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Parametric spline curves are typically constructed so that the first » parametric derivatives agree
where the curve segments abut. This type of continuity condition has become known as C* or n™ order
parametric continuity. It has previously been shown that the use of parametric continuity disallows many
parametrizations which generate geometrically smooth curves.

A relaxed form of n* order parametric continuity has been developed and dubbed n* order
geometric continuity and denoted G*. These notes explore three characterizations of geometric con-
tinuity. First, the concept of equivalent parametrizations is used to view geometric continuity as a meas-
ure of continuity that is parametrization independent, that is, a measure that is invariant under
reparametrization. The second characterization develops necessary and sufficient conditions, called
Beta-constraints, for geometric continuity of curves. Finally, the third characterization shows that two
curves meet with G* continuity if and only if their arc length parametrizations meet with C* continuity.

G" continuity provides for the introduction of » quantities known as shape parameters which can
be made available to a designer in a computer aided design environment to modify the shape of curves
without moving control vertices.

Several applications of geometric continuity are presented. First, composite Bézier curves are
stitched together with G' and G? continuity using geometric constructions. Then, a subclass of the
Catmull-Rom splines based on geometric continuity and possessing shape parameters is discussed.
Finally, quadratic G' and cubic G? Beta-splines are developed using the geometric constructions for the
geometrically continuous Bézier segments.
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1. Parametric Representation

A parametric function defines a mapping from a domain parameter space, into geometric or
Euclidean space. The definition of a curve involves functions of a single parameter, whereas for a surface
it uses functions of a pair of parameters. Specifically, in the case of curves, the parametric function
defines a mapping from u into Euclidean two-space as Q(u) = [x(x),y(w)] or into Euclidean three-space
as Q) = [x(w),y(w),z()). This function can be used to define a curve by letting u range over some
interval [ug.u,] of the u axis. For a surface, the parametric function is a mapping from u,v into three-
space as Quyv) = [xu),y@y),zuv)). A surface is then defined using this function by letting » and v
range over some rectangle [ugu;] x [vo,v/] in the u,v plane. Note that the use of boldface is to demon-
strate that the function is vector-valued.

In the case of curves, if the domain parameter is thought of as time, the parametric function is used
to locate the position of the particle in space at a given instant. As time passes, the particle sweeps out a
path, thereby tracing the curve. A parametric function therefore defines more than just a path; there is

also information about the direction and speed of the particle as it moves along the path.

2. Piecewise Representation and Smoothness

In recent years, computer-aided geometric design and modelling (CAGDM) has relied heavily on
mathematical descriptions of objects based on a special kind of parametric function known as a
parametric spline function. A parametric spline function is a piecewise function where each of the pieces
is a parametric function. The pieces of a curve are known as segments while those of a surface are called
parches. An important aspect of these functions is the manner in which the segments are joined together.
The locations where the pieces of the function abut are called joints, in the case of curves, and borders, in
the case of surfaces. The equations that govem this joining are called continuity constraints. In

CAGDM, the continuity constraints are typically chosen to impart a given order of smoothness to the

-
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spline. The order of smoothness chosen will naturally be application dependent. For some applications,
such as architectural drawing, it is sufficient for the curves to be continuous only in position. Other appli-
cations, such as the design of mechanical parts, require first or second order smoothness.

We have been intentionally vague about what is meant by ‘‘smoothness’’. In fact, there is more
than one type of smoothnéss; the type that is used should be application dependent. For instance, if
parametric splines are being used to define the path of an object in an animation system, it is important
for the object to move smoothly. It is therefore not enough for the path of the object to be smooth, the
speed of the object as it moves along the path must also be continuous. This type of motion can be
guaranteed by requiring continuity of position and the first parametric derivative vector, also known as
the velocity vector. If higher order continuity is required, one can demand continuity of the second
parametric derivative, or acceleration vector. However, in many CAGDM applications, only the result-
ing path is important; the rate at which the points along the curve are swept out is irrelevant. This second
notion of smoothness allows discontinuities in speed as long as the resulting path is geometrically
smooth. We shall refer to the first kind of smoothness as parametric continuity and to the second kind as
geometric continuity.

