storage manager is designed so that data is never overwritten. In
this way, previous data is available for retrieval, and is automatically archived to a large capa-
city storage system. This allows a user to ask historical queries and also supports a much
simplified crash recovery schemeSton86a,

POSTGRES is explicitly designed to use the proposed large optical disk system. This facility
will allow us to run POSTGRES in a realistic setting and to experiment with optimization of the
subsystem which spools historical records onto the archive. It will also allow users to run

September 1987 NSF Infrastructure Proposal 28

historical queries on large databases, so we can ascertain the value of that construct.

POSTGRES is also coded to make use of a very large main memory buffer pool. Hence, we
expect to use the main memory of the proposed facility to accelerate database access to
modest-size databases. Again, a realistic environment will allow users (and us) to ascertain the
utility of POSTGRES constructs.

Lastly, we are excited about a large number of magnetic disks, because it will allow us to
construct a file system which spreads blocks in a single file across several disks. Such a parallel
file system allows POSTGRES to decompose individual commands into subpieces that can be exe-
cuted in parallel on a tightly coupled multiprocessor.

OBJFADS

We are developing an object-oriented programming environment for POSTGRES, called
OBJFADS, that supports the development of multimedia applications (i. e., applications that
involve text, graphical, image, and voice data). The system supports the development of “what
you see is what you get” (WYSIWYG) application interfaces that make users more productive.
The same benefits are extended to application developers because the programming environment
uses the same kind of interface. In fact, the program development environment is an OBJFADS
application. The system also provides support for interface extensibility to match the extensi-
bility in POSTGRES and for asynchronously triggered events generated by rules in the database.

A portion of the object hierarchy (data and procedures) will be stored in the database and
shared by other applications. All instances of a class defined with metaclass dbclass are
automatically stored in the database. Database objects that are referenced in an application are
implicitly retrieved from the database into an ‘‘object cache” in the application program.
Updates to dbclass objects are automatically propagated to the database and other applications
that have the object in their “object cache.” The OBJFADS run-time system will implement con-
currency control and crash recovery protocols to control sharing and to protect the data from
system failures.

Our future plans include developing application program support for executing rules stored
in a POSTGRES database. We expect that an application ‘“‘rule cache” similar to the ‘“‘object
cache” will be required to support complex expert systems efficiently. This system will be an
important part of any applications developed at Berkeley where high-quality, flexible user-
interfaces are required.

3.3. IC-CIM - An Application for POSTGRES and OBJFADS (Lawrence A.
Rowe)

We are developing applications to manage the Microfabrication Laboratory at
BerkeleyHod8872 ysing the OBIFADS and POSTGRES systems discussed previously. This research
tests the effectiveness of these two systems when applied to a complex manufacturing informa-
tion system. The long-term goal is to completely automate the laboratory. First we describe
the system that we are building; then we discuss the way that the proposed hardware will assist
us.

The systems we are currently developing as part of an automation facility are:

(1) A facility management system that will maintain information about facility layout,
equipment locations, and utility connections. The data representing the facility will be
stored in the database and a WYSIWYG interface will be developed that allows laboratory
personnel to determine the location, connections, spatial relationships between the vari-
ous entities in the facility, equipment and utility dependencies, and status information

September 1987 NSF Infrastructure Proposal 29

on the environment. The database representation will use the graphics representation
developed as part of the UNIGRAFIX projectSequssa,

(2) A “work in progress” (WIP) system that will keep track of all lots processed by the fabri-
cation facility, guide operators through the processing steps to be performed, automate
the execution of steps where the equipment is directly connected to the system, collect
and store measurements taken during the process, and permit the scheduling of work to
maximize throughput. This system includes several different applications including a WIP
executer, a scheduler, a process-flow editor, and a laboratory manager tool. The data-
base representation for process and equipment descriptions, the WIP executer state, and
measurement data uses an object-oriented data representation that is being implemented
on top of POSTGRESRoWe86a,

(3) A wafer checking system that will visually scan a wafer and determine whether it is
being correctly processed. For example, wafers can be checked after a photolithography
step to determine if an error has occurred during processing. This application can insti-
tute corrective action (for example, asking the operator to reset the equipment, execute
an equipment diagnostic, or schedule equipment maintenance).

(4) An equipment maintenance system that will keep track of equipment operations,
qualification, and repair. This system will include interfaces to display statistic sum-
maries of equipment histories and rules to recognize potential problems before they
occur.

These applications have been chosen because they represent a variety of applications that
involve many different types of data (business and engineering)Rowed72 Moreover, the applica-
tions are related in that data from one application can be used by another application. For
example, the facility management data will be used by the equipment maintenance system to
determine what other equipment might be impacted by a problem traced to a particular utility
network (for example, water quality) and the wafer checking system is called from the WIP sys-
tem.

The proposed facility will have a major impact on this research. All of the IC-CIM applica-
tions will generate considerable amounts of data that must be analyzed and studied. Moreover,
the wafer checking system and facility management system will store images to represent vari-
ous wafer states and pictures of pieces of equipment. The optical disks and large memories will
be crucial elements in these systems.

3.4. Integrated Interactive Development of Complex Objects (Susan L. Gra-
ham, Michael A. Harrison)

As the hardware and software aspects of computing have advanced, increasing attention
has been given to the nature of the assistance that computing systems can give to their users in
performing complex computing tasks. Two of these tasks are document preparation and
software development. We have been designing and implementing two systems to support these
activities — the Pan language editing system and the VorTeX document preparation system. In
the period ahead, we will integrate and extend the two systems to provide flexible user access to
structured information through the use of multimedia presentation techniques, persistent object
bases, and enhanced analysis techniques.

The proposed facility plays an important role in our research. The information representa-
tions used during interactive sessions are very large and require rapid access and update. Tran-
sparent access to large primary memory is essential. The knowledge that is built up over time
about the programs, documents, and other structured language-based objects developed in this

September 1987 NSF Infrastructure Proposal 30

environment will be captured, maintained, and retrieved for use in subsequent sessions. That
capability requires both the secondary storage components of the proposed facility and the
research results envisioned in other sections of this proposal by many of our colleagues.

The subsections that follow describe the Pan and VorTeX systems and their potential
integration.

The Pan Editing System

Pan is an interactive editing system that combines a text editing capability with support
for high-level manipulation of structured objects such as programsBall86a, Bali87a The com-
ponents of the system are description-driven, so that multiple language definitions and presenta-
tion styles can be supported. In addition to syntactic editing, browsing and viewing, Pan will
have a capability for rich semantic annotation, both formally, by means of incrementally
evaluated logic-based semantic specification, and by means of commentary. Semantic analysis is
used not only for checking of well-formedness, but also for browsing and presentation.

We intend to use this richness not only for incremental checking during program construc-
tion but also to explore ideas for program understanding, for checking and enforcing extra-
lingual program properties (for example, conformance with project standards) and for recording
a variety of other information. Our notion of language extends beyond traditional programming
languages. It also includes such examples as design languages, interface definition languages,
process description languages, and the language of documents (paragraphs, sections, and so on).
Especially in the earlier stages of our experimentation, we are maintaining large amounts of
data associated with structured objects and their interrelationships. A small piece of language
text (be it program, design, or whatever) may have a very large amount of associated informa-
tion.

Since the system is used interactively, it must update the semantic information incremen-
tally. We are currently developing the necessary algorithms. Our previous experience develop-
ing complex algorithms to support code generation8842 was that until we achieved a deep
enough understanding of the issues, we needed considerably more space for our computations.

