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ABSTRACT

Numerically intensive calculations are not well supported by Prolog, yet there are important applications that
require tightly coupled symbolic and numeric calculations. The Aquarius Numeric Processor (ANP) is an extended
numeric Instruction Set Architecture (ISA) based on the Berkeley Programmed Logic Machine (PLM) to support
integrated symbolic and numeric calculations. This extension expands the existing numeric data type to include 32-
and 64-bit integers, single and double precision floating-point numbers conforming to the IEEE Standard P754. A
new class of data structure, numeric arrays, is added to represent matrices and arrays found in most scientific pro-
gramming languages. Powerful numeric instructions are included to manipulate the new data types. Dynamic
Operand Coercion (DOC) provides dynamic type checking and coercing of operands. The ANP and PLM together
provide for the efficient execution of symbolic and numeric operations written in Al languages such as Prolog and
Lisp. Simulated performance results indicate the system will achieve about 10 MFLOPs on the Prolog version of
some Whetstone and Linpack benchmarks and close to 20 MFLOPS on some matrix operations (all in double preci-
sion).

Keywords and phrases:
Dynamic Operand Coercion, Prolog, horizontal writable control store, integrated symbolic and numeric exe-
cutions, multi-stage dynamic pipeline, scalar and vector processing.

1. Introduction

Contemporary Prolog execution sysiems provide excellent support for symbolic calculations, but are gen-
erally quite weak in their support of numeric and linear algebra calculations. Yet some of the most interesting and
challenging applications of logic programming require high performance execution of tightly coupled symbolic and
numeric calculations. Examples include linear algebra, digital signal processing, computer-aided design, engineer-
ing and manufacturing, design automation 3], robotics, Constraint Logic Programming (8,9, 11], geometric model-

ing and reasoning with probabilistic evidence.

In our Aquarius project [4], one of the main applications is design automation [3] and it requires extensive
numeric calculations as well as symbolic manipulations. We are investigating additional built-in predicates and -
macros for the Prolog language to better support numeric operations. The predicates have a semantic interpretation
in a kernel subset of Prolog, but can be efficiently and directly compiled into powerful machine instructions. At
execution time, most of the machine instructions are exccuted by a symbolic processor, the PLM [7]. When the spe-
cial numeric instructions are feiched by a pre-fetch unit, they are ignored by the symbolic processor and are acted

upon by the Aquarius Numeric Processor (ANP) [18].
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Figure 1: ANP/PLM System Block Diagram

The ANP is a high performance vector numeric processor especially designed to support numeric operations
that occur in the context of logic programming. Figure 1 shows a block diagram of this integrated ANP/PLM archi-
tecture. The ANP co-processor of figure 1 is currently under construction using TTL and ECL parts and will be

inserted into our current experimental system! in the near future.

2. Programming Model

Because the Aquarius Numeric Processor (ANP) is a co-processor to the Programmed Logic Machine (PLM),
it inherits the data types and programming model from the PLM [7]. It adds new data types to the programming
model including, in both scalar and vector forms, integer, single and double precision floating point numbers in
IEEE standard (754) form [2]. An extended numeric register set and a large repertoire of integer and floating point

operations are provided for these new data types.

2.1. The PLM programming model

The programming mode! of the PLM includes an execution model based on a modified and extended Warren
Abstract Machine [6, 16]. The execution model of the PLM consists of four distinct memory areas and a number of

registers associated with them. The Code Space contains compiled Prolog procedures and clauses. The Data

'Our current experimental system is a Xenologic model X-1 {5] co-processor with a Sun 3/160 host The X-1 is an improved, commercial
version of the PLM.
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Space defines the dynamic state of the PLM and is divided into three areas each organized as a LIFO? memory. The
Stack contains control informations defining the environments and choice points created during the execution of
PLM instructions. The Heap is a general area for the storage of data. Finally, the Trail keeps track of variable
bindings which must be unbound during backtracking. In addition to the state registers described above, there are
eight data registers, Ao - A7, in the PLM for parameter passing and for the storage of temporary and frequently used
data items. Following is a summary of registers that make up the machine state of the PLM.

P - Program counter HB - Heap Backtrack pointer
CP - Continuation Pointer S - Structure pointer

E - Environment pointer TR - Trail pointer

B - Backtrack pointer Status - mode, conditional code, ...
H - Heap pointer Ax(0) - Ax(7) - Argument registers

2.2. Representation of the Numeric Data Types

Data in the PLM programming model is represented by 32-bit tagged words. There are four primary types:
list, structure, variable and constant, which are distinguished by bit<31:30>. These are shown in figure 2. Bit<29>
is a cdr bit which is used for compact list representation, and bit<28> is a garbage collection bit. This bit is reserved
for data marking during garbage collection. Bit<27:26> of a constant data type further differentiate between a 26-
bit small integer (00), other-numeric header (01), an atom (10) and a nil (11). This tagging information allows
efficient manipulation of data by applying different strategies to operate on each class of data. Although data typing

benefits from efficient execution, it decreases the amount of information that can be stored within each data word.

