A Memory Allocation Profiler for C and Lisp Programs

Benjamin Zorn Paul Hilfinger

February 16, 1988

Abstract

This paper describes mprof, a tool used to study the memory allocation behavior
of programs. mprof records the amount of memory each function allocates, breaks
down allocation information by type and size, and displays a program’s dynamic call
graph so that functions indirectly responsible for memory allocation are easy to identify.
mprof is a two-phase tool. The monitor phase is linked into executing programs and
records information each time memory is allocated. The display phase reduces the data
generated by the monitor and displays the information to the user in several tables.
mprof has been implemented for C and Kyoto Common Lisp. Measurements of these
implementations are presented.

1 Introduction

Memory allocation is an important part of most programs. Unnecessary allocation can
result in decreased program locality, increased execution time for the allocation itself, and
additional overhead to reclaim memory. If reclamation is not performed, or if some objects
are accidently not reclaimed (a “memory leak”), programs can fail when they reach the
memory size limit. Programmers often write their own versions of memory allocation rou-
tines to measure and reduce allocation overhead. In Lisp, allocation and reclamation occur
transparently, yet they have a strong effect on the performance of programs. Even though
memory allocation is important, few software tools exist to help programmers understand
the memory allocation behavior of their programs.

mprof is a tool that allows programmers to identify where and why memory is being
allocated in a program. It records which functions are directly responsible for memory
allocation and also records the dynamic call chain at each allocation to show which functions
were indirectly responsible for allocation.

For example, consider the C program in Figure 1, a simplified producer/consumer sim-
ulation. Objects of different sizes are randomly allocated by producers and eventually
consumed by the consumer. The consumer is responsible for freeing the objects passed to
it, but there is a bug in this program so that the consumer does not free red widgets. If the

simulation ran for a long time, memory would eventually be exhausted, and the program
would fail.

This research was funded by DARPA contract number N00039-85-C-0269 as part of the SPUR research
project.

typedef struct {
enum color c;
int data[50];
} widget;

#define WSIZE sizeof(widget)

widget
*make_widget()
{

widget -;

w = (widget *) malloc(WSIZE);

return w;
T
widget
*make_blue_widget()
{
widget *W;
w = make_widget();
w->c = BLUE; i
return w;
}
widget
*«make_red_widget ()
{
widget *W;
¥ = make_widget();
w=>c = RED;
return w;
}

void
consume_widget (w)
widget =*w;

{

it (w->c == BLUE) {
/* record blue widget */

free(w);
} olse {
/* Tecord red widget */
}
}
#define NUM_WIDGETS 10000
int
main()
{
int i;
widget *wqueue [NUM_WIDGETS];
for (i = 0; i < NUM_WIDGETS; i++)
it (random_$1ip())
wqueue[i] = make_blue_widget();
else
wqueue[i] = make_red_widget();
for (i = 0; i < NUM_WIDGETS; i++)
consume_widget(wquene[il);
return 0;
}

Figure 1: A Simple Producer/Consumer Simulation Example. The producer allocates memory
that is eventually passed to the consumer and freed. This program has a bug so that some of the
memory allocated is never freed. The function random f1ip, which is not shown, randomly returns
1 or 0 with equal probability.

We use this example to make several points. First, the function make widget is the
only function that allocates memory directly. Knowing what functions call malloc directly
would not help us discover where objects are leaking because, in this example, all objects
are allocated by the same function. Our profiling tool must record that make red_widget
and make_blue.widget were indirectly responsible for calls tomalloc and take advantage of
that information. In this example, mprof tells us how many bytes make blue_widget and
make_red _widget requested from make widget, how many bytes were never deallocated,
and most specifically, which call chain ending with make_widget allocated memory that
was never subsequently released.

A monitoring program such as mprof should satisfy several criteria. First, the monitor
should not significantly alter the behavior of the program being monitored. In particular,
the monitor should not impose so much overhead on the program being monitored that large
programs cannot be profiled. Second, the monitor should be easy to integrate into existing
applications. To use mprof, programmers simply have to relink their applications with a
special version of the system library. No source code modifications are required. Finally,
the monitor should provide the programmer with information he can understand and use
to reduce the memory allocation overhead of his programs. Using the example above, this
paper will illustrate such a use of mprof.

In Section 2, we describe the use of mprof in more detail and in Section 3 we dis-
cuss techniques for its effective implementation. Section 4 presents some measurements
of mprof. Section 5 describes other memory profiling tools and previous work on which
mprof is based, while Section 6 contains our conclusions.

