Allen Jiajuin Wei
Author

- DUES

(Display Utilities and Environments for Simulation)

Title

RLSEARCH PROJECT

Submitted to the Department of Electrical Engineering and
Computer Sciences, University of California, Rerkeley,

to partial satisfaction of the requirements for the degree
o~ Mastcr of Sciznces, Plan II.

Arproval for the Report and Comprechensive Examination:

Committee: %‘/L h K‘\ , Research Adviser

/12 /% /9P e

=

= =
/g/?//////f;yy , Date

~e

Acknowledgement

I would like to thank Professor Yale Patt for his valuable guidance and encourage-
ment. His time and patience throughout this project are greatly appreciated. I would also

like to thank Professor Alvin Despain for his valuable comments and reading the paper.

I also gratefully acknowledge my debt to Bruce Holmer, Steve Melvin, Mike She-
banow, and Wen-Mei Hwu who influence the overall design; to Mike Carlton, Chien Chen,
Jeff Gee, Tam Nguyen, Ashok Singhal, Jerric Tam, Jim Testa, Jim Wilson, and others who
reviewed the work and gave positive feedback; and to Kinson Ho, and Jeff Gee, who read

the draft of this report, and gave me valuable comments.

To the friends who have encouraged me and given me moral support throughout my

years at Berkeley, I thank Joe Wu, Pehong Chen, Shin-Yuan Tzou and Belle Wei.

Finally, to my late father Wen-Ping Wei and my mother Li-miin Men for their con-

stant loving support and patience for all my endeavor.

DUES

(Display Utilities and Environments for Simulation)

Allen Jiajuin Wei

Master’s Report Plan II
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley, California 94720

ABSTRACT

DUES (Display Utilities and Environments for Simulation) is an X
Window based interactive tool for running the PLM simulator. It invokes
the simulator, and communicates with it through UNIX* sockets, while pro-
viding a better user interface with objects such as menus, buttons, display
windows, scroll bars, etc.. It is designed to allow future extension with
minimum change to allow interface to other simulators. In this report, the
internal structure of DUES is explored in detail. Issues regarding data
structures, process communication, and the functionality of each object are

examined. Directions for future work are also recommended.

May 16, 1988

 UNIX is a registered trademark of AT&T Bell Laboratories in the USA and other countries

ii

Table of Contents

Acknowledgementscoeieiiiiiniiiitinii

Table Of CONLENES ..ceuivrerreeernenseresenentessersrssenssssarsucssssssessssssessosaseonssnensassssnssscnssans

Chapter 1:
Chapter 2:

Chapter 3:

IR ETOQUCEION +eneciaerenreenssnransncessssasesseasassosssssensasessssasssosssassasnssnsssssnsencs
X Window SYSLemccveueiiuniioriirusmensierreranasrrstiireiimierseraesssaresresessasanse

Overview 0f DUES .iviiiiiiiiiiitieirierrrnsensntseesncnssarasesssssnsessersasasasrosns

3.1, INtrodUCLION ...ivoreereveveeiiniarnriceornsrsrrateacenrermeteeeneuieestesssroressescnsissonnsancs
3.2. Command Menu Barcccoiiuiiiimiiiiiiiiiiiiniieiiii s isnnessecennenenaans
3.3. State Display Windowsciiiimiviniimrernnnerimmmiernie i erenessnecsnseenae
3.4. Copy WINAOW ..cucueiiimiiiiiniiiaiinniriiniiertrnaerenneestnassens e sierissiseesnen
3.5. VIeW WIDdOW ..icieeveriiieneenrenresioiansoscoscantenearesressesssessssssessarassssssssssansnns
3.6. Dialogue WIRdOWccvvuienierniiiimimmisenerrnrinaiisssrncaineraisseeessaiesetesserseniees

Chapter 4:

Design ISSUES ..cceventiiiiiiiiaiiiiii ettt

4.1, INETOAUCHION ..iniiriereiiiiniiseenereensanereacensesssesnsssssastonsserensasasesssscassesnsascnrns

4.2. Separation of Policy and Mechanismoiiiiiiii

4.3. Interprocess CommuBicationccoiiiiiiiiiiiiiiiiiiiiiiii
4.4. Standard Output Bufferingccccccviiiiiiiiimiiiiiniiiii e

Chapter 5:

Interfacing DUES to Other Simulatorscceiviiimiiiiiiiiiniiiiion.

ST 0017 0 1+ 1071 5 1) « SR O PPN

5.2. Extending Commandsc..coeevviimiiimiiiiniieriiiieieierieriieni i sae s resaeaes
5.3. Creating OBJEcts ...ceuveeuniiieniiiiiiiiiiiieriii e errtieretne s ieees st tntas s sar e aeees

5.3.1. Pull-down Menuccccoiiiiiiiiiniiniiiiniieinii et
5.3.2. Dialogue Box for One Argumentccooovimiiiiiininiieineiininarinnnn,
5.3.3. Dialogue Box for Two Argumentscccoiiiimiiiiiiiiniininnn

5.4. Communicating with the Simulatorccocovviiii

Chapter 6:

L0 T TS T3 T

6.1. Report SUMMATY .iicvuiiiuiieriiiiiiiiiiiee sttt eratteiiesbessceaesasneastaeesttsanarans

Future EnhanCements ..ooocieueeeeseeeiiesetsereeaneatasacansaneaeaaseasassssassesansassnsssnsananns

References

ii

Q@ T OUv

12
12
15

18
18
18
18
19

22
22
22
24
24
25
26
27

29

29

30

31

Appendix A: DUES User’s Manual

Appendix B: Catalogue for DUES Routines

iii

..

--

Chapter 1

Introduction

DUES (Design Utilities and Environments for Simulation) is a front-end user inter-
face for the Prolog Machine (PLM) simulator (1], which is part of the Berkeley Aquarius
Project [2,3]. The PLM simulator runs programs of compiled Prolog code [4,5] and provides
facilities to allow observation of internal machine states and control of running programs.
Two levels of simulation are provided which differ only in the granularity of operations
simulated. The Level 1 simulator performs simulation at the macro-instruction level while
the Level 2 simulator runs one microinstruction at a time. DUES is interfaced to the level

two simulator.

The goal of the DUES project is to provide a user friendly interface [6] to the PLM
simulator. DUES has been designed in a clean way in order to interface to other simula-
tors with minimum efforts. The PLM simulator has a primitive user interface. Users usu-
ally enter commands to the simulator by typing commands on a character terminal. Fre-
quently, it is found inconvenient to memorize various command names. Besides, because
the size of the screen on a terminal is too small, it is hard to keep all information provided

by the simulator before it is scrolled off the screen.

From the need to haye a nice user interface, DUES implements an environment con-
sisting of a command menu bar, dialogue boxes, pull-down menus, scroll bars, display win-
dows for internal states, program windows, and other objects. In addition to supporting all
the commands in the PLM simulator, it contains a few enhancements, and provides room

for future extension. All of these features have become viable due to the arrival of

.92.

workstations with bitmap high resolution displays, mouse devices, and window systems.
DUES is now running on microVAX stations and Sun workstations, and is able to be used

with any other workstation with X window systems under 4.3BSD UNIX or its variants.

This report is divided into six chapters and two appendices. A brief introduction to the
X Window system is given in chapter 2. Chapter 3 presents an overview of DUES.
Chapter 4 discusses major design issues. Chapter 5 describes how to interface DUES to
other simulators. Chapter 6 offers some concluding remarks. Appendix 1 contains the
DUES user’s manual. Appendix 2 lists indices of all DUES procedures and the files they

are contained.

Chapter 2

X Window System

X [7] is a network transparent window system that supports overlapping windows
under 4.3BSD UNIX, ULTRIX-32, VAX/VMS and many other operating systems [8]. A
window is an area on the display screen associated with an application. In X, windows are
organized in a strict hierarchy. At the top of the hierarchy is the "root" window, which cov-
ers the entire display screen. All windows have parents except the root window. Parent
windows are partially or completely covered by child windows. A child window may be
larger than its parent; part or all of the child window may extend beyond the boundaries of

the parent. However, all output to a window is clipped by the boundaries of its parent.