Several new data types are added to the ANP for numeric computations. The fundamental numeric data types
are 32- and 64-bit integers, single and double precision floating-point numbers. Arrays based on these fundamental
data types can be constructed in single and multi-dimensional forms. Integers and floating point numbers for com-
putation in the ANP conforms to the IEEE Standard P754 [2].

2.3. Structure Numeric Representation

The IEEE Standard for Binary Floating-point specifies numeric operands to be a multiple of a 32-bit word
except for the recommended extended format, which is 80-bits long. To maintain compalibility with this standard
as well as the PLM execution model, an additional 32-bit word is needed to store data type (tagging) information.
The Structure Numeric Representation utilizes a place holder as an indirect pointer to access the numeric operands.
The place holder is modified with a structure primary tag, garbage collection and cdr bits, and a 28-bit address
pointer pointing 10 the numeric data structure. Figure 3 shows this numeric data structure which consists of a place
holder, 2 numeric header and the numeric operand it is representing. The first entry of the numeric operand is a

numeric header which has the same top 6-bit tags of the place holder, a 4-bit numeric tag and a 16-bit vector

2LIFO is 'Last In, First Qut’ or stack managed memory.
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Figure 2: PLM Data Tagging Representation Figure 3: Structure Numeric Representation

length®. Bit<27:26 = 01> identify this header to be a numeric functor and the numeric tags specify the extended
data types including vector/scalar (V), double-/single-precision (D), floating-point/integer (F) and unsigned/signed
(S) of the operand. Tag space is also provided for additional numeric types such as 'Bignum’, decimal, and com-
plex numbers. Since the PLM data path cannot directly operate on 32-bit numeric operands, entire numeric struc-
ture addressed by an indirect pointer will not be transferred into the PLM register set, but into the ANP instead.

2.4. Dynamic Operand Coercion

Many numeric operations generally appear in the instruction set of scientific processors. Often a subset of
equivalent scalar opcodes appear in vectorized forms as well. Normally the programmer (or the compiler) chooses
the correct opcodes for the data types used in each program. This is fine for some applications that have static data
types. For others, any change in the input data type often requires a recompilation effort. For general programs, .
code for testing the input data types used must be added to accommodate the dynamic nature of the input. There are
two undesired side-effects in this method: 1) the extra code increases the size of the program, thus increases the
dcmand on a generally critical system resource, input/output to memory storage. 2) the added test and branch

opcodes decrease the efficiency in the processors’ (pre-)fetching mechanism.

The second side-effect is greatly magnified in a vector processing system in which the functional units are

pipclined. Thus, the Dynamic Operand Coercion scheme (DOC) is supported in the ANP.

Dynamic Operand Coercion (DOC) is a mechanism built into the ANP architecture to support dynamic data

type checking and operand coercion. The programmer can describe the numeric operations that are required to

3In effect, the vector length is just the arity of the structure,
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accomplish a goal without any consideration of the input data types involved. The ANP will do dynamic type
checking and coerce the operands if necessary. The implementation is such that there is no overhead when no coer-

cion is done (i.e. if the types are identical).

2.5. Extended Numeric Register Set

The architecture of the ANP extends the PLM programming model with a number of data and state registers.
There are eight general purpose data registers, Fo - F7, that can be configured for scalar (Fx) or (256-element Bx)
vector storage. Vector instructions can directly access corresponding elements across vector registers during com-
putation. In additional to the eight general purpose data registers, there are 56 scalar registers,® 128 predefined or
user-defined constants, and two control and status registers. Each (element of a) data registers can store a 32-bit
integer, a single or a double precision floating point number. The data type and vector length of each data register
are stored in the corresponding 32-bit header register (Hx). There are two registers in the ANP for status and con-
trol communication between the ANP, the PLM and the memory unit.
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Figure 4: Extended PLM/ANP register set

2.6. The ANP Instruction Set

Data movement instructions provide a mean to load and store programmer visible registers in the ANP. These
instructions set up operands for data manipulations and return results to memory. Address calculation for these
instructions is done in the PLM. Floadi transfers an element from a vector register into a scalar register. Fstorei

stores a scalar in into an element of the vector register.