2 Using mprof

To use mprof, programmers link in special versions of the system functions malloc and
free, which are called each time memory is allocated and freed, respectively. The appli-
cation is then run normally. The mprof monitor function, linked in with malloc, gathers
statistics as the program runs and writes this information to a file when the application
exits. The programmer then runs a display program over the data file, and four tables
are printed: a list of memory leaks, an allocation bin table, a direct allocation table, and
a dynamic call graph. Each table presents the allocation behavior of the program from a
different perspective. The rest of this section presents the output tables for the C program
in Figure 1. Fields in the tables are described in detail in the appendix.

2.1 The Memory Leak Table

C programmers must explicitly free memory ob jects when they are done using them. Mem-
ory leaks arise when programmers accidently forget to release memory. Because Lisp re-
claims memory automatically, the memory leak table is not necessary in the Lisp version of
mprof.) _

The memory leak table tells the programmer what functions allocated memory asso-
ciated with memory leaks. The table contains a list of partial call paths that resulted in
memory being allocated and never subsequently freed. The paths are partial because com-
plete path information is not recorded. Ounly the last five callers on the callstack are listed

in the memory leak table. In our simple example, there is only one such path, and it tells
us immediately what objects are not freed. Figure 2 shows what the memory leak table
looks like for our example.

allocs bytes (%) path

5019 1023876 (99) I! > main > make_red_widget > make_widget

Figure 2: Memory Leak Table for Producer/Consumer Example. Only one partial allocation
path is listed because only one path resulted in objects being allocated and never freed. Because
the callstack depth was less than five, the allocation path is complete in this example.

In large examples, more than one path through a particular function is possible. We
provide an option that distinguishes individual call sites within the same function in the
memory leak table if such a distinction is needed.

2.2 The Allocation Bin Table

A major part of understanding the memory allocation of a program is knowing what objects
were allocated. In C, memory allocation is done by object size; the object type being
allocated is not known at allocation time. The allocation bin table provides information
about what sizes of objects were allocated and what program types correspond to the sizes
listed. This knowledge helps the programmer recognize what data structures he is using
that consume the most memory and allow him to concentrate any space optimizations on
these types. ’

The allocation bin table breaks down object allocation by the size in bytes of objects
allocated. Figure 3 shows the allocation bin table for the program in Figure 1 .

size: allocs bytes (%) frees kept (%) types
204 10000 2040000 (99) 4981 1023876 (99) widget
> 1024 o} (o} 0o 0
<TOTAL> 10000 2040000 4381 1023876

Figure 3: Allocation Bin Table for Producer/Consumer Example. Only one object size is listed
because only one kind of object was allocated by the program. The type of that object (widget) is
listed at the right.

The allocation bin table contains information about objects of each byte size from 0 to
1024 bytes and groups objects larger than 1024 bytes into a single bin. For each byte size
in which memory was allocated, the allocation bin table shows the number of allocations
of that size (allocs), the total number of bytes allocated to objects of that size (bytes),
the number of frees of objects of that size (frees), the number of bytes not freed that were

4

allocated to objects of that size (kept!), and user types whose size is the same as the
bin size (types). From the example, we can see that 10,000 widgets were allocated by the
program, but only 4,981 of the widgets allocated were eventually freed.

2.3 The Direct Allocation Table

Another facet of understanding memory allocation is knowing what functions allocated
memory and how much they allocated. In C, memory allocation is performed explicitly by
calling malloc, and so programmers are often aware of which functions allocated memory.
Even in C, however, knowing how much memory was allocated can point out functions
that do unnecessary allocation and guide the programmer when he attempts to optimize
the space consumption of his program. In Lisp, memory allocation happens implicitly in
many primitive routines such as mapcar, , *, and intern. The direct allocation table can
reveal unsuspected sources of allocation to Lisp programmers. Figure 4 contains the direct
allocation table for our example.

% mem bytes | ¥ mem(size) | bytes kept | % all kept | calls name
s--m--l--x s——m-—1--x

----- 2040000 | 99 | 1023878 | 99 | 10000 <TOTAL>

100.0 2040000 | 99 | 1023876 | 99 | 10000 make_widget

Figure 4: Direct Allocation Table for Producer/Consumer Example. Only one function is listed
because only one function called malloc in Figure 1.

The first line of the direct allocation table contains the totals for all functions allocating
memory. In this example, only one function, make widget, allocates memory. The direct
allocation table prints percent of total allocation that took place in each function (% mem),
the number of bytes allocated by each function (bytes), the number of bytes allocated by
the function and never freed (bytes kept), and the number of calls made to the function
that resulted in allocation (calls). The % mem(size) fields contain a size breakdown?
of the memory allocated by each function as a fraction of the memory allocated by all
functions. In this example, 99% of the memory allocated by the program was allocated
in make widget for medium-sized objects. Blank columns indicate values less than 1%.
The other size breakdown given in the direct allocation table is for the memory that was
allocated and never freed. The %, all kept field contains a size breakdown of the memory
not freed by a particular function as a fraction of all the memory not freed. In the example,
99% of the unfreed memory was of medium-sized objects allocated by make widget.