X can be described in three parts: the X display server, Xlib, and the X Protocol. The
X display server runs on computers (usually workstations) with either monochrome or color
bitmap displays. The server distributes user input from the keyboard or the mouse device
to and accepts output requests from various client programs located either on the same
machine or elsewhere on the network. Xlib is a C subroutine library that application pro-
grams use to interface to the X server by means of a stream connection. Although an
application program usually runs on the same machine as the X server it is talking to, this
need not be the case. The' communication between application programs and the X server
is defined by a network protocol. Currently, DUES is implemented in protocol version 10

release 4 (X10R4).

The C routines in Xlib are a low-level interface to the X Window System protocol in

the sense that they allow drawing of lines, polygons, text strings, etc.. Applications often

-4-

find it more convenient to work on higher level abstractions like buttons, pull-down menus,
pop-up menus, scroll bars, labels, text windows, dialogue boxes, etc.. There are toolkits
available that contain libraries of packages layered on top of the X Window System. The
implementation of DUES does not use any toolkits. There are two reasons for this decision.
First, because the X Window Protocol was undergoing a major change from version 10 to
version 11 when DUES was being developed, none of the toolkits were stable enough to
build applications on. Second, although toolkits offer more convenience and higher abstrac-
tion, flexibility suffers since applications can only create and use objects defined in the
toolkits. To better fit the specific requirements of the PLM simulator, DUES builds every

object from Xlib.

Chapter 3

Overview of DUES

3.1. Introduction

DUES manages seven windows in an attempt to achieve user-friendliness. Each win-
dow has its own functionality. All are child windows of RootWindow; therefore, they can be
manipulated by any window manager. The windows are Command Menu Bar, three State
Display Windows, Dialog Window, View Window, and Copy Window. The following sec-
tions will describe all the windows in DUES. Fig. 3.1 shows a typical configuration of the

windows.

3.2. Command Menu Bar

The Command Menu Bar consists of two parts, the title bar and the command menu.
Although it is usually located at the top of the display monitor, it can be put anywhere
according to MenuBarGeometry specification in the Xdefaults file. Fig. 3.2 shows the Com-

mand Menu Bar.

The title bar contains several pieces of information. From left to right, there is an
integer number indicating the absolute current cycle number counting from 0, the name of
the instruction being execu'ted, .the title of "PLM Simulator,” and the name of the microin-
struction being executed. All these except the title will be updated after each cycle is exe-

cuted.

The command menu has ten commands available, each of which is represented by a

300 SHBIT get L] { stis s v e PLM Simulator (#auigg s Son - bilidil get£113t04 |

load init go step break state cycle print quit
pau load gsd4.w . 12088) AR ogstors THNESSAE
309 instructions (limit: E=00040022 0000002e AX[31=B004000a
33 procedures (limit: 512) H2=00000020 00000018 A% [41=8004000e
31 labels (limit: 4096) AX[11=00001001 00040022 AX[51=0ffFe00
cyclel(dec) 300 MAR=00040022 - 0004001e AX[61=00000001
go CB : DLOC 0004001f: 2004001e TR= 00080000 AXL731=00000020
pd 20.2f CP : DLOC 00040020; 00000018 = 00001033 AX [81=00001000
DLOC 00000020: 00000000 ¥3 : DLOC 00040024: c000001b HB= 00001033 T= 00040022
DLOC 00000021: 00000000 Y6 : DLOC 00040027: 00000000 - 00001001 Ti= 0004001ie
DLOC 00000022: 00000000 H : DLOC 00040014;: B8004000a [| N= 00000006 R= 00001001
DLOC 00000023: 00000000 AX2: DLOC 00040017: 00000001 |[l«H2= 00000020 cc= 2
DLOC 00000024: 00000000 Ax4: DLOC 00040019; 00001000 || ppoL= 0Q0000GO0 «MAR= 00040022
DLOC 00000025: 00000000 BCE: DLOC 0004001e: 00040009 || mode= wead MDR= B004000e
DBLOC 00000026: 00000000 BCP: DLOC 0004001f: 200400ie ||«AX(11=00001001 MISC= 00000042
DLOC 00000027: 00000000 TR ; DLOC 00040021: 00000006
DLOC 00000028; 00000000 & _
DLOC 00000029 oooogogo né1 ronment< NN
DLOC 0000002a: 00000000 - "
DLOC 00000026: 00000000 TR SRS IIISE:
DLOC 0000002c: 00000000 DLOC 00040020: 0000001 M
DLOC 0000002d: 00000000 : DLOC 00040021: 0000000

BLOC 0000002e: 00000000

DLOC 0000002f: 00000000 : DLOC 00040022: BOO4000H

DLOC 00040023: 0000000

S DLOC 00040024: c0000014
B> 3,' DLOC 00040025: 0000000
B DLOC 00040026: 0000000
100000027 proceed DLOC 00040027: 0000000
00000028 procedure partition/4

00000028 switch_on_term _1904,_1905.fatl

~1906:
00000023 try_me_else _1307
~1908: 3

0000002a allocate : 00040013: cO00001: Ky
0000002b get_variable Y3.X2 : DLOC 00040014: B004000-4
0000002c get_variable Y1.X4 : DLOC 00040015: 80040008
10000002d»»* get_list X1 : DLOC 00040016: Offffe0 iy
0000002e unify_variable X1 + DLOC 00040017: 0000000
10000002+ unify_cdr Y4 DLOC 00040018: 0000002
300000030 get_list X3 DLOC 00040019: 00001004
00000031 unify_value X1 DLOC 0004001a: 0004000
100000032 unify_cdr Y2 DLOC 0004001b: 0000001
00000033 call </2.4 : DLOC 0004001c: 0000004 =
00000034 cut DLOC 0004001d: 0008000
00000035 put_value Y4,X1 DLOC 0004001e: 0004000%
00000036 put_value Y3.X2 DLOC 0004001f: 200400148
00000037 put_value Y2.X3 DLOC 00040020: 000000174
00000038 put_value Y1.,X4 + DLOC 00040021: 0000000

Figure 3.1: DUES -- An Overview

Figure 3.2: The Command Menu Bar

-8-

command button. When the mouse is moved into the region of the screen defined by one of
ihe command buttons, the button will be highlighted. Clicking a mouse button while a com-
mand button is highlighted will select the corresponding command. Depending on which
device is used, there may be more than one button on the mouse. For example, the mouse
on a microVAX or Sun:workstation has three buttons. In most cases, DUES does not
differentiate which button is clicked. most cases. Once a command is selected, the
corresponding button is redrawn in reverse video. Then, objects such as pull-down menus
or dialogue boxes can be invoked to either provide further selections or prompt for more
input parameters. DUES, in turn, sends appropriate simulator commands to the PLM
simulator and waits for the PLM simulator to respond. When this sequence of steps com-
plete, the button returns to normal video. DUES can then accept the next command. The
commands are step, cycle, break, go, state, print, view, load, init, and quit. Refer to the

DUES User’s Manual in Appendix A for details of each command.

3.3. State Display Windows

The Registers, Environment, and Choice Point are three parts of the PLM machine
states of most interest during simulation. DUES provides separate windows for each of

them and keeps their contents up to date after each execution cycle.

The Registers Display Window shows the special purpose registers in the PLM engine:

P program counter

CP continuation program counter
E last environment pointer

B last choice point pointer

TR pointer to top of the trail

H pointer to top of the heap

HB heap backtrack pointer

S structure pointer

N size of last environment

H2 pointer to the global heap

PDL top of the PDL

mode read/write unification mode
AX1.8 - argument and temporary registers
T ’ input register for ALU

T1 input register for ALU

R output register for ALU

cc micro condition code

MAR memory address register

MDR memory data register

MISC scratch register used in microcode

Fig. 3.3 shows the Registers Display Window.

The Environment Display Window contains the current environment as defined by the
E and N registers. An environment corresponds to the saved state of a Prolog clause. It
contains pertinent register values and permanent variables. The window displays the con-
tents of these registers and variables and their addresses in the memory. The entries
include:
CE pointer to last environment
CB pointer to last choice point
CP continuation program pointer
CN size of last environment
Y1.16 permanent variablgs

Fig. 3.4 shows the Environment Display Windouw.

The Choice Point Display Window displays the active choice point defined by the B
register. A choice point contains sufficient information to restore the state of a computation
if a goal fails, and to indicate the next procedure to try. The window shows the following

register values that are saved in the choice point and their memory addresses.