ABSolute and NEGate instructions can be applied to all numeric data types in scalar and vector forms.
Dyadic instructions perform additions, subtractions, multiplications and divisions. Mismatched data types are han-

dled by the Dynamic Operand Coercion mechanism in the underlying architecture. Instructions with a prefix 'a’

“Top 16 scalar registers are reserved as scratch-pads, leaving only 48 programmer usable registers.



-6-

(i.e. suba) carry out an additional operation, the absolute values of the result are returned instead. A full set of logi-
cal and bit manipulation operations are included for signed and unsigned integer data types. Shift and rotate instruc-

tions accept a shift count from a scalar register.

Comparison and test instructions are used to test and set condition code for branching. Conversion instruc-
tions provide a means to change between data formats. Compound instruction is a collection of monadic and dyadic
operations in a single instruction. Mac and Smac are sum-of-product and difference-of-product operations for vec-

tor operands. Incgt and Decle are loop control instructions. Set_v_countX sets up the index of the operand for

vector operations.

Data Movement | Arithmetic Logical Conversion
Fload Add Nand Xnor Spu Usp
Fstore Adda Andnx Xor Spl Udp
Fload_CR Sub Andny Notx Spdp Isp
Fstore_SR Suba And Noty Dpu 1dp
Floadi Subx Ornx Passx Dpi
Fstorei Subxa Orny Passy | Dpsp
Fmove Mult Or Set
Multa Nor Cir
Div :
Monadic Bit | Compare | Test | Compound Misc.
Abs Lshift Cmp XX | Tests | Sqrt cr
Neg Ashift Max Testr Mac Nop
Rotate Min Smac .Incgt
Decle
Set_v_countl
Set_v_count2
Set v _countR

Table 1: Summary of the ANP Instruction Set

3. The ANP Architecture and an Implementation

The purpose of the ANP is to supplement the PLM symbolic processor with high performance numeric opera-
tions while maintaining upward compatibility with the existing PLM’s Instruction Set Architecture. This is accom-
plished with an extension of numeric data types and instructions, as described in the previous sections, and an archi-
tecture that efficiently supports these new extensions. The ANP functions as a co-processor to the PLM. The pro-
grammer perceives the ANP/PLM execution model as if all numeric instructions are executed in the PLM. In sys-

tems where an ANP is not present, numeric operations are emulated in software via traps to the host processor.

3.1. The Execution Pipeline

One of the bottom-neck in the ANP/PLM system lies in the memory bandwidth of the PMB. Although the
PMB has separate Opcode and MAR address busses, the Memdat bus is multiplexed between code and data. Furth-
ermore, the memory access cycle time on the PMB is one Pclk cycle which is equal to two Fclk cycles (50ns each).

[ V.4 |
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Figure 4: The ANP System Block Diagram

Like in most high performance vector computer design [13], pipelining is employed to increase the
throughput of the system by overlapping execution of ANP instructions. This is accomplished with a two-word
deep instruction buffer and a dynamic execution pipeline. The ANP execution pipeline can issue a register-to-
register instruction every two fclk cycles for most scalar operations. For vector and other scalaf operations the exe-
cution pipeline is dynamically stretched to accommodate multi-cycles instructions. Maximum performance is

obtained for scalar operations while no penaity is incurred on others.

3.1.1. Opcode Formats

All ANP instructions consist of an 8-bit opcode and a 32-bit argument (operand)®. The opcode differentiates

one of three ANP instruction classes: Load , Execute or Store. The first and third instruction classes include all the

$Similar to a size four PLM instruction.
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transfer operations between the ANP, PLM and the memory system. The Execute class consists of all register-to-
register operations in the ANP.

For Load and Store instructions, bytes zero and two of the argument contains the Ax register where the
operand is transferred from or into the ANP Fx register respectively. Byte one is an index for element extraction
from or insertion into a vector register. Most Execute instructions utilize all four bytes of the argument. Byte three
contains the Fopcode which specifies the execution opcode for the ANP calculation. Bytes zero and one specify

the two source operands of a dyadic operation. Byte two is the destination operand where a calculation is stored.

3.2. The Instruction Buffer - Fetch/Decode Stages

The purpose of the instruction buffer (IBuffer) is to overlap the execution of the current instruction with pre-
fetching and decoding of the next one. The IBuffer consists of two latches, Darg and Earg, which together make
up the first two stages (Fetch and Decode ) of the system pipeline. The pipeline flow diagram is shown in figure 5.

When an ANP opcode is pre-fetched by the PLM, the eight-bit opcode as well as the 32-bit argument
(operand) are transferred into the Darg latch. The 8-bit Fopcode is decoded by the OCU. If no coercion (internal

exception) is needed, the instruction is transferred into the Earg latch for execution®. Register reads, execution, and

storage of results take place after the ANP instruction is transferred into Earg latch.