! The label kept is used throughout the paper to refer to objects that were never freed.

?Both the direct allocation table and the dynamic call graph break down object allocation into four
categories of object size: small (s), from 0-32 bytes; medium (m), from 33-256 bytes; large (1), from 257~
2048 bytes; and extra large (x), larger than 2048 bytes. For Lisp, categorization is by type rather than size:
cons cell {c), floating point number (f), structure or vector {s), and other (o).

2.4 The Allocation Call Graph

Understanding the memory allocation behavior of a programs sometimes requires more
information than just knowing the functions directly responsible for memory allocation.
Sometimes, as happens in Figure 1, the same allocation function is called by several different
functions for different purposes. Functions that are indirectly responsible for allocation are
also of interest to the programmer. The allocation call graph shows all the functions that
were indirect callers of functions that allocated memory.

Because the dynamic caller/callee relations of a program are numerous, the dynamic call
graph is a complex table with many entries. Often, the information provided by the first
three tables is enough to allow programmers to understand the memory allocation of their
program. Nevertheless, for a full understanding of the allocation behavior of programs
the allocation call graph is useful. Figure 5 contains the allocation call graph for the
producer/consumer example.

self | /ances | /ances | called/total ancestors
index + self (%) | size-func | frac | c¢alled/recur name [index]
desc | \desc I \desc | called/total descendents
s=--m-=]l=-x s-—m-1--x
fo] 100.0 0 (0) | | mmm————————] 0 main [0]
1023876 (50) | 99 | 50] 5019/5019 make_red_widget [2]
1016124 (49) | 99 | 49 I 4981/4981 make_blue_widget [3]
. all 2040000 | 99 | |
s—m=~l--x s=—m--1--7
all 2040000] 99 |]
1023876 (50) | 99 | 50 | 5019/5019 make_red_widget [2]
1016124 (49) | 99 | 49 | 4981/4981 make_blue_widget [3]
[1] 100.0 2040000 (100) | 99 | wee———— j 10000 make_widget [1]
s—m-~-]1--x g==m-~]1-~x
1023876 (100) | 99 | 99 | 5019/10000 main [0]
£2] 50.2 o) | | mmommmmee | 5019 make_red_widget [2]
1023876 (100) | 99 I 29 | 5019/10000 make_widget [1]
1016124 (100) | 99] 99 | 4981 /10000 main {0]
£3] 49.8 o (0 | | ==memmm———- | 4981 make_blue_widget [3]
1016124 (100) | 99 1 99 | 4981/10000 make_widget [1]

s—m-1--T S m-=]1-~x

Figure 5: Allocation Call Graph for Producer/Consumer Example. This table presents the
subset of the example program’s dynamic call graph in which allocation occurred.

The allocation call graph is a large table with an entry for each function that was on a
call chain when memory was allocated. Each table entry is divided into three parts. The
line for the function itself (called the entry function); lines above that line, each of which

represents a caller of the entry function (the ancestors), and lines below that line, each
of which represents a function called by the entry function (the descendents). The entry
function is easy to identify in each table entry because a large horizontal rule appears in
the frac column on that row. In the first entry of Figure 5, main is the entry function;
there are no ancestors and two descendents.

The entry function line of the allocation call graph contains information about the
function itself. The index field provides a unique index to help users navigate through the
call graph. The self + desc field contains the percent of total memory allocated that was
allocated in this function and its descendents. The call graph is sorted by decreasing values
in this field. The self field contains the number of bytes that were allocated directly in the
entry function. The size-func fields contain a size breakdown of the memory allocated in
the function itself. Some functions, like main (index 0) allocated no memory directly, so the
size-func fields are all blank. The called field shows the number of times this function
was called during a memory allocation, with the number of recursive calls recorded in the
adjacent field.

Each caller of the entry function is listed on a separate line above it. A summary of
all callers is given on the top line of the entry if there is more than one ancestor. The
self field of ancestors lists the number of bytes that the entry function and its descendents
allocated on behalf of the ancestor. The size-ances field breaks down those bytes into size
categories, while the frac-ances field shows the size breakdown of the bytes requested by
this ancestor as a fraction of bytes allocated at the request of all ancestors. For example,
in the entry for function make_widget (index 1), the ancestor make_red_widget can be seen
to have requested 1,023,876 bytes of data from make_widget, 99% of which was of medium-
sized objects. Furthermore, calls from make red widget accounted for 50% of the total
memory allocated by make_widget and its descendents. Other fields show how many calls
the ancestor made to the entry function and how many calls the ancestor made in total.
In a similar fashion, information about the function’s descendents appears below the entry
function. :

Had the memory leak table not already told us what objects were not being freed, we
could use the allocation call graph for the same purpose. The direct allocation table told
us that make_widget allocated 1,023,876 bytes of unfreed memory, all for medium-sized
objects. From the allocation call graph, we can see that the function make red widget was
the function calling make widget that requested 1,023,876 bytes of medium-sized ob jects.