Q00000Ze

CP= Q0000018
»F= 00040022
B= 0004001e
TR= 000B0000
H= 00001033
HE= 00001033
S= 00001001
= 00000006
wHZ= Q0000020
FOL= 00000000
mode= read
#»[AX[1]1=00001001
AAL2]1=cO000001h

T

Ax[4]=
AXL[S]
AXLB]
AXL?7]
AX[8]
T=
T1l=
R=
cCc=
#»MAR=
MDR=

MISC=

8004000aw£11
8004000= [

=0f £ 00
=00000001
=00000020
=00001000

00040022
0004001e
00001001
2

Q0040022
g004000e
00000049

Figure 3.3: The Registers Display Window

++ 24+ ++ [0]

+*+

*d ¢+ e S e

0010 O hoas

oLoc 0004001F 2004001e
DLOC 00040020: 00000018
DLOC 00040021 00000006
DLOC 00040022: 8004000e
DLOC 00040023:; 00000000
DLOC 00040024: cO00001b
DLOC 00040025: 00000000
OLOC 000400263 00000000
OLOC 00040027: 00000000

Figure 3.4: The Environment Display Window

-12 -

B pointer to last choice point

H pointer to the top of the heap when choice point is built

N the number of permanent variables in the current environment
AXi..8 argument registers

BCE po.inter to last environment

BCP address of next clause should this one succeed

BP address of next clause should this one fail

TR pointer to top of trail when choice point is built

Fig. 3.5 shows the Choice Point Display Window.

3.4. Copy Window

The role of the Copy Window is a scratch pad for part or all information in the State
Display Windows. Although machine states are updated after every cycle of execution, the
Copy Window makes previous machine states still available. It becomes most useful when

one wants to compare contents of machine states between cycles.

In order to copy machine states to the Copy Window, they should be selected by the
state command first. Those states that are selected will have a star sign ("*") shown on the
left of the their entries on the State Display Windows. Copying the selected states from the
State Display Windows to the Copy Window is done by clicking on one of the State Display
Windows. The contents of the Copy Window will scroll upward when more states get copied

into the window. Fig. 3.6 shows the Copy Window.

3.5. View Window

The View Window presents the compiled Prolog code executed by the simulator.
DUES reads the file specified in the command line. The file may contain insert statements
[1], which consist of a ™" sign in the first column followed by a file name. DUES manages
file insertion properly. It also assigns a sequence number for each line of instructions,

which greatly facilitates the setting of break points. The View Window also provides a

B

0040013

00040014
00040015;
00040016
00040017
00040018
00040019
0004001a:
0004001b:
Q0004001c:
0004001d:
0004001e;
0004001+
Q0040020
00040021 ¢

"£000001h

500400043
8004000e
Offf+e00
00000001
00000020
00001000
00040009
00000018
00000049
00080000
Q0040009
2004001e
00000018
00000006

Figure 3.5: The Choice Point Display Window

E=00040022

H2=00000020
AX[11=00001001
MAR=00040022

CB
CP

=<
N
P 40 6 ¢ o4

pLoC
DLOC
pLoC
DLOC
DLOC
DLoC
DLOC
DLOC
DLOC
DLOC

0004001+
00040020
00040024
00040027
00040014
00040017
00040019
0004001e:
0004001 +F:
00040021

2004001e
00000018
c000001b
00000000
8004000a
00000001
00001000
00040008
2004001e
00000006

Figure 3.6: The Copy Window

-15-

scroll bar on the right border, which allows users to be able to browse through all parts of
the code.

More importantly, the View Window synchronizes with the execution of the PLM
simulator. A pointer ("**") indicates which instruction is currently being executed as the
simulator runs. If the current instruction is not in the range of the View Window, DUES
will bring the appropriate page to the window automatically. Fig. 3.7 shows the View Win-

dow.

3.6. Dialogue Window

The Dialogue Window serves mainly as an echo area. During initialization, it
displays messages such as the loading information, the number of instructions, the number
of procedures, and the number of labels. During the execution, it echoes each command as
one of the command buttons is selected. In addition, it shows the output from the print-
data command.

The window was so named for historical reasons. Initially, this window also serves as
a general dialogue box for several commands. Although it is still true for load and init
commands, both of which are not very relevant to the current PLM simulator, most com-

mands now use their own dialogue boxes. Fig. 3.8 shows the Dialogue Window.

00000027

00000028
00000028
00000029

0000002a
0000002b
0000002c

0000002e
0000002+
00000030
00000031
00000032
00000033
00000034
00000035
00000036
00000037
00000038

0000002 »»

proceed
procedure

switch_on_t
-1906:
try_me_else
-1908:
allocate
get_variabl
get_variabl
get_list X
unify_varia
unify_cdr
get_list X
unify_value
unify_ecdr
call </2.4
cut
put_value
put_value
put_value
put_value

TS S R i e SRR &

partition/4

erm

-1907

e Y3.X2
e Yi1,X4
1
ble
Y4
3

X1
Y2

X1

Y4,X1
Y3,X2
Y2.X3
Y1.X4

Figure 3.7: The View Window

—1904,_1905, fail

PROLOG MACHINE SIMULATOR: Version
pau load /a/hprg/holmer/PLM/Benchmarks/library.w
pau load gs4.w

309 instructions (limit: 12288)

33 procedures (limit: 512)

31 labels (limit:; 4096)

cycle(dec) 300

19 July ©7

go
pd 40022,4002F

pLocC
pLOC
DLOC
DLOC
DLOC
DLOC
DLOC
pLOC
DLOC
pLoC
DLOC
pLOC

00040022
00040023
00040024
00040025
00040026
00040027
00040028
00040029
00040023
0004002k
0004002c:
0004002d:

8004000e
00000000
c000001b
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

Figure 3.8: The Dialogue Window

- 18 -

Chapter 4

Design Issues

4.1. Introduction

In this chapter, three design issues are discussed. Section 2 presents one design con-
cept, the separation of policy and mechanism. Section 3 explains how DUES and the PLM
communicate with each other. Section 4 describes the standard output buffering and the

relevant modification required for the PLM simulator.

4.2. Separation of Policy and Mechanism

One important concept behind the design of DUES is the separation of policy and
mechanism. Policies should be mandated by the simulators while mechanisms are imple-
mented by DUES. DUES never provides facilities to be implemented by the simulator. For
example, there is no checkpoint saved with DUES because each simulator has its own
different set of machine states; thus, it should be implemented by the simulator rather than
DUES. The advantage of this concept is that DUES does not have any fixed data structure
which simulators can assume they will have to interface to. In other words, DUES is

intentionally kept flexible in order to be a front-end for a number of different simulators.

’

4.3. Interprocess Communication

When DUES is running, it is communicating with two other processes, i.e. the PLM
simulator and the X server, via UNIX stream sockets. Fig. 4.1 shows the run time

configuration of these processes. DUES and the PLM simulator must run on the same

-19 -

machine while the X server is usually running on another machine within the network.
Input from the keyboard or the mouse is received by the X server, and is distributed asyn-
chronously in the form of events to DUES. On the other hand, the communication between
DUES and the PLM simulator is interlocked. When one of the command buttons is
pressed, the appropriate ‘simulator command is sent to the PLM simulator. DUES waits

until the PLM simulator sends a message back before it begins processing the next event.

The pair of stream sockets between DUES and the PLM simulator are created by the
socketpair() system call before DUES forks a new process to execute the PLM simulator. In
DUES, two file descriptors, fd[0] and fd[1] are returned by the socketpair() system call.
They serve as two end points of the communication link. DUES uses fd[0] while the PLM
simulator uses fd[1]). Whatever is written to fd[0] will be received by fd[1], and vice versa.
Since all of stdin, stdout, and stderr of the PLM simulator are redirected to fd[1] before the
execlp() call, the PLM simulator does not need to be aware of the existence of DUES; it
receives commands as if the user were typing at a terminal. Similarly, the stdin and stdout
are redirected to fd[0], but not the stderr. The redirection is achieved by the dup2() system

call.