3.2.1. Read/Execute/Write/Store Stages

After decoding in the Decode stage of the pipeline, an ANP Execute instruction is transferred into the Earg
latch for execution. The third Read stage of the system pipeline transfers the operand(s) from the ANP register file
(SU) into the EU. Two 64-bit reads are accomplished in a Fclk cycle. The register file addresses are derived from
the lower three bytes of the Earg latch.

T [ ] T
ferch oyl | decode read : store

'
! L

Figure 5: Pipeline Data Flow Diagram

“Transfer into the Earg latch may be delayed if the current instruction is a multi-cycle operation.
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Following the operand access is the fourth Execute stage of the pipeline. Operand(s) are operated upon in
the execution data path (EU) of the ANP. Most operations take one Fclk cycle in this stage. For others, like div
and sqrt instructions, the Execute stage is stretched for multi-cycle execution.

Finally, the result is written back into the SU during the Store stage. For a vector operation, an additional
Write stage is added before the Store stage to relax the timing constraint on a slower and denser vector register file.

The pipeline stages after Decode are repeated for every element of a vector operation.

While most scalar register files are laiches, vector register files are often implemented by Random Access
Memory (RAM) with additional logic to control multi-port access, arbitration and timing. Adding the Write stage in
the vector pipeline allows less complicated timing circuitry for access control and a slower RAM may be utilized in

an implementation.

3.2.2. Pipeline Interlock

Two common problems in a pipeline design is structural and data dependent hazards [10]. Structural
hazards occur when two pieces of data attempt to use the same stage of a pipeline simultaneously. This hazard may
occur if cares are not taken during the design and scheduling of the pipeline. An example in the ANP design is the

i P S g S e P e P P PR e Y
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Figure 6: Pipeline Timing Diagram
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advancement to the Read stage of the pipeline for the next instruction while a multi-cycle execution is currently tak-
ing place. The hazard lies in the SU access and the usage of the EU. This hazard was avoided by: 1) careful design
of the pipeline. 2) detail analysis of the inter-dependency between each stages and instructions. 3) use of the reser-
vation table technique described in [10] and the micro-code flow-chart method described in [15].

Data dependent hazards occur when the state of pipeline depends on other stages. These happen when two
separate instructions attempt to access the same data (i.e. register, memory location) when their executions are over-
lapped in the pipeline. There are three such hazards:

Read-After-Write (RAW) - The data read by a (logically) preceding instruction is modified by a following instruc-
tion before the access is completed. The data read by the earlier instruction is no longer the initial content but the
new value written by the second instruction.

Write-After-Read (WAR) - The data read by a following instruction occurred before it is modified by a (logically)
preceding instruction. The data read is the stalled data.

Write-After-Write (WAW) - The data written by a following instruction occurred before it is written by a (logi-
cally) preceding instruction. The data stored is the stalled data from the earlier instruction.

The ANP pipeline design is free from data dependent hazards by 1) maintaining the sequentiality of instruction flow.
2) proper scheduling of instructions through the pipeline [10,14,17]. 3) employing a pipeline interlocking tech-
nique [12]. The RAW and WAW hazard cannot occur in the ANP execution pipeline because of serial execution of
instructions. Read and Write (Wx for vector instruction) accesses are scheduled so that they are aligned during the
first half of a Fclk cycle (as shown in figure 6). A Pipeline manager within the OCU detects and resolves any
potential WAR hazards by forwarding the new data from the current Store stage directly to the input of the EU viaa
feedback path. ’

3.3. Bus Interface Unit

The Bus Interface Unit (BIU) is responsible for all communications between ANP, PLM and the memory sys-
tem. The primary function of the BIU is to enforce the Co-processor Interface Protocol (CIP) for orderly transfer
of instructions and data between ANP, PLM and the memory system. The co-processor interface consists of physi-
cal conncctions that enable the transfers of information between units attached to it, and a controlling mechanism
that implements the CIP.

System parameters, such as interrupt enables and mode controls, can be written 1o a Control Register (CR)
for initialization and debugging of the ANP hardware. Condition codes and flags from execution of ANP instruc-

tions are written into a Status Register and can be accessed by the PLM or the memory system from the BIU.

