Fast Parallel Algorithms for Graphs and Networks

by

Danny Soroker

Copyright © 1987






Fast Parallel Algorithms for Graphs and Networks
By -

/

Danny Soroker

B.Sc. (Technion Israel Institute of Technology) 1981
M.Sc. (Technion Israel Institute of Technolegy) 1983

DISSERTATION
Submitted in partial satisfaction of the requirements for the degree of
DOCTCR OF PHILOSOPHY
in

Carputer Science

in the
GRADUATE DIVISION
OF THE
UNTVERSITY OF CALIFORNIA, BERKELEY

---------------------

------------------------------------------------------






Fast Parallel Algorithms For Graphs and Networks

Danny Soroker

ABSTRACT

Many theorems in graph theory give simple characterizations for testing the
existence of objects with certain properties, which can be translated into fast paral-
lel algorithms. However, transforming these tests into algorithms for constructing
such objects is often a real challenge. In this thesis we develop fast parallel ("NC™)

algorithms for several such construction problems.

The first part is about tournaments. (A tournament is a digraph in which
there is precisely one arc between every two vertices.) Two classical results state
that every tournament has a Hamiltonian path and every strongly connected tour-
nament has a Hamiltonian cycle. We derive efficient parallel algorithms for
finding these objects. Our algorithms yield new proofs of these theorems. In solv-
ing the cycle problem we also solve the problem of finding & Hamiltonian path
with one fixed endpoint. Next we address the problem of constructing a tourna-
ment with a specified degree-sequence, and give an NC algorithm for it which
achieves optimal spee_dul;.

The second part is concerned with making graphs strongly connected via
orientation and augmentation. A graph is strongly orientable if its edges can be
assigned orientations to yield a strongly connected digraph. Robbins’ theorem
states the conditions for a graph to be strongly orientable. His theorem was gen-
eralized for mixed graphs, i.e. ones that have both directed and undirected edges.
We give a fast parallel algorithm for strongly orienting mixed graphs. We then

solve the problem of adding a minimum number of arcs to a mixed graph to make



it strongly orientable. This problem was not previously known to have even a
polynomial time sequential solution (a sequential algorithm was discovered
independently by Gusfield). In the process of solving the general problem we

derive solutions for the special cases of undirected and directed graphs.

The final part of the thesis describes a methodology which yields deterministic
parallel algorithms for several supply-demand problems on networks with zero-one
capacities. These problems include: constructing a zero-one matrix with specified
row- and column-sums, constructing a simple digraph with specified in- and out-
degrees and constructing a zero-one flow pattern in a complete network, where
each vertex has a specified net supply or demand. We extend our results to the
case where the input represents upper bounds on supplies and lower bounds on

demands.

This research was supported by Defense Advanced Research Projects Agency (DoD)
Arpa Order No. 4871, Monitored by Space & Naval Warfare Systems Command
under Contract No. N00039-84-C-0089 and by the International Computer Science

Institute, Berkeley, California.

Chairman of the Committee: Richard M. Karp



To Edeet and Tamar - my family !






1

Acknowledgements

It is a pleasure to acknowledge those who contributed to the creation of this

document.

First and foremost I would like to thank my advisor Dick Karp. I feel for-
tunate to have known him and worked with him. His suggestions of research
problems initiated most of the work in this dissertation. His quickness in detect-
ing errors and his many insights and suggestions were crucial in keeping me on
the right track and molding my ideas into working solutions. Dick’s friendliness
and sense of humor made him very approachable. He made time to meet me and
listen to my half baked ideas just a few hours before flying to the Far East for a

month. He has been inspiring as a teacher and researcher.

1 thank Manuel Blum and Dorit Hochbaum for serving on my committee. [t
was always fun discussing research and life with Manuel. His originality and
uniqueness shine. His warmth glows. I enjoyed my conversations with Dorit. I

thank her for her careful reading of the manuscript and her valuable comments.

Noam Nisan and I worked jointly on chapter five of this thesis. He was an
excellent collaborator, always coming up with new ideas. Working with him was a
very enjoyable experience, as was learning to sail together. I enjoyed working
with Phil Gibbons. His diligence, ideas and eye for detail were instrumental in
getting results. My first collaborator in Berkeley was Howard Karloff (our joint
work appears in his thesis). He was fun to work with and I thank him for intro-

ducing me to the world of Ultimate Frisbee.

Berkeley is a great place for doing theory. I thank David Shmoys for helping
me realize this and for being a main force in "luring" me into the Theory group.
Gene Lawler’s friendliness also helped. Many visitors contributed to the exciting
atmosphere, of whom I would like to acknowledge Amos Fiat, Mike Sipser, Vijaya
Ramachandran and Avi Wigderson. Special thanks go to Vijaya, whom I had the

pleasure of working with, for expressing interest in my research.

One of the best parts of "The Berkeley Experience” has been to get to know

and live amongst my fellow students in the Theory group. It was wonderful to



11

have Sampath Kannan next door. Talking with him about research and just .adout
anvthing else was always enjoyable, even after loosing the nth game of badminton
to him. Valerie King and Joel Friedman showed me the wonders of cross-country
skiing in Yosemite. Steven Rudich was always surprising. I am grateful to
Marshall Bern, Jon Frankle, Lisa Helerstein, Moni Naor, Prabhakar Ragde.
Umesh Vazirani, Alice Wong, Yanjun Zhang and the rest of the Theory crowd for
making my life richer.

Last and most I thank my wife, Edeet. Her love and support kept me going.
Our daughter, Tamar, was born just in time to be mentioned here, and was kind
enough to come with me to the office several times to help me type in the last few

payges of this dissertation.



Table of Contents

Chapter One : Introduction ...

Chapter Two : Fundamental Theoretical Concepts ...
2 1 The PRAM Model of Computation ..o
2.2 Complexity CLasses ...
9.3 Efficient and Optimal Algorithms ...

2.4 Terminology and NOTALION ..o

Chapter Three : Efficient Alogrithms for Tournaments ...
T 1 TIETOQUCEION eeeeeeiiieiirteeeetae e e bt e sr et aab e e e e e e e e et e sbr e s s e st
3.2 Strongly Connected Components of a Tournament ..o
33 Hamiltonian Paths and Cycles ..o
3.3.1 Hamiltonian Path ... s
3.3.2 Hamiltonian Cycle and Restricted Path ..o
3.3.3  Open Problems ..o
3.4 The Tournament Construction Problem ...,
3.4.1 The Upset SEQUENCE ..oooviiieintienieiiiiii s
3.4.2 2-Partitioning the Upset Polygon ..o

3.4.3 Implementation Details ...

Chapter Four : Strong Orientation of Mixed Graphs and Related
Augmentation Problems ...

4.1 INETOQUCLION ooreeeiiiiiiieieiirereeseeaereeeeastanae st ie s e e s et s s be e st et
4.2 BACKZTOUNA ..viviiteiiiiiiiitese et
421 Theorems and Sequential Complexity of Strong Orientation ...........
4292 Parallel Algorithms for Undirected Strong Orientation ...............
4.3 Strong Orientation of Mixed Graphs ...
4.4 Minimum Strong Augmentation of Graphs and Digraphs ..occoooniniiinninnnn
4.4.1 Making a Graph Bridge-Connected ...
442 Making a Digraph Strongly Connected ...,

4.5 Minimum Strong Augmentation of Mixed Graphs ...



Chapter Five : Zero-One Supply-Demand Problems ...
51 INETOQUCLION oeoeeieiee oo ettt
59 The Matrix Construction Problem ...
591 The S1ACK MALEIX «oooroeooeseeessoesssose s sensoessssssossins e
52.2 One Phase of Perturbations ...
5.2.3 Correcting a Perturbed Solution ...
524 The Base Case ..oooooovviiiiiinmiiiiiiiiiin TR UPRUPRTPRPPPS
5.2.5 The AIGOTITAIM Lot
5.2.6 Parallel Complexity i
5.3 The Svmmetric Supply-Demand Problem ...
5.4 Digraph COnStrUCTiON ..ot
5.5 Bounds on Suppiies and Demands ...

1 S S S oL R ETT T U U T U U U U OO OO O S P O PO UROSPOIISPPPPPPOTOTOPRPPRPPPPSITPRRRS ST EREE



CHAPTER ONE

INTRODUCTION

Parallel computation is becoming a central field of research in computer sci-
ence. The main driving forces behind this have been technological advances in the
area of Very Large Scale Integration. The price of computer hardware has been
pushed down to the point where time of execution (rather than cost of components)
is the main limiting factor in many applications. Furthermore, the speed of pro-
cessor and memory units has been constantly increasing, but is gradually
approaching saturaticn due to physical limitations. The combination of these fac-
tors has brought forth the necessity for parallel computers - machines which have
many processors that cooperate and coordinate actions efficiently to solve problems
quickly.

The theory of parallel computation is still in early stages of development, but
is gaining popularity due to its practical importance on one hand and to the funda-
mental mathematical problems arising in it on the other. The body of knowledge
on parallel algorithms is much smaller than that on sequential algorithms. One
reason is, of course, time - researchers have been constructing sequential algo-
rithms ever since the idea of "computer" was born, whereas development of a
coherent theory of parallel computation started only in the late 1970s. Thus, the
body of knowledge on sequential complexity of problems is much larger than that

on parallel complexity.

Another main difference lies in deciding on an appropriate model of computa-
tion. In the sequential world there is a clear resemblance between the standard
Random Access Machine model ((AHU]) and actual working computers - algo-
rithms developed for this model can be translated quite simply into programs in
existing languages. This is not the case in parallel computing. The prevailing
theoretical model for algorithm design is the Parallel Random Access Machine
(PRAM, to be formally defined in chapter two). It has an unbounded number of
processors working in full synchrony, each performing its own instruction at any

given step and each having unit-time access to a shared memory. It is set apart



from current machines in several aspects:

(1) MIMD vs. SIMD - In the PRAM model different processors perform different
operations at any giv'en step. This property is known as MIMD (Multiple
Data Multiple Instruction). However, machines with the largest number of
processors currently available, such as the Connection Machine of Thinking
Machines Corp. which has as many as 65,536 processors ([Hillis)), are SIMD
(Single Instruction Multiple Data). This means that at each time step all pro-
cessors perform the same operation. Current MIMD machines, such as the
NYU Ultracomputer ((GGKMRS])) and the BBN Butterfly ({RT]), have sub-

stantially fewer processors (several hundred).

(2) Shared vs. distributed memory - Both the Ultracomputer and the Butterfly
resemble the PRAM model in that they provide shared memory. However
access to the shared memory takes more time than local operations. Further-
more, a large part of the design effort has gone into constructing the intercon-
nection network between processors and the shared memory, and scaling these
designs to accommodate for larger numbers of processors seems to be a very
complex and expensive task. One solution to this problem is to have a net-
work of processors with no shared memory, in which processors communicate
by sending messages. One such design is the Caltech Cosmic Cube upon
which some commercial computers, such as the Intel iPSC, are based
((SASLMW1). Several strong theoretical results ({Upfal],[KU},[Ranade]) show
that PRAMs can be efficiently simulated by bounded degree networks (i.e.
ones in which the degree of a processor (the number of neighbors it has) is
fixed, independent of the total number of processors). These results give par-

tial justification for using the PRAM model for algorithm design.

(3) Synchronous vs. asynchronous - The PRAM is a highly synchronous model.
Each step of the computation is performed synchronously by all processors.
This is impractical under current technology because of problems in achieving
clock synchronization. However, some form of synchronization is important to
have and some existing machines provide tools for this. For example, the
NYU Ultracomputer has a "replace-add" operation built into its hardware,

which can be used for synchronization.



Finally we note that in some of the currently most powerful "supercomputers”,
such as the Cray-2 and the Goodyear Aerospace Corp. MPP ((SASLMW]) most of

the parallelism is in the form of pipelining and vector operations.

To summarize, the PRAM model of computation differs substantially from
existing parallel computers. Even so, it is an appropriate model to use when
studying the limits and possibilities of parallelism. It frees the algorithm designer
from worrying about details which are not a fundamental part of the problem
being studied. Furthermore, as stated above, it is possible to automatically
translate PRAM programs to ones on more realistic models (bounded degree net-
works) with a relatively small loss of efficiency. Finally, the PRAM model sets a

goal for future designers of parallel computers.

This thesis is a study in parallel algorithms. The research reported here
involved developing parallel algorithms for several basic problems related to
graphs and networks. Graph theory is a fundamental area underlying computer
algorithm design, since graphs are general structures, which provide 'a convenient
means for modeling many real-world problems. Our motivation for choosing the
problems we chose was not necessarily because they arise in specific applications,

but rather that the known sequential algorithms for them seem hard to parallelize.

It is interesting to point out two features that are shared by most of the prob-

lems we considered, since they often come up in the study of parallel algorithms:

(1) The problem has a simple, even trivial, sequential algorithm. Transforming
this algorithm into a fast parallel algorithm turns out to be a big challenge,

and often a totally new approach is needed.

(2) The problem is a search or construction problem (e.g "find a set with property
X") which has a related decision problem ("does there exist a set with pro-
perty X?"). The decision problem has an known fast parallel solution whereas
the search problem does not. This seemingly inherent difference between
decision and search problems does not come up usually in polynomial time
sequential computation. This is because much of the research in sequential
algorithms has been on search problems. Furthermore, in many cases there is
an obvious means of converting an algorithm for a decision problem to an

algorithm for the related search problem (using self reducibility). However,



this conversion seems inherently sequential and does not yield a fast parallel

algorithm. An interesting discussion appears in [KUW1].

There were several goals motivating the research reported here. First, as
mentioned above, the problems considered posed a challenge in that their known
sequential solutions seem hard to parallelize. Second, in the process of trying to
create parallel algorithms for problems, basic techniques for parallel computation
may be developed. By "basic techniques" we mean procedures that have poten-
tially wide applicability in helping to solve many problems. Examples of such
techniques in the literature are parallel "tree contraction” of Miller and Reif
(IMR]), the "Euler Tour" technique for trees of Tarjan and Vishkin ((TV]) and
"independence systems" of Karp, Upfal and Wigderson (KUW1)). Examples of
techniques developed in this thesis are: introducing the notion of a "dense match-
ing" with an efficient parallel implementation for it (chapter four) and the idea of

partitioning the edges of a graph into "constellations” (chapter five).

Another possible benefit from devising parallel algorithms is that new insight
can be obtained for sequential computation. The reason for this is that trying to
find a parallel solution to a problem seem to require, in many cases, directions
which are very different than the common sequential ones. On the other hand, a
parallel algorithm (in the model we will be using) can easily be converted into a
sequential one. Therefore, a new efficient parallel algorithm (where efficiency is
measured by the total number of operations performed by the algorithm) yields a
new sequential algorithm with good running time. For example, motivations from
parallel complexity led us to solve the minimum strong augmentation problem for
mixzed graphs (chapter four), for which no previous polynomial-time sequential
algorithm was published. A sequential algorithm was discovered independently by

Gusfield ([Gusf]), who gives several applications of this problem.

The process of developing parallel algorithms can be broken down into two
main stages, analogous to the sequential case. First (at least in the problems we
considered) one needs to determine if the problem on hand has a fast parallel solu-
tion. Here we need to define what "fast parallel” means. We will be using the (by
now standard) notion of NC (to be formally defined in chapter two) for this pur-

pose. This first stage can be very hard, and is analogous to showing that a prob-



lem is in P. It is possible to give evidence that a problem is unlikely to be in NC
by showing it to be "P-complete” (see chapter two), analogously to marking a prob-
lem as "probably hard" by proving it to be NP-complete. The second stage is to
find ways to improve the efficiency of the algorithm found in the first stage. This
is analogous to developing sophisticated data structures to push down the running
time of sequential algorithms as close as possible to optimal. In this context we

will define the notions of "efficient" and "optimal" parallel algorithms.

We now give a brief outline of the thesis. Chapter two contains a formal
description of the concepts which are the foundations of the research reported here.
We define our model of computation, relevant complexity classes and efficiency of
algorithms. We also mention some basic graph theoretic terminology and notation

we will be using.

Chapter three deals with tournaments, which are digraphs in which each pair
of vertices is connected by one arc. The first half of this chapter has algorithms for
constructing Hamiltonian paths and cycles in tournaments ({Sorol]). The second
half describes a method for constructing a tournament with a given degree
sequence {[{Soro3]). This problem is similar to the problems considered in chapter

five, but the techniques for solving it are very different.

Chapter four describes solutions to several problems related to edge orienta-
tion ((Soro2]). The first problem is to orient the edges of a mixed graph (ie. a
graph with some directed and some undirected edges) so that the resulting digraph
is strongly connected. A graph for which such an orientation is possible is called
strongly orientable. Next we solve the problem of augmenting a graph (or
digraph) with a minimum number of edges to make it strongly orientable. Finally
we extend these methods to derive a solution for the minimum strong augmenta-

tion problem for mixed graphs.

Chapter five contains a description of a methodology which yields fast parallel
algorithms for several construction problems that can be stated as supply-demand
problems with zero-one arc capacities (INS]). The problems solved are constructing
a zero-one matrix with specified row- and column-sums, constructing a digraph
with given in- and out-degree sequences and constructing a zero-one flow pattern

between a set of sites, each of which has a specified supply or demand. The algo-



rithms are extended to the case where the input specifies upper bounds on supplies

and lower bounds on demands.



CHAPTER TWO

FUNDAMENTAL THEORETICAL CONCEPTS

In this chapter we give a formal discussion of the main concepts relevant to this
thesis. We will discuss the PRAM model of computation, the complexity classes
NC and RNC and efficient and optimal algorithms. Finally, we will mention the

basic graph theoretic terminology and notation we will be using.

2.1 The PRAM Model of Computation

Many models of parallel computation have appeared in the literature (a good
survey appears in [Cookl]). In this manuscript we will be focusing on one model:
the Parallel Random Access Machine (PRAM). This model was defined by various
researchers (see e.g. [Vishl] for a survey), and is currently the prevailing model for
designing parallel algorithms. A PRAM contains a sequence of processors,
P,,P,, P,,.. and a shared memory. Each processor has a local memory and the
capabilities of the standard sequential random-access machine ({AHUD: it can, in
one step, perform a basic operation such as adding two numbers, comparing two
numbers, reading or writing to its local memory etc. A processor can also access
the shared memory in the manner described below. Every processor has a unique

integer index distinguishing it from all other processors.

The PRAM is synchronous - the computation is performed in parallel steps,
where at step i each processor performs its ith computation step. In each parallel
step of computation every processor performs one of three primitive operations: it
can either read one cell of the shared memory, write into one cell of the shared
memory or perform a local computation. If, in one step, some cell is both read
from and written into, we will assume that the read occurs before the write.
PRAMs are categorized according to the allowable configurations in accessing the

shared memory.

Exclusive/Concurrent Read: in an exclusive read PRAM, no two processors

attempt to read the same memory cell at the same step. An algorithm is valid



for this model only if it has this property. In a concurrent read machine any

number of processors can read a memory cell in one step.

Exclusive/Concurrent Write: an exclusive write PRAM is one in which no two
processors attempt to read the same memory cell at the same step. In a con-
current write model many processors can try to write into the same cell simul-
taneously (i.e. in the same step). Here (as opposed to concurrent read), it is
not obvious what the result of a concurrent write should be, so a further

categorization is necessary:

COMMON: all processors attempting to write simultaneously into the same

cell must write the same value.