The connection between DUES and the X server is established by the XOpenDisplay()
call. The call takes a string of the display name from the command line as an argument.
If the display name string is NULL, it uses the environment variable DISPLAY to deter-
mine which display to use. The display name string or the DISPLAY environment variable
should be in the format "hostname:number”, where "hostname" is the name of the machine,

and "number” is the number of the display of that machine.

4.4. Standard Output Buffering

In general, the PLM simulator does not need to be modified to use DUES as a front-
end. Some change is required for the simulator, however, if it uses the standard [/O rou-
tines such as printfl). This works fine when the stdin, stdout, and stderr are ttys, where the

output buffer is flushed when it is full or when it detects a newline character ('\n".

X Display Server PLM Simulator

interfocked

Figure 4.1: DUES interprocess communication mechanism

.21 -

However, it does not flush the buffer at a newline character if the file descriptors are
referencing sockets. To get around that, it is necessary to call fflush() in the PLM simula-
tor to explicitly flush the buffer of stdout after each time a prompt is printed. For DUES,
what is needed is simply set line buffering for the stdout by a setlinebufl) call, which

notifies the standard [/O routines to flush the stdout buffer at each newline character.

.929.

Chapter 5

Interfacing DUES to Other Simulators

5.1. Introduction

Extensibility has been a major design goal; therefore, DUES is actually implemented
as a framework for any simulator/debugger. Although a lot of optimization has been made
specifically for the PLM simulator, DUES can be used for other simulators with minor
modifications. In the following sections, we will describe how to interface DUES to other
simulators with minimum effort even for people who do not know the X Window system
extensively.

Interfacing DUES to other simulators involves modifying three parts of DUES. All of
these parts are procedure modules in DUES. Therefore, following the systematic pro-
cedures described below will allow possible changes or upgrading from the simulator side to
be made easily. First, the command menu bar needs to be extended to include new com-
mand buttons on it. Second, for each new command there should be a set of procedures to
implement pull-down menus, dialogue boxes, etc.. Last, the part of DUES which handles

the communication with the simulator needs rewriting.

5.2. Extending Commands
Currently, all commands are listed on the menu bar. The structure of each command

is defined by a type Command in the file gasix.h.

-923.

typedef struct{

char *name;

int (*func)();

int button; /* ON or OFF */
} Command;

Name i; a pointer to the name of the command. Func points to a C procedure, which
specifies the actions when the command button is clicked on. How to write specific C pro-
cedures to create pull-down menus, dialogue boxes, etc. is discussed in detail in the next
section. The field button is a flag. If the command is being executed, it is ON; otherwise, it
is OFF. Initially, flags of all commands are off. The array cmd[MaxCmd], declared and

initialized in the file global.c, holds all command structures.

extern int f _load();
extern int f_init();
extern int f_go();
extern int f_step();
extern int f_break();
extern int f_state();
extern int {_view();
extern int f_cycle();
extern int f_print();
extern int f_quit();

Command cmd[MaxCmd] = {
"load”, f_load, OFF,
"init", f_init, OFF,
"go", {_go, OFF,
"step”, {_step, OFF,
"break”, f_break, OFF,
"select", f_state, OFF,
"view", {_view, OFF,
"cycle”, f_cycle, OFF,
"print", {_print, OFF,

"quit", f_quit, OFF

|3

Each command also has an ID, which is a constant defined in the file gasix.h. Note
that the order of the corr;marfd IDs are important and should correspond to that of the
array cmd[]. The constant MaxCmd is the total number of commands defined. The com-

mand IDs for the PLM simulator are as follows:

#define LOAD
#define INIT
#define GO
#define STEP
#define BREAK
#define STATE
#define VIEW
#define CYCLE
#define PRINT
#define QUIT
#define MaxCmd

OO0k W= O

0 /* max number of commands */

In summary, to create new commands and to create their buttons on the menu, both
the command IDs in the file gasix.h and the initialization of the array cmd/[] in the file

global.c must be updated appropriately.

5.3. Creating Objects

Although the DUES project is not intended to provide library routines like toolkits do
to create objects such as pull-down menus, dialogue boxes, etc., implementing C procedures
to create new objects for new commands is made easy by modifying existing DUES pro-
cedures, which serve as templates, to new ones. In general, there are three most often used
objects: pull-down menus, dialogue boxes which prompt for one argument, and dialogue

boxes prompting for two arguments. They will be described in the following sections.

5.3.1. Pull-down Menu

One command that invokes a pull-down menu is the select command. The pull-down
menu provides options to select machine states among Registers, Environment, or Choice
Point. As the mouse is moved over an option, the option will be highlighted. The C pro-

cedures implementing these features are in the file state.c.

The options on the pﬁll-d(’)wn menu are declared in an array stMenultem(]. Each ele-

ment in the array is of the type struct StMenultemStr.

.95 -

struct StMenultemStr{
char *name;
int (*0;

k

Name is-a pointer to a character string, which is the name for the option on the pull-down
menu. F points to the procedure that will be executed when the option is selected. The

array stMenultem[] in DUES is initialized as follows:

int selectRegisters();

int selectEnvironments();

int selectChoicePoints();

static struct StMenultemStr stMenultem([] = {
"Registers”, selectRegisters,

"Environment", selectEnvironments,
"ChoicePoint" selectChoicePoints

L
To create a new pull-down menu, use the file state.c as a template and fill in the array

stMenultem with proper values.

5.3.2. Dialogue Box for One Argument

The cycle command is an example which creates a dialogue box prompting for one
argument. The dialogue box pops up when the command is selected. A prompt string is
printed in the box. At that point, DUES, waits until the input is entered. Internally, a
buffer is allocated for the iqput string. All control characters are processed at the input
buffer. For example, Control-H or delete key is the erase character; control-U or control-X

is the kill-line character.

The procedures associated with the cycle command are in the file cycle.c. The prompt
string is defined as a constant ThePrompt. In DUES, the definition is

#define ThePrompt "cycle number(decimal)"

The input in the buffer is converted to an integer and is assigned to an integer variable

arg.

- 926 -

static int arg = 0;
static char inputbuf{7+1] = ™,
To create a similar dialogue box, use the file cycle.c as a template and define the con-
stant ThePrompt as the appropriate prompt string. The input entered can be found in the

array iriputbuf[J; its integer value is in arg.

5.3.3. Dialogue Box for Two Arguments

The print command activates a dialogue box prompting for two arguments, namely,
the starting and ending addresses in the Data Space. The dialogue box contains two but-
tons (OK and Cancel), a title, and two input areas each labeled with a prompt string. At
any time, only one of the input areas is active to accept the key input, and can be identified

by where the cursor is located. The control characters are also handled similarly as above.

The file pd.c contains all procedures for the print command. The title and prompt

strings are defined as three constants: Title, Promptl, and Prompt2.

#define Title "Print Data"
#define Promptl "From:"
#define Prompt2 "To:"

Each input area is represented as a structure of the type InputBox.

typedef struct _InputBox({
int x_start, y_start;
int x_cursor, y_cursor;
char buf[9];
int tail;

} InputBox;

X_start and y_start are the coordinates of the upper left corner of the input area. X_cursor,
and y_cursor specify where the cursor is when the input area becomes active. Buf[] is the
buffer holding input characters. The buffer works as a queue, and, tail serves as an index
to the end of the queue. For the print command, the two input areas are declared as two

variables, from and to.

.97

static InputBox from,;
static InputBox to;

To create a dialogue box for two input arguments, use the file pd.c as a template.
Then, define Title, Promptl, and Prompt2 as the title string and the prompt strings respec-
tively. The two argum;ents entered by the user are stored in two character strings,

from.bufl] and to.bufl].

5.4. Communicating with the Simulator

Different simulators will have different sets of commands and different reply mes-
sages for each command. The communication between DUES and the simulator contains
two parts. DUES sends the commands to the simulator; the simulator responds with mes-
sages back to DUES. The first part is easier to handle because all that is needed is to
assemble the appropriate simulator command and possibly the arguments to a string, and
to write the string on the socket fd{0]. The code for this part is scattered in each indivi-

dual file corresponding to each command. Below is an example of the print command.

char cmdbuf{32];
strcpy(cmdbuf,"pd ");
strcat(cmdbuf,from.buf);
strcat(cmdbuf,",");
strcat(cmdbuf,to.buf);

strcat(cmdbuf,"0);
write(1l,cmdbuf,strlen(cmdbuf));

Cmdbuf is an array of character that keeps the command string to be sent. Strca#() calls
append the first argument (from.buf), a comma, the second argument (to.buf), and a new-
line character to the command "pd." The write() call writes the string in cmdbufl] to file

descriptor 1, which references the socket fd[0] (see section 4.3).

