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ABSTRACT

Many research eflorts have been devoted to solving the prob-
lems of Boolean systems, which are currently used for Information
Retrieval(IR). We propose a new model of IR, which treats the
whole process of IR as a process of evidential reasoning. Our model
is knowledge based, and theoretically sound. An input query pro-
vided by a user, triggers the process of evidential reasoning. The
process consists of two parts: automatic query formulation and
query evaluation. Automatic query formulation maps a concept
given by the user into a set of textual terms. These terms, according
to the pieces of evidence given by an expert, have been used by
various authors to describe the concept specified in the input query.
Query evaluation is an evidence-aggregation scheme, that combines
all the pieces of evidence and assigns a Retrieval Status Value(RSV)
to each document. A list of documents, ranked according to the
RSV, is provided to the user as a response to his or her information
request. In our model, inference strength between concept and sub-
concept is measured by conditional basic probability assignment;
and this measure is discounted, chained, and combined based on the
Dempster-Shafer(D-S) theory and its extension.

This work was supported by the Sloan Foundation



1. Introduction

Conceptually, an Information Retrieval (IR) system consists of a set of infor-
mation items(e.g., documents) and a mechanism for answering queries by retriev-
ing appropriate information items [SaM83]. In this research, we focus on
document-retrieval systems, and treat information retrieval as a process of retriev-
ing relevant documents according to the information need of the users. Because
the notion of relevance is subjective, the information request in IR may not be
satisfied exactly.

The standard Boolean keyword model is used by most of the commercially
available on-line systems, such as DIALOG, LEXIS, and MEDLARS. The Boolean
systems have some serious drawbacks. For example, the Boolean systems have
inhospitable request formalism; they frequently provide null outputs and over-
loaded outputs. In addition, the user is not able to place different emphasis on
different facets of the search {Coo88].

One way to solve the problems of the Boolean systems is to generalize the
query evaluation procedure used by them. In Boolean systems, a document is
either relevant or not relevant. There is no possibility for partial relevance. It is
important to rank any retrieved document, in respect to a given query, according
to its relevance value. Relevance value is also called retrieval status value, or
RSV. There are three major approaches to ranking documents according to
relevance: vector space models, probabilistic models, and fuzzy set retrieval
models.

In general, these three approaches provide a sound theoretical basis for the
development of IR systems. Each approach has successfully demonstrated the
ranking capability of its query evaluation process. It should be noted that each
approach interprets the meaning of the weights differently. Also, according to
previous experimental results, each system provides quite acceptable results.

1.1. Motivation

All these approaches share one common assumption, that is, they assume the
user is able to describe his or her information need, in a consistent way, by using
the query languages adopted by these systems. For these systems, the query for-
mulation has two phases. The first one is for the user to choose proper terms to
describe the information need; and the second one is for the user to place the
proper weight on each term . Both steps may be very difficult for general end
users, especially when the weights are interpreted differently in different systems.
Usually, a user has to go through several experiments in order to get a better
result; therefore, many users must consult an expert such as a librarian to per-
form the query formulation.

The motivation of this research is to design an IR system to replace the
expert needed in query formulation. In other words, the user should be able to
specify his or her information need through a friendly user interface; and then
have the system generate a proper conceptual structure which best describes the
information need.” This conceptual structure should contain the proper concepts
and proper weights, according to the expert’s knowledge stored in the system.
Since query evaluation is closely related to the query formulation, we need a new
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model of query evaluation to incorporate the expert’s knowledge in query formula-
tion.

1.2. Research Issues
" This research focuses on five questions:

(1) Given a query as the evidence of the user’s information need, to what degree
of belief a single document should be retrieved?

(2) Given a concept, what other concepts and sub-concepts have been used by
various authors in describing the concept, and to what degree of belief?

(3) What is the interpretation of the degree of belief, in other words, what is the
meaning of the weight?

(4) Given all the pieces of expert’s knowledge, how to construct a conceptual
structure which best describes the given query?

(5) Given the conceptual structure and the attached degree of belief, what RSV
should be assigned to each individual document?

Each of these questions addresses either the system, knowledge acquisition, and/or
the user.

2. Early Work

2.1. Vector Space Models

Vector space models are able to rank retrieved documents based on a simple
similarity measure, for example, the cosine correlation function used in the -
SMART system [Sal71]. However, vector space models are not able to process
structured queries. Another drawback of vector space systems is that term vectors
are assumed to be pairwised orthogonal, otherwise one can not compute the simi-
larity between a query and each individual document. This orthogonal assumption
is too restrictive.

2.2. Probabilistic Models

The probabilistic models put retrieval theory on a statistical basis [Boo85).
They recognize that the retrieved documents should, in general, be ranked in des-
cending order of probability of usefulness to the user. This is the Probability
Ranking Principle [Coo76], [Rob77], [CoM78], and [RMC82]. Probabilistic models
of indexing, also called "Model 1”7 type approaches to probabilistic retrieval,
attempt to apply probability estimation techniques to document indexing. The
first model of this kind was proposed by Maron and Kuhns [MaK60]. In their
model, the question asked of the indexers is reformulated in helpful ways, and the
analysis is extended to multi-term search requests. Probabilistic models of retriev-
ing, also called "Model 2” type approaches, assign probability interpretation of
the weights placed on request terms. This kind approach was first explored by
Robertson and Sparck-Jones [RoS76), who proposed a formula for the estimation
of probability of user satisfaction that could be used as the retrieval rule. The
third model, proposed by Robertson, Maron and Cooper [RMC82], unifies the two
previous approaches, by using relevance feedback information from the individual
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user about other documents, and from other users about the individual document.

