DESIGN AND IMPLEMENTATION
OF A CMOS CHIP FOR PROLOG

Vason P. Srini, Jerric V. Tam, Tam M. Nguyen,
Bruce K. Holmer, Yale N. Patt, and Alvin M. Despain

Computer Science Division
University of California, Berkeley, CA 94720

ABSTRACT
We have designed and fabricated a high performance VLSI chip for executing Prolog programs

using a 1.4 micron CMOS technology with two layers of metal. This chip implements a tagged architecture
with hardware support for five stacks. The 32-bit data path of the chip contains a fast ALU, 64 registers in
four groups, five counters, and six non-master/slave registers. The control is microprogrammed and uses a
512 X 160 bit ROM with four pages for fast microbranching. The chip operates at a cycle time of 100 ns
(worst case) and has a size of 10 mm X 9 mm. A semicustom design methodology employing Mentor and
NCR tools has been used in this design. The challenges involved in the design, verification, routing, and

fabrication of the chip are described.

W DN

8.
9.

. Introduction
. Microarchitecture
. Datapath

- Bus Design

- Alu Design

- Counter Design

- PDL and Exception Handling
- Register Design

- Static Bus

- Register Groups

- Collision Detection

. Microcontrol Design

- Status

. Rom, Mir, and Instren Design

- ROM

- Microcode generation
- MIR design

- INSTREN Design

. Design Verification

- Functional Simulation
- Timing
- Timing Simulation

. Physical Level Design

- TOPHER

- Cell Routing

- Block Routing
- Analysis

- Global Routing
Conclusion
Appendix

Table of contents

List of Figures

PLM System

Top Level View of VLSI-PLM Chip
Stacks of the Data Space

Block Diagram of the Microarchitecture
Floorplan of a bit-slice of the chip
ALU’s Top Level Diagram

Counter Block’s Top Level Diagram
PDL Block’s Top Level Diagram

. MDR Block’s Symbol

10. MDR Block’s Details

11. Register Files’s Details

12. Block Diagram of the Microsequencer
13. Circuit Diagram of ROM

14. Timing Diagram of ROM

15. Pinout of the Chip

16. Block Diagram of the Design Verification Process
17. Layout of the Chip

18. Environment Frame

19. Choicepoint Frame

20. Data Representation

21. State Diagrams for the Instructions

22. Block Diagram of the RTL Simulator
23. Sample Input to Gate Level Simulator
24. Sample Output of Gate Level Simulator

Voo E W=

1. INTRODUCTION

The current trend in computer architecture is to develop high performance architectures that execute
programs used in artificial intelligence (AI) in general and expert systems in particular. Lisp and Prolog
are two of the major languages used by the Al community. The Aquarius project at Berkeley has been
addressing the problem of designing and building high performance processors for Prolog since 1983.
Three Prolog systems have been designed and two of them have been constructed. The three Prolog sys-
tems are coprocessors to a host such as the NCR 9300 system or the SUN workstation. They are different
implementations of the Warren Abstract Machine [10,11]. The Warren Abstract Machine involves
translating Prolog programs to an intermediate language, called W-code, and from there to the machine
language of the host processor. Machine instructions are then interpreted by the host microcode to control

the data path of the host microengine.

Fast execution of Prolog programs requires architectural support for procedure calls, unification, and
backtracking. Although hardware support for procedure calls is available in many of the commercially
available 32-bit microprocessors, not much was known about supporting backtracking and unification in
hardware until 1983. Since unification requires knowledge about the data types of the terms being unified,
a tagged architecture is almost a necessity. Otherwise, the execution of Prolog programs is slowed down
significantly. A tagged architecture for Prolog has been developed at Berkeley based on the Warren
Abstract Machine (WAM) [10,11]. The first system developed at Berkeley translates the instructions of
the abstract machine {11}, called W-code, directly to the microcode of a special purpose processor
designed for interpreting W-code. The architecture for the special purpose processor, called Prolog
Machine (PLM), has been designed by Dobry [4]. The PLM includes only those features that are deemed
necessary by the the results of extensive simulation. The PLM has been constructed using TTL parts and
runs at a cycle time of 100 ns. The PLM is connected to a host processor, an NCR 9300 sys.tem, to do 1/O,
floating point calculations, and diagnostics. The performance of PLM for benchmark programs and com-

parison to other sysicms have been described by Dobry [5].

The second system generates vertical microcode for a gencral purpose processor, the NCR 9300 sys-
tem, from W-code {7}. Three significant pieces of software are used in transforming Prolog programs (0

exccutable NCR/32-000 microcode: a Prolog compiler, a microcode compiler, and an assembler. The

study showed the importance of tags and special purpose architecture and compared the performance of

NCR/32 [1], with that of the TTL implementation.

The third implementation is a VLSI design of PLM. This report describes the design of a 32-bit
microprocessor which combines the architectural features of the PLM with a static CMOS implementation
to create a processor with high regularity, low power dissipation, and a small instruction set. The design
has been implemented using a semicustom methodology with standard cells supplied by NCR corporation.
Macrocells such as ALU, register file, counter, and ROM have been designed and used in the processor.
The chip is constructed using a 1.4 micron feature size CMOS process with two levels of metal for inter-
connection. The chip requires 120 pins and has a size of 10 mm X 9 mm. It is housed in a pin grid array
package with 192 pins and dissipates 2 watts. The chip is designed to be a coprocessor for workstations
such as SUN-3 and NCR-Tower. Since Prolog programs ar¢ memory intensive, a cache is assumed
between the chip and the host processor with a read time of 100 ns for cache hits. The availability of a
cache allowed us to move the maintenance control unit and the instruction prefetch unit off chip. The chip
is designed so that it can be interfaced to standard buses such as VME and MULTIBUS-IL A block

diagram of a system using the chip is shown in Figure 1.

The chip design and simulation have been complex because of the nature of Prolog, the 100 ns cycle
time, and its large size. The need to support backtracking and unification in hardware, and the use of cdr-
coding for lists and structures have contributed to the complexity of the architecture. Although the PLM
architecture has a small number of instructions (< 60), many (> 16) of which require several (> 9) cycles to
execute. The data path has to support six simultaneous register transfers and communicates address and
data to memory in a single microcycle. This requires a minimum of 8 buses. We had to tradeoff space to
achieve the 100 ns cycle time. For example, instead of using 8 buses that would run the length of the chip
to support the register transfers, we used 11 buses of which three run the entire length of the chip. This
approach reduced the bus capacitance without taking extra area for buses. The complexity of the input and
output parts of blocks is also reduced. It also increased the number of possible parallel transfers within a
single microinstruction. The price we paid for this is 8 extra bits in the microinstruction. The second layer
metal in the CMOS process is used for the buses, VDD, and GND. The details of the PLM architecture are

shown in Section 2.

Achieving the 100 ns cycle time presented many challenges. For example, the critical path in the
data path contains a register file, an ALU, and a register. To achieve the 100 ns cycle time, a 16 word regis-
ter file with a read time of 30 ns and a 28-bit ALU with an add/subtract time of 40 ns are needed. The
microsequencer’s critical path contains a ROM and next microaddress calculation circuit. This requires a
ROM (512 X 160) with a read access time of 40 ns. The next microaddress must be generated in 42 ns
based on the status information supplied by the data path. Furthermore, the logic in more than 300 LSI and
MSI chips occupying two hex size boards in the TTL version of PLM have to be put in a single chip. The
top level view of the chip is shown in Figure 2. It contains the major units of the chip and the logical con-
nections between the units. The design and implementation of the data path is described in Section 3. Sec-
tion 4 describes the microsequencer. The design of the ROM, microinstruction register, and the generation

of interface signals are discussed in Section 5.

The major challenges came in the verification of the design and routing the chip. The design
verification process is described in Section 6. A hierarchical methodology is employed by NCR in routing
the chip. The size of the design (> 20,000 gates) presented significant challenges in routing the chip. It is

described in Section 7.

To simplify the debugging process, static circuits are used everywhere except the ROM. The ROM
precharges output lines to achieve the 40 ns access time. The buses used in the chip are also static. A
number of features have been added to support testing. For example, the microinstruction register (MIR)
and the registers containing the machine status are LSSD registers. Some generic microinstructions have
been added to read the contents of registers and to set values to them. Seven pins have been added to the

chip for testing.

The chip uses a two phase nonoverlapping clock. The clock skew is controlled by ruqning the two
clock phases through the length of the chip using 20 micron wide metal lines and distributing the phases
locally in each of the blocks. Overall, the semicustom design methodology allowed us to achieve the
desired performance by redesigning the macrocells in some of the blocks without affecting others. The
design time has also been reduced because of the use of standard cells. However, changes have to be made
10 the commercially available tools before they could be used in the design of the chip. This caused

significant delays in simulation and physical design.

2. MICROARCHITECTURE

The microarchitecture of the chip contains hardware for manipulating five stacks. These stacks form
the data space of a Prolog process. The code is kept in a separate area. The separation of code and data is
intended for the efficient management of memory, changing clauses in the code space, and fast access to
data bases. The organization of the data space and the pointers to manipulate the stacks are shown in Fig-
ure 3. The control stack (hereafter called "the stack") is the area in memory used for storing control infor-
mation. Two kinds of objects may appear on the stack: environments, and choice points. An environment
represents the saved state of a Prolog clause: it contains pertinent register values, and what are known as
"permanent” variables. Permanent variables are variables needed by more than one goal in the body of a

clause; they must be saved so that succeeding goals can access them.

A choice point is a group of data words containing sufficient information to restore the state of a
computation if a goal fails, and to indicate the next clause to try. Choice points are placed on the stack by
special instructions when entering a procedure containing multiple clauses that can unify with the current
goal. Choice points support backtracking, a feature unique to Prolog. Choice points contain the pointers
shown in Figure 3, state registers, argument registers, and continuation pointer. The choice point frame

and the environment frame are shown in Appendix 1.

The heap is the area of data memory used for the storage of lists and structures, which are too
cumbersome to be kept in environments on the control stack. It is allocated incrementally like a stack, and

deallocated in variable size blocks.

The trail is an arca used for keeping track of variable bindings. When a variable becomes bound
during the course of a Prolog program, it may become necessary to undo the binding when backtracking is
done. Thus some method is needed for keeping track of all bindings that are to be undone when the current

goal fails so that the variables they refer to can be unbound again.

The PDL is a small stack created for the unification of nested structures and nested lists. The
H2space is an area of memory used for global variables, system tables such as symbol table, process table,
and page table. It will be used extensively in the execution of concurrent processes resulting from AND

parallclism and OR parallelism.

The data and code memories are word-addressable with 28-bit addresses. In a 32-bit word, 28 bits
are used for storing data and addresses. The most significant four bits are for tags: 2 bits for data types, 1
bit for cdr-coding, and 1 bit for garbage collection. Since tags are not used in arithmetic operations, the

ALU performs 28-bit add/subtract. The data types and their representation are shown in Appendix 1.

The pointers needed to manipulate the stacks are also shown in Figure 3. In addition there are argu-
ment registers, temporary registers, and 16 registers for storing constants. Many of the stack pointers are
actually 28-bit counters. This allows further concurrency in the microarchitecture since increments and

decrements need not go through the ALU. A block diagram of the microarchitecture is shown in Figure 4.

The instruction set supported by the microarchitecture contains ten classes. They are shown in Table
1. The dynamic frequency count of these instructions for a class of benchmark programs, maximum
number of data transfers, and the execution cycles are also included in Table 1 to show their relative impor-
tance. Additional details can be found in Dobry {5]. The procedure control instructions create choice
points and manage them. The indexing instructions act as filters to prevent the execution of clauses which
the compiler can determine will not unify with the invoking goal. The clause control instructions sequence
between subgoals in the body of a clause, invoke builtin functions, create an environment, and remove an
environment from stack. The get instructions unify the calling subgoal’s arguments with the head of an
invoked subgoal. The put instructions load the argument registers prior to invoking a subgoal. The unify
instructions construct structures on the heap (write mode), and unify the structures (read mode). The arith-
metic and logical instructions perform arithmetic operations on 28-bit numbers and logical operations on
32-bit numbers. The jump instructions look at the state of equal and less than flags and jumps to a specified
location. The load and store instructions read from memory and store in memory. The miscellaneous
instructions is the last group and allows booting the system, reseting the stack pointers, and hf'ilting the pro-

cessor by looping on a microstate.

In addition to the above instructions, there are six fundamental operations (primitives) to support
Prolog. They are fail, trail, dereference, decdr, bind, and unify. They are not available to the programmer.
The fail operation restores the machine state when a failure occurs during unification. The trail operation
manages the trail stack during binding if a variable is to be trailed. The dereference operation follows the

chain of pointers which occur due to binding of variables to other variables during unification. The decdr

operation supports cdr-coding of lists and structures. It is used to fetch the next element from a list or struc-
ture. The bind operation stores the data value at a given address. It may call the trail operation to see if the
binding must be trailed. The unify operation unifies arbitrary Prolog items, binding variables as required. It

uses the PDL during the unification of nested lists and structures.

A simulator has been written in C for the microarchitecture. The simulator accepts W-code and pro-
duces the state of the architecture for each cycle. The state information includes the contents registers
MDR, R, T, T1, MAR, §, N, and the condition codes. The simulator can also produce the stimulants for the
QUICKSIM simulator of Mentor’s IDEA system for the logical simulation of the chip. The structure of the

simulator is described in Appendix 1.

3. DATA PATH DESIGN AND IMPLEMENTATION

A hierarchical design methodology employing semicusiom tools was chosen since we wanted todo a
single chip implementation of the microarchitecture in the shortest time possible. The availability of 1.4
micron CMOS technology with two layers of metal and commercial design tools (Mentor Graphics’ IDEA
Station), and the support from NCR for routing and fabricating the chip were the additonal factors in our
choice of the methodology. The logic level design and simulation, timing simuladon, and architecture
development took place in Berkeley. We used NETED and SYMED programs of IDEA station 1o do the
schematic capture. NCR-Fort Collins designed the cells and the macrocells for the chip, routed the chip

and fabricated it. The details of this physical design are described in Section 7.

The design of the chip involved three major parts: data path, microsequencer, and the support circui-
try. We expected the chip area to be dominated by the data path and so concentrated on making it regular,
Since our goal is not just to come up with one processor for Prolog, we also concentrated on designing the

data path so that parts of it can be reused in other designs.

The 32-bit wide data path is dominated by registers and counters. This can be seen in its floorplan
for a bit-slice, shown in Figure 5. Each block in the data path can transfer data to many destinations simul-
taneously. We use tristate buffers controlled by a microbit for each destination. Each block has a multi-
plexer to select one of the buses as its source. There is a microbit for each source. The modular design of

the blocks simplified checking and routing. Since the bus delays have to be reduced as much as possible to

P

allow enough time for the activities in a block, considerable effort went into the design of buses.

BUS DESIGN

The total number of buses and the length of each bus are two important criteria in the bus design for
the chip. If the bus length is kept 10 a minimum bus transfer time can be reduced because of reduced bus
capacitance. The number of buses affects the chip area in the data path. Reduced number of buses also
decreases the routing complexity and decreases the area needed for the buses. The placement of the blocks
in the data path and the number of simultaneous register transfers in the microstates determine the number

of buses and their length.

We analyzed the register transfers in microstates and the eight buses used in the TTL version of PLM
to come up with an initial placement for the blocks in the data path and the number of buses. Two different
bus designs have been proposed and evaluated. The first bus design kept the buses used in the TTL design.
Three more buses are added to maintain compatibility with the microstates of the TTL design, diagnose the
chip, and to support future additions to the microcode while implementing some of the built-in functions.
The second proposal contained a total of eight buses. It maintained compatibility with the present micro-
states of the TTL design but did not maintain compatibility with the buses in the TTL design. We felt that
this lack of compatibility could cause microstate compatibility problems in the future when new microin-
structions are added. So we have decided on the first design. The placement of the blocks and the eleven
buses connecting the blocks are shown in Figure 5. We used a program to detect bus conflicts in each of
the microstates during the bus design. This program is a key tool to be used in adding new microstates to
the ROM. The second level of metal is used for the buses. Bus routing is simplified by butting the blocks
as shown in Figure 5. The top level diagram of the data path showing the connections between the blocks

is included in Appendix 1.

The design details of ALU, counters, registers, PDL, and register files are now described.

ALU DESIGN

The data path contains an ALU for doing arithmetic and logical operations. It performs arithmetic

on 28-bit numbers and compares on 32-bit quantities. The design objective is to finish the longest operation

(add/subtract) in the least possible time using the smallest area possible. The clocking scheme allows 40 ns
after phase 0 goes low for the ALU to complete add/subtract operation. This timing constraint requires the
use of some parallel carry generation scheme. We use the P-circuit [9] with pre-conditioning and post-

conditioning [2, 3] circuits to generate the carry.

The implementation of the ALU using standard cells and a semicustom design methodology imposes
some constraints on the designer. For example, the fan-in, in addition to fan-out of the basic cells should

not be large on the critical path; otherwise, the delay in the circuit would be large.

The ALU comprises four blocks: an input block transforming inputs according to the control signals,
a compare block testing whether the inputs are equal, a parallel prefix calculation block generating the pro-
pagate (P) and generate (G) signals needed for carry calculation, and a sum block supplying the final
result. The top level view of the ALU is shown in Figure 6. The functions of the ALU are similar to that of

the AS181 chip, but it uses a fast carry evaluation method to achieve high performance.

In the input block, the P and G signals for each bit are generated according to the control signal and
inputs. The compare block passes the inputs through exclusive OR gates and then tests to see if all the out-
puts are zero. The testing is done using a tree of NAND and NOR gates and is performed in parallel with
other ALU operations. We could have put the testing circuitry after the sum block, but our approach
removed the testing from the critical path. However, the alternative method would allow us to test for zero
output which might be generated from logic or increment/decrement operations. This testing cannot be

done by our approach. There is no loss of functionality since the TTL version does not test for zero output.