We also intend to study some granularity and persistence issues. Our semantic informa-
tion constitutes a small object base. In principle, all the information resides in a POSTGRES-like
store; in practice, much of the information is too ephemeral during development to be worth
storing (much less keeping). However, once it becomes reasonably stable, it becomes important
persistent information. We have the following research questions. Is the management of that
information application specific, or will the techniques proposed for managing the information
storage facility suffice? Can there be a transparent continuum between local data and ‘stored’
data? Will it be transparent with respect to performance?

One of the purposes of our approach to program development is its applicability for
software reuse. Successful software reuse has several aspects - effective retrieval of reusable
components, incorporation of those components in a new environment, and the ability to modify
components in a reliable way. (See Richard Fateman’s example in his discussion of binding time
later in this proposal). Each of these aspects requires augmentation of the traditional descrip-
tions of computations and related objects solely as commented program text. Language-based
mechanisms for effective storage and retrieval of information in massive repositories will be
essential. Object oriented paradigms and late binding will be important but will probably not
suffice. Particularly in the period before we understand this problem, we will need to keep large
amounts of information about software objects. (Design decisions, development history, test
data ...) As much as possible, this information will be structured and formal, but it will be very

September 1987 NSF Infrastructure Proposal 31

diverse.

The VorTeX Document Preparation System

VorTeX is an integrated document preparation environment capable of producing high
quality technical documents which involve mathematics, text, and graphics. The major research
goals of the VorTeX project are the following:

1 To produce an integrated user interface to support a com lete technical document
. 8 P P
preparation system

(2) To provide dynamically consistent multiple representations of documents
(3) To establish links with other related and relevant software systems.

Multiple representation systems are discussed in Perk84a onq Chend7a [p VorTeX, both
source and target representations of a document are maintained and presented. The source
representation refers to a TeX document in its original unformatted form; the target representa-
tion presents its formatted result. The user can edit both representations using a text editor
and what is called a proof editor, respectively. Changes made to one representation propagate
to the other version automatically. It is easy to support source modifications that cause the tar-
get representation to change, but one of our principal research issues is to go from a target ver-
sion back to the source version.

The system reformats a document and redisplays it on the screen incrementally. Only the
part of the document or the subregion of the screen that is affected by recent changes is repro-
cessed. The environment has support for automatic production of indexes for books, support
for bibliographic material, spelling checkers, and other document-related utilities. The system
runs on, but is not restricted to, workstations with a high resolution bit-mapped display. There
is a high degree of interaction with the userChen86b Oyr current system uses Sun workstations

and the X window system. In order to provide device independent high quality graphics, we use
PostScriptAdobssa,

Future research topics include the following:

(1) Support for Composite Objects
We want to support not only text, mathematics, tables, and graphics, but also non-
textual objects such as raster images, audio, and functional objects. For example, we
want to be able to integrate a complex object from another system, such as a
spreadsheet, into a document without losing its particular functionality. It is not too
hard to incorporate these kinds of objects with special-purpose mechanisms. What we
seek is a coherent general integration with the base system.

VorTeX, and many other similar systems, achieve their functionality through using com-
plex internal representationsChengscl Sand782 Then sophisticated transformations are
applied to give the different views. Thus the internal representations become extremely
large. To solve the problems involved in managing and accessing those representations,
we need access to large amounts of primary and secondary storage, as well as new struc-
turing mechanisms.

(2) Animation
Our implementation of graphics allows primitive animation so that it is possible to
integrate animation into compound documents. We intend to enhance that aspect of the
system. There is great potential for applications of such compound documents in educa-
tion, as well as in other domains where it is important to display dynamically changing

Septenbe; . . NSF Infrastructure Proposal 32

situations.

(3) Bibliographic Assistance

In future versions of the system, we will extend our bibliographic interface. We can now
“click” on a citation and a new window provides information on the reference. In the
future, we will be able also to display the actual source reference material. Further
examples of browsing are easy to imagine. For example, a reader of an electronic version
of this proposal might want to click on reference [VorTeX] and then see the formatted
bibliography entry. A further click might open to a window with the text of the paper
in it. Another menu choice might be to open another window and run a canned demons-
tration of the VorTeX system in it.

Integration Issues

An obvious and relatively easy form of integration of Pan and VorTeX is to use a common
text editing capability, a common window manager, and other shared user interface utilities.
However, the deeper and more interesting research issues come up in adding new aspects to the
two systems in a common way and in treating objects constructed by users as composite objects
“ynderstood’’ simultaneously by both systems. Here are some examples of the kinds of issues
we will investigate:

(1) A Pan object must be known to the system both as a document, with all the formatting
power of VorTeX, including audible and animated annotation (documentation), and as a
linguistic object with the syntactic and semantic structure and manipulations supported
by Pan. It is not yet clear to what extent multiple coordinated representations will be
used, as opposed to a single very rich representation.

(2) A VorTeX object will probably require a language-based formatting description, together
with the linguistic-based editing and manipulation capabilities of Pan, rather than the
LaTeX macro enhancements currently used with TeX.

(3) The secondary storage of these complex objects in an object oriented persistent data base
must be worked out. One problem is how to store and maintain histories of document
revisions both as documents and as linguistic objects. This problem has some similarities
with the traditional problem of designing source code support systems, but the complex-
ity of the representations and the introduction of semantic information will force the
development of new techniques.

(4) Tt should be possible to work with the documents and other linguistic objects in a shared
environment. To do so raises issues of authorization and access control. For example,
certain users may or may not have permission to change a document. Independently,
some users may annotate it, while less privileged readers may not be able to do that.
We intend to support users in maintaining variants of a document or program with a
common base that can change over time.

3.5. Computer Graphics for the Visualization of Complex Objects (Carlo H.
Séquin)

Interactive computer graphics can provide powerful tools to understand the structure of
complex mathematical objects such as the high-dimensional ‘cost-functions” or “energy-
surfaces” of multi-parameter optimization problems. One aspect of our research is to develop
advanced tools for the visualization of such objects. In two recent research projects in which we
wanted to use computer graphics for this purpose we have encountered significant limitations in
what can be achieved due to a lack of storage media of one kind or another. This section

September 1987 NSF Infrastructure Proposal 33

demonstrates how the proposed massive information storage facility will significantly enhance
our research.

Interactive Energy-Function Visualization Using a Gigabyte Memory

In two different projects, one relating to the multi-parameter optimization of analog
integrated circuitsKoh872 and the other concerning the convergence behavior of a neural net-
work, the need arises to visualize a high-dimensional “cost-function” or ‘‘energy-surface” of
about 4 to 10 parameters. In particular one would like to know the number of basins of attrac-
tions, their topological “connectedness”, and the sharpness and slants of the ridges separating
the valleys in order to devise a good strategy for automatic optimization tools or for learning
algorithms. With the proper hardware support we can build tools and techniques to make 1t
easier to visualize such higher-dimensional functions.

One of the tools that we plan to build is an interactive projection tool, that takes 2 to 4
slices through this higher-dimensional space and displays the function in these slices by mapping
the energy value into a range of colors. In conjunction with the right computer graphics equip-
ment (such as a PIXAR) we would like to develop an interactive manipulator that permits us to
change smoothly and interactively the slice positions through this cost-function. The proposed
large semiconductor primary memory will hold all the precomputed cost-information encoded in
suitably chosen color maps to enable rapid loading of any particular hyperplane to the graphics
display station. The keyboard will select a subset of, say, three parameters out of this higher
dimensional space. The corresponding subset of data will be loaded mnto the PIXAR memory,
and three slices can then be moved interactively with the mouse through this 3-dimensional
sub-volume of data, permitting the user to follow the valleys and ridges of the cost-function
minima and maxima.