Cyecles in the call graph are not illustrated in Figure 5. As described in the next section,
cycles obscure allocation information among functions that are members of a cycle. When
the parent/child relationships that appear in the graph are between members of the same
cycle, most of the fields in the graph must be omitted.

3 Implementation

We have implemented mprof for use with C and Common Lisp programs. Since the im-
plementations are quite similar, the C implementation will be described in detail, and the
minor differences in the Lisp implementation will be noted at the end of the section.

3.1 The Monitor

The first phase of mprof is a monitor that is linked into the executing application. The
monitor includes modified versions of malloc and free that record information each time
they are invoked. Along with malloc and free, mprof provides its own exit function, so
that when the application program exits, the data collected by the monitor is written to a
file. The monitor maintains several data structures needed to construct the tables.

To construct the leak table, the monitor associates a list of the last 5 callers in the
call chain, the partial call chain, with the object allocated. When objects are allocated,
the partial call chain is used as a key to retrieve an allocation counter associated with the
partial call chain that is then incremented. When the object is later freed, the partial call
chain associated with the object is used as a key to retrieve and increment a counter of
frees. Any partial call chain in which the number of allocations does not match the number
of frees indicates a memory leak and is printed in the leak table.

To construct the allocation bin table, the monitor has an 1026 element array of integers
to count allocations and another 1026 element array to count frees. When objects of a
particular size from 0-1024 bytes are allocated or freed, the appropriated bin is incremented.
Objects larger than 1024 bytes are grouped into the same bin.

The construction of the direct allocation table falls out directly from maintaining the
allocation call graph information. In order to build the allocation call graph, each time
malloc is called, the monitor must associate the number of bytes allocated with the current
dynamic call chain. This operation is potentially expensive both in time and space. One
implementation would simply record every function in every chain and write the information
to a file. Considering that many programs execute millions of calls to malloc and that the
depth of the call chain can be hundreds of functions, the amount of information would be
prohibitive.

An alternative to recording the entire chain of callers is to break the call chain into a
set of caller/callee pairs, and associate the bytes allocated with each pair in the set. The
disadvantage with this implementation is that the exact call chains are no longer available.
However, by associating how much memory was allocated with each caller/callee pair in the
chain, the correct dynamic call graph of the program can be recreated.

Associating caller/callee pairs with bytes allocated requires a data structure that allows
caller/callee pairs to be mapped to a byte count quickly. We use a hash table in which
the hash function is a simple byte-swap XOR of the callee address. Each callee has a list
of its callers and the number of allocated bytes associated with each pair. We noted that
from allocation to allocation, most of the call chain remains the same. Our measurements
show that on the average, 60-75% of the call chain remains the same between allocations.
This observation allows us to cache the pairs associated with the current caller chain and
to use most of these pairs the next time a caller chain is recorded. Thus, on any particular
allocation, only a few addresses need to be hashed. Here are the events that take place
when a call to malloc is monitored:

1. The chain of return addresses is stored in a vector.

2. The new chain is compared with the previous chain, and the point where they differ
is noted.

3. For the addresses in the chain that have not changed, the caller/callee byte count for
each pair is already available and is incremented.

4. For new addresses in the chain, each caller/callee byte count is looked up and updated.

5. For the tail of the chain (i.e., the function that called malloc directly), the direct
allocation information is recorded.

Maintaining allocation call graph information requires a byte count for every distinct
caller/callee pair in every call chain that allocates memory. Our experience is that there
are a limited number of such pairs, even in very large C programs, so that the memory
requirements of the mprof monitor are not large (for a range of programs, measurements
show the memory required by the mprof monitor is usually less than 50 kilobytes).

3.2 Reduction and Display

The second phase of mprof reads the output of the monitor, reduces the data to create
a dynamic call graph, and displays the data in three tables. The first part of the data
reduction is to map the caller/callee address pairs to actual function names. A program
mpfilt reads the executable file that created the monitor trace (compiled so that symbol
table information is retained), and outputs a new set of function caller/callee relations.
These relations are then used to construct the subset of the program’s dynamic call graph
that involved memory allocation.

The call graph initially can contain cycles due to recursion in the program’s execution.
Cycles in the call graph introduce spurious allocation relations, as is illustrated in Figure 6.

CALL STACK: MPROF RECORDS:
main calls F (10 bytes over main -> F)
F calls G (10 bytes over F -> G)
G calls F (10 bytes over G -> F)
F calls G (10 MORE bytes over F -> G)

G calls malloc(10) (10 bytes allocated in G)

Figure 68: Problems Caused by Recursive Calls. In this example, main is credited as being
indirectly responsible for 10 bytes, but because we only keep track of caller/callee pairs, F appears
to have requested 20 bytes from G, even though only 10 bytes were allocated.