The PLM was designed as a single processor system. The interface between the PLM and the memory system
has no support for additional (co-)processors. Thus, an interface protocol is needed for the addition of the ANP.
The Co-processor Interface Protocol (CIP) is a bus protocol for initialization, usage of the PMB (for transfer of

instruction and data), and exception handling between the ANP, PLM and the memory system.
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Figure 7: Bus Interface Unit Block Diagram

The initialization protocol is kept close to that of the PLM for two reasons. First, enhancements based on the
existing hardware and micro-code require minimal changes in the system. As a result, no change is needed in the
existing hardware of the PLM. This allows fast prototyping of the new hardware and software by utilizing the exist-
ing PLM debugging environment Second, keeping the ANP's micro-code in the PLM’s code area allows easy
modification and enhancement of the micro-routines. Debugging of a complex system like the ANP/PLM is easier.
Specialized micro-routines can be loaded for the processing of specific applications (i.e. DSP, CAD).

3.3.1. Transfers of Instruction and Data

The execution model of the ANP primarily consists of a sequence of load, execute and store operations.

When an ANP opcode is detected on the Opcode Bus, the BIU enters one of three modes:

Load - The ANP waits for the transfer of operand(s) from memory into its internal Fx/Bx registers via the
PMB data Bus. Address calculation and initiation of the memory transfer are done in the PLM.

Execute - is a register to register operation in the ANP. Data coercion may be done to complete the operation,
Fbusy* is asserted during the execute cycle when IBuffer is full. Fexcept* may be asserted on the PMB

when an external exception is detected.

Store - The ANP transfers operands from its internal Fx/Bx registers 10 memory along with data type (numeric
header) information. The data structure is built on the top of the Heap. Address calculation and initia-
tion of memory transfer are done in the PLM along with the updating of state registers (i.e. H, TR).

When a numeric opcode appears on the Opcode Bus (on the PMB), the ANP as well as PLM receive the
opcode. The ANP transfers the opcode into the instruction buffer (IBuffer) during the Fetch stage of the pipeline
and decodes it during the Decode stage. The PLM calculates the address and fetches or stores operands needed to
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complete the operation. The ANP is synchronized to the PLM to receive/supply the operands from/to the memory
system respectively. The sharing of the PLM address, data and control busses simplifies the protocol to incorporate
the ANP in a PLM system. The co-processor architecture allows the ANP to access all of the resources available to
the PLM. This includes instruction (pre-)fetching, (cache) memory access, memory management and interface to
the host system. Furthermore, the PLM's debugging environment can be easily enhanced to accommodate the ANP.
This allows fast prototyping and verification of the design on both the hardware and software.

Address generations for the ANP are done in the PLM for two reasons.
1) A shadow register set in the ANP is not needed.
2)  The overheads of maintaining and synchronizing two separate processor states are eliminated.

A shadow register set will increase the complexity and cost of the hardware. The overheads for the synchronization
and maintenance of two separate sets of data and stale registers are large. Any change in one of the register set
necessitates a broadcast to the other. For examples, when a PLM instruction modifies an AX register or updates the
heap or trail pointer (i.e. laying a choice point or instantiating an unbound variable), the ANP needs to be notified
and updated. When a numeric data structure is built or modified on the heap, the PLM needs to be updated. All of
these extra transfers will further burden a critical system resource, the PMB. Moreover, additional hand-shaking
protocols and signals for synchronization are eliminated. All of these factors will translate into a slower and more

expensive system.

Most calculations in the ANP take two Fclk cycles except for multi-cycles and vector operations, and in the
event of exceptions. The PLM pre-fetches during execution of an ANP instruction (similar to the execution of a
nop) and continues to the next one. During an ANP calculation, the Fbusy* signal may be asserted on the PMB 1o
notify that it is occupied by an ANP instruction execution and the two words IBuffer is full. If the ANP cannot
complete the instruction before the next ANP instruction is fetched by the PLM, the PLM will enter a busy wait
state until the ANP release the Fbusy* signal. A simplified flow diagram is shown in figure 8.

The ANP normally receives its instructions from the Opcode Bus. When the PLM encounters numeric data
types during the execution of an instruction (i.e. floating point unify), it may request service from the ANP via the
PMB data bus by asserting ANPop*. Then the PLM enters the busy wait loop until the Fbusy* signal is de-asserted
by the ANP. When the ANP completes the current operations (i.e. instructions in the IBuffer), the request from the
PLM is executed. The PLM may continue to the next instruction as if the operation is finished within its data path

or fail if the numeric operation is not successful’ (i.e. unification of two unequal floating point numbers).
The dual execution modes of the ANP, both as a parallel processor that shares the same Opcode Bus with the

PLM and a slave co-processor to the PLM, allow high performance execution of integrated symbolic and numeric

programs while maintaining a tightly-coupled execution mode! in the system.

"Numeric exceptions will not fail the operation immediately bui forward the exception 1o the exception handler in the host.



.13.