In probabilistic models, an important assumption is that the probability
measure on the event space is uniform. That is, the probability for a request-
document pair is independent of the chosen pair. Also, some estimation is neces-
sary for the marginal probabilities; and there is the curse of dimensionality
[Rij79), which forces the probabilistic models to include only query terms in query
evaluation [Bar85].

2.3. Fuzzy Set Models

The fuzzy set retrieval models are based on fuzzy set theory [Zad65); and
they interpret the term weight as a subjective measure of relevance of impor-
tance, rather than an objective probabilistic measure. The early works of fuzzy
set information retrieval models were done by Tahani and Radecki [Tah76],
[Rad76]. They provide the formal mathematical frameworks for fuzzy set models
in IR; and they talk about fuzzy query processing with fuzzy predicates embedded
in a query, which is treated as a pseudo document. Later on, threshold models
[Rad79], [BuK81a], [BuK81b] were introduced for any generalized Boolean query;
however there are problems of consistency in generalizing Boolean queries to
include relevance weights and thresholds [Bue81], [BuKg8la]. This difficulty is
overcome by Bookstein [Boo80], who proposes that the Boolean operator act
differently on the same set depending on the context in which the set is found.

3. Research Background

There are two systems related to this research. The first one is RUle-Based
Retrieval of Information by Computer (RUBRIC) [TSD83], [TACS85), which gen-
erates a query structure according to the user's knowledge. The second one is
Knowledge-Assisted Document Retrieval (KADR) [BBS87], which extends the
user's Boolean query according to expert knowledge.

The notion of evidential reasoning in IR is introduced in RUBRIC; and it is
formalized in KADR, which uses Dempster-Shafer (D-S) theory. Evidential reason-
ing in both systems treat documents as pieces of evidence in addressing the issue
that to what degree a single document is relevant to a given query. RUBRIC uses
a strong evidence model since it's goal is to support full text retrieval, while
KADR uses evidential reasoning model to support preprocessed document descrip-
tors.

Since we are interested in knowledge-based automatic query formulation and
query evaluation, we will focus on these parts in RUBRIC and KADR. Also, we
will briefly introduce D-S theory before reaching the KADR system.

3.1. Related Work I: RUBRIC

RUBRIC is a full text retrieval system developed by Tong et. al. It is a rule-
based system, which uses rules to represent a user's knowledge, or, the user’s
preference in retrieving information. A conceptual hierarchy is the result of chain-
ing of rules; and this conceptual structure is used in matching with each document
in deciding the RSV of the document.
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Fig. 1: Example query in RUBRIC

3.1.1. Automatic Query Formulation

Given a single concept which describes the information need of a user, the
way RUBRIC generates conceptual structure in response to the given concept is
based on the pieces of knowledge provided by the user. As in general expert sys-
tems, a piece of knowledge is represented in the form of a rule. These rules are
interpreted as a hierarchy of retrieval concepts and sub-concepts. Thus by naming
a single concept, the user automatically invokes a goal oriented search of the tree
defined by all of the sub-concepts that are used to define that concept. The
lowest-level sub-concepts are themselves further defined in terms of pattern
cxpressions in a text reference language, usually, contextual terms. Then, the
whole structure is used to assign RSV to each document.

As a simple example of a query, let us use the 1982 World Series ” as shown
in Fig. 1. Each arc in the tree has an attached relevance value such that the inter-
mediate topics and keyword expressions contribute, according to their relevance
values, to the overall relevance that the document has to the root topic. Unla-
beled ares have an implicit relevance value of 1.0; and arecs representing the con-
junctions of an AND expression are linked together near their common base.
Here, the meaning of relevance value has the same interpretation of the meaning
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of weights in fuzzy set models, which is a subjective, semantic similarity measure.
Two rules used in generating this structure are:

Baseball Championship — Event, (0.9)
Ball — Baseball, (0.5)

where the first rule means "Baseball Championship” ¢mplies "Event” to the
degree 0.9, while the second one means that "Ball” is an evidence of ”Baseball”,
to the degree 0.5.

3.1.2. Query Evaluation

Evidential reasoning in RUBRIC starts by recognizing a document as the
"evidence” on which the system determines the relevance value of that document
to the retrieval request. For example, regarding the query structure in Fig. 1., if a
document contains the words ”ball”, "baseball”, and ”championship”, but no
other words referred to the example rule-base, then leaf nodes of "ball”, "base-
ball”, and “championship” all receive a value of 1.0, showing that there is
"strong” evidence that this document is relevant to these concepts; and all the
other nodes receive a value of 0.0, which means there is no evidence that this
document is relevant to these concepts.

The relevance values at the leaf nodes are then propagated across the rules,
toward the root concept. As a result, the nodes of the tree would be assigned the
relevance values shown in parentheses in the same figure. In this example, the
overall relevance measure between the document and the given query is 0.63.
The propagation of the relevance values is governed by the similarity measure on
the ark. In this example, a calculus that models conjunction with the minimum
operation, disjunction with the maximum operation, and uses arithmetic product
as the detachment operator is chosen to propagate the relevance values. The
detail of these operations leads toward some issues in selecting uncertainty calculi
[ToS85], [BIJ&7] which will not be discussed here.

3.1.3. Summary

RUBRIC is a successful example of applying ideas from Artificial Intelligence
(Al) in the development of a computer-based aid for information retrieval; the sys-
tem is fully implemented and commercialized. RUBRIC has several important
features: The matching is performed over the whole document. The RSV of a
document is a relevance value in the range [0, 1]. Queries are expressed in a
language of rules that allows the user to develop hierarchical knowledge structures
of retrieval concepts. Also, users are provided with a collection of graphic tools.