Considerable amount of effort went into the design of the parallel prefix caiculation block. The basic
architecture is derived from the works of Ladner and Fischer [9]. The pre-conditioning and post-
conditioning circuits invented by Despain [2] are incorporated to reduce the fan-outs in the design of the

block.

NCR standard cells are used to implement the ALU and some new cells are added to optimize the
critical path. At each iteration, NCR software tools are used to identify the potential critical paths, and then
intensive SPICE simulation runs are used to obtain better estimates on the delay. We have designed an

ALU that performs add/subtract with a worst case (VDD = 4.5V, Temperature = 80 C) delay of 37 ns.

Since the PLM uses the four most significant bits for tags and cdr coding, the ALU needs to separate
them from the real data if overflow detection is to be done. So, the ALU performs arithmetic operations
on the least significant 28 bits, while the the logical and comparison operations are done on 32-bit inputs.
However, there is still anomaly over the secondary tagging. Currently, the ALU tests for overflow from bit
28, while the secondary tagging takes place on bit 27 and bit 28. No small integer (26-bit integer) overflow

is caught since the additional logic needed to check the data type will slow down the ALU.

Since only 28 bits, instead of 32 bits are needed in the carry calculation, further optimization based
on the Q-circuit ideas proposed by Despain [3] is implemented. The general idea is to use circuits with
fewer gate delay levels to drive those with more levels, and thus try to absorb the propagation delay which
is both unavoidable and significant in MOS circuitry. The control to the ALU consists of 4 bits, §3, S2, S1,
and SO. In addition, a mode bit M controls whether an arithmetic or a logical operation is performed. A
carry in bit (Cn) from the microinstruction controls whether the initial carry is zero. The functions imple-

mented by the ALU are shown in Table 2.

Note that there are many unused entries in the table and it is possible to do further optimization.

COUNTER DESIGN

The data path contains five counter blocks: H, H2, T, S, and MAR. These counters are important for
high performance. Since data space and code space addresses are 28-bit wide in our architecture, the
counter blocks do only 28-bit counts. However, they can store 32-bit values. The counters are used for
pushing and popping the stacks in the data space. Each counter block contains a 32-bit master/slave regis-
ter and counting logic. A carrylookahead scheme is used to achieve a worst case count delay of 60 ns. The
28-bit counter is implemented in three stages. The first stage contains 8-bit carrylookahead circuit. The

other two stages contain 10-bit carrylookahead circuits. The carry ripples through the three stages.

Each counter can perform four functions: load in new data from the selected bus, increment by one,
decrement by one, and hold current value. The design objective for the counter is to obtain the new count-

ing value within the specified time limit, using the smallest area possible.

Our clocking scheme allows a worst case delay of 60 ns for the counting logic alone (70 ns for

counting and transfer). This timing constraint requircs the use of some carry lookahead scheme. For

10

efficient use of area, regularity among the 28 counting bits is desirable. We started our design from the
basic counting equations to examine the possible logic circuit organizations. First, we viewed the counter
as an adder; that is, incrementing is adding a positive one and decrementing is adding a negative one (in 2’s

complement). Consider the following basic equations for addition with carry lookahead:

G.=A.B_
P.=A.OB'
C =G+PC
i+l i i
S_=A.OB'OC.

where A and B are the values to be added; G is carry generate signal; P is the carry propagate signal; C is

the carry; and S is the resulting sum.

Let A be the data currently stored in the D flip flops (DFF), let B and C (the initial carry in bit) com-
0
bined to be the value to be added to A. For counting up, assign B =0 and C =1 to obtain the effect of
i 0

adding a positive one. When counting down, set B =1 and C =0 to add a negative one. There is an active
i 0

low control signal UP, which specifies the counting direction. The counter increments when UP is low and

decrements when UP is high. By substituting UP for B,
i

S =A ©UP£C
C =ACUP+A+C)UP
i+] ii i i

Unrolling the recurrences for C, we get

C=(A A ---A)CUPHA +---+A)UP+C UP
i =1 =2 o 0 i-1 0 0
The equation above describes the logic of the carry circuit for an n-bit counter block with n-bit
carry-lookahead. Co is the initial carry into this block and C is the carry out of this block. :I'he resulting
n
values are stored in the sum bits So(hroughS - The logic circuit of this n-bit block is made up of 2 dif-

ferent bitslices, each bitslice contains the suming logic, the DFF to store the result, and the generation of

carry into the succeeding bit. The carry generation logic for the bitslices are shown below.

11

Bitslice type "a’, used for bit 0:

cnand = C *UP
0
andline = A
1 0
orline = A
1 0
C =cnand*A UP*A C
1 0 00

Bitslice type 'b’, used for bitsi=1ton-1:

andline =andline A
i+l i
orline =orline + A
i+l i i

C =cnand (andline C)(orline‘ UP)

i+l i+l 0 i+l

An n-bit block consists of one bitslice 'a’ and n-1 bit slices 'b’. We call each such block a stage.
The 28-bit counter is made up of three blocks, where the values for n are 8, 10, and 10, respectively, with
the 8-bit block being the least significant. The carry out of the first stage is connected to the carry in of the
2nd stage, and the carry out of the 2nd stage is in tumn tied to the carry in of the 3rd stage. The top level

view of the counter is shown in Figure 7.

The critical paths in this circuit are orline which ORs all the bits of A (the andline is similar but
operates a bit faster), and the carry propagation from one stage to the next. The counter is broken up into
stages to take advantage of the fact that the orline is local to each of the three stages, and since values of A
are available immediately, these lines operate in parallel. There is some delay associated with driving the
control signal UP through all 28 bits (also, UP is the carry into the first stage). These two delays are syn-
chronized so that the control signal will be stable at about the same time as the orline into the last bit of the
first stage, which together generate the carry out of the first stage. From this point on, we only have to be
concerned about the delay of generating the carry out of the 2nd stage into the 3rd stage. In short, the logic

is constructed in a way which minimizes the number of gates in the carry path.

With respect to the VLSI methodology, our counter design has a number of advantages. First, the
layout is fairly regular with only two different types of bitslices, using 3 of one type and 25 of the other.
Second, very simple 2-input and 3-input gates (standard cells) are used, which require much smaller area

and switch faster than their higher fan-in equivalents. And finally, routing is significantly simpler because

12

the number of inputs and outputs of each bitslice is fairly constant, and because most of the inputs come

from the outputs of the immediately preceding bitslice.

PDL AND EXCEPTION HANDLING

The Push Down List (PDL) is a LIFO data structure which has 16 locations of temporary storage for
the pointers to the Prolog structures. It has two parts, PDL left (PDLI) and PDL right (PDLr). Each part is
32 bits wide. During unification of structures, each location contains a pointer to the next deeper nesting
level of the structure. Although we believe that it is highly unlikely that structures in Prolog programs are
nested deeper than 16 levels (in our benchmarks, they are nested no more than 10 levels deep), we have
designed the architecture to detect and to handle the potential overflow. The PDL address calculation logic

(PDLACL) in Figure 5 manages the PDL. The top level diagram of PDL is shown in Figure 8.

The PDLACL has two markers, calied TOP and BOTTOM. As their names suggest, TOP and BOT-
TOM mark the top and the bottom of the PDL, respectively. Both markers are initialized to zero at the start
of the structure unification. During normal operation, a PDL push increments TOP (modulo 16) before
storing data into PDL at TOP, and a pop decremcnts TOP after the data from PDL at TOP has been read.
In our scheme, an overflow occurs when TOP and BOTTOM both point to the same place in PDL and there
is an attempt to write into it (a push operation). When this happens, a hardwired address to the overflow
handler routine in the control ROM is selected instead of the normal next microaddress. The overflow
handler routine increments the BOTTOM marker, moves one location (both PDLI and PDLr) from the PDL
at the BOTTOM out into the stack in the data space in memory, and jumps back into the normal unification
microcode. Upon exiting the handler routine, BOTTOM now points to one location above TOP. If a push
operation is done after an overflow without an intervening pop, another overflow will occur and BOTTOM

will again be incremented by one.

After an overflow has occurred, PDL pops will function normally as TOP will be decremented
(modulo 16) each time. When TOP is again equal to BOTTOM and a PDL read request is present, PDL
underflow signal becomes active and the address to the underflow handler will be selected as the next
microaddress. The underflow handler restores one location of the PDL (both PDLI and. PDLr) from the

stack, and decrements BOTTOM pointer.

13

There is a single bit D flip-flop to remember that a previous overflow has occurred. This bit is set
when the first overflow occurs and remains set until atl overflow data in stack has been restored into PDL,

at which time it will be cleared by the underflow handler.

Since we believe that overflow rarely occurs, the detection and handling mechanisms are designed to
require minimal additional hardware and microcode, and such that performance in normal situation would
not be affected. In terms of additional hardware, the scheme presented above requires four latches, four 2-
input MUXs, one D flip-flop, and about a dozen simple gates used in the comparison and decoding logic
for the control signals from MIR. If the PDL does not overflow, all instructions operate at the same
number of clock cycles as the TTL version without any exception handling. The detection mechanism is
transparent and requires no additional microstates. In the event of an overflow or an underflow, approxi-

mately ten extra cycles are required for the exception handler to execute.

REGISTER DESIGN

The data path contains five non-master/slave registers. These registers are used for storing the argu-
ments supplied by an instruction (ARG1 and ARG2_3), memory data register (MDR), result from ALU
(R), processor status register (PSW), and scratchpad (T1). Each register contains an input multiplexer
(MUX), transparent latches, and output tri-state drivers. The input MUX is used to select input to the
register from different buses. The output tri-state drivers are used as multiple read ports of the register. In

between, there is the transparent latch which is used as a storage element.

To support the data structures used in the PLM architecture, some registers provide functions that
manipulate the most significant 6 bits which include the tag bits and the CDR bit. For example, register T1
is capable of clearing the most significant 6 bits or the most significant 4 bits, which corresponds to provid-
ing a short integer or clearing the primary tag and secondary tag bits. Another example is the MDR which
provides means to change the CDR bit and tag bits using data from the microinstruction. It is also one of
the most complex blocks in the data path. The symbol of MDR is shown in Figure 9. The MDR block also
manipulates the tag bits and the cdr bit from other sources. The tag bits of MDR can be loaded from any
one of six buses. The cdr bit can be loaded from any one of eight places. The details of MDR in Figure 10

shows the various sources for the cdr bit and tags. The MDR block allows data to be transferred to and

14

from memory with appropriate tags. For example, the tag of MDR can be set to the tag of T1 register and

the cdr bit of MDR can be set to that of T register in one cycle.

Al registers are written during phase 1 and read during phase 0. One way to do this is by doing an
AND operation on the clock phase and control signal from the microinstruction, and driving the clock
inputs of the 32 latches using a huge buffer. This implementation introduces local clock skew because the
delay of driving 32 clock inputs is quite large. The second way reduces the clock skew and it is done by
performing the AND operation in every bit. However, because of space considerations, we decided to use

the first approach.

STATIC BUS

To support multiple parallel transfers in the data path, we want to read and write registers in the same
cycle. Since registers use transparent latches, the output of registers have to be disabled after phase 0.
This will leave the buses in high impedance state after phase 0. The way we solve the problem is by intro-

ducing a static bus circuit to buses which are involved in the reading and writing of registers.

The static bus circuit consists of an inverter and a tri-state buffer. They are connected to form a latch
which will be enabled after phase 0 goes low. Together with registers, the static bus circuit acts as a master
slave flip-flop with the register as master and static bus as slave. Under this scheme, reading and writing to
registers in the same cycle is possible without introducing the space penalty of using master slave flip-flops

in the registers.

REGISTER GROUPS

The register groups in the chip are basically RAMs containing 16 words, each 32 bits long. There
are four register groups each containing 16 registers. The first three register groups have only one input
and one output. The first group is used for storing constants and the base addresses of the five stacks
shown in Figure 3. This would allow expcrimenting with different sizes for the stacks in the data space.
The heap usually occupies a good part of the data space. The pushdown list (PDL) is supported by using
two register groups. The left and right parts are stored in the two groups. If a structure has more than 16

levels of nesting then the the bottom entry will overflow to memory.

15

The fourth group is used for argument registers (eight in all) and state registers such as E, B, TR,
Heap backtrack pointer (HB), and continuation pointer (CP). The remaining three registers are used for
book-keeping. The argument registers support fast execution of procedure calls and also data communica-
tion to the external environment. This register group has three inputs and two outputs. A multiplexer is
used 1o select an input. It has two read ports so that two different pointers, for example, stack and trail, can
be manipulated simultaneously. A detailed diagram of this register group is shown in Figure 11. RAM
cells in this register group have two read ports and one write port. Two separate address decoders are pro-
vided for the two read ports. One of them is also used for the write port. Instead of having only one source
for the address as in the cases of other RAM’s, there are four ways the address for the register group can be
generated. Three ways are used to generate the address for the lower eight words and the fourth way is
used for addressing the upper eight words in the register group. The three ways use the lower three bits of
Argl, Arg2, and three address bits from the microinstruction. The fourth way uses the same three address
bits from the microinstruction. The four ways of generating addresses are controlled by two bits from the
microinstruction. Each of the two read ports has its own addressing bits supplied by the microinstruction.
So, they are independent of cach other. This register group is one of the important blocks since it is used

often.

A macrocell has been designed for the register groups with a worst case read time of 30 ns. The
implementation is similar to that of the non-master/slave registers except that the transparent latches are
replaced by an array of 1-bit RAM cells. The read (write) enable control signal, an output of the decode
logic, and phase 0 (phase 1) of the clock are put through an AND gate as in the case of registers. The
storage part of the macro cell is organized as an array of 32 rows and 16 columns with 1-bit static RAM
cells. Eight RAM cells in each row are connected to a bit line bus. Each bit line bus is connected to a huge
tristate buffer that drives an output bus. To reduce the read time, p-devices are used to précharge the bit
line buses. The transistors in the 1-bit RAM cell are sized so that they can pull down the bit line bus in less

than 30 ns and the p-device can pullup the bus in less than 50 ns.

The current access time for the register groups is less than 30 ns (worst case) with the exception of
the dual ported register group which is about 35 ns (worst case). Since the dual ported register group is not

in the critical path, the extra delay does not affect the cycle time.

16

COLLISION DETECTION

The data space is divided into four parts to contain global heap, heap, stack, and trail. The starting
addresses for the four parts are stored in the constant RAM block of the data path. As data items are
entered into the global heap it is possible to exceed the space allocated and go into the heap area. A similar
kind of situation can happen between heap and stack, and stack and trail. These are called collisions and

they have to be detected and reported to the host system.

To detect collisions in parallel with the data transfers in the data path, parallel hardware is included
in the data path. The top 15 bitsof H2, H, and S are compared with the base values for heap, stack, and TR
respectively. If the two are identical then there is a collision and a signal is generated and stored in the pro-
gram status word (PSW). The comparison is done on 15 bits instead of 28 bits since not enough time is
available during register transfers in phase 1. Note that since we are not comparing 28-bit addresses the

collisions are detected at the page level, where a page is 8K words in this context.

4. MICROCONTROL DESIGN

The microcontrol comprises a microsequencer and a status unit. The microsequencer supplies the
address of the next microinstruction to be executed. A block diagram of it is shown in Figure 12. To keep
the design simple it supports just one level of microsubroutine and one level of interrupt. Two 9-bit regis-
ters, microreturn pointer (urp) and control microreturn pointer (curp) are included in it to store return
addresses. Fast microbranching is supported by partitioning the ROM into four pages and using logic to
modify the two most significant bits (page bits) of the next microaddress seed. The micro page select
(upage_select) logic modifies the page bits according to the current status and directives from the microin-

struction.

The next microaddress is selected from different sources according to the current status and direc-
tives from the microinstruction in the micro program counter select (uPCselect) circuit. The potential
sources for the next microaddress are: modified next address seed, new opcode, argl register, subroutine

rom, microreturn register (urp), and control microreturn register (curp).

Both upage_sclect and uPCsclect circuits have been designed using the tree-height reduction method

proposed by Kuck [8]. Although the tradeoffs involved (e.g. different basic cells have different fan-out

17

capacity, there might be too many cells needed, etc.) are too complicated to obtain the optimal circuit, we

used approximate circuit breakdowns and obtained good performance.

Since only the most significant two bits (tag bits) of the seed need to be modified by the upage_select
circuit, there are four possible ways of accomplishing the modification. We have a choice of generating the
encoded version or decoded version (i.e. either have a two bit output or a four bit output) of the page
number. The two bit version is heavily favored since it needs fewer component counts. It also runs faster
than the four bit version since it is necessary to change the output of the four bit version back to the two

page bits.

Optimizing the design of the uPCsclect presented some challenges. The implementation produces a
two bit encoded signals and then decodes them to four control signals. The only consideration used in the
optimization is the reduced component count. It is believed that fewer components indeed would lead to
faster circuits, but it is not clear whether the time saved would be more than the additional decoding time

needed.

We have designed a uPCselect circuit with a delay of 35 ns. The selected next microaddress is then
supplied to the external_mux block in Figure 12. Tt is also stored in the control microreturn pointer (curp)
register. If no interrupts and exceptions are present then the address supplied by the uPCselect logic is sent
to the ROM latch. This completes the operation of the microsequencer and the total time available to the
microsequencer is 42 ns. If exceptions occur then the address of the exception handler routine is supplied
to the ROM latch. If an external interrupt occurs, then the address supplied along with the interrupt signal
is supplied to the ROM latch. The top level diagram of the microsequencer and the tree circuits of
upage_select and uPCselect are shown in Appendix 1. We implemented the two circuits using PLAs and

random logic and sclected the latter because of its speed.