The second part is related to interpreting messages returned from the simulator and
distributing information to appropriate windows. This part is contained in the file reply.c.
The interpretation of the reply message from each simulator command is done in two steps.

First, all reply messages are read in at once. Normally, the reply message ends with a

.98 -

simulator prompt "dbg> ." Because the PLM simulator flushes the stdout buffer, it is
guaranteed that all messages will be received in one chunk. The second step involves
interpreting the reply messages returned from various simulator commands, and distribut-
ing data to appropriate windows. A switch statement in the file reply.c branches to the
relative part of program-for each command according to the value in an integer variable
code. The value of code can be a constant defined in the file reply.h. Each constant

corresponds to one simulator command.

#define RE_LOAD
#define RE_STEP
#define RE_LENV
#define RE_CP
#define RE_CYCLE
#define RE_GO
#define RE_PD
#define RE_BP
#define RE_WS

=100 Gt WN O

In summary, the communication between DUES and the simulator consists of two
parts, sending commands and receiving messages. For the first part, DUES needs to send
the right simulator command
with arguments if appropriate over the socket to the simulator. For the second part, both
the files reply.c and reply.h should be updated to interpret the messages returned by the

simulator, and, possibly, to distribute information to appropriate windows.

.29 .

Chapter 6

Conclusions

6.1. Report Summary

This report describes DUES, an implementation of a front-end user interface for the
PLM simulator. The initial implementation of DUES has met its design goals to provide a

user friendly environment for people to run the PLM simulator in the following ways.

(1) A Command Menu Bar provides a list of commands; Further selection is made possi-
ble by pull-down menus or dialogue boxes. Users no longer need to memorize or type
different commands.

(2) Three important parts of the PLM machine states, Registers, Environment, and Choice
Point are displayed in separate windows and are updated after each execution cycle.

No extra commands are needed to examine them.

(3) Part or all of the machine states can be selected and later be copied to a scratch pad

area for comparisons of data between cycles.

(4) The compiled Prolog code is listed in a window along with sequence numbers. A vert-
ical scroll bar is provided to allow users to browse through the code. In addition, the

current instruction being executed is indicated.

(5) Mechanisms are implemented, wherever appropriate, to give feedback to users

through highlighting, reverse-videoing, or beeping.

(6) Extensibility is achieved as DUES provides procedure templates for implementing

-30 -

procedures of similar functionalities. DUES is actually implemented as a framework

for interfacing to other simulators.

6.2. Future Enhancements

Although, nearly all the desired features have been implemented, a few of them still

leave room for improvements. Listed below are suggestions for future work.

1)

(2)

3

(4)

(5)

Currently, DUES uses only two colors for either a monochrome or a color display.
With a little more work, it should be able to use more colors on a color display.

A log file that records all commands entered to DUES would be useful especially for
debugging purpose.

The output of the print-data command is now directed to the Dialogue Window. This
information will be lost when the Dialogue Window scrolls in order to display other
things such as command echoes. A separate window for its output is more appropri-
ate.

The interface to the command to set break points with instruction sequence numbers
can be improved. The current interface requires users to enter the number through a
dialogue box. A more ideal interface would be simply clicking on the instruction in
the View Window.

A feature to print Prolog structures would be useful, and should be implemented in a

future release.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

-31-

References

T.P. Dorby, PLM Simulator Reference Manual, Computer Science Division, U. C.
Berkeley, Sep. 1984.

T.P. Dorby, A.M. Despain, and Y.N. Patt, Performance Studies of a Prolog Machine
Architecture, Proceedings of the 12th Intl. Symposium on Computer Architecture,
1985, pp.180-190.

T.P. Dorby, A High Performance Architecture for Prolog, Ph.D. Dissertation, Univer-
sity of California, Berkeley, California, 1987.

B. Fagin, and T.P. Dorby, The Berkeley PLM Instruction Set: An Instruction Set for
Prolog, UCB Research Report 86/257, CS Division, University of California, Berkeley,
California, 1985.

D.H.D. Warren, An Abstract Prolog Instruction Set, Technical Report, SRI Interna-
tional, Menlo Park, California, 1983.

B. Shneiderman, Design the User Interface, Strategy for Effective Human-Computer
Interface, Addison-Wesley Publishing Company, Reading, MA, 1987.

R.W. Scheifler, J. Gettys, The X Window System, Transactions on Graphics #63, Spe-
cial Issue on User Interface Software, Association for Computing Machinery, 1986.

J. Gettys, R. Newman, and T. D. Fera, Xlib - C Language X Interface (Protocol Ver-

sion 10), Massachuseits Institute of Technology, November 1986.

-32.

Appendix 1

DUES User’s Manual

A.l. Introduction

Access to DUES is provided by a shell script on ji.berkeley.edu as:
“awei/rs/plm/dues [-rv] [hostname:display] filename.w

where filename.w is the name of the file containing the compiled Prolog code and the loader
instructions. The optional argument hostname:display specifies on which machine the
display hardware is used. Display, the display number, is usually 0 for single display
machines. Another argument -rv, if given, reverse the definition of foreground and back-
ground color. DUES sets up the default foreground color as white and the default back-

ground color as black.

Shortly after DUES is invoked, six windows are displayed on the screen. These
include a Command Menu Bar, a Dialogue Window, a Copy Window and three Display
Windows that show the contents of the Registers, Environment, and Choice Point respec-
tively. A seventh window that displays the compiled Prolog code can be opened by selecting
the view button on the command menu bar. These windows are child windows of the root
window. Therefore, they may-be manipulated (raised, moved, resized, iconified, etc.) by
window managers such as uwm. The structures of these windows and the facilities they

provide will be discussed in the following sections.

DUES reads defaults from a customization file in the user’s home directory, .Xde-

-33-

faults. The format of each line in the file is "DUES. <keyword >:<string>." Refer to the

UNIX manual X(1) for more details. Keywords recognized by DUES are listed below.

SimulatorName

spe'ciﬁes the pathname of the simulator DUES is going to invoke.

MenuBarGeometry

specifies the geometry of the Command Menu Bar. The string takes the form of
"= <width>x <height>{+-}<xoff>{+-}<yoff>," which is a standard in X to indi-
cate the window size and placement acceptable by XParseGeometry(). Here, the width
and height are not significant because the size of the menu bar is fixed. Xoff and yoff
are in pixels, each specifying the distance from a corner of the screen to the
corresponding corner of the window. Their signs are meaningful, too. They determine

which corner should be used as the origin of the coordinate system:

+xoff + yoff upper left corner
-xoff + yoff upper right corner
+ xoff-yoff lower left corner
-xoff-yoff lower right corner

DialogWindowGeometry

specifies the geometry of the Dialogue Window. The string takes the same form as

MenuBarGeometry.

CopyWindowGeometry

specifies the geometry of the Copy Window. The string takes the same form as Menu-

BarGeometry.

RegDpyGeometry

specifies the geometry of the Register Display Window. The string takes the same

form as MenuBarGeometry.

-34 -

EnvDpyGeometry

specifies the geometry of the Environment Display Window. The string takes the

same form as MenuBarGeometry.

CpDpyGeometry
specifies the geometry of the Choice Point Display Window. The string takes the same

form as MenuBarGeometry.

So far, we have seen two ways to specify options: one on the command line, the other
in the Xdefaults file. If neither of the above is specified, DUES will use predefined con-
stants for the options. DUES always looks for options on the command line first, then, the
Xdefaults file, and at last uses its predefined constants. This way, users can have their
own customized environments. At the same time, they could also be unaware of any

options and still be able to run DUES in a standard way.