Host PLM ANP
Host PLM ANP PLM in PLM ope -
...... P H
PLM mit PLM wait
v o v ANP opd ANP op0
ANP op0 ANP op0
L4 A 4 ANP opl
ANP opl . unn.l.
v PLM sends excepiion ssaie exception
ANP op2 ANP ol 10 host and inierrupt host
fousy- %
ANP .
o v Host services interrpt
mall NpdaLes main memory
ANP ap2 send continme
€W e e e e e = = » .
_— | PLM wpdates cacke
| and processer mate H
ANP op3 ] :
v v H
5 PLM ope i
v - &

Figure 8: Co-processor Interface Protocol Figure 9: Exception Processing

3.3.2. Exception Handling

The ANP is viewed as an extension of the PLM data path and register set. The fact that the ANP is physically
separate from the PLM is transparent to the programmer. Thus, the exception processing is coordinated by the PLM
in a manner that is consistent across all exception types, whether detected during the execution of an instruction

native to the PLM or by the ANP instruction.

The processing of an exception detected by the execution of an ANP instruction involves the two basic steps:
Internal exception - The ANP detects an exception that can be resolved within its data path (i.e. operand coercion)
and continues on with the execution. Examples are invalid operands and invalid operations.

External exception - The ANP detccts an exception and internal exception processing cannot resolve the excep-

tion. An external exception is sent to the PLM which in turn forwards it to the host for further exception processing.

The ANP internal exceptions are caused by invalid operands or invalid operations. These are handled by the
Dynamic Operand Coercion mechanism in the Operand Coercion Unit. The ANP external exceptions are any error
other than internal exceptions. These types of exceptions, which include those described in the IEEE Standard 754,

cannot be resolved within the ANP and an exception interrupt is generated to the host processor for further handling.

3.4. Operand Coercion Unit

The Operand Coercion Unit (OCU) implements the Dynamic Operand Coercion (DOC) mechanism. which

provides partial instruction decoding, operand type checking and coercion, and vector opcration management for the



-14.

Execution Unit (EU). Since data typing information is not specified in Prolog code, an ANP instruction with
mismatched operand type/size must be detected during run-time by means of an intemnal exception to the MCU, or
by sending a failure or (external) exception signal to the BIU.

The OCU 1takes as inputs an 8-bit ANP Fopcode (most significant byte of the Darg latch from the BIU) and
the Hx registers from the two input operands®. It then provides the MCU with the entry point of the micro-routine to
perform the instruction or call a data coercion subroutine to process an internal exception. When no (internal excep-
tion) coercion is needed, the OCU generates the required opcode, feu_op, to the EU. Otherwise, an 8-bit conver-
sion opcode, conv_op, is sent to the EU for operand coercion. Upon completion of coercion, the feu_op is sent o

the EU for the execution of the instruction. Both Feu_op and conv_op are opcodes of the BIT chip set [1].

The second function of the OCU is to maintain vector count for the instruction currently executing in the EU.
If there is a mismatched between scalar/vector and instruction/data, a failure signal is sent to the BIU. There are

two counters each tracking the elements in the Load and Store stages of the vector pipeline.

3.5. Storage Unit

The Storage Unit (SU) consists of 64 Hx header registers, 64 Fx scalar registers, eight 256-elements Bx vector
registers, 128 predefined and user-defined constants in this implementation. Programmer visible floating point
registers Fx/Bx, can be configured as 32/64-bit scalar or vector register according to the numeric header stored in
the corresponding Hx register. Integers, single precision numbers and the least significant word of double precision

numbers are stored in the lower half of a Fx register, the most significant word is stored in the upper half. Vector

M bus =
k2
BIU
Darg -
Earg Hx
yeorm
) r =
HX/HY bus 1
oCu
loakup VLU
wbls

to EUMCU HD/HY tus

Figure 10: Operand Coercion Unit Block Diagram

*Hx register for second source is ignored for monadic instructions.
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operands with length up to 65536 are supported in the ANP®. For operations that involve two vector operands, same

calculation is applied to each corresponding element of the two vectors starting from element zero.

As high precision numeric calculations are needed for scientific data processing, a set of constants are fre-
quently used by these applications. This set of high precision numeric constants, often used in trigonometric, statist-
ical and other numeric calculations, are difficult to derive or to reload each time they are used. In the SU, a set of
128 64-bit pre-defined (or user-defined) constants can be accessed by most numeric operations. All constants are
identified with the most significant bit sct (equal to one) in the operand byte of an opcode (i.e. register 128 to 255).
The ANP register set is shown in figure 4.