STATUS

The status unit contains the current state of the PLM. The state information includes condition codes,
tag bits of MDR, T, T1, cdr bit of MDR, and tags of selected argument registers. The condition codes are
gencrated during the previous cycle. They are lawched into the status unit during phase 0. The status unit

delivers the statc information quickly to the microsequencer. The 18 bits of the status unit are stored in

18

LSSD [6] registers so that the chip can be tested by initializing the chip to a known state. The unit contains
a shadow register block and an LSSD block. The shadow register block stores the two most significant bits
(tag bits) of the registers AX0 - AX7 in the the dual ported register block of the data path. The shadow
register block is written into during phase 1 when a write to AX0 - AX7 is performed in the the dual ported
register. The contents of shadow are available to the microsequencer within 10 ns from the time phase 0

goes high. This fast delivery of state information is needed to meet the microsequencer timing constraints.

5. ROM, MIR, and INSTREN DESIGN

ROM

One of our goals is to design the ROM with a read access time of 40 ns. The NCR design team sup-
plied the ROM as a macrocell. The circuit diagram of the ROM and the timing diagram are shown in Fig-
ures 13 and 14. The ROM is organized as a NOR array with 128 rows and 640 columns. The 640 columns
are divided into 160 groups with 4 columns in each group corresponding to the four pages. The least
significant seven bits of the ROM address specify the row to be read. The most significant two bits specify
the column. The worst case read time depends on the output capacitance on the 7 input NAND gate. This

capacitance increases as the number of zeros stored in a row.

The ROM uses a precharge scheme to reduce the read time. The reading takes place during phase 1
and the values of the 160 bits are supplied to a latch. During phase 0 the value in the latch is sent to the
microinstruction register (MIR). The values of eight bits at the end of a word in the latch are also supplied

to output pad drivers for communicating them to the cacheboard.

MICROCODE GENERATION

Most of the microcode for the chip is generated from the microarchitecture simulator using pro-
grams. The microcode is stored in the ROM. Almost 300 locations in the ROM are used to implement the
PLM instructions. The state diagrams for the instructions are included in Appendix 1. The remaining 212
locations are used for builtin functions, initialization, and debugging. The microinstructions arc 160 bits
long in the chip compared to 144 in the TTL version of PLM. This is because the number of buses in the

chip and the implementation of PDL are dif ferent from the TTL version. There are also additional blocks in

19

the chip to handle heap/stack and stack/trail collisions.

To generate microcode, programs are written in "AWK" and "C". One program determines the
buses 1o be used for each microstate so that bus conflicts would not arise. A second set of programs are
written to generate values for the fields of a microinstruction corresponding to the data transfer part of the
microstate flow chart. Another program generates the ROM address for the next microinstruction from the

next state part of the flow chart.

MIR DESIGN

The MIR contains the current microinstruction. It is implemented as an LSSD [6] register. The con-
tents of MIR are supplicd to the data path and microsequencer for the entire cycle if the chip is not in test
mode. Since each bit in MIR has to drive logic in 32 bitslices, buffers are needed to reduce the delay. The
buffers on MIRD block of Figure 2 are designed so that within 8 ns of phase 0 going high the control point
values will be available to the farthest bitslice in the data path. The chip can be put in the test mode by
asserting the TEST1 pin in Figure 15. In the test mode the MIR can be loaded with data on the SHIFTIN1
pin by shifting it using the SHIFTA clock. Any microinstruction can be loaded into the MIR and executed.

The results can be observed by reading them using the MEMDATBUS.

INSTREN DESIGN

The PLM instructions usually take several cycles to execute. It is possible to prefetch the next
instruction for most of the PLM instructions to avoid delays in starting the next instruction. The cycle at
which prefetch can be performed is indicated by the microbits PREF1 and PREF2. The PREF1 bit when
asserted indicates that the next PLM instructions opcode and first argument can be fetched from the cache-
board. The INSTREN pin of the chip in Figure 15 is used to communicate the prefetch signal to the cache-
board. The cachecboard supplies the instruction and a 32-bit argument within 10ns from receiving
INSTREN. The PREF? bit when asserted indicates that the second and third arguments can be fetched dur-
ing the cycle if the opcode of the next instruction indicates that arguments two and three are needed. Three
bits (bits 4, 5, and 6) of the 8-bit opcode indicate the number of arguments and the size of an instruction in

>bytcs. The INSTREN signal is then generated and communicated to cacheboard. The data supplied by the

20

cacheboard in response to INSTREN is stored in ARG2_3 block of Figure 5.

6. DESIGN VERIFICATION

The verification of the design has been the most complex and time consuming activity. We did func-
tional and timing simulation to verify the design. The complexity of the design prohibited us from starting
the functional simulation at the chip level. The use of master/slave registers, latches, two phase clock,and a
complex next microaddress selection scheme based on tags and condition code required us to start the im-

ing simulation at the block level.

FUNCTIONAL SIMULATION

A hierarchical methodology is used in the functional simulation. The individual blocks of the chip;
units such as data path, sequencer, MIR, and status: and the entire chip formed the three levels of the

hierarchy.

We used the QUICKSIM program of IDEA station for simulation. Each block in the data path and
microsequencer is functionally simulated by applying all possible values for the control inputs coming
from MIR. The functional simulation of the ALU is carried out using two programs. All the functions of
the ALU are exercised by using a given operand for the A and B inputs of the ALU in the first program.
The add and subtract operations of the ALU are performed for a set of patterns by the second program. All

functions of the remaining blocks have been exercised by a select set of input data.

Following the functional simulation of individual blocks, entire units in Figure 4 are simulated.
Exhaustive simulation is not possible because of the large number of inputs. For example, the microse-
quencer has 18 inputs from the status unit and its opcration is dependent on these inputs. But it is not possi-
ble to make a simulation run for each combination of values. So, programs have been de;rised to reduce
the number of simulation runs. Programs have also been written to check the results of the simulation runs.
Simulating the data path as an unit presented a number of challenges because of the diversity of the blocks.
We first identified 14 classes of transfers that can take place in the data path based on the register transfers
in the microcode. For each of these classes we used a set of data values on the input buses and observed

the outputs.

21

Functional simulation of the entire chip has been done using benchmark programs. The simulation
and verification process used the programs shown in Figure 16. The ROM of the chip is first loaded with
the microcode. The execution of benchmark programs is simulated by reading the sequence of microin-
structions from the ROM for each PLM instruction and supplying the control points to the other units
within the chip. Inputs to the chip are supplied on the MEMDATBUS and outputs are observed on the
MARBUS and MEMDATBUS. For each cycle the contents of the key registers and the next microaddress
are saved. This state information is compared with the output of the microarchitecture simulator for each

cycle when it is executing the same set of programs.

The set of benchmarks used to verify the design is shown in Appendix 1. An example of a set of

stimulants supplied to the QUICKSIM and the output from it are also shown in Appendix 1.

TIMING

The need for reading and updating a register in the same cycle dictated a two phase clocking scheme.
For example, data can be read from T and the register group, CONSTRAM, that contains STACKbase dur-
ing phase0. During phasel the add operation can be performed in the ALU and the result stored in T. We
used delayed branching and a pipeline register for the microinstruction (MIR) so that the data path and the

microsequencer can operate in parallel.

To understand the timing issues in all the blocks of the data path, 14 different classes of data
transfers are identified in the microarchitecture. For each of the 14 classes timing diagrams are drawn
using the two phase nonoverlapping clock. The registers and register files are read during phase 0 and
written into during Phase 1. The ALU is combinational and it is assumed that it will supply the result 10
ns before phase 1 goes low. In the case of master/slave registers, the master is written into during phase 1.
The transfer from master to slave and reading the slave occurs during phase 0. A set of timing diagrams is
included in Appendix 1. This set is useful for cache board designers and also interfacing the chip to stan-

dard buses.

TIMING SIMULATION

22

The timing simulation has been done using NODEDELAY, PATHDELAY, and QUICKSIM pro-
grams with estimated capacitances to determine the delay through the blocks. The timing information is
used in redesigning the blocks to achieve the 100ns cycle time. The timing simulation programs are run for
each of the blocks in the data path and microsequencer to calculate the delay in each block. The blocks
have been redesigned by adding bigger drivers, or changing the circuits to reduce the delay and to meet the
timing constraints. For example, the ALU initially took 70 ns to do ADD operation since we used four
input gates. We redesigned the ALU by using 2 input NAND and NOR gates, OR-AND-INVERT(OAI
121) gate, and AND-OR-INVERT (AOI21) gate. The SPICE run on the ALU showed a worst case delay

of 37 ns.

The results obtained from the timing simulation on individual blocks are used to determine the time
delay for each of the 14 classes of data transfers in the data path. Whenever the calculated time delay

exceeded the specified value the blocks have been redesigned to meet the specifications.

The timing simulation on the blocks of the first version of the microsequencer resulted in a complete
redesign since the estimated delay exceeded the 42 ns constraint by almost 50%. Another unit of the chip
that had to be completely redesigned to satisfy timing requirement was the MIR. The LSSD registers of the

MIR have been redesigned to reduce the time delay.

7. PHYSICAL LEVEL DESIGN

The area of the chip, if it could be routed conventionally, has been estimated at nearly 1.8 cm on a
side, and our cycle time target of 100 ns would be missed by at least 50%. Rather than accepting this poor
result, NCR developed a new approach to implement the physical design. The goal is to develop a place-
ment and routing methodology that would enable us to build very complex structured designs (ones with
more than 20,000 gates) with sufficient density to achieve efficient manufacturability and high perfor-

mance.

The physical level design work for the chip is done by the Advanced Development group at NCR-
Microelectronics in Ft. Collins, Co. NCR undertook this project with the desire to explore the problems
associated with physical design of next-generation semicustom products. The PLM architecture was espe-

cially attractive, because the design requirements of the chip anticipated those of a growing class of

23

advanced processors. It was, nonetheless, beyond the capabilities of current commercial semicustom
design systems. Implementation of the PLM architecture has provided an opportunity to explore hierarchi-

cal, cell based design representations for complex, structured logic.

The concept of cell based design for VLSI is itself a form of hierarchical representation. Cells or
blocks (both parameterizable and fixed) are designed with low level elements and transistors. Then, with
some systems, the chip design can be based only on a behavioral abstraction to the cell level. Currently,
however, the most common approach to physical layout is to extract a single netlist from a design at the
cell level, without any further hierarchy. This so-called "flat" netlist is used by an automatic placement and
routing program to produce a physical layout.

If conventional routing techniques are used to route a highly structured architecture like PLM, one
finds cells associated with a given block distributed throughout the layout. A skilled designer, aware of the
structure of the logic knows, for example, that data paths can be bit sliced; he can place the logic associated
with a given bit very compactly, and efficiently for performance. However, a "flat” router has no aprion
knowledge which permits such efficiencies. Scattering of highly related logic increases the wire length
between cells, and in tum increases the die size and the path delays of the final chip. These factors can
lead to very unsatisfactory results. Itis possible with most tools to "seed", or specify the location of cells,
to improve interconnection during automatic routing. This is, first of all, a very tedious procedure, but in
addition, it has been our experience that seeding a placement is generally inefficient, and increases the die

size over an unsceded placement.

TOPHER (TwO Phase HiErarchical Routing)

A hierarchical physical design procedure has been developed to address the problems and goals
identified above. It was implemented for the chip as an extension of NCR'’s commercial cell based design
system (VISYS), and progressed in the following way. The design was physically partitioned into blocks
corresponding to the logical blocks shown in Figure 4. On first pass routing, the bit slices were routed
inside each block, so that they would align with (pitch match) adjoining blocks. Design verification was
done on the individual blocks, which are fairly manageable in size, allowing for easy detection of layout

problems. The blocks were then wired together in a second pass through the router, after the chip pad cells

24

were added to the layout. The finished layout was then submitted to a full chip level design verification
cycle very similar to that used for a conventionally placed and routed ASIC design. The two phase
hierarchical routing is called TOPHER. An important aspect of TOPHER has to do with the use of the
metal interconnect layers, and the layers on which ports are defined. NCR’s commercial cell library uses 2
levels of metal for interconnect and power routing; metal-2 is routed vertically over the cells for reduced
wire-to-cell ratio, and elimination or reduction of feed-through cells. Since metal-2 is largely free of area
penalty, it is important to maximize metal-2 usage. Consequently, the commercial cell library has all port
connections on metal-2, using metal-1 as the primary horizontal routing layer and for power and ground

wiring. Metal-1, therefore, runs parallel to cell rows.

If this approach is used in the first pass of TOPHER routing for a block, a significant number of
metal-2 wiring tracks would be consumed just by the input and output pins of the cells. These tracks would
then be unavailable during the second pass of routing. To reduce the number of blocked tracks, we
modified the cell library to have all inputs and outputs on the polysilicon level, instead of on metal-2. Out-
puts on polysilicon are, however, undesirable because of the high resistance associated with this material.
It is most advantageous therefore, for this first-pass routing problem, to have input pins on the polysilicon
layer, horizontal connections and power/ground on metal-1, and output pins on metal-2. Since the router
supported only two routing levels, outputs had to be initially routed on the polysilicon layer, so all of the
pins could be defined on only two levels (poly and metal 1). An NCR proprietary post-layout processing
tool is used to automatically convert all polysilicon connected to output ports back to the metal-2 layer.
This eliminated resistance at the beginning of a net, and provided significantly better performance than

would a library actually designed with poly outputs.

CELL ROUTING

The process for cell routing begins with identification of the critical nets, the block level port loca-
tions, and the number of cell rows to be used. In order for each bit slice in a block to align to adjacent bit
slices throughout the data path, the cells are manually placed. In this way, cells are positioned so that block
level port connections would be approximately aligned to the predefined bus order in a bit slice. Block
level port connections are the ports o be wircd to in the second pass routing. They are either input or out-

put ports to standard cells. The tedious manual procedure is due to the lack of schematic-capture-level

25

seeding capability in the router. A recent version of the router greatly automates this step, but it was una-

vailable at the time the blocks were routed for the chip.

BLOCK ROUTING

After cell placement, block control lines and other critical nets are identified and wired first, followed
by the automatic routing of the remaining nets. By splitting the wiring into two groups, the critical nets
could be more efficiently wired using an interactive mode of the router if desired, thereby guiding the route
to the highest performance implementation possible. Upon completion of a block route, poly paths con-
nected to output ports are converted to the metal-2 layer, as described earlier. The result is that the blocks

are wired with three levels of interconnect: poly, metal 1 and metal 2.

Next, the blocks are loaded on a layout workstation. The graphics manipulation programs and an
interactive editor are used to add block level port definition structures and metal-2 power buses. Three sets
of power buses are placed in each block to provide an adequate power distribution network. The buses are
placed next to bit 0, between bits 15 and 16, and between bit 31 and the control logic. At this time nets that

did not route to completion are also finished and the blocks are now ready for verificaton.

In addition to the blocks in the data path of the chip, there are additional functional blocks associated
with status and microsequencer units. These blocks are automatically placed and routed after defining the
port locations. These port locations are selected to minimize excessive wiring in the global routing pass.
Since many inputs to these blocks are from external pads, the ports are also placed to mawch the desired
pin-out of the chip. The only other constraint placed on the router for these modules is their width which

should not exceed that of the data path.

ANALYSIS

For each block, post layout timing analysis and network verification are performed by a set of NCR
proprietary software tools known collectively as VITA. Additional process design rule and electrical rule
checking is also performed to assure that the layout topology is correct. The VITA tool Interconnect
Analysis (IA) is used to extract resistance and capacitance values that are back annotated into the design
files so that functional simulation can be based on real values. For the entire chip, only those pins con-

nected to block level ports still used estimated capacitance values after this back annotation.

26

The network comparison tool, NETCMP, is used to verify that the layout matches the netlist at the
cell level. NETCMP does not do a transistor-by-transistor check, but it verifies the accuracy of connectivity
between cells. The run time is considerably faster than the other, more detailed, check but gives compar-
able results if the cells are known to be correct. The design rule checks (DRC) and electrical rules checks
(ERC) are run next, followed by a transistor level check between layout and netlist (LVS). This latter usu-
ally runs without reporting errors if any discrepancies found by the VITA programs have been fixed

correctly.

GLOBAL ROUTING

The global routing of the chip is done by the second pass of TOPHER. The blocks of the data path,
status, and microsequencer are wired together using the two metal layers. Power and ground routing is
done prior to signal routing. As mentioned earlier, the bit slices for the chip are laid out to align when
blocks are placed next to each other in the second pass. These bit slices are then wired together using
metal-2. Control lines in 'Lhis design run orthogonally to the data buses, and are in metal-1. Miscellaneous

signals and pad connections are wired in either metal layer, in order to complete the layout.

8. CONCLUSION

The semicustom approach to logic design and TOPHER approach to physical layout has resulted in a
chip design with 40,000 equivalent gates, and eleven 32-bit buses, on a die under 1 cm per side (approxi-
mately 130,000 square mils) having a simulated cycle time under 100 ns. A layout of the chip without glo-
bal routing is shown in Figure 17. Note that almost 70% of the area is used up by the data path, and only
25% by the ROM and the microcontrol. The logic design, simulation, and verification effort involved the
equivalent of five engineers working for 2 years. The physical design process involved two iengineers, one
working half time, for 1.4 years. We accomplished this using a conventional two-level router, and the chip

is constructed in a manner compatible with existing design verification tools.

ACKNOWLEDGEMENT

The physical level design was done by Maurice Moll of NCR Fort Collins. We appreciate his efforts
and those of Dan Ellsworth at NCR Fort Collins. We are thankful to Tep Dobry, the designer of the TTL
version of the PLM, for explaining the microarchitecture and answering our questions related to the archi-
tecture and the microcode. We are thankful to Chien Chen for designing the ALU, Allen Wei for writing
programs to check bus conflicts in microcode, Jim Testa for designing parts of the microsequencer and
generating microcode from flow charts, Harold Crafts of NCR for developing the cell library, and Tara
Weber for microcode generation programs. The comments and suggestions provided by the members of the
Aquarius project are also appreciated.

This work is partially funded by Defense Advance Research Projects Agency (DOD) and monitored
by Naval Electronics System Command under contract No. N00039-84-C-0089, NCR Corporation, Day-
ton, Ohio, and National Science Foundation. Equipment and other support for the project has been pro-

vided by DEC, NCR, Apollo, ESL, and Xenologic.