One problem is that Rubric assumes that a user will conceptualize a query
consistently over time. This is not always the case for the general user. Another
problem is that Rubric assumes all users are knowledgeable about the domain in
which they are interested and are knowledgeable about the type of documents
they want to retrieve. More general cases fail to have this level of sophistication.
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3.2. Evidential Reasoning and D-S Theory

The D-S theory of evidence was first introduced by Dempster [Dem67] and
extended in subsequent work by Shafer [Sha76]. Because of its theoretical sound-
ness, strength and generality, D-S theory has, in recent years, received increasing
attention from Al researchers [GoS84]; and the coherent approach suggested by
D-S theory in aggregating pieces of evidence bearing on hypothesis groups is
called evidential reasoning [LoG82].

The D-S theory originated from the concept of lower and upper probability
induced by a multivalued mapping [Dem67]. A multivalued mapping, I, from an
evidence space E to a hypothesis space ©, associates each element in E' with a set
of elements in ©, i.e., T : E — 2% The element-subset compatibility relation is
denoted by ":—". Given a multivalued mapping and a probability distribution of
space E, a basic probability assignment(bpa) of space ©, denoted by m: 29-10,1]
is induced. The bpa is also called mass assignment, mass distribution, or granular
distribution. The basic probability value of a subset F of space © is *:

m(F)= J}] P(t;) (3.1)

t; i~ F

where P(t;) is the probability judgement over ¢; € E. The subset F is also called
focal element; the space © is the frame of discernment. It is easy to show that a
legal bpa must have the following properties:

S mF)=1 m(@) =0 (3.2)
FCe

In general, the probability distribution on the space © is constrained by the
bpa. And an interval [Bel(X'), Pls(X)] is used to measure the degree to believe X,
which is an arbitrary set in space ©. Here, the lower bound Bel(X) denotes the
belief of X which counts the degree of belief necessarily committed to the set X,
whereas the upper bound Pls(X) is the plausibility of X, which expresses the
degree of belief possibly committed to X". Mathematically, these belief and plausi-
bility functions are defined by

Bel(X)= }] m(F) (3.3)
FCXx

Pls(X)= 3} m(F) (3.4)
FNX#0

* For simplicity, we assume that there is no mapping between the elements of the space E
and the empty set.
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It should be noted that (1) Bel(X)=1- Pis(X) < Pls(X), (2)
Bel(X) + Bel(X) < 1, and (3) the interval [Bel(X), Pis(X)] will reduce to a
pointwise Bayesian probability P(X) if all the focal elements are singletons, i.e.,
no composite set has probability > 0. In this context, Bel(X) + Bel(X) = 1
[Sha7s].

If m, and m, are two bpas induced from two independent evidential sources,

a third bpa, m(C), expressing the pooling of the evidence from the two sources,
can be computed by using Dempster’s rule of combination:

Y my(A;) my(B))
A N B, 1: C
1- 2 m,(A;) mz(Bj) ’
Ai N B,' - 0

m(C) = (m; @ m,)(C) = (3-5)

where A;, Bj, and C are focal elements in .

Dempster’s rule of combination normalizes the intersection of the bodies of
evidence from the two sources by the amount of nonconflictive evidence between
the sources. This amount is represented by the denominator of the formula.
Sometimes, eqn. (3.5) is also expressed as

m(C)=(m; @ my)C)=K - 3 m4)myB;) , (3.6)
ANB;=C

where K is the normalization factor, and has the value:

1

1— ) my(A;) mo(By)
A| n B,‘ == O

D-S theory offers following advantages over other approaches [Yen86),
[Liu87], [GoS84].

(1) It allows a coherent expression of information ignorance. That is, commit-
ment of belief in a focal element does not imply commitment of the remain-
ing belief to its negation, part of the beliel can be reserved to the ”don’t-
know”choice.

(2) Evidence may bear on groups of hypothesis and be combined in a coherent
way. In other words, it is able to model the narrowing of the hypothesis set
with the accumulation of evidence.

(3) The D-S theory subsumes the Bayesian theory in that under certain cir-
cumstances, it reduces to the Bayesian. The D-S theory is "probability-
related”, whereas the Bayesian is “probability-based”; therefore the D-S
theory does not require full information concerning probabilities.



3.3. Related Work II: KADR

KADR is another knowledge-based retrieval system. Unlike RUBRIC, KADR
uses natural language processing technique in query formulation; however, the
internal representation of the query is still simple Boolean query. Since KADR
proposes a general evidential reasoning model for deciding the RSV of a docu-
ment, we will focus on the evidential reasoning part in KADR.

3.3.1. Evidential Reasoning in KADR

Evidential reasoning is used in KADR in figuring out the degree of relevance
between a given document and a given concept. Concepts in KADR can be
treated as index terms. In KADR, a document is represented as a fuzzy set of con-
cepts; in other words, each concept in this set is attached with a degree of
membership:

S

d = {cdiv #d(cdi)}v t=1...,

where d is a document, ¢y; stands for a concept contained in this document and
pg is the characteristic function of d, which maps from the concept space to the
range [0,1]. Also, in KADR, the relation between concepts is represented as a
fuzzy measure. An implication relation is given by the expert:

I(Civ Cj) = "I(cia cj)7

where p; measures the degree of relevance between a given pair of concepts. A
concept is relevant to itself to the degree 1.0.