Since spline curves and surfaces are defined as piecewise functions, care must be taken to smoothly
“stitch’’ the curve segments or surface patches together where they abut. The issue of exactly what is
meant by ‘‘smooth’’ is a surprisingly subtle one, ultimately leading to the distinction between parametric
and geometric continuity. We present here an abbreviated development of geometric continuity; more
complete treatments can be found in*5:13.15 Geometric continuity has become an important topic of
research, and recent work has been reported in'®17.18.24.25 On a historical note, n™ order geometric con-

tinuity has its roots in first and second order geometric continuity, the ideas of which appeared in various

forms in, 1+ 19 20,22,28,29,30
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In the following, it will be important to maintain the distinction between parametrizations and
curves. A parametrization is a function which describes a curve. A curve is the image of a parametriza-

tion. There can be many different parametrizations that describe the same curve.

3. Parametric Continuity-

Let us now examine how continuity has classically been specified for parametric functions in
CAGDM. We refer to this measure of continuity as parametric continuity. As mentioned in the previous
section, it is typical to stitch pieces of parametric functions together to obtain a parametric spline. Bor-
rowing concepts from fields such as numerical analysis and approximation theory, it seems reasonable to
require that the derivatives of the pieces agree at the joint.

Consider the situation shown in Figure 1 where two C~ parametrizations (a parametrization is C=if
it is infinitely differentiable) q(x), u€ [0,1}, and r(¢), ¢ € [0,1] meet at a common point such that

r(0) = q(1).
These parametrizations are said to meet with n* order parametric continuity, denoted C*, if the first n
parametric derivatives match at the common point; that is, if
r(i)(o) = q(i)(l), i=1,---,n, ¢
where superscript (i) denotes the i* derivative. Unfortunately, parametric continuity does not capture our
intuitive notion of smoothness, as demonstrated by the following example. This shows that it is possible
for the first derivative vector to be discontinuous even though the curve possesses a physically continuous

unit tangent vector throughout its length.
Example 1: Figure 2 shows the two parametrizations q(x) and r(x) defined by

q(u) = (Qu.u), ue€ [0,1]
() = (4t 422 +1) 1 € [o,%].

These parametrizations meet with positional continuity at the point (2,1). Note, how-



r(0)

q

Figure 1: Two parametrized curves q and r meeting at a common point.

ever, that their first derivative vectors don’t match:

q(1) = 2,1)

r0) = 4,2)
implying that

r®0) = qM(1).
y !

Figure 2: A discontinuous first derivative with a continuous unit tangent vector.

ol )

These line segments are collinear and have a continuous unit tangent vector, namely

(-;‘-,%), even though there is a jump in the first derivative vector at the joint. In other

words, these parametrizations do not meet with first order parametric continuity even

though the curve segments appear to meet very smoothly. 8
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This example provides insight into the shortcomings of parametric continuity. Parametric con-
tinuity places too much emphasis on the particulars of the parametrizations. It does not necessarily reflect
the smoothness of the resulting composite curve; rather, it is a measure of smoothness for parametriza-
tions. Also, parametric continuity disallows many parametrizations that would generate visually smooth
curves. To really understaﬁd how to avoid situations like the one in Example 1, we turn now to the ideas

of reparametrization and equivalent parametrizations.

4. Reparametrization and Equivalent Parametrizations

Recall that a parametrization Q(u) is said to be C* if it is n times continuously 'differentiable. Let
Q). u € [ugus], and Q@), & € [do.is ], be two regular C* parametrizations. (A parametrization is regu-
lar if its first derivative vector never vanishes.) These parametrizations are said to be equivalent, that is,
they describe the same oriented curve, if there exists a regular C* function f :[d,i; ] = [ug,u,] such that

() Q@ = Q(f (@). That is, @ = Qo /.

(i) f (Liao,r 1) = [ug.us]

(i) f@>0
Intuitively, Q and Q trace out the same set of points in the same order. We also say that Q has been
reparametrized to obtain Q, and we call f an orientation preserving change of variables (see Figure 3).

The following example illustrates a concrete example of equivalent parametrizations.

Example 2: Let q be as in Figure 2, and let q be defined by

4@ = @20, € (0]
To show that q(x) = Qu,u) and §(i) = (44,24) are equivalent parametrizations, we

observe that

§(d) = q(24), foralld e [o,%].