28

REFERENCES

10.

11.

NCR Corporation, NCR/32 General Information. 1983.
A. M. Despain, ‘‘Lecture Notes, CS 257, CS Division, UC Berkeley, (Fall 1984).

A. M. Despain, *‘Notes on Computer Architecture for High Performance,”” New Computer Architec-
ture, Academic Press, (1984).

T. Dobry, Y. Patt, and A. M. Despain, “Design Decisions Influencing the Microarchitecture For A
Prolog Machine,”” Proceedings of the MICRO 17, (October 1984).

T. Dobry, A. M. Despain, and Y. N. Patt, “*Performance Studies of a Prolog Machine Architecture,”
Proceedings of the 12th Intl. Symposium on Comp. Arch., (June 1985).

E. B. Eichelberger and T. W. Williams, ‘A Logic Design Structure for LSI Testability,” Proceed-
ings of the Design Automation Conference, pp 462 - 468, (1977).

B. Fagin, Y. Patt, V. P. Srini, and A. M. Despain, ‘‘Compiling Prolog Into Microcode: A Case Study
Using the NCR/32-000,"" Proceedings of the MICRO 18, (December 1985).

D. Kuck, ““The Structure of Computers and Computations, Vol. 1,”" John Wiley Press, New York,
(1978).

R. E. Ladner and M. J. Fischer, *‘Parallel Prefix Computation,” Journal of ACM, Vol. 27, No. 4, pp
831 - 838., (October 1980).

E. Tick and D. H. D. Warren, Towards a Pipelined Prolog Processor, SRI International, Menlo Park,

CA (August 1983). Technical Report.

D. H. D. Warren, An Abstract Prolog Instruction Set, SRI International, Menlo Pérk,CA (1983).

Technical Report.

Table 1 VLSI-PLM Instruction Set Summary

=

Instructions Cycles Max. Number Dynamic Instruction {
of Transfers Frequency (%)
try_me_else 21 7 3.89
try 17 7 1.12
retry_me_else 3 7 2.63
retry 3 7 0.62
trust_me_else 5 6 2.08
trust 5 6 0.59
cut 8 4 224
cutd 1+7*1 5 0.04
fail 19+3*] 4 0.13
switch_on_term S+d 3 5.46
switch_on_structure 11+d+4*] 4 0.36
switch_on_constant 10+d+4*1 3 0.14
allocate 6 6 437
call 1 4 3.08
proceed 3 4 2.51
gxecute 1 1 042
deallocate 5 4 3.19
escape variable 6 3.48
get_list 3+t+d S 5.15
get_structure 4+t+d 5 4.69
get_variable S+u+d 6 4.82
get_constant 1+u+d 5 1.90
get_value S+u+d 4 249
get_nil 2+u+d 3 0.91
put_value 4 S 9.37
put_constant 2 3 2.17
put_variable 4 9 3.34
put_unsafe_value 10+d 5 231
put_list 3 3 0.67
put_structure 3 3 0.26
put_nil 2 3 0.03
unify_variable 6+c+d 6 9.01
unify_cdr S 5 4.07
unify_value 9+2*d+c+u 3 4.79
unify_nil 4+d+u 4 4.39
unify_constant 4+d+c+u 3 1.27
unify_void 2+8*1 5 2.04
add 3 6 0.1
sub 4 4 042
mult 85+number of ones 7 0.01
in the muluplier

and 3 5 0.51
or 3 5 0.0
eor 3 5 0.0

jump 1 1 0.0
jumpxn 1 1 0.0
jle 5 4 0.0
jlt 5 4 0.0
jeq S 4 0.25
memread 4 5 0
memwrite 3 5 0
coderead 4 3 0
codewrite 3 3 0
loadn 2 2 0
dereference 2+3*links 4 0.95
reset 5 5 0
noop 1 1 0
halt 1 0 0
boot 22 5 0

Dynamic Instruction Frequency is obtained by executing the Big Benchmark Set and averaging the
results.

where:
¢ - time for a decdr operation (= 2).
d - time for a dereference operation (= 5).
t - time for a trail operation (= 4).
u - time for a unify operation (= 3 + optional trail).
1 - the number of loop iterations (>= 1).

VLSI-PLM

(Cache board

(Virteal

cache)

HOST
(SUN-3)

Memory

Peripheral
Device

Standard Bus (VME)

FIGURE 1

BERKELEY PROLOG SYSTEM

BERRY- 1 U S0 ¥ - T RN

TGN
(LR ATN L * :..-.Eot.l--:-i ——-1BYLZ VSNG PN

dwyD WTd-ISTA JO mAIA [PadTdog,

aandyg

PO N»AHUIL..MMHJ!.; ¥aay d01 unol ._:ME.IAW_.M —cAvaInoL e .u...x:uﬂ—mu.l.,\m:a.& At ...uztzu.-“._‘w.l-A.wu:Jwiﬂ...::.:-_
et TN (ossemiroe . Rottibindeedy O toes 101G _M—IT!.:E:_S .e_.:.:..—.~ —!-\Him 1912300108 3
_.__..ee.zm_‘um_t«:. mid e m: N il “lat s B SES—M_:A! v
h t11w140 o [Y noe
et O - _ w%um m mm *HIVIEN] |A&AIA1!:§..._ -:x._d—le\,_ «AI\.;_S;_::. __ax_‘m“.aia.:i::-_
U aen———1 - . aertat .l witot wired -.)... arniel
WMMW WMM :z-u.—m.‘_l%t..:: ..-.nennn.—.naﬁ:...‘.w —at .«;-.....—MMWAW:. s tamane
umwm w“ .I..!_‘m_IAAA&.:!:::
0T RN u [RELITR] i 67351
AT B - : - [- o -_‘ Foia 1-350Hd
|:il-.!Cal..b..::e-- _ mm mumm
22 HH
—7&.!”!0‘9..::2.&— EH ng
2510 g
N §:52
1 asheg e e ooure dﬁ ..n..mm T_ , |
Jwob w151 94 ewrwront HN w4 i " g _cw..um."_x_?_.
—— i}
i Hidduldd =
it 1460 <3—— a3)u490 svarimaL i .M.._.ud..ﬂw:n H I “mnuu
Gor o 2 [- 180U
e e 233 § z — 1$ndI Y
1A ING Juy J _._«__:. ——_" T I TIT N 1) reresnnemine Mt mmm F] H et _.nw__ra_._“:.
0 |— e emaore e uu " (L) 3 []
XL] 2 493
Rig}} WWWS:::E:: __Nm,__mm:az_:
ﬁ E L1 NPT T premrespemshes
LSS —cr (| OYTU
- D= -
- .um.l“ 1 U HIBIACY)-— — s bk
& | e
3
i an t0:RG1INIYU
"33 _ [TH R _ [o
. «FH — I eCh | 8] IONIN vom—s| ——a 87T IN9HE
h m ﬂ z LCTLIRIL]
m ¢Il.|m- SOUANIND] NS C} brsataim LTI L) “"u_-ﬂ”-u“-‘-
@ 3 o e
W mm [LALAY S FIT 1LY
=2 GvEeLS
e Muu.ﬂ_ vog |
sy 091 X ¢1§
e ooy torams | 1() &
jnuzoz (8163110
L 17 354HY -

CRELCLP I

J&aMMA T UL

LT e =

U.lm.u_.. 11w
TR

wan :..DlAbl@.: nuy
P

BT

L.}
e

-} —- N1I9J16W

-..:i-..‘-.wr“&‘é:?u:_se z--...533~1__n_5

neei 1o}
i.l:!“wwﬂm:lm—:_ulo. I~..::il.—.::::-
unei i
-:::_.U.AA i—,ﬂv.—::. -..:-:!_.TIm_._.._uc
188ty et wnet
-:..:Au}lva::- LA L 11 LA
nnet wner

HEAP STACK TRAIL PDL

B

Ty

H2 SPACE

[l

HB o8
FIGURE 3 STACKS IN THE DATA SPACE AND POINTERS
en) phase 1
ROM
512 x 160
interface signals «— = 150
: e phase 0
MIR P
phase 0
134 phT 0 31 1
32 32 18
mm::n::z bus DATA PATH STATUS MICRO ROM
20 (LSSD) — SEQUENCER ADDRESS
opcode bus S OPCODE 8
A 9
forceaddr bus INTERRUPT
¢ ADDRESS

FIGURE 4 BLOCK DIAGRAM OF VLSI-PLM

yiedejeg jo uejdioojd ¢ 2In3I1 |

¥
o
1 .
2
3
oon o om amn N o
zenot 1 13 z¢ e ze ze u zc 1 1 ze 4> zc | zewoy | zexol | 99e@ | 2C zerot
2 (2204 Y
394934 N eH S H 1 1L Msd HWHN HON H nwv Nad | 1ad | TOWV | 19HV | 15U0D

[] o>«
v~

-a

N

N

A) 4 4.3 4 A 4

.W\\ \\\m\qﬂm\’\.«ﬂ s s s s s s s sassssd s srssssslssdasssssrifslsss0ss V2 (Ll rdoarerr ’ res rroress rrsevrr)edrasersrpsarsstsrsrds
| [SaALLE L

\/ A

V22 dddddlddddddad &dd 214 2 dd Ll il ALl L2484

sMa 1
' 2 A \\\\\\\ 4

s \\\\\\\\\‘\ \‘\\\\\\. \‘\\\\\\\\\ P02 2002222 L Ll illdd lddd L ctd P20 L ldd Ll il {ddd Yrrrvrss

sng ML sne 1L

4

.“\\\\\\\\ ‘\‘\\\\\; POCEPIVOOV LI P PP PP EPPITPPIIIILYE PPPEEIOILIPILIEL T,
S8y

/'y A)

VIS P20 020202 L L Ll didldllddsd 7 \\\\\\\\‘f‘\\\\\\\\\\\ VL LLdid dddddddldld ﬁ\\\\\\\\\\\ \‘\\\\ LI LIILLII IR T ILEPIII S \w\\\\\\ V22l L ldedddd £ddd
snay

¥ A A ALY

PY T2 22228 i ded (27

Py e L4 (L4 Y (L s L4 &

SN UV Srg Y
\’\x \\\\\\\’\\\‘ \\\\\\’\\ 12484 4Lidd \\\\\\\\w\u 2200002220/ \‘\\\\\\\’\\ \\‘\\\\\’\; V22 2222 il i dd \‘\\\\\\ \W\\\\\\ \\\\Q\J\m\\ﬂ\’\\ VI 22 E il idddd \‘\‘\\\\ \\\\\\\\\Wy
TSRS IO % U5 SO0 3 S s Y)
0oy V880070200007 2¢2777 PYY Y242 Ll ddddd PYPTY YTV YT NI L2224 L LY V222424 Ldddiadddd wﬂd\m\\xc\tﬂ\\\\\\V\ VYT ddd i didddddd L LLLLL
a0 | INIOR N ZH s H 1 'l MSd Hw Han Y v nad nad creody | 1oy Ny 1suw)

{nun Buisserps)
0d

weidei(q (9Ad1doL STV ‘9 andyy

ﬁ

‘!1 s 3 E
!
i
K

wresdei((oA dog s, 3001g 1IN0y L

QU2 L T ITSNAUONL
1921t w:ﬂ._v:_ww-m:mmo:
paZ1L LT esSnayouetl
vzl aqa._vm—_ﬂu-m:wz_ 1191y

T T TIE 0L 8em 11 ¥0d—

7
(1808l Ot
(11508Y & —&J | syl
€511l
- 110
~ 1821
L1y ino-snan ©——&3-
(21K 2]
CilitnoTsneson e——&d | nael
GGl
R IR TR = — s vact
2961sl

167 tdErer——<3 { |E)00

0c” LdEher——< (0€)00

1 33HS
18281€100
T g ol gz i} ded
. t1Yoo
(110 <—A{som-—ote NI ESSUdN
e’ m..,wﬁ * L IBAUNN
T T 4NNES—
m>cmW|t\
(682200
(1210 (o] L2100

za_ 161® 1 I AUNN
:u_
—<1N 92100

»] THAWNNLgTIst H
(9210 <-(mmf’

EARRD

__gz.01 9 -3 | g0y
_ (_ _c 0|$|.tA:_:uc ﬁ

MI0141L

2anduy|

BZNIINADD

resaue!

16310 LS

T 7}
5

Y

™ T
,\‘.S'I&;——J

L‘,Hca—nﬁ"';‘y—q 2£i18l

-Wr— L Er
9 jun J
— I A
[] «
Zz —t v
-4 L]

-
3
E)

{

toee21a

N1LGSHJIN Tasra @11 SO0

0619 mcﬁ:ﬂu_oumbmz_ 1
1 JY ;ﬁa._:w::_u:az_ L
771 ¢ty RO1LOYSNOY
£28 mspa I 18000
vI8 Tetrs AL SNEyUN

T RO ulhﬂ

— TN
——&3 (1IN “SnANaW
31 1INITSNY8
{111go- .e:ﬁ ——ea 115Ny

vol ——&3 01 3SNUNTL
deod 6501 INL SOUNT T

? 024
104
-4

Lyl

IMUUES o) L6451 407104

8no3

1£s1 | M @ Q weaSer(19497 dog, s do1d Tdd '3

g2¢1
wuzammwltllgmmmvl‘nmuﬁuLz: 104

6281

CRLUIEK; |

4A0T AN

QEOOI~UQ

tarF 19 (0EY

¥I4SNBYL

1~ 3ISUHd 2111138

(@1E 1 20—

1087104 Sxnu— pd

Hanm_moh

(Q1E10 10teg

tare g

— *1333¥

Y

(p:g)lod

;l: NIIND *¥72

(03€1d01

LENY) mquAWllMV\l

*JADTYII ¥I4SNHYL »dN NIIND =d0L7¥7)

u@@umg ~1dd

17 3GHHd

401 10d

~d

14
oo @ [-2-4
—EQTIOYIN D e
n — O
—¢y031 - = 1d33X3 [
o = =2
— 18031 2 2 9
" ! W _
—d031 S 9 2 SNELEaH3H0LYON
40210 R SNEuoINON [
o !
—1E9HLE00 S & % SNEE0LYaW [
——0EDY LYOK ! Qi SNENONOLYTON [
—1359Y 180k
——0g 1 ¥OWaT D 1N0TTETYOW
—— 40N ~HN0TBETHAW [
>
‘*_—“HGND.LSHQ.LHGNE_\N gno_sz“t\jo“ —
o lyowoisnel 2 —_ - ™ .
L - _ 22 = WLRD
—hguolsnall © 2 T NS LTy BH0KHTE O
o luowotsney £ 2 & - T ey
- - = Z —
'*“_"LCQDNSJ.ST.EC_'.U UT'I e D E_C)) '—'l T ag! CDI {—ESOHd —
T 22208 BT o,
——HOWOISNE8EIW T 5 | _J 2 @ 2 3 07 3SHHd
© oD .._J m| E
. RAAAANT

e

PRSI

Qo

pmar——

P |

9. MDR Block’s Symbol

Figure

s[relq s, ¥oorg Yan ol

undy g
*MUW I Frart
M—a: —
A\m as67¢1 ——hag®3 gyOu 1Y
] o ZZList
17 ISUHd LNOTTETNOME—<E4— (1E1800 311D ap—oam| =
- - sanrl ¥ Y) H &304 LYOHA
~— | 1n070E " O —<d— (pE 1uan sost Jf_.t
J 8081
v 100762 40We—e}— 4007401 o
292181 —. uu._w s 0y 3|_,_H S a $#10 _3SHHd
LNOS g _Mu...nulgrt\ljﬂmw:f%:uzczcz xO%I) ~ sl dsHid
momﬂm.wv IA ———— ’ grasl o F—Tgmg I 0HON
*21N08 1|.& SESNGN0 1YONW :
e TR TR e EOH 1AM
4 Q Torei® 13S0 1 YO
Hmne$N8a0140W - BN S EINEIY LW
0 3ISHHd
v 01106 €] e H0WO LIOW CTI9H1
T o 6 006 0§ w0l {1 180W .::W R
m mw .‘.nub 003 asarl TI9H L
~ _ ‘ clcijz|a i[l (02 T1*NI9HL
CIVLNOTSNET LYWW &] Bt T P
vooe T w | wx]« B
counoTega Ty R O
})
s B ol
. {62) 4OR\ bS8tk 9941 Rl
(1 .m@mhmlxﬁ! 4110 HEN
Nomﬁ 92 0L B -0 L ¥4 le .x_uup
(11LN07SNE Yo -
LYW aq | : : MO TUAW
Sm.@ A RRIENIARR 162 INT SNA o
- 1 OE) e g™ LYW
— s
EE_._ (62 INTHLHA nNNme_M.WZO D_Jw_—dm Aw
o 3¢l S —
(1I8OH gegef 1 INTHIHO werzafd b INTTSNET YOH
o » v 4 4

5118 S E@MUHO LGN LHOWIW
P15

[S N —t

¢y T

114G s

s T

T icopec ey owd g

L

»l 92 0L 0 -11 904
M e N1 TSNET IHOWM
IR
e €
e >IN TSNETY
A, al——630 11308711 1"
DS REHY It
=
——=11]8
—— 2138
————¢138
—
57115

spesa(q S, SR Jousrday 11 d4ndd

o wo Jd

1 9i @ =% Y W04

|1 19Y Lg— — ot ~— (D€« 1INIY1HE

;

ErvsT ZFEsi

1€ OF @ - 1 Yod

riglnidlyl

LAZAS 34

+ -
b1
e EE] BEfibmuzinnyLed
A ﬁ|||. HZOY

— 304
(FIjZITIOIND

clLs] .l..ﬁmﬁ‘g .

g

Ch

(r1=HLN0Y LKA
HLOY

AL
M LA]] Lneyisa

e

L9014 % | %04

o B0 (120U
(R RILEL]
A6 « FFIEIUK

ir w2y i

1P imHELNOHLBO

(rNtgibd

1T INi0 ‘&ll

Loig **) 04

o 20— (i oy
20—

Ry INRI0CED]
NS TEIVE]
VWHID

(rI1ZLNaY 140

(L]

1 0i8 v F uGd
e—3(11508 NITL

C1INTHIY0

(Y 121A0di80

cryranogiwg ———— 1 ISNE NIL

vag xnadl —ii1sng g
e 1 15nd Y

© §193y0L5NAY
NY530ESNENTM

i (032038 -——F
(@) 1083Y ——
(G251 3LIUM——¢
casl (9110810715

TG0 SO0
TR e TRAInd IR I
[nlonTouTen I RTrw B ML/
cnenoy onongy —LT
rrmenarnen 00
[l el el R S RA S
W HoD i
moo oot |
FY— O N0 — ()

! aﬂ%

H

1T3sEHe T

ICRERRER]
1gy13c03y
HOE713503Y

@738HH4

ZGE73C03
1B873€93%
JaB-353Y

"

R LERPAN-ER]

(B1L)I0YId 1QiE1Z0uY

112Hg8 40

(03212944

(0:z2)7194Y

(651 1311HN tarztiody
LY ALLTUR] =
a
R
S on3n P>
c238fis
323 332 ZaPLECZR
...nﬁw SR W%W%NMD
oI 0 ﬂﬁ% ﬁ Hl%
Ooom Lo % i} TH@_.@U.I
a0

PIRIZ e J
TR L e | ma e v N e (W5 L |

o m 2 GrinNon A
— A T
QaOrr rr Gl
— Ao ID
el e & I]
r—
=0
o
[y)]

w

(112048 —e U]
(19— (1

L—

R A

A L W E R

e —

(1)oHI0T—e(1)04L07

RAIRS]S!
) 104y

10ouanbasoIdy ays jo weaderd yoord ‘1 aun31yg

Jaouanbosoddtu

OT 9>t 17 H0d
—<3 111800430804
—3 11ppmeun
—a L1118

[I e B LY)

phaw e
.rl 11v] 189yt

.n!_ ¥
(1)1¥hpee _A-.E (111hguod
B (e

G o1l <& 1 49

ﬂdq.qnlnqia.ua
—<c it
»IA __:
!n— :_ _-xg
1

Hﬂ_: gdun
(E1Ingzu _ Trangdan

1W< T'A n13S3
mreel

(SR 10) () WO,

19}

ey

$388
z
i
$ 30z
LR T

1LV PPUX

q°|u-!

