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SUMMARY

Computer systems that are capable of undergoing changes in the semantics or the
interconnection of their modules in a dynamic way, called dynamic reconfiguration, are
considered. The problems that must be addressed to change the semantics of a module
are discussed. The change to the semantics of a module or their interconnection can be
based on local information, global information, or a combination of both. Ways to effect
changes when conflicts exist between local and global information are also discussed.
Algorithms for reconfiguring the modules when data dependency constraints are present
have been developed. Changing the semantics or the interconnection structure of a
module may induce changes in other modules. Systematic ways to deduce induced
changes have been developed. Protocols have also been developed for communicating
reconfiguration information between modules. :

A methodology based on the dataflow principles has been devised for designing
reconfigurable systems. The nodes in the datafiow graph can store state information.
These nodes are used to represent global and local controllers. The design of a sample
operating system has been outlined using the dataflow methodology. Since interprocess

 communication is one of the key issues in reconfiguration, a multiprocessor architecture

has been developed to support this. A separate synchronization memory is used in the
multiprocessor for storing status information, process table, join table, and other data
structures needed for interprocess communication. Simulation results show that fast
interprocess communication is achievable with the synchronizing memory:

The report contains four chapters. The issues in reconfiguration and some applica-
tions are described in Chapter 1. The steps that must be taken to reconfigure a system are
outlined in Chapter 2. It is based on an extended dataflow methodology which has been
published as a paper. The application of the methodology to design a distributed operat-
ing system is described in Chapter 3. A system architecture capable of supporting
reconfiguration is also shown in Chapter 3. The architecture support for fast interprocess
communication (IPC) is described in Chapter 4. Dynamic memory management and pro-
cess management for the parallel execution of Prolog programs on the proposed system
architecture are used to illustrate the fast IPC.
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Chapter 1. ISSUES IN RECONFIGURATION

1. INTRODUCTION

Reconfiguration is an important part of computer systems containing multiple processors. Commer-
cial systems such as Honeywell 68/80 running MULTICS, and Burroughs 6700/7700 running MCP support
reconfiguration to provide graceful degradation and to improve performance. But reconfiguration in the
above commercial systems is carried out using a statically specified set of configurations and ad hoc tech-
niques. This research is primarily concerned with the problem of dynamically reconfiguring a multiple
processor system comprising a large number of processors. Reconfiguration is done by changing the mix-
ture of programs that are allowed to run on processors, and changing the strategies and policies used by the
OS. The problem situation is called a dynamically reconfigurable operating system (DROS).

There are three key areas in a DROS. They are dynamic assignment of tasks to processors, interpro-
cess communication, and memory management. The thrust of the research is in devising efficient ways to
do interprocess communication. This is needed to communicate state information quickly during
reconfiguration. We have developed a multiprocessor architecture that supports fast interprocess commun-
ication.

Recent research activities in reconfigurable computer systems can be classified into four categories.
They are:

. reconfigurable computer architecture,

. reconfigurable software,

. reconfigurable interconnection structure, and

. reconfigurable program assignment (dynamic assignment of
tasks to processors ).
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A summary of the activities in the above four categories is now presented.

Reconfigurable computer architectures have been proposed by Reddi [1] and Lipovski [2]. Some of
the parts of the architecture proposed by Lipovski, using a Banyan network, have been implemented at the
University of Texas, Austin, Texas. Reconfigurable semiconductor wafers containing a few hundreds of
LSI processors and memories have been proposed by Hsia [3]. A reconfigurable microprocessor based
system, called the dynamic computer, has been proposed by the Karteshevs [4-7]. The design of a
reconfigurable distributed computer hardware with potential application to ballistic missile defense has
been carried out by Vick [8,9] and Davis [10].

Design of reconfigurable software has been carried out in parallel with the above architecture
development. Changing modules in a database systems "on the fly” has been discussed by Fabry [11]. The
design of an experimental operating system for PDP 11/40E, where the representation of abstract data
types can be replugged is discussed by Goullon [12). All components of the operating system except the
kernel are designed to be repluggable. This replugging approach is aimed at experimenting with different
abstract data type representations having an invariant specification or leads to a compatible specification.

Computer systems with reconfigurable interconnection structures are commercially available. Some
examples are MULTICS [13,14] running on Honeywell 68/80 processors, MCP running on B6700/7700
{15], Tandem_16 [16], and BTI-8000 [17]. A network of computers with reconfigurable interconnection
structure is also under development at SUNY, Buffalo [18].

Dynamic assignment of programs (tasks) to processors using network flow algorithms has been
extensively studied by Stone [19-21] and by other researchers [18,22-25]. One of the primary goals in
Stone’s work is to minimize the total of execution costs and interprocessor communication costs under the
assumption that the assignment algorithms know the behavior of the programs. The assignment of pro-
grams to processors when one or more components fail is studied by Kim [26] and others [27,28].

Although considerable progress has been made towards understanding the issues in the above four
categories of reconfigurable computer systems, a unified approach to design and implement reconfigurable
systems is not available. Reconfiguration requires the monitoring of program behavior, reusable resource
usage, and component (hardware and software modules) failures. There is an overhead incurred in



monitoring and the extent to which this overhead can be reduced is not well known. The dynamic assign-
ment of tasks from the various programs to processors so that the computer system is globally stable [20] is
still an open problem.

Almost all computer systems have some facility to do static reconfiguration under operating system
control. There are also operating systems based on virtual machines, e.g. IBM’s VM370, that allow dif-
ferent versions of an operating system to be concurrently debugged on a single processor or a multiproces-
sor (shared memory). The problem is that reconfiguration takes time and there are occasional surprises to
programmers trying to execute previously well behaved programs. For example, consider a computer sys-
tem with a single processor and several I[/O processors (channels). If one or more disk units fail in the sys-
tém, and a portion of a multivolume file resides in a failed disk unit, then the program manipulating the file
cannot be executed although the operator has reconfigured the computer using the remaining healthy disk
units. The reason is that the operating system allows logical names for files. A mapping from logical
names to physical devices is performed statically either by the programmer (e.g. VAX/VMS) or by the
operating system (e.g. Multics [14]) during the definition of the logical name.

This research proposes a dataflow graph based methodology for designing a DROS subject to real-
time constraints and/or data dependency constraints. The proposed methodology is used to identify some
of the key problems in the design of a DROS. This is shown in Section 2. Several application areas where
DROS and the principles employed in DROS will be useful are outlined in Section 3.

2. PROBLEMS IN A DROS

2.1 DATAFLOW GRAPH MODEL FOR DROS

A DROS comprises several asynchronous processes which cooperate to control the various resources
of the computer system. Each resource has a set of attributes and the values of some of the attributes can
change from time to time. For example, a buffer pool is a resource and its key attributes are size, type of
data it can store, and the buffer allocation/liberation algorithm. The size of the buffer pool changes as
buffers are allocated to requesting processes. Different allocation/liberation algorithms are needed to han-
dle requests from the file system and processes responsible for interprocess communication.

In order to accurately state the problems in a DROS, it is represented using a dataflow graph. A
dataflow graph is based on the principles of Petri Nets [29-31] and basic datafiow graphs developed by
Dennis [32] and others [33-37]. Dataflow is a model of computation where functions can begin execution
when required data becomes available. The execution of any function is free of side-effects, that is a set of
input values may be consumed and a set of output values may be produced. Thus dataflow is characterized
by asynchrony, functionality, and concurrency. Although there are other models such as Hoare’s cooperat-
ing sequential process [38], they are not considered because of the presence of variables that are treated as
storage locations. Another reason is that it is easier to detect deadlock, flooding, and starvation using a
dataflow graph [35].

A dataflow graph is a labeled, undirected or partially directed graph consisting of a set of nodes, arcs,
and a tagging scheme. The nodes represent communicating activities with internal state in a DROS includ-
ing local control elements and global control elements. The arcs represent data paths for communicating
data items and state information. Each node has several attributes including a distinct name, an operation,
and a set of I/O specifications listing its input and output arcs. Each arc has several attributes including an
arc name, arc type, and the maximum number of data items (tokens) the arc can carry. Each node has local
memory to save the values for node and arc attributes. A model configuration is an assignment of values to
the attributes of nodes and arcs. Each token in a dataflow graph carries a tag so that several distinct calcu-
lations can be processed in the proper order without interference between distinct calculations. The distinct
calculations result from the multiple instances of a task such as a loop, a recursive function call, and the
elements of a stream [35].