A little computation shows that we need a substantial amount of memory: If we have five
dimensions with 64 dots each, we need 2% words, or at least one gigabyte of memory; and each
additional dimension would increase the memory requirement by a factor of 64! We plan to
study more effective coding schemes, so that it will be possible to move interactively through
more than five dimensions.

We will also need a substantial amount of compute power to compute that information. If
each point takes a hundred operations on a 100 MIPS machine, then we compute 2%° words in a
second and need 2!° seconds - or 16 minutes - to fill the memory. A shared memory multipro-
cessor with this sort of speed residing on the network would be highly beneficial in this task.

Interactive Pictorial Manuals for Geometric Tools

The UNIGRAFIX system is a geometric modeling and rendering system that runs under the
UNIX 4 2BSD operating system on VAXes and on Sun workstations. The system comprises a set
of rendering programs for many different devices ranging from ASCII terminals through high-
resolution color graphics terminals and hardcopy dot-raster printers. The system includes a col-
lection of generator programs that form UNIGRAFIX descriptions of such objects as geodesic
domes, mitred prismatic tubes along arbitrary paths through 3-D space, or pairs of matched
gear wheelsSeau852 Some of the tools in the UNIGRAFIX system have a large variety of possibly
interacting option parameters, and it is often difficult to convey the effect of these parameters
without the use of pictures. Sometimes even pictures are marginal, and one would like to pro-
vide a whole series of images or, better yet, a movie sequence. For instance, the influence of cer-
tain surface modeling parameters on the appearance of that surface in an environment with
several objects that could be reflected and several light sources is best experienced by watching
the effect as the parameters change.

September 1987 i1SF Infrastructure Proposal 34

Suppose we want to imitate various materials for geometric modeling and rendering with a
sophisticated ray-tracerK2ii83a, Glastda, Mars87a These materials are distinguished by the way
they reflect, refract and scatter light from the light sources to the human eye. Realistic render-
ing requires that several coeflicients, for instance color, diffused reflection, specular reflection,
transmitted fraction, transmission attenuation, and index of refraction, be properly set. To
make matters more complicated, these coefficients may depend on the wavelength of the
incident light and on the angle of incidence. The richness of these choices that need to be made
is often bewildering to the user. An interactive tool is clearly required to teach the user the
influence of the various parameters and efficient ways to achieve the desired look of the ren-
dered object.

Since real-time ray-tracing is still something that not even the most powerful supercomput-
ers today can provide, we might precompute a relevant set of examples and store them on disk
for rapid perusal. The most desirable way of organizing the material for such a tutorial would
be to store pictures in all relevant parameter directions. The user could then ‘move’ along any
one of the desired axes, change the parameter value (almost) continuously, and observe the
effect on the displayed scene interactively.

However, a little computation shows that even optical disks are insufficient to solve this
problem in a brute force way. Assume that there are only six relevant coeflicients and that we
would like to show the effect for 10 discrete values for each. This would require storing one mil-
lion images if we want to give the user the opportunity to move around freely in this six-
dimensional space. More sophisticated approaches for selecting and organizing images will be
required. It is the goal of our research to find effective solutions to this problem.

Combined Use of the Gigabyte Memory and of Optical Disks

Both applications described above stretch the limits of what one might achieve with the
technology expected to be available in the next 3 to 5 years. The crude solutions outlined above
will be inefficient, provide limited resolution along the various axes of the high-dimensional
spaces we want to explore, or may not be truly interactive.

However it seems promising to exploit a clever combination of the use of the best features
of both types of storage devices. To stay with our second example, we are currently evaluating
whether it is practical to run a worst-case ray-tracing rendering of the demonstration scene,
assuming all surfaces to be potentially reflective and refractive, and to trace the rays to some
limiting depth, say 8. In the worst case this would result in 254 secondary rays for each ray
that bounces suitably through the scene. All the geometrical tests for ray/polygon intersections
are computed only once, and the resulting arithmetic expressions that show how the color of an
individual pixel on the screen is composed from these 255 contributions are stored on an optical
disk. When the user chooses a particular set of material coeflicients, the chosen numbers are
plugged in, the expression for each pixel is evaluated on the fly, and the result is sent to the
screen.

As described, a full image could be regenerated in a matter of seconds. If we want to per-
form the display-update in real time, we need more sophisticated ordering and grouping of these
computations. A first idea is to run-length-encode adjacent pixels on the same scan line with
the same expression for their display value; the expression evaluation will then be carried out for
all of them simultaneously. With a suitable indexing scheme and some clever caching scheme
involving the large semiconductor memory, we can further reduce the necessary computations
and treat much bigger groups of pixels with the same computation. For instance, think of all
the background pixels as referencing the result of a single expression for their color value.

September 1987 NSFE Infrastructure Proposal 35

Conclusion

With the emerging optical disk technology and large random access memories, pictorial
presentation of ideas will become practical. The key task is to find ways to organize a multidi-
mensional set of mutually related displays and to provide rapid random access to them. This
research is part of our broader goal to make graphical entities equal citizens with text-files in
the UNIX environment. The optical disk is the right medium to store the large amounts of data
associated with images.

3.8. Research in Computer Vision (Jitendra Malik)

The major theme of our research in computer vision is the inference of geometric descrip-
tions of a scene useful for object recognition. This is to be done either from a single image or
from sequences of images. Storing images requires a lot of memory. A 500 X 500 pixel image
with 8 bit resolution occupies a quarter megabyte if it is a grey scale image and three-quarter
megabytes for a 3-color image.

The research we are conducting requires both rapid access to images and secondary storage
of scenes for retrospective analysis. The proposed facility will allow us to study the following
interesting problems.

Problems requiring expanded main memory.

A very large main memory on the order of 100 - 1000 megabytes would be useful in the
development and testing of storage-intensive algorithms. This corresponds to being able to keep
approximately 400-4000 black and white images or 130-1300 color images at a time in main
memory. This will enable us to experiment with a whole new class of algorithms for the follow-
ing two problems:

(a) Analyzing time-varying images:

The importance of motion has been well recognized both for biological systems and artificial
vision. In lower animals like frogs and flies the best developed vision module is that of motion
detection and measurement. For robots, relative motion can be used to segment objects in the
scene considerably more reliably than is possible with a single view.

A major problem with analyzing time varying images is the correspondence problem -
finding the points in the different images which correspond to the same point in the scene. This
can be done easily if the views are closely spaced, however that makes measurements of the
changes between images inaccurate. The solution then is to use a large number of closely
spaced images. This approach has been successfully demonstrated at SRI by Bolles, Baker and
MarimontBo!872 for some simple types of camera motion e.g. when the camera is aimed perpen-
dicular to its linear trajectory.

We will consider the problem for a more general situation allowing for (a) the camera tra-
jectory to be an arbitrary planar curve, and (b) object motion. One motivation for this is to be
able to use mobile robots.

(b) Object Recognition: :

The problem here is to identify the name, position and orientation of the objects in the image,
given a database of geometric descriptions of the objects. It is a very difficult problem, if one
considers the variety of shapes, reflectance and textures, which could be imaged under different
lighting conditions and viewed from different directions.