(9191 oa* (QIG1PPYIXON
.\|1||Q=E!

i
1861 azcmg [XCRUCEL
v yjes N — 1)
S/l b
— 13%[613!

(9891u118uy T3 (8121011891
:uﬁn_—_.é!o - t B0 J jpomaiy
......

s _L .?s_._.«lllgl,.!.
~—< VT3iuNd -3 d4rpl dun jee—
3 87 ISHHd o
—c Buepin —<3 2ddpeeu —
e rwagne — Vi bes~aepuado
—_— e ——— apeade
1.9 -2 4 1g)epaodo !
J (graiop I, El e
ey -
i —tdd
esaet 301 —paneu
M w_ TIIN0E
asaei WERIT®
L1IPPUIxON
(\F3 u —_—
aaei SR -
4 S T) T 1T
3 951161 1950
(1108xXN AR I N By GRREESSSC TS
e N.: o |I\‘w

T

i A R D
ot meNt
serlocie)d f
= wp — 19d
-om |t .;_ per
S e lTE |3 _ HHAQU_."_-
untL H_mlwua:‘ T

S (3 TDoay od

a0 10dy

GYXN—] 00om _ — Vv B.&a 5.4 18V 6120 e
QExm——| e 2T e PeyTody

o

(at-ppuxunl (919)4PPYY c:_.lﬁ.vllﬁ_-.-_lﬁn!
1L 1oPPUNUNL

ADggl\;;S %}_cb Hr;" 14[;"

ROMEN

COLUMN
ApprEss 1 o—P—iC -lCl -iC‘ AC

(1 of 4 pages)

(1 of 128 words)

ROMEN —4(‘_:_'-—4[:- 4ET ﬂufr

NOR ARRAY

ROMEN —4 = K2
¢ats
M 1-bit output

b1

Figure 13. Circuit Diagram of ROM

< 100 ns >
Prese 0 | L
< 0 s
Fhese |
< Ne M
ALlress N] velid address S
RO &N . contro! eclive
Datea out valid cats valid dete

Figure 14, Timing Diagram of ROM

dyD ayp Jo nould ‘ST dan3iy

p A4 4 _\1
ZLN0LATHS (0L)ONNOYD (0L 143M0d HOOYWON1NO _,

& rinoLdiHs LHOWAWLND A_T«l
L1GM ZNILSIHS AT&
*N3YNY3ILX3 INIL4IHS A!‘.

ST 3 AQI
*NIYLGNI wim <

SELENSRLITEN Z J m— ;#}\ @ ll’ zisit {,—
SGERE 11811 Ar

@W x1144 wyouty <
@M *edMIN Y141HS AMNI.
] * 4 {
G
S SERILLEL (08140083740 N.I
.IA,VS:S:EE: NCERRLE AW\I.

& 14303 aasy O
308dS0 (01300040 <
(02L2 140K B

r4

MICROARCHITECTURE
SIMULATOR

Force file for
QUICKSIM

Register contents for

eac cycle and name
next microstate

—

—

7
/-

s

QUICKSIM

register contents and

data on buses as a
function of time
when changes occur

EXTRACTOR

register contents and

interface signals
for each cycle

COMPARATOR

Diflerences in
register contents
and name of

next microstate

FIGURE 16 DESIGN VERIFICATION SYSTEM

programs

input

output

e EEDE)
I W
[~
., : bt i) &
l-'-l" é - -
.::.l E ;: J“Illulllllllll 191 1IRI4Iee 47y U K N R e 2
- l’ j'hf'llllllll 171 (T4 18 54 14 34) e MM A 1Y)
ﬁg g 1§ I' it liplhip II‘ 1l‘ll|1l‘l I‘l "l‘l“‘i‘l‘l‘ll *
: il wmm ity a i
g \ L L l l 1 H -
g sy rrrreyrrreriila muulu -1-1-11---1--- ?
é Hﬁ%ﬁ&ﬁﬁw&uuu-'uuu ,E
s e R E
E é ? Jlllllllllllllll dudouiddgein s x
o) H 0
8 g ggé ' 24 n).ruil-. 4 1 l 1 g
g i W1 BB lIIHIL'ILIILlI lll1ILllL Ii v ! ‘ g
o b g

Ricniral? VIQI.PIT M Rlack Placoamaent

X+M+4

w _I_
y2 PERMANENT
VARIABLES
Y1 |
N
CcP
B
X E

Figure 18 Environment Frame

X+15

Figure 19 Choice Point Frame

31 29 27

C G
01
10 C G
31 25
11 C G| X

C CDR bit XY = 00 small integer
01 other numbers

G Garbage 10 atom
bit 11 NIL

Figure 20 Data Representation in VLSI-PLM

APPENDIX 1

This appendix has six parts. The first part describes the contents of the environment frame, choice
point frame, and the tagging scheme. The second part gives execution flow diagrams for each instruction
implemented on the VLSI-PLM. The third part discusses the details of the microarchitecture level simula-
tor. A block diagram of the simulator is included along with its description. The sheets of the entire data
path are given in the fourth part. The busses used by each block and the control signals needed to operate
the data path are also shown in the sheets. The fifth section contains the top level sheet of the microse-
quencer and the details of the micropage select circuit and the microprogramcounter circuit. The final part
contains timing diagrams of the various chip interface signals.

1. STACK FRAMES AND TAGGING SCHEME

The stack contains both environments and choice points (see section 2). Figure 18 shows the struc-
ture of an environment frame. Besides pcrmanent variables, environments also contain the values of cer-
tain registers which must be preserved across the execution of a Prolog clause. The following registers are
saved in an environment frame (ordered from low to high memory):

E : location of last environment on stack

B : location of last choice point (and the current value of the cut bit)
CP : where to continue once this clause succeeds

N : number of permanent variables in last environment.

Choice point frames contain sufficient information to restore the state of a computation if a goal fails,
and to indicate the next clause to try. Figure 19 shows the structure of a choice point frame. Choice points
contain the following register values (ordered from low to high memory):

B : location of previous choice point

H : the current top of the heap

N : number of permanent variables in current environment
An : the contents of the argument registers (8 registers)

E : location of currcnt environment on stack

CP - address of next clause to execute should this one succeed
BP : address of next clause to try should current goal fail

TR : the current top of trail.

The four data types of the VLSI-PLM are implemented as shown in Figure 20. Two primary tag bits
identify the data type. The four basic data types are reference (variables), constant (atoms, integers, and
other numerics), list, and structurc. In addition to the primary tags, there is also a cdr-bit and a garbage
collection bit. The cdr-bit allows compact represcntation of lists.

The constant data type also requires a sccondary tag field to distinguish between small integers,
atoms, and nil. The secondary ficld is not fixed by the hardware of the VLSI-PLM. The values given in
the diagram are typical.

2. DESCRIPTION OF INSTRUCTIONS

The VLSI-PLM implements the PLM instruction set [1] along with support for external (host) pro-
cessing. To lessen the performance impact that external procedures impose, a minimal set of general pur-
pose instructions have also been included. These instructions are used to implement nearly all of the pro-
cedures that otherwise would require host processing.

Figure 21 shows the execution flow for each instruction. Execution flow of an instruction begins at
the top of the diagram and exits at the botiom. Some instructions have a second entry point, indicated by
the entry labeled with need pf2 (pf2 is short for prefetch2). This alternate entry point is used whenever an
instruction needs the sccond/third argument which has not yet been fetched.

Each block in the flow diagrams represents a basic block in the microcode. The left-most number in
each block gives the number of microstates in that block (which is equal to the execution cycles given no

memory read/write delays). The middle number is the number of memory reads performed in that block,
and the right-most number is the number of memory writes. To the right of some blocks are notes indicat-
ing operations done by that block. Pfl, pf2, newpl, and newp2 indicate opcode prefetch, argument
two/three prefetch, update PC (program counter in prefetch unit), and add offset o PC, respectively.
Microbranches are also labeled to specify the conditions true for a given path.

A complete description of each instruction will not be given here. For more information see [1].

1. B. Fagin and T. Dobry, ‘“The Berkeley PLM Instruction Set: An Instruction Set for Prolog,” UCB
Research Report, CS Division, University of California, Berkeley, (September 1985).

add
need pf2

[1ofo]e®
o lofo] e

IFETCH

allocate

E<B E>=B

and

IFETCH

Figure 21 State Diagrams for the Instructions

call
need pf2

DloTolp\ Lilolol o

IFETCH

coderead

(e [e]o] b
pf2

IFETCH

codewrite

pfl
ol f

IFETCH

cut

cut bit on
B set

IFETCH

IFETCH

cutd

Gl

GLTe LR

IFETCH

deallocate

[sls o] wren

IFETCH

decdr

11070
con
str Ist var

'’ [i1e) GLo]

L

RETURN RETURN

deref

ool

dereference

Lt fofo]en

IFETCH

dereference

L [o]o]

IFETCH

execute

lolo]

IFETCH

external escape

[1]0]0]

[1]o]o] 1Jolo] [ijofo [i]olo

arity one arity two

1]Jolo] {1]o]o

arity three to seven

arity zero
i [2]o]1] L A FI I

dump AX registers

................

dump H,B,HB,TR

goal success goal failure

*., update cache

fail

address/value
pair

IFETCH

get_constant
need pf2

!
| L Jofof e

dereference Ax[arg2}]

!

UNIFY

get_list

[lofo]em

dereference Ax(argl]

str

L |2]0]1] [1]iio]mdmode

write mode

trail 501 TFETCH

IFETCH

get_nil

L lofo]

dereference Ax[argl]

v

UNIFY

get_structure

need pf2

[Jofo] e

Bann

dereference AX[arg2]

write mode
pf2
functor==
argl trail 501
FAIL IFETCH
IFETCH
get_value
need pf2

11o0lo0! pf2

 I—

7Tl
)

dereference AX[arg2]

X addressing \" addressing

nonann
.

dereference AX[argl]

get_variable

need pf2

non
Y addressing
(2o]en

IFETCH

jea/ilujle

pf2

jump

[fofo]en

IFETCH

jumpxn

newpl
2lolo] o

IFETCH

loadn

lock

wait

pfl
pf2 extemalfu*

IFETCH

memread

IFETCH

memwrite

IFETCH

mult

overflow exit

IFETCH

or

need pf2

proceed

newpl
pfl

CP==0

GOAL SUCCESS IFETCH

put_constant

need pf2
Clolo) e [lelodm
pf2 pfl

IFETCH IFETCH

put_list

|
2lofo] "

IFETCH

put_nil

4

IFETCH

put_structure

need pf2

put_unsafe_value

need pf2

| |
GTele] []elo] w

r3 1 ﬂ pfl

v

dereference Yi

put_value X

need pf2
f1 2
2lolo] [2fo]o]]
pf2 pfl

IFETCH IFETCH

put_value Y

need pf2

| |
(L] [fele] m

put_variable X

need pf2

| |
nonpnonk

put_variable Y

need pf2

l |
[1Tofo] [1]olo]se

210 IJpﬂ

!

IFETCH

retry/retry_me_else

2fof1]m

IFETCH

sub

need pf2

nn o
pf2

IFETCH

switch_on_constant switch_on_structure

| | | |
(ToTs) [ololee [lols] [lelele
< N 7

dereference Ax{0] dereference Ax[0]

need pf2 need pf2

not at

end of table

if back to
starting point

* code read

at end of table

FAIL

switch_on_term

need pf2

[[olo] [ifelode

dereference Ax[0]

" MTolo] [olo]

newp2
‘72 0 (Ll pfl

offset==255 / \

FAIL IFETCH

trail
501 505

AL

>=B

RETURN

>= HB

RETURN RETURN

trust_me_else/trust
f1

;
pf2

IFETCH

try/try_me_else

both are var

one is var

[lefo] L

equal

bind variable l 1101 11071 FAIL X PDL overflow

trail505

IFETCH FAIL

PDLempty { 1 |0 | O dereference

nonvar
cdr bit set

dereference

unify_cdr

read mode
3110 write mode
cdr set cdr clear
3 (0741
noognnon
X addressing Y addressing

1100 |pfl {20} 1pfl

! !

IFETCH IFETCH

write mode

dereference *S

110 l

UNIFY

trail 505

unify_nil
read mode write mode
pfl
3]of1]
pf2

dereference *S IFETCH

*S cdrnot set / \

FAIL UNIFY

unify_value

Y addressing

dereference Yi

read mode

gnn

X addressing

dereference Xi

non

write mode

write mode

2

i

*S cdr bit set /

decdr

cdr is var

trail 505

ano

dereference

v
UNIFY

pfl

[o

var wrilten

var points into stack

v

IFETCH

v
trail505

|
i

IFETCH

write mode

X Y

l2]o0 1]pn| 3]0 |2 |pn
} !

IFETCH IFETCH

unify_variable

odr bit set

decdr

/
GTeTo) /[

o] o]

var

nonvar

!

dereference *S

l—o_r(;— X addr Y addr
T [[olo]m[2lol] e
trail 505 l
IFETCH IFETCH

unify_void

[1[o]o]wm

read mode write mode

[+ [o]o] 1 fo]o] om

change to write mode

v
trail 505

|
[[o]o]

unlock

wait

pfl
pf2 externalfu*

IFETCH

3. REGISTER LEVEL SIMULATOR

A register level simulator was used for the debugging of the microcode and for producing input for
the gate level simulator. The register level simulator is based directly on the microcode ROM bits. The
ROM bits are compiled into C code which models the behavior of the chip (at the register transfer level).
The result of compiling the ROM is a collection of C functions, one for each microstate, that is called by
the main loop of the register level simulator (see Figure 22). The body of the simulator contains code to
simulate memory, instruction prefetching, and external (host) processing. The simulator also contains code
for statistics gathering, and debugging (single stepping, break pointing, etc.). A very useful feature of the
register level simulator is the ability to produce Quicksim input. This allowed non-trivial programs 10 be
used for gate level simulation.

A large number of benchmark programs were used for testing the microcode and the chip design.
Many of the programs are standard Prolog benchmarks, others are programs developed as part of the
Aquarius research project at Berkeley, and the remainder are small programs written specifically for
exercising various states or branches in the microcode. Because of the large number of programs available,
only a small number of them were used to generate input for the gate level simulator. This subset of the
benchmarks was carefully chosen to exercise all parts of the datapath and microcode. The fact that the
step-by-step values of the chip registers and interface pins given by both the gate level and register level
simulators exactly match for this subset indicates that the register level simulator faithfully simulates the
behavior of the datapath. All other benchmarks were run on the register level simulator and the results
were compared with running these benchmarks on standard Prolog systems (C-prolog and Quintus Prolog).