9-

Thus, we have found a mapping f :[0,%] =[0,1] defined by f (@) = 2i that satisfies

property (i) of equivalent parametrizations. It is easily verified that f satisfies the
other two properties as well. We therefore conclude that q and § describe the same

oriented curve, which in this case is the oriented line segment from (0,0) to (2,1). B

4

rd
'd
e
r'd

,”’5=Q°f

e &

<4
Al
~ ~

to 'f

Figure 3: Q is reparametrized by f to obtain Q.

Tﬁe existence of equivalent parametrizations means that there are many distinct parametrizations
that describe the same oriented curve. Differential geometers are therefore careful to distinguish between
properties of a particular parametrization and properties of the oriented curve it describes. This distinc-
tion can be made more precise by separating out the properties of parametrizations that remain invariant
under reparametrization. Mathematically, let q and q be equivalent parametrizations, and let Property (q)

represent some property of q ( that is, some statement about q). Property(q) is intrinsic if and only if

Property(q) = Property(Q).

Intrinsic properties are shared by all equivalent parametrizations, and can therefore be interpreted as

fundamental properties of the curve being described. As an example, we ask: Is the first derivative vector
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an intrinsic property? By definition, the first derivative vector is intrinsic if and only if

q©=q", @

where q and § are arbitrary equivalent parametrizations. To determine if Equation (2) does in fact hold,

we use the chain rule from calculus:

q® = (Go f)Y (by definition of equivalence)
=GYFY  (by the chain rule)
#(’;(1) (since fW is not necessarily 1)

Thus, the first derivative vector is not an intrinsic property, and is therefore not a fundamental property of
an oriented curve. There is, however, is a closely related property that is intrinsic; namely, the unit
tangent vector:

(1)
Unit Tangent Vector (@) = I_qu(l_)l (by definition of unit tangent vector)

= (1)

= i%if_))“—)l (by definition of equivalence)
qo
g-(l)ﬁ(l)

= lfl(l)f oY (by the chain rule)

(D)

= Falr
§o

" 1q®]

= Unit Tangent Vector (q)

(since f® > 0)

From the point of view of differential geometry, Example 1 can now be explained as follows: C" con-
tinuity requires equality of derivative vectors, and since derivative vectors are not intrinsic, C* continuity
can be destroyed simply by reparametrizing one of the curves. What is needed then is a measure of con-
tinuity that is parametrization independent. In other words, we would like a measure of continuity that is
invariant under reparametrization, that is, one which remains valid after arbitrary reparametrization. The

following definition of geometric continuity provides such a measure.
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Definition 1: Let q(x) and r(¢) be two regular C* parametrizations meeting at a point J. They
meet with n* order geometric continuity, denoted G*, if there exists a parametri-
zation § equivalent to q such that § and r meet with C* continuity at the joint J.
It can be readily verified that geometric continuity is intrinsic in the sense that if q and r meet with
G™ continuity, and if q and- f are any pair of equivalent parametrizations for q and r, respectively, then §
and ¥ also meet with G” continuity.
To develop some familiarity with the definition, let us apply it to the parametrizations of Example
1. In particular, if we choose § to be the equivalent parametrization constructed in Example 2, then we

see that

(5 =42
r0) = 4.2)
implying that

r(0) = q(l)(_lf)'

Thus, g and r meet with C! continuity at J = (2,1); hence, q and r meet with G! continuity.

The characterization of geometric continuity based on the existence of equivalent parametrizations
can be summarized as: Don’t base continuity on the parametrizations at hand; reparametrize if necessary
to find ones that meet with C* continuity. Although this is a useful theoretical tool for probing the intrica-
cies of geometric continuity, there are other characterizations that are also of practical significance. We

now briefly present two such equivalent characterizations.