=0

Fig. 2: Mass assignment in KADR
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The mass assignment in KADR is decided by the two measures described
above. For each concept in a document, or each member in the fuzzy set associ-
ated with a given document, an evidence space is constructed for that concept.
For a given evidence space, the mapping between it and the concept space is
shown in Fig. 2. We have on the left an evidence space E; which contains con-
cept ¢4, and on the right the concept space C. A mapping is constructed
between c;; and each concept implied by it, say ¢,. If there is no such ¢;, then a
mapping is constructed from c,; to each concept ¢, which implies ¢;;. The mass
assignment associated with the mapping between ¢,; and ¢, is defined as:

m,({cp}) = pales;) - Ieg;, o), (3.7)

in which m; stands for the mass assignment of the evidence space associated with
the concept ¢4;. Knowing all the mappings from ¢ ; to C, the ignorance is meas-
ured by:

m;(8) = 1- 3" m;({c,}), c4 — ¢ (3.8)

where O is the hypothesis space, in this case, C; and — means implies or implied
by. This ignorance measure is represented by a mapping from a pseudo node p; in
E; to the whole concept space C.

Given all the evidence spaces and the mappings between them and the con-
cept space. The measure of all the evidence spaces are combined according to
Dempster’s rule of combining. After combining, each concept of the concept space
has a derived mass assignment, which is the measure specifying to what degree
the given document is relevant to this concept: '

rid,c) =m(c) =(m @ my @ ... P m,)(cy), (3.9)

where r is the relevance function between a given document and a given concept,
n is the number of concepts in d; and @ is the combining operator in D-S theory.
Give a query expressed as a Boolean structure of the concepts in C, the relevance
values of the concepts are combined using geometric mean and linear interpola-
tion functions, corresponding to the and and or operators, respectively:

v(c; and ¢;) = (v(c;) - (¢;)1/?, (3.10)

v(c; or c;) = v(e;) + (1 — v(ey)) - v(ey), (3.11)
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where ¢; and c; are concepts in the query. Using these functions, given a Boolean
query, which is the internal representation of a query in KADR, and a document,
the overall relevance value between the query and the given document can be cal-
culated.

e

Fig. 3: Counter example I of KADR

3.3.2. Counter Examples

Unfortunately, there are certain situations that the evidential reasoning
model in KADR does not work. There are two counter examples. The first one is
shown in Fig. 3. Suppose we have a document which is related to the concept Al,
to the degree 0.8; and suppose the concept Al implies the concept Expert System
(ES), to the degree 0.9, and the concept Machine Learning (ML), to the degree
0.7. According to eqn. 3.7, the mass assignment of the concepts ES and ML is as
follows:

m,(ES) = 0.8 - 0.9 = 0.72,
m (ML) = 0.8 - 0.7 = 0.56.

where m; is the measure associated with the evidence space containing the con-
cept Al In this case, the ignorance measure is equal to:

m;(©) =1 — 0.72 — 0.56 = —0.28,

which is conflict with the D-S theory in which all the measure must be a positive
number between [0, 1]. Therefore, the definition of mass assignment in eqn. 3.7 is
not justified.
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Query

Fig. 4: Counter example II of KADR

The second counter example occurs when we try to see whether KADR sub-
sumes the Boolean system. In Boolean system, there is no imprecise measure; in
other words, each document is represented as a crisp set, and the implication rela-
tion between concepts is exact matching. This can be represented in KADR that
each document contains only concepts which have degree of membership equal to
one, and each concept only implies itself, to the degree one. As a result, the
ignorance between each evidence space and the concept space is zero.

For example, suppose we have a document which is related to the concepts
ES, ML, and IR, and the implication relation associated with them:

d = {(ES, 1), (ML, 1), (TR, 1)},
I(ES, ES) = I{ML, ML) = I(IR, IR) = 1

Fig. 4 shows the mapping between the evidence spaces and the concept space.
Where E;, E;, E, stand for the evidence space containing the concept ES, ML
and IR, respectively. Notice that the ignorance measure is always zero:

m;(8) = m (8) = m,(8) = 0, (3.12)
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where m;, m,, and m, is the measure of E;, E;, and E}, respectively. Eqn. 3.12 is
copsistent with the Boolean system.

Now suppose we have a query: ES and ML and IR. In Boolean system, docu-
ment d will be retrieved since it contains all the concepts specified in the query.
However, in KADR, document d will not be retrieved. This is because the meas-
ures of the three evidence spaces conflict with one another, and can not be com-
bined using Dempster’s rule. Therefore, the overall relevance function between the
query and d is zero.

4. Current Research

This research provides a general framework for knowledge-based information
retrieval. Unlike RUBRIC, the automatic query formulation in our model is based
on expert’s knowledge, rather than user's knowledge. All the pieces of partial
information are combined, in a consistent way, in the process of query evaluation.
The overall measure of degree of belief, in Shafer’s term, between the query struc-
ture and a single document, is assigned to that document as it’s RSV.

4.1. Automatic Query Formulation

Conceptual

Hierarchy

Query

O
% Expert’s knowledge Index . Document

Fig. 5: Overview of our model

An overview of our model is shown in Fig 5. We have an index space which
contains all the index terms; and a document space which contains all the docu-
ments, which are represented by their descriptors. The mapping between index
space and document space is provided by an indexer; in other words, once a
descriptor, or an index record, is chosen for each document, an index term will
map to a set of documents which have that term in their descriptors. The
difference between our model and other IR models is, given a concept as a user’s
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information need, our model maps the concept into a set of index terms which will
be used to select relevant documents.