The gate level simulator used was Quicksim (part of Mentor’s IDEA system). This simulator
requires input specifying the logical values of various points in the chip as a function of time. We were
able to simulate the entire chip by specifying the values on input pins (clock, opcode, and memory data
pins) as a function of time. To run benchmarks on this simulator, the register level simulator was used to
produce the necessary input. An example of the Quicksim input is given in Figure 23. A program was
used to filter the output of Quicksim and produced an output file giving step-by-step values of certain regis-
ters and output pins (sec Figure 24). This output could then be directly compared with the corresponding
output of the register level simulator.

load PLM code

e

select next microstate

calculate new uPC
register transfers

memory operations

output verification data

output statistics

Figure 22 Block Diagram of the RTL Simulator

1
put_list . X1
boot00

run 100

2
put_list X1
boot01

run 100

I #E#

put_list X1

1nit00

memread

force MEMDAT 0ffffc00 65
run 100

A #H##

put_list X1

init01

memread

force MEMDAT 0ffffc10 65
run 100

#H#H#D #EH

put_list X1

1nit02

memread

force MEMDAT Offfffff 65
run 100

6

put_list X1

init03

memread

force MEMDAT 0ffffe00 65
run 100

#HH#T ###

put_list X1

init04

memread

force MEMDAT 00000001 65
run 100

Figure 23

Sample Input to Gate Level Simulator

B

put_list X1

1nit05

memread

force MEMDAT 00000020 65
run 100

#H# Y ###

put_list X1

1nit06

memread

force MEMDAT 00001000 65
run 100

10

put_list X1

1nit07

memread

force MEMDAT cfffffff 65
run 100

#H# 11 ###

put_list X1

1nit08

memread

force MEMDAT 00040000 65
run 100

12

put_list X1

init09

memread

force MEMDAT 00080000 65
run 100

13

put_list X1

init10

memread

force MEMDAT 00000004 65
run 100

14 #4#
put_list X1
initll

memread
force MEMDAT 0000000f 65

run 100

15

put_list X1

initl2

memread

force MEMDAT 00000002 65
run 100

#HH# 16 ###

put_list X1

initl3

memread

force MEMDAT 00000000 65
run 100

1T

put_list X1

initl4

memread

force MEMDAT fffffffd 65
run 100

18

put_list X1

initld

memread

force MEMDAT 000000ff 65
run 100

19
put_list X1
reset00

run 100

##EH# 20 ###
put_list X1
reset01

run 100

21
put_list X1
reset02

run 100

#FHH# 22 ##H#
put_list X1
reset(03

run 100

#H## 23 ###

put_list X1

reset04

prefetch(1)

force OPCODE 00000013 20
force MEMDAT 00000000 35
run 100

#HAH# 241 #H#H#
put_list X1
put_list00
run 100

#HEH# 20 ###

put_list X1

unify_cdr03

prefetch(1)

force OPCODE 00000040 20
force MEMDAT ¢80000b5 35
run 100

#H## 26 ###

unify_constant a

unifv_constant_writeQ0
run 100

#HH#H# 2T ###

unify_constant a

unify_constant_write0l

prefetch(1)

force OPCODE 00000040 20
force MEMDAT ¢80000b6 35
run 100

#HH# 28 ##H#

unify._constant a
ifetch

run 100

#HEH# 20 ###

unify_constant b

unify_constant_write00
run 100

30

unify_constant b

unifv_constant_write01
prefetch(l)

force OPCODE 00000002 20
force MEMDAT ffffffff 35
run 100

31

unify_constant b
ifetch

run 100

#H#H# 32 ##H#

unify_nil

unify_nil_write00

prefetch(1)

force OPCODE 00000013 20
force MEMDAT 00000001 35
run 100

33

unify_nil

unify_nil_write01
run 100

#HH# 4 ###
unify_nil
ifetch

run 100

#H## 35 ###
put_list X2
put_list00
run 100

#H## 36 ###
put_list X2
unifv_cdr03
prefetch(1)

L X 1 ok 3¢ %

boot00

Memdat = Offffc00 MDR = Offffc00 T = fIffffff

T1 = fiffffff R = ffffffff H = fiffffff S = fIffffff
MAR = ffffffff N = ffffffff Mode = 2 CC =
Argl = fifffiff Arg2.3 = -1

k% 2 % % %

boot01

Memdat = ffffffff MDR = Offffc00 T = fIffffff

T1 = fiffffff R = ffffffff H = fiffffff S = fIfffiff
MAR = Offffc00 N = ffffffff Mode = 2 CC =
Argl = ffffffff Arg2.3 = -1

% k% 3 % % %k

init00

memread

Memdat = Offffc00 MDR = Offffc00 T = Offffc00

T1 = Offffc00 R = fffiffff H = fiffffff S = fIffffef
MAR = Offffc01 N = fiffffff Mode = 2 CC =
Argl = ffffffff Arg2.3 = -1

o K % 4 o % X%

init01

memread

Memdat = Offfic10 MDR = Offffc10 T = Offffc00

T1 = Offffc00 R = fiffffff H = fiffffff S = fIffffff
MAR = Offffc02 N = ffffffff Mode = 2 CC =
Argl = fffiffff Arg2.3 = -1

% Xk Xk 5 % %K X

init02

memread

Memdat = Offfffff MDR = Offfffff T = Offffc00

T1 = Offffc00 R = f{ffffff H = ffffffff S = fTffff
MAR = Offffc03 N = ffffffff Mode = 2 CC =

Argl = ffffffff Arg2.3 = -1

* % XK 6 LE 2

init03

memread

Memdat = Offffe00 MDR = Offffe00 T = 0ffffc00

T1 = Offffc00 R = fiffffff H = fiffffff S = fIffffff
MAR = Offffc04 N = ffffffff Mode = 2 CC =

Argl = fiffffff Arg2_3 = -1

Figl :+ 24 Sample Output of Gate Level Simulator

* %k % 18 kK%

initl5

memread

Memdat = 000000ff MDR = 000000ff T = 0ffffc00

T1 = Offffc00 R = fiffffff H = ffffffff S = fffiffff
MAR = Offffc10 N = ffffffff Mode = 2 CC = 2

Argl = fIffffff Arg2.3 = -1

*k% 1Q **k*

reset00

Memdat = ffffffff MDR = 000000ff T = Offffc00

T1 = Offffc00 R = 00000000 H = ffffffff S = fIfffff
MAR = Offffc10 N = 00000000 Mode = 2 CC = 0

Argl = ffffffff Arg2 3 = -1

* k¥ 20 * k%

resetO1

newpl

Memdat = 00000000 MDR = 00000000 T = Offffc00

T1 = Offffc00 R = 00040000 H = fiffffff S = fIfTffff
MAR = Offffc10 N = 00000000 Mode = 2 CC = 0

Argl = fiffffff Arg2 3 = -1

%k % 23 % 2k %

reset04

prefl

instren

lastmi*

Memdat = 00000000 MDR = 00000000 T = 00040000

T1 = 00040000 R = 00001000 H = 00001000 S = 00001000
MAR = 00001000 N = 00000000 Mode = 0 CC = 0
Argl = 00000000 Arg2_3 = -1

kA Of kkE

put_list00

Memdat = ffffffff MDR = 00001000 T = 00040000

T1 = 00040000 R = 00001000 H = 00001000 S = 00001000
MAR = 00001000 N = 00000000 Mode = 1 CC = 2

Argl = 00000000 Arg2_3 = -1

EE QB Kk
unify_cdr03

prefl
instren

4. SHEETS OF THE DATA PATH

The data path is in several sheets with the control lines and power connected at the top and bottom.
The buses of the data path are connected to the blocks on the sides. A list of microbits is also given. The
microbits are grouped according to the blocks they control.

Mir Mird Control
Constant RAM:
0 0 contobbus
1 1 paddO
2 2 paddl
3 3 padd2
4 4 padd3
5 5 memdattocon
Argl:
6 6 prefl
7 7 argltorbus
8 8 argltomemdatbus
Arg23
9 9 pref2
10 10 arg2tobbus
11 11 arg3tobbus
PDL-lef1 and right:
12 12 pdicO
13 13 pdicl
14 14 pdic2
15 15 ramwe
16 16 ramcs
ALU:
17 17 s3
18 18 s2
19 19 sl
20 20 sO
21 21 m
22 22 cn
R:
23 23 mdrbustor
24 24 alubustor
25 ldr
25 26 rtobbus
26 27 rtorbus
27 28 rtomemdatbus
MDR:
28 29 mdrbustomdr
29 30 alubustomdr
30 31 rbustomdr
31 32 t1bustomdr
32 33 tbustomdr
33 34 memdatbustomdr

34 35 ldmdr

35 36 Idmdrtag

36 37 mdrtagsel
37 38 mdrtag30
38 39 mdriag31
39 40 otcdr
40 41 tcdrO
41 42 tcdrl
42 43 tcdr2
43 44 mdrtomdrbus
44 45 mdrtorbus
45 46 mdrtomemdatbus
46 47 mdriobbus
MAR:
47 48 alubustomar
48 49 rbustomar
49 50 t1bustomar
50 51 tbustomar
51 52 ldmar
52 53 marcnten
53 54 marup*
54 55 martomemdatbus*
55 56 diagnostics
Bus Connector:
56 57 tlinbustomemdatbus
57 58 memdatbustotlinbus
T1:
58 59 bbustot1
59 60 rbustotl
60 61 tlinbustot1
62 1dt1
61 63 npasstl
62 64 numvaltl
63 65 t1tobbus
64 66 tltoabus
T:
65 67 mdrbustot
66 68 bbustot
67 69 rbustot
68 70 tinbustot
69 71 tlinbustot
72 Idt
70 73 tenten
7 74 tup*
72 75 npasst
73 76 numvalt
74 77 ttomdrbus*
75 78 ttobbus*
76 79 ttoabus*
H:
77 30 mdrbustoh

78 81 rbustoh

79 82 tinbustoh

83 1dh
80 84 henten
81 85 hup*
82 86 htotlinbus*
83 87 htorbus*
84 88 htotinbus*
S:
85 89 mdrbustos
86 90 bbustos
91 Ids
87 92 scnten
88 93 sup*
89 94 stomdrbus*
90 95 stotlinbus*
H2:
91 96 mdrbustoh2
92 97 rbustoh2
93 98 tlinbustoh2
99 1dh2
94 100 h2cnten
95 101 h2up*
96 102 h2totinbus*
97 103 h2totlinbus*
N:
98 104 mdrbuston
99 105 bbuston
106 ldn
100 107 ntotinbus
101 108 ntomdrbus
Register File:
102 109 mdrbustoregin
103 110 rbustoregin
104 111 bbustoregin
105 112 ldreg
106 113 adsecla0
107 114 adselal
108 115 adselb0
109 116 adselbl
110 117 regsela00
111 118 regsela0l
112 119 regsela02
113 120 regselb00
114 121 regselb01
115 122 regselb02
116 123 regtotinbus
117 124 regtotlinbus

Collision Mux:
118 125 setcollision
-119 126 collision If zero then select TIINBUS else TINBUS

Microsequencer:

wenctlr Usually one, i.e. load curp.

1durp

petl3
unxad8

unxad7

forceadQ
forceadl
forcead2

unxad6
unxad$
unxad4
unxad3
unxad2
unxadl
unxad0

Microprogramcounter Select:

120 127
121 128
Pselect:

122 129
123 130
124 131
125 132
126 133
127 134
Subroutine ROM:
128 135
129 136
130 137
131 138
132 139
133 140
134 141
135 142
136 143
137 144
138 145
139 146
140 147
141 148
142 149
143 150
144 151
145 152
146 153
147 154
148 155
Interface Signals:
149 156
150 157
151 158
152 159
153 160
154 161
155 162
156 163
157 164
158 165
159 166

mctl4

mcti3

mcil2

mctll

mctl0

subrmux If zero then urp else curp
uldarg

ldmode
mode
Idcutm
cut

newpl*
newp2*
wait
dspace
lastmi*
fail*
memread*
memwritc*
externalfu*

ttotlinbus*

parity

IR LI p—
(6B HG e
RIRTIE A D —

LR 2—
(91048 L HS—

m
W
)
@

-
DO o
g
N
R
o

—~
o©
e
[§8]
3
)
[1)
a

F—<1” 3SHHd
——<10" 3SUHd

CS 0 TH

(410 THC e
(6 AH Ty —

(20N UG y—2—
{ VYOS THE y——1
(0108 IHE—]

<217 3SYHJ
L <JAY307 1Hd

3
b
RRRLRLT I
)
IR TR TU
(G041 L u [LH T[T]
(o 12 9" ISUHd
wwode O -
19)10¥IH
b _
NO2O T LUOHIN i o
£ 00y d I o
b o {--- v
100y) “
(TR e W 17TIsuHd
A,
go1ngd ") i, 97I5HHd
n 1
QL
[] v
o ™
» w
e })
[ta) {1
D V-
X
[]
3
w
=
/ v

PH]_DEEY

LAY

(1Y)
(&]

HI_

a.

BY |

L

PHI_D

[]

33
=)

RBUS!

q
—

———1 3SUHd

LR
m_ gaauyiay [——LE JJ0UNA
« 5 o _ 29anu g F———<102 14a487IUd “w
o4 8& | tsoawiy << 1)1 40UT0 o =
- o Z NGB0 <01 ¥0u70d Wer =z
(91IOYIN o ——sauua A vasun <1 ISUH R T
(STI0YIH O——amuuy mw. D 0T ISUH <10 35UHd m:- a y a.
[rd —
AN _
— - M,A. _r .,r w.
@ (S0 ITHE-—3 w qm_ mw_ W.
N ENING—5 T 2 4 4
© g (y0NIHEG—Y & YT
- w) —
@ (NN IUESE— % - — N
3 = -] a
o (STINNIEe—E o O
= . o 2
wf L
= _ ©
(91IQYIHE——soum & £suowing |31 €400 71Ud ®
(SDIQIIHES—— s 3 3 | sawas [—— 2900704 ol
- =4 N vaouu oy ————30 1130y dd a
o4 I I p¥0ayI0d [0)¥0U1Ad a
- 22 () 1~ 25uHd f——< 1 ISUH
m_ 0 8- 35uHd <30 150Hd

MORBUS (3 oS>

T1INBUS(]

(LS)08 HO———bmmmmenl 2
Q
I -
§ s g o—3sume <20 3SHHd
4 :
{8)04 [WES————suani1:sntinaini 3 @
_ &
= =
::, |
@
D
p—
T
=
]
b=
(0)337N7Y (81337018 . exeTsyppios m——<dx37S1[][93
{1)2337Ny <F—111227nw n93~N Y :203 nd
SAQHLIuE <F—<aa Hi b 1333%3 143343
ANNZHE—] 4NNT2ZH g=xxygyn1g <3 n'nf
JAQZHE—1 4A0TIH gna1sTay (L2 jonenTy
ANAHE——1 anoTw Z _AENEITI Y }-———Cj 8l H)
AR A7 9 2 narsTany < L2 1INETE
ANALEE— ATl i ANRTS 1———<:3 NS
A0 ML “g’ 4AGTS |————<:.-xi_0‘§
AN S NNT 4 D m3sgng ———<C 1 _35HHd
AACHER 1 aa07 40U % 0" 355He <37 354H4
(89S)04 [W ©—sa11s0N010 = N (12)041W
S o
e =™ ‘u_':
S 332
b = =
2 T o =
0] a [+ 4
e =W o=
c gt 3

OVE —1>MAROVF

HEMDATBUS(3110
UNF

KARBUS127:0)

(75104 [HES—T sanuuu
(ES)IQY I HE———|NaiNJuuN

(2S)0Y IHS—seuan ———= (95 IAYIH

(18)0Y IHS——.suo1sns1
(081041 N@-——Luuotsnsu
(6F)I0YIHS FEICRTN-M
(8Y JAY I WEE———suuorgnany

MARt oMEMDATBUS»

TIBUS(2710)
TBUSI2746)

L 17 38HKd

ALUBUSI 2710
RBUSI2710)
PHASE

UBUS(27:08)

RBUS(2788) —uo
1BUS(2730) il
TBUS(27380) el

HDRBUS
RBUSII!

NEMDAT:

&

BBUS(?]HOI_[:
1LUBUSL3L xUl___<

ABUS(31 oy LI

(£91)0Y NS ——dsstioui = = 3
(€%) 0¥ I WES—zu00s = 1433
(27108 WE—mivnlL 83393
(T7)08IHE—Tpus1 5 4 2 snaLuokaHoL¥an F——E (37 10U IH
(Ov) 0¥ I WES——muo2ie 58 J sngsaLyon — :: igi%ﬁ
(BE)10YIHNCH————1EDBIN0 & ¥ 5 SNER0LYUGH (L
{BE)881%@———— DEOHLNON ¢ SNEYIWLAAN - (vv)0YIN
(LE)OYIHEg—]713508140K
[gé ;gi%:@—‘———- SBINOWET] ing=iemyaw > 1£780K
) 4ONaT —1ngmesugn F——— =202 80K
{ 7€)0Y] HE——— vouoisniisauds Z SI00T5ZTN0M {5 740K
{££10¥] WE—— voucLsNaL 2 _z3 pid wing p——<HiNJ
(36105 N ———fsosznets & _ 2 2 =5 = guowe P30k
{ 1€10Y] WES———— uowoisnay zZe g ™ ; =242
{ BE) 0N I WE—(wonoisnany tg' o5 a —,g ™ 3 1—3SHHd <117 3SEHd
(62104IK oossnuon 28 D28 2 2 5 g asuHe <307 3SHHd
&% 22942 285
K2 AARARI
scggae29
PR ;-:E ™o m
PP D —R DD D
23232 VWD D22
Do 20O OO0
X @OD DX w - =
2 - = Lot =
p = x < Q
(=4 =
wl
=
(82)0Y8 NES———5na140WIn0.i¥ o
[LZ]GHINC‘-——-—' sneucly 5 o =
(9210¥ WS- snesels 22 2 € @
lSZ]GBIHC»—L————um i /9 _
(72108 HE Lo:sneneE 3 2 & 5 1masene 1 35E0¢
(£2)08 1 KE——fpoisnauoug & 3 & 2 e‘;;uﬂ—’@:i ERELY
T TT7]
g 5 =
mo oo -
R R &
oD =2 2
me oo o
o m D -
o, = =4
%z S
w
=
(22108 IHE—— w2 - k
(12108IRE—
(2108 IRE— os —
(BLIQYIMES—— 15 3 -205- (|
(QI)O&:;UQ————‘ 2 g‘g’m'gf‘: C: 1823 —==>37118
(umam@———\ ;e CmECE LI 63 0308
o o v & (=4
P B