ARBITRARY: one of the processors attempting to write simultaneously in
one cell succeeds (i.e. its value gets written). The algorithm may not

make any assumptions about which of the processors succeeds.

PRIORITY: the processor with the lowest index of those attempting to write

simultaneously in one cell succeeds.

The type of PRAM is specified mnemonically, for example CREW means con-
current read - exclusive write. It is clear that concurrent read (write) is at least as
powerful as exclusive read (write), since any algorithm for one can also run on the
other. Similarly, PRIORITY is the most powerful concurrent write model (of the
ones listed above) and COMMON is the weakest.

All the processors have the same program, but at a given time different pro-
cessors will be performing different operations since the program can refer to the
processors’ identification numbers. The requirement of one program for all proces-
sors makes the model more practical and also disallows unreasonable power, in
that it enforces a 'uniformity condition (i.e. the same program works for different
input sizes) and implies that the program is finite. For example, if each processor
had a different program, there would exist a PRAM program that solves the halt-
ing problem: the program of processor i would be: " if the input is i and Turing

machine i halts then output 'halts’; otherwise output 'doesn’t halt’ ".

A PRAM computation works as follows: initially the input appears in the first
n cells of shared memory. The first p(n) processors are simultaneously "activated”,

and run a common program as described above, where the function, p(n), depends



on the program. We will refer to this function as "the number of processors used

by the algorithm. It is assumed that each processor knows the value n. At the
end of the computation the output should appear at a specified location (or set of
locations) in the shared memory. The number of steps until the last active proces-

sor finishes running the program is the running time of the algorithm.

There is an obvious time-processor tradeoff which is important to point out:

let ¢ >1 be a real number and say a certain PRAM program, A, runs in time ¢t and

uses p processors. Then A can be modified to use only [%l processors, and run in

time O(ct). The modification is simply to have each processor in the modified pro-
gram do the work of ¢ processors in A. Therefore each step of A corresponds to ¢
consecutive steps in the modified program. As a special case of this, A yields 2

sequential algorithm running in time p-t.

A note about word size. We will assume that a memory cell (shared or local)
is of size clogyn (for some constant, ¢, depending on the algorithm). Consequently,
basic operations (addition, comparison) on integers up to n° can be performed in
one step. One reason for making this assumption is that we will be dealing with

graphs, and usually the primitive elements will be names of vertices and edges.

Randomization: As in sequential computation, the notion of randomized algo-
rithms helps in solving certain problems. To this end we define a

probabilistic PRAM. In this model each processor has the additional capability of

generating random numbers. More specifically, we will assume that in one step a
processor can generate a random word, i.e. an integer chosen uniformly in the
range [0,n°]. Again, a probabilistic PRAM can be either exclusive or concurrent

read and write.

2.2 Complexity Classes

In our study of parallel algorithms we need to define appropriate complexity
classes to express the notion of a "fast parallel algorithm". The class NC is com-
monly used for this purpose. The class NC was first identified and characterized
by Pippenger ([Pipp]). The name "NC" was coined by Cook (see e.g. [Cookl]) and

stands for "Nick’s Class", giving credit to Nick Pippenger.



10

Definition: A decision problem is in NC if there exists a PRAM algorithm solving
it that runs in time O(log"'n) using 0(n°?) processors, where n is the size of the

input and c; and ¢, are constants independent of n.

First we note that NC is defined for decision problems (i.e. problems for which
the output is one bit). We will use the term more loosely and talk about an

NC algorithm, i.e. a PRAM algorithm that obeys the appropriate time and proces-

sor constraints.

The next thing to note is that the type of PRAM is not specified in the
definition. The reason is that the strongest PRAM model (PRIORITY CRCW) can
be efficiently simulated by the weakest model (EREW). More precisely, for any p
and ¢, for any PRIORITY CRCW algorithm that runs in time ¢ and uses p proces-
sors, there exists an equivalent EREW algorithm that runs in time O(t-logp) and
uses p Processors. (Equivalent means having the same input-output correspon-
dence.) The simulation (due to Vishkin) involves sorting all the accesses to the
shared memory, thus detecting the highest-priority processor writing into each cell
and providing for concurrent writes. Since sorting can be done in time Ologn)
using a linear number of processors on an EREW PRAM ([Cole]), the simulation
achieves the complexity stated above. It is standard to make a finer classification

within NC:

Definition: A decision problem is in AC* (k =1) if there exists a PRIORITY CRCW
PRAM algorithm solving it that runs in time O(log*n) using O(n®) processors,
where n is the size of the input and ¢ is a constant independent of n. A problem is

in AC ifitisin AC*, for some k=1.

It is clear by the statements above that AC =NC. We point out that in the
literature NC is commonly defined in terms of another computational model, uni-
form circuit families. When defining NC using this model, one gets a finer
classification within NC into classes NC* (along the lines of the classes AcCt
within AC). We will not elaborate on this here, since the definitions given above
are sufficient for our purposes. For more details regarding other models and

classes related to NC see [{Cookl] and [Cook2].



11

It is clear by the definition (and by a previous remark about time-processor
tradeoff) that NC is contained in P, the class of problems solvable in (sequential)
polynomial time. It is generally believed to be strictly contained, but researchers
are currently very far from proving general lower bounds that would imply this
separation. However, because of this belief, there is a way of "giving strong evi-
dence” that a problem in P is not in NC, by showing that its membership in NC
would imply P=NC. Such a problem is log—space complete for P or simply

P —complete.

A log —space reduction is a transformation between problems computable by a

Turing machine with logarithmic work space (details in [GJ]). A problem, X, is P-
complete if X €P and every problem in P is log-space reducible to X. As in the
theory of NP-completeness, one shows that a problem is P-complete by demonstrat-
ing a (log-space) reduction from a problem that is known to be P-complete to it.
Quite a few problems have been shown to be P-complete. The circuit value prob-
lem (given the description of a boolean circuit and values for its inputs, what is
the value of the output?) was shown to be P-complete by a "generic reduction" (a
reduction from any problem in P given a Turing machine solving it in time
bounded by some polynomial in the input length), and plays a similar role to SAT
in the theory of NP-completeness ([Ladner]). Other interesting examples of P-
complete problems are max flow ({GSS]) and finding the lexicographically first
maximal clique ([Cook2]).

How is a log-space reduction relevant for parallel computation? It turns out
that there is a close relationship between sequential space and parallel time
known as the "parallel computation thesis" (see e.g. [FW]). A consequence of this
is that a log-space reduction can be computed in NC. Thus if a P-complete prob-
lem is in NC then every problem in P is in NC. It is, therefore, unlikely that a P-
complete problem is in NC.

The probabilistic counterpart of NC is Random NC (RNC).

Definition: A decision problem is in RNC if there is a probabilistic PRAM algo-

rithm that runs in polylog time using a polynomial number of processors which, on

any input, gives the correct answer with probability at least % ([Cook2}).



12

The definition can be extended to problems with many output bits by saying

that the algorithm gives a correct output sequence with probability at least % An

algorithm of the type appearing in the definition (i.e. one that can make errors) is
known as a Monte Carlo algorithm. A more powerful notion is a probabilistic
algorithm that makes no errors, known as a Las Vegas algorithm. In this case the
random variable is the running time of the algorithm, whose expected value is (for

our purposes) polylog in the input size.

2.3 Efficient and Optimal Algorithms

We have identified the notion of problems having fast parallel algorithms
with the class NC. However, it is not clear that an NC algorithm would be practi-
cal, since the number of processors in an actual machine does not change as a func-
tion of the input size. For example, say the best NC algorithm we have for some
problem uses n? processors and the same problem has a sequential algorithm that
runs in time n. If we have an actual machine with, say, 1000 processors then for
instances larger than 31 the sequential algorithm would run faster using one pro-
cessor than the parallel algorithm using all 1000 processors (implementing the
processor-time tradeoff mentioned earlier). We, therefore, need a more precise

notion of what constitutes a good parallel algorithm.

Definition: Let T(n) be the running time of the fastest sequential algorithm
known for solving problem X, and let A be a PRAM algorithm solving X that runs
in time t(n) and uses p(n) processors. Then:

(1) A is efficient if p(n)t(n)=0(T(n)logn) (for some constant, ¢).

(2) A is optimal (or achieves optimal speedup ) if p(n)t(n)=0(T(n)).

The first thing to note is that this definition is quite pragmatic - it evaluates
an algorithm according to the current state of knowledge (i.e. the best sequential
algorithm known), which is not necessarily well-defined theoretically, but makes
sense practically. The definition is theoretically sound for problems which are

known to have matching upper and lower sequential bounds.



13

Another point regarding this widely used definition is that an algorithm that
achieves optimal speedup does not necessarily have a high degree of parallelism.
For example, the best sequential algorithm is optimal by the above definition.

Therefore a more meaningful notion for our purposes is an efficient (optimal) NC

algorithm (i.e. an NC algorithm that is efficient or optimal).

Some basic problems that have efficient NC algorithms are: computing con-
nected components of an undirected graph ([SV]), computing biconnected com-
ponents ([TV]), constructing a maximal matching in a graph ([IS]) and dynamic
expression evaluation ([(MR]). Problems for which optimal NC algorithms are

known include sorting ([Cole]) and prefix computations (e.g. {Fich]).

2.4 Terminology and Notation

The graph-theoretic terminology we use is mostly standard. We give here
some of the main definitions (to fix terminology rather than to introduce concepts).
For a wider discussion see [CL] or [Berge]. More specialized definitions (e.g. for

tournaments and mixed graphs) will be given in the appropriate chapters.

An (undirected) graph G =(V,E) consists of a set of vertices, V, and a set of
edges, E. V(G) and E(G) denote, respectively, the vertex set and edge set of G.
An edge, e={u,v}, is an unordered pair of vertices (u and v are the endpoints of
e, and e is incident to u and v). The degree of a vertex is the number of edges
incident to it. Two vertices, u and v, are adjacent (or neighbors) if {u,v}€E. A
path is a sequence of edges {uvy,ud}, Vo,val, ..., (vy-1, v} where v;#v; for all
i=zj. If vy=v, then this sequence of edges is a cycle. A path can also be
expressed by the sequence of vertices along it. A forest is a graph with no cycles.
Vertices x and y are in the same connected component if they lie on some path.
G is connected if all the vertices are in the same connected component. A tree is
a connected graph with no cycles. A bipartite graph is a graph whose vertex set
is partitioned into two sets, X and Y, such that every edge is incident to a vertex

in X and a vertexin Y.

A directed graph (or digraph), G=(V,E), consists of a set of vertices, V,

and a set of arcs, E. V(G) and E(G) denote, respectively, the vertex set and arc set



14

of G. An are, a =(u,v), is an ordered pair of vertices (u is the tail of @ and v is its
head). The in-degree d,,(v) (out-degree d,,,(v)) of v is the number of arcs whose
head (tail) it is. A (directed) path from v, to v, is a sequence of arcs
(v1,09), (Ug,03), . - ., (Vy_1,Up) Where v;=v; for all i=j. If v,=v, then this
sequence is a (directed) cycle. Vertices z and y are in the same strongly con-
nected component if there is a path from x toy and from y to x. G is strongly

connected if all the vertices are in the same strongly connected component.

The following definitions are appropriate for both graphs and digraphs (with
"edge" representing both edges and arcs). The number of vertices and edges will
usually be denoted by n and m respectively. A subgraph of G is a graph, H,
whose vertex set is a a subset of V(G) and edge set is a subset of EG). Hisa
spanning subgraph of G if V(H)=V(G). A Hamiltonian path (cycle) is a span-
ning path (cycle). For a set of vertices, U, the induced subgraph on U (denoted
by G(U)) is the graph on the vertex set U whose edge set is
" {{x.y}| z,y €U and {z,y}€E(G)}.



15

CHAPTER THREE

EFFICIENT ALGORITHMS FOR TOURNAMENTS

3.1 Introduction

A tournament is a directed graph T =(V,E) in which any pair of vertices is
connacted by exactly one arc. This models a competition involving n players,
where every player competes against eve;'y other one. A trivial but useful fact is
that any induced subgraph of a tournament is also a tournament. If (v, v)€E we

will say that u dominates v , and denote this property by u>v. Note that since

the directions of the arcs are arbitrary, the domination relation is not necessarily
transitive. We extend the notion of domination to sets of vertices: let A,B be sub-
sets of V. A dominates B (A >B) if every vertex in A dominates every vertex in

B.

For a given vertex, v, we categorize the rest of the vertices according to their
relation with v : W(uv) is the set of vertices that are dominated by v (i.e. vertices
involved in matches which v Won) and L(v) is the set of vertices that dominate v

{matches which v Lost).

The transitive tournament on n vertices is the tournament in which each

integer between 1 and n has a corresponding vertex, and i dominates j if :>].
The score of a vertex is the number of vertices it dominates. The score list of a

tournament is the sorted list of scores of its vertices (starting with the lowest).

Tournaments have been extensively studied (e.g. [BW], [Moon]). In this
chapter we will deal with several classical results. The first set of results talk
about existence of Hamiltonian paths and cycles in tournaments: every tournament
has a Hamiltonian path, and every strongly connected tournament has a Hamil-
tonian cycle. These theorems are in contrast with the fact that deciding if an arbi-
trary graph is Hamiltonian is NP-complete [GJ]. The proofs of these theorems in
the literature imply efficient algorithms for finding these objects, but since the
proofs are by induction, the algorithms seem inherently sequential. A natural

question is - can Hamiltonian paths and cycles in tournaments be found quickly in



16

paralle]? We answer in the affirmative by giving NC algorithms for both prob-
lems. In the process of giving the algorithms we demonstrate new proofs of the
theorems.

At first we show how to find a Hamiltonian path. A similar algorithm was
discovered independently by J. Naor ([Naor]). QOur solution uses an interesting
technical lemma, which states that in every tournament there is a "mediocre”
player - one that has both lost and won many matches. We also give a very simple

and efficient randomized algorithm, which raises some interesting issues.

We then move to the Hamiltonian cycle problem, which turns out to be quite
a bit more complicated. The main idea in the solution is defining a new problem -
that of finding a Hamiltonian path with one fixed endpoint - and solving it simul-

taneously with finding a Hamiltonian cycle, using a "cut and aste" technique.
g P q

The other main part of this chapter deals with the construction problem:
given a non-decreasing list of integers, §=sy, . .. ,S,, determine if there exists a
tournament with score list §, and if so, construct such a tournament. A simple,
non-constructive criterion for testing if such a list is a score list was found by Lan-
dau in 1953 ((BW]): §is a score list of some tournament if and only if, for all k&,

1<k<n:

gk

with equality for k=n.

A simple greedy algorithm (IBW,CL)) is known for constructing a tournament
with v; having score s; (for all 1=<i<n): select some score s; and remove it from
the list; have v; dominate the s; vertices with smallest scores (and have the rest of
the vertices dominate v;); subtract 1 from the score of each vertex dominating v;
and repeat this procedure for the reduced list. We note that very similar algo-
rithms exist for several other construction problems, some of which are discussed

in chapter 5 of this thesis ((Bergel,[CL],[FF)).

Checking the set of conditions described above is easy to do efficiently in
parallel, but implementing the construction algorithm seems hard. We give an
alternate method, which yields an optimal NC algorithm for the construction prob-

lem.



17

The algorithms presented in this chapter are efficient, some optimal. All the
deterministic algorithms use O(n?%/logn) processors on a CREW PRAM, where n is
the number of vertices. They are efficient since the size of the tournament is
©(n?). The algorithms for Hamiltonian path and cycle run in time O (log®n). The

algorithm for the tournament construction problem runs in time O(logn).

The randomized algorithm for the Hamiltonian path problem runs in expected
time O(logn) on a CRCW PRAM and uses only O(n) processors! At first sight
this seems "better than optimal”, but it is observed that only ©(nlogn) arcs need to
be inspected in order to find a Hamiltonian path. However, for all the other prob-
lems considered in this chapter, 2(n®) lower bounds hold: in finding strongly con-
nected components and Hamiltonian cycles Q(n?) arcs need to be inspected (as can
be shown by a simple adversary strategy); in the tournament construction problem
the output size is O(n?). Thus the algorithms described for these problems are,
indeed, efficient or optimal.

We start with a discussion of the structure of the strongly connected com-
ponents of a tournament, which will be useful in later sections. This structure has
some nice properties which give rise to an optimal NC algorithm for finding the
strongly connected components. In contrast, the most efficient parallel algorithm
known for determining strongly connected components in general digraphs is to
compute the transitive closure, and is not optimal. This is discussed in more detail

in the introduction to chapter 4.
3.2 Strongly Connected Components of a Tournament

An important computation required by our algorithms is finding strongly con-
nected components in a tournament. In this section we show some special proper-
ties of the strong component structure of tournaments and give a simple optimal
NC algorithm for finding it based on these properties. In a nutshell, the strong

component structure of a tournament depends only on its score list!

The first simple lemma shows that there is a total ordering of the strongly

connected components.

Lemma 3.1: Let T be a tournament and let Cy, Ca, - - -, Ci be its strongly con-



18

nected components. Then for all i, j either C;>C; or C;>C, (recall that A>B
means that every vertex in A dominates every vertex in B).
Proof: By definition of strongly connected components all arcs between C; and C;

go in the same direction. Since T is a tournament all such arcs exist. 0

The implication of this lemma is that in order to describe the strong com-
ponent structure we need only specify the partition of vertices into strongly con-
nected components and the total order of the components (as opposed to a general
digraph for which there is only a partial ordering of the strongly connected com-

ponents). The next lemma shows that this partition is related to the score list.

Lemma 3.2: Let u,v €V and say s(u)=s(v) (where s(u) is the score of vertex u).
Let S, and S, be the strongly connected components containing u and v respec-
tively. Then either S;=8§, or §,>S,.

Proof: If u >v the claim clearly holds. If v>u, then by the pigeonhole principle

there must be a vertex, w, such that u >w and w>v. Thus the claim holds in this

case too. [J
Let V={vy,...,vs), wheres(v)=s(wg)=s - =s(un). Lemma 3 tells us that
each strongly connected component is of the form v;Uj41, .-« sVks for some J,k.

How can we determine where a strongly connected component starts and where it

ends? This turns out to be simple: If v; is the vertex of highest score in a strongly

b
connected component, then v;<u; for all i=k<j. It follows that zs(v‘-) - the

i=1
number of arcs whose tail is in the set {vy, . . .,v} - is equal to [1221 - the number of

arcs in the tournament induced on this vertex set. The converse is also true: if

js(u‘-) > [é], then vy and v+, are in the same strongly connected component.
i=1
Thus the strongly connected components can be computed by the following algo-

rithm:

procedure STRONG_COMPONENTS(T)
(1) In parallel for all vertices, v, compute the score, s(v), of v.

(2) Sort the sequence of scores in non-decreasing order to obtain the score list,



19

T =889 " ",85,0fT.

(3) Compute the partial sums, p; = ﬁ:si —{g] for all 1<k=<n in parallel.
=

1]
(4) Partition the vertices into strongly connected components according to the
zeroes in the sequence p,, pa, ..., P, : the vertex with score s, is the last

(i.e. of highest score) vertex in a strongly connected component if and only if
DPi ={.
end STRONG_COMPONENTS.