We considered several solutions to the problems caused by cycles and adopted the most
conservative solution. One way to avoid recording spurious allocation caused by recursion
is for the monitor to identify the cycles before recording the allocation. For example, in
Figure 6, the monitor could realize that it had already credited F with the 10 bytes when
it encountered F calling G the second time. This solution adds overhead to the monitor,
however, and our goal was to make the monitor as unobtrusive as possible.

The solution we adopted was to merge functions that are in a cycle into a single node in
the reduction phase. Thus, each strongly connected component in the dynamic call graph

is merged into a single node. The result is a call graph with no cycles. This process is also
used by gprof, and described carefully in [GKM83]. Such an approach works well in gprof
because C programs, for which gprof was primarily intended, tend to have limited amounts
of recursion. Lisp programs, for which mprof is also intended, intuitively contain much
more recursion. We have experience profiling a number of large Common Lisp programs. We
observe several recursive cycles in most programs, but the cycles generally contain a small
percentage of the total functions and mprofis quite effective. Only with more data will we
be able to decide if many Lisp programs contain so many recursive calls that cycle merging
makes mprof ineffective. Nevertheless, mprof has already been effective in detecting KCL
system functions that allocate memory extraneously.3

3.3 Lisp Implementation

So far, we have described the implementation of mprof for C. The Lisp implementation is
quite similar, and here we describe the major differences. C has a single function, malloc,
that is called to allocate memory explicitly. Lisp has a large number of primitives that allo-
cate memory implicitly (i.e., cons, *, intern, etc.). To make mprof work, these primitives
must be modified so that every allocation is recorded. Fortunately, at the Lisp implemen-
tation level, all memory allocations may be channeled through a single routine. We worked
with KCL (Kyoto Common Lisp), which is implemented in C. In KCL, all Lisp memory
allocations are handled by a single function, alloc_object. Just as we had modified malloc
in C, we were able to simply patch alloc_object to monitor memory allocation in KCL.

The other major difference in monitoring Lisp is that the addresses recorded by the
monitor must be translated into Lisp function names. Again, KCL makes this quite easy
because Lisp functions are defined in a central place in KCL and the names of the functions
are known when they are defined. Many other Lisp systems are designed to allow return
addresses to be mapped to symbolic function names so that the call stack can be printed at a
breakpoint. In this case, the monitor can use the same mechanism to map return addresses
to function names. Therefore, in Lisp systems where addresses can be quickly mapped
to function names, memory profiling in the style of mprof is not a difficult problem. In
systems where symbolic names are not available in compiled code, profiling is more difficult.
Furthermore, many systems open-code important allocation functions, like cons. In this
case, the open-coded functions will not appear in the profile directly; instead the functions
containing the open-coded functions will be credited with the allocation.

4 Measurements

We have measured the C implementation of mprof by instrumenting four programs using
mprof. The first program, example, is our example program with the number of widgets
allocated increased to 100,000 to increase program execution time. The second program,
fidilrt, is the runtime library of a programming language for finite difference computa-

3Using mprof, we noted that for a large object-oriented program written in KCL, the system function
every accounted for 13% of the memory allocated. We rewrote every so it would not allocate any memory,
and decreased the memory consumption of the program by 13%.

10

tions. The third program, epoxy, is an electrical and physical layout optimizer written
by Fred Obermeier [OK87]. The fourth program, crystal, is a VLSI timing analysis pro-
gram [Ous85]. These tests represent a small program (example, 100 lines); a medium-sized
program (fidilrt, 2,700 lines); and two large programs (epoxy, 11,000 lines and crystal,
10,500 lines).

mprof consumes four resources when it is used. The monitor adds execution time to the
program being profiled. We measured the programs executing with and without profiling.
The ratio of the time with profiling to the time without profiling is called the slowdown
factor. The most significant source of memory used by the monitor is the partial call chain
of five addresses allocated with every object and used to construct the leak table. Table 1
reports this overhead as a fraction of the total user memory. The monitor also uses memory
to record the memory bins and caller/callee byte counts and must write this information
to a file when the profile is finished. We measured how many bytes of memory and disk
space are needed to store this information. A final resource is the time required to reduce
the monitor data and print the tables. Table 1 summarizes the measurements.