In the design of DROS, the arcs carrying state information, and the nodes representing local and glo-
bal control elements are important items. Dashed arcs, called snoop arcs, represent the paths carrying state
information to the control elements. Special kinds of nodes are used in a dataflow graph to represent con-
trol elements. These nodes are called configuration specifying node (CSN), self reconfiguring node
(SRN), and reconfiguration request node (RRN). A CSN is intended for representing a global control



element. It has local memory to store the state information. Note that local memory can be simulated in
dataflow by feeding back tokens. A CSN can assign values to the attributes of nodes and arcs connected to
it using global information. The SRNSs are intended for representing local control elements. It has local
memory to store state information. The SRNs assign values to the attributes of nodes and arcs using local
information. The RRNs are intended for representing the elements in a DROS that can request changes to
the attribute values. Using the above special nodes and the general nodes of a dataflow graph it is possible
to represent any DROS, where reconfiguration refers to changing the values for the attributes of nodes and
arcs. The dataflow graphs with snoop arcs, CSNs, SRNs, RRNs, and general nodes are called as extended
dataflow graphs (EDFGs).

A detailed description of EDFGs is given in {39]. A complex computer system such as the Cray-1S
processor has been modeled and its architecture analyzed for improving performance using EDFGs. The
execution of the nodes in the EDFGs has been simulated using GPSS V [40]. The timing statistics obtained
for a class of programs supplied as input to the Cray-1S model is identical to the execution time on the
Cray-1S processor. The proposed changes to the Cray-1S architecture have been incorporated in the
Cray-XMP processor. The usefulness of a datafiow methodology for designing OS is further explored in
Chapter 3.

2.2 ISSUES IN A DROS

The key issues in a DROS are identifying the components to be reconfigured, and resolving the ques-
tions when to reconfigure, what to reconfigure, and how to reconfigure. The specific research questions
are formulated using the EDFG representation of a DROS. The problems involved in reconfiguration are:

a. identifying nodes whose 1/O arc specifications or operations have to be changed,
b. determining a new I/O arc specification for each of these nodes,

¢. determining a new operation for each of these nodes,

d. determining the set of arcs that should not have any tokens on them so that /O arc
specifications to nodes can be changed,

e. determining values for the rest of the arc attributes,
f. determining values for the rest of the node attributes, and

g. formulating strategies that allow reconfiguration to take place in stages when there are tokens
on arcs in the calculated set of arcs mentioned

above.

Reconfiguration can be based on global information, local information, or a combination of both. The
latter approach introduces complications because of potential conflicts between the global and local
requirements. The timeliness of a reconfiguration may be important because of data dependency require-
ments and realtime requirements. Simultaneous reconfiguration requests from several RRN nodes further
complicate the above problems along with handling exception conditions during a reconfiguration. Simul-
taneous reconfiguration requests can be to a single CSN or to distinct CSNs. These requests can induce
conflicting /O arc specifications for one or more nodes.

A set of solutions to the above problems are described in chapter 2. The practical applications of
reconfiguration are outlined in the next section.

3. APPLICATIONS OF DROS

The need for dynamic reconfiguration is present in almost all computer systems. The extent to which
reconfiguration is permitted in current computer systems is limitsd. Reconfiguration is performed manu-
ally and statically using ad hoc techniques. However, dynamic reconfiguration of the hardware and
software in a timely manner is required in several applications. Some examples are expert systems, bailis-
tic missile defense, air traffic control and passenger reservation systems, computational aerodynamics,



weather model analysis, and intensive care units of hospitals.

3.1 EXPERT SYSTEMS

The software modules used in the knowledge base of expert systems require reconfiguration to the
module functions as new- information arrives at the databases or new rules are added. Currently, these
changes are made manually and statically, a time consuming activity and prone to errors. One important
area in expert systems is belief revision [42] as new knowledge is obtained. If the belief revision part is
designed using the principles employed in a DROS then the semantics of the modules in it can be dynami-
cally changed. Systems using a knowledge-based approach to fault tolerance [43] employs a diagnostic
blackboard and a number of knowledge sources. The knowledge sources communicate with the diagnostic
blackboard and are initially evaluated by some preset parameters. Later the evaluation is based on infor-
mation gathered from different parts of the system under diagnosis. The modules forming the evaluation
process can use the principles and strategies developed for DROS.

32 BMD SYSTEM

In the case of ballistic missile defense (BMD) system employing endoatmospheric engagement, the
computer system has approximately 30 seconds to engage, detect, track, and destroy incoming missiles
[10]. Within the 30 seconds, the hardware and the software of the BMD computer has to be reconfigured
to handle the variable number of data streams entering the system. Although research efforts are pursued
to design hardware capable of undergoing reconfiguration within 30 seconds [2,5,9,10,41], there is not
much effort going on in designing reconfigurable software systems outside the BMD-ATC group. The
DROS approach using EDFG can greatly assist the tracking and targeting problems in the BMD applica-
tion. The tracking and targeting problems in BMD and how it can be represented using EDFGs is now out-
lined.

A few thousand radar beams scan the surveillance volume searching for objects entering the volume.
Once objects are detected, special radar beams have to be interleaved to verify detection, precision track-
ing, target classification, and several other functions. The strategy to be used in interleaving the radar
beams and the steps to be used in processing the incoming signals depends on the characteristics of the
incoming data. There can be a large number of combinations of target shapes, characteristics, and threat
values entering the surveillance volume. From this large number, a small number of targets have to be
identified that presents the ultimate threat.

The signals received by each radar beam and the signal processing performed on each of the beams
can be viewed as an asynchronous activity. It can be represented as a general node or as a SRN if the radar
beams are special beams. A neighborhood function can be used to partition the radar beams. For each
neighborhood a coordinator can be defined for target detection, classification, and tracking. Since the coor-
dinators use global information in their decision making, they are represented as CSNs. If the CSNs are
connected so they can communicate with each ather, then precision tracking and the threat target
identification can be carried out by one or more CSNs.

The resulting EDFG for the BMD system undergoes reconfiguration in a dynamic manner using the
information from several CSNs. The dynamic reconfiguration facilitates target identification and
classification using a database. It also facilitates selecting a small number of potcnnal threat targets and
precision tracking them.

3.3 AEROSPACE SYSTEM

The projected increase in air traffic during the 1980’s, and the increased demands from pilots and
passengers on the safety of air traffic will greatly increase the data and computations on the air traffic con-
trol computers. These computers use modular redundancy and backup databases to provide hardware fault
tolerance. Employing these redundancy techniques to provide fault tolerance in future air traffic control
computers will be cost prohibitive. However, a combination of redundancy and reconfiguration of
hardware/software might offer cost effective solutions.

The processor and storage requirements of computational aerodynamics has been described by Chap-
man [44]. To compute values for some of the key measures involved in the flow of fiuid over a practical
three dimensional wing-body configuration, computer systems employing tens of thousands of processors
and main memory with capacity in excess of 30 trillion words are required [42]. Fault tolerance using



redundancy techniques is not feasible in such computer systems. However, the computer system will
gracefully degrade when hardware/software faults occur provided it has been designed using a DROS.
Recently, a design of a computer system [45], called flow model processor (FMP), employing 512 proces-
sors has been proposed to NASA Ames for computational aerodynamics. Although fault tolerance and
automatic recovery for software are discussed in the FMP proposal, it is not clear that the reconfiguration
characteristics of the FMP can be predicted in a reasonable manner. For example, what is the delay
involved in switching a spare processor to replace a faulty processor? What happens to the program
currently using all processors? If software fails, when is it detected? How are the recovery procedures
invoked? How is it guaranteed that the program and data of the currently running program are not cor-
rupted by the software faults? The above questions cannot be answered with any degree of accuracy and
the primary reason is that the FMP has not been designed using 2 DROS. The design and implementation
approaches employed in a DROS will be useful in the design of future computer systems for computational
aerodynamics.

3.4 RESTRUCTURABLE VLSI

Recent developments in silicon fabrication technology using electron beams and x-rays for project-
ing circuit patterns onto silicon wafers have made possible the development of very large scale integrated
circuits (VLSI) with a million devices per die by 1990. Although VLSI chips are more reliable than LSI
chips and discrete components, there is still a nontrivial failure rate. It is not economical to discard VLSI
chips when some of the circuits are faulty. For example, a 1 Mega bit memory chip with faults ina 64 K
bit part is certainly useful except for the faulty portion of the chip. If the chip design has been a priori
reconfigurable, then every time faults occur in the chip, the chip will reconfigure itself to isolate the faulty
part. Reconfiguration will also facilitate changing the functionality of a VLSI chip containing electrically
erasable and programmable memory elements. Recently, a restructurable VLSI processor design has been
proposed by Budzinski [46] incorporating some of the features needed for reconfiguration. The strategies
useful in DROS will also be useful in the design of reconfigurable VLSI chips and wafer scale integrated
circuit chips [3, 47].
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Chapter 2 STEPS IN RECONFIGURING A SYSTEM

1. DATA AQUISITION PROCESS

Reconfiguration in a computer system can be user initiated or system initiated. With the EDFG
representation this means the communication of information from RRNs to CSNs using snoop arcs or com-
munication within SRNs. This communication must take place in a timely manner. Since requests for
reconfigurations cannot be predicted ahead of time, there is the possibility that several requests for

- reconfiguration might reach a CSN at the same time. This greatly complicates the communication of infor-
mation between nodes. Efficient ways to communicate reconfiguration information and to identify what
reconfigurations can be potentially performed have to be devised. A CSN might want additional informa-
tion from RRNs and/or other nodes connected to it before determining whether the attributes of a node can
be changed. This requires protocols for communication between nodes and efficient implementation tech-
niques for the protocols. The protocols are described in the paper by Srini [1]. Gantt charts of the proto-
cols are described in this section for four cases.