It is not hard to see that this procedure can be performed using O(n*/logn)
processors in time O(logn) on 2 CREW PRAM. In fact, if the scores are given then
only O(n) processors are required (using Cole’s sorting algorithm for step (2)
[Cole]).

To summerize, the structure of the strongly connected components of a tourna-
ment depends only on its score list. This may seem surprising, since ©(n?) bits are
required to specify a tournament on n vertices, but only O(nlogn) bits are needed

to specify its score list.

3.3 Hamiltonian Paths and Cycles

3.3.1 Hamiltonian Path

We start by stating the theorem due to Redei [Redei] and its textbook proof
({Rober] page 487).

Theorem 3.1: Every tournament contains a Hamiltonian path.

Proof: By induction on the number, n, of vertices. The result is clear for n =2.
Assume it holds for tournaments on n vertices. Consider a tournament, T,on n+1
vertices. Let v be an arbitrary vertex of V(T). By assumption G(V—-{v}) has a
Hamiltonian path vy, vg, ..., v,. If v>u; then v, vy, ..., ¥p is a Hamiltonian
path of T. If v<v, then wvy,..., Us v is a Hamiltonian path of T. Otherwise
there must exist an index, i<n, such that v;>v and v;;;<v. In this case,

ULy o« oy Uiy U, Ujs, - -+, Up IS the desired Hamiltonian path. 0



20

This proof yields a very efficient sequential algorithm for finding a Hamil-
tonian path in a tournament. The important observation is that adding a new ver-
tex to a path of length I can be done by inspecting only O(logl) arcs using binary
search. This shows that only O(nlogn) arcs need to be inspected in the worst case
in order to find a Hamiltonian path. A matching lower bound can be obtained by
an analogy to sorting: when the given tournament is transitive, finding a Hamil-
tonian path in it is equivalent to sorting n integers, since inspecting an arc
corresponds to a comparison, and the Hamiltonian path corresponds to the sorted
sequence. Since Q(nlogn) comparisons are required for sorting ({AHUYD), it follows
that Q(nlogn) arcs need to be inspected to determine a Hamiltonian path in a tour-

nament.

In order to obtain a fast parallel algorithm a different method. seems to be
required. The approach we take is divide and conquer. A simple-minded way is
the following: (i) Split the tournament into two subgraphs, T, T, of roughly equal
order. (ii) In parallel, find Hamiltonian paths H, in T, and Hj in T,. (iii) Connect
H, and Hj to form a Hamiltonian path of T.

The problem with this approach is that step (iii) is not guaranteed to succeed,
since we have no control over what the endpoints of H; and H are.

It turns out that a slightly modified approach does work. The key observation
is the following: let v be a vertex of T. Consider Hamiltonian paths Iy, ooy b of
L) and wy, ..., w, of W). Since [, >v and v>w, We can obtain the following
Hamiltonian path of T: Iy, ..., Ly Uy Wy, v ooy W Note that this provides an
alternative, simpler proof of theorem 1.

Tn order to derive an NC algorithm from the above idea, we need the follow-

ing technical lemma:

Lemma 3.3 (Mediocre player lemma): In a tournament, T, on n vertices there
exists a vertex, v, for which both L(v) and W(v) have at least l%l vertices.

Proof: We point out that this lemma is a corollary of lemma 3.4. The proof given
here is of interest because it shows why the constant i— comes up and implies what

the worst-case tournaments are. Let

I = {ul din(u)z dout(u)}



21

0O =V-I.
Assume w.lo.g that |I|=]0|. By the pigeonhole principle there exists a vertex,
v, whose out-degree in T(J) is no less that its in-degree in T(I). Thus

douet) = 12y = 1

and  d,(v) = d,,(u) = 1—2—1 by definition. []

Remark: A simple construction shows that for every n there are tournaments on n

vertices for which each vertex has either in-degree or out-degree [n/4].

Using lemma 1 we obtain our algorithm:

procedure PATH(T)
(1) Let n = order of T.
(2) If n =1 then return the unique vertex of T.

(3) Find a vertex, v, whose in-degree and out-degree in T are both at least

(n/4.
(4) In parallel find H,=PATH(L(v)) and Hy=PATH(W(v)).

(5) Return the path (H,, v, Hj).
end PATH.

By lemma 1, step (3) can be achieved, so only O(logn) levels of recursive calls
(step (4)) are required. The time required for one level is O(logn) on a CREW
PRAM (partitioning the vertices and updating their degrees). Therefore the total
running time is O(log°n). The number of processors required is O(n?%/logn) (since
the degree of a vertex can be computed in O(logn) time with O(n/logn) processors

by standard methods).

The main obstacle in making this algorithm more efficient is the need to com-
pute the in- and out-degrees of the vertices and to update them in every step. In
fact it can be shown that any deterministic algorithm for finding a "mediocre” ver-
tex in a tournament needs to inspect Q(n?) arcs in the worst case. We do not
know, at this point, if there is a deterministic NC algorithm for the Hamiltonian

path problem that uses only O(n) processors, but there is a simple randomized



22

scheme based on the observation that "most vertices are mediocre”. This is for-

mally stated in the following lemma, which is a generalization of lemma 3.3:

Lemma 3.4: In a tournament, T, on n vertices there are at least n — 4k + 2 vertices
for which |L(v)| =k and |W(v)|=k , for all 1<k 5[%].

Proof: Let S; be the set of vertices whose out-degree is less than k. The cardinal-

ity of S, is no more than 2k —1, since the tournament induced on S, contains a

S
vertex whose out-degree is at least | | 2" |. Similarly, there are at most 2k —1 ver-

tices whose in-degree is less than k. Therefore, at least n —4k +2 vertices have

both in- and out-degrees at least k. (]

Lemma 3.4 says, for example, that at least half the vertices in a tournament
have both in- and out-degrees at least n/8. This implies that the following ran-

domized algorithm will be very efficient:

procedure R_PATH(T)
(1) If T has one vertex then return the unique vertex of T.
(2) Select a random vertex, v, of T.
(3) In parallel find H; =R_PATH(L(v)) and H,;=R_PATH(W(v)).
(4) Return the path (H,, v, Ho).
end PATH.

Lemma 3.5: The expected depth of recursion of R_PATH is O(logn).
Furthermore,

-c

For all ¢=10  Pr{ recursion depth > clogg/sn] < n

Proof: Let us say that a given stage of the algorithm, whose input is a sub-
tournament on some number, s, of vertices, is successful if, for the vertex chosen in
step (2), both W(v) and L(v) have no more than 7s/8 vertices. Let x be some ver-
tex. We can describe the history of x throughout the algorithm by a zero-one vec-
tor, V,, where V_[i]=1 if and only if the i'th stage in which x participated in was
successful. By definition, V, contains at most logg/7n 1's. Asis remarked above,

the probability of success of any stage is at least 1/2. Therefore,



23

Pr[V [il=1] = 1/2 independently for all i. From standard results on tails of the
binomial distribution we get:

For all c=10  Pr[ length of V. > cloggsn] < n~€*V
Now, since there are n vertices, the probability that some vector, V, is long is at
most n times the probability that V, is long, which yields the statement of the

lemma. The statement about the expected depth of recursion is a simple conse-

quence. []

It turns out that repeatedly selecting a random vertex in each of the sub-
tournaments that are created is a nontrivial matter (if one wants to do it in
expected constant time). The difficulty arises from the fact that a vertex knows
which sub-tournament, S, it belongs to at any given stage, but it does not know
which other vertices belong to S. We will not discuss this here, only state that it
can be done. Thus our randomized algorithm works almost surely in time O(logn)

and uses O(n) processors (one for each vertex) on a probabilistic CRCW PRAM,

and is, therefore, optimal.

3.3.2 Hamiltonian Cycle and Restricted Path

The following theorem, due to Camion [Camion] (see (BW] page 173), states

exactly when a tournament has a Hamiltonian cycle:
Theorem 3.2: A tournament is Hamiltonian if and only if it is strongly connected.

The "only if" part is trivial. The other direction is proven by induction, but a
similar proof to that of theorem 3.1 will not work here, since removal of a vertex
from a strongly connected tournament might result in a tournament which is not
strongly connected. A classical proof, due to Moon [Moon] (see [(BW] page 173),
proves a stronger claim: a strongly connected tournament on n vertices has a cycle
of length &, for k=3,4,...,n. We omit the proof.

Again, the proof yields an efficient algorithm, which seems sequential in
nature. For our parallel solution we introduce a new notion - a restricted Hamil-

tonian path.

Definition: A restricted Hamiltonian path is a Hamiltonian path with a specified




24

endpoint (either the first or the last vertex, not both).

A natural question is - when does there exist a Hamiltonian path starting
(ending) at a given vertex, v? The next theorem gives the precise condition.
Definition: Let T be a tournament and v be a vertex in T. v is a source (sink) of T

if all vertices of T have directed paths from (to) v.

Theorem 3.3: A tournament, T, has a Hamiltonian path starting (ending) at ver-
tex v if and only if v is a source (sink) of T.

Proof: Again, the "only if" part is trivial. We prove the second direction of the
theorem for a source. The proof is symmetrical for a sink. The proof is by induc-
tion on the n, the order of T. For n=1 the claim holds trivially. Assume the claim
for tournaments of n vertices. Let T be a tournament of order n+1, and let v be a
source of T. Using the inductive claim we need only show that W(uv) contains a
source of G(V —{v}). By theorem 3.1, W(v) contains a Hamiltonian path starting at,
say, u. Thus u is a source of W(v). Furthermore, by assumption every vertex in

L(v) can be reached from some vertex in W(v). Thus u is a source of GVv-@h. O

Once again the proof implies a sequential algorithm. The key idea for an NC
algorithm for finding a Hamiltonian cycle in a strongly connected tournament is to
tie it to the problem of finding restricted Hamiltonian paths. The idea is that each
problem will be solved by recursive calls to the other. We start by giving an alter-

native proof for theorem 3.3, this time using theorem 3.2.

Second Proof of theorem 3.3: Let Cy, Co, * * * C, be the strongly connected com-
ponents of T such that C,>Cy> -+ >C,. Since v is a source of T, it must lie in
C,. Since C, is strongly connected, it contains a Hamiltonian cycle, H,. Let H; be
the path obtained by deleting from H, the unique arc entering v. We note that H,
is a Hamiltonian path of C, starting at v. Let H; be a Hamiltonian path of
{Cy, C3, . . ., Ci}. By construction, the last vertex of H, dominates the first vertex
of Hy,s0 (Hy, Hjy) isa Hamiltonian path of T starting at v. 3]

Now we return to theorem 3.2 and prove it using theorem 3.3.

New Proof of theorem 3.2: Let T be a strongly connected tournament and let



25

v€V(T). Let Ly>Ly,> -+ >L, be the strongly connected components of L(v) and
W,<W,< --- <W, be the strongly connected components of W(v). Since T is
strongly connected there must be some arc leaving W,. Every such arc must go to
a vertex in L(v) (Since, by definition, it cannot go to a vertex in W;, i>1, or to v).
Let:

m =minfi| a>b for some a €W, b €L},
and let w,€ Wy, [, €L, be such that w;>1;. Symmetrically, there must be an arc
entering L, and let:

k=minfi| a>b for some a €W, b €L},
wo€W,, [;€L, and wy>1,. The construction is shown in fig. 3.1.

The existence of a Hamiltonian cycle of T is shown by demonstrating several
paths and the connections between their endpoints. These paths are shown in fig.
3.2. The paths are the following:

(1) A Hamiltonian path of W, ending at w;.

(2) A Hamiltonian path of {L,, L, +1, ..., L} starting at /.

(3) The vertex v.

(4) A Hamiltonian path of (Wy, Wiy, ..., W,/ ending at w,.

(5) A Hamiltonian path of L, starting at [,.

(6) A Hamiltonian path of (Wy, Wy, ..., Wy_y, Lo, L3, ..., Lnotf

We claim that the concatenation of the paths above in the order
(1),(2),(3),(4),(5),(6) forms a Hamiltonian cycle of T. First notice that each of the
paths specified does, in fact, exist. For the restricted paths ((1), (2), (4) and (5)) this
is a consequence of theorem 3.3. The only other fact we need to verify is that the
arcs between endpoints of the paths are in the desired direction. The only non-
obvious cases are the connections from path (5) to path (6) and from path (6) to
path (1). For showing this recall that we chose L, and W, in a way that implies
that Lo, Ly, ..., L, _, all dominate W, and W,, W,, ..., W,_, are all dominated
by L,. Thus the last vertex of path (5) must dominate the first vertex of path (6).
Similarly, the last vertex of path (6) must dominate the first vertex of path (1).
Notice that both endpoints of path (6) may be either in L(v) or in W(v). 0O



26

L(v) W(v)
(on) IR (@)
| / © \ .

L., lo° wy, W,
AN __/
/] N7

T .

N /\

~
'..) ow, W,

Fig. 3.1: The construction used in the second proof of theorem 3.2.



W, ,W,,.. W, ,Ly,Lg,.... Loy}

W, W, W, ) {L_L_. L)

Fig. 3.2: Demonstration of the Hamiltonian cycle in the proof of theorem 3.2.

27



28

This new proof gives an approach for an NC algorithm - by selecting v to be a

"mediocre" vertex we break the problem into several subproblems of bounded size:
subgraphs (1), (2), (3), (4) and (5) all have at most —i—n vertices. However, sub-
graph (6) (the union of components Wa, ..., Wiy and Lo,..., Lp-y) may be

very large. In fact it may contain all but five vertices of T, since v, wy, W, /, and

I, are the only vertices guaranteed to be outside of this subgraph.

It turns out that this apparent obstacle is non-existent! The critical observa-
tion is that the Hamiltonian path we need to find in (6) is not restricted. Therefore
we can use procedure PATH for finding this path, and need not worry about the
size of this subproblem. Thus the problem of finding a Hamiltonian cycle (or res-

tricted Hamiltonian path) on n vertices breaks down into several similar problems,

3 . . :
each on no more than " vertices, and one easier problem on at most n vertices.

The algorithms for Hamiltonian cycle and restricted path follow. Note that
the solution to the Hamiltonian cycle problem is very symmetrical, as demon-

strated in fig. 3.2.

procedure RESTRICTED_PATH(T ,endpoint,u)
(1) Let n = order of T.
(2) If n=1 then return the unique vertex of T.
(3) Find strongly connected components C,>Cy> -+ >Cyof T.
(4) If endpoint ='start’ then
(4.1) In parallel find

H,= CYCLE(C,)
Hy= PATH({Cs, ... .Cih).

(4.2) Let H,= H,—{unique arc into uj.
(5) If endpoint ="end’ then
(5.1) In parallel find

H1= PATH({CI, .. ,Ch_]})



29

(5.2) Let H,= H,—{unique arc out of uj.
(6) Return the path (H;, Hj).
end RESTRICTED_PATH.

procedure CYCLE(T)
(1) Let n = order of T.
i2) If n =1 then return the unique vertex of T.

(3) Find a vertex, v € T, whose in-degree and out-degree in T are both at least
[n/4].
(4) Find strongly connected components L;>..>L_ of L(v) and W, <..<W,
of W(v).
(5) In parallel find
m=minfi| a>b for some a €W, b€L,
k=minfi| a>b for some a €W, b €L},
and w €W, [, €L, wo€W,, €L, such that w;>!; and wy>1,.
(6) In parallel find
H,=RESTRICTED_PATH(W,, 'end’, w,)
H,=RESTRICTED PATH({L,, ..., Lj}, 'start’, l})
Hy=RESTRICTED_PATH({Wy, ..., W,}, 'end’, wy)
H,=RESTRICTED_PATH(L,, 'start’, l,)
H;=PATH({W,, ..., Wy_1,Lg, ..., Ln_t})
(7) Return the cycle (v, Hy, Hy, Hs, Hy, Hy, v)
end CYCLE.

We now indicate how these algorithms can be performed using 0(n*/logn)
processors in O(log?) time on a CREW PRAM. Finding strongly connected com-
ponents can be done using these resources, as described in section 3.2. Finding the
minimum-index component that has an arc in a given direction to another com-
ponent can be done by a standard prefix computation on a subset of the arcs of T
(e.g. [Fich)). Finally, in each stage we need to compute PATH. This seems to be a
problem since PATH itself takes O(log?n) time and the recursion depth is O(logn).



30

The observation here is that the result returned from PATH is not required in
order to generate the recursive calls to CYCLE and RESTRICTED_PATH. There-
fore all the calls to PATH can be performed separately from the main recursion
(for example after completing it), and then all the paths (restricted and non-
restricted) can be connected together in the appropriate manner. Since no vertex
or arc appears in more than one call to PATH, this additional step (of all calls to

PATH) can be done with the stated resources.

3.3.3 Open Problems

We have shown that finding a Hamiltonian path and a restricted Hamiltonian
path in a tournament are both in NC. A natural question is: what is the complex-
ity of finding a doubly restricted Hamiltonian path in a tournament, T, i.e a Hamil-
tonian path from a specified vertex, a, to another specified vertex, b. We know
how to solve this problem in NC if either of the graphs T, T—{a}, T—{b} or
T —{a,b} is not strongly connected. However, if all these graphs are strongly con-

nected, we do not even know if the problem is solvable in polynomial time.

Another interesting problem is whether there is an efficient deterministic NC
algorithm for finding a Hamiltonian path in a tournament. As stated above, the
sequential complexity of this problem is O(nlogn), whereas the complexity of
finding a "mediocre” vertex is ©(n2). Therefore a totally different approach is
required to solve the path problem efficiently in parallel. It might be possible to
show that no such algorithm exists by proving that any algorithm that asks about
n arcs in one step needs many steps (i.e. more than poly-log) in the worst case

before it discovers a Hamiltonian path in a tournament.

3.4 The Tournament Construction Problem

3.4.1 The Upset Sequence

Our approach for constructing a specified tournament is based on, what we
call, the upset sequence of a tournament, T, which describes the difference
between T and a transitive tournament. If we list the vertices according to their

scores in non-decreasing order, then an upset is when a vertex, v, dominates some



31

other vertex appearing later than v in the list. We call an arc corresponding to an
upset a reverse arc. Transitive tournaments are exactly those tournaments that
contain no upsets.

Definition: Let s; < - - - <s, be the score list of a tournament, T, and let v; be the

vertex of score s; (for all 1=i=n). The upset sequence of T, is the sequence, 78

where u, is the number of upsets between fui, ... v} and fvg4q, . ..o} (for all
1<k=sn-1).

The score list uniquely determines the upset sequence {and vice-versa):

Lemma 3.6: Let T be a tournament with score list § and upset sequence &. Then,
forall 0sk=sn-1

b = Sie-i+l) = .é“xsi - (3]

i=1
Proof: There are exactly [él arcs in the subgraph induced on {vy, ... ,Uxf, since it
is also a tournament. Therefore the right hand side describes the number of arcs

whose tail isin {vy, ...,us}, but whose head isn’t. []

Corollary 3.1: For all 1=k=n:

S = u,,—-uk_l-i*k-—l

How can we use the upset sequence? Our approach is to construct a tourna-
ment with a given score list by starting with a transitive tournament and revers-
ing some of its arcs. The upset sequence of the desired tournament gives us a han-
dle on which arcs to reverse. We will be aided by a graphical representation of the

upset sequence, which we now discuss.