Cost
Resource Description example | fidilrt | epoxy | crystal

User memory allocated (Kbytes) 20000 3644 6418 21464
Number of allocations 100000 77376 | 306295 | 31158
Execution time with mprof (seconds) 47.7 128.4 188.8 134.1
Execution time without mprof (seconds) 15.4 93.7 52.1 13.2
Overhead per allocation (milliseconds) 0.3 0.5 0.4 3.9
Slowdown factor 3.1 1.4 3.6 10.1
Leak Table memory usage (Kbytes) 1953 1510 5982 517
Leak Table fraction (% memory allocated) 9 29 48 2
Other Monitor memory usage (Kbytes) 8.7 15.9 52.3 17.5
Intermediate data file size (Kbytes) 4.5 8.1 28.6 9.6
Reduction and display time (seconds) 10.3 16.9 28.3 36.8

Table 1:

a VAX 8800 with 80 megabytes of physical memory.

Resource Usage of mprof. Measurements were gathered running the test programs on

Profiling adds 0.4—4 milliseconds to each object allocation. The crystal test suffered
the worst degradation from profiling (slowing down an order of magnitude) because crystal
uses a depth-first algorithm that results in long call chains. Our measurements show that
typically mprof slows program execution by a factor of two or three. Since mprofis a
prototype and has not been carefully optimized, this overhead seems acceptable. If less
overhead is required, we will consider only recording partial call chains for the allocation
call graph or eliminating the allocation call graph altogether.

The memory overhead of mprof is small except that storing the partial call chains
for the leak table with each object allocated can account for half or more of the total
memory consumption of programs that allocate many small objects. We are considering an
implementation that would reduce the additional per object memory needed to maintain

11

the partial call chains from five words to one, thus reducing the leak table memory overhead
by a factor of five.

5 Related Work

mprof is similar to the tool gprof [GKMS83], a dynamic execution profiler. Because some
of the problems of interpreting the dynamic call graph are the same, we have borrowed
these ideas from gprof. Also, we have used ideas from the user interface of gprof for two
reasons: first, because the information being displayed is quite similar, and second, because
users familiar with gprof would probably also be interested in mprof and would benefit
from a similar presentation.

Barach, Taenzer, and Wells developed a tool for finding storage allocation errors in C
programs [BTW82]. Their approach concentrated on finding two specific storage allocation
errors: memory leaks and duplicate frees. They modified malloc and free so that every
time these functions were called, information about the memory block being manipulated
was recorded in a file. A program that examines this file, prleak, prints out which memory
blocks were never freed or were freed twice. This approach differs from mprofin two ways.
First, mprof provides more information about the memory allocation of programs than
prleak, which just reports on storage errors. Second, prleak generates extremely large
intermediate files that are comparable in size to the total amount of memory allocated by
the program (often megabytes of data). Although mprof records more useful information.
the intermediate files it generates are modest in size (typically smaller than 30 kilobytes).

6 Conclusions

We have implemented a memory allocation profiling program for both C and Common Lisp.
Our example has shown that mprof can be effective in elucidating the allocation behavior
of a program so that programmers can detect memory leaks and identify major sources of
allocation.

mprof records every caller in the call chain every time an object is allocated. The
overhead for this recording is large but not impractically large, because we take advantage
of the fact that the call chain changes little between allocations. Moreover, recording this
information does not require large amounts of memory because there are relatively few
unique caller/callee address pairs on call chains where allocation takes place, even in very
large programs.

Because some Lisp programs contain many recursive functions, large cycles in the call
graph may make mprof ineffective for this class of programs. Future work may include a
different treatment of recursive cycles so that less information about functions within the
cycle is lost. We also plan to optimize the monitor to decrease the memory and performance
overhead associated with using mprof.

References

[BTWS82] David R. Barach, David H. Taenzer, and Robert E. Wells. A technique for find-

12

[GKM83]

[OK87]

[Ous85]

ing storage allocation errors in C-language programs. ACM SIGPLAN Notices,
17(5):16-23, May 1982. ’

Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. An execution
profiler for modular programs. Software Practice & Ezperience, 13:671-685, 1983.

Fred Obermeier and Randy Katz. EPOXY: An Electrical and Physical Lay-
out Optimizer that Considers Changes. Technical Report UCB/CSD 87/388,
UCBCS, November 1987.

John Ousterhout. A switch-level timing verifier for digital MOS VLSI. IFEFE
Transactions on CAD, CAD-4(3), July 1985.

13

mprof (1) UNIX Programmer’s Manual mprof (1)

NAME
mprof — display dynamic memory allocation data

SYNTAX
mprof [options] [a.out [mprof.data]]

void set_mprof_autosave(count)
int count;

void mprof_stop()

void mprof_restart(filename)
char *filename;

DESCRIPTION
The mprof command produces four tables that summarize the memory allocation behavior of C programs,
similar in style to the gprof command. The arguments to mprof are the executable image (a.out default)
and the profile data file (mprof.data default). The mprof.data file is generated by linking a special version
of malloc into the executing image. This new version, called mprof_malloc.o must be linked in at the end
of the command that creates the executable image. For example:

CC -g -0 test main.o subl.o sub2.0 mprof_malloc.o

Users’ programs can contain additional calls to customize the user interface to mprof. The function
set_mprof autosave allows users to save the profile data periodically. The count parameter specifies to
save after that number of allocations. A value of 10,000 or 100,000 is typical for the count parameter for
long running programs. A value of Q (the default) causes the the profile data to be written only when the
program exits. The function mprof stop causes memory profiling to be discontinued and the profile data to
be written to the output file. The function mprof restart restarts profiling. The filename parameter to
mprof _restart specifies the name of the file to write the profile data to.