DUES has ten commands available, each of which is represented by a command but-
ton. When the mouse is moved into any of the command buttons, the button will be
highlighted. To select one of the commands, clicking any mouse button will do. Depending
on which device is used, there may be more than one button on the mouse. For example,
the mouse on a micro VAX or Sun workstation has three buttons. DUES does not
differentiate which button is clicked for most cases. Once a command is selected, the
corresponding button is redrawn in reverse video. Then, some objects such as pull-down
menus or dialogue boxes will be invoked to either provide further selections or prompt for
more input parameters. When the command is completed, the button returns to normal
video. At that point, DUES is ready to accept the next command. The commands are step,
cycle, break, go, state, print, view, load, init, and quit. They will be described in the follow-

ing sections.

A.2. The Step Command

The step command notifies the PLM simulator to execute one microinstruction. DUES

-35.-

actually sends three PLM simulator commands: single-step (s), print-environment (pe), and
print-choice-point (pb). Upon completing a single step, the PLM simulator reports to DUES
the cycle number, the instruction being executed and its location, the microinstruction
being executed, the contents of the PLM registers, the current environment as defined by
the B and N registers, and the active choice point defined by the B register. DUES uses all
the above information to update the title bar, the Registers, Environment, and Choice Point

Display Windows, and the View Window.

A.3. The Go Command

The go command notifies the PLM simulator to execute until the first breakpoint is
encountered. Breakpoints can be entered through two commands, break and cycle. DUES
actually sends three PLM simulator commands: go (g), print-environment (pe), and print-
choice-point (pb). When the PLM simulator stops at a breakpoint, it reports to DUES the
same information as it does with the step command. DUES uses that information to update
the title bar, the Registers, Environment, and Choice Point Display Windows, and the View

Window.

A.4. The Break Command

The break command allows setting breakpoints in the form of PLM instruction
sequence numbers. The instruction sequence numbers can be found in the View Window,
where both the instruction sequence number and the corresponding PLM instruction are
displayed. The PLM simulator will check if a breakpoint has been reached and will stop
just before that instruction. The break command contains two levels of menus. When the
break button is selected, a top level sub-menu is pulled down, where more options are avail-
able. At this point, the user <;an either add, remove, or list breakpoints by selecting the
corresponding button on the left of the item. If no further selection is intended, the user

can leave the break command by simply moving the mouse out of the pull-down menu. Fig.

A.1 shows the the pull-down menu for the break command.

OIS il 2o A R BRI SR v e F O PLM Simulator “Towaii

T b 300 S e R

load init go step state view cycle print quit

PROLOG MACHINE SIMULATOR: [JAd
pau load /a/hprg/holmer/PLM/Benc HRe
pau load qs4.w

309 instructions (limit: 12268 |
33 procedures (limit: S512)

31 labels (limit: 4096)

P rsion 19 July 87
orary . w

Figure A.l: The Pull-down Menu for The Break Command

- 37 -

A4.1. Add Breakpoint

Selecting the Add button at the top level menu will invoke a second level dialogue
box, which will prompt users to enter breakpoints. Fig. A.2 shows the dialogue box for
adding & breakpoint. The add-breakpoint dialogue box has two command buttons (OK and
Cancel), a title, and an input area. Breakpoints are entered at the input area, which can
easily be identified as a cursor is shown next to a prompt string "PC = ." Users can type in
the instruction sequence number in either hexadecimal or decimal format. Hexadecimal
numbers should be prefixed by "0x;" numbers start with any decimal digit will be treated

as decimal numbers.

A breakpoint is read in after a hexadecimal or a decimal number is entered.
Although only one breakpoint is allowed in the current PLM simulator, DUES uses a
linked list to store breakpoints as they are added and removed. This provides a mechanism
for maintaining multiple breakpoints by future simulators. DUES first checks if the input
is in the right format, then checks if it is repeated or not. Once this is done, DUES
confirms by flashing the input in bold-face font. After the input is accepted, the input area
is cleared, and DUES is repositioned for new input. Finally, when all breakpoints are
entered, a clicking on the OK button will bring DUES to the first level pull-down menu.
At the same time, the simulator command set-breakpoint (b) is sent to the PLM simulator

for each newly added breakpoint, and no reply is expected.

During the course of input, several control keys are significant. Following the conven-
tion, control-H or delete key is the erase character; control-U or control-X is the kill-line
character. Clicking on the Cancel button during the input, has the same effect as the kill-
line character. If the Cancel button is clicked on before any new breakpoint is entered,
DUES will abort the dialogue 'box and return to the first level pull-down menu. In addi-
tion, all breakpoints entered in the same add-breakpoint session will be removed. Another

feature worth mentioning is that since instruction sequence numbers are represented as

hexadecimal numbers in the View Window, DUES always furnishes the input area with the

load init go step view cycle

print

quit

PROLOG MACHINE SIMULATOR:

pau load /a/hprg/holmer/PLM/Benc
pau load gsd4.w

309 instructions (limit: 12288)
33 procedures (limit: 512)

31 labels (limit: 4096)
cycle(dec) 300

g0

19 July 87

ADD BREAK POIN
R e

Figure A.2: The Dialogue Box for Adding a Breakpoint

.39 -
prefix "0x," which is erasable if it is not desired.

A.4.2. Remove Breakpoint

Selecting the Remove button at the top level menu will invoke another second level
menu, w'hich provides a list of the breakpoints which have been previously added before.
Fig. A.3 shows the menu.for removing breakpoints. To remove, first select the breakpoints
to be removed by clicking on their buttons. Once all breakpoints to be removed are
selected, click on the OK button. DUES will remove the selected breakpoints from the list.
Since the current PLM simulator does not have the capability to remove any breakpoint, no
command is sent by DUES. The user will be notified by a message on the screen that this
feature is not available with the PLM simulator yet. Any time during the Remove session,
if the user clicks on the Cancel button, all previously selected breakpoints will be ignored.
Clicking on both OK and Cancel button will cause DUES to return to the first level pull-

down menu.

A.4.3. List Breakpoint
Selecting the List button at the top level will invoke a third second level menu, which
lists all current breakpoints. Fig A.4 shows the menu for listing breakpoints. Clicking on

the OK button will return DUES to the first level menu.

A.5. The Cycle Command

The cycle command allows users to set breakpoints in the form of a cycle count. The
PLM simulator keeps track of the count of machine cycles from the start of simulation.
Each microinstruction takes one cycle to execute. The number entered through the cycle
command will be compared with the cycle count at the end of each machine cycle. The

PLM simulator will stop when there is a match.

Clicking on the cycle command button will invoke a dialogue box, which prompts for a

decimal number. Fig. A.5 shows the dialogue box for the cycle command. DUES accepts

wrmisicget] 1st04

load init gO step

FROLOG MACHINE SIMULATOR:

pau load /a/hprg/holmer/PLLM/Benc
pau load gs4,w

309 instructions (limit: 12288)
33 procedures (limit: 512)

J1 labels (limit: 4096)
cycle{(dec) 300

A:“_, bRt
REMOVE BREAK POINTS]

(0x0000005e pamti-1inss-

go
break point Se

Figure A.3: The Menu for Removing Breakpoints

smArRTRCER s ge t2 TS5t 04

300 ~ikesis get_] | StAMER el aWPLM Simulator =%

load init go view cycle print quit

FROLOG MACHINE SIMULATOR: 18 July 87

pau load /a/hprg/holmer/PLM/Benc LIST BREAK POINTS

pau load gsd4.w
309 instructions (limit: 12288} 0x0000005e s

33 procedures (limit: 512)
31 labels (limit: 4096)
cycle(dec) 300

g0
break point 5e

Figure A.4: The Menu for Listing Breakpoints

pau load gs4.w
309 instructions (limit:

31 labels (limit: 4096>
cycle(dec) 300
cycle(dec) 300

BO

300 =il geot il ist Criharieiblenis cadaPLM Simulator i s
load init g0 step break state view
PROLOG MACHINE SIMULATOR: Yersion 19 July 87

pau load /a/hprg/holmer/PLM/Benchmarks/l1brarg w

33 procedures (limit: 512)