The Gantt chart for the data acquisition process in a system containing a single CSN is shown in Fig-
ure 1. An RRN initiates reconfiguration. The CSN interacts with concerned nodes to obtain enough infor-
mation for starting reconfiguration.

The Gantt chart for the multiple CSN situation is shown in Figure 2. The CSN that receives the
reconfiguration request has to interact with other CSNs. The interaction may involve several cycles of mes-
sage communication between CSNs.

If the system has a single SRN the interaction with other nodes is fairly simple and it is shown in Fig-
ure 3.

The Gantt chart for a system containing a CSN and an SRN is shown in Figure 4. The CSN gathers
information from the nodes and then interacts with the SRN. If there are conflicts with the information
received from SRN, the CSN held value is used in the reconfiguration.

An architecture that supports fast interprocess communication is shown in chapter 4.

2. RECONFIGURATION DRIVE ALGORITHM

A single request for changing the attribute values of a node in an EDFG can induce changes in the
attribute values of nodes connected to it. The set of all nodes and arcs whose attribute values have to be
changed and the new values for the attributes have to be computed. Algorithms that perform the above are
called reconfiguration drive algorithms. Algorithms have been developed when single reconfiguration
request to a CSN, and multiple reconfiguration requests to a CSN are present. These are described in the
paper by Srini [1]. The realtime constraints and conflicting requirements of different reconfiguration
requests can greatly complicate the implementation of these algorithms. The effects of these constraints on
the algorithms can be reduced if the communication between the nodes is fast.

3. RECONFIGURATION STRATEGIES

A reconfiguration strategy is a set of state transitions that will eventually transform an EDFG to0 a
reconfigurable state. A simple strategy that CSNs can use is to set the state of some nodes to suspended
and allow others to fire until a reconfigurable state is reached. The CSNs make the required changes in I/O
arc specifications and operation to all nodes and changes to the attributes of arcs. There is no guarantee,
however, that a reconfigurable state will ever be reached. There are two additional problems with this stra-
tegy: time and performance. Some reconfiguration must take place within a certain time limit after receiv-
ing the request. Otherwise, the results might be catastrophic or the effects of reconfiguration might be use-
less. For example, a computer system might be expected to keep a certain throughput rate and maintain a
certain percentage for the utilization of resources. If the performance level cannot be maintained, then
response time degrades which in turn affects the realtime needs.

Reconfiguration strategies have been developed [1] for the following cases when realtime constraints
and data dependency constraints are present.

a. Global information and a single CSN.
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b. Global information and multiple CSNs.

¢. Local information and global information with multiple CSNs.

The Gantt chart for the reconfiguration process when there is a single CSN is shown in Figure 5. The
first step is to pick a path in the reconfiguration drive tree using a strategy such as minimum path length [1].
Reconfiguration can then proceed in one step, as shown in Figure 5.a, if there are no obstructions. This is
the fastest way to achieve reconfiguration and must be used when realtime constrains are present. How-
ever, obstructions do occur in the path in some systems and in such cases reconfiguration is carried out in
multiple steps (C1, C2, etc.), as shown in Figure 5.b. During each step a part of the system is reconfigured.
The system is allowed to function so that some of the obstructions in the reconfiguration path can be
removed. The time needed to do reconfiguration is unpredictable. So, this approach is not applicable when
realtime constraints are present.

If multiple CSNs (with or with out local information) are present in a system then the reconfiguration
process is carried out using the single step or the multiple step approach. The Gantt charts for the
reconfiguration process are shown in Figure 6. The one step approach must be used when realtime con-
straints are present.

4. REFERENCE

1. V. P. Srini, and B. D. Shriver, "A Methodology for Designing and Modeling Reconfigurable Systems”,
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Chapter 3. OPERATING SYSTEM DESIGN USING DATAFLOW GRAPHS

1. MOTIVATION

The design of a distributed operating system is used to show the usefulness of dataflow graphs in OS
design. The modules of the DOS can make use of reconfiguration strategies discussed earlier. Distributed
operating systems (DOS) have been designed and implemented by several research groups. Some exam-
ples are Medusa [1] and StarOS [2] for Cm* [3], Roscoe [4] for the University of Wisconsin’s system,
Micros [5] for a network of LSI processors at SUNY Buffalo, and HXDP of Honeywell [6]. The kernel
functions in the above DOS provide an execution environment for programs based on the imperative model
of computation [7,8]. The purpose of this work is not to report on yet another DOS, but to outline a
reconfigurable DOS design using the principles of dataflow [9 -12].

A distributed computer system (DCS) is characterized by multiplicity of physical and logical
resources, decentralized control, and cooperative autonomy among resources [13]. The logical and physi-
cal resources communicate by passing messages. The message communication can be implemented using
shared memory techniques. The DCS usually decomposes programs into asynchronous tasks and executes
them on the available processors. The programs for DCS can be prepared using an imperative model of
computation [7,8], a dataflow model of computation [12] or logic programming. The concurrency in pro-
grams that can be detected by a compiler is limited if the programs are written using an imperative model
of computation. Logic programming languages exhibit concurrency at the clause level and compile time
detection of AND parallelism and OR parallelism is feasible. Dataflow programs allow concurrency to be
detected at the lowest level (instruction level). This is because in a dataflow model of computation, func-
tions are executed when the required input becomes available.

A conceptual organization of a DCS used in this work is shown in Figure 1.a. The details of a single
level using shared memory and a single global address space is shown in Figure 1.b. The level memory in
Figure 1.a corresponds to the synchronizing memory in Figure 1.b. It is used for write shared data (multiple
writers and readers). The synchronization bus and the snooping caches also support the interconnection
between processar nodes. They represent IN1 and IN3 in Figure 1.a. The system memory in the DCS has
N partitions, one for each level. Each partition corresponds to the crossbar memory in Figure 1.b. Read
shared, private data, and code block of a level are stored in a partition. The host node in Figure 1.b is
responsible for the communication between levels (c.f. IN4 in Figure 1.2) and also user interface to the sys-
tem memory. This architecture is under development at Berkeley as a part of the Aquarius project (c.f. [35
-37D.

Since a DOS forms part of a DCS with distributed control, data, and physical resources, the sharing
of data and resources is no longer the primary concern of the OS. As a result, the OS design and imple-
mentation need not be based on an imperative model of computation [7,8] where a variable is identical to a
storage location. The absence of centralized control and the fact that no one entity in the DCS knows the
status of the entire system means that the DOS can be designed as a collection of asynchronous activities
which communicate occasionally be passing messages. One can immediately note that the conceptual and
initial design phases of a DOS can be carried out using dataflow graphs [12,14]. A basic dataflow graph
{11] comprises a collection of nodes connected by directed arcs. Each node has an operation which can be
a single instruction or a collection of instructions, namely a block. Nodes fire and communicate tokens by
sending and receiving tokens on output arcs and input arcs respectively. What is not obvious in the appli-
cability of dataflow principles in the implementation of DOS. Lauer and Needham {15] have conjectured
that an implementation of an OS can be categorized to be either a message-oriented system or a
procedure-oriented system. If the tokens in dataflow are treated as messages, enabling conditions for nodes
as synchronizing conditions, and arcs as data paths, then a new message based approach to implementing
DOS that is free of side-effects is possible (exceptions are CSN and SRN type of nodes). The above obser-
vation and the architecture of a DCS that combines distribution and copying semantics of data to execute
programs based on the dataflow model of computation have motivated the development of a datafiow graph
methodology for designing and implementing DOS.

This chapter is divided into six sections. Three approaches for designing DOS are described in Sec-
tion 2. The organization of a DOS is discussed in Seetion 3. A processor architecture for doing fast inter-
process communication is described in Section 4. The design of a DOS kemel using the dataflow metho-
dology is discussed in Section 5. The implications of the processor architecture in designing a DOS is
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discussed in Section 6.