September 1987 NSF Infrastructure Proposal 36

Present day algorithms have limited applicability. One approach to this problem, intro-
duced by Koenderink and Van DoornKoen792 is that of precomputing the ‘aspect graph’ of topo-
logically distinct views of an object. The gaussian sphere of viewing directions is partitioned into
connected sets such that in each set the graphs corresponding to the projected line drawings are
isomorphic. Koenderink and Van Doorn had specified how this could be done for an object
bounded by a single smooth surface, and more recently Gigus and Malik Gigud7a came up with
an algorithm for polyhedral objects.

Unfortunately the worst case size of the partition can be quite high (O(n®)), where n is the
number of vertices in the object. For practical objects, the partition is probably much smaller
and can be reduced further by introducing a multi-resolution hierarchy. Nevertheless, it seems
clear that a large main memory is needed in order to use this algorithm in practice.

Problems requiring massive secondary storage.

A large secondary (optical disk) storage on the order of 10 - 1000 gigabytes will permit us
to store an extensive database of images taken under a variety of imaging situations. That
would considerably facilitate the testing and validation of computer vision systems developed by
us and other researchers. In addition to this, we will use the database for the following two
tasks: ’

(a) Measurement of scene statistics:

Measurement of scene statistics has an important role in the design of computer vision systems.
Various vision tasks, when examined in their mathematical formulation are underconstrained.
Inferring 3-D shape from photographs and line drawings is an obvious example. In biological
vision these tasks are made solvable by the help of additional assumptions which reflect statisti-
cal and other prior knowledge about the scene. For example, in cultural scenes junctions are
often interpreted as arising from edges which are mutually orthogonal in 3-D space.

A large database would facilitate the measurement of various scene statistics. Some
examples—-how bright are specularities?, how sharp are shadow edges?, how good is the lamber-
tian assumption for the diffuse component of reflected light? This information would be of con-
siderable help in designing general purpose vision systems.

Sometimes these statistics can suggest new constraints and algorithms. An example of the
nontrivial consequences of such studies is the Maloney-Wandell color constancy algorithm
Malo862 which exploits the fact that typical illuminations, reflectances have a spectral distribu-
tion that can be adequately represented using only 3-5 basis functions. If one does not exploit
this statistical fact about the world, the problem is underconstrained and unsolvable.

(b) Providing examples for learning algorithms:

A database of images could also be used as a training set for ‘learning’ algorithms. An obvious
example is that of learning the discriminating function for texture segmentation. Both the Beck
and Julesz models tell us that textural segmentation occurs as a result of differences in the first-
order statistics of local features of textural elements such as length, orientation, color, density
etc. The weights to be given to the various terms can be determined by giving a set of images
with or without texture boundaries and adjusting the weights to yield the correct result in each
instance. One of the earliest strategies for this is the one used by SamuelS2mu63a iy his checkers
learning program; there have been others. We will develop these ideas further in the context of
our applications and study them both theoretically and experimentally.

September 1987 NSF Infrastructure Proposal 37

3.7. Using Gigabyte Storage for the Visualization of Shape and Control
Parameters (Brian A. Barsky)

The Beta-spline is a recent mathematical formulation developed expressly for representing
curves and surfaces in computer graphics and computer aided geometric designBarsla, Bars87a,
One of the ideas underlying the Beta-spline is the addition of two shape parameters that control
bias and tension. Bias is a weighting of tangent vectors between two adjoining segments
(patches) of the curve (surface). As the tension parameter is increased, the curve (surface) tight-
ens and converges to the control polygon (graph). Experience has shown that these shape
parameters provide a natural way to control shape, even for a mathematically-naive user.
Mathematically, one of the novel aspects of the Beta-spline is the substitution of a notion of
geometric continuity (unit tangent vector and unit curvature vector) for the parametric con-
tinuity (in terms of the parametrization) required by traditional formulations.

The Beta-spline has been generalized to allow the shape parameters to vary along the
curve or surface, thereby enabling even more local controlBars83a, Bars83b Ip this case, the shape
parameters can either be set globally with-one value for the entire curve or surface, or locally
with a different value for each joint. Furthermore, from a design system standpoint, a user can
set an initial global value, and then refine the design by altering a few local values.

Recent work has concentrated on generalizing geometric continuity to n'® order geometric
continuity, or G* continuity and on developing the mathematical expressions for these condi-
tions. It is this form of continuity that yields shape parameters; general interpretations and
mathematical expressions are being derived for higher-order Beta'sPeRo852 We will generalize
Beta-splines to higher degree to reflect this higher order geometric continuity. One of the goals
of generalizing geometric continuity to higher order is that the resulting continuity conditions
can be used as a foundation upon which to construct higher-order Beta-splines. With this
higher order will come more kinds of shape parameters. We intend to study the behavior of
such parameters. Such a study can be facilitated by the use of a gigabyte storage.

Gigabyte storage will enable us to compute and store many images depicting different
values of each of the various shape parameters, and to do so for several different order Beta-
splines. The result will allow interactivity in a setting of pre-computed images, each of which
might have been the result of extensive calculation.

The Beta-spline introduced two shape parameters using a local approximating spline curve
or surface formulation. Later, a local interpolatory spline curve using the same parameters was
explored by DeRose and BarskyPeRo84a, DeRo872 Apother approach for a local interpolating
spline curve with parameters to control the shape was introduced by Kochanek and
BartelsKoch84a, Bart87a in the context of computer animation. Their parameters, which they call
“control parameters”, are different from our shape parameters but have similar effects. In addi-
tion, there is a third control parameter, called “continuity.”

We have generalized the use of these three control parameters for curves to modelling
free-form surfacesDu872, Du87b The introduction of control parameters provides us with useful
methods for representing surfaces. Using these methods, we are able not only to create smooth
surfaces, but also to easily introduce and control discontinuities on the surfaces.

All these parameters need to be studied experimentally to gain an understanding of their
behavior. In the future, we will also develop new parameters to respond to certain ideas of
intuitive specification descriptors. To accomplish such studies requires the generation of images
for different parameters. This leads to the idea of a space/time tradeoff, where such images for
a wide variety of parameter values are pre-computed and stored in a gigabyte memory. Then,
it will be possible to scan through the memory, examining these images. This will result in an

September 1987 NSF Infrastructure Proposal 38

animation simulation that will appear as if the images were being computed in real-time in
response to the specification of parameter values. This will enable the interactive browsing
through storage allowing the user to effectively alter the shape of the surface by adjusting
parameters and seeing the results in real-time.

The capability just described will require the study of encoding schemes for images (Run
Length Encoding is an example). Moreover, storing animation engenders the idea of developing
encoding schemes for image sequences, perhaps considering the change between images. Finding
efficient schemes for storing image sequences taking into account changes as well as a basic
static encoding amenable to such approaches will be a crucial area of our work.

3.8. Symbolic Scientific Computing (Richard J. Fateman, Wm. Kahan)

Symbolic mathematics systems have historically represented some of the largest and most
memory-intensive programs in the research community. As one of the most successful areas of
application of Lisp, such systems have had a substantial effect on support environments.

The Macsyma system at MIT prompted numerous efforts to acquire large memory systems,
and in the period from 1968-78 inspired innovations in operating systems (ITS for the DEC-
6/10) and architecture (the MIT Lisp Machine). At UC Berkeley, Lisp and the Macsyma system
were once again a major driving force for large-memory systems, this time on the VAX. In addi-
tion to being a factor in originating the Berkeley UNIX project, certain features (e.g. “‘vadvise”)
were specifically added to UNIX for Lisp/Macsyma paging performance. A similar situation pre-
vailed for early versions of the Sun Microsystems 4BSD. operating system. Benchmarks for the
shared-memory multi-processor SPUR (Symbolic Processing Using RISCS) projectHill862 are also
drawn from symbolics mathematics.