0000002e

CP= 00000018
1228 = 00040022
= 0004001e
TR= 00080000
= 00001033
HB= 00001033
= 00001001
N= 00000006

H2= 00000020
PDL= 00000000
mode= read

AX[11=00001001

AX[2]1=c000001b

¢ DLoC
€CB : DLOC
CP : DLOC
CN : DLOC
Y1 ; DLOC
Y2 : DLOC
Y3 : DLOC
Y4 : DLOC
Y5 : DLOC
Y6 : DLOC

T= 00040022
Ti= 0004001e
R= 00001001
cc= 2

MAR= 00040022
MOR= B00400Ce
MISC= 00000049

0004001+
00040020

00040021°
00040022

00040023
00040024
00040025:
00040026
00040027

AX[31= BOO4000a
AX{43=8004000e
AX[51=0ffffe00
AX{61=00000001
AxL73=00000020
AX[B81=00001000

0004001e:

0000000}
8004000+
0000000+
c00000 1§
0000000 3
0000000 . %
0000000: §#4

H ¢ DLOC
N : DLOC
AX1: DLOC
AX2: DLOC
AX3: DLOC
AX4: DLOC
AXS: DLOC
AX6: DBLOC
AX7: DLOC
axg: DLOC
BCE: DLOC
BCP: DLOC
BP : DLOC
TR : DLOC

CUu4CC13e
00040014;
00040015
00040016
00040017
00040018
00040019
0C040013;
0004001b:
0004001c:
0004001d:
0004001e:
0004001 ¢
00040020
00040021 :

c00000:
8004000 4
800400C. 8
ofrrre0 B
0000000
0000002' 8
0000100 J§
0004000 4
0000001 ¢
0000004 K
000800014

0000001 44
0000000:§

»

Figure A.5: The Dialogue Box for The Cycle Command

- 43 -

decimal digits only; no other characters are accepted. Control keys are recognized, how-
ever. Control-H or delete key is the erase character; control-U or control-X is the kill-line
character. The mouse should be placed inside the dialogue box for DUES to accept any
input for the cycle command. If the mouse is moved out of the dialogue box, the command
will be aborted. As usual, DUES reads in the number upon seeing a carriage-return, and

sends the PLM simulator the cycle command (c). No reply is expected.

A.6. The Print Command

The print command prints the contents of memory in the Data Space. Clicking on the
command button will invoke a dialogue box. Fig. A.6 shows the dialogue box for the print
command. Users enter the address range in the Data Space to be printed in two input
areas labeled with From and To. A cursor is shown in one of these two input areas indicat-
ing which one is active, where the keyboard input should be sent to. Initially, the input
area From is active. At a carriage-return, the other input area To becomes active until
another carriage-return is received when the command is completed. The cursor can also be
switched between input areas by moving the mouse around. As with other input areas, con-
trol keys are recognized. Control-H or delete key is the erase character; control-U or

control-X is the kill-line character.

Two buttons, Cancel and OK are also available. Clicking on the Cancel button will
abort the print command while clicking on the OK button will initiate the following pro-
cedure. DUES first checks if the To area is empty. If it is, the string received by the From
area will be copied to the To area. The semantics for the PLM simulator maintains that if
the To argument is not specified, it will print all data till the end of the Data Space. We
make this change because¢ most users expect only one memory location specified by the
From argument to be printed. DUES sends the simulator command print-from-data-space
(pd). The reply message which consists of data and their locations will be displayed in the

Dialogue Window.

300 whElaget Tl ist:

ArelEuddmar.

=it PLM. Simulator 7o 95 bodeontig

load intt go

step break state view cycle

PROLOG MACHINE SIMULATOR:

pau load /a/hprg/holmer/PLM/Benchmarks/library.w

pau load gsd.w

309 instructions (limit:
33 procedures (limit: 512
31 labels (limit: 4096)
cycle(dec) 300

cycle(dec) 300

go
cycle(dec? 528

Version 19 July 87

0000002¢

P=

] - P CP= 00000018
%228'2 "SNP E= 00040022
B= 0004001ie

TR= 00080000

H= 00001033

HB= 00001033

S= 00001001

N= 00000006

H2= 00000020

PDL= 00000000

mode= read
RX[11=00001001
AX[21=c000001b

Excvironm

AX{

T=
Tl=
R=
CcC=
MAR=
MDR=

MISC= 00000042

3l=
Ax(4]=
AX[51=
AX[B]=
AX[7]=
AX[81=

8004000a
8004000e
Of ££+e00
00000001
00000020
00001000
00040022
0004001e
00001001
2

00040022
B8004000e

DLocC
DLoC
DLOC
DLOC
DLoc
DLOC
nLocC

se o5 oo as o

DLoc
DLocC
oLoc

0004001e:
0004001f:
00040020
00040021
00040022:
00040023
00040024
00040025;
00040026:
00040027

.

000001}
0000000 §
0000000}
0000000 88

¢ bLoc
: bLoc
DLocC
DLOC
BLOoC
DLoC
DLoC
: DLOC
pLocC
pLoC
DLoc
BLOC
nLocC
DLOC
pLOC

GoU40013:
00040014
00040015:
00040016
00040017
00040018:
00040019:
0004001a:
0004001b:
0004001c:
0004001d:
0004001e:
0004001+
00040020:
00040021 :

c000001: &
800400042
80040008
OfFrfel 8
0000000 &
0000002
0000100 E
00040003
0000001
000000445
0008000 E
0004000 €
2004001+
0000001
0000000t

Figure A.6: The Dialogue Box for The Print Command

.45 -

A.7. The State Command

The state command provides a way to select machine states, which are grouped into
three sets Registers, Environment, and Choice Point. Each set of states has its contents
shown in one of the State Display Windows. The selected states can be duplicated to the

Copy Window later by clicking on their corresponding State Display Window.

Clicking on the command button invokes a pull-down menu, which contains options to
allow further selecting one of the machine states among Register, Environment, and Choice
Point. As the mouse is moved over an option, the option will be highlighted. Fig. A.7

shows the pull-down menu for the state command.

The selection is made by clicking on the desired option. As a result, a sub-menu will
appear under the command button, where the names of the machine states are listed.
Users can select one machine state, whether it is a register, part of Environment, or part of
Choice Point, by clicking on the name on the sub-menu. Consequently, the name will be
redrawn in reverse video and a star sign ("*") will be labeled on the corresponding State
Display Window. To unselect, simply click on the selected item again. It will be redrawn
in normal video, and the corresponding star sign will be cleared, too. Two buttons, Select
All and Unselect All, are provided to let users select everything or clear the selection in one
click of mouse button. When the selection is done, clicking on the OK button will bring the
command to an end. Fig. A.8 A9 and A.10 show the menus for selecting Registers,

Environment variables, and Choice Point variables, respectively.

The state command is an enhancement to the PLM simulator. There are no similar
facilities implemented in the PLM simulator, thus, no command is sent by DUES. This
feature, in conjunction with the Copy Window, works very well to alleviate users from the

need for any paper and pencils.

A.8. The View Command

The view command causes the View Window to pop up on the screen, which displays

load init step \' 1 cycle

PROLOG MACHINE SIMULATOR: VI|Registers 19 July &7
pau load /a/hprg/holmer/PLM/Benchmarks/1i
pau load gsd4.w

309 instructioms (limit: 12288} ChoicePoints
33 procedures (limit: 512)

31 labels (limit: 4096)

Environments

v -

Figure A.7: The Pull-down Menu for the State Command

300 SR g e t¥] | St s Y s WP PL M. Simulator SETER

—
load init go step break Qx“ view cycle print

FROLOG MACHINE SIMULATOR: SiliSelectRegisters Har NVIEEH e sters TR
Pau 1039 fagnere/hotner/FLl/Beneh [oK [JSelect All 0000002e AX[31=B004000a
308 1nstr‘uctions (limit: 12288) DunSEleCt All CpP= 00000018 AX141=8004000e
33 procedures (limit: 512) P 8 AX[3] T1 Bf 888:38%2 giiggfggr¢reoo
31 labels (limit: 4096) = e =00000001
Tuclaiden) 300 CP N AX[4] R TR= 00080000 AX[71=00000020
J E B AX[5] ec = 00001033 AX{B83=00001000
e B PDL [ESTEA] MAR HB= 00001033 T= 00040022
%S= 00001001 T1= 0004001e
TR mode AX[7] MDR N= 00000006 R= 00001001

H AX[1] Ax[8) BIFE «H2= 00000020 cc= 2
x[1 T (8 PDL= 0GCOQOGO0O MAR= 00040022
HB _ AX[2] mode= read MDR= B004000s
AX[13=00001001 %MISC= 00000049