2. DESIGN APPROACHES

There are at least three approaches for designing DOS based on process interaction facilities. They
are procedure call [16] or monitors [17,18], message passing [19,20], and dataflow [12,14]. The procedure
call approach is a synchronous form of interaction. The message passing and dataflow are asynchronous
approaches.

Using the procedure call approach, a DOS is designed as a collection of sequential processes [18,21]
with interaction between processes using procedure calls. A process, X, wishing to interact with another
process, Y, does so by calling a procedure in Y with parameter passing using values or references. X waits
until a return is performed by the procedure in Y before continuing with its execution. A process usually
wants to interact with another process since they may be sharing data objects. To facilitate the orderly
sharing of data among processes using procedure calls, the data abstraction, monitor [17], has been
invented by Hoare, Brinch Hansen, and Dijkstra. (Simula’s class, CLU’s cluster, ALPHARD'’s form, and
Hewitt’s actors are other data abstractions). The monitor approach facilitates interaction between
processes by changing shared data to which they have been given access rights at the time of initialization.
So, compile time checking can be performed for access right violations. Several DOSs have been designed
using the procedure call/monitor approach. Micros [S] is one example that uses monitors for process
interaction. Distributed systems based on Mesa [22] also use monitors for process interaction. The DOSs
StarOS [2], and Medusa [1] for Cm*, and Roscoe [4] use procedure call for process interaction. But the
number of procedure calls has been reduced by limiting the calls to the absolutely necessary functions.
Design of DOS for realtime systems using only procedure call has been proposed by Brinch Hansen [16]
and an experimental DOS outlined in [23].

A DOS using the message passing approach comprises a collection of sequential processes that com-
municate by sending and receiving messages. Processes do not act on each other (interact) since they do
not share data objects. Instead, processes communicate. A process, X, wishing to communicate with
another process, Y, does so by sending a message to Y. After sending the message, process X can proceed
with its calculation unless an acknowledge or a receive reply statement follows the send message. The
asynchronous nature of message communication permits processes in different processors to execute
simultaneously. It also facilitates the separation of DOS components which simplifies the implementation
and maintenance of DOS. Several of the DOSs [1,2,4,5] use messages for interprocess communication.
Medusa [1] has used message communication for the most part except in places where sharing (process
interaction) is absolutely necessary. An experimental network-based DOS using Smalltalk [24,25] at
Xerox PARC is an example using only message passing.

A DOS using the dataflow approach comprises a collection of functions that are data driven. Data is
communicated using self-identifying messages (tokens). A function may be a primitive or a collection of
primitives and other functions. There is no sequencing imposed on the execution of a primitive or function
except those due to data dependency. Resource managers will be specified as CSN nodes or SRN nodes in
the dataflow approach. These nodes have local memory to save state information. The dataflow approach
has all the advantages of the message passing approach plus exploiting concurrency at the primitives level.
Two operating systems [26,27] have been designed and simulated on a dataflow simulator [28] running
under MULTICS to demonstrate that the dataflow approach is a viable one. The sample. operating system
described in [29] has been designed using basic dataflow graphs [11] in [26]. A virtual machine monitor
has been designed using dataflow graphs in [27]. The design and simulation exercises showed three prob-
lem areas where extensions to basic dataflow graphs are needed before using dataflow approach in design-
ing DOS. The problem areas are static and directed graph structure, inability to dynamically change the
semantics of nodes, and excessive copying of tokens in generating data structures. The base language for
the high level dataflow language Id [12] with dynamic nodes, the APPLY primitive, and the incremental
structure memory organization (I-structure) in [30] provide one set of solutions to the above problems. We
provide a solution with emphasis on reconfiguration, that is dynamic changes to the semantics of nodes and
arc direction, using the logic programming language Prolog.
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3. DOS ORGANIZATION

There are two approaches for organizing a DOS. The first approach replicates the DOS kernel in
each processor. The second approach distributes the functions of the DOS to processors, where each pro-
cessor has the facilities for handling absolutely essential functions such as interrupts, process interaction
and communication.

Network-based distributed systems are one class of examples using the first approach, where the ker-
nel is most of the DOS. DOSs such as Micros [5] and Roscoe [4] are also examples of the first approach
but the kernel is not most of the DOS. In Micros, the kernel consists of runtime support for concurrent Pas-
cal [18], support for message communication, and the key functions. In Roscoe [4], the kernel comprises
link and message communication support, interrupt handler, timer manager, process management using a
resource manager, and routing tables for messages.

Medusa [1] is a good example of the second approach to organize a DOS. StarOS [2] is another
example. Medusa requires each processor in Cm* to contain an interrupt handler, task multiplexer, and
device handler. Most of the DOS functions in Medusa are in five utilities that are distributed over several
Processors.

4. PROCESSOR ARCHITECTURE

A processor architecture with primitives for sending and receiving messages, acknowledging mes-
sages, and facilities for not receiving messages when space is not available is needed for interprocess com-
munication using messages in the dataflow approach. The protocols discussed in chapter 2 for doing
reconfiguration require five to seven message communications between modules to communicate the state
information. If reconfiguration is to be done efficiently the interprocess communication must be done
quickly.

There are very few commercially available processors [31,32] that support messages for communica-
tion between processes within a processor, as shown in [15]. However, shared memory techniques can be
used to efficiently communicate messages between processes in different processors. This form of mes-
sage communication is used in several DOSs. For example, LSI-11s have been interconnected using a spe-
cial hardware called Kmap [3] in Cm* so that messages can be efficiently communicated between
processes on different processors in Medusa [1] and StarOS [2). The Micronet architecture [5] uses a fron-
tend processor in each node to send and receive messages from processes in other nodes. The shared
memory is used in the VAX-11/780 [33] to communicate messages between processes in different proces-
SOrs.

We have developed a shared memory multiprocessor architecture (shown in Figure 1.b) to support
fast interprocess communication. It is intended for executing Prolog programs. The architecture contains a
synchronizing memory and a crossbar memory. The synchronizing memory contains process table entries
for creating and manipulating processes, join table entries for synchronizing the execution of processes,
and other data structures needed for executing Prolog. Locks used in accessing write-sharable data items
are also in the synchronizing memory. The crossbar memory contains the data space and most of the code
space of processes created in the execution of a Prolog program. There is a single data address space for
all processes. The processes use the address space in a cactus stack like structure. There is also a single
code address space for all processes. -

Each processing node in Figure 1.b has three processors. The parallel Prolog processor (PPP) exe-
cutes application programs written in Prolog. The numeric processor (NP) executes functions requiring
floating point operations and integer operations. The supervisor processor (SP) executes functions of the
operating system. There is no loss of generality in using Prolog since programs written in Fortran, C, and
Pascal can be called from Prolog programs using foreign functions.

5. DOS DESIGN EXAMPLE

The design of the kernel functions of a DOS using dataflow graphs (EDFGs) is presented in this sec-
tion. Although it is possible to take any operating system and design it using EDFG (as shown in [26,27]),
we have chosen a DOS kemnel for several reasons. One reason is to show how reconfiguration can be done.
The DOS kernel functions implied by the the architecture in Figure 1 and the parallel execution of Prolog
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programs [34,35] are table initiation, decomposition, allocation, token management, memory management,
measurement, and diagnostics. The kernel functions execute on SPs. The kernel functions communicate
with several tables kept in the synchronizing memory. An EDFG of the kernel is shown in Figure 2.
Several of the nodes in Figure 2 can be implemented using Prolog. The code associated with the nodes can
be changed at runtime using the assert/retract mechanism of Prolog. This allows dynamic changes to poli-
cies and strategies used by the resource manager.

5.1 OVERVIEW OF KERNEL FUNCTIONS AND TABLES

Nodes representing the kernel functions and tables are briefly described and compared to parts of
contemporary operating systems,

The table initiation function conveys information in tables to other functions of the kemel. It also
supplies tabular form of EDFGs to dynamic nodes in EDFGs. The table initiation function is similar to
"process control” part of contemporary operating system such as UNIX, MULTICS, HYDRA, MCP, (01N
VM370, and VMS.

The decomposition function detects parallelism implicit in Prolog programs by identifying nodes that
can be fired simultaneously. It also dynamically expands nodes, i.e. creates multiple instances of a node.
This function uses the enabling conditions, represented as a firing semantics set (FSS), associated with each
node to determine whether the node can be enabled. Contemporary operating systems and existing "distri-
buted operating systems” [1-6] do not have a function similar to that of decomposition. This is because
program decomposition is done statically by the programmer and detected by the language processor.

The allocation function assigns nodes to processors, maintains the status of processors, and reassigns
nodes as the computation dictates. It uses the information gathered by the measurement function and
heuristics in reassigning nodes to processors. This function is similar to the "scheduling” and
"reconfiguration” function in contemporary operating sysiems.