Actually, a conceptual hierarchy is constructed between the concept given by
the user, and the set of index terms generated by the system. This hierarchy
results from the chaining of the rules given by the expert. This conceptual hierar-
chy is very similar to the one in RUBRIC; however, there are three major
differences between RUBRIC and our model.

The first difference is that in our model, the construction of the conceptual
hierarchical is based on expert's knowledge, instead of user’s preference. Although
a user’s preference may better reflect his or her information need, it prevents the
general users from accessing the system, as we discussed before. Therefore, we
think it is necessary to generate a conceptual structure based on expert’s
knowledge. As a result, all a general user has to do is to pick the concept which
best describes his or her information need, through a friendly user interface.
Then, the user can leave all the work to the system. We believe expert’s
knowledge should provide a more consistent and better retrieval result.

The second difference is that in our model, the conceptual hierarchy is a
result of the forward chaining of the rules given by the expert, instead of back-
ward chaining. In RUBRIC, a concept is placed on the left hand side of a rule,
and a concept implied by a sub-concept is placed on the right hand side. Given a
concept, we can find out all the sub-concepts which imply this concept by match-
ing it with the right hand side of each rule. The interpretation of these rules is
that this concept is defined or described by those sub-concepts. . The approach
used in our model is to put the concept on the left hand side, and sub-concept on
the right hand side. Given a concept, for example, the query concept, all the
sub-concepts used to define or describe this concept can be found by matching the
concept with the left hand side of each rule. A major benefit of forward chaining
is that it not only expands a given query concept into a conceptual hierarchy, but
also expands each sub-concept on the leaf nodes into a set of documents.

This leads to the third difference between RUBRIC and our model. In our
model, query is treated as evidence, instead of document. In our opinion, query is
the evidence of a user’s information need; and conceptual structure is the evidence
in deciding which document should be selected. This is different from the
approach used by RUBRIC; and this is possible only when the rules and the index
mapping have the same direction. The benefit is that a single concept given by
the user triggers the process of forward chaining, or evidential reasoning in the
sequel; no other control mechanism is necessary. »

The query specified by the user can be a compound one. In other words, the
connectives and and or are allowed to describe an information need. The limi-
tation is it should be a simple Boolean query; and the connective not is not
allowed.

4.2. Evidential Reasoning in Our Model

This section introduces the query evaluation in our model. First, we intro-
duce the theoretical background, which is an extension of D-S theory proposed by
Liu [Liu87); then we explain the interpretation of the meaning of rule uncertainty
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in our model. A general format of rules is followed to demonstrate the ability of
the rules in our model to express the relation between sets of concepts and sub-
concepts. At last, the evidence aggregation methodology is introduced.

4;2.1. Theoretical Background

The original D-S theory does not support rule uncertainty and chaining of
rules. An extension of the D-S theory is proposed by Liu, which solves these prob-
lems. In the extended theory, the degree of rule uncertainty is determined through
a compatibility relation between the background evidence and rule conclusion. As
a result, a "conditional bpa” is constructed to the rule conclusion. The generality
of the extended approach actually originates in the generality of the conditional
bpa, which may be assigned to an arbitrary condition/conclusion pair [Liu87].

Suppose we have a rule in the form of A; — C;. Itis assumed that:

A; ={a,la, €A;} C 6,
Cj = {Cl | ¢ € CJ} .g ec’

where ©, is the antecedent frame of discernment containing all possible proposi-
tion a,, and ©, is the consequent frame of discernment containing all possible ¢;.
In addition, there is a conditional frame of discernment 6, containing all pos-
sible conditional propositions ¢; given A;. The rule A; — C; is then considered
as a subset of 8, ,:

{c; given A;l¢; € C,}

For each given frame, there is a background frame supporting the evidence of the
bpa of the given frame. These background frames are defined as:

6, = {ad )}
e, = {c,}
8., = {¢n given A}

corresponding to 8,, 8., and O, ,, respectively.

According to eqn. 3.1, a bpa of the antecedent A; measures the "reason to
believe” A; by compatible evidence in the background:

mA) = X Pldy), (4.1)
= A
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where A; C 6,, a'm € ©',. In analogy, a conditional bpa measures the “reason
to believe” the conditional proposition C; given A; which corresponds to a rule

A4; - Cp

m(CilA) = 5 P14 (42

Cp - j

where C; C 6., A; C ©,, and c'n € ©',, which is compatible with C;.

The chaining operation is supported by the extended theory. Suppose the
relation between A; and C; is defined by some intermediate nodes C, that is, we
have rules:

Ai — Ck’ and
Ck - Cj

then the following equation describes the chaining operation:

m(C;/A;) = ) m(C;/Cy) m(C/A), (4.3)
G.ce.

where ©”, is a intermediate frame between 6. and 9,.

4.2.2. Interpretation of Rule Uncertainty

Rule uncertainty in our model is an experience-based belief measure; in other
words, the conditional mass assignment in Liu's term. Given a rule between a con-
cept ¢; and a sub-concept ¢, the question we ask the expert is: What is the degree
of belief that sub-concept ¢; will be selected to define concept ¢,;? or, What is the
degree of belief that sub-concept c; has been used by various authors in describing
concept ¢;? Here, the terms degree of belief and conditional mass assignment are
used interchangeably; and the degree of belief is different from the belief measure
of a focal element, which is equal to the degree of belief necessarily committed to
that focal] element.