5. Beta-Constraints
Let q(u), u € [0,1] and r(t),¢ € [0,1] be two regular C* parametrizations meeting with G" con-
tinuity at r(0) = q(1), as was shown in Figure 1. According to Definition 1, there must exist an orientation

preserving change of variables u:[%,1] = [0,1] such that
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r9©) =§9Q), i=1,---,n (3)

where

(@) = qu@), 4 € [do1].
For simplicity (and without loss of generality) we have chosen i, = 1. Using the chain rule, derivatives

of q can be expanded in terms of derivatives of q and «. If the chain rule is applied i times, d® can be
expressed as a function, call it CR;, of the first i derivatives of q and the first i derivatives of u:

a“@ = CR:@@@), -, @), u@, - wO@), i=l-.n. @)
Evaluating this expression at & = 1 and using the fact that « (1)=1, we find that

q(i)(l) =CR; (q(l)(l), e, q(i)(l), u(l)(l), cen ,u(i)(l)), i=l,--,n

This can be rewritten as

q¥) = CR:(qVQ), - -, q®1), B, - -+, Bi), i=l,--,n )
by performing the substitutions

Bj = u(j)(l), j=1,7+- i

The quantities 1, - - -, Bi are real numbers, and since «)(1)>0 (property (iii) of an orientation preserving
change of variables), we can conclude that B1>0. Substituting Equation (5) into Equation (3) yields the
so-called Beta-constraints:

r(i)(O) = CR,-(q(l)(l), e, q“’(l), BL,---, Bi), i=1,---,n. (6)
This argument shows that if q and r meet with G* continuity, then there exist real parameters B, - B,
with B1>0, commonly called shape parameters, satisfying the Beta-constraints. More important for appli-
cations, the converse is also true. To be precise, the parametrizations q(u), u € [0,1] and r(z),t € [0,1]
meet with G* continuity at r(0) = q(1) if and only if there exist real numbers B1, - - - ,B» with B1>0 such
4,5,13

that Equations (6) are satisfied. For a formal proof the reader is referred to.

As an example of the form of the Beta-constraints, the constraints for G* continuity are

rd©) = B1g™(1) 7.1
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r®0) = B12q@(1) + P2gM(1) (7.2)
r®(0) = B13q®(1) + 3B1B2q®(1) + B3q(1) (7.3)
r0) = Br*q(1) + 6B12B2g™(1) + (4B1P3 + 3B22)g@(1) + B4q(). (7.4)

where B2 and B3 are arbitrary, but B1 is constrained to be positive.

6. Arc Length Parametrization

The next characterization of geometric continuity is based on arc length parametrizations. It is pos-
sible to show that two parametrizations meet with G" continuity if and only if the corresponding arc
length parametrizations meet with C* continuity. 13

To gain a better understanding of this characterization, consider the cases of n=1 and n=2 in more
detail. The case n=1 requires that the first derivatives with respect to arc length agree. But the first
derivative with respect to arc length is the unit tangent vector. Thus, the case n=1 is equivalent to requir-
ing that the unit tangent vectors agree at the joint J. Similarly, for n=2, the second derivative with respect
to arc length is required to be continuous. The second derivative with respect to arc length is the curva-
ture vector. Hence, for n=2, the unit tange.nt and curvature vectors must match at the joint. This can be

stated more formally as a theorem for G' and G2 continuity:

Theorem 1: Two parametrizations meet with G' continuity if and only if they have a common
unit tangent vector; they meet with G2 continuity if and only if they have common
unit tangent and curvature vectors.

These are exactly the requirements of G! and G? continuity as originally developed for the Beta-

spline representation inl+3 and which appeared in various forms in.!%-20-22.28,29.30 This characterization

therefore has the appeal that it represents a generalization of previous definitions.

7. Applications

Having derived the Beta-constraints, the general idea is to construct splines that satisfy them instead
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of requiring that parametric derivatives match. Since these constraints are stated in terms of B1,- - - Ba,
the resulting spline will have these quantities as shape parameters; they should not, however, be confused
with the domain parameter. Changing one of the p’s will, in general, change the shape of the composite
curve, but always in such a way that geometric smoothness is maintained; it is for this reason that we call
the B’s shape parameters.

Referring back to the Beta-constraints, note that the shape parameter Bi is introduced in the con-
straint relating the i* derivatives of the parametrizations in question. For example, B1 is introduced in
(7.1), and therefore controls the discrepancy between the first parametric derivatives, but always in such a
way that the resulting composite curve is geometrically smooth. Suppose that B1 = 1, implying that the
first parametric derivatives agree. In this case, the shape parameter B2 controls the discrepancy between
the second parametric derivatives. If 1 =1 and B2 = 0, the first two Beta-constraints reduce to the con-
straints for C? continuity. In general, if B1 =1 and B2 = --- =Ba =0, then G" continuity reduces to C”,
showing that for regular pametﬁzaﬁons geometric continuity is a strict generalization of parametric
continuity.