The token management function constructs and distributes tokens. The distribution activity consists
of sending tokens to processors, receiving tokens from processors, updating tables, and sending tokens that
contain nodes to decomposition functions. The token management function is similar to the "interprocess
communication” part of contemporary operating systems.

The memory management function determines when to make copies of tokens and when to allow
multiple reads on tokens. It also maintains tables, facilitates the movement of tokens to output devices, and
the usual functions of memory management. It also facilitates node reassignment by communicating with
the allocation function and the diagnostics function. This function is similar to the "memory management”
function in operating systems that support virtual memory concept.

The measurement function collects metering information from nodes, arcs, processors, and devices.
It computes statistics on the number of times a node has fired, average firing time, average arc capacity,
and utilization of resources. The measurement function is used by the allocation function in assigning
nodes to processors so that token movement is reduced. The measurement function is similar to the meas-
urement facilities in MULTICS, VMS, OS and VM370.

The diagnostics function detects and locates faulty processors, and facilitates the reassignment of
nodes to healthy processors. This function provides graceful degradation in the performance of a distri-
buted computer system when hardware and software faults appear. Very few commercially availabie
operating systems have functions similar to the diagnostics function.

The NODE_TABLE contains values for the static attributes of nodes in EDFGs that are to be exe-
cuted. The NODE_INFO_TABLE contains values for the attributes of nodes that are dynamic and imple-
mentation related. The ARC_TABLE contains values for the attributes of arcs and implementation details.
The PROCESSOR_NODE_CORRESPONDENCE_TABLE contains the status of processors and the nodes
assigned to them.

The above tables and others are initially supplied with values by the table initiation function. Each
table has a manager for receiving tokens, adding entries to the table, sending tokens to other functions, and
maintaining the table in memory. Each table and its associated manager are represented as a node.
Although these nodes need not be part of the kernel, they are included in Figure 2 for the sake of complete-
ness.
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The EDFG in Figure 2 is a high level description of a DOS kemnel. Each node corresponds to a ker-
nel function or a table and has a firing semantics set (FSS) specifying the conditions under which the node
can be enabled for firing. The FSS of nodes corresponding to the kernel functions are shown in Figure 3.
At any time several of these nodes can be firing simultaneously provided the FSS conditions can be met.
The arcs connecting nodes and the arc attributes show the communication paths (arc direction) between
kernel functions, message formats (token type), buffer space (arc capacity), number of full buffers (current
number of tokens), and average time to move buffers (arc latency time). The details of a kernel function
are in the operation attribute of the node corresponding to the kernel function. The details can be specified
as an EDFG. This activity can be repeated any number of times until the nodes have operations that are
primitives. The above property of EDFG is called the hierarchical decomposition structure. Each step at
which the operations of nodes in an EDFG are specified as EDFGs is called a refinement of the EDFG.
Several of the nodes corresponding to the kernel functions in Figure 2 are refined one time to show how
EDFGs can describe the details of the kemel. The refinement also shows the modules of the DOS kernel
functions and the resource managers of the DOS. After this refinement, the details of nonprimitive nodes
are described in words. This is done primarily to make the report readable. The data type of most of the
tokens flowing between nodes is a structure. In this paper, tokens are synonymous to messages.

52 DECOMPOSER

The DECOMPOSER of the kemnel identifies nodes in an EDFG that can be executed in parallel. A
refinement of DECOMPOSER is shown in Figure 4. The DECOMPOSER comprises an INITIATOR,
NODE_RECEIVER, up to m ANALYZERS, m >= 1, an ANALYZER_MANAGER, ACTIVATOR, and
several primitive nodes with the operation FUNNEL. The node ANALYZER_MANAGER is a CSN and
the ANALYZER nodes are RRNs.

INITIATOR

The INITIATOR node is responsible for starting the decomposition function and the beginning of the
execution of any EDFG that entered the system using the TABLE_INITIATOR. For every node in an
EDFG, the INTTIATOR enters into the NODE_INFO_TABLE the user supplied details relating to node
operation, I/O arc specifications and associated FSS, and tagging scheme to be used by the nodes in the
EDFG. It removes nodes from the INPUT_NODE_TABLE, sends a message to the
MEMORY_MANAGER to update NODE_NAME_TABLE and ARC_NUMBER_TABLE after receiving
input and initial tokens, and sends the nodes to NODE_RECEIVER. The INITIATOR also computes
values for implementation related parameters such as current and maximum enabling counts on input or
output arcs of nodes in EDFGs and enters them into NODE_INFO_TABLE.

NODE_RECEIVER

The NODE_RECEIVER receives on its input arcs tokens containing nodes sent by the
TOKEN_MANAGER and INITIATOR. It also receives tokens containing information on the space avai-
lability of output arcs. The nodes received by a NODE_RECEIVER are those that have received at least
one token from the execution of some nodes, nodes that have received tokens from the external environ-
ment, or nodes with initial token. The NODE_RECEIVER sends each of the received tokens to the
ANALYZER_MANAGER. The NODE_RECEIVER continues to receive tokens as long as its input arc
capacities are not exceeded. When the arc capacities are reached, tokens are not sent to the DECOM-
POSER by TOKEN_MANAGER.

ANALYZER_MANAGER

The ANALYZER_MANAGER is a CSN. It communicates with a number of ANALYZERs, and
ANALYZER_STATUS_TABLE and the PENDING_NODES. The ANALYZER_MANAGER attempts
to assign an ANALYZER to each node sent by the NODE_RECEIVER or the PENDING_NODES. It per-
forms the assignment by communicating with the ANALYZER_STATUS_TABLE. The status of each
ANALYZER is maintained by the ANALYZER_STATUS_TABLE node. If the
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ANALYZER_ MANAGER sends a token requesting an ANALYZER  then the
ANALYZER_STATUS_TABLE sends the capability [2] to an available (free) ANALYZER provided one
exists. The nodes that require space on their output arcs before they can be enabled for firing are sent o
PENDING_NODES. The ANALYZER_MANAGER sends to PENDING_NODES tokens that are
received from NODE_RECEIVER containing information on the space availability of output arcs of nodes.
Nodes in PENDING_NODES that have received space on their output arcs are sent to the ANALYZER.

The ANALYZER_MANAGER also changes the operation performed by an ANALYZER. For each
ANALYZER, there are two operations implementing two different analysis strategies. The
ANALYZER_MANAGER sends the operation corresponding to strategy 1 as the value for the operation
attribute of an ANALYZER. On receiving a reconfiguration request from an ANALYZER the
ANALYZER_MANAGER sends Strategy 2 as the value for the operation attribute of ANALYZER.

ANALYZER

Each ANALYZER performs an analysis on the node supplied to it to determine whether that node
can be enabled for firing or the node has to be expanded (Dynamic nodes). For a dynamic node the
ANALYZER obtains the capability to the file containing the EDFG and sends the capability to the
TABLE_INITIATOR. The ANALYZER sends a message to the TOKEN_MANAGER to collect the
details of the node from the NODE_TABLE and keeps it in the level memory. The ANALYZER then
gathers the dynamic node attributes from the NODE_INFO_TABLE. It performs the analysis using one of
the following approaches specified as the value for the operation attribute of the ANALYZER.

STRATEGY 1

This strategy is used if the node to be analyzed employs the standard firing rule, that is a token must
be available on all input arcs. :

The ANALYZER checks the current enabling count on input arcs of the node it is working on. If the
count is not zero, that is one or more input arcs do not have tokens, the ANALYZER ends the analysis.
Otherwise, if the enabling count on the output arcs is not zero, that is one or more output arcs have no
space, the node is entered into a waiting line in the PENDING_NODES. This is done by sending a token
to the ANALYZER_MANAGER. The ANALYZER then ends analysis.

STRATEGY 2

This strategy is used if the node to be analyzed employs the nonstandard firing rule. A pattern match-
ing scheme is used to check the enabling conditions of the node.

An input/output pattern of a node shows the input arcs that must have tokens and the output arcs that
must have space available to enable the node for firing. For a node there may be a set of such input/output
patterns, called FSS.

If the pattern of tokens on the input arcs of a node and the pattern of available space on the output
arcs of the node matches an entry in the FSS, then the ANALYZER recognizes the node as an enabled one.
The enabled node and its input arcs are sent to the ACTIVATOR. Else, the ANALYZER sends a token
containing the node to the ANALYZER_MANAGER for entry into the waiting line in PENDING_NODES
and ends analysis.

ACTIVATOR

The ACTIVATOR receives the node and input arc descriptions sent by ANALYZERS. For each
node, the ACTIVATOR sends the node name and input arc numbers to the ALLOCATOR.