Although the demands of systems of the past for physical memory and address space are
quite modest compared to available commercial mainframe and engineering workstation systems
with 8-32 megabytes of physical memory, important problems of the past which were simply not
worth doing in a heavily disk-bound environment can be considered once again. Issues which
once seemed important (such as software paging of un-used programs) can be ignored; issues of
memory management such as Lisp garbage collection or alternatives using other technology, can
now be explored more easily. In the past, we assumed there would always be a generally severe
penalty for systems in which address space exceeds physical memory. Now it appears that phy-
sical memory will be quite large, and penalty-free address space will be even larger. Lisp imple-
mentations have traditionally benefited from large ““flat” address spaces. Lisp machine archi-
tects of the 1970’s and 1980’s advocated short addressing modes (CDR-coding). When fully-
qualified addresses require (with tags) more than 32 bits, how should they be encoded? Should
Lisp systems promote the use of segmented address spaces (‘“areas”)? Gigabyte address spaces
will require resolution of these problems.

We project that symbolic mathematics systems and environments for scientific program
development and execution can rise to the “challenge” of using new facilities and can provide
the benchmarks for new developments in fields of operating systems, data representation, and
architecture. The underlying technology of Lisp and related programming language issues may
also present challenges.

The following paragraphs describe our current research directions.

More Flexible Binding Time

One of the major tensions in computer programming language design and implementation
is the choice which must be made between compile-time and run-time analysis and execution of

September 1987 NSF Infrastructure Proposal 39

a higher-level-language algorithm.

In conventional languages, compile-time is used for syntax analysis, certain types of error
detection or correction, semantic analysis, optimization, and a variety of other tasks. Yet in
today’s object-oriented languages, once a program is apparently correct (so far as a compiler can
tell), many decisions (bindings) still remain: the typical generic or polymorphic function must
still figure out its arguments and their types at run-time. Various architectural features (tags,
invisible pointers) have been built to minimize the costs. Yet these are never entirely adequate:
a clever compiler given the precise types (or even constant values), can perform a vastly superior
optimization of an algorithm compared to that of a run-time system.

We propose to explore systems in which optimization can continue even at run-time.

(1) We are pursuing the use of large scale “tabulation” (sometimes called “memo-ization”)
in which the input-output relations of side-effect-free functions are stored in a hash-table
and later retrieved when the same input is used. Examples from large symbolic
mathematics problems suggest this is a viable technique for saving time and reducing
program complexity. (This technique is used in the Univ. of Waterloo ‘“Maple”
systemCharg3a_)

(2) We are also exploring the use of program transformations, providing a higher level
optimization either by specific request or automatic means. Macsyma has a number of
programs that will pick out common subexpressions, transform polynomials to Horner’s
rule form, compute power-series approximations, unroll loops, etc. These can be used
explicitly, although whether this is done at run-time or ‘“‘pre-compilation’ time is open to
debate.

The automatic optimization can be explained by an example: when it appears that an
interpreted function is going to be evaluated numerous times (as when a mathematical function
is plotted), we propose to transform it to an efficient compiled function. In particular, if
f(z,y,z) is plotted for z ranging over the interval [-1, 1], then z and y are presumed to be con-
stants and eligible for various optimizations; the program can be specialized for this computa-
tion. In fact, it may be appropriate (especially in expensive cases such as solids modelling)
where it is known that f will be applied to many argument sets, to approximate f itself (e. g. by
Chebyshev approximations). Existing programs provide the capability to write out symbolic
expressions in a form suitable for parallelizing Fortran compilers. A more restricted version of
this approach has been developed by the TAMPR project at Argonne LabsBoy!822 The research-
ers there have demonstrated that from one model routine (say, for Gaussian elimination), they
can produce dozens of specialized codes, for various precisions (single, double), various domains
(complex, real), various representations (tri-diagonal, symmetric, sparse, etc.). Sometimes such
specialized programs have better asymptotic running times than the model routine would sug-
gest.

We are eager to pursue more general results in the context of symbolic mathematics sys-
tems: whenever a new type-vector of arguments is provided to a function, an incremental
analysis and compilation could be performed that would result in a newly optimized code. This
idea was proposed in the Newspeak systemFode84a This system, in fact, became too unwieldy
for mere 12 megabyte VAX systems available at the time.

This technique is important for symbolic mathematics in that there is a fairly well under-
stood, huge, and badly-in-need-of-optimization, collection of programs running on diverse types.
For example, we have hierarchical types such as “truncated power-series in one variable (z) with
coefficients in the quotient-field of polynomials in the two variables (x,y) over the ring of
integers”.

September 1987 NSF Infrastructure Proposal 40

In general, we believe the availability of large spaces in which to cache precomputed values
and precomputed specialized procedures can revolutionize the role of the system and application
programmer, who must otherwise spend significant resources deciding what to throw out and
what to keep. Now the prospect of a system which learns facts and procedures can emerge from
truly large memory systems. Symbolic mathematics is a “hard” area yet with some important
technical consequences for A.I reasoning discussed in an earlier section of this proposal.
Although there may still be a need for occasional “‘garbage collection” it may be removed to a
time when it is convenient, or perhaps done unobtrusively as has been proposed for various
incremental schemes.

Searching/ mathematics knowledge

Another new direction we intend to pursue with huge memories is the storage of otherwise
poorly-indexed information. Consider the world’s currently largest table of indefinite and
definite integrals of elementary and special functionsFTud86a A preliminary study suggests this
table could be represented in perhaps 10 megabytes, but its use could be vastly enhanced by a
multi-dimensional search simultaneously on various keys (e.g. there is a square-root, there is a
cosine, there is a logarithm). Our preliminary estimates suggest that it would be sufficient to
have (say) 1 megabyte of keys available in memory, -and the full table stored on (say) magnetic
or optical diskBravéta,

This is a specialized instance of a very general problem: How do you rapidly find a close
match in a large table. Traditional methods of search require either an exact match (for hash-
coding), or ordered search. Ordered search where the cost of testing the order is as expensive as
(say) a pattern match or a unification algorithm, can be prohibitively expensive in a large table.

Various direct indexing techniques based on discrimination vectors similar to key-word
searches are a start to finding information in our example of the integration table; we suspect
that ultimately, a pattern-match plus more specific information about derivatives, domains, and
other constraints must be used. The use of such a general framework involving pattern match-
ing, procedure invocations, and perhaps other object-oriented programming ideas may be a way
of approaching such partly-ordered search in other domains. We have been discussing these
prospects with Professor Karp and Seidel (see their section of this proposal).

3.9. Run-Time Support for the Integrity of Huge Software Collections (Wm.
Kahan)

The paradigms by which we manage collections of information that matter to just our-
selves and a few colleagues do not serve adequately to manage huge collections of informa-
tion intended to serve a wider public. Because each user is far less confident of his ability to
find his way through a large corpus than a small one, the large corpus can be poisoned more
readily than the small by a relatively tiny dose of misinformation. That is why the integrity
of a large collection of information poses serious technical problems out of all proportion to
our experience with our own collections of information in personal libraries and computer
files. The problems are more difficult with software than with other forms of data because
software is intended to be executed rather than merely read, to act rather than merely be
acted upon. The acquisition of a facility with very large storage capacity will encourage the
creation of vast archives of software, and thus will oblige us to confront the problem of
software integrity.