A sequence of non-negative integers can be represented graphically by its his-
togram. We will treat the histogram as a rectilinear polygon ( and call it, simply, a
polygon ), which is divided into squares, each of which has integral x and y coordi-
nates. The z coordinate is a square’s column and the y coordinate is its height. An
example of a polygon is shown in fig. 3.3. Any collection of squares of a polygon is

a sub —polvgon. A maximal set of consecutive squares at the same height is called

a slice. Note that a polygon can have several slices at the same height (if it is not

convex). A (horizontal) segment is consecutive set of squares, all in the same slice.



32

We denote a segment or slice by [I,r] or by {1,r;h), where [ and r are, respectively,

the columns of the leftmost and rightmost squares it contains, and h is its height.
A polygon representing the upset sequence of a tournament will be called an

upset polvgon.

1234567891011121314

Fig. 3.3: A polygon representing the sequence 1,4,4,6,6,3,3,7,7,7,7,4,3,3.

An elementary property of a polygon, which follows from its definition is:

Proposition 3.1: The slices of a polygon form a nested structure: if [I;,r;] and
(I,,r5] are slices with I, =1, then either [;>rj or ry<ro.

We define the following partitioning problem: Given a rectilinear polygon as
shown in fig. 3.3, partition each of its slices into segments such that no two seg-
ments in the partition agree on both endpoints. Such a partition is said to be
valid, and is deﬁned by the set of segments it contains. An example of a valid par-
tition is illustrated in fig. 3.4. The partition is {(1,14], (2,4], (2,5, (2,14], [4,4],
(4,5), (5,5, (5,141, (8,8], [8.9], (8,101, [8,11], [9,11], [10,11], [11,12]}.



33

1 2 3 4 5 6 7T 8 9 10 11 12 13 14

Fig. 3.4: A valid partition of the polygon of fig. 3.3.

Lemma 3.7: A valid partition of the upset polygon yields a solution to the con-

struction problem.

Proof: Let {{/,,r;] | 1<i<m} be the set of segments in a valid partition of an upset
polygon representing a sequence Z corresponding to the score list § = s;,...,8,.
Let T be the tournament obtained by taking the n vertex transitive tournament
and reversing the arcs {(r;,/;) | 1=i=mj. By inspection, the number of reverse
arcs crossing the cut ({vy, . . . ,Upfifa+1, - - - v, is exactly u,. Therefore (by corol-

lary 3.1), T is a tournament with score list 3% [

Note that each slice in fig. 3.4 is partitioned into at most two segments. This
is not a coincidence.

Definition: A 2—partition is a valid partition in which every slice is parti-
tioned into at most 2 segments. A slice which is partitioned into at most 2 seg-

ments is 2 — partitioned.

We will deal only with 2-partitions because of the following:

Lemma 3.8: If a polygon has a valid partition, then it has a 2-partition.

Proof: Let P be a valid partition of some polygon, which is not a 2-partition. Let S
be a slice which is partitioned into more than 2 segments such that all slices lying
above S are 2-partitioned. We will prove the lemma by showing how to transform
P into another valid partition in which S is 2-partitioned and the partition of

slices above S is unchanged.



34

Let the segments comprising S in P be, from left to right, Uyrid, ool
(where k>2). If either [{,,rs 1] or [l2,r;] does not appear in P, then the partition
of S can be replaced with {ll,7, -1 1[Lwrl} or Uy, Lol respectively. If both
appear, then at least one, say [l},7 1], must appear in a slice below S (call this
slice T). This follows from the assumption that all slices lying above S are 2-
partitioned and from the nesting property (proposition 3.1). Now, simply assign

the segment [[,,r; _1] to S and the segments [[;,r], . .. JhrdtoT. O

Not every rectilinear polygon of the type discussed has a valid partition. Two

examples are shown in fig 3.5.

(1) (2)

Fig. 3.5: Examples of polygons which have no valid partition.

We will show, however, that every upset polygon has a 2-partition. A few more

definitions are required for this: a left (right) face is a maximal vertical line seg-

ment on the left (right) part of the boundary of a polygon. Face k, if it exists, is
the face between columns k£ —1 and k. Two faces, L and R, are opposing if there is
some slice starting at L and ending at R. The width, w(F) of a face, F, is the
minimum distance between it and any of its opposing faces (where distance is
measured by number of squares). The length of a face F (i.e the number of slices it

touches) is denoted by [ (F).

Lemma 3.9: A polygon, D, has a 2-partition if the length of every face of D is no
more than half its width.
Proof: We prove the lemma by induction on the height of D. If the height is 1



35

then D clearly has a 2-partition. Assume the claim holds for all polygons of height
k-1, and let k be the height of D. Let D’ be the polygon obtained by removing the
bottom slice from D. By the inductive assumption, D' has a 2-partition, P. We will
show that P can be extended to a 2-partition of D. Let L and R be, respectively,
the left and right faces bounding the bottom level of D. P contains [(L)—1 seg-
ments starting at L and I[(R)—1 segments ending at R. By the condition of the
lemma,
width of bottom slice = w(L) , w(R) = L)+ I(R)

Therefore, by the pigeonhole principle, there are two segments that partition the
bottom slice, which are not contained in P. Thus P can be extended to become a

2.-partition of D. [

Lemma 3.10: In an upset polygon the length of every face is no more than half its
width.
Proof: Let A(k) be the difference in height between the highest square with x-
coordinate k and the highest square with x-coordinate k—1. In other words, if F is
a left face bounding squares with x-coordinate k, then AR)=I1(F). If F is a right
face then A(k)= —I(F). Using corollary 3.1:
AR) = up~up_, = —k+1
Since § is non-decreasing, it follows that:
(*)  forall 2sk=n-1 Ak) =2 Ak-1)-1
Say face k is a left face, L. The nearest opposing face of L occurs to the right of
the first value, r, such that r>k and A1+ Bt +A,<0. The smallest
possible 7 value can occur (by (*)) when Ay=8y +1=-- =4, +r—k. In this
case:
w(l) =r—k+1 = 2Ak) = 2l(L)

A symmetric argument works for right faces. (]

Theorem 3.4: Every upset polygon has a 2-partition.

3.4.2 2.Partitioning the Upset Polygon

As described in the previous section, our algorithm works as follows: given the

score list, 5, we compute its corresponding upset sequence Z and construct a 2-



36

partition, P, of the upset polygon. In the output tournament, for all1=si<j=n, vy,
dominates v; if and only if [i j1€P.

What remains to be shown is how to compute a 2-partition of an upset
polygon, U, efficiently in parallel. Basically, our approach is to construct the parti-
tion according to faces. We first observe that it is a simple task to partition a set
of slices with a common face as follows: say the common face is a left face. Let the
set of slices be, from top to bottom, S, ...,Sm, where S, =,r] for all l1sism.
Then S, will be partitioned into the segments [(I,[+i] and [[+i-+1,r]. This is
shown in fig. 3.5. Such a partition is always possible given lemma 3.10. A sym-

metric partition exists for slices sharing a right face.

|

|

l

|
|

Fig. 3.5: 2-partitioning a set of slices with a common left face.

If we simultaneously partition the entire polygon in the manner described (accord-
ing to left faces), the resulting partition might not be valid, since a right face can
be opposite several left faces. Our solution is to have every slice "belong" to one of
(the two) faces it touches, and to be partitioned accordingly. More specifically, it
belongs to the dominant face according a domination relationship defined as fol-
lows: a left face, L, dominates an opposing right face, R, unless the top slice touch-
ing L touches R but the top slice touching R does not touch L (in other words, R

is the highest face opposing L but not vice-versa).

Theorem 3.5: Let S =[I,r,h] be a slice belonging to face F. Let Sp=[l',r',h’"] be
the highest slice belonging to F. Say we partition S into 2 segments such that the
length of the segment touching F is A" —h +1. If we perform this partitioning for
all the slices of an upset polygon, U, then the result is a (valid) 2-partition of U.

Proof: First we note that if two slices belong to the same face, they must be of



37

different height, so their partition cannot conflict (i.e. create segments with identi-
cal endpoints). Therefore, the only conceivable way in which a conflict can occur is
from partitioning two slices, S; and S, that belong to faces L, and R, respec-
tively, where L, and R, are left and right faces. Furthermore, L, and R, must be

opposing faces because of the nesting property (proposition 3.1).

We note that the set of slices belonging to some face is consecutive. Say L,
dominates R, (the other case is symmetrical). Then the right endpoint of a seg-
ment created from a slice belonging to L, is at distance at most /(L) from L, and
the left endpoint of a segment created from a slice belonging to R is at distance at
most [(R,)—1 from R,. Now we apply lemma 3.10: the distance between L, and
R, is at least [(L,)+[(R,). Therefore all right endpoints of segments created from
slices belonging to L, are less than all left endpoints of segments created from

slices belonging to R, so no conflict can occur. {]

3.4.3 Implementation Details

We now describe in detail a parallel implementation of the tournament con-
struction algorithm described above. Our algorithm works in time O(logn) and
uses O(n%/logn) processors on a concurrent read - exclusive write (CREW) PRAM,
where n is the number of vertices in the tournament. Our parallel algorithm is
optimal, since the size of the output. is ©(n?%. Some of the procedures will be easier
to describe as using O(n?) processors and working in constant time. Each such
procedure can clearly be slowed down to work in time O(logn) using only

O(n%/logn) processors.

Let U be the upset polygon corresponding to the input score list. The area of
U (i.e. the number of squares it contains) can be B(n?d), since its height can be

O(n?) (for example, the area of an upset polygon of a a regular tournament is

(n-1n(n+1)
12

representation.

). The first step we perform is to "compress” U to get an On?

Let I,<l,< - -+ <l, be the sorted list of values of the upset sequence & (/; is
the i’th smallest u value). The i'th level of U is the sub-polygon with y-

coordinates between I,_;+1 and [; (where [g=0). It is easy to see that each level



38

is a collection of rectangles. In other words, for every column j and level r, squares
in j appear either in all the heights of r or in none of them. We can, thus, talk
about "slices at level r". We represent U by a zero-one matrix, LEVEL, where
LEVEL[rjl=1if and only if u;2!,. For a complete description we also keep a vec-
tor HEIGHT, where HEIGHT(r] is the height of the highest slice in level r.
LEVEL can be computed using O(n?) processors, each computing one entry in con-
stant time.

We now list the steps of the computation. In each step a matrix or vector is
computed, and in the final step a processor is assigned to each slice and 2-
partitions it. We start by listing the matrices and vectors computed and then

describe in detail how each step is implemented.

A vector TOP_LEVEL. TOP_LEVEL[k] is the maximum level, r, such that
LEVEL[r,k]=1 (i.e. the highest level of column &).

A matrix ENDPOINT. If there is a slice [i,j] in level r, then ENDPOINT(rj]l=1
and ENDPOINTIr,i]=j. If no slice begins or ends at column j in level r then
ENDPOINT(r,jl=empty.

\Matrices TOP and BOTTOM. TOP[ij] is the top level in which slice [i]
appears. BOTTOMIij] is the bottom level in which slice [i{,j] appears.
(Again, an entry is empty if no such slice exists).

Face domination matrix, FD. FD[ijl=1 if face j dominates face i. FD[ij]=0 if
face i dominates face j. FD[ijl=empty if faces i and j are not opposing. (See

section 3.4.2 for the definition of face domination.)

Vector TOP_SLICE. TOP_SLICE[E] is the level of the highest slice that belongs

to face k (the face between columns k —1 and k).

TOP_LEVEL can be computed in constant time by assigning a processor to each
entry of LEVEL to check if it is 1 and the entry above it is 0.

The r’th row of ENDPOINT is computed using O(n/logn) processors in
O(logn) time by a balanced binary tree computation ((MR]). We "plant” a bal-
anced complete binary tree with n —1 leaves on level r of the upset polygon. Each
node, N, in the tree represents a range of entries in row r of LEVEL, between

columns [(N) and r(N). A node computes three functions:



39

propagate(N) - is true iff all the entries represented by N are 1.

start_right(N) - the first column of a slice starting between I(N) and r(N) and end-
ing to the right of r(N)—1.

end_left(N) - the last column of a slice ending between [(N) and r(N) and starting
to the left of I(N)+1.

An internal node, N, has two children, N, and N4, where [(N,)=1(N),
r(N igh)=r(N) and r(N;p) =UN )1 Then we have:
propagate(N) = propagate(N ;) and propagate(N zp,).
start_right(N) = if propagate(N .55, then start_right(Np) else start_right(N i)
end_leftiN) = if propagate(N ;) then end_left(N,;;;,) else end_left(N,,p).

The leaves of the tree represent single entries. If an entry is 0 then
propagate =false and end_left and start_right are both empty. If an entry is 1
then propagate=true and end_left and start_right are both j (for the leaf
representing entry j). A node computes its functions after its children have com-
puted theirs. Furthermore, N, writes end_left(N g, in
ENDPOINT [start_right(N ) and start_right(N i) in
ENDPOINT(end_left(N ,zs,). Note that a value may be overwritten several times.
After completing computing the functions for the whole tree, for each entry, j, if
LEVEL[rj—1]=1and LEVEL(rj+1]=1, then ENDPOINT[rj] is set to empty.

It takes O(logn) time for the node functions to be evaluated for the entire
tree. The whole computation can be done with O(n/logn) processors by a standard
load-balancing trick, as described in [MR]. Proof that this procedure works

correctly is straightforward, and is omitted.

TOP and BOTTOM are computed by having a processor for each entry of
ENDPOINT. Processor [r,i] writes "j" in TOP[ij] if ENDPOINTI[r,i]=j and
ENDPOINT(r+1,i]=j. Similarly for BOTTOM.

FD[ij]l=1 if ENDPOINT{TOP[i j]+1,j]=empty and either
ENDPOINT(TOP(i jl+1jl=empty or i<j).

For computing TOP_SLICE, let t=ENDPOINT[TOP_LEVEL[k],k]. Then
[k,t] is the highest slice touching face k. If FD[k,t]=1 then TOP_SLICE[k] is
equal to TOP_LEVEL[k]. Otherwise, it is one level below BOTTOM[k,t] (unless



40

face k has no other slices than [k,t], which can be checked by looking up
LEVEL[BOTTOM[k t1—1,k}).

Finally we partition each of the slices. Let s=[/,r;h] be a slice. We use FD to
find if s belongs to face { or face r. Then we use TOP_SLICE and HEIGHT to find
the height, h', of the highest slice belonging to that face. Now we can partition s

according to its height, A, and A’ as described in theorem 3.5.

We need to show how to assign processors to slices. One way to do it is as fol-
lows: a vector, V, is created with one entry for each left face, with the entry being
the length of the face. A vector, P, of partial sums of V is computed. This vector
contains, essentially, an enumeration of the slices. Let a be the total number of
slices of U. We assign logn consecutive slices to each of a/logn processors. Each
processor finds its first slice in time O(logn) by a binary search on P. After that,

each of the successive slices is accessed in constant time.



41

CHAPTER FOUR

STRONG ORIENTATION OF MIXED GRAPHS
AND RELATED AUGMENTATION PROBLEMS

4.1 Introduction

The strong orientation problem is a problem in graph theory that stems from
the following question - can the streets of a city be all changed into one-way
streets so that every point is reachable from any other? There are two variants of
this problem: the first variant is when the input graph, G, is undirected (i.e. the
city initially contains only two-way streets). A more general situation is when G
is mixed, i.e. contains some directed arcs and some undirected edges. In both
cases, the problem is to assign orientations to the undirected edges of G to yield a
strongly connected digraph. If G is mixed we require that the directions of the
arcs of G are not altered by the orientation. If G admits such an orientation we

say it is stronglv orientable.

What if G is not strongly orientable? We define the minimum strong augmen-
tation problem: find a minimum set of arcs (or edges) whose addition to G will
make it strongly orientable. Notice that we need only consider addition of arcs,
since in a strong orientation each edge is replaced by an arc. It is interesting to
consider the special cases when G is either completely directed or completely
undirected. In the first case the problem becomes - add a minimum set of arcs to a
digraph to make it strongly connected. When G is undirected the problem is (by
Robbins' theorem, as we shall see) - add a minimum set of edges to make G

bridge-connected, where a graph is bridge —connected if it is connected and has no

bridges. In this context a bridge is an edge whose removal disconnects the graph.

The algorithms presented in this chapter all run in time O(logn) on a CRCW
PRAM, where n is the number of vertices in the input graph. There are two main
classes - algorithms for undirected graphs and algorithms for directed graphs. It
turns out that all our algorithms for undirected graphs use O(n+m) processors,

where m is the number of edges in the input graph. Our algorithms for digraphs



42

involve computing transitive closure, and therefore require O(M(n)) processors,
where M(n) is the sequential time for multiplying two n Xn matrices. A realistic
bound is O(n¥/logn). Asymptotically less processors are required using fast matrix
multiplication methods (which have, so far, all been parallelizable). The current
best algorithm known works in time 0(n2%8) ((CW)). This difference between the
efficiencies of algorithms of the two classes are a common phenomena in the litera-

ture, and the algorithms in this chapter are another example.

A basic operation that we use many times is finding strongly connected com-
ponents, and it is not hard to show that the problems we solve are at least as hard
as finding strongly connected components. A big open problem in the field is
finding an algorithm to compute strongly connected components (or even, say, test
if a digraph is acyclic) more efficiently then by computing transitive closure. Note
that the linear-time sequential algorithm relies on depth-first search, which is not
known to be in NC, or even RNC, for directed graphs. Therefore the algorithms

we present are "optimal with respect to the state of the art”.
The results presented in this chapter are:

(1) An NC algorithm for strongly orienting a mixed graph. Parallel algorithms
that appeared previously in the literature have been for strongly orienting

undirected graphs.

(2) NC algorithms for constructing a minimum-cardinality set of edges to make a
graph bridge-connected, and a minimum-cardinality set of arcs to make a digraph
strongly connected. The solution of the latter problem involves introducing the
notion of a dense matching, which can be computed efficiently in parallel.

(3) An NC algorithm for constructing a minimum-cardinality set of arcs to aug-
ment a mixed graph into a strongly orientable mixed graph. Before our work no
report of even a polynomial-time solution to this problem appeared in the litera-
ture. Independently of our research an optimal sequential algorithm has been pub-

lished by Gusfield ({Gusf]).

A few words about related hard problems. One natural question is to find a
strong orientation for which the diameter (i.e. maximum distance between two ver-
tices) of the resulting digraph is minimized. Chvatal and Thomassen ([CT]) have

shown that even the problem of deciding if there exists an orientation for which



43

the directed diameter is equal to 2 is NP-hard. On the other hand they show that
any graph with diameter d admits an orientation with diameter at most 2d*+2d,
and for diameter, d, there are graphs of arbitrary connectivity for which any orien-

tation has diameter at least d%/4+d.

Another interesting problem is to find a minimum-weight strong augmenta-
tion. Again this is NP-hard even in a very limited case - when the weights (of
potential arcs to be added) are all either 1 or 2. This follows trivially from reduc-
tions in [ET! for both the directed and undirected case. By a similar reduction one
can show that finding a minimum cardinality strong augmentation from a given

subset of the arcs is NP-hard.