Since a given rule summaries an expert’s knowledge and experience, the rule
uncertainty is interpreted accordingly. As shown in Fig. 6, given a concept and a
sub-concept, ¢; and ¢, the first question we ask the expert is for him or her to
come up with a list of pieces of knowledge, €1y €52 - - + Cj, Which are used to
describe the concept c;, and are semantically compatible with the sub-concept c;.
These pieces of knowledge can be classified into many different categories, for
example, definition of concept ¢;, knowledge in the text books, conversation with
other experts, graphic analogy, the expert's subjective opinion, and so on. As we
can see, there is almost no limitation to how an expert can describe the concept
he or she has in mind. However, the detail of the process of getting these pieces of
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knowledge is a problem of knowledge acquisition and will not be discussed here.

v
¢; O=—Oc; A
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\ ~.
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\J v
OCJ'n
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(Local history)

Fig. 6: Rule uncertainty

The second question we ask the expert is to assign a weight to each piece of
knowledge, according to his or her experience. Weight w, is assigned to
knowledge ¢, to reflect it's relevant importance. The weight w; is 2 number in
the range [0, 1]; and w; + wy ... + w, = 1. Also, the weight w; approximates
the conditional probability P(cj/¢;). This is treated as local history, which is
independent from the other pieces of knowledge. Given the weights, the overall
degree of belief v of this rule is given by the following equation:

v = m(c;/c;) = %‘ Wy (4.4)

Given the interpretation of rule uncertainty as conditional mass assignment,
the equation of chaining of rules naturally followed according to eqn. 4.3. That 1s,
if we want to know the degree of belief that concept ¢; is described by sub-
concept c;, and there are some intermediate sub-concepts ¢, between ¢; and c;,
then the measure between ¢; and ¢; is equal to the summation of the pairwise
multiplication of the conditional mass m(c;/c;) and m(ci/¢;):

mie,fe) = 2 micjlemice/e) (4.5)

4.2.3. General Rule

The incompleteness of the knowledge reflected in the rule between the set of
concepts and the set of sub-concepts. This incompleteness necessitates the general
formulation of the rule. The general format of our rule is:



where C; is a set of concepts; and C; is a set of sub-concepts; and the equation for
degree of belief measure and chaining becomes:

v =m(C;/C;) = ZE wy (4.4')
m(C;/C;) = ij m(C;/C)m(C/C;) (4.5")

With the generalized rules, it is very easy to express the incompleteness of
knowledge. That is, the commitment of belief to one statement does not neces-
sarily mean the commitment of the rest of belief to the negation of it. Part of the
- belief can be reserved to "don’t know”. For example, in the following three rules
associated with concept ¢;:

€ — ;s (vl)
¢; —Ck, (Vo)

¢; —'{CJ‘, Ck}, (l—vl—-v,,)

the third rule expresses the partial ignorance reserved by the expert in relation to
the set of these two sub-concepts. The concept of ignorance was introduced in D-S
theory; and the chaining of general rules is made possible by Liu's equation. In the
next section, we will introduce the discounting and combining operations of rules
in our model.

4.2.4. Evidence Aggregation

In addition to the rules given by the expert in generating the conceptual
hierarchy, there are two types of rules. The first one is the indexing rule, which
maps an index term into a set of documents. The second one is the default rule,
which maps a sub-concept at the leafl node into a textual term, which is the sub-
concept itself; the textual term is actually the index term. Unlike the rules
described in the previous section, these last two rules are unconditional; or, condi-
tional having the conditional mass assignment equal to one. Each indexing rule
represents the knowledge of indexers, who are one type of expert. Each default
rule specifies where sub-concepts become textual terms. The default rule is the
equivalent of the strong evidential reasoning in RUBRIC.

Now the reasoning path is complete in our model. Starting from a query,
which is a concept chosen by a user, through the conceptual hierarchy, then from
the leaf nodes to textual terms and from the index terms to the sets of documents,
the whole path is linked by rules and the rule uncertainty has a uniform interpre-
tation: conditional mass assignment; therefore, the whole process can be treated as
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a process of evidential reasoning.

4.2.4.1. Overview

RSV is calculated in the document space, according to the information in the
conceptual hierarchy. As shown in Fig. 7, to the left of the dash line is the query,
which shows the conceptual hierarchy; to the right of the dash line is the image of
this hierarchy which is defined in terms of set of documents; that is, the node of a
sub-concept is replaced by a set of documents. In this figure, document sub-space
D; corresponds to the sub-concept ¢;. All the uncertainty measures on the links
of the conceptual hierarchy are copied to the document space hierarchy.

U3
€3
Uy
vy
¢
vy
Cy4
D,
Vo
Uy
Cq O >
Query Document

Fig. 7: Evidence Aggregation

The construction of the document space hierarchy starts from the leaf nodes
of the conceptual hierarchy. Each leaf node is associated with a set of documents
which is indexed by the index term, or sub-concept, at that leaf node. The initial
value of the mass assignment for the set of documents at leafl nodes is 1.0; and no
discounting is necessary since the leaf nodes are governed by indexing rules. In
this example, set Do, Dy, D5, and Dg all have a mass value of 1.0 as the initial
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value.

After setting the initial value, the mass assignment is propagated to the root
of the hierarchy, which is a set of all the documents that will be retrieved. The
RSV of each document is decided by the plausibility measure of each document,
which is the result of applying D-S theory over the document space at root. The
way mass distribution is propagated is described in the following section.

4.2.4.2. Basic Operations

The basic operations of propagating mass distribution involve combining the
mass value of the sets at the left hand side, or the lower level of the hierarchy,
into the mass value of the set at the right hand side, or the higher level of the
hierarchy. The combination is controlled by the corresponding node in the query
structure, to be more specific, the operation between the nodes which are
corresponding to the sets at the left hand side. For simplicity, let's call the opera-
tion OP. Usually, there will be more than two sets to be combined. Since the
overall combined value is not affected by the order in which they are combined,
we treat the combination operation as a binary operation.