Our primary concern is with the diagnosis at run time of anomalies that show up in
software that was presumed to have been debugged. These anomalies may be the first evidence

September 1987 NSF Infrastructure Proposal 41

that something is still wrong with the software; pursuing that evidence to a correct conclu-
sion is the first step toward the restoration and maintenance of integrity in software.
Many of these anomalies stem from the bugs that arise when programs transgress the
implicit limits of computation on finite machines. These limits manifest themselves as signals
caused by overflow or (in floating point) by underflow, as inaccuracies due to finite precision,
and as invalidities caused by attempts to access nonexistent parts of complex data structures.
We have developed a set of policies for handling such exceptions in a generally satisfactory
way at tolerable cost. These policies are designed so that a programmer need not be preoccu-
pied with exceptions but may deal with them as afterthoughts if they arise; so that irrelevant
exceptions that do not affect the final results of a computation are hidden from view; and so
that what few exceptions come to the programmer’s attention will be localized well enough that
he or she can decide easily what to do about them. The policies are based on the appropriate
use of default values such as the Nan (not a number) data type of the IEEE floating-point
standards 754 and 854C°d¥842 o the use of flags to signal to the user that his program has
had to do something disputable, and on the use of modes to enable or disable the detec-
tion of various exceptions. They also involve a technique called ‘“Presubstitution”, which is a
generalization of the ‘“Default’” values required by the IEEE Standard. The aim of this tech-
nique is to handle exceptions automatically by software designed to hide the irrelevant excep-
tions from users, without recourse to the spaghetti-like control paths required by most con-
temporary programming languages. There are real-life examples Kaha87a, McLe87a iy which
appropriate policies used to treat the sign of zero, and to handle exceptions associated with
attempting to divide by zero or to compute the square root or the logarithm of a negative
number, can spell the difference between success and failure.

Our schemes have been tested separately on various systems over the past two decades,
but have not yet appeared together in any one system. They are compatible with imprecise
interrupts, a disagreeable characteristic of some of the fastest computer architectures now
and very likely of most of them in the future. The schemes work best if integrated into the
operating system and the language processors, but that is not essential. What is essential
is that they work satisfactorily even if the applications programmer is unaware of their
existence.

No matter what policy might be adopted in advance to cope with a class of exceptions,
someone will have good reason to take exception to that policy. Consequently, a computer
system must be equipped with something we call Retrospective Diagnostics that memorializes
every instantiation of these policies, so that a computer user who doubts their wisdom can
investigate whether they hurt him. Our experience with primitive implementations of Retros-
pective DiagnosticsK2hab62 gives convincing evidence of the essential role they play when
numerous users of innumerable layers of software they cannot (and do not wish to) read find
themselves wondering what went wrong. David Barnett, a former student, is currently
engaged in a more ambitious implementation of Retrospective Diagnostics on a VAX run-
ning 4.3 BSD UNIX.

Continuation of this work will provide a significant technique for reducing the overburden
of conceptual difficulties faced by a naive user of an elaborate library. Growth of such libraries,
as we incorporate a more complete environment in integrated application systems will inevitably
provide a challenge to programmers and end-users. We intend to reduce the behavior of com-
plex systems to comparatively few carefully stated mathematical and pragmatic useful asser-
tions. By providing the tools, both to the programmer/tester and the end user to investigate
problems stated at an appropriate linguistic level (presumably closer to high-level language or
application level than machine language), we hope to enhance productivity of the scientific

September 1987 NSF Infrastructure Proposal 42

application developer. This work is the next logical step in a progression begun with the earlier,
necessary foundation of IEEE arithmetic standards.

4. References

Adob85a.
Adobe Systems, Inc., PostScript Language Manual, Addison-Wesley Pub. Co. (1985).

Aigr84a.
Philippe Aigrain, Susan L. Graham, Robert R. Henry, Marshall Kirk McKusick, and Eduardo
Pelegri-Llopart, ‘“Experience with a Graham-Glanville Style Code Generator,” Proc. SIGPLAN'84
Symposium on Compiler Construction, (June 20-22, 1984). Also appears as SIGPLAN Notices 19(6)

Ande87a.
D.P. Anderson, D. Ferrari, P.V. Rangan, and S.-Y. Tzou, “The DASH Project: Issues in the Design
of Very Large Distributed Systems,” Report No. UCB/CSD 87/338, University of California, CS
Division (EECS Dept.), Berkeley, CA (January 1987).

Ball86a.
Robert A. Ballance, “Design of the PAN Language-Based Editor,” unpublished working paper,

Computer Science Division, EECS Department, University of California, Berkeley, CA (February
1986).

Ball87a. :

Robert A. Ballance, “Pan: An Introduction for Users,”” Version 1.2, Computer Science Division,
EECS Department, University of California, Berkeley, CA (July 1987).

Bars81a.
Brian A. Barsky, ‘“The Beta-spline: A Local Representation Based on Shape Parameters and Funda-
mental Geometric Measures,” Ph.D. Dissertation, University of Utah, Salt Lake City, Utah
(December, 1981). ‘ :

Bars83a.
Brian A. Barsky and John C. Beatty, ‘“Local control of Bias and Tension in Beta-splines,” Transac-
tions on Graphics 2(2) pp. 109-134 (April, 1983). Also in the SIGGRAPH’83 Conference Proceedings
25-29 July, 1983 pp. 193-218

Bars83b.
Brian A. Barsky and John C. Beatty, ‘“Controlling the Shape of Parametric B-spline and Beta-spline
Curves,” Proc. Graphics Interface '83, pp. 223-232 (May, 1983).

Bars87a.
Brian A. Barsky, Computer Graphics and Geometric Modelling Using Beta-splines, Springer-Verlag,
Tokyo (To appear, 1987).

Bart87a.
Richard H. Bartels, John C. Beatty, and Brian A. Barsky, An Introduction to Splines for Use in
Computer Graphics and Geometric Modeling, Morgan Kaufmann Publishers, Inc., Los Altos, CA {To
appear, 1987).

Blac87a.
Christina Black and Charles Farnum, “A Static Analysis of an NFS File Server,” Final report, CS
262 term project, University of California, Berkeley, CA (May 1987).

Boll87a.
R. C. Bolles, H. H. Baker, and D. H. Marimont, ‘‘Epipolar-Plane Image Analysis: An Approach to
Determining Structure from Motion,” International Journal of Computer Vision 1(1) pp. 7-55 (1987).

Boyl82a.
James M. Boyle, “Program Transformation and Language Design,” pp. 285-295 in The Relationship
Between Numerical Computation and Programming Languages, ed. J. K. Reid,North Holland (1982).

“entember 1987 NSF Infrastructure Proposal 43

Brav86a.
M. Braverman, “ATHEIST: A Table-Driven Heuristic Integration System,”” CS282 class project,
Computer Science Division, EECS Department, University of California, Berkeley, CA (1986).

Char83a.
B.W. Char et. al., “The design of MAPLE: A compact, portable, and powerful computer algebra
system.,” Proc. EUROCAL ’83 182 pp. 102-115 Springer-Verlag, (1983).

Chen86b.
Pehong Chen, Michael A. Harrison, John L. Coker, Jeffrey W. McCarrell, and Steven J. Procter,
“An improved user environment for TeX,” pp. 45-54 in Proc. Second European Conf. on TeX for

Scientific Documentation, Strasbourg, France, Lecture Notes in Computer Science 238, Springer-
Verlag, New York (June 19-21, 1986).