Definitions and notation: we define a mixed graph G=(V,E,A) as follows: V is
the vertex set: E is the edge set, where an edge is an unordered pair of vertices; A
is the arc set, where an arc is an ordered pair of vertices. We denote the vertex,
edge and arc sets of G by V(G), E(G) and A(G) respectively. Given an edge,
e={u,v}, e €E(G), orienting e means deleting e from E(G) and adding a new arc,

a, to A(G), where either a =(u,v) or a=(v,u). Undirecting an arc, a =(u,v), means

replacing it by the edge e={u,v}). The underlving undirected graph of a mixed

graph, G, is the graph obtained by undirecting all its arcs. Directing an edge,

e={u,w), means replacing it by the pair of arcs (uz,w) and (v,u). The

underlving directed graph of a mixed graph, G, is the graph obtained by directing

all its edges.

A path from u to v in a mixed graph, G, is a sequence of distinct vertices,

U=Uy, Ugyn., Uy =0, such that, for all 1<i<k, either {uv;,v;-J€E(G) or

(0;,0;+1) €A(G). We say that v is reachable from u if there is a path from u to v.

A mixed graph is connected if every vertex is reachable from every other vertex

(or, equivalently, its underlying directed graph is strongly connected).

We will be constructing several graphs based on a given mixed graph,
G =(V E,A), which we define here:

U(G) = (V.E) — The undirected part of G.

D(G) = (V,A) — The directed part of G.

S(G) - The strong component graph of G. This is a mixed multigraph (i.e. one

in which there can be several arcs and edges joining two vertices) whose



44

vertices are the strongly connected components of D(G). The edges and

arcs are those going between strongly connected components of D(G).

4.2 Background

4.2.1 Theorems and Sequential Complexity of Strong Orientation

The solution to the decision problem of strong orientation for undirected

graphs was given by Robbins in 1939:

Theorem 4.1 (Robbins’ theorem [Robbin]): An undirected graph is strongly orient-

able if and only if it is bridge-connected.

The necessity of this condition is clear, and it is not hard to prove that it is
also sufficient. One proof of this theorem ([Rober]) is obtained by showing that if G
is bridge-connected then the following yields a strong orientation: let T be a
depth-first search tree of G; Orient all edges of T from a vertex to its child in T,
and all other edges from a vertex to its ancestor. A nice consequence of this proof is
that it provides a linear-time sequential algorithm for constructing a strong orien-

tation of an undirected graph.

The solution for mixed graphs was given by Boesch and Tindell 41 years later,

yet is very similar to Robbins’ theorem.

Theorem 4.2 (BT]): A mixed graph, G, is strongly orientable if and only if it is

connected and its underlying undirected graph is bridge-connected.

Again, the conditions are clearly necessary, and the proof that they are
sufficient is not complicated. One way to view this theorem is as follows: consider
the underlying undirected graph, H, of G. Assume that we were given this graph
initially, and have oriented some of its edges to obtain G. Then we can complete
this orientation into a strong orientation if H was strongly orientable in the first

place and if, in transforming H into G, we have not ruined connectedness.

This theorem gives rise to the following obvious sequential algorithm: orient

the edges one by one. At each step assign the edge an orientation that maintains



45

connectedness of the graph. If no such orientation exists, the graph is not strongly
orientable. Otherwise, the resulting digraph will be strongly connected. In [BT] it
is remarked that an algorithm based on depth-first search exists for mixed graphs
too. Indeed, such an algorithm (which achieves linear running time) appears in

[CGTI.

4.2.2 Parallel Algorithms for Undirected Strong Orientation

As indicated above, both variants of the strong orientation problem are
efficiently solvable sequentially. Several papers have appeared about parallel algo-
rithms for strong orientation of undirected graphs. Atallah [Atal] presented the
problem as one of interest for parallel computation, and gave an O(log®n) solution
nsing O(n® processors on a CREW PRAM ((O(logn)) on a CRCW PRAM). Two
later papers give algorithms based on Atallah’s method, and are aimed at reducing
the number of processors. Tsin’s algorithm [Tsin] runs in time O(log®n) using
O(n? / log?n) processors on a CREW PRAM. Note that this gives an optimal
processor-time product in the case of dense graphs. Vishkin [Vish2] gives two
implementations, one that has the same complexity as that of Tsin, and one that
runs in time O(logn) using n+m processors on a CRCW PRAM (where m is the
number of edges). A simplified algorithm with the same complexity as Vishkin’s

algorithm appears in (TV].

We give a brief high-level description of Atallah’s algorithm, which is imple-
mented in [Tsin] and [Vish2] as well. The first idea is to use an arbitrary spanning
tree, T, as opposed to the depth-first spanning tree used in the sequential algo-
rithm. Each edge not in T induces a fundamental cycle (which is the unique cycle
consisting of that edge together with a subset of the edges of T). The observation is
that if we orient its edges of each fundamental cycle in a consistent way along the
cycle then the resulting orientation is strong. A problem might arise in that a tree
edge might be contained in several fundamental cycles, and might receive
conflicting orientations. For this end the idea of assigning priorities to cycles is
used. Each fundamental cycle is given a distinct priority, and the orientation
assigned to an edge is according to the fundamental cycle of highest priority that
contains it. It is not hard to see that all edges can be assigned orientations in

parallel, and an NC algorithm follows.



46

When the input graph is mixed, it is clear that we need a different method.
The basic difference is that in the mixed case some of the edge orientations have
been determined, so the way in which we can orient the rest of the edges is con-
strained. Furthermore, since U(G) is not necessarily connected, there is no obvi-

ous analog to Atallah’s algorithm that works for mixed graphs.

4.3 Strong Orientation of Mixed Graphs

Our algorithm works in three stages, after checking that the input graph is
strongly orientable. This checking involves testing if the underlying undirected
graph of G is bridge-connected and the underlying directed graph of G is strongly

connected (the conditions of theorem 4.2).

In the first stage we orient a subset of the undirected edges according to direc-
tions imposed by existing directed arcs. If, for some arc, we find a cycle in which it
lies, and orient the edges contained in that cycle in a consistent fashion along the
cycle, then its endpoints will lie in the same strongly connected component. We
want to do this in parallel for many arcs. For this we use the idea of assigning
priorities mentioned above ([Atal]). In our case priorities are given to arcs of G. In
order to gain efficiency, we do not apply this operation to all the arcs of G, but only
to a "spanning forest" of D(G), which we prove to be sufficient for our purposes.
After completing this stage, the resulting mixed graph, G', is such that all directed
arcs lie within strongly connected components.

In the second stage we orient undirected edges going between strongly con-
nected components of D(G’) to obtain the graph G"'. In this stage the only use of
the directed arcs is in determining the strongly connected components. Our main
theorem is that the graph D(G") (the directed subgraph of G”') is strongly con-
nected.

In the third stage we simply assign an arbitrary orientation to any edge in

G'' that is still undirected.

The algorithm is listed formally, followed by its complexity analysis and proof

of correctness.



47

procedure STRONG_ORIENTATION(G)

(0) Check that the two conditions of theorem 4.2 for strong orientability hold

for G. If not, abort.

(D

(1.1) Find a spanning forest of the underlying undirected graph of D(G).
Call this set of arcs F.

(1.2) In parallel assign distinct integer priorities to all arcs of F: priority
f(a) for arc a.

(1.3) For all arcs, a €F, do in parallel: let a =(u,v). Find a simple path,
Do, from v to u in G. Assign each undirected edge in p, a temporary
orientation with priority f{a) according to the direction of p,. ((Note:
edges with temporary orientations are still considered undirected.))

(1.4) For all undirected edges, e, do in parallel: if e has at least one tem-
porary orientation, orient it according to the temporary orientation of

highest priority.

Call the resulting graph G'.

(2) Construct the undirected multigraph H=U(S(G")), (whose vertices are

strongly connected components of D(G') and whose edges are those going

between strongly connected components).

Orient the edges of H by some strong orientation algorithm for undirected

graphs (e.g [Vish2]). Call the resulting mixed graph G"'.

(3) In parallel assign arbitrary orientations to all undirected edges of G'".

end STRONG_ORIENTATION

Complexity analysis and implementation details: We claim that our algorithm

can be implemented to run in time O(logn) using O(M(n)) processors on a CRCW

PRAM. (Recall that M(n) is the number of processors required to multiply two

matrices, or to compute the transitive closure of a matrix.) We indicate how each of

the steps can be implemented with these resources.

Step (0): Testing if the underlying graph is bridge-connected can be done by finding



48

biconnected components [TV]. Testing if the graph is connected can be done by

transitive closure.

Step (1.1): Finding a spanning forest can be done in time O(logn) using O(n+m)
processors (where n is the number of vertices of G and m is the total number of

edges and arcs) by a modification of [SV] indicated in {TV].

Step (1.2): The arc (i,j) can be given the priority im +j. It is easy to see that no

two arcs will get the same priority.

Step (1.3): The set of paths, p,, can’ be found in the following way - construct
matrices P@ PP . P'® where s =|logyn] as follows:

PO ] = jg if (ij)€EA(G) or {ij}EE(G)

otherwtse

pr-v ] PV 0
PUlijl =1k if PV j1=0, PV k12D and P~V j1=2 D for some k
] otherwise

The meaning of these matrices is - if P j]l = k then k is a vertex lying on a
path from vertex i to vertex j such that the distances from i to k and from k toJ
are both no more than 2. Note that P can be computed from P7=Y using
O(M(n)) processors in constant time on a common write PRAM. Now, a path from
i to j can be reconstructed as follows - create an array A[0:d], where d=2*"! (the
smallest power of two strictly larger than n). Initially set A{0]=i, A[d]=j and all
other entries to zero. The array will be filled in s +1 steps (steps 0,1,...,s): in step r,
if Alx]=0, Aly]=0 and for all 2z, x<z<y, Alz]=0, then set
Al(x+y)/21=P“~"[Alz]Aly]]. In each step, all entries for that step can be filled
in parallel in constant time, so the array can be filled in time O(logn) with O(n)
processors. Reading the array from index 0 to index d gives the path from i to j
with possible repetitions of vertices (i.e. each vertex of the path appears in a con-

secutive set of indices of the array).

Step (1.4): This can be done in constant time on a PRIORITY CRCW PRAM using

O (n?®) processors - have a processor for each index of each of the arrays generated
P P ys g



49

in step (1.3). Say processor p is in charge of index [ of the array A, corresponding
to the path from i to j. p checks if A[l]=A[l+1]. If so, and if {A{],AlI+1]} is an
undirected edge of the graph, then p writes the direction (Al/],A[[+1]) into the
memory cell designated for holding the orientation of the edge {AllLAU+1]}). This
can be simulated in time O(logn) with the same number of processors by any other

PRAM model using standard simulations.

Steps (2) and (3): After constructing U(S(G")) (transitive closure), Vishkin's algo-

rithm ([Vish2]) can be used to compute the orientation. Step (3) is clearly easy.

Next we prove the correctness of the algorithm. For simplicity of presentation
we assume that the the input graph, G, is strongly orientable (i.e. that it passes

the tests of steps (0)).

Lemma 4.1: Let e = {u,v} be an undirected edge, which becomes oriented at stage
1 of the algorithm. Then u and v belong to the same strongly connected component
of D(G').

Proof: It is helpful to view stage 1 as happening in phases: first orient all edges
with temporary orientation of the highest priority; next orient all unoriented edged
with second highest priority, and so on. We proceed to prove the claim stated in
the lemma by induction on f(a), the temporary orientation with highest priority

that e receives in step 1.2.

The base case is when f(a) is the highest priority over all arcs of G. In this
case all edges of p, are oriented in a consistent fashion along some cycle, so follow-
ing this u and v lie on a directed cycle, thus in the same strongly connected com-

ponent.

For the induction step assume that the claim holds for all edges with tem-
porary orientation of higher priority than f(a). If all edges in p, are oriented to
form a cycle with a then, again, u and v will lie on a cycle. Assume some edges,
g; = {w;x;}, in p, have been oriented in previous phases counter to the direction of
p.. By the induction hypothesis, for all i, w; and x; are mutually reachable via
directed paths. Thus after the current phase there will be directed paths from v to

u and fromu tov. 0



50

Lemma 4.2: Let a = (u,v) be an arc in the spanning forest, F, computed in step
(1.1). Then u and v belong to the same strongly connected component of D(G").

Proof: Similar to the proof of lemma 4.1. 0

Lemma 4.3: The digraph D(G') is either strongly connected, or consists of several
isolated strongly connected components.

Proof: Let a=(u,v) be an arc of G'. If @ was an arc of G then, u and v were con-
nected by some (not necessarily directed) path in the spanning forest, F, found in
step (1.1). The fact that o lies inside a strongly connected component of D(G') fol-
lows from repeated application of lemma 4.2. If a was not an arc of G, it must
have been an edge that was oriented in stage 1, and by lemma 4.1 lies inside a

strongly connected component of D(G"). 3]

Lemma 4.4: The mixed graph,_G', is strongly orientable.

Proof: The second condition of theorem 4.2 clearly holds: the underlying
undirected graph of G’ is the same as that of G, and thus has no bridges. Assume
the first condition is violated, i.e. there exist a pair of vertices, u and v, such that
there is a (mixed) path, ;3, from u to v in G, but not in G'. Let x be the last vertex
in p that is reachable from u in G', and let y be the first nonreachable vertex. It
follows that {x,y} is an undirected edge in G that was oriented in stage 1 to become
(y,x) in G'. But by lemma 4.1 there is a (directed) path from x to y in G'. A con-
tradiction. [

Lemma 4.5: The undirected multigraph, U(S(G")) (whose vertices are the strongly
connected components of D(G') and edges are undirected edges between com-
ponents) is strongly orientable.

Proof: By lemma 4.3, the only edges between strongly connected components of G’
are undirected. Thus U(S(G')=S(G'). By lemma 4.4, G’ is strongly orientable,

so, clearly, S(G') must also be strongly orientable. O

Theorem 4.3: The directed graph, D(G'') is strongly connected.
Proof: By lemma 4.5, stage 2 of the algorithm yields a strong orientation of S(G').
Thus in the resulting directed graph, D(G''), every vertex is reachable from any

other. 0



51

4.4 Minimum Strong Augmentation of Graphs and Digraphs

The problems we consider in this section are: find a minimum augmentation
to make an undirected graph bridge-connected and to make a digraph strongly con-
nected. Linear time sequential algorithms for both these problems appear in [ET].
Our parallel solution for the undirected case is a fairly straightforward paralleliza-

tion of that in [ET]. Our solution in the directed case is quite different.

4.4.1 Making a Graph Bridge-Connected

The algorithm for making an undirected graph, G, bridge-connected is essen-
tially that of [ET). The purpose of this section is to show that this algorithm has a
fast and efficient parallel implementation and to obtain some insight towards solv-
ing the problem for mixed graphs. The proof of correctness of the algorithm below

appears in [ET], and will not be repeated here.

procedure UNDIRECTED_AUGMENTATION(G)
(0) Set A =@. ((A is the augmenting set of edges.))

(1) Construct, BC(G), the bridge-component graph of G: vertices are bridge-
connected components of G and edges are edges between bridge-connected
components. ((Note that BC(G) is a forest.))

(2) Let Ty,...,T) be the connected components of BC(G). Let Ly;_; and Ly; be
distinct leaves of T, for all i (or the same leaf if T; is an isolated vertex). In
parallel, for all i<k, add to A an edge from some vertex of the bridge-
connected component L,; to some vertex of Lo; ..

(3) Let G’ be the augmented graph after step (2). Note that BC(G’) is a tree.
Pick some non-leaf vertex, r, of BC(G') and root BC(G') at r.

(4) Number the vertices of BC(G') in preorder.
(5) Let L(1),L(2),...L(m) be the leaves of BC(G') in increasing preorder

number. For all i <[m/2] do in parallel: add to A an edge from some vertex of

the bridge-connected component L(i) to some vertex of L(i +|{m/2]).

(6) Return A.



52

end UNDIRECTED_AUGMENTATION

Complexity analysis and implementation details: We indicate how the pro-
cedure can be implemented to run in time O(logn) using O(n+m) processors on a
CRCW PRAM, where the input graph, G, has n vertices and m edges: finding the
bridge-connected components of G can be done by finding biconnected components
([TV)). This is because the bridges of G are exactly the blocks containing a single
edge. The bridge-components are the connected components of G without its
bridges. Rooting a tree and finding a preorder numbering can be done using the

"Euler tour” technique of [TV] within the stated resource bounds.

4.4.2 Making a Digraph Strongly Connected

Let G be a digraph. A source of G is a vertex with no incoming arcs. A sink

of G is a vertex with no outgoing arcs. Note that according to our definitions an
isolated vertex is both a source and a sink. Recall that S(G) is the acyclic digraph
of the strongly connected components of G. An augmentation of S(G) corresponds
to an augmentation of G as follows: an arc from C; to C, in S(G) corresponds to an
arc from some vertex of the component C, to some vertex of the component Cj in

G. The following easily proven lemmas appear in (ET].

Lemma 4.6: An augmentation makes S(G) strongly connected if and only if the

corresponding augmentation makes G strongly connected.

Lemma 4.7: A lower bound on the number of arcs needed to make G strongly con-
nected is:

0 if G is strongly connected
sa(G) = {ax {number of sources of S(G), number of sinks of S(G)} otherwise

Our algorithm finds an augmenting set of arcs of size sa(G), which strongly
connects S(G). By lemmas 4.6 and 4.7 this augmentation corresponds to a
minimum augmentation of G. The following lemma allows us to focus our atten-

tion only on sources and sinks of S(G):



53

Lemma 4.8: Let A be an augmentation that strongly connects all the sources and
sinks of S(G) (i.e merges them into one strongly connected component). Then A
strongly connects S(G).

Proof: Since S(G) is acyclic, every vertex, v, of S(G) lies on a path from some
source, x, to some sink, y. Thus, in the augmented digraph, v lies on a closed trail
containing x and y, and therefore is contained in the same strongly connected com-

ponent as the sources and sinks of S(G). (I

Motivated by this lemma we define the undirected bipartite graph
BG)=(X,Y,E) where:

X = set of sources of S(G).

Y = set of sinks of S(G).

E = {{z,y}| there is a (possibly empty) path from x to y in S(G)}

Lemma 4.9: B(G) has no isolated vertices.

Proof: An isolated vertex of S(G) appears in B(G) as a pair of vertices, r€X y€Y,
connected by an edge. For a source which is not isolated in S(G), there must be a
path from it to some sink, since S(G) is finite. Similarly, every non-isolated sink is

reachable from some source. (]

It turns out that the notion of matching in the graph B(G) is helpful in
obtaining a minimum augmentation for strongly connecting G. A
mazximal matching is a matching that is not properly contained in any other

matching.

Theorem 4.4: Let M = {{x;,yJ), ... .{xxyx}} be a maximal matching of B(G),
where x;’s are sources of S(G) and y’s are sinks. Let
A = {(y,x2). sk -1.%k)k,x 1)} be an augmentation of S(G), and let G’ be the
augmented digraph. Then:

(1) sa(G') = sa(G)—k.