53 ALLOCATOR
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The ALLOCATOR assigns nodes in EDFGs to processors by communicating with the
SCHEDULER. The nodes are in the tokens sent by the ACTIVATOR in the DECOMPOSER. The
SCHEDULER maintains the PROCESSOR_NODE_CORRESPONDENCE_TABLE. On receiving a
token from the ALLOCATOR, the SCHEDULER communicates with the
PROCESSOR_NODE_CORRESPONDENCE_TABLE to reserve an available processor and if successful
it sends back the processor id to the ALLOCATOR. If no healthy processor is available at the level, the
SCHEDULER sends the token to the ALLOCATOR at the next level for possible assignment to a proces-
sor. The states of a processor can be healthy and available, healthy and non-available, or faulty. Initially,
the PROCESSOR_NODE_CORRESPONDENCE_TABLE has the processor id’s of all the healthy proces-
sors in the column for processor id and no entry for node names. The states of healthy processors are ini-
tially available. Periodic diagnostics are run on the processar by making a transition to the healthy non-
available states.

The ALLOCATOR sends the node name, tag, input arc numbers of the node, and a processor id to
the TOKEN_MANAGER so that tokens can be supplied to the processor. The time at which a processor
starts executing its assigned operation is determined by the interconnection network between the proces-
sors, and the TOKEN_MANAGER. The time duration for which a node remains assigned to a processor
depends on the nature of the node. The nodes in a loop, recursive EDFG, and nodes receiving streams of
tokens will usually remain assigned to processors as long as some of the designated arcs contain tokens.
The mechanism that facilitates the above is an involved one and its description is beyond the scope of this
report. Note that a node is assigned to a processor until it completes firing or a fault is detected in the pro-
cessor. The presence of a fault in a processor results in reassigning the node to a healthy and available pro-
cessor. This is done using a communication protocol between the processor and the ALLOCATOR,
MEMORY_MANAGER, and DIAGNOSTICS_PACKAGE. The modules of the DOS kernel functions
that perform the automatic reassignment of nodes is described in subsequent sections.

Another approach to design the ALLOCATOR is by using heuristics that reduce the token movement
between processors. This approach requires empirical data before devising the heuristics.

5.4 TOKEN_MANAGER

A TOKEN_MANAGER retrieves tokens from memory using the descriptor in the ARC_TABLE,
NODE_TABLE, or NODE_INFO_TABLE. It constructs tokens and sends tokens to processors. It stores
tokens generated by processors using the descriptors in the ARC_TABLE, NODE_TABLE, and
NODE_INFO_TABLE in memory. A refinement of the TOKEN_MANAGER is shown in Figure 5. A
TOKEN_MANAGER consists of a COLLECTOR, several CONSTRUCTORS, a
CONSTRUCTOR_MANAGER, several COMMUNICATORS, and a COMMUNICATOR_MANAGER.

COLLECTOR

The COLLECTOR function receives node names from the ANALYZER function of the DECOM-
POSER. For each node description received, the details are retrieved from NODE_INFO_TABLE by
using the MEMORY_MANAGER, if the details are not already in the memory.

CONSTRUCTOR

Each CONSTRUCTOR retrieves tokens from memory using ARC TABLE, organizes the tokens,
and sends the tokens to the designated processors. The CONSTRUCTORs are maintained by a
CONSTRUCTOR_MANAGER which assigns to each token received from the ALLOCATOR an available
CONSTRUCTOR. The token received from the ALLOCATOR consists of node name, tag, input arc
numbers, and a processor id. '

A CONSTRUCTOR removes tokens with the proper tag from memory using the arc descriptions in
the ARC_TABLE. The arcs correspond to the list of input arc numbers in the token received from the
ALLOCATOR. The CONSTRUCTOR decreases the current number of tokens on the arcs by one, and
updates the implementation details of arcs. The CONSTRUCTOR also decrements the current enabling
count on output arcs of nodes acting as source for the above mentioned arcs. A CONSTRUCTOR prepares
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a token, called instruction packet, containing the instructions of the node and data for executing the instruc-
tions. It sends the instruction packet to the interconnection network and then changes its state to available
for assignment by the CONSTRUCTOR_MANAGER to another token received from the ALLOCATOR.

COMMUNICATOR

A COMMUNICATOR updates ARC_TABLE and NODE_INFO_TABLE with the results generated
by processors. It also communicates the effects of the results to the DECOMPOSER. It also communi-
cates with the PROCESSOR_NODE_CORRESPONDENCE_TABLE so that nodes in recursive EDFGs
and nodes receiving streams of tokens [12] will remain assigned to the processors. Results that have to be
communicated to the external environment (output) are temporarily stored in the memory using the
OUTPUT_ARC_TABLE.

COMMUNICATORs are maintained by a COMMUNICATOR_MANAGER that assigns to each
token received from the interconnection network for processors an available COMMUNICATOR. The
COMMUNICATOR_MANAGER is a CSN. Using snoop arcs it gathers the current number of tokens on
the input arcs of NODE_RECEIVER module in the DECOMPOSER. If space is not available for tokens in
the input arcs mentioned above, then the COMMUNICATOR_MANAGER does not assign tokens to
COMMUNICATOR until space becomes available.

5.5 DIAGNOSTIC_PACKAGE

A DIAGNOSTIC_PACKAGE receives information on faulty processors, and initiates the node reas-
signment process. It also removes the faulty Processors from the
PROCESSOR_NODE_CORRESPONDENCE_TABLE, schedules faulty processors for repair, and adds
repaired processors to the PROCESSOR_NODE_CORRESPONDENCE_TABLE. A refinement of
DIAGNOSTIC_PACKAGE is shown in Figure 6 and it consists of an EXERCISER, a RECOGNIZER, a
LOCATOR, and a CONFIGURATOR.

EXERCISER

The EXERCISER periodically exercises processors by sending messages containing diagnostic pro-
grams. These programs are executed by the processor when it is not doing any useful computation (idle).
The diagnostic programs are usually not in level memory and are brought in by using the
MEMORY_MANAGER. During the periodic diagnosis, the status of a processor is set to non-available in
the PROCESSOR_NODE_CORRESPONDENCE_TABLE.

RECOGNIZER

The RECOGNIZER receives fault information sent by processors, and analyzes the tokens sent by
idle processors after they have executed diagnostic programs. If the data in the token sent by a processor
indicates faults, then the status of the processor is changed to faulty by communicating with the
PROCESSOR_NODE_CORRESPONDENCE_TABLE. If a node has already been assigned to the proces-
sor then the RECOGNIZER communicates with the ALLOCATOR and the MEMORY_MANAGER to
reassign the node to an available processor. The RECOGNIZER sends a token to the faulty processor indi-
cating the change in processor and a token to the LOCATOR containing the id of the faulty processor. Itis
assumed that only a small fraction of the processors at any level are faulty at any time. Note that the
EXERCISER and the RECOGNIZER prevent the propagation of faults in a processor to other processors.
They also prevent errors encountered during a node firing from affecting nodes at other levels. In this way,
each level acts as a check point in the execution of EDFGs. The EXERCISER and the RECOGNIZER at
the various levels make the organization of processors appear as a fault tolerant computer system in execut-
ing EDFGs. :

LOCATOR
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The LOCATOR attempts to locate faults in the faulty processor and schedules repairs off line. The
repaired  processors are  brought into service by entering their id’s in the
PROCESSOR_NODE_CORRESPONDENCE_TABLE. If faults are not locatable the faulty processor is
marked for replacement. The LOCATOR also maintains a log of all the repairs performed on processors in
the system memory. The MEMORY_MANAGER is used to update this log and to output the log.

CONFIGURATOR
The CONFIGURATOR detects faulty SPs, removes faulty SPs, schedules them for repair, and main-
tains a SP_TABLE. The SP_TABLE is an extension of a

PROCESSOR_NODE_CORRESPONDENCE_TABLE with a column for SP numbers and status, a
column for the kernel function names, and a column for the utilization and characteristics of the SPs.

At start-up time, the CONFIGURATOR allocates functions of the kernel to SPs and makes entries in
the SP_TABLE. Since each of the functions of the kernel itself is an EDFG, the nodes of the kernel func-
tions are assigned to SPs. The SPs are periodically exercised by sending tokens containing diagnostic pro-
grams. These programs are executed by the SPs after completing their present task and before starting the
next task. After executing a diagnostic program, a SP sends a token containing the result of the diagnostic
program to the CONFIGURATOR.

The CONFIGURATOR receives the token and if the data in the message indicates faults, then the
status of the SP is changed to faulty. The node is reassigned to a spare SP, if one is available, or allowed to
time share a SP that is not heavily used. The faulty SP is then scheduled for repair. If no fault is detected
by the CONFIGURATOR, the SP is allowed to resume its operation. This is accomplished by sending a
"clear" token to the SP. A repaired SP is brought back into operation by changing the status of the SP to
healthy in the SP TABLE.