Amen

CE : DLOC 0004001e:
CB : DLOC 0004001¢: ;
CP ; DLOC 00040020: 0000001g

: DLOC 00040021: 0000000

: : DLOC 00040022: 8004000:-38
4 Y2 : DLOC 00040023: 0000000
4 Y3 : DLOC 00040024: cOOCOO1i}M
Y4 ; DLOC 00040025; 00OOO00(E

DLOC 00040026: 0000000:
¢ DLOC 00040027: 00000CO S

—~<
ol

Figure A.8: The Menu for Selecting Registers

reptriBtaiget] {st04.

load init go step

FROLOG MACHINE SIMULATOR:

pau load /as/hprg/holmer/PLM/Benchn
pau load gsd.w

309 instructions (limit: 12288)

[JOK []Seleet all
[Junselect all

33 procedures (limit: 512) CE
31 labels (limit: 4096)
cycle(dec) 300

go

DLOC

¢ DLOC
; DLOC

DLoC

: DLOC

DLoC
nLoc

: bLoc
¢ DLOC

0004001e;
0004001 F:
00040020;
00040021 ¢
00040022:
00040023
00040024
00040025 :
00040026
00040027

000400083
2004001e
00000018
00000006
8004000e
00000000
c000001b
00000000
00000000
00000000

Figure A.9: The Menu for Selecting Environment Variables

300 et] I st SRRk T AP LM Simulator SRl ssmittiasminget 115104 '

load init gO step print quit

PROLOG MACHINE SIMULATOR:

pau load /a/hprg/holmer/PLM/Benchn [JOK [select All

pau load gsd.w

309 instructioms (limit: 12288) [JUnselect A1l e —————

33 procedures (limit: 512) 8] AX2 AX6 BCP ——— RTERTET O0.000rlnb

Egciz?séi)‘éég“’ 40962 I BE ax7 @ : 00040014: 8004000a

= Ny e goosonts: Suniuu

40016: e

0¥ axs [0 00040017; 00000001

00040018: 00000020
00040019: 00001000
0004001a: 00040003
0004001b: 00000018
0004001c: 00000049
0004001d: 00080000
0004001e: 00040008
0004001f: 2004001e
00040020: 00000018
00040021 : 00000006

Figure A.10: The Menu for Selecting Choice Point Variables

- 50 -

the compiled Prolog code specified from the command line. The view button remains
reverse-videoed until a second click on the command button when the View Window will
disappear.

The View Window also associates each line of code with a sequence number, which
can be used to set breakpoints. Moreover, it also has a pointer ("**") indicating which
instruction is under execution. Additionally, the scroll bar on the right border of the View

Window is provided to allow users to browse through the code conveniently.

A.9. The Load Command

The load command was originally designed to notify the simulator to load a new pro-
gram file; in the case of the PLM simulator, it is the compiled Prolog code. It should
prompt for the file name, and send it to the simulator. Although, the current PLM simula-
tor does not have this feature, this capability can still be simulated by terminating the old
simulator process and starting a new one with appropriate program file. It is decided not to
be implemented this way because of the idea of separation of policy and mechanism. DUES
should not do any policy making; rather, it should just implement the mechanism--sending
commands to the simulator instead of deciding what the simulator should behave. Finally,

this command is kept for future upgrading.

A.10. The Init Command

The init command was originally designed to notify the simulator to initialize itself;
for example, to reset the program counter. Although, the current PLM simulator does not
have this feature, this capability can still be simulated by terminating the old simulator
process and starting a new one with the same old arguments. Again, it is not implemented
this way because of the idea of'separanon of policy and mechanism. Still, this command is

still kept for future upgrading.

.51 -

A.11l. The Quit Command

The quit command kills the simulator process and exits. All windows created by

DUES will be closed. This command brings the DUES session to an end.

-52-

Appendix B

Catalog of DUES Routines

Catalog of DUES Routines

PROCEDURE SOURCE FILE
AddTextWindow Xtextlib.c
assignCodeNum view.c
Change_text_window_size Xtextlib.c
Clear_lines Xtextlib.c
clearOtherButtons gasix.c
Count_lines Xtextlib.c
createAddBPMenu break.c
createBreakPointMenu break.c
createListBPMenu break.c
createMapChoicePtDpy display.c
createMapEnvDpy display.c
createMapRegDpy display.c
createRemoveBPMenu break.c
createSelectChoicePtMenu state.c
createSelectEnvMenu state.c
createSelectRegMenu state.c
createSimulatorProcess gasix.c
createStateMenu state.c
createViewWindow view.c
DelTextWindow Xtextlib.c
dimCmdWin gasix.c
dimStitem state.c
do_addBreakPoint break.c
do_cpDpyEvent display.c
do_envDpyEvent display.c
do_listBreakPoint break.c

Catalog of DUES Routines

PROCEDURE SOURCE FILE
do_regDpyEvent display.c
do_removeBreakPoint break.c
do_scrollBarEvent view.c
Do_text_string Xtextlib.c
do_viewlconWindowEvent view.c
do_viewWindowEvent view.c
drawAddBPMenu break.c
drawBox graphics.c
drawBreakPoint break.c
drawBreakPointMenu break.c
drawCmd state.c
drawCmdBox gasix.c
drawCmdMenu gasix.c
drawCpDpy display.c
drawCpMenu state.c
drawCycleBox cycle.c
drawEnvDpy display.c
drawEnvMenu state.c
drawListBPMenu break.c
drawPDBox pd.c
drawRegDpy display.c
drawRegMenu state.c
drawRemoveBPMenu ' break.c
drawStateMenu state.c
drawTitle gasix.c
endOfReply reply.c

Catalog of DUES Routines

PROCEDURE SOURCE FILE
expand view.c
f_break break.c
f_Cancel pd.c
f_cycle cycle.c
f go load.c
findMenuCmd state.c
f_init init.c
firstToken reply.c
f load load.c
f_modify modify.c
f OK pd.c
f_print pd.c
f_quit load.c

f _state state.c
f_step step.c

f view view.c
getaddr break.c
getCmdWinIndex gasix.c
getCode reply.c
getCpVal reply.c
getCycle reply.c
getCycleInput cycle.c
getDialogStr load.c
getEnvVal reply.c
getInput pd.c
getLine reply.c

Catalog of DUES Routines

PROCEDURE SOURCE FILE
getMicrocode reply.c
getMsgs gasix.c
getRegVal reply.c
hextoi break.c
highLightCmdWin gasix.c
highlightStltem state.c
initCopyWin copy.c
initCycleBox cycle.c
initPDBox pd.c
initSelState state.c
initStateDisplay display.c
initViewWindow view.c
isAddButton break.c
isdec break.c
ishex break.c
isListButton break.c
isRemoveButton break.c
killChild gasix.c
main gasix.c
markAllCp state.c
markAllEnv state.c
markAllReg state.c
markCurrent.Code view.c
min break.c
MyXQueryWidth misc.c

nextTabStop

Xtextlib2.c

Catalog of DUES Routines

PROCEDURE SOURCE FILE
Normalize Xtextlib.c
paintScrollBar view.c
paintTitle view.c
paintViewlcon view.c
paintViewWindow view.c
printCp state.c
printCurrentInstruction gasix.c
printCycle gasix.c
printEnv state.c
printReg state.c
processEvent gasix.c
processReply reply.c
Redisplay_lines Xtextlib.c
redrawMain gasix.c
reverseVideo gasix.c
Scroll_text_window Xtextlib.c
selectChoicePoints state.c
selectEnvironments state.c
selectRegisters state.c
Spin_lines Xtextlib.c
standardVideo gasix.c
storeWindowNames names.c
TextClear Xtextlib.c
TextCreate Xtextlib.c
TextDestroy Xtextlib.c
TextEvent Xtextlib.c

Catalog of DUES Routines

PROCEDURE SOURCE FILE
TextFlush Xtextlib.c
TextPrintf Xtextlib.c
TextPutChar Xtextlib2.c
TextPutlnputBuf Xtextlib2.c
TextPutString Xtextlib.c
TextRedisplay Xtextlib.c
toggleCp state.c
toggleEnv state.c
toggleReg state.c
UnmarkAllCp state.c
UnmarkAllEnv state.c
UnmarkAllReg state.c