(2) In S(G') every sink is reachable from every source.
Proof: The matching, M, together with the augmentation, A, constitute a span-

ning cycle of the vertices i,y 1, Tu:Yx- Thus all these vertices are contained in



54

one strongly connected component of G'. Call this component C. If S(G) has
exactly k sources and k sinks (ie M is a perfect matching) then G’ is strongly con-
nected (by lemma 4.8), and the theorem holds. Otherwise, if x is a source not
covered by M then, by lemma 4.9, x has some neighbor, y, in B(G). Since M is
maximal, y must be covered by M (otherwise M \U{x.y} is a matching properly con-
taining M). Therefore there is a path from x to C in G'. Similarly, if there is a
sink not covered by M, there is a path from C to it in G'. Both parts of the

theorem follow. []
The following lemma shows the importance of the second part of the theorem:

Lemma 4.10: Let G be an acyclic digraph in which every sink is reachable from
every source, and let A be an augmentation of G in which every arc is from a sink
to a source. If A contains at least one arc into every source and at least one arc out
of every sink then A makes G strongly connected.

Proof: Picture the arcs of A as being added to G one by one, in an arbitrary order.
The conditions of the lemma imply that after an arc is added, its endpoints lie in
the same strongly connected component. Thus, after adding all the arcs of A, all
the sources and sinks of G lie in the same strongly connected component, and by

lemma 4.8, G becomes strongly connected. 0

At this point we have enough ingredients for an NC algorithm for our prob-
lem: given G, construct B(G) and find a maximal matching in it; augment G with
an appropriate set of arcs according to theorem 4.4; finally, augment the resulting
graph in the way indicated by lemma 4.10. Theorem 4.4 and lemma 4.10 imply

that the augmentation is, indeed, of minimum size.
A careful look at the proof of theorem 4.4 reveals that the matching in the

statement of the theorem need not be maximal. The property we really want is

that every unmatched vertex has a matched neighbor. Let a dense matching be a

matching for which every non-isolated vertex is is adjacent to a matched vertex.

Then we have:

Corollary 4.1: Let M be a dense matching of B(G). Then the statement of theorem
4.4 holds for M.



55

The distinction between a maximal matching and a dense matching is impor-
tant for us, since we can find a dense matching in O(logn) parallel time, whereas
the fastest processor-efficient algorithm known for finding a maximal matching
runs in time O(log®n) ([IS]). The basis for a fast and efficient algorithm is the fol-

lowing lemma:

Lemma 4.6: Let F be a spanning forest of a graph, G. Then a dense matching of F
is also a dense matching of G.

Proof: Let v be a non-isolated vertex of G. Then v is non-isolated in F. []
Our parallel algorithm follows.

procedure DIRECTED_AUGMENTATION(G)
(0) Set A=0. ((A is the augmenting set of arcs.))
(1) Find the strongly connected components of G and construct B(G).
(2) Find M = DENSE_MATCHING(B(G)).

(4) Let {{xo.yd} - - - »(Zx -1.Y& -1/} be the edges of M. Put in A an arc from a
vertex of the strongly connected component corresponding to y; to a vertex of
X(i+1) mod & for all i, 0=igk.

(5) Let ag,..,a;—; be the sources uncovered by M and bg,...,b;_, be the sinks
uncovered by M. Let m = min(h,l). Add to A an arc from a vertex of the
strongly connected component corresponding to b; mod m t0 @ vertex of a; mog m
for all i.

(6) Return A.
end DIRECTED_AUGMENTATION

procedure DENSE_MATCHING(G)
(( Returns a dense matching of an undirected graph, G ))

(0) Set M =@. (M is the matching.))

(1) Find a spanning forest, F, of G. The rest of the procedure is performed on

all connected components of F' in parallel.

(2) Let T be a connected component of F. Pick an arbitrary vertex, r, of T,



56

and make T rooted at r.

(3) For all vertices, v, of T in parallel, compute the distance of v from the root

r.

(4) For all non-leaf vertices, v, of even distance from r do in parallel: pick one

of v’s children, u, and add {u,v}/to M.

(5) B-all vertices, v, of odd distance from r do in parallel: if v is unmatched

and it has an unmatched child then pick such a child, u, and add {u,v} to M.
(6) Return M.
end DENSE_MATCHING

Lemma 4.12: The set of edges, M, computed by procedure DENSE_MATCHING is
a dense matching in the given graph, G.

Proof: That M is a matching follows from the fact that the parent in a tree is
unique. By lemma 4.11, we need only show that M is dense in every component of
the spanning forest, F, of G. If v is a vertex of odd distance from the root of its
component then its parent is matched at step (4). If v is a non-leaf vertex of even
distance from the root then it is matched to one of its children in step (4). If it is a

leaf of even distance then its parent is matched either in step (4) or in step (5). (]

Complexity analysis and implementation details: First we show that
DENSE_MATCHING(G) runs in time O(logn) using O(n+m) processors on a
CRCW PRAM, where n is the number of vertices of G and m is the number of
edges: A spanning forest, F, can be computed with these bounds by a modification
of the Shiloach-Vishkin algorithm ([SV)) indicated in [TV]. Rooting a tree at a
vertex can be done using the "Euler tour" technique of [TV]. Finding distances
from the root is performed by a standard "doubling" technique - [logn] stages,
where at stage & every vertex points to its ancestor of distance 2* (or to the root, if
it is closer than 2*). Steps (4) and (5) are very local in nature, and can clearly be
executed with the stated resources (by having vertices try to match-up with their
parents, and solving conflicts by the concurrent write feature).

Finally we observe that the only expensive step in

DIRECTED_AUGMENTATION is step (1), which can be done by a transitive clo-



57

sure computation, in time O (logn) using O(M(n)) processors.

4.5 Minimum Strong Augmentation of Mixed Graphs

In this section we give an NC algorithm for the problem of finding a
minimum augmenting set of arcs for a given mixed graph, G, such that the result-
ing mixed graph is strongly orientable. By theorem 4.2 we can phrase the problem
as:

First formulation: Augment G with a minimum set of arcs such that:

(1) The underlying directed graph of the augmented graph is strongly con-
nected.
(2) The underlying undirected graph of the augmented graph is bridge-

connected.

From the previous section we know that in order for an augmentation to accom-
plish (1) it needs to contain arcs incident to all sources and sinks of the strong
component graph of the underlying directed graph of G (to be called "super
sources” and "super sinks" below). In order for an augmentation to accomplish (2)
it needs to contain arcs incident to all leaves of the bridge-component graph of the
underlying undirected graph of G (to be called "super leaves”). A hard aspect of
the problem in this formulation is that super sources and sinks can intersect super
leaves in many ways. One can find a minimum set of vertices hitting all the super

sources, sinks and leaves, but it is not clear how to proceed after finding such a set.

A different formulation leads to our solution. Recall that, for a digraph, D,
sa(D) is the maximum of the number of sources of S(D) and the number of sinks of

S(D) (or zero, if D is strongly connected).

Second formulation: Orient the edges of a given mixed graph, G, such that for

the resulting digraph, D, sa(D) is minimized.

Lemma 4.13: The second formulation yields a minimum strong augmentation for
G.
Proof: We can view our task as augmenting G to become strongly orientable and

then orienting its edges to obtain a strongly connected digraph. If we switch the



58

order of the operations - first orient to obtain D and then augment D, we know
that the size of the required augmentation is exactly sa(D). Thus a minimum aug-

mentation is one for which sa(D) is minimized. {]

The first step of our algorithm is to orient the "strongly orientable" edges of

G. We say that e={u,v} is strongly orientable if there is a path from u to v or from

v to u in G —{e). We can orient these edges by applying to G the strong orientation
algorithm of section 3 with the simple modification of skipping steps (0) and (3).
After this step the endpoints of each strongly orientable edge lie on a directed
cycle, so the partial orientation obtained is clearly optimal. The proof of correctness

of this step is similar to the proofs of section 2.

Let G' be the mixed graph obtained after the first step. Let F=U(S(G))
(recall that this is the undirected part of the mixed graph whose vertices are the
strongly connected components of D(G'), the directed part of G'). Since there are
no strongly orientable edges in G' it follows that F is a forest. Furthermore,

orienting edges of F will not create new directed cycles, and thus we have:

Lemma 4.14: Let G'' be any digraph obtained by orienting the edges of G'. Then

the strongly connected components of G'' are the same as those of D(G").

Our goal is to find an orientation that minimizes sa(G''). Lemma 4.14 says
that by orienting edges of F we will not change the strong component structure of
the graph. What we can do is to possibly decrease the number of sources and sinks.
For example, if F contains an edge between a source and a sink we can orient it

from the sink to the source, thus eliminating one source and one sink.

We state our problem in terms of supply and demand. Each vertex of F has
one of four possible labels:
I - a source vertex (demanding an arc Into it)
O - a sink vertex (demanding an arc Out of it)
IO - an isolated vertex, which is both a source and a sink

X - a vertex with no demands (neither a source nor a sink).

A vertex is unsatisfied if the orientation does not provide it with the arc(s) it

demands. Our task is to orient the edges of F so as to minimize



59

max {# of unsatisfied I's, # of unsatisfied O’s}.

Our approach is the following - let T be a connected component of F. We com-
pute the following numbers of sources and sinks among vertices of T remaining
after orienting the edges of T
i(T) = the minimum possible number of unsatisfied sources
o(T) = the minimum possible number of unsatisfied sinks
¢#(T) = the minimum possible total number of unsatisfied sources and sinks.

These numbers can be computed by a simple case analysis of the labels of ver-
tices of T. The case analysis appears in the listing of the algorithm below. After
calculating i(T), o(T) and tT) for all components of F, we perform a simple global
analysis to decide, for each component, which of its vertices are to remain sources

and which are to remain sinks and orient its edges accordingly. Finally we aug-

ment the resulting digraph using the procedure DIRECTED_AUGMENTATION of

the previous section.

procedure MIXED_AUGMENTATION(G)
(1) Apply to G steps (1) and (2) of the strong orientation algorithm of section
3. Call the resulting mixed graph G'.
(2) Compute F=U(S(G")) and label each vertex of F by one of four labels -
1,0 J0 X for source, sink, isolated vertex and other, respectively.
(3) For all connected components, T, of F do in parallel:
(3.1) Let & be the number of leaves of T labeled 0.

(3.2) If all vertices of T are IO then mark k—2 IO leaves as "free” and
set
i(T)=1, oT)=1, t(T)=k
(3.3) If all vertices of T are I or IO (at least one /) then mark k=1 10
leaves as "free" and set
i(T)=1, o(T)=0, t(T)=max(k,1}
(3.4) If all vertices of T are O or IO (at least one O) then mark k-1 I0

leaves as "free" and set
i(T)=0, o(T)=1, t(T)=max(k,1}



60

(3.5) In all other cases mark all k IO leaves as "free” and set
i(T)=0,0(T)=0, t(T)=k
(4) Let
i = sum of i(T)’s of all connected components, T, of F.
o = sum of o(T)’s of all connected components, T, of F.
¢t = sum of ¢t(T)'s of all connected components, T, of F.
If i =0 then set N, = max{[¢/2],i }, and N, = t—N,.
If i<o then set N, = max{{t/2],0 },and N, = t =N,
((Remark: N, and N, are, respectively, the number of sources and sinks in the
resulting digraph.))
(5) Mark the first N, —i "free" vertices of F' as "designated source”, and all the
other "free" vertices as "designated sink".

(6) For all connected components, T, of F do in parallef:
ORIENT_LABELED_TREE(T).

(7) Let G'' be the resulting digraph from the steps so far. Compu.i:e
A = DIRECTED_AUGMENTATION(G").

(8) Return A.
end MIXED_AUGMENTATION

procedure ORIENT_LABELED_TREE(T)

((Orients a tree with labels on its vertices.))
(1) Find a root, R, according to the following cases:
(1.1) If T has an X vertex, v, set R =v.

(1.2) Else, if T has an [ or "designated sink" vertex, v, and an O or
"designated source” vertex, u, then orient the path, p, between v and u

in the direction from u to v, and set R =p.
(1.3) Else, select an arbitrary non-leaf, v, and set R =v.
(2) Root T at R.

(3) In parallel do for each edge, e, which has not been oriented in step (1): if
any leaf in the subtree below e is labeled either I or "designated sink”, then

orient e away from the root, R. Otherwise orient e towards the root.



61

end ORIENT _LABELED_TREE

Lemma 4.15: After orienting a tree, T, by procedure ORIENT_LABELED TREE,
the total number of remaining sources and sinks is ¢(T), and vertices marked
"designated sources" and "designated sinks" become, respectively, sources and
sinks.

Proof: A simple inductive proof shows that the only vertices which remain as
sources or sinks after the orientation are IO leaves and, if selected at step (1.3),
the root, R. One can verify that the number of such vertices is t(T). Furthermore,
it is not hard to see that except for i(T) vertices which remain as sources and o(7T)
vertices which remain as sinks, all the vertices are either satisfied or become what

they are designated to be. {]

Theorem 4.5: The procedure MIXED_AUGMENTATION computes a minimum
augmenting set of arcs that makes a given mixed graph, G, strongly orientable.

Proof: The discussion before the algorithm listing proves that the general scheme
is correct. We leave out the simple yet tedious proof that the i, o and ¢t values
computed in step 3 are accurate. Given these numbers, it is clear that the
minimum total number of sources is i, the minimum total number of sinks is o and
the minimum total number of sources and sinks is ¢. Thus the optimal way to
designate sources and sinks is to try to have no more than [¢/2] sources and no
more than [t/2] sinks. This is what we do in steps (4) and (5) within the bounds set
by i and o. Finally, lemma 5.3 shows that the numbers of sources and sinks

remaining after orienting the edges of F, are, indeed, the desired numbers. []

Complexity analysis and implementation details: First we show that
ORIENT_LABELED_TREE runs in O(logn) time using O(n +m) processors: steps
(1) and (2) can be done using the "Euler tour" technique of [TV]. Step (3) can be
implemented by the tree contraction method of Miller and Reif ((MR]). Next we
note that all steps except (1) of MIXED_ AUGMENTATION can also be imple-
mented with O(n+m) processors, since the most complicated operation is comput-
ing connected components. Finally, the most expensive step is step (1), which was

shown (in section 4.3) to require O(logn) time and O(M(n)) processors.



62

CHAPTER FIVE

ZERO-ONE SUPPLY-DEMAND PROBLEMS

5.1 Introduction

Supply-demand problems are fundamental in combinatorial optimization
([FF],[Lawler)). In one formulation of the problem the input is a network in which
each arc has a non-negative capacity, and each vertex has a certain supply or
demand (possibly zero). The task is to find a flow function, such that the flow
through each arc is no more than its capacity and the difference between the flow
into a vertex and out of it is equal to its supply (or demand). This problem is
equivalent to the general max flow problem, and can, therefore, be solved
efficiently sequentially ((Lawler],[PS],[GT]), but probably has no efficient parallel
solution, since it is P-complete ({(GSS]). There are, however, many interesting spe-
cial cases of this problem whose solutions do not require the full power of general

max flow.

In this chapter we are concerned with several such problems. The first prob-
lem we discuss is: given a sequence of supplies, aj,....@s, and demands,
by, ...,bn, construct a zero-one flow pattern satisfying these constraints, where
every supply vertex can send at most one unit of flow to each demand vertex.
Equivalently, we can state this problem as that of constructing a zero-one matrix,
M, having ¢; l's in the ith row and b; I's in the jth column (for all
1<isn,l=sj=m). We  will refer to this  problem as the

-

matrix construction problem. M is called a realization for the input (@,b). There is

a simple sequential algorithm for constructing a realization if one exists
([FF1[Gale)): select any row, assign its 1’s to the columns having largest column
sums and repeat this procedure in the reduced problem. If this procedure gets
stuck (i.e. some column sum becomes negative), then no realization exists. Note
that this procedure is similar to the one described in section 3.1 for constructing a

tournament with a specified degree sequence.

This algorithm, although easy to implement sequentially, seems very hard to



63

parallelize. Thus it is natural to ask if there is a fast parallel algorithm for this
problem. Two remarks are relevant to this question: first, the problem can be
solved by network flow techniques. Since the capacities are small (polynomial in
the size of the flow network), there are Random NC algorithms for the problem by
reduction to maximum matching ((KUW2],[MVV]). Second, there is a simple
sequential method for testing whether an instance, (@b) is realizable
((FF],[Bergel). It is based on partial sums of the sequences, and can be imple-
mented in NC in a straightforward manner. However, this method does not yield
a way of constructing a realization. This is another example of the apparent gap

between search and decision problems in the parallel realm ((KUW1)).

We present a deterministic NC algorithm for the matrix construction problem.
Our algorithrn can be implemented to run in time O(log*|M]) using O(|M|-(n +m))
processors on a CRCW PRAM, or in time O(log*|M|) using O(|M]-(n +m)%) proces-
sors on an EREW PRAM, where M is the realization matrix with n rows and m
columns and |M]| is the size of M (i.e. n-m). When n=0(m) the number of proces-

sors is O(|M|*%). and O(|M|%®) respectively.

The algorithm is based on a careful examination of the network flow formula-
tion of the problem. It exploits the fact that there are only a polynomial number of
cuts which need to be considered, and that this set of potentially min cuts has a

natural ordering associated with it.
The methodology we develop enables us to solve the following two related

problems (with the same time and processor bounds):

(1) The symmetric supply —demand problem - given a sequence of positive and

negative integers summing to zero, representing supplies and demands respec-
tively, construct a zero-one flow pattern so that the net flow out of (into) each ver-
tex is its supply (demand), where every vertex can send at most one unit of flow to
every other vertex. Notice that this problem is quite different than the matrix
construction problem, since it does not have a "bipartite" nature.

(2) The digraph construction problem - construct a simple directed graph with

specified in- and out-degrees. This corresponds to constructing a zero-one matrix
with specified row and column sums, where the diagonal entries are forced to be

zero. [FF] and [Berge] give a simple sequential algorithm when the in- and out-



64

degrees are sorted in the same order (i.e. a vertex with higher in-degree has higher
out-degree). Our algorithm is the only one we know of for general orders That

does not use max flow.

In the last section we extend our results to the case where the input

represents upper bounds on supplies and lower bounds on demands.

5.2 The Matrix Construction Problem

5.2.1 The Slack Matrix

Our parallel algorithm is based on a careful analysis of the network flow for-
mulation of the problem. The main tool we use is, what we call, the slack matrix
which is similar to the "structure matrix" of Ryser [Ryser]. In order to define the
slack matrix, we need to look at the solution to our problem by network flow.
Given the input (@) : ;2 a2 - =@, , )2 b2+ = b,, we construct a
flow network, N, as shown in fig. 5.1: the vertex set consists of a source, s, a sink,
t, vertices u; , 1<i=<n corresponding to rows and vertices v; , 1=7=m correspond-
ing to columns. The arc set contains three types of arcs: for all 1=isn,15j=m

there are arcs (s,u;) of capacity a;, (v;,t) of capacity b; and (u;,v;) of capacity 1.

Fig. 5.1 : Flow network for solving the 0-1 matrix construction problem

Let § = ﬁai = S:b,-. Clearly the max flow value in N is bounded by S. Furth-
i=1 Jj=1

ermore, a flow which satisfies all rows and columns sums is of value S. It follows



65

-

(by the max flow - min cut theorem) that the problem instance (a,b) is realizable if

and only if every directed cut in N has capacity at least S.