In Fig. 8, the part of document hierarchy on the right corresponds to the con-
ceptual hierarchy on the left. The dashed links between the leaf nodes represent
this relationship. In this case, concept ¢, is described by two sub-concepts c; and
c;. The rule uncertainty is measured by v; and v; respectively. The set of docu-
ments associated with the sub-concept c; is represented by D;, the same with D;
and D,. The uncertainty measure between these sets is copied from the concep-
tual structure on the left. It should be noted that the set D; and D; may not be
disjoined ; they are shown in separate ovals for the purpose of clarity. Now let us
take a look at the way to combine D;, D, and the uncertainty measure of them,

into D, and the uncertainty measure of it.

If OP is an or operation, then Dy is equal to the union of D; and D;. For any
focal element X which has a non-zero mass measure in either D; or D, the
derived mass measure of X in the space D, is equal to the summation of the mass
measure of X over space D;, m;(X), and the mass measure of X over space D,
m (X)), discounted by the uncertainty on the links, v; and v; respectively. These
are described by the following equations:

D, =D; UD; (4.8)

my(X) = v; - m; (X) + v - m; (X), (4.7)
X C D;UDj, m (X) - my(X)#0

If X is contained in D; only, then eqn. 4.7 is reduced to

m(X) =v; - m (X),
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Fig. &: Basic operation

since the measure of X in D; is zero. The same arguments hold for the set D,. If
c; and c; are leaf nodes, then the set D; itself is the only subset of D; that has a
none—zero measure; actually, the measure of D; is assigned to the mltla] value one.
This is also true for D;. Therefore, the eqn. 4. 7 is reduced to

m(D;) = v;,
my(D;) = v;.

If the OP is an and operation, then the intersection of D; and D, is assigned
to Dy; and the derived measure of D is equal to the result of combining the
measure of D; and that of D, according to Dempster’s rule of combining.

m(X) = (m; @ m;)(X) (4.9)

If the two measures are conflict, in other words, D, is equal to an empty set, then
the measure of X is reset to zero.

In the following two sections, we will discuss the issues of ball-box analogy
and combinability of D-S theory, both of which are related to our work.
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4.3. Ball-Box Analogy

A ball-box analogy is proposed by Zadeh in explaining D-S theory [Zad85].
We will first describe Zadeh's model, then take a look at the analogy of our
model.

4.3.1. Zadeh's Model

Fig. 9: Ball-box analogy

In Fig. 9, we have several boxes and a set of metal balls. The boxes overlap ;
and balls are placed in each box, according to available information. Let's use P;
to represent the fraction of balls put in box A;. Once a ball is put in a box, the
area the ball can travel is limited by the boundary of the box; however, the boun-
dary of the overlap area is penetrable. In other words, if box A; and box A; over-
lap, then the balls put in A; and A; are free to travel to the intersection of these
two boxes. In our example, P, = 0.2, P, = 0.5, P; = 0.3. These measures are
equivalent to the probability measure of the evidence space; and the boxes are
equivalent to the focal elements of the hypothesis space. Given the overlap of the
boxes, and the measure P;, we want to know: Given an area, say @, how many
balls are there in the @?

Because a ball can move around within a box in which it is put, we are not
able to come up with a single number in answering the question. Instead, we can
only have a range measuring the upper bound and lower bound of the probability
of the number of balls in Q. The analogy of the upper bound Pls(@) and the
lower bound Bel(Q) is as follows:

In calculating the Pls measure, @ acts as an attractor (e.g. magnet); and all
the balls will move toward this area, unless they are constrained by the boundary
of a box. The value of the fraction of balls which move to area @ is Pls(@). On
the other hand, in calculating the Bel measure, @ acts as a repeller; or, all the
other boxes act as attractors. Then, the balls will move away from Q, unless they
are constrained by a box within @. In this case, the fraction of balls still kept in

Q is Bel(Q).
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4.3.2. Our Model

Although D-S theory is used for our model, the ball-box analogy for our
model is a little bit different form Zadeh's model. In our model, besides the infor-
mation of the overlap of boxes and the number of balls put in each box, we also
know the exact location of each box. The whole area in which we can put boxes
is divided into small boxes of equal size, as shown in Fig. 10. Each of the small
boxes is labeled and represent a document. The location of a given box, regard-
less of size, is described by its constituent, that is, the small boxes it covers. The
question we ask is: Given a magnet box @, which is the same size as a small box,
what is the best location to place Q, such that it can attract most of the balls.

Fig. 10: Ball-box analogy of our model

The answer to this question is provided by calculating which small box has
the maximum Pls measure, if we put @ there. That is,

maz [Pls(B;) (4.10)
1,7

In this example, suppose we have the same fraction measure, P, = 0.2, P, = 0.5,
P; = 0.3, then the shaded area, which contains two small boxes, has the max-
imum value of 0.8. The documents represented by this area will be retrieved as
the most relevant ones.

4.4. Combinability

4.4.1. Zadeh's Model

One of the problems of the D-S theory is the problem of combinability
[Zad85]. If we have two independent evident spaces, which map to the same
hypothesis space, the mass distribution of the two evidence spaces can be com-
bined according to Dempster’s rule of combination. However, in Zadeh's
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conjecture, if there is one focal element in one of the mass distributions, which is
disjoined from all the focal elements of the other mass distribution, then these
two distributions are not combinable. Otherwise, the result of the combining of
these distribution will be misleading .