The output of mprof consists of four tables, the fields of which are described in detail below. The first
table breaks down the memory allocation of the program by the number of bytes requested. For each byte
size the number of allocations and frees is listed along with the program structure types that correspond to
that byte size.

The second table lists partial call chains over which memory was allocated and never freed (call chains
resulting in memory leaks). The table shows how much memory was allocated by each chain and how
much each chain contributed to the total memory leakage.

The third table lists the functions in which allocation occurred directly (i.e., called malloc), indicates how
much memory was allocated, shows how much of that was not later freed, breaks down allocation roughly
by size, and shows how many times each function was called.

The fourth table contains the subgraph of the program’s dynamic call graph in which allocation occurred.
This table allows programmers to identify what functions were indirectly responsible for memory alloca-
tion.

The following options are available:

—verbose
Every bin in which memory was allocated is printed; the call chain for every memory leak is
shown.

—normal
Only bins that contributed a reasonable fraction to the total allocation are printed; call chains for
leaks contributing more than 0.5% to the total are shown. This is the default verbosity setting.

—terse Only bins that contributed a significant fraction to the total allocation are printed. Call chains con-
tributing more than 1% to the total leakage are shown.

4th Berkeley distribution

mprof (1) UNIX Programmer’s Manual mprof (1)

—leaktable
Print out the memory leak table without printing out call site offsets. This is the default.

~noleaktable
Do not print out the memory leak table.

—offsets Print out the memory leak table and distinguish different call sites within a function by indicating
the offset in the function as part of the path. This is useful to identify a particular call site in a
function with many call sites that allocate memory.

FIELDS IN THE OUTPUT
When data is broken down by size categories, the categories mean the following:

s = small X <= 32 bytes

m = medium 32 < x <= 256 bytes
1=large 256 < x <= 2048 bytes
X = extra large x > 2048 bytes

where x is the exact size of the object being allocated by a call to malloc. When data is broken into
categories, percentages are always given. If no number appears in such a listing, then the number is less
than 1%. Throughout this document, we refer to such a listing as a ‘‘breakdown’’.

TABLE 1: ALLOCATION BINS
The memory allocation is broken down by the sizes of objects requested and freed.

size The size in bytes of the object allocated or freed.

allocs The number of calls to malloc requesting allocation of this size.

bytes (%) The total number of bytes allocated to objects of this size. The percent indicates the per-
cent of the total bytes allocated. A blank percent indicates less than 1%.

frees The number of times objects of this size were freed.

kept (%) The number of bytes of objects of this size that were never freed. The percent indicates

. what fraction of unfreed bytes were allocated to objects of this size. Blank indicated less

than 1%.

types A list of the program names of structure types or typedefs that define objects of this size.

TABLE 2: MEMORY LEAKS

The memory leak table lists the partial call chains which allocated memory that was never freed. At most
five functions in the call chain are listed.

allocs The number of allocations that occurred on this partial call chain.

bytes (%) The number of bytes allocated on this partial call chain. The percent indicates the percent
of the total bytes allocated and never freed. A blank percent indicates less than 1%.

frees The number of frees that occurred on this partial call chain. If no objects were freed this
and the following field are ommitted.

bytes (%) The number of bytes freed on this partial call chain. This field is omitted if no bytes were
freed.

path The partial call chain. Call chains starting with "..." indicate that more callers were

present, but were ommitted from the listing. Call chains consist of function names (and
possible call site offsets) separated by ">". Call site offsets are indicated by a +n follow-
ing the function name, where n is the distance in bytes of the call site from the start of the
function. Call site offsets are printed using the -offset option.

TABLE 3: DIRECT ALLOCATION
The <TOTAL> row of the direct allocation listing contains a summary of all the functions where such a

summary makes sense.

4th Berkeley distribution

mprof (1)

% mem
bytes

% mem(size)

bytes kept
% all kept

calls
name

UNIX Programmer’s Manual mprof (1)

Percentage of the total memory allocated that was allocated by this function.
The total number of bytes allocated by this function.