Let C = (C*:C*) be a directed cut in N (i.e. the vertices are partitioned into
two sets, C%, C* such that s €C® t€C’). Say C*® contains x vertices from the set
{uy,...,u,} and m —y vertices from {v,, ...,v,}. Observe that if we replace u; by
u; in C*, for some i <j, then the capacity of the cut can only decrease. Similarly,
replacing vy by v; in C* can only decrease the capacity of the cut, for [>k. It fol-
lows that the capacity of C is no less than the capacity of the cut C,,, where
= U fuyud U0y c1pvmf. Thus  there are only n'm  cuts,

{C., | 1<sx=n,l<ys=m}, which are potential min cuts. The cut C,, is shown in

‘xv

fig. 5.2. Therefore, necessary and sufficient conditions for the instance (&',53 to be

realizable are that for every 1=zx=n lsy=m:

capacity(C, ,) = E a; + S: by +xy =S8

i=z+1 J=y+1
o+ (S- ji_‘,b)+xy 25
i=z+1 =1
Ea—zbﬁ-xy
i=zx+1 J=1

-—

Definition: The slack of C, , of problem instance (a,b) is:

sla.‘s{x,y) = 2 a;, — ﬁbj + xy

i=zx+1 Jj=1

The slack matrix, SL;, is the matrix whose i,jth entry is sl {i ).

—

Proposition 5.1: The instance (a,b) is realizable if and only if SL;5 is non-

negative.

Proposition 5.2: Let (@’ %) be an instance which is realizable by some matrix, M,
and assume that siz{z.y) = 0. Then:
1) Mlijl=1 forall 1=<isx,lsj=sy
(2) Mligl=0 forall =z+1<isn,y+l=j=m
Proof: Since sl.z{z,y) = 0, the cut C., has capacity S, which means that in any
max flow forward arcs (1) are all saturated, and backward arcs (2) all have zero

flow. This situation is shown in fig. 5.2. {1



66

Fig. 5.2 : A tight cut - sl g{x,y)=0

All forward arcs are saturated; All backward arcs have flow 0

If sl fx,y) = 0, We will call C;, a tight cut. Proposition. 5.2 shows that existence
of a tight cut simplifies the solution considerably. In fact it gives rise to a divide
and conquer approach: if C, , is tight, constructing a matrix M[1:n,1:m] for the ori-
ginal problem is reduced to constructing the two sub-matrices, M(x+1:n,1:y] and
M(l:x,y+1:m]. Of course, we are not always lucky enough to have a tight cut.
Our approach is to perturb the input so as to improve our luck! Here is a high-

level description of our algorithm:

(1) Perturb the inputs, (&, 5). Call this new instance (&, B).

(2) Recursively solve the instance (@, B). Call the solution M'.

(3) Correct the matrix M’ to obtain a matrix, M, which solves the original

instance, (&, b).
How do we perturb an instance? A basic perturbation can be viewed as shifting one
unit from the poor to the rich in order to make the situation tighter: subtract 1
from a; and add 1 to a; for some k>1. We do not allow that a perturbation will
change the ordering of the a;’s, so it is necessary that ay>a;.; and ¢;<a;_; before
the perturbation.

Remark: We will be discussing only perturbations of the row sums (the ag;’s). All

this discussion holds for perturbation of the column sums as well.



67

-

Proposition 5.3: Let (@,b) be a problem instance, and let (E’,E) be obtained by

shifting one unit from a, to g; for some k>1. Then sla‘g(x,y) = slzpz,y) -1 if

|<x<k, and slaﬁ(x,y) = slzg{x,y) otherwise.
Proof: This can be seen by looking at the formula forsi. 0

This proposition shows that a basic perturbation reduces the slack of a certain
set of cuts, and leaves the rest unchanged. This observation is the basis for our

algorithm.

5.2.2 One Phase of Perturbations

Achieving poly-log recursion depth for the basic algorithm described in the
previous section is a non-trivial matter. The reason is that it is hard to control
which cut or cuts will become tight. Furthermore, since we have limited ourselves
to perturbations that do not change the ordering of the a;’s, it is not clear that a

tight cut can always be obtained.

Say we are shifting units from a; to a; (for some k>1). How many units can
we shift? Viewing the unit shifting as a sequential process (i.e. shifting one unit at

each time step), we can shift until one of three things happens:

(1) a; becomes equal to a; ;.
(2) a, becomes equal to g +;.

(3) slag(x,_v) becomes zero, for some [ =x<k.

In case (3) progress is made, since a tight cut is created, and we can split the prob-
lem into two smaller problems. What about the first two cases? We observe that we
have possibly reduced the number of different a; values. This observation is the

key to our approach for performing perturbations.

-

Definition: The complexity of an instance (@.h) comp(@,b) is the product of the

number of different a; values and the number of different b; values.

Our parallel algorithm works in phases. The input to a perturbation phase is
an instance of certain complexity, say K, and the output is one or more instances,
each having complexity bounded by ¢-K, for some constant c¢<1. Finally, if the
complexity of the input is less than a certain constant, B, we construct a realiza-

tion for it (this is the base case). We proceed to describe one perturbation phase. In



68

this discussion we will derive the constants ¢ and B. For better exposition we will
first describe a phase as a sequential process. The parallel implementation will be

explained later.

In each phase either row sums or column sums are perturbed. The sequence
that is perturbed (row or column sums) is that which has a larger number of
different values. We will discuss a phase in which row sums are perturbed.

Phases in which column sums are perturbed are essentially identical.

A phase starts by selecting a consecutive set of active rows, {h, A +1,..,1} . The
parameters A and [ depend on the input, (@,b) and its complexity, K, and will be
derived later. Let L=a;,, and H=a,_;. The perturbation is performed as fol-
lows: repeatedly shift units from the lowest active row, (initially row ), to the
highest active row, (initially row A). A row becomes inactive, and stops sending or
receiving units, when its row sum either drops to L or reaches H. The phase ter-

minates when one of two things happens:

(1) At most one active row is left.

(2) slzx,y) becomes zero, for some h <x<l.

In case (1) no tight cuts have been obtained, but the row sums of all the active
rows (except, possibly, one) have become either L or H. Therefore the number of
different row values decreases.

In case (2) one or more tight cuts are created, and the instance can be split, using
proposition 2.2, into two smaller instances ("smaller”, in this case, means less rows

and lower complexity).

Let a,8 and y be the number of different values in the sets {a;, ... V3h—1)s
{ay, .. ..a;} and {@;41, . . . ,@n} respectively. We want to select these parameters so
as to minimize the complexity of the outputs of the phase:
Case (1) : The number of different row sums remaining is bounded by a+y+1
(since the B values corresponding to active rows disappeared, except for at most
one).
Case (2) : Zero slack is obtained for one or more rows in the range [h,l—1]. A sim-
ple calculation shows that the number of different row sums in the resulting

instances is bounded either by a+8+1 or by B+y+1.



69

Thus we need to minimize the maximum of a+B8+1, a+y+1 and B+vy+1
subject to a+B+y=K (where K = comp(&',l?)). The solution is, of course, to have
a,B and y as equal as possible, i.e. all roughly K/3. From this calculation one can
see that the complexity can be reduced by these perturbations as long as the

number of different row values is more than 5.
To summarize, if the input to a phase has complexity K, the outputs have
complexity bounded by [25]-4-1. Thus the total number of phases is O(log(n-m)).

The base case is any instance with at most 5 different row values and 5 different

column values.

We next discuss the parallel implementation of one perturbation phase. The
first step is to calculate the new row sums and slack matrix under the assumption
that none of the cuts become tight. If this new slack matrix is strictly positive

then, indeed, we are in case (1).

Let p be the initial number of active rows (p = I—h+1). After the phase
(assuming case (1)), there will be g rows of value H, p—q+1 rows of value L and

one row of value I, where H>/=2L. g and I are easy to calculate:

_ﬁ(at—L)

_ i=h

I = ﬁ(a‘-—L) mod (H-L)
i=h
Let m; = min {slz i) | l<y<=mj, and let m;" be the new minimum slack in

row i after the phase is completed (assuming case (1)). Then:

For h=si<h+g m;" = m; — E(H—aj)

j=h
For h+g=i<l m;' =m; — ﬁ: (a;—L)
i

f=i+l

If all the m,;’ are positive, then we are provably in case (1). If not, we need to
detect at what "time step" (during the "sequential process”) the first tight cut was
created. This turns out to be a simple task for the following reason: if we plot the
value of any entry in the slack matrix as a function of time, it decreases by one

unit each step until some point in time, and remains constant from that point on.



70

Thus a row where the first zero slack occurs is a row for which m is minimum
among the rows that have m’' =0. The total number of units shifted in the phase is
this minimum m value. It is easy to compute the new row sums given the number

of units shifted.

In both cases (1) and (2)) we need to calculate the number of units shifted
from row j to row i, for every h=i<j=l. (These numbers will be used later, in
the correction phase.) This calculation can be performed by a simple partial-sums

computation.

5.2.3 Correcting a Perturbed Solution

After a realization is obtained for the perturbed instance we need to correct it
in order to obtain a realization for the original instance. Clearly the required task
is to shift units back to their original rows. The rows which participate in the
shifting of units are divided into two sets - the donors and the receivers, where
donors shift units to the receivers during the perturbation phase, and get them
back at the correction phase. Note that no row is both a donor and a receiver in
any given phase. Let s(j,i) be the the number of units shifted from the donor j to
the receiver i in the perturbation phase.

Definition: Let M be a realization matrix. Sliding a unit from row i to row J

means changing M{i k] from 1 to 0 and M[j,k] from 0 to 1, for some column, %.

Lemma 35.1: Given any realization of the perturbed instance, M', it is always pos-
sible to correct it by sliding s(j,i) units from receiver, i, to donor, j, for all

receivers and donors.

Proof: Again it is convenient to view the process of sliding units as a sequential
one. Assume that some of the units have been slid, but less than s(j,i) units have
been slid from row i to row j. Call the current matrix M,. We will show that it is

possible to slide a unit from row i to row j in M,, which proves the lemma.

Since units were shifted from row j to row i in the perturbation phase, it is
the case that a; was no larger than g, before the phase began. Other perturbations
in which rows i and j might have participated only increased the row sum of i and

decreased the row sum of j. Now, since less than s(j,i) units have been slid from



71

row i back to row j, it follows that row i has more 1’s than row j in M. By the
pigeonhole principle there is some column, &, such that M [i,k]=1 and M, ,k]=0.
(]

The implication of the proof above is that we do not need to be very careful in
the way we slide units. The main problem we need to solve is that conflicts may
arise when we slide many units in parallel. This could happen since a donor might
have shifted units to many receivers, and a receiver might have received from
many donors. Our goal is to break down the problem into a set of independent
problems, which can all be solved in parallel. The first step is to get a formal
description of the donor-receiver relation.

Definition: The donation graph G=(D,R.E) is a bipartite graph with a vertex,

d; €D, representing each doner and a vertex r; € R representing each receiver, such
that the edge {d;,r;} is in E if and only if s(j,i)>0.

The following lemma plays a key role in simplifying the situation:

Lemma 5.2: The donation graph, G, is a forest.

Proof: Call a neighbor of a vertex, v, nontrivial if it has at least one other neigh-
bor besides v. It follows from the way the perturbations were performed that each
vertex, v, has at most two nontrivial neighbors, one that became inactive before v,
and one that became inactive after v. Furthermore, all the vertices can be ordered
according to when they became inactive. Therefore G cannot contain any cycles.

(]

One can see that a matching in the donation graph, G, corresponds to an
independent set of sliding problems. However, there is no guarantee that the edges
of G can be partitioned into a small set of matchings, since G might have vertices
of high degree. Thus a more subtle partition is required.

Definition: A constellation is a subgraph of a given graph all of whose connected

components are stars (where a star is a tree with at most one non-leaf vertex).

Lemma 5.3: The edges of a forest can be partitioned into two (edge-disjoint) con-

stellations.



72

Proof: It suffices to show that the edges of a tree can be partitioned into two con-
stellations. Let T=(V ,E) be a tree, and take it to be rooted at some vertex, P.
The level of a vertex is its distance from P. v is the parent of u if {u,u}€E and v is
closer to P than wv. The partition of T into two constellations,
C,=(V.E)),Cy=(V,E,), is as follows:

E, = {({u,v} | u is the parent of v, the level of u is even }
Eqg = {{u,w}| u is the parent of v, the level of u is odd }

An example of such a partition is shown in fig. 5.3. []

- i
FIVIL oo
o704 {i}oi}

Fig 5.3 : Partitioning a tree into two constellations

Our solution is based on the observation that a constellation corresponds to a set of
independent sliding problems which we can solve in parallel. Therefore our
approach will be to partition the donation graph into two constellations and then
to slide units in two stages - first corresponding to one constellation and then to

the other.

A star in the donation graph corresponds to several donors with a common
receiver or several receivers with a common donor. These two cases are symmetric,
so we will discuss only the first one. In what follows we describe a parallel algo-
rithm that slides all the units corresponding to a star with receiver R and donors
D,,...,D;. Let M be a realization matrix of the perturbed instance we are about
to correct. Let r,d,,...,d; denote the number of 1's in rows R ,D,,...,Dy

respectively and let s; = s(D,,R). We need to slide s; units from R to D,, for all



73

1=<i<d in parallel. Our approach is to solve a matching problem in the following
bipartite graph, B=(X,Y ,E):
X ={z;| MIRjI=1}
Y={y,|llsisd, 1skss}
E = {{x;y;4} | MID;jl=0}

Lemma 5.4: Every matching of B which covers all the vertices in Y corresponds to

sliding s; units from R to D, for all 1=i/=<d simultaneously.

Proof: By construction, there are isl vertices in Y, one corresponding to each
i=1

unit that was shifted from some D, to R. There is an edge between x, and y,, if

and only if a unit can be slid from row R to row D, in column k. The claim is,

therefore, evident. []

At first sight it seems that we need to solve a maximum bipartite matching

problem, but closer observation reveals the following:
Lemma 5.5: Every maximal matching in B is maximum.

Proof: It suffices to show that any matching which does not cover all the vertices
in Y can be extended. The degree of y;, in B is, by definition, at least r—d,.

Before the perturbation phase the row sum of R was no less than that of row D,.

After the perturbations, the row sum of R increased by at least ﬁsi, and the row

(=1

sum of D; decreased by at least 1. Therefore:
Foralli, k  degree(y;,) = r—d;, = isi +1 = |Y| +1
1=1

Since any matching contains no more than |Y| edges it follows that no partial

matching is maximal. [J

A maximal matching can be constructed efficiently in parallel ([IS],(Luby]).
Our parallel algorithm is, therefore, the following: construct the donation graph,
and partition it into two edge-disjoint constellations, C, and C,. For each com-
ponent of Cy, construct the bipartite graph, B, as described, and find a maximal
matching, F, in it. For all edges of B do in parallel: if {x;,y; /€ F then slide a unit
from R to D; in column j. Finally, repeat this procedure on C, (with the updated



74

matrix).

It follows from lemmas 5.4 and 5.5 that after performing these operations all

the perturbations (of the current phase) are corrected.

5.2.4 The Base Case

The base case for our algorithm is when the number of different values of row
and column sums is bounded by a constant (5). The problem is then characterized
by the different values: aj,---,a5 and by, - ,b5 and their multiplicities
ny, - ,ns and my, - ,mj respectively. Let M be the realization matrix we con-
struct, and let M, ; be the submatrix of M induced on the rows with sum a; and

columns with sum 4,. We construct M in two steps:

Step 1: For each i,j,1=i =<5, determine the number, F.j, of units in M, ;.

N
Step 2: For each ij,1=<ij <35, distribute the F;; units between the different rows

and columns of M, ;.

We carry out step 1 by constructing a flow network of constant size, and
finding a max flow in it. The network has twelve vertices: a source s, a sink ¢, five
"row" vertices uy, ' - - ,us, and five "column” vertices vy, ** " ,Us. The arcs are of
three kinds: arcs from s to each z; with capacities n;a;, from each v; to ¢ with
capacities m;'b;, and from each u; to each v; with capacities n;'m;. This network is
simply the result of taking the original network flow formulation for this problem,
and compressing all "row" vertices with equal capacity into one vertex, and simi-

larly for "column" vertices. Since this network is of constant size, a max flow can

be constructed in constant time using standard sequential methods.

In step 2 we convert the solution for the compressed network to a solution for
the original network by distributing the flow along each compressed arc evenly
between the arcs it defines. We do this by providing a solution for the following
problem: construct M;; so that x;; selected rows have each r,; units, ¥ij columns
have each ¢;; units and each of the remaining rows and columns have r;j—1 and

¢;;—1 units respectively. First, it is not hard to see that:

F. .
[t -
r,J—[—n— xiJ-FiJ mod n;
13



75

=l -
cij=[—=1 yi;=F;j mod m;
J

Assume we want each of the first x, ; rows and first y; ; columns to have r;j and ¢
units respectively. Our solution is to put the units of the first row in the first r;;
columns, the units of the second row in the cyclically next set of columns etc. An

example is shown in fig. 5.4.

A 2R 20 TR 2R I
1|11

L

¥
—t
p—
—

4
-
| et
[y

Fig. 5.4: Structure of Mi.i with 5 rows, 7 columns and 13 units,

° Selected rows and columns are marked with arrows.

A construction for arbitrary sets of selected rows and columns (not necessarily the
first ones) is obtained from the one described above by simply permuting the rows

and columns appropriately.

Now we are ready to construct a realization, M, for the base case. The values
F;; determine the x,; and y;; values. All we need to ensure is that any two rows
(columns) with equal row (column) sums get selected the same number of times.
This can be done by selecting the first z,; rows in M, ;, the cyclically next set of
x; o Tows in M; 5 and so on, and similarly for columns.

Since éFu:n;a‘- , the total number of rows selected in

j=1
{M;1,...,M;s} is an integer multiple of n;, and it follows that any two rows
with equal row sums are selected the same number of times. A similar argument

holds for columns. Thus the construction described yields a correct solution for the

base case.



76

5.2.5 The Algorithm

In this section we state the algorithm more formally. A few words about nota-
tion: LP is shorthand for "in parallel". comments are between double parentheses;
I:k denotes a range of indices (in a matrix or a sequence); | denotes concatenation

of sequences; #A is the cardinality of the set A.

procedure MATRIX_CONSTR UCTION@,b)
(( This is the recursive procedure for constructing a matrix, M, with given row
sums, @, and column sums, 5 The row and column sums are assumed to be given
in a non-decreasing order. ))

(1) Let n = length of @5 m = length of .

(2) Compute V;and V- the number of different values in @ and b resp.

(3) If V=<5 and V<5 then return BASE_CASE@.5).
4) (@,8,8,SL ,pert,zerop) = PERTURBATION@,5).
(5) If not zerop then M’ = MATRIX_CONSTR UCTION(H,B).

(6) Else let x,y be such that SL(x,y]=0 and either a, is in the middle third of

the @ values or b, is in the middle third of the 5 values. Do the following L.P:
6.1) 1P set M'[ijl=1foralll=si=zx, 1=j=y.
6.2) LP set M'[ij]l=0forallx<isn ,y<jsm.

(6.3)
M'[x+1n, 1yl = MATRIX_CONSTRUCTION( dx+1:nl, Blliyl-x)

(6.4)
M[lx,y+1lm] = MATRIX_CONSTRUCTION( @(l:z]—-y, BLy+1:m] )

(1) M = CORRECTION (M’ .S ,pert).
(8) Return M.
end MATRIX_CONSTRUCTION

procedure PERTURBATION (@,b)
(( This procedure computes one perturbation phase. The inputs are row sums, a,

-
and column sums, b. The outputs are new row and column sums, @ and 3 resp, the



77

slack matrix SL, the matrix of numbers of units shifted S, a variable pert indicat-
ing whether row sums or column sums have been perturbed and a variable zerop

indicating if zero slack is obtained. ))
(1) Let n = length of @ m = length of b.
(2) Compute V_and V- the number of different values in @ and b resp.
If V.=V then set pert="rows". Else set pert="columns” and perform the

rest of this routine with 5’, Vy and m instead of @, V and n resp.