It is also important to realize that the shape parameters are local to a joint. If the composite curve
being constructed comprises many curve segments, each of the joints possesses its own set of shape
parameters. Thus, for a composite curve having m joints generated by G* parametrizations, a total of mn
shape parameters are introduced. In some applications, it is convenient to associate the same values of
the n shape parameters with each of the joints, thereby making the assignment of shape parameters global

to the composite curve.

8. Geometric Continuity for Composite Bézier Curves
As an application of geometric continuity, consider the problem of stitching Bézier curves together

with G! and G? continuity. We first recall several important facts conceming Bézier
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curves. > 6 7,8,9,11,21

A Bézier curve uses a simple and efficient formulation where the curve is defined solely in terms of
a set of control vertices connected in a sequence to form a control polygon (Figure 4). The curve mimics
the overall shape of the control polygon, but interpolates only the first and last vertices of the control
polygon. The curve is defined by a polynomial whose degree is equal to the number of edges in the con-
trol polygon (that is, the number of control vertices minus one). It follows immediately from this
definition that the formulation has global, not local, control; that is, the motion of a control vertex affects
the shape of the entire curve. Likewise the curve is infinitely differentiable by virtue of being a polyno-

mial.

Figure 4: Bézier curve and its control polygon.
A Bézier curve q(u), u€ [0,1] of degree d defined by a control polygon <V, - ,V;, -,V >, takes

the form

d
Q(u) = ZviBid(u)v ue [071]
i=0
where Bf(u) is the i™ Bernstein polynomial of degree d
Bfu) = [ﬂ W (-u)?, i=0,---,d.
It is frequently desirable to decouple the number of control vertices from the degree of the curve,
and to have local control as well. In the Bézier formulation, it is easy to raise the degree of the curve, by

creating a new control polygon that generates the exact same curve with a (degenerate) polynomial of
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higher order (Figure 5). If we have the control polygon <V, - - -V, - - - V4>, the following formula gives

the control polygon <Wy, - - - \W;, - -+ \Wy,y>:

=0, ,d+]

-~
i

i i
Wi = (Vi + -7V,

Figure 5: Raising the degree of a Bézier curve from cubic to quartic.

Describing the curve q(u) in Bézier form has many advantages: the shape is intuitively related to the
control vertices, there is an easy geometric construction for the curve, splitting a curve into two spans is
also geometrically easy, and the relationships between the parametric derivatives at u=0 and #=1 and the
control vertices are simply expressed. Specifically, we will use the following properties.

(i) Position: q(u) interpolates Vg, at =0, and V, at u=1:

q0) =V, (8.1a)
q(l) = V,. (8.1b)

(ii) First Derivatives: The initial first derivative vector is in the direction of the vector from V, to
V,, and the final first derivative vector is in the direction of the vector from V,_, to V,. More pre-
cisely, the initial and final first derivative vectors are:

q1(0) = d(V,- Vo) (8.2a)

q(1) =d (V4 -Vaoy). (8.2b)

(iii) Second Derivatives: The initial second derivative vector depends only on V,, V;, and V,, and

the final second derivative vector depends only on V,_,, V,_;, and V,; specifically,
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q®0) = d(d-1)(Vo-2V, + V) (8.32)
q®(1) = d(@d-1)(Va2-2Vay + Vo). (8.3b)

To obtain local control, we use a piecewise representation of the curve. The entire curve is com-
posed of curve segments, each of which is a Bézier polynomial. The problem we now wish to address is
to maintain some amount of continuity at the joints; specifically,

Given: The shape parameters B1 and B2, and the control polygon <V, - --,V;, - ,V;> defining the

parametrization

d
q(u) = T V;Bfw), wue[0,1],
i=0

find: constraints on the control polygon Wy, - - - W, defining the parametrization

d
r(t) = YW;B4t), 1e€(0,1]
j=0

such that: r and q meet with G! (or G?) continuity at q(1) with respect to 1 (and B2) (see Figure 6).