Chen86c¢.
Pehong Chen, John L. Coker, Michael A. Harrison, Jeflrey W. McCarrell, and Steven J. Proctor,
“The VorTex document preparation environment,” pp. 23-24 in Proc. Second European Conf. on
TeX for Scientific Documentation, Strasbourg, France, Lecture Notes in Computer Science 238,
Springer-Verlag, New York (June 19-21, 1986).

Chen87a.
Pehong Chen and Michael A. Harrison, ‘“Multiple Representation Document Development,” UCB
Tech Report, UCB/CSD 87/367 (July 30, 1987).

Chen83a.
P.S. Chen, The Entity-Relationship Approach to Software Engineering, Elsevier Science (1983).

Chen86a.
Yih-Farn Chen, Atul Prakash, and C. V. Ramamoorthy, “The Network Event Manager,” Computer
Networking Sympostum, (November 1986).

Cody84a.
Cody et. al., “A Proposed Radix- and Word-length-independent Standard for Floating-point Arith-
metic,”’ IEEE Micro, pp. 86-100 (August 1984).

Davi79a.
Randall Davis, “Interactive transfer of expertise: Acquisition of new inference rules,” Artifictal Intel-
ligence 12(2)(1979).

DeRo84a.
Tony D. DeRose and Brian A. Barsky, “Geometric Continuity and Shape Parameters for Catmull-
Rom Splines (Extended Abstract),” Proc. Graphics Interface ‘84, pp. 57-64 (27 May - 1 June 1984).

DeRo85a.
Tony D. DeRose and Brian A. Barsky, “An Intuitive Approach to Geometric Continuity for
Parametric Curves and Surfaces,” pp. 159-175 in Computer-Generated Images -- The State of the
Art, ed. Daniel Thalmann Springer-Verlag (1985). Earlier version in Proc. Graphics Interface ’85
Montreal 27-31 May 1985 pp. 343-351

DeRo87a.
Tony D. DeRose and Brian A. Barsky, “Geometric Continuity, Shape Parameters, and Geometric
Constructions for Catmull-Rom Splines,” submitted to ACM Trans. on Graphics (1987).

Doyl79a.
J. Doyle, “A Truth Maintenance System,” Artificial Intelligence 12(3)(1979).

Dris86a. :
James R. Driscoll, Neil Sarnak, Daniel D. Sleator, and Robert E. Tarjan, ‘“‘Making Data Structures
Persistent,” Proc. 18th ACM Symposium on Theory of Computing, pp. 109-121 (1986).

Du87a.
Wen-Hui Du, Brian A. Barsky, and Francis J. M. Schmitt, “New Formulations Using Brown’s Inter-
polant with Control Parameters,” Proc. SIAM Conference on Applied Geometry, (20-24 July, 1987).

September 1987 NSF Infrastructure Proposal 44

Du87b.
Wen-Hui Du, Francis J. M. Schmitt, and Brian A. Barsky, ‘“Modelling Free-form Surfaces Using
Brown’s Interpolant with Control Parameters,” Proc. International Conference on Computer-Atded
Drafting, Design, and Manufacturing Technology, pp. 240-247 (21-25 April, 1987).
Fode84a.
J. K. Foderaro, “The design of a language for algebraic computation systems,” Ph. D. Dissertation,
EECS Department, University of California, Berkeley, CA (1984).
Fox84a.
M. Fox et. al., “Experiences with SRL: An Analysis of Frame-based Knowledge Representation,”
Proc. 1st Intl. Wkshp. on Ezpert Data Base Systems, (October 1984).
Gane84a.
Shivaji Ganesh, “Availability and Consistency of Global Information in Computer Networks,”” Ph.
D. Dissertation, University of California, Berkeley (Aug. 1984).
Gigu87a.
Z. Gigus and J. Malik, “Computing aspect graphs for line drawings of polyhedral objects,” submit-
ted to IEEE Workshop on Computer Vision, (1987).
Glas84a.
A.S. Glassner, “Space Subdivision for Fast Ray Tracing,” Computer Graphics and Applications
4(10) pp. 15-22 (1984).
Good83a.
Nelson Goodman, Fact, Fiction and Forecast, Harvard University Press, Cambridge, MA (1983).
Guse83a.
Riccardo Gusella and Stefano Zatti, “TEMPO: Time Services for the Berkeley Local Network,”
UCB/CSD 83/163, University of California, Berkeley, CA (December 1983).
Guse85a.
Riccardo Gusella and Stefano Zatti, “An Election Algorithm for a Distributed Clock Synchroniza-
tion Program,” UCB/CSD 86/275, University of California, Berkeley, CA (December 1985).
GutmB84a.
A. Gutman, “R-Trees: A Dynamic Index Structure for Spatial Searching,” Proc. 1984 ACM-
SIGMOD Conf. on Management of Data, (June 1984).
Hill86a.
M. D. Hill et. al., “Design decisions in SPUR,” IEEE Computer 18(11) pp. 8-22 (November 1986).
Hodg87a.
D.A. Hodges and L.A. Rowe, “Information Management for CIM,”” Proc. Adv. Res. in VLSI, (Mar
1987).
Kahat6a.
W. Kahan, “7094 1 System Support for Numerical Analysis,” SHARE SSD 159 item C4537, pp. 1-
54 (December 1966).
Kaha87a.
W. Kahan, “Branch Cuts for Complex Elementary Functions,” in The State of the Art of Numerical
Analysis, ed. M.J.D. Powell,Oxford University Press (1987).
Kaji83a.
I.T. Kajiya, “New Techniques for Ray Tracing Procedurally Defined Objects,” Computer Graphics
17(3) pp. 91-102 (1983).
Koch84a.
Doris H. U. Kochaneck and Richard H. Bartels, “Interpolating Splines with Local Tension, Con-
tinuity, and Bias Control,” SIGGRAPH’8§ Conference Proceedings 18(3) pp. 33-41 (July, 1984).
Koen79a.
J.J. Koenderink and A.J. van Doorns, “The internal representation of solid shape with respect to
vision,” Biological Cybernetics 32 pp. 211-216 (1979).

Septerai: v od INSF Infrastructure Proposal 45

Koh87a.
H.Y. Koh, C.H. Sequin, and P.R. Gray, “Automatic Synthesis of Operational Amplifiers Based on
Analytic Circuit Models,” Proc. ICCAD, (1987).

Kure87a.
Oivind Kure, “File Placement and Migration in Distributed Systems.,” Ph.D. Dissertation {expected
December 1987).

Leff83a.
Samuel J. Leffler, William N. Joy, and Robert S. Fabry, 4.2 BSD Networking Implementation Notes,
CSRG, Computer Science Division (EECS), University of California, Berkeley, CA (July 1983).

Lena86a.
D. Lenat, M. Prakash, and M. Shepherd, “CYC: Using Common Sense Knowledge to Overcome
Brittleness and Knowledge Acquisition Bottlenecks,” Al Magazine 6(4)(1986).

Lena87a.
D. Lenat and E. Feigenbaum, “On the Thresholds of Knowledge,” Workshop on the Foundations of
Artificial Intelligence, (1987).

Malo86a.
L.T. Maloney and B.A. Wandell, “Color constancy: a method for recovering surface spectral
reflectance,” Journal of Optical Society of America A 3(1) pp. 29-33 (1986).

Mars87a.
D.M. Marsh, “UgRay - An Efficient Ray-Tracing Renderer for UniGrafix,” CS Division Report No.
UCB/CSD 87/360, University of California, Berkeley, CA (May 1987).