The Storage Unit is made up of a set of multi-port register files and several 32/64-bit busses connecting them
and to other functional units. Maximum throughput is maintained in the Execution Unit by combining the SU and
EU to form a 3-stage execution pipeline for scalar and 4-stage pipeline for vector operations. Two 64-bit reads and
a 64-bit write to the scalar Fx register file can be completed in a Fclk cycle. An additional pipeline stage is added
before the input of the Vector Bx register to accommodate the slower but denser Bx register file. Two 64-bit reads
and a 64-bit write to the Bx register file can be completed in two Fclk cycles. During a vector operation, 64-bit
operands are transferred frdm Bx to the Execution Unit. Results are first transferred into the Wx register before they
are stored in the Bx register. Hx register file contains data type information for the corresponding Fx/Bx registers
that is used by the BIU and OCU.

Two separate register files are utilized to implement the SU. The vector Bx register file is denser and slower
while the scalar register is less dense and faster. Along with the pipelining techniques described above, maximum
throughput can be maintained in the Execution Unit for all ANP instructions without paying the high cost of an
integrated dense and fast multi-port register file like the Fx. Another advantage of separating the scalar from the
vector storage is to provide special hardware support only for specific area in the design without applying it for the

entire implementation.

3.6. Execution Unit

The Execution Unit (EU) contains the data path for integer and floating point operations. Its design is based
on the Bipolar Integrated Technology (BIT) numeric chip set which consists of an ALU and a Multiplier There are
six high speed internal busses connecting the SU, MCU and the EU. Two 32-bit X and Y Busses are shared by each
of two input ports of the ALU and Multipier chip. The 32-bit FA and FB Bus connect the output ports of ALU and
Multipier to the scalar Fx and Wx vector input registers. Condition code and status from an operation are

transferred to the MCU over a 22-bit Status Bus. Finally, an 8-bit I Bus supplies opcode to the chip set. [1].

*Current SU hardware can store up to 256 elements of a vector in a Bx register at a time.



-16 -

A A
FA bus
HX | constant BX ki BX1o FX b FXlo FB-bus
‘Vﬂ J" "‘ 473 ‘/ﬁ ". » ‘f‘ ‘VI ‘V‘
2 ” X s
L Y bus
v v
wEU
Figure 11: Storage Unit Block Diagram
o SU
» X bus 'S
. ¥ bus
Tbu L
¥ >
t‘r Arl
M‘U m
*{ 11
Status bug 2 4 FB bus
FA bus

Figure 12: Execution Unit Block Diagram

3.6.1. Scalar Operations

Execution of a scalar instruction (without internal exception) encompasses four stages of the system pipeline
each taking a Fclk cycle. Opcode decoding, OCU access and register address generation for the next instruction are
overlapped in the third and fourth pipeline stages of a scalar instruction.

Read - Up to two 64-bit operands are transferred from Fx register file to the input ports of ALU or Multiplier over
the X and Y Busses in a Fclk cycle. A common 8-bit Feu_op or conv_op is loaded into the I-ports of the chip set.
Execute - Execution in the ALU data path takes a Fclk cycle while Multiplier data path may takes one or more Fclk
cycles. This stage may be extended to a multiple of Fclk cycles for multi-cycle execution in the Multiplier. An Idle
stage may be added at the end to synchronize with the rising of the PLM (Pclk) cycle.

Store - Result and condition codes are stored away in the Fx register in the SU and Status register in the BIU.

Idle - An Idle stage may be added to synchronize with the rising of the PLM (Cclk) cycle. This stage may be elim-
inated if the cycle time is same between the ANP and the PLM.
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3.6.2. Vector Operations

The execution of a vector instruction is pipelined to maximize the throughput for long vectors. At the same
time, short vectors are not penalized with a long flow-through time. A four stage pipeline is chosen to implement
such a pipeline. In additional to the first three stages described above, a write stage is added in between Execute
and Store stage. This stage is added to accommodate the slower and denser vector register file. A maximum of two
elements of a vector can be simultaneously operated in the pipeline. A
Write - Result and condition codes are written in the intermediate Wx register and Status register in the BIU
respectively.

Store - The content of the Wx register is written in the Bx register file.

3.7. Micro Control Unit

The heart of the ANP is a Micro Control Unit (MCU) which consists of a micro-program sequencer, a 96-bit
horizontal writable control store, and other circuitry to handie exception processing and initialization of micro-code.
Fast random logic are chosen for the implementation of the sequencer in order to meet the (50ns) Fclk cycle. A 11-
bit next micro-program address allows for direct control of up to 2K-words of micro-programs in the writable con-
trol store. A block diagram of the MCU is shown in figure 13.