Figure 6: Situation for stitching two Bézier curves r and q together with G* continuity.
Since a Bézier curve interpolates its first and last control vertices, we can guarantee C° (and hence
G continuity by setting W, = V,, as shown in Figure 6. To achieve G' continuity for a given B1>0, we
can find W, by recalling Equation (7.1) and using Equation (8.2) to yield

d(W,-Wp) =dBi(Vy- V), B10.

Simplification and rearrangement yields

Wl = WO + Bl(Vd - Vd—l)’ B1>0,
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and since Wy = V,,

W, =V, +B1(Vy-Vaa), P150. ®
Geometrically, Equation (9) states that W, must lie on the ray starting at V4 ( = W), extending in the

direction of the vector from V,4_, to V;. The length of the segment WoW, relative to the length of V,_;V,
is given by the parameter B1. Thus, given V,_;, V4 and B1>0, the control vertices W, and W, can be deter-
mined geometrically as shown in Figure 7, or algorithmically using the following construction:

HWe=V, (10.1D)
QW< Wo+B1(Vy-Vyy) (10.2)

vd—l

Figure 7: The construction of W, and W, to achieve G' continuity for a given f1.
Once W, and W, have been constrained subject to G! continuity, the control vertex W, can be con-

strained to guarantee G2 continuity for a given B2 by recalline Equation (7.2) and using Equation (8.3) to

yield
d(@-1)(Wo-2W, + Wp) = B12d(d—1)XVy_5-2Vy + Va) +B2d (Vg - Vay).
Solving for W, yields
2(V4-V4o
W2=2W1-W0+Bl2(Vd_2-2Vd_l +Vd)+E%£L) (113)
Substituting V4 for W, and Equation (9) for W), and rearranging yields
W, = P12V, - (212 + 2B1 + }%W"-l +(B12+2P1+ f_il +1)V, (11b)

Rather than the algebraic approach given above for the determination of W,, a more geometric
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approach was developed by Farin!? and later improved upon by Boehm.1? For our purposes, it is most
convenient to think of the approach of Farin and Boehm as a convenient factorization of Equation (11),
each term of which has a well-defined geometric interpretation.

The Farin-Boehm consuucﬁon takes as input the control polygon <V, ,,V,;,V,> and the shape
parameters B1>0 and B2, and produces as output the control vertices Wo, W, and W, such that the curves

meet with G2 continuity with respect to p1 and 2. The construction may be stated as:

Y=g f%:(gglg[(i;iﬁl) az.n
Q) Woe V, (12.2)

B W, <= Wo+B1(Vy-Va) (12.3)
@) T Vo + B2 Y(Vay - Vo) (12.4)

(5) Woe W, + %(WI-T)

The geometric interpretation of this construction is shown in Figure 8.

Figure 8: The Farin-Boehm construction.

In other words, only W, can be freely chosen if we insist on G? geometric continuity once B1 and 2
are chosen. The crucial point is that the relaxation of the continuity constraints gives us two more

degrees of freedom. In particular, we can adjust p1 and B2 to be able to ensure G2 on both sides of the
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span.

9. Geometric Continuity for Catmull-Rom Splines

Cammull-Rom splimzs12 have local control, can be either approximating or interpolating, and are
efficiently computable. Inl416 the authors construct a subclass of the Catmull-Rom splines which has
shape parameters by requiring geometric rather than parametric continuity. Some members of this class
are interpolating and others are approximating. The set of shape parameter values are associated with the
joints of the curve. The shape parameters may be applied globally, affecting the entire curve, or they may
be modified locally, affecting only a portion of the curve near the corresponding joint. It is shown that
this class results from combining geometrically continuous (Beta-spline) blending functions with a new
set of geometrically continuous interpolating functions related to the classical Lagrange curves.

The well-known cubic Catmull-Rom spline is a C! interpolating spline where the i** segment of the

curve can be written in the form

2
qi(u) = E ¢j(u)vi+j7 ue [0’1]- (13)

j=1

Using a process similar to Section 8, the weighting functions ¢,(s), j =-1,0,1,2, are constructed so

that q; and q;,; meet with G' continuity at their common joint. The resulting functions are

a0 = -prAI (14.1

do(u) = (B12 + Br+1)u3 - (2812 +le;3:1)u2+([512- Du + B1+1 , (142)
0u() = - (B12+ B1+1)u3ﬁ-l(é[?fl;- B1+1Du?-Piu ’ (143)

0x(u) = 6%1:—217 (14.4)

The effect of B1 on the shape of the spline is shown in Figure 9.