=
3_22°
oséissg
STET a2 2=
Jrego2= 22
/\T%%‘I'—r— %?
352322 %
(QL 108 [NS—L5nunN 7~ -a 502 ™
=25 @ = . i — g -
{54104 [WE>———15584N gl'éé 2 3 warawcssons D——E5 (597 104 - K
[VL]DHIN@————A sani 2g g sownaniny =1L J4IK
pe} L}
PO MY L wanawes S SL-0d 1
(20108 T 1om — T ssnagen p——O (8L Q81N
2 5 3 snauges, O (LL QN
(0L)JY [WS——LersnanNiL -3 R
m -] -
(69108 [WE———Loisngy zZ - s = -z-‘
(39)08 [WE—iosngs “:’| ?'. o o2 é w
a g 9 2 Z ES -
(L9108 [HE——iorsnadou /% /%/2 E ﬂ— z 17 3S5Hd
5223232
- m m o om
> 5 o B O
p) D 2D pow 2
- © @ o=} [re]
e @m & 2 Z
2 = =

}— BBUSI311

0E”1L ‘-———DOE’IL

(39)0Y [UE3— snewosrll 1gTL > 1eT L
(S3)08 I WES— snasoLiL ~
(310N [WE—— [L0AKAN |
(ES 108 [WS ——1 11554dN s - 3
(28108 I WS nm o =2a° ol
(19)0N8 [WE———riousnaniiiZ =2 ° 3 _
(09104 HE—— tioisney & 3 3 3 o (T 3seHd —1_3CSkHd
(65108l WES—— 11015088 & B3 2 I 073s0nd ———<Z0" 350Hd
o x & Laad
: T 1
S ooo Z—E
7 mmm m
5 oowm @0
2 D023 p
(== oo @ m
@ x : E
—

cq -

T11UBUS T 3110 P TYINBUSI3130)

ovF |1 S0VF
unE F——1>SUNF

(£6 104 WE——Chans
(26108 HS———ainas

3

asnantiiess O——e (G6 -0d 1N

HORBUS_OUT (31 4pip— MORBUSIS140)

(ISIGH'H“E U__) -snaaauozso——@(va.ﬂ‘dm
L 3 331 z
3610 2 3 7
(s a:ylﬂq ' 1 2 5 b
Wi———5838M8d § 3 £ —
(68)08[“@—-——Jlsa13ﬂaauu £ 2 i———cl 3SdHd

MDRBUS(3110) —-->
BBUS(3110)

~
-~ D
ps 2
2 - =
- o o
o 2 T
- —_ n
2 2 3 L
2 > 2 > Z
o 2 Z o5
= 2 — = ==
- z = ?fr
2 E 5 [T
Jod - - > Z
= = 2 a 3
_ m ™
5 = G
QI 2 2
s 2 2
2 3 =

-

{32108 [W——ChdrH - g "

asnanTlLe i O—— (38 (CdINH

esngye i — (L3 QKW
esnaniiom 2 38 (4l

(+3)108 [UE——|naiNoH
(£8 104 [WS—— van

H

{238 108 [W HoisngNIL
{18104 [WES——— o308y
{0810y [WS norsnaucu

SE_1

MORBUS(3110)

PHA

4J————<JI—ES’:1H&

hbl ock
RBUS(31:0 l__—r> RBUS_IN(3110)

TINBUS(3140} s’ TINBUS_IN(31340)

MDRBUS(3110) ey’

I>— MORBUS(31:6)

(801)0¥IH nEUONOIN 5 5 B
(LOT)QUIH SNANLLOIN 3 _ 2
(SOT)IAYINW NOLlENngd _w.. o M a 17ISUHd I‘.)\zu_lumazn_
(vO1 1041 wp1cna¥OH T m m_ H. 0~3guHd F———<10 ISUHJ
P "
c
1R
- _ . ()
o5 © PO
nex oo
" ™ s Wb
- hynd m D > Z
I 24 Z o (o Jn
] o | — z N~
oD i) - = 1
MW [ve) mm — [
= LN
AN
o8 &%
t n
5

(101 ITHES—Asanzn
(681)0Y 1HE—5—{ n3naek
(66)0Y IHE—2—] zvnn

(86 101 UED———Fnownuninn
(L6)0Y] HE——zno1snay
(96)0Y I HE——Hersnauou

C

TIINSY

I

wsnant 10— (SO TUYIH
ssnuni1ozn D——AD (BT JUALH

I———<a17 4SUHd

MODRBUS(31:0) ___>nnaau5(3ne)

—'—'/RE‘JEI31 sC

RBUS(31:0)

TLINBUS(31:0) —-—>nxuaus_m:3::c1

Cy

YA

melm___ou«lTllllk

51

LRAMAN I B A

“duoon

g

[Truoo

(E13Lc)4

---<30E1tL218

(VI3 7Y

11951 duoo

teirLe _QAUTliifA

XOW

(ET8L2)1nasSNg

118

TNOTSI170)

> 1100

(ETILZISNENT T
[ET3LTISNANT LA

RUCERE RN @ L

.
i

FARIN-)

T ET11L215NA8 (0
034

< E L L2)SNENT T L

— QU EI tLZISNANT

[}
D1

)

DD
XTI TX > >
[N i N v D
VOO TBH THA
DOOUUO0D V—~QQ
T ™ A N AN I
[P DV £ 3 o0 BRRIPE
PN R — — e (N M N R
PR (DWW ~JIN{[2 e
[[[[[[I Do
— e
5.%99%*&%#
- | B |
N D D A DV XN YV YD D
mMmmMmMmMmMmmmMm I I 09
R 7SN S A
u-QCP (0t1)94) mom «.:".:u:“.u.ﬁ:.;rwz
ayint \L.L CIALTTUR - S 3 2 - Rl BENCS
0o BN S ieend T
na"N1L
7T 499N
Z T
(AIEISAA™Y
tat1€)sn9™a &
€041€15n8” HaW

187350y
1a7330y

D— (B11CISNANITL
D— (0t1€I1SNANTL
—— (Bt1€)SNQY

(ot1eisngq
(Ot 1E)1SNBAAKH

CY [W& snan1iiolass

Cd I W——snan1io1034

Jd [HES———

CHl NE=— ag13s0w
—’-;'——-—

04 W& ay13s0l

Y WeES—— g3s0n

0¥ WE————— nig3un1snay

0¥ | WES—————i sisavmusnea
601 104 HE—wausnaw

X

—

o))

(&)
et bt bt s d d b pel ek
NI 2 1= s s a b
AWOUHWND—

e e e v e v e e e

10404UXY

0104<3—¢

10121 294HXH < TFmme]
10:2)1949XH < J——

81ad

ou3z104 [-——<083270d
JA0"AIN4 [—<34A0 ATYHd

6~ 3ctHg [——<10” ISUHJ

10121208y (9121708 [———<3012)Z34Y
184211080y (042119yy [——<(Q1 21 10YY

10408UXY

eteticbusc

TINBUS(31:0! B_IN 80U
STRATIC_BUS
MODRBUS(31:0) e _
PHASE L ?’D g
o - w
stat icbusb g S E
1 p =t o w
. - - = Z
Tl INBUS(31 s O) E-I.“ B-UJ‘ ndstat icbus = = n
RBUS(310) STRTIE-Be | |]
R_IN R_OUT 2 N §
‘zna’sf_m_' g = *‘g
stoticbusoome — 1 " g z
| t l]
T1BUS(31:0) E_IN B0 MEMDATBUS(31:0) LIV B—guT
. STRTIC_BUS . HDSTRTI(J::BQHSY
BBUS(31:0} oo ABUS(3130) —— =3
PHRSE D PHASE O
PHARSE_D d
ecn
COLLIS_EXP>—— CE-LISEXT
EXCEPT ——T>EXCEPT
MARZYET>— MFTCVF
: T_QOVF]
TOVFo>— T F F M CUTM—— >SCTH
HOVF H_CVf e i
HPQVF>—— H2 BVF 2 & & &
SgVF>—— S-0VF = = £ g MORE——T>NMOCE
- { RETTH ovEE & E &
ARITHOVF I >— o 2 E

C—EARGLIT)

FOR I z2- 0 TO 8B

C—OARG2(T)

FOR 1 - B 7O 2

C—=2MARBUS(T

FOR 1 s« C TO 27

=< D
[I
O
o m
T CC
oy N
—t —1

MEMDRTEU

f
l
FOR 1 :- O TC 3!

PHASE_O0&ST>
PHASE_1&T>

S EXCEPT

= CUTH
S M0DE

C— PREV_OVF

C—SPDLE

T_310——

T_30/>——
T1_310—

T1_300——

MDR_31>—

MDR_30>

ORONINORORIN0

MOR_25—>—

POLOVF—+——2 P _
POLUNFEO——"3F 0L _
ALU_CCloD———CRLU_

ALU_CCL 1) o

—

=z A -

=<

-z

(O O v e —_
=L § B -~ W w

[
1

-

oD

w)

D

f—

)

—t

—~

Q)

—

(N

"a
{

)

l

-

w

(3

—

)

pa—

(I

Vv

b

P

4

i

e

Ty 1

()

Pen

5. SHEETS OF THE MICROSEQUENCER

The top level sheet of the microsequencer is enclosed along with the details of the micropage select
logic and next microprogramcounter select logic. The logic equations are derived from a C program.

5.1. PAGE SELECT
The logic for this unit is given by the C program shown below.

psel(P, pl, p2,p3,p4)
int P,p1,p2,p3.p4;

switch(P)
{ case O:return(pl);
case 1:if(cc==1)return(pl); /* cond < */
else return(p2):
case 2:if(cc==2)return(pl); /* cond ="*/
else return{ p2);
case 3:if(cc !=0)return(pl); /* cond <=%*/
else return(p2);
case 4 :if(XY)return(pl);
else return(p2);
case 5:if(MDR & tcdr) return(pl);
else return{ p2);
case 6 :if(mode ==read) retun(p1);
else return(p2);
case 7:if(PDL ==0)return(pl);
else return(p2);
case 8:switch(type(T))

{ case tvar : return(pl);
case tstr:
case tcon :
case tlst : return(p2); }:

case 9 : switch(type(T))

{ case tvar : return(pl);
case tlst : return(p2);
case tcon :
case tstr : return(p3); };

case 10 : switch(type(T))

{ case tvar : return(p1);
case tstr : return{ p2);
case tcon :
case tlst : return(p3); J;

casc 11 : switch(type(T))

{ case tcon : return(pl),
case tvar : return(p2);
case tlst : return(p3);
case tstr : return(p4); };

case 12 : switch(type(T))

(case tcon : return{ p1);
case tstr:
case (var :
case tist : return(p2); };

case 13 : if((type(T) == tvar) && (type(T1) == tvar »
{ if(cc==1)retum(p2);
else rerurn(pl); }

else if(type(T) == tvar) return(p1);
else return(p2);
case 14 : if((type(T)!=tvar) && (type(T1)!=tvar)) return(pl);
else if((type(T)==tvar) && (type(T1)==tvar)) return(p2);
else return(p3);
case 15 : if(MDR & tcdr)
if(type(MDR) != tvar) return(p1);
else return(p2);
else return(p3);
default:return(-1); };)

_‘ s _

SR IS ST I

L

_ e} VL W92

!w.ﬂ........diax.?.aq.:.

_ BUETTIIE __
1

R F T . |

CEmISTIEE)

_| UTTITIE .
S |

01
'
. Llllﬁqd!.:
e H
—4 -, T
! -1 e goig +i [0] (0te)ngdsng (Or8IPPYI"ON
+ - BRI S -t gy
1 RERTEIE PN -
."_ T, wxlfll_ abue (v — Janacuen
G T ROLIALEN RS
RS . “ng e n .
o Lia iRy (111nguos it
-3 P <3\ 0 verg _dem
. o (asgiingdurn aiegyxn
(J S L2 B i .
= R l— «8 0 _oa.‘qI\.T b"‘lﬂfuﬁ.s
Ve s : Jamiaz b &
g — L I MU L1 _ B
i e e e - .~H.at_x|L
i (n:g1u] 184 1—==3 (g19)v]18y
_ 1g1@) wnguo— 7 _atnraiesess
_ b~ g
dorng wdunjo— o ey
-y 1T g —c darpy 7. dun {a 1y
3 e THE —3 <j1oum C: FELTL]
jroetqn -1 24dPeeu
-3 -migne —<3 14d bes~apoodo
- - e - T —— > er— 310111 uIePodde
—— g 01 Q -t) 403 —D.Q_lﬂﬂumﬂ e tames
v -
rozel —
- 15
#ﬂJﬂﬂOunu ot
joe sl il]
oY
(1 PN nezel SEH 198
. 2 rrimoze jes5u .}
I il S 8 X
IR A T
T emow . —CyeEnIgIzS oy
“Lerauxn 04q1® - -y e atesngn ey
—|||||» -mm T - e — e IS eIy
P44 CEITRL L el ot -
PO . g [or -~ -
z e
e - —qune
Ltend 43 AL SR
o :FTI.."....m. s TIUITHY
18801800
ﬂm.}.— 193010 twom
el
—3 10 'E IPPYIRY A
—iuaqvcz TS T T 553 e
e | —ry 10N IO ITN0 S T po
. Tt e
EOuxe ad® TOC)]
: olcnmamegy Bt {) 9FPU=UNg .— as Q 12 .10““""
> 1 ——
> LmmEe—= ﬁﬁ
B == .- — T TITR)
' —ln —-—— | I SARRELL]
. T avelSh coren e —
wosooppi (0 1AYY A~ 1wremn %t PHHW.OQ. L a——greset
LL 10N 10n e 2 sipee) Treds

(g)rpru vnt

fLYIVPRY <AL

{015) PRy et eI voovIn

-} potl s
-3 pot |2

—) peti)
——) poti®

-
SEREREN S
ec<> O/ 1~
1e84
eeclsy O
|
i
!
1962 | g2t
~
Y Jer -)-_A)
L)
MNOR«28>
node
1973
pd! oo)
e
AL:Q__E ya3s
[kil J= o ﬂ o\
T o : ‘Af_ L i ‘-a-:-’
l’li
e O
A‘l‘_—/ 4 2217 - -
1978 180 <0 o :5;'“ ‘ Z E
T<38> % 12 : j "o _—.,: s é §
=t
4:{) Rk Y53 Y = =
3 1884 _E/n\z ey i ? i
7, e - . e
e i s |l el
4}-’%’ . _‘\- g;:.—rc;, ‘ i
ey - é | |
\ ‘i |
A'*
- o (> ¥
342
R e s e =
11430 - g ————
s
=

L2 281
DR 31 D_____.bp_—-]——j‘;';‘f
T

#ADR <30 ‘

5.2. MICROPROGRAMCOUNTER SELECT
The logic for this unit is given by the C program shown below.

msel(M, m1, m2, m3, m4)
int M,m1,m2,m3,m4;

switch(M)
{ case 0:return(ml);
case 1:return(m4);
case 2:if(MDR & cutm) return(ml);
else return(m4);
case 3:if((cc!=2) && (type(T) == tvar)) return(m3);
else return(m2);
case 4 :if(cc==2)return(m3);
else return(m1);
/* case 5:%*/
case 41 :if(cc == 2) return{ m4);
else return(m1);
/* case 6:%
case §:if(cc==2)return(m3);
else return(m4);
/* case T7:%/
/* NOTE: m2 really means m1 */
case 6:if(MDR & tcdr) return(m3);
else return(m2);
/¥ case 8:%/
case 7: if((MDR&Lcdr)&&((lype(MDR)!=tvar)&&(type(MDR)!=llst)))
return(m3);
else return(m1);
/* case 9:%/
/* NOTE: m2 really means m1 */
case 71 : if((type(MDR) == tvar) && |(MDR&tcdr)) return(m3);
else return(m2);
/* case 10:*/
/* NOTE: m2 really means m1 */
case 72 :if((type(T) ==tvar) && '(MDR&tcdr)) return(m3);
else return(m2);
/* case 11: %/
case 8 :if((MDR&tcdr) && (type(MDR) 1= tvar))
return(m3);
else return(m2);
/* case 12:%/
case 9:if(cc !'=0)return(m2);
else return(m1);
/* case 13:%*/
case 10 : return{ m3);
/* case 14: %/
/* NOTE: m2 really means m1 */
case 11 : if(type(AX[0]) == tvar) return(m3);
else return(m2);
/* case 15:%/
/* NOTE: m2 really means m1 */
case 12 : if(type(AX[argl]) == tvar) return{ m3),
else return(m2);

/* case 16:*/
/* NOTE: m2 really means ml */
case 121 : if(type(AX[arg2]) == tvar) return{ m3);
else return(m2);
/* case 17:*/
/* NOTE: m2 really means m1 */
case 122 : if(type(MDR) == tvar) return(m3);
else return(m2);
/* case 18:%/
case 13 : if(type(T) != type(T1)) return(m3);
else return(m1);
/% case 19:%/
case 14 : if(cc !=2) return(m3);
else if(PDL == 0) return(m4);
else return(m1);
/* case 20:*/
case 15 : return(m2);
default : return(-1); };)

= ,,V", i

LY
€
1
1
3
3
16

8342
—1 2 R
32
MOR(25) - e
cutm Tez8 —t g I3
ccrt 1o B> foet
i-, Lﬂ —Tum RS LEEEIPES
H - — : v

3341 | 12344 1:559‘
f B
= o) o= S

2343
L

v (R
1 2zn .
LB re3g5 -
T’nmzb—d}o——o?’; <
LB s o
nDR(30 l 1§ F4-23 i
[3
e o 1354
28 I 19283 1 3, 334] 37, :39 185&
N \1._:\ —{nani . {
MOR(31)
19200
4 =
19296
(=P
a!g
CCLs lo— —
aY_ 012} 10—
Rx:%xééx e
ARG1(3]) 1230
GR%Z(géicf -
ARG2! 1c~J
ARRZ 1 3b I~
s
T1(31 10— :%gﬁﬁ;éL
T1(30) —L osd
1

6. TIMING DIAGRAMS

The chip has scveral interface signals to assist system designers. Timing diagrams are included 0
show the interaction between these signals and the external environment. Interfacing the chip to a cache or
a standard bus requirc an understanding of these timing diagrams. Since the program counter for the
VLSI-PLM is not on chip, any interface to the chip must contain a program counter and logic to do instruc-
tion prefeiching and partial decoding.