McLe87a.
P.J. McLellan, “An Equation Solver for a Handheld Calculator,” Hewlett-Packard Journal, pp. 30-
34 (August 1987).

Nels87a.
Michael Nelson, Brent Welch, and John Ousterhout, “Caching in the Sprite Network File System,”
Proc. Eleventh Symposium on Operating Systems Principles, (To appear, Dec 1987). Also appears as
technical report UCB/CSD 87/345; March, 1987

Norv87a.
Peter Norvig, “Inference in Text Understanding,” Ph.D. Dissertation, University of California,
Berkeley, CA (1987).

Oust87a.
John Ousterhout, Andrew Cherenson, Fred. Douglis, Michael Nelson, and Brent Welch, “The Sprite
Network Operating System,” Technical report UCB/CSD 87/359 (June 1987).

Oust85a.
John Ousterhout et. al., “A Trace-Driven Analysis of the UNIX 4.2 BSD File System,’’ Proc. Tenth
Symposium on Operating Systems Principles, pp. 15-24 (December 1985).

Perk84a.
Charles L. Perkins, “The Multiple Representation Problem,” Master’s Thesis, Computer Science
Division, University of California, Berkeley, CA (December 1984).

Porc82a.
Juan Porcar, “File Migration in Distributed Systems,” Ph.D. Dissertation (June, 1982).

Prud86a.
A. P. Prudnikov et. al., Integrals and Series (2 volumes), Gordon and Breach Science Publishers,
(1986). Russian Publication 1983, 1984

RamaB82a.
C. V. Ramamoorthy and Y. W. Ma, Algorithms for Reconfiguration Control in Dynamic Computer
Networks, Computer Science Division (EECS), University of California, Berkeley, CA (1982).

Rama82b.
C.V. Ramamoorthy and S.L. Ganesh, “Global Information Management,” Proc. UCLA Packet

September 1987 NSF Infrastructure Proposal 46

Radio Analytical Workshop, (Aug. 1982).

Robe77a.
J. Roberts and L. Goldstein, “The ERL Manual,” Memo 409, MIT, Al Laboratory, Cambridge, MA
(September 1977).

Robi8la.
J. Robinson, “The K-D-B Tree: A Search Structure for Large Multidimensional Indexes,” Proc. 1981
ACM-SIGMOD Conf. on Management of Data, (May 1981).

Rowe86a.
L.A. Rowe, “A Shared Object Hierarchy,” Proc. Int. Wkshp. on Object-Oriented Database Systems,
(Sept 1986).

Rowe87a.
L.A. Rowe and C.B. Williams, “An Object-Oriented Design for Integrated Circuit Fabrication,”
Proc. Conf. on Data and Knowledge Sys. for Eng. and Manauf., (To appear, Oct 1987).

Russ86a.
Stuart Russell, “Preliminary Steps Toward the Automation of Induction,” Proc. AAAI-86, (1986).

Russ86b.
Stuart Russell, “Analogical and Inductive Reasoning,” Ph.D. Dissertation, Stanford University,
Stanford, CA (1986).

Samu63a.

AL. Samuel, “Some studies in machine learning using the game of checkers,’
Thought, ed. J. Feldman McGraw-Hill, New York (1963).

Sand78a.
Erik Sandewall, “Programming in an intéractive environment: the LISP experience,” ACM Comput-
ing Surveys 10(1) pp. 35-71 (March, 1978).

Sequ85a.
C.H. Sequin, ‘“Berkeley UNIGRAFIX, A Modular Rendering and Modeling System,” Proc. of the 2nd
USENIX Computer Graphics Workshop, pp. 38-53 (Dec. 1985).

Smit8la.
Alan Jay Smith, “Long Term File Migration: Development and Evaluation of Algorithms,” Com-
munications of the ACM 24(8) pp. 521-532 (August 1981).

Smit81b.
Alan Jay Smith, “Input/Output Optimization and Disk Architecture: A Survey,” Performance
Evaluation 1(2) pp. 104-117 (1981).

Smit85a.
Alan Jay Smith, “Disk Cache - Miss Ratio Analysis and Design Considerations,” ACM Transactions
on Computer Systems 3(3) pp. 161-203 (August 1985).

Ston86a.
M. Stonebraker and L. Rowe, “The Design of POSTGRES,” Proc. 1986 ACM-SIGMOD Conference
on Management of Data, (May 1986).

Ston87a.
M. Stonebraker et. al., “The POSTGRES Rules System,” Proc. 1987 IEEE Data Engineering
Conference, (February 1987).

Swea86a.
Paul Sweazey and Alan Jay Smith, “A Class of Compatible Cache Coherency Protocols and Their
Support by the IEEE Futurebus,” Proc. 18th Ann. Int. Symp. on Computer Architecture, pp. 414
423. (June, 1986).

Tand85a.
Tandem Computer, “A Measure of Transaction Processing Power,” Technical Report 85.1, Cuper-
tino, CA (April, 1985).

k

in Computers and

September 1987 NSF Infrastpu-tus - 7ioposal 47

Thom87a.
James Thompson, ‘“Algorithms and Results for Caching in Processors and File Systems,” Ph.D.

Dissertation (expected September 1987).

Wile84a.
R. Wilensky, Y. Arens, and D. Chin, “Talking to UNIX in English: An Overview of U.C.,” Com-

munications of the ACM 27(6)(1984).

Wino86a.
T. Winograd and F. Flores, Understanding Computers and Cognition, Ablex, Norwood, NJ (1986).

September 1987 NSF Infrastructi: 48

G. Results for Prior CER or II Award(s)

Berkeley has never had a CER or II Award from NSF. We applied once before, in 1981.
As part of an inter-agency agreement, we were instead funded by DARPA, with the intention of
developing infrastructure, and also increasing our involvement with the DARPA programs. That
DARPA contract has led to subsequent DARPA sponsorship of the research projects of some of our
faculty, as indicated elsewhere in this proposal. It has significantly increased the amount of
experimental work we have been able to do, and has provided a research opportunity for many
of our recent graduates and current students.

The DARPA program is to some extent mission-oriented; it does not encompass all of the
research topics that we collectively wish to pursue, nor all of the faculty members participating
in this proposal. Our previous CER-style award was a one-time occurrence and unconventional
for DARPA. None of our current DARPA funding has that character.

A major share of the present DARPA funding is supporting the Aquarius project of Profes-
sor Despain, who is not a faculty investigator on this proposal. Of the present equipment we
have listed, the Apollos, the NCR Tower, a VAX 785, and some Sun workstations and servers
are used exclusively for his project. A major share of the VAX 8600 is also devoted to that pro-
ject. DARPA is also providing partial support for the POSTGRES, SPUR, VorTeX, and Pan efforts
described earlier. Much of that current support ends next year. Support for DASH and for con-
tinuation of our database and software environment research is pending.

The infrastructure support from DARPA demonstrated the enormous value to our program
of a shared focus of the kind we are proposing here. Since 1981 we have had considerably more
experimental research and significantly more collaboration than we had had before then. The
technical interactions we have had as part of the preparation of this proposal suggest that the
infrastructure support we are requesting from NSF would once again be of enormous benefit to
the quality of our program.

September 1987 NSF Infrastructure Proposal 49

H.1 Faculty List

omitted

H.2 Ph.D. Graduates

omitted

H. Research Environment Study

H.3 Metrics for the Research Environment

omitted

September 1987

NSF Infrastructure Proposal

50