Size breakdown of the memory allocated by this function as a percentage of the total
memory allocated by the program. For example, if the values for function MAIN are s=5,
m=20, 1=4, x=0, then direct calls to MALLOC from MAIN account for 5+20+4+0 = 29%
of the total memory allocated by the program. Moreover, 20% of the total memory allo-
cated by the program was of medium sized objects (between 33 and 256 bytes) by the
function MAIN. The <TOTAL> row represents the breakdown by size of all the memory
allocated by the program.

The number of bytes allocated by this function that were never freed (by calls to FREE).

The size breakdown of objects never freed by this function as a percentage of all objects
never freed. For example, if <% all kept> values for function MAIN are s=2, m=10,
l=<blank>, x=<blank>, then 10% of the total bytes not freed were allocated by MAIN and
were allocated in medium-sized chunks. The <TOTAL> row represents the size break-
down of all the memory allocated but never freed.

The number of times this function was called to allocate an object.

The name of the function.

TABLE 4: ALLOCATION CALL GRAPH
A star (*) indicates that this field is omitted for ancestors or descendents in the same cycle as the function.

Cycles are listed twice. The first appearance shows all the functions that are members of the cycle and the
amount of memory allocated locally in each function, including the breakdown of the local allocation by
size and the breakdown by size as a fraction of the total cycle. The second appearance shows what the call
graph would look like if all the functions in the cycle were merged into a single function.

index
self + desc

self (%)

size-func

called

recur

name
ANCESTOR LISTINGS

A unique index used to aid searching for functions in the call graph listing.

The percent of the total allocated memory that was allocated by this function and its des-
cendents.

The number of bytes allocated by the function itself. The percentage indicates the frac-
tion of the bytes allocated by the function and its descendents that were allocated in the
function itself.

The size breakdown of objects allocated in the function itself (not including its descen-
dents.)

The number of times this function was called while allocating memory.
The number of recursive function calls while allocating memory.
The function name including possible cycle membership and index.

If the word “‘all’’ appears in the <self + desc> column, then this row represents a summary of all the ances-
tors and presents the total number of bytes requested by all ancestors in the <bytes> column, and the break-
down of these bytes by size in the <self-ances> breakdown columns. If there is only one ancestor, then this
summary is omitted.

*self (%)

*size-ances

*frac-ances

The number of bytes allocated by the function and its descendents that were allocated on
behalf of this parent. The percentage indicates what fraction of the total bytes allocated
by the function and its descendents were allocated on behalf of this parent.

The size breakdown of the bytes allocated by the function and its descendents on behalf
of this parent.

The size breakdown of the objects allocated in the function and its descendents on behalf
of this parent as a percentage of all objects allocated by the function and its descendents.

mprof (1)

UNIX Programmer’s Manual mprof (1)

For example if parent P1 of function F has <frac-ances> values s=<blank>, m=<blank>,
1=30, x=<blank>, then 30% of all objects allocated by F and its descendents are of large
objects allocated on behalf of parent P1.

called The number of times this parent called this function while requesting memory.

*total The number of calls this parent made requesting memory from any function.

ancestors The name of the parent including possible cycle membership and index.
DESCENDENT LISTINGS

If the word ‘‘all’” appears in the <self + desc> column, then this row represents a summary of all the des-
cendents and presents the total number of bytes allocated by all descendents in the <bytes> column, and the
breakdown of these bytes by size in the <self-desc> breakdown columns. If there is only one descendent,
then this summary is omitted.

*self (%)

*size-ances
*frac-desc

called
*total
descendents

FILES
a.out
mprof.data

The number of bytes allocated in this descendent that were allocated at the request of the
function. The percentage indicates what fraction of the total bytes allocated in descen-
dents of the function were allocated in this descendent.

The size breakdown of the bytes allocated by this descendent on behalf of the function.

The size breakdown of the objects allocated in this descendent on behalf of the function
as a percentage of all objects allocated by all descendents on behalf of this function. For
example if descendent C1 of function F has <frac-desc> values s=35, m=<blank>,
l=<blank>, x=<blank>, then 35% of all objects allocated by children of F on its behalf
were allocated in child C1 and were small objects.

The number of times the function called this descendent while requesting memory.
The number of times this descendent was called during a memory request.

The name of the child including possible cycle membership and index.

contains symbol table information.
memory allocation call graph information.

mprof_malloc.o special version of malloc which profiles allocation.

SEE ALSO
cc(1), gprof(1)

A Memory Allocation Profiler for C and Lisp Programs, Benjamin Zorn and Paul Hilfinger, draft of a U. C.
Berkeley Tech Report.

AUTHOR

Written by Benjamin Zorn, zorn@emie.berkeley.edu, as part of Ph.D. research sponsored by the SPUR

research project.

BUGS

The code that determines the names and sizes of user types is poorly written and depends on the program
being compiled with the -g option. In some cases (mostly very simple cases) the user type names are not
correctly determined.

4th Berkeley distribution