VLSI-PLM Pinout

The pinout of the VLSI-PLM consists of 102 signals described below. These signals are described as
Input (signals to the VLSI-PLM), Output (signals from the VLSI-PLM), and I/O (a bi-directional signal
with high impedance state). In addition, there are 9 VDD pins and 9 GND pins. The chip is packaged in a
168 lead pin grid array (PGA). All control signals must be available by 15ns after the rising edge of
MCLK. All data is assumed to be available during MCLK* following the assertion of the appropriate con-
trol signal except for memory write which is supplied during the next cycle.

MAR<27..0>
DSPACE

EXCEPT

MEMDAT<31..0>

OPCODE<7..0>

NEWP1*

NEWP2*

FAIL*

MEMREAD*

MEMWRITE*

INSTREN*

RESET*

(Output) A 28 bit memory address (usually virtual).

(Output) The most significant address bit for memory access. DSPACE is 1 for
access to the Data Space and O for access to the Code Space (for Code Space
items to be used as data). This signal and MAR bus forms the memory address
bus.

(Output) A one cycle long status signal indicating that an exception has occurred
on the VLSI-PLM. The cache board generates an interrupt (o the host. The
VLSI-PLM supplies the interrupt driver with information on the cause of the
exception by sending the contents of PSW on the MEMDAT bus. There will be
a one cycle delay in communicating the PSW except for collision exception in
which case it is supplied on the next cycle. This signal has the highest priority.
The interface between the VLSI-PLM and the cache board must enforce the
priority of this signal.

(1/0) The primary data path to memory. Memory read/write data to/from the
MDR passes on this bus, as well as instruction arguments to argl, arg2, and arg3
during instruction prefetch; and new values for the P register (either 32 bit or 8
bit for newpl or newp2 respectively).

(Input) The path for the 8 bit opcode from the prefetch buffer to the instruction
register used during instruction prefetch by the VLSI-PLM.

(Output) A one cycle long control signal to tell the Prefetch Unit that the MEM-
DAT bus holds a 32 bit value to reload the P register.

(Output) A one cycle long control signal to tell the Prefetch Unit that the MEM-
DAT bus holds an 8 bit value to be added to the P register.

(Output) A one cycle long control signal to tell the Prefetch Unit that failure has
occurred and that the prefetch buffer is to be flushed. The Prefetch Unit then
waits for a NEWPL1.

(Output) A one cycle long control signal to request a memory read. At the
beginning of the cycle, the MAR bus has the memory address. The VLSI-PLM
can expect to be able 1o latch the data from the MEMDAT bus towards the end
of the MCLK* cycle (See the discussion below for more information on clock-
ing). If the data is in the write buffer or there is a cache miss the cache board
will stop the VLSI-PLM by freezing MCLK on the high level during the next
cycle.

(Output) A one cycle long control signal to request a memory write. The cache
board latches the MAR and MEMDAT busses on the next rising edge of
MCLK. If the signal is asserted during cycle t the data on MAR and MEMDAT
buses will be latched during the rising edge of cycle t+2.

(Output) A one cycle long control signal to request a transfer of data from the
prefetch buffer. The data on the MEMDAT bus may be latched during MCLK*.
It is the VLSI-PLM’s responsibility to keep track of whether this is a prefetchl
(opcode and argl) or a prefetch2 (arg2 and arg3). The MEMDAT bus should
not be used for other transfers during this cycle.

(Input) An arbitrarily long but synchronized control signal to the VLSI-PLM to
reset. This signal will load the constant RAM with data from the communica-
tion page of memory (next to last page of data space with a page size of 2K

LASTMI*

FORCEBR

FORCEADDR<8..0>

PRECHARGE

MCLK/MCLK*

RLMDR*

TEST1

TEST2

SHIFTA
SHIFTIN1
SHIFTIN2
SHIFTOUT1
SHIFTOUT2
EXTERNALFU*

OUTMEMDAT

WAIT

OUTROMADDR

bytes) and initialize the machine registers.

(Output) A one cycle long control signal indicating that the last microinstruction
of a PLM instruction is in execution. That is, end of macro instruction execu-
tion.

(Input) A one cycle long control signal to inform the VLSI-PLM to do a forced
microbranch to the address on the FORCEADDR bus.

(1/0) A nine bit bus to transfer the forced microbranch address to the VLSI-
PLM when FORCEBR is asserted and to output the contents of the ROM latch
when OUTROMADEDNR is asserted.

(Input) A one cycle long control signal to inform the VLSI-PLM that the
prcharge circuit of the register files and ROM should be enabled.

(Input) The Master 100ns clock for the VLSI-PLM. The VLSI-PLM may
assume that all data transfer requests (MEMREAD* MEMWRITE*, and
INSTREN®) occur in one cycle. If the cache board is unable to do this, due to a
cache miss or buffer full or empty, MCLK will tick one more time and then stop
with a High level. Once the data is available, MCLK will resume. If both
MCLK and MCLK* are supplied then they will be used as phase 0 and phase 1
of a two phase nonoverlapping clock.

(Input) A one cycle long control signal to reload the MDR register of the VLSI-
PLM once data is available for a memory read after a cache miss. MCLK will
resume 150ns after RLMDR* goes away. (Check this since the PLM uses
175ns)

(Input) A one cycle long control signal to initiate the scan of microinstruction
register (MIR) as a part of testing the VLSI-PLM.

(Input) A one cyle long control signal 0 initiate the scan of status bits in the
status unit of VLSI-PLM.

(Input) Clock for shifting data into the master register of LSSD.
(Input) Data for the first scan path controlied by TEST1.

(Input) Data for the second scan path controlled by TEST2.
(Output) Data output from the first scan path controlled by TESTI.
(Output) Data output from the second path controlled by TEST2.

(Output) A one cycle long control output to the cacheboard indicating that a
builtin function is to be executed by an external functional unit. If this signal
and LASTMI are asserted at the same time then it indicates that the transfer of
all the data to the cachboard for the execution of the external builtin function
has been completed.

(Input) Control signal from the cache board indicating that the 32 pads of the
MEMBDAT bus should be in the output mode. The pads will also be in the output
mode when MEMWRITE*, NEWP1*, NEWP2*, or diagnostics (internal signal)
is asserted. The 32 pads will be in the input mode if MEMREAD*, RLMDR*,
or INSTREN* is asserted. If none of the above signals for the input or output is
asserted then the 32 pads will be in high impedance state. This signal is an
asynchronous one. It is provided for reading the contents of the blocks in data
path during the VLSI-PLM testing or debugging the hardware when MCLK is
frozen in the high level (stays in phase 0) and a microinstruction is shifted into
the microinstruction register.

(Output) A one cycle long control signal to the cache board indicating that the
chip is halted (looping on a microinstruction).

(Input) A one cycle long control input to the VLSI-PLM requesting the contents
of the ROM latch to be output on FORCEADDRO - FORCEADDRS pins. The

POWER
GROUND

next microinstruction address is in the ROM latch. This signal puts the 9 pads
of FORCEADDR in output mode. The 9 pads will be in the input mode when
FORCEBR signal is asserted. If both OUTROMADDR and FORCEBR are not
asserted then the pads will be in the high impedance state.

There are 9 power pins.

There are 9 ground pins.

Clocking Scheme revt e2sss

Rev 2 5/30/87

50 ns 50 ns

< >4 —>
CMCLK _| |
— D <
MCLK |
> A - — A <
MCLK*
Phi0
_:t B (&
Phi1 - Cje- —»> B <+

Delay A. External inverter delay. The two are equal if pull up & down times
are the same for the external inverter. (4 ns).

Delay B. Non-overlap time after end of Phi1 and before start of Phi0. This is
affected by the external inverter delay (5 ns).

Delay C. Non-overlap time after end of Phi0 and before start of Phil. This is
affected by the internal driver delay (5 ns).

Delay D Delay of Cache clock to split into MCLK and MCLK* (4 ns).

Rise of Phi0 (Phi1) is caused by fall of Phi1 (PhaseO0).
Fall of Phi0 (Phi1) is caused by rise of MCLK* (MCLK).

2 7/16/86

Rev
EORGCE BRANGCH TIMING revs seoer
Rev 4 6/02/87
- 50 ns > 50 ns >
CMCLK | |
> De
MCLK |
A - > A -
- MCLK*
PhiO
> B le
Phi1 —» Cie —» B+
FORCEBR active high
(PIN) Ton=p0 Th=10
- —>
FO(F;%%';S‘DDR Nl valid force|address k\\\\\\\\\\\\\\\\\\\\\\\\\\\
«— >
Gt _€Oaa M\
ROM DATA a.‘cce.ss —
(ROM Latch) Y { valid mero-word
>4 - >4 <-l‘f
MIR k\ :\\\
Note:

'm' is the mux time dela

next micro-address.
ROM Address is latched in on Phi0. ROM data latch is written in Phit and
data is valid at end of Phil.

ROM data is available before end of Phi1, and stays valid until

y for selecting the Force Address as the

MIR latches in the microword in Phi0.

end of Phi0.

EORCE BRANGH LOW) ooeer
(ROM ADDRESS OUT)

- 50 ns > 50 ns >
CMCLK _|
> D«
MCLK B
> A < &> A -
MCLK*
Phi0
> B e
Phit —» Cle > B &
F%TSEBR <P inactive juate
OUTROMADDRe—F— |
(PIN) active high T?:
42
RE;\{IC,AF]DDR MYy ROM address NN
-— Ton=54 > ko
o MY Ao agress siHiMIMMY

Cacheboard specs: FORCEBR (from CB) valid in <15ns from rise of CMCLK.
When FORCEBR is low, CB expects ROM Address out in <54ns.
OUTROMADDR comes from interface board, causes chip to open FORCEADDR
I/O pads for output and to drive out 9-bit ROM address.

FORCEBR must be low when OUTROMADDR is high.

MEMREAD TIMING [t 2over

CACHE HIT
t t+1
<« 50 ns > 50 ns _
CMCLK _| |
—» De —
MCLK |
- A 4 —»> A <4 \
MCLK*
PhiO 7r
B 4
Phil —» Cie —» B e
—5 4
MEMREAD? .
(rom latch) _|\ active low
MEM.READ active low
(pin)
& from negative edge of MGLK" 10
MEMREAD :
(external latch) active |low
«—2—p
DSPACE (PIN) RS valid address bit J SRR
(external latch) N valld_acddress bl W
—» 5 4— — 5 <4
MARBUS N valid address N
RDET-Rd 15
15 H
MEMDATBUS O LY
cache hit
MDR NI
-4-)

10

MEMREAD"* signal and address must be available to cache board no later than 20ns
after rising edge of CMCLK to allow sufficient time for stopping clock in the case

of a cache miss.

! Rev 3 7/24/87
MEMREAD TIMING ~ fov3 72
CACHE MISS Rev 5 6/04/87
100 clock stopped Resume clack
< —>”
CMCLK]
—» 5 < 5 < —»E 5 4
MCLK
>4 <
MCLK* i
Phi0
Phi1
— 5 <
MEMREAD"| | active
(Rom Latch) ' 40
—— ﬂl_:f MCLK®
MEMREAD* active 10

(external latch)

10 from fall of MCLK*

DSPACE (PIN) XS] valng address (bit AR N
(external latch) W valiid aggress bit K]
—» 5 4 — 5 4
MARBUS ~ N N
<—1-S-—> < 20 >
Ma\\ﬁa/igeus \\\ \valid N\

MDR

18

Cache Board Specs: when cache-miss occurs, CMCLK is kept from rising

until data is available.

Phi1 will be high when stopping clock.

MEMWRITE TIMING Ao 5 or03e7

< 100 ns > 100 ns >
CMCLK a
MCLK [
—» A< —» A< 7
MCLK* |
Phi0
—» [3 - —» C < ‘ L
Phi1
—» 5 4
MEMWRITE* " || active low
(ROM latch) |
—p 104 —Pi 110 4—
MEMWRITE" active} {low
(external latch) <
20
(MIR) NN valid address ibit \ NN
Tatched Into_master in Phil
DSPACE (DFF) N 5! valid_address bit
{external latch}_ | N valid_address bit
—p 104 — >
20
MARBUS AN AN valid address
MDR N data out N
17 max \
g ——P mdr->memdatbus
MEMDATBUS N " recycle charge NN recycle charge
(offchip) < > <
cycle 't 4—2—7-——> cycle 't+1'

Cacheboard specs: cycle t, MEMWRITE" valid <20ns;
cycle t+1, Address valid <20ns, Memdatbus valid <27 ns from rise of CMCLK.

Rev 3 7/24/86

NEWPR1 TIMING Rev 4 5/30/87

Rev 5 6/05/87

t t+1
<« 20 NS > 50 ns _»

CMCLK _|
- D<

MCLK

> A < A -

MCLK*

Phi0 4 ;)

Phi — Cle —»

—»5 4
NEWP1* "I

(rom latch)

f

active low

NEWP1*
(pin)

active low

2(from falling edge of MCLK"

d
NEWP1* i ive Ho ->
(external latch) <P active jiow

MDRtoMEMDA
(MIR)

b |

b
8
g active lhigh g

MDR valid data \ N

i5 15
MEMDATBUS X\\ charge recycling N

> \
27

cacheboard 3
latch N x

Cache board specs: NEWP1* valid in <20ns, data from MEMDATBUS valid
in <27ns (after rise of CMCLK). Data going offchip can also come from R
& CP (Regfile). R -> Memdatbus; CP -> Ttinbus -> Memdatbus (longest
delay). In any case, Memdatbus must be valid <15ns after rise of Phi0.

NEWP2 TIMING FReve 5308
Rev 4 6/09/87
t t+1
< 50 ns > 50 ns >
CMCLK |
— D< B
MCLK
> A < —> A -
MCLK*
Phi0
Thl %
Phi1 —» Cle— —» B i€
-5 (4
NEWP2* .
(rom latch) —l\ active low
NE(\SIiE)Z* active low
< :2()» from falling edge of MCLK"
* F 0
NEWP2 .
(external latch) *.L active | low 10
10
8
TtoT1INbus > actiye thigh -
(MIR)
m/s transfer
—>i3
T block N \ Q
15 15
T1INbus > X S
MEMDATbuUS N valid data charge recycling \ N\
-t
cacheboard -
latch W N valid data

Cache board specs: NEWP2* valid in <20ns, data from MEMDATBUS valid
in <27ns (after rise of CMCLK). T block Master/Slave transfer is done in
Phasei*. T -> Tiinbus -(bus connector)-> Memdatbus. Memdatbus must
be valid <15ns after rise of PhiO.

PREF1 TIMING Rev 5 6/04/87

Rev 6 6/09/87

t t+1
< 50 ns > 50 ns _»
CMCLK |
—» D<
MCLK
> A < - A -
MCLK*
Phi0
B e
Phi1 > Cie- —» B (e
PREF1 . .
(Rom ,atch)—:ﬁ <+ active high
5
5 > <
P(I:},Eg‘l maling active high i
IN%p-irnE)EN active | low
« 22— p 3
—
OE:%?)DE Ry valid data N ey
> ie
Opcode latch Ry 8-bit opcoda supplied
o g 4—2-i—> 7 {logic levels + tbuf J mux
pcode —
Decode N - ey 9-bit ROM address
«—>
Memdatbus T, S ARG] value =
ARG1 N X

Cacheboard specs: INSTREN* valid in <20ns after rise of CMCLK. Cacheboard
provides OPCODE and ARG1 <8ns after INSTREN" is valid.

Opcode pins and latch are 8-bits. Opcode goes thru Opcode Decode to become
o-bit ROM address (0:8), with bit 3 modified & bit 8 added.

PREFQ T MHN Rev 3 6/04/87
u @ Rev 4 6/09/87
t t+1
< 50 ns > 50 ns >
CMCLK _
—» D e
MCLK
> A < — A <
MCLK*
Phi0
=
Phii —» Cle —»{ B je
PREF2 . -
(Rom latch) S5 active high
5
FRET2 >[4 active high =28
mis trdngfer mys transfer
N";SSF—)PFz "3< active high —>sle-
INSTREN" L I
(pins) 20 active low
Opcode latc § B-bit opcode remains unchanged
PRI
Memdatbus 3 J ARG2/3 Value \ NS
ARG2/3 N

Cacheboard specs: INSTREN* valid in <20ns after rise of CMCLK. OPCODE and
ARG2/3 from Cacheboard are valid <8ns after INSTREN" is valid.

Least significant 8 bits of Memdatbus go into ARG2, the next 8 bits into
ARG3. (ARG2 & ARGS both output into the least significant 8 bits of Bbus.

SINGLE GYGLE TIMING "2 72e

100ns 100ns
< >4 —p4

CMCLK

SC. active

or |\
N —>s e

PASSMCLK P stopping processor clogk

MCLK

MCLK*

Phi0

Phit

Cacheboard Specs: Single Cycle (SC) is valid in cycle t of CMCLK. MCLK
runs 1 more cycle (t+1), then gets stopped (PASSMCLK low). Some
number of cycles later, Continue is active to reactivate MCLK (PASSMCLK
high). SC may also be valid for another single cycle execution.
PASSMCLK must settle well before the rising edge of CMCLK for MCLK to
be stopped and reactivated properly.

active

SINGLE INSTRUCTION Rev 1 6/09/87

100ns 100ns 100ns

< —b>-<4 >4 >4
CMCLK -

——

S.l. active

or |\

T~ —»5 4
PASSMCLK C——]

MCLK

MCLK*

Phi0 /

Phii

LASTMI*. .
(Rom latch) —»{si4— active

Cacheboard Specs: Single Instruction (SI) is valid in cycle t of CMCLK.
MCLK runs several more cycles until LASTMI* is low, then gets stopped
(PASSMCLK low). Some number of cycles later, Continue is active to
reactivate MCLK (PASSMCLK high). Sl may also be valid for another
single instruction execution. PASSMCLK must settle well before the
rising edge of CMCLK for MCLK to be stopped and reactivated properly.

active

stopping processor clock