A SP sends an "error” token to the CONFIGURATOR if a fault is detected during the execution of
an operation. The CONFIGURATOR changes the status of the SP to faulty, assigns the node to a healthy
SP, and sends a token containing the node and the data to the healthy SP.

6. IMPLICATIONS OF THE PROPOSED ARCHITECTURE

The architecture in Figure 1 has several implications on the field of DOS design. The implications
can be grouped into the following areas:

a. Mechanisms,
b. Modularity,

¢. Robustness,

d. Protection, and
e. Organization.

A brief discussion on each of the areas is included.

The DOS kemel outlined in Section 5 shows that token communication is the key issue and not pro-
cessor sharing since each processor executes an assigned task to completion unless faults occur. So, task
allocation strategies that reduce token traffic have to be devised. The distribution of data and the copying
semantics of data complicates memory management. Heuristics that decide when to replicate data and
when to allow multiple reads have to be devised. These and other related issues such as measurement are
expected to play key roles in future DOS design.

Each processor in the proposed multiprocessor architecture executes nodes with operations at the
instruction level or block level in a data driven manner. So, the architecture implies modularity in DOS
design. Changes to a DOS can be readily carried out by replacing one or more modules since the architec-
ture supports single binding to a variable in a Prolog clause.
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The proposed architecture implies robustness. Each processor reassigns nodes to a healthy processor
if a fault is detected. The diagnostics function, discussed in Section 5, provides the necessary protocol to
do the reassignment. If one or more SPs fail, the resuit will be a degradation in DOS performance and not
a system crash.

Since operating system programs execute on SPs, the execution of application programs cannot cor-
rupt the operating system, and vice versa. So, protection issues will play a minor role in DOS design since
the architecture implies protection.
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NOTATION
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Chapter 4. INTERPROCESS COMMUNICATION

The reconfiguration process described in Chapter 2 requires fast interaction between resource
managers (CSNs) and various parts (nodes) of a system. In this chapter we show how the architecture in
Figure 1.b of Chapter 3 can be used to achieve fast interprocess communication (IPC). The execution of
Prolog programs with AND/OR parallelism on the architecture is used to describe the mechanisms that are
employed to achieve fast IPC.

1. ADDRESS SPACE FOR PROCESSES

The architecture provides a data space and a code space for a Prolog program. Each space has 2**28
words. The data space is shared by all the AND processes and OR processes created during the execution
of the Prolog program. The data space is divided into heap, stack, PDL, trail, and global heap (H2). The
cactus stack of Figure 1 shows the sharing of the address space by the processes.

The global heap contains most of the information used in IPC. It stores process table entries, private
memory of each process (hash windows), locks, join table, processor table, and other system tables. If the
global heap can be accessed quickly by the processes then IPC will be fast. Assuming that the global heap
space will be small for a Prolog program compared to the stack space or heap space, one good place to
store it is the synchronizing memory. The probability of finding the item in the synchronization cache will
be higher since no other space has to reside in the cache. To validate the assumption some experiments
were performed on a simulator using Prolog programs. This is described in the next section.

2. MEMORY REFERENCES TO GLOBAL HEAP

A simulator for the parallel execution of Prolog programs with AND processes and OR processes,
called PPP simulator {1], was developed with a single cycle memory and fixed amount of space for each
process. The PPP simulator was used to show that for a set of Prolog benchmark programs the memory
references to the global heap is small compared to the total number of memory references to data space. A
brief description of the programs used is given in Table 1. The PPP simulator was modified to gather
statistics on memory references to the stack, heap, trail, and global heap. The frequency with which
memory reads and writes are done for the benchmark programs is shown in Table 2. The percentage of the
read and write references to the global heap are shown in Tables 3 and 4 respectively. We have separated
the read and write references to get some understanding on the memory writes from the cache to the syn-
chronizing memory.

The benchmark programs have been run with AND processes and OR processes selectively invoked.
The suffixes A and O indicate the features that are included in the simulated execution. The results in Table
2 show that when only AND processes are created for a program the percentage of the references to H2 is
not very large. However, when OR processes are created, the percentage of references to H2 increases
significantly. This is due to the increase in the number of references to process table entries and hash win-
dows. The hash window of an OR process contains the bindings that can be used by other processes. Since
the AND processes of an OR process share the hash window, the number of references goes up when the
windows are searched. This is shown in Table 3. The sequential searching of hash windows and process
table entries in the simulator also contributes to the high percentage of memory references.

3. PROCESSOR-CACHE INTERFACE

To support fast IPC a combination of hardware, microcode, and software mechanisms are used. One
architecture proposal for the processor node of Figure 1.b in Chapter 3 is discussed in this section.

A processor node contains three processors, caches, and interfaces to the synchronization bus and
crossbar as shown in Figure 2. The VLSI-PPP coprocessor will execute the AND/OR processes of Prolog.
This coprocessor will be an extension of the VLSI-PLM (2, 3]. The supervisor processor (SP) will execute
some of the key resource management functions such as memory management and Prolog builtins such as
read and write. One of the commercially available microprocessors such as Motorola 68030 can be used as
an SP. The numeric processor (NP) will execute floating point and vector operations used in Prolog pro-
grams. The architecture proposed by Yung [4] will be modified to function as an NP.
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The interface signals needed for communication between the three coprocessors, synchronizing
cache, and the crossbar cache are shown in Figure 2. These signals and the protocol used in communica-
tion are preliminary and may change as we make progress in the system building activity. The interface
signals are used to show IPC.

3.1 DYNAMIC MEMORY MANAGEMENT

The protocol for communicating state information between the coprocessors for obtaining a page of
memory is shown in Figure 3 to illustrate some of the hardware flags and signals used in IPC. The basic
assumption is that the VLSI-PPP requests for a page of memory for use as stack or heap when page boun-
dary is reached. This is shown by the setting of ENDP flag. The signals ENDOFPAGE and NEXTPAGE
are used to obtain a page. If a page is not available the clock for the address unit of VLSI-PPP is frozen.
The protocol is shown in Figure 3.a. The interface between the three coprocessors and the caches, called
CONDUCTOR, uses the protocol in Figure 3.b to acquire a page. The PAGEAVAIL flag indicates that the
CONDUCTOR has the next available page. If this flag is set and the ENDOFPAGE signal comes from
VLSI-PPP the CONDUCTOR can immediately supply the page. Otherwise, the WAIT flag is set. It forces
the request from VLSI-PPP to wait until a page is supplied by the SP. The CONDUCTOR protocol is
designed to provide an available page without any delay. The SPBUSY indicates that the SP is busy and
cannot be requested.

The task of obtaining an available page from a free page list is done by the SP. The protocol used by
the SP to supply a page to the CONDUCTOR is shown in Figure 3.c. The PAGEFOUND f{lag indicates that
a page is available and can be supplied immediately. If a page is not available the routine for obtaining an
available page is started. The DONE flag is set when this routine succeeds in obtaining a page.

3.2 PROCESS CREATION

The protocol for creating a process requires an understanding of the the architecture of VLSI-PPP
which will be based on the VLSI-PLM chip [2, 3]. It is assumed that the reader is familier with the details
of the VLSI-PLM chip. The CONDUCTOR has a set of 8 registers, called communication registers
(COMMREG), that shadows the argument registers of the VLSI-PLM. The COMMREG is loaded when

. the put instructions preceding the call_p instruction of the VLSI-PPP is executed.

The protocol for the VLSI-PPP to load the COMMREG and communicate the processor create
request to SP is shown in Figure 4.a. The SHADOW flag of the VLSI-PPP indicates when the
COMMREG can be loaded. If it is set then the loading of the argument registers AX[0] - AX[7] is sha-
dowed. The signal LOADSHADOW tells the CONDUCTOR to load one of the COMMREG. The address
- of the register is supplied on the SHADOWADDR bus. On seeing a call_p instruction the VLSI-PPP sends
the PROC_CREATE request to the CONDUCTOR ( which in turn sends it to SP) and the number of argu-
ments on SHADOWADDR bus. The setting and resetting of the SHADOW flag are done using SETSHA-
DOW and RESETSHADOW signals. If the arguments cannot be communicated before the
PROC_CREATE signal then a microroutine will be called to explicitly copy the contents of the AX regis-
ters to COMMREG.

The protocol needed by the CONDUCTOR to support process creation is shown in Figure 4.b. It is
assumed that each register in the COMMREG has a valid bit. This bit is set when the corresponding regis-
ter is loaded and reset when the register is read out. On receiving a PROC_CREATE signal the CONDUC-
TOR checks the COMMREG to make sure that all the arguments are available. If so then it resets SHA-
DOW flag in the VLSI-PPP until the SP has actually created a process and the arguments have been sent to
the processor that will run the process. The SHADOW flag is set and the VLSI-PPP can start loading the
COMMREG. Note that while the SHADOW flag is reset the VLSI-PPP can continue to run programs and
load the registers AX[0] - AX[7] but they will not be shadowed in the CONDUCTOR.