-
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N

JL
\J

(a)
¢

—_— —_—

(b) (c)

Figure 9: The above curves all share the same control polygon. Curve (a)
has B1=1, and is therefore equivalent to the C'! Catmull-Rom spline
Curves (b) and (c) have values of B1 of 1/2 and 2, respectively.
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10. Beta-splines

As our final example, we present a development of Beta-splines that is based on the results of Sec-

tion 8 where Bézier segments were stitched together with G! and G? continuity.

10.1. Quadratic G' Beta-splines
Given a control polygon <Vg,---,V;,---,V,> and a set of shape parameter values

B1 = (Blg, - - * » Blm—t), the i** segment q; (u) of a G' quadratic Beta-spline takes the form

1 —
(li (u) = Z Vl'+rbi+r,r(B1;u)a ue [071], l = 1’ ot 1 m—1’ (15)
r=—1
where the functions b;,, ,(E;u), called the G' Beta-spline blending functions, are quadratic polynomials
constructed so that
qi+l(0) =Qi(1), i=1,' . ',m—l (16)

aR©) = Bug®(), i=1,---,m-1,
The Beta-spline blending functions can be determined by symbolically solving a system of linear equa-

tions.1:3:4 A more elegant method, due to Farin!® and Boehm,! proceeds by describing each segment

q; () in Bézier form. In their approach, the i* segment is written as

2
q; (u) = Zwi,rBrz(u)i i=1: Y m-1 (17)
r=0
where the Bézier control polygon <W; o,W; ;,W; »> is constructed from the Beta-spline control polygon
<V;_1,V;,V.,1>, and the shape parameters B1;_, and B1; as follows:
(1) The interior Bézier vertex W, ; is defined simply by
W<V, (18)
(2) The junction vertex W; o divides the line segment V;_,V; into relative distances 1:B1;;, and the

junction vertex W, , is set equal to W, . Algorithmically,

BliaVia+V;

1 +Bl;_1 (19)

W=
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BLV: +Viy

Wizes W= 1+B1,

Comparison of Figure 10 and Figure 7 shows that the segments thus constructed do indeed satisfy

Equations (16).

Figure 10: The construction of the G! Bézier control polygons.

Once the Bézier control polygons have been constructed, each segment can be drawn using standard

Bézier curve algorithms. 6 11.26.27

10.2. Cubic G2 Beta-splines

The previous constructions and definitions for quadratic G' Beta-splines can be extended to define
cubic G2 Beta-splines. A G? Beta-spline is defined by a control polygon <V, " - -, V,>, and two sets of
shape parameter values, B1=(B1e, - - * , B1,) and B2=(B2o, * - - » P2 ) associated with the joints of the curve.

The i segment of the curve, i=1,- - -, m-2, is given by

2 —_
q; (u) = Z Vi+rbi+r,r(B1’B2;u)y ue [O’l]’

r=-1

where the functions b;.,, , (B1,82:) are cubic polynomial functions constructed so that

q;+1(0) = q; (1)
q40) = B1;,.q(1) (20)
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a(0) = B12q2(1) + B2:qO(D).

Rather than constructing the basis functions directly, we follow the approach of Farin and Boehm to con-

struct the Bézier control polygons of each of the segments. Let <W;,- -+, W, 3> denote the Bézier con-

trol polygon of the i* segment, i=1,- -+, m-2. The first step of the construction proceeds by positioning,

for each i=0, - - -, m—1, the two interior Bézier vertices W, ; and W; , on the polygon edge V;V;,, so that

the three segments V;W, ;, W; W, ,, and W, ,V,,, are of relative lengths v; :1:B12,Y;4 (see Figure 11(a)),

where v; is defined as in the construction described by Equations (12) with d=3:

. 204B1)
%= B2+ 2BL (4B

The second step of the construction positions the junction Bézier vertices W;_, 3 and equivalently W, ¢ at

i=0, -, m.