4.4.2. Yen’s Model

As pointed out by another researcher Yen, the situation described in Zadeh's
conjecture is still combinable, as long as these two distributions are partial infor-
mation bearing on different attributes [Yen86]. For example, in Fig. 11, we have a
relation of students; and there are three different attributes in the relation: sex,
age, and address. This relation is also called the parent relation of the distribution
information. There are two sources of partial information. The distribution of the
number of female students and the distribution of the students who live in Cali-
fornia. Suppose we are interested in knowing the distribution of the number of
students according to age. Although we have a subset of age, {18, 19}, in the first
distribution, which is disjoined from all the subsets of the second distribution,
these two distributions are combinable, according to Yen's model. This is because
these two distribution are partial information based on different attributes, sex
and address, instead of the whole information bearing on the parent relation.

Sex Age State

Fig. 11: Combinability

There are two observations in the process of combining these two pieces of
information. First, since the set of age {18, 19} is disjoined from all the subsets of
the distribution based on students living in California, it is natural to assume that
the group of students in this relation who are either 18 or 19 do not live in Cali-
fornia. A similar argument holds for male students. Second, after combining, the
parent relation is a subset of the original one, which contains female students liv-
ing in California.
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4.4.3. Our Model

In our model, the pieces of evidence we want to combine are based on
different aspects, which is similar to the attribute in Yen’s model. Therefore, there
are pieces of partial information based on different aspects, and two pieces of par-
tial information can always be combined. For example, in Fig. 12, we have a
query which tells us the user is interested in knowing articles related to Al and
Cognitive Science (Cogsci). According to the result of query formulation, a set of
documents, {d,, ds}, is related to one sub-concept Al, to the degree 0.5, and
another set of documents, {d;, dg, dg}, is related to sub-concept Cogsci, to the
degree 0.3, and so on. After the combining, we have a new parent relation which
contains the documents related to both Al and Cogscl.

Aspect; Document Aspect ;

Fig. 12: Combinability of our model

4.5. Correspondence to Boolean System

Let us assume the derived query structure is given by a user of a Boolean sys-
tem. In the Boolean system, there is no way to express the relative importance of
query terms. Our model subsumes the Boolean model in the following way. First,
we assume that each link attached to a concept shares the same degree of belief.
For example, in Fig. 13, given n sub-concepts associated with a given concept ¢,,
we assume each sub-concept receives equivalent belief to the degree 1/n. This
process is repeated for every rule; and all the measures are combined as described
in our model. All the documents in the final document space which have non-zero
RSV will be retrieved. This result is the same as the result produced by a Boolean
system.
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Fig. 13: Reduce to Boolean model

5. Future Work

In this proposal, all the sets are crisp sets. A natural generalization is to
incorporate fuzzy sets in our model in the future research. In other words, we
would have a rule between a fuzzy set of concepts and a fuzzy set of sub-concepts.
More importantly, we would like to adopt fuzzy indexing in our model. That is,
the knowledge provided by an indexer is to map a index term into a fuzzy set of
documents. We consider this an important step in combining our model with the
fuzzy set model of IR.

Another direction of future research is to support more general relation
between concepts. That is, there are not only rules between concept and sub-
concept, but also rules between related concepts. The difference between these
two types of rules needs to be clarified. Also, the measure of the relation between
the related concepts and how these two combine these two types of measure need
to be studied in the future.

In the process of knowledge acquisition, an important step is to come up with
a list of sub-concepts given a concept. Sometimes, it is difficult for an expert to
enumerate all the candidate sub-concepts. A heuristic concept structuralization
methodology is proposed by Miyamoto et al., which generates thesaurus like struc-
ture based on a fuzzy set IR model [MMN83]. The feasibility of this approach will
be studied in the future.

We plan to implement a prototype system of our model in the future. The
implementation will be done in the environment of a system called Gister * ,
which is an evidential reasoning system developed at SRI International. Gister
provides many graphic tools to support the operations needed for evidential rea-
soning. However, it does not support the conditional bpa measure. There are two
options in supporting this measure in our model. The first choice is to modify the
source code of Gister; and the second choice is to use the original Gister, but
make explicit the background evidential reasoning associated with each condi-
tional bpa measure. The domain we will make experiment on is the AlList, which
is a common place that many Al researchers share their knowledge. The AlList is
a message service across the computer network. Each message will be treated as a
document; and the topic associated with it will be used in indexing the document.

* Gister is a trademark of SRI International
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The standard precision and recall measures will be used in comparing our model
with the other models.

8. Conclusion

A general framework of knowledge based IR has been proposed. In this
model, IR is treated as a process of evidential reasoning. This process is triggered
by the concept selected by a user. Therefore, the query is treated as evidence in
selecting the relevant documents for the user. Through out the process, we use a
consistent interpretation of the rule uncertainty; and the uncertainty measures are
discounted, chained, and combined according to D-S theory and it’s extension.
No other control knowledge is necessary in aggregating the pieces of evidence in
our model. Automatic query formulation in our model is based on expert's
knowledge. The general format of rule allows an expert to express his knowledge
between sets of concepts and sets of sub-concepts. In other words, partial
ignorance of knowledge is properly expressed in our model. In the process of
query evaluation, the RSV of a document is calculated by aggregating all the
uncertainty measure of the subsets of documents in the document space. A list of
documents, ranked according to the RSV, is provided to the user as a response to
his or her information request. Also, in this report, we discussed the issues of
ball-box analogy and combinability of D-S theory, which are related to our model.
We also demonstrated that our model subsumes the Boolean model.
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