Ability to branch in micro-instruction sequencing directly affects the efficiency of a micro-engine, which in

turn affects the performance of an architecture. Delayed branch logic is employed in the MCU to lessen the effect

writable
load u, ” j——
ot sfore

SRA beanch SUBR OP jé—4 NASL

Figure 13: Micro Control Unit Block Diagram
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of conditional branching. The MCU micro-sequencer is divided into two control levels. First, the BRANCH logic
provides a four way branch by modifying the lower two bits of the control store next address seed under the control
of a 5-bit field in the micro-word. The 5-bit control field selects up to 32 events from the condition code of previous

EU execution or data type of the input operands.

In normal instruction sequencing, one of four address sources are selected to generate the next micro-program
address. These address sources include the modified next address seed ( BRANCH ) as described above, a subrou-
tine entry address ( SUBR ) and subroutine return address ( SRA ) and the decoded opcode ( OP ) from the OCU .
Selection of these four sources are made in the next address selection logic (NASL) under the control of a 5-bit field

in the micro-word.

The concept of subroutine call in high level programming languages allows programmer to write compact and
modular code. The SUBR/SRA pair implements a micro-subroutine call by pushing the return address (modified
next address seed) in the SRA, a one-word subroutine stack, and making a jump to the subroutine entry address pro-
vided by the SUBR. Besides entry points for all the micro-subroutines, the SUBR also contains entry points of com-

mon routines such as initialization and exception processing.

Decoded opcodes are provided by the OCU. Normally, the OCU passes an 8-bit feu_op unmodified to OP
(with the most significant two bit zeroed out). When an exception occurs in the OCU, a modified 11-bit opcode
from the OCU replaces the instruction opcode. This 11-bit conv_op is the entry point of the (internal) exception
processing micro-program to process the exception condition. If internal cxcéption processing fails, the PLM is
notified by the ANP via assertion of the Fexcept* signal on the PMB.

A mechanism, under the control of the BIU, is provided in the micro-sequencer to support system related
functions such as transferring the processor states to the host for debugging. A control return register ( CRR ) is
placed at the output of the NASL branching logic to support system level subroutine calls similar to the SRA. A
11-bit boot counter { BC ) is selected as next micro-program address during system initialization for transferring

micro-codes from the PMB into the writable control store.

4. Performance Measurements

Evaluation of the ANP is done in two steps. First, a register transfer level simulator provides a means for the
evaluation of the microarchitecture of the ANP. Second, a hardware implementation will be constructed and tested
with calculations that are too large to be simulated. Preliminary performance measurements were obtained from

simulation of the design using a set of benchmark programs written in Prolog.

4.]1. Measurement Results

A set of Prolog programs, including modules translated from (double precision) Whetstone benchmark
modules, is used to verify the correctness and measure the performance of the ANP/PLM system. Table 2 shows
the measurements obtained from simulation of the ANP architecture. The second column shows the number of

floating point operations (flop) in one iteration of the corresponding benchmark. Columns three to six show the
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variation in mega-flops (MFLOPS) when each benchmark is run for one hundred, one thousand, ten thousand and

one hundred thousand iterations. All benchmark programs except mac are scalar operations.

Simulated Benchmark Performance (units in MFLOPS)
iterations (double precision calculations)
test flop 100 1K 10K 100K comments
whl 16 9.67 9.97 10.00 10.00 simple identifier
wh2 16 7.85 7.9 8.00 8.00 | array element
wh3 96 6.04 6.04 6.04 6.04 | array as parameter
whd 3 157 1.58 1.58 1.58 | conditional jump
wh5 omitted in Whetstone
whé 15 770 7.87 7.89 7.89 | integer arithmetic
wh? 94 8.68 8.7 8.7 8.7 | trig. function
wh8 9 3.10 3.10 3.10 3.10 | procedure call
wh9 0 array ref. (no flop count)
whl0 5 9.52 9.95 10.00 10.00 | integer arithmetic
whil 24 9.14 9.22 9.23 9.23 | standard function
mac 511 19.88 19.88 19.88 19.88 mulit-n-accum (256 elem. vector)

5. Conclusion

Preliminary results obtained from simulation of the ANP/PLM system are encouraging. Simulation results
indicate a performance of 10 MFLOPs (in double precision) on Prolog version of some Whetsstone and Linpack
benchmarks and close to 20 MFLOPs on some matrix operations. This indicates that the co-processor architecture
concept is feasible for a specialized architecture like the PLM. At present, the ANP is under construction and will
be integrated into the PLM system for final testing. Additional research is needed in software developments and
evaluation of the hardware implementation under real world constraints. The final system based on the ANP/PLM
will be an excellent test bed for the studies of CAM/CAE, expert system and other applications that have high per-

formance requirements for integrated symbolic/numeric calculations.
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