the point on the segment W;_; ,W; , that divides it into relative distances 1:B1;, as shown in Figure 11(b).
This construction guarantees that the Bézier vertices for adjacent segments are positioned as required by
Figure 8. Hence, adjacent segments meet with G 2 (unit tangent and curvature vector) continuity. More
specifically, adjacent segments are guaranteed to satisfy Equations (20). The construction for G? Beta-
splines may be stated algorithmically as follows: |

(1a) for i=0, - - -, m, compute ; from B1; and B2;:

2(1+B]")
HE B2 +21;(1+B1;)

(1b) fori=0, - - - ,m—1, compute the interior Bézier vertices:

(+B1A1Yi+) Vi +% Vin
1+% +B1ii%a
BrAYin Vi + A+ Viy
1+ +B1éA%a

W,-_l <

W,-2<=

(2) fori=1,- - -, m-1, compute the junction Bézier vertices:

BL,Wi12+W,,

W, i< W, <
i-1,3 i0 1+Bli



(a

(b)

vi-l

Figure 11: The construction for the G2 Beta-spline curve.
(a) Construction of the interior Bézier vertices.
(b) Positioning the junction vertices.

vi«-l
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10.3. Designing with Beta-splines and Generalizing to G* Beta-splines

As pointed out by Foumier & Barsky?! and Boehm, !0 when designing with Beta-splines it is often
more convenient for the designer to directly specify the interior Bézier vertices, then have the system
compute the shape parameters and place the junction vertices. In particular, the method of Farin and
Boehm proceeds by haviné the designer specify a control polygon <V, ---,V,>, and a pair of vertices
W, and W, , on each leg of the polygon. From this input, the shape parameters are uniquely determined
(as long as W, ; # W, ,), and can be computed automatically by the system. The shape parameters are then
used to compute the junction vertices, thereby completing the determination of each segment in Bézier
form. The curve can then be drawn using standard techniques for Bézier curves.5-11.26.27

Although we have demonstrated the construction of G! and G? Beta-splines, we have not esta-
blished that Beta-splines of all orders exist. It is, in fact, possible to construct G* Beta-splines for arbi-
trary n21, as shown by Goodman?3 and Dyn & Micchelli.!” Thus, given a set of shape parameter values
BL,---, B, it is possible to find piecewise polynomial blending functions B, (B1, - - -, Ba;%) that satisfy the
n* order Beta-constraints with respect to the given shape parameters. Goodman and Dyn & Micchelli
also show that these functions have local support and their segments have degree n+1. However, an algo-

rithm for geometrically constructing the Bézier control polygons of a G* Beta-spline for arbitrary n and

for arbitrary shape parameters is currently unknown.

11. Conclusion

Geometric continuity is an intrinsic measure of continuity which is appropriate for spline develop-
ment. Geometric continuity has been shown to be a relaxed form of parametric continuity that is
independent of the parametrizations of the curve segments under consideration, but is still sufficient for
geometric smoothness of the resulting curve. However, geometric continuity is only appropriate for appli-

cations where the particular parametrization used is unimportant since parametric discontinuities are
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allowed.

Three characterizations of geometric continuity were developed. First, the concept of equivalent
parametrizations was used to view geometric continuity as a measure of continuity that is parametrization
independent, that is, a measure that is invariant under reparametrization. The second characterization
developed the Beta-constraints, which are necessary and sufficient conditions for geometric continuity of
curves. Finally, the third characterization showed that two curves meet with G continuity if and only if
their arc length parametrizations meet with C* continuity.

By using the Beta-constraints instead of requiring continuous parametric derivatives, n degrees of
freedom called shape parameters are introduced. The shape parameters may be made available to a
designer in a CAGD environment as a convenient method of changing the shape of the curve without
altering the control polygon.

Several examples of splines using geometric continuity were provided: the construction of geometr-
ically continuous Bézier curves, the development of a subclass of the Catmull-Rom splines based on
geometric continuity and possessing shape parameters, and the geometric construction of quadratic G!
and cubic G2 Beta-spline curves.
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On page 7, line -3, ?.—5—) should be ('@’TE' .

On page 13, line 4, under equation (7.4), "where B2 and B3 are arbitrary, but Bt is constrained to be posi-
tive." should be "where B2, B3, and P4 are arbitrary, but 1 is constrained to be positive.”