The SP’s protocol for supporting process creation is shown in Figure 4.c. It starts executing the rou-
tine that creates a process on receiving the PROC_CREATE_SP signal from the CONDUCTOR.
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Table 1. Description of Benchmark Programs

Benchmark Lines of Description
PPP code

ckt4 366 circuit design of 2-input Mux

deep_bak 160 tests deep backtracking

diff 447 symbolic differentiation (several)

divide 270 symbolic differentiation [1/(x"n)]

hang 272 a course schedule for students

knight 464 knight’s tour of chess board

maze 725 finding a path through a maze

mumath 218 Hofstader’s mu math (theorem prover)

queens 289 safely placing queens on chessboard

query 525 a small database search

times 271 symbolic differentation [x"n]

Tabe 2. Memory Reads and Writes
Benchmark | Heap Stack | Trail | PDL Sync
deep_bakA 3.8% | 77.9% | 0.0% | 0.0% || 18.3%
mazeQ 7.7% | 662% | 0.3% | 1.1% || 24.6%
knight0O 20.0% | 55.7% | 0.9% | 2.9% || 204%
diffA 34.7% | 512% | 1.1% | 0.0% | 13.0%
ckt4A 309% | 49.5% | 8.3% | 0.0% || 11.3%
mumathO 129% | 43.1% | 0.5% | 0.6% || 43.0%
queensO 13.6% | 394% | 1.0% | 0.0% | 46.0%
ckt4O 226% | 33.7% | 59% | 0.0% || 37.8%
queryO 268% | 31.1% | 6.8% | 0.0% || 35.3%
times10A 12.8% | 302% | 0.8% | 0.0% || 56.2%
divide10A 16.0% | 29.4% | 0.7% | 0.0% || 53.9%
MEMORY WRITES

Benchmark | Heap Stack | Trail | PDL Sync
deep_bakA 25% | 141% | 0.0% | 0.0% 9.9%
mazeQ 1.3% | 109% | 0.2% | 0.7% 6.8%
knight0O 6.0% | 202% | 0.6% | 1.8% 2.0%
diffA 228% | 312% | 1.1% | 0.0% 7.3%
cki4A 126% | 13.7% | 4.1% | 0.0% 5.6%
mumathO 51% | 20.1% | 0.2% | 04% || 16.2%
queensO 6.0% | 164% | 0.5% | 0.0% || 17.6%
ckt4O 9.2% 88% | 2.9% | 0.0% 1.2%
queryO 11.2% 58% | 34% | 0.0% 7.8%
times10A 89% | 19.1% | 0.8% | 0.0% | 28.8%
divide10A 11.6% | 183% | 0.7% | 0.0% | 27.6%
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Table 3. Breakdown of Global Heap (H2) Reads

H2 READS (% over H2 R+W)
Benchmark | Window | Join Tbl | Proc Thol
deep_bakA 0 20 418

0.0% 2.1% 44.0%
mazeO 28343 0 12007
50.9% 0.0% 21.6%
knight0O 17505 0 1705
82.1% 0.0% 8.0%
diffA 0 4 146
0.0% 12% 42.8%
cktdA 0 378 36150
0.0% 0.5% 49.5%
mumathO 9055 0 9029
31.2% 0.0% 31.1%
queensO 3957 0 3601
32.3% 0.0% 29.4%
cktdO 431916 0 14603
93.7% 0.0% 3.2%
queryO 19045 0 1505
72.3% 0.0% 5.7%
times10A 0 18 614
0.0% 1.4% 47.4%
divide10A 0 18 614
. 0.0% 14% 47.4%

Table 4. Breakdown of H2 Writes

H2 WRITES (% over H2 R+W)
Benchmark | Window | Join Tbi Proc Thbl
deep_bakA 0 10 503

0.0% 1.1% 52.9%

mazeO 1198 0 14123

22% 0.0% 25.4%

knight0O 137 0 1970

0.6% 0.0% 9.2%

diffA 0 3 188

0.0% 0.9% 55.1%

cktdA 0 281 36238

0.0% 04% 49.6%

mumathO 568 0 10383

2.0% 0.0% 35.8%

queensO 538 0 4150

4.4% 0.0% 33.9%

ckidO 2158 0 12455

0.5% 0.0% 2.7%

queryO 4100 0 1692

15.6% 0.0% 6.4%

times10A 0 9 654

0.0% 0.7% 50.5%

divide10A 0 9 654
0.0% 0.7% 50.5% |
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root proc A 39

OR-proc B OR-proc C

OR-proc F OR-proc G

AND-proc D

€ AND-procE

. OR-proc H

HW - Hash Window

—> Parent --> Child relationship

~--=» dynamic linking of HW

Figure 1. Cactus Stack Model of AND/OR Prolog Processes
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Figure 3a
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Set WAIT flag

Yes
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Send NEXTPAGE to SP to use SP
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Set SPBUSY Send NEXTPAGE
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Yes

Load PAGER

‘ Reset SPBUSY
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CONDUCTOR protocol for
acquiring a new page
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Yes NEXTPAGE
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No
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Figure 3c
SP/CONDUCTOR protocol for supplying an available page
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PROCESS CREATION USING COMM REGISTERS

FLAGS : SHADOW flag CALL-P INSTRUCT

yes SHADOW flag \ no

NS

Put \ no
Instruction ? .
-/ v _
yes no '
éII_P Instruction ? Call_P lnstructtM

Supply value on PARGBUS * yes
Send PROC_CREATE
Send LOADSHADOW Send SHADOWADDR r
{containing the no

Send SHADOWADDR number of arguments )
L Set SHADOW =17 '
@ 3 1
éset SHADOW no

i =17
signal = 17 Execute the microroutine
for transferring
L yes argument registers to
COMMREG
Reset SHADOW flag ::g :ECA?I(D:(_JS\II:;EDAJS

*‘____

6 SHADOW = 1?>_ no

+ yes

Set SHADOW flag

* Figure 4a
Q PPP/CONDUCTOR protocol
for loading communication

registers




no

Load the contents of PARGBUS to the COMMREG
“€—TThe address of th eregister to be loaded in on
ISHADOWADDR.

Set the valid bit of the register being loaded.

— PROC_CREATE
signal = 1?

no
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heck to make sure that the number of
arguments in SHADOWADDR i s equal to or le
than the valid bits in registers 0 through
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Error
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SPBUSY flag
= 0?
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in COMMREG
reset ?

Reset the valid bit of register in COMMREG
whose address is given by SHADOWADDR

signal = 1?

. no
Send SET_SHADOW ——L’ RESET_SPBUSY >-—

yes
y
Reset SPBUSY

Figure 4b
CONDUCTOR protocol for supporting process creation



PROC_CREATE_SP
signal = 1

yes

‘Start the routine for creating a new
process.
Send READ_COMMREG signal and
address on SHADOWADDR

r

DONE flag = 17?

l yes

Send REST_SPBUSY
Reset DONE flag

Figure 4c
SP protocol for supporting process creation
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5. Chapter 5. CONCLUSION

 This research initiative has established directions in three areas. The first area pertains to methodol-
ogy. An extended dataflow methodology (EDFG) has been used to represent reconfigurable computer sys-
tems such as Cray-18 (c.f Chapter 2 [40]). The EDFG also has potential application in distributed operating
systems as shown in Chapter 3. The design of a complete DROS using EDFG, its simulation, and imple- -
mentation are areas of future research. The PARET simulation system [1] is one example of a simulation
system that uses EDFG. The graphical interface and the flexibility of the simulator will allow DROS’s and
multiprocessor systems to be simulated at various levels of detail.

~ The second area. is programming language. The logic programming language Prolog has features
that are useful for specifying modules of the reconfigurable system. Logical variables of Prolog can have
values bound at runtime using unification. Backtracking can be used to explore alternatives. The side-effect
operations assert and retract can be used to change code at runtime. Although a DROS has not been writ-
ten in Prolog and simulated as a part of this research, some directions have been established for future
research in DROS using Prolog.

The third area is systems architecture for fast interprocess communication. A system with a single
global address space and a shared memory is expected to play a key role. The two-tier shared memory
architecture supports fast communication of synchronization information. The use of caches with a lock
state [2] should reduce the contention on the synchronizing bus when locked cache blocks are involved.
The processor architecture in Chapter 4 is one proposal to support fast IPC. It is currently under design and
simulation as a part of the Aquarius project at Berkeley. The completion of the processor and system archi-
tecture will allow reconfigurable systems to be designed and evaluated using Prolog.
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