(3) Find h and [ for which gy #a, ", ¢/ Za;+; , and the number of different

values in <a;,...,a3-;> and <a;,...,a > are [—éi] and [—31] resp. Let
H=ah_1 and L=a[.,.1.

(Gf'L)
=h

ITL—I and I = igl\ai—L) mod (H-L).

(4) Compute ¢ =
(5) Compute SL[i,j] (( the slack matrix)) foralll<i<sn,l1<j=m LP.

(6) Compute m; = min {(SL[i,j]|1=j=m } for all h=i<lLP.

(7) Compute m;' = m; — E(H—-aj) forall h=i<h+gq LP.

J=h

(8) Compute m;' = m; — 2 (a;—L) for all h+g=i<!LP.

J=i+1

(9) If m;'>0 for all h=i<l thenset T = 2 (g;~-L) + max {O,a,H,q—I}.

izh+q+l

Else set T = min {m; | m;' <0}, and set zerop to true.
(10) Initialize S[iy]=0 for all 1sij=n.
(11) (@.S) = SHIFT_UNITS(<ay,...a;>,T H.L).

(12) Set @ = <a1,...,ah_1> II a’ ” <a,+1, . o ,an>.

(13) Set SLiij] = SL{ijl- S max(0,a,—ay} forallh=i=l,1<jsm LP.
k=h

(16) Return (E,ES,SL pert).
end PERTURBATION

procedure SHIFT_UNITS@& T ,H,L)



78

(( Shifts a total of T units between active rows with row sums @. H is the upper
bound on new rows sums and L is the lower bound. Returns the new row sums and
the matrix, S, of the numbers of units shifted between pairs of rows. ))

(1) Denote the elements of @ by a;, . . . ,q

(2) Compute for all 1=i<T LP:

d, =max{j|i=< ﬁ:(ak-—L)} (( donor of unit i))
k=)

r=min{j|:i< 2 (H=ay)}  (( receiver of unit i))
k=h

(3) Compute S[ij] = #(k | dy=i , ry=j } for all hsj<isl LP.
(4) Compute a, = a;+r,—d; forall A=i<[LP.
(5) Return (@,S).

end SHIFT_UNITS

procedure CORRECTION (M ,S ,pert)
(( This procedure computes one correction phase. The inputs are a realization
matrix, M, a matrix, S, containing amounts of units to be slid and a variable, pert,
indicating if units need to be slid between rows or columns. The output is the
matrix, M, after it has been corrected. ))
(1) Let n = length of S.
(2) Construct the donation graph, G, where:
VG) ={1,...,n} EG) = {{ig}| Slig1>0}
(3) For every connected component, T, of G do L.P:
(3.1) Partition T into two constellations, C; and Cs.
(3.2) Perform SLIDE_UNITS(C,M S pert) for every connected com-
ponent, C, of Cy L.P.
(3.3) Perform SLIDE_UNITS(C,M,S,pert) for every connected com-
ponent, C, of C, L.P.
(3.4) Return M

end CORRECTION



79

procedure SLIDE_UNITS(C,M,S pert)

(( Units are slid in the matrix M, between one donor and many receivers or one
receiver and many donors. The vertices of the star, C, are the participating
rows/columns of M. The matrix, S, contains the numbers of units to be slid and

the variable pert indicates if units need to be slid between rows or columns. ))

(1) Let ¢ be the unique non-leaf of C (( If C has exactly two vertices let ¢ be

any one of them )). Let Iy, ... [ be the remaining vertices of C.
(2) If pert ="rows" then let MC,M,y . »Mld be rows ¢c,ly, . .., lg of M.
Else let MC,M“, . ’Mid be columns ¢,ly, . . . ,lg of M.

(3) If S{c,/{)>0 ((i.e. c is a donor and [; are receivers )) then complement

MM, .. M, 1.P, and set comp to true.
Let s; = max{S{l;,c],Slc,};}} (( the number of units to be slid from M, to M; ))
for 1=i=<d.
(4) Construct the bipartite graph, B =X,Y,E):
X = {z | MUl=1/
Y ={y,llsisd, lskss}
E = {{xj’yi.h-} | MZ‘U]:'O}

(5) Compute F, a maximal matching in B.

(6) For all {x,,y, 4/ € F do in parallel: set M [j1=0 and M jl=1
(T) If comp then complement M., M, ... M, 1.P.

(8) Copy M. .M, ... M, back into their original location in M (( see step (2)

).
end SLIDE_UNITS

procedure BASE_CASE(&',F)

(( Constructs a matrix, M, with row sums @ and column sums E., where the number
of different values of elements in @ and b is at most five. ))
(1) Let a;,> - >a; and b;> --- >b be the values of the elements of @
and b resp., and let n),...,n;, and my,...,m be their respective multi-

plicities.



80

(2) Construct a flow network, N, with vertices s,t, Uy, ..., Uy V- Ul
and the following arcs (for all 1=i<k, 1=j=l )

from s to u; with capacity n,'g;

from v; to ¢ with capacity m;b;

from u; to v; with capacity n;'m;

(3) Find a max s —¢ flow in N. For all ij let F; ; be the flow on the arc (uj,v)).

)

(4) For all ij construct M;; as shown in figure 2.4. There are F,; mod n;

j_
selected rows, starting at row (ZlF,',h-%-l) mod n;, (cyclically) and
h=1

j—
F,; mod m; selected columns, starting at column (iFl‘,,ﬁ—l) mod n;.
h=1

(5) Let M be the appropriate concatenation of the M, j's.
(6) Return M.
end BASE_CASE

5.2.6 Parallel Complexity

The time and processor bounds of our algorithm depend on how we choose to
implement the maximal matching routine. Two competing implementations are
given in (IS] and [Luby). On a graph with e edges, Israeli and Shiloach’s algo-
rithm takes time O(log’e) and uses Of(e) processors on a CRCW PRAM. Luby’s
algorithm requires only O(loge) time on an EREW PRAM, but uses O(e?) proces-
sors. It is straightforward, though somewhat tedious, to verify that all the other
operations in one phase of MATRIX_CONSTRUCTION can be performed with the
resources required for maximal matching (in both the implementations listed

above).

There are O(log|M|) phases, as proven in section 5.2.2 (Where |[M|=nm). In
a correction phase for rows there are O(n) parallel calls to maximal matching on
bipartite graphs with O(m?) edges each. When columns are corrected, there are
O(m) calls, each of size O(n?). Thus the number of processors required is
O(nm(n+m)) = O(|M|(n+m)) using [IS], and O(am(n+m)®) = O(|M|-(n+m)®
using [Lubyl. When n=8(m) the processor requirements are O(|M|*®) and
O(|M|%®) respectively.



81

5.3 The Symmetric Supply-Demand Problem

In this section we will show how the methodology developed in section 5.2
gives rise to a parallel algorithm to the symmetric problem. Here the input is a
sequence of integers, f1=fy= " Zf,, summing to zero. The goal is to construct
a flow pattern in which every vertex can send up to one unit of flow to any other
vertex such that the flow out of v; minus the flow into it is f, (for all 1=si=<n). The
goal can be viewed as constructing an nXn zero-one matrix, M (where M[ij] is
the amount of flow sent from vertex i to vertex j) such that, for all i, the the
number of ones in row i minus the number of ones in column i is f;. Note that
changing the values along the main diagonal does not change the instance M

describes, so they can all be set to zero at the end of the computation.

Again we start with a network-flow formulation for the problem. The flow
network has n +2 vertices: s, ¢, vy, ..., U, If £;>0 then there is an arc from s to
v; with capacity f,, and if f;<0 then there is an arc from v, to t with capacity f;.
Also, there is an arc with capacity 1 from v; to v; for all 1<ij=<n. Examination of
this network shows that there are only n potential min cuts: of all cuts containing
¢ vertices with s, the one containing vy, . ..,u, is of smallest capacity. Thus, for
this problem we have a slack vector. An analysis similar to the one in section 5.2.1
shows that, for all 1=x=n:

sldz) = x(n—x) — _Ef"
i=
It is interesting to note that here, as opposed to thle matrix construction problem,
the object describing the slacks (a vector of length n) has a different size (and

dimension) than the object being constructed (an n Xn matrix).

A perturbation phase is performed in the same way as in section 5.2.2, except
that there is only one sequence being perturbed (as opposed to separate row and
column sequences). Again we have the property (similar to proposition 5.3) that
shifting a unit from f; to f; (i <j) decreases the slacks at entries i,i+1,...,j—1
by 1 and does not change the other entries.

A correction phase is, however, trickier than before. The reason is that if a

unit is to be returned from entry i to entry j, it can be done either by sliding a

unit from row i to row j or by sliding a unit from column j to column i. The



82

equivalent of lemma 5.1 holds here, but for each unit only one of the two ways of
sliding listed ‘above is guaranteed to exist. Furthermore, if we simultaneously try
to slide units in rows and in columns, conflicts may arise (where a conflict is an

attempt to slide two units into the same entry).

Our solution is to perform the correction in two stages: first slide between
rows, then slide between columns. The first stage is identical to a row-correction
phase of section 5.2. The only difference is that the maximal matching computed
does not necessarily cover all the vertices of one side of the bipartite graph, B.
After the first stage, we update the donation matrix (the s(i,j)’s), according to the
numbers of units slid in the first stage. We then perform a column-correction

phase for the resulting problem.

Lemma 5.6: Every maximal matching computed in the second stage is maximum.

Proof: As in section 5.2.3, let R,D,,..., Dy be the vertices of a star in the
donation graph. Let B,=(X,,Y,E,) be the bipartite graph for sliding between the
rows corresponding to these vertices in the first stage. Let B,=(X,,Y,,E;) be the
bipartite graph for sliding between the columns corresponding to these vertices in
the second stage. Then, as in the proof of lemma 5.5, for each vertex in Y, the
sum of its degrees in B, and B, is at least |Y,|+1. It follows that the degree of

every such vertex in B, is at least |Y,|+1. 0O
Corollary 5.1: Every unit that is perturbed gets slid in one of the two stages.

The base case is solved along the same lines described in section 5.2.4, but a
few more details need to be handled. The base case is when there are at most five
different values, f;> -+ >f5, with respective multiplicities ny,...,ns. Again
we start by finding a max flow in a constant size network (having 7 vertices -

s, ¢ Uy, ..., Us) to determine the number of units, F; ;, in M;;. Now, as opposed to

the previous case, iF,-J- needn’t be an integer multiple of n;. Therefore, after
j=1

distributing units evenly between all rows with the same f value (as described in
section 5.2.4), some of these rows will have p units and some will have p—1 units
(for some appropriate p). Similarly, not all the columns with the same f value will

necessarily have the same number of units. We overcome this obstacle by



83

observing that if i and j have the same f value, and if row sum i is greater by one
than row sum j then column sum ¢ should be greater by one than column sum ;.
Therefore, the problem is solved by (using terminology of section 5.2.4) selecting

rows and columns in the same order.

Finally we note that the algorithm for the symmetric problem uses the same
resources (time and number of processors) as the matrix construction algorithm

(see section 5.2.8).

5.4 Digraph Construction

In this section we describe our solution for the problem of constructing a sim-
ple digraph with specified in-degree and out-degree sequences. By "simple" we
mean no self loops and no parallel arcs. Notice that if self loops are allowed, this
problem is exactly the matrix construction problem described in section 5.2. The
digraph construction problem can be stated as follows: given two equal-length
sequences, (oy,...,0,) and (iy,...,i,) , (that are not necessarily sorted!), con-
struct an n Xn zero-one matrix, M, that has o, 1's in row k and i; 1’s in column %

(for all 1<k <n), so that all the elements on the main diagonal of M are zero.

Our solution is based on the algorithm described in section 5.2. We start,
again, by looking at the network flow formulation for this problem. The network is
almost identical to the one in fig. 5.1, except that each vertex on the left is missing
one outgoing arc, and each vertex on the right is missing one incoming arc. It is
convenient to view the missing arcs as existing arcs with capacity zero. We will
call these blocked arcs and the corresponding entries in the realization matrix

blocked entries. Our first goal is to show that in this case too there are only n?

potential minimum cuts. Let a;= :-- 2ag, and b;= - - =b, be the sorted
sequences of out-degrees and in-degrees respectively (i.e. & is obtained by sorting
0 and Fby sorting 1}, and let N be the network corresponding to @ and b (similar
to the one shown in fig. 5.1). The capacity of the cut C,, (as shown in fig. 5.2) is,

in this case:

capacity(C, ,) = 2 a; + 2 b, + =y —Bl(x,y)

izz+l Jj=y+1

where B(z,v) is the number of blocked arcs crossing the cut. Since there is at most



o4

one blocked entry in every row and every column, a simple argument shows that if
a,>a,,, and b,>b,,, then this cut has the smallest capacity among all cuts for
which the s side contains x vertices on the left and n—y vertices on the right.
However, if, say, a;=a.+; then a the cut obtained by switching vertices u, and
u, ., might have smaller capacity, since the number of blocked arcs crossing 1t
could be greater by one. Therefore, if we want the cuts C,, to be the only poten-
tial minimum cuts, we need to be careful about the ordering of "row" vertices
corresponding to rows with equal row sums, and similarly for columns. The condi-
tions we need to enforce on the order are, simply: if a,=a,; .y, then the blocked
entry in row x should be in a lower-indexed column than the blocked entry in row

x+1. The symmetrical conditions should hold for columns.

These conditions can be obtained by two rounds of sorting: first sort rows
according to row sums. Sort rows with equal sums according to the corresponding
column sums (i.e. the correspondence given by the 0" and Tsequences), breaking
ties arbitrarily. Now, sort the columns according to column sums. Columns with
equal sums are sorted according to the order of the corresponding rows that was
obtained in the first round. No ties can arise, since there is, at this point, a total
ordering of the rows.

After this preprocessing is done, we are ready to proceed along the same lines
as the algorithm described in section 5.2, with a few modifications. The slack func-

tion is now:

slezy) = 2 a; — Sbj + x'y = Blx,y)

i=z+l j=1
By the discussion above, it is again true that an instance is realizable if and only if
its slack matrix is non-negative. If sl.g{z,y)=0 then Mlijl=1 for all
1si=sx,1=j<y except for blocked entries, and M[ij1=0 for all x+1=:=n
,y+1l1<jsn.

The perturbation phases work identically here, since they only deal with the
row and column sums, and not with the internal structure of the realization
matrix.

In the correction phases there is a small modification - units should not be slid

into blocked entries. This is fixed by modifying the bipartite graph, B, in the obvi-



85

ous way. Also, we need to re-examine the proof of lemma 5.5. It works out exactly
right in this case, since it turns out that:
for all i,k degree(y, ;) = |Y|

which is precisely sufficient (see the original proof).

The only tricky modification turns out to be for the base case. Again, there
are at most five different row sum values and five different column sum values.
The difficulty is that there are blocked entries scattered throughout. This spoils the
simple cyclic realization that existed. We overcome this by partitioning the matrix
into fner sub-matrices than in the previous case. Each of the M, /s is partitioned
further so that each sub-matrix either contains no blocked entries, or contains a

blocked entry in every row and column.

Again we construct a realization in two steps. The first step is to determine
the total number of units in each sub-matrix. This is done, here too, by solving a
max flow problem (where the capacity of a sub-matrix is the number of non-
blocked entries in it). Again, the network here is of constant size, so a max flow
can be computed in constant time. In the second step, the units are distributed
within the sub-matrices. The key here is to deal first with the sub-matrices con-
taining blocked entries. It is not always possible to select arbitrary sets of rows
and columns, but it is possible to distribute the units so that the discrepancy
between any two rows or any two columns will be at most one unit. This can be
done as follows: say the blocked entries are along the main diagonal (this will
actually always be the case because of the preprocessing), and let k be the number
of rows (and columns) of the sub-matrix. Let d, (the rth diagonal) be the set of
entries, (i,j), for which j—i = r (mod k). If F units are to be distributed, fill

dy, ... ’leJ , and place the remaining units in d Fioy An example is shown in
k k

fig. 5.5.



86

1({1]1
111
111

1 1

11

Fig. 5.5: A 5X5 sub-matrix with blocked entries containing 11 units.

Now, after the "problematic” sub-matrices have been dealt with, we can construct
the sub-matrices with no blocked entries in the same fashion as described in sec-
tion 5.2.4. The same arguments for proving validity of the scheme go through,

because there is at most one blocked entry in every row or column.

5.5 Bounds on Supplies and Demands

Our parallel algorithm for the matrix construction problem can be extended to
the case in which the sequences @ and b represent upper bounds on row sums and
lower bounds on column sums respectively. This is a natural extension of the
matrix construction problem when rows represent supplies and columns represent

demands.

Let U = gai and L = S:bi. Let M be a realization matrix for the

i=1 i=1
instance (@,b), and let S be the number of 1's in M. Then, clearly, L<S<U. Say
we fix S. Then the problem boils down to the following: modify the sequences @

and b to obtain @ and 3 respectively so that:

(1) @;<q; and b;=B; for all l1<isn,lsj=m.

(2) 2“:’ = S:ﬁj =3S.
i=1 j=1
(3) (@,B) is realizable.
It is, of course, not always possible to satisfy all three conditions simultaneously.

Thus our goal is find such a pair of sequences if it exists.

The key for obtaining the sequences @ and E is to consider the slack matrix,



87

as defined in section 2.1. Recall that the condition for realizability is that all the

slacks are non-negative, and that:

sla'g(x,y) = 2 a; — 23, + xy
j=1

i=x+1

where a;= - - 2a, and ;= - 28,

Lemma 5.7: Let a,= -+ =a, and b;= '  =b, Let @k () be the
sequence obtained from @ (5) by subtracting 1 from g, (adding 1 to &;). Then
«a'a1>,B'<_m)> is realizable if (\E(k},BtZ)) is (for any 1=k<sn, K l<sl=m).

Proof:

L g E) = g = 3 (b =ath)) + S8, = plm)
J=

i=x+1
It is easy to see that for all values of z,y,k and [ this difference is non-negative,

which proves the lemma. [

Theorem 5.1: Let &g, be obtained from & by repeatedly subtracting 1 from the
largest element U —S times and let B(S) be obtained from b by repeatedly adding 1
to the smallest element S —L times. Then (a’ks),B(s-,) is realizable if there is any

realizable pair of sequences (¥,8) where y,<a;, §;2b; (for all 1si<n,lsj=m)
and ﬁy‘- = i&i = S.
i=1 i=1

Proof: By induction on U —S using lemma 5.7 ]

(&'.15\,,3,5)) can be obtained from (&,b) efficiently in parallel by a simple

partial-sums computation. The algorithm is:

(1 Forall S ,l=<S=sU,dolP:

(1.1) Compute @, and Bis)

(1.2) Test if (Tx’(s),B(s)) is realizable (( using the method described in [FF])).
(2) Select an S for which (@5,,8.s;) is realizable.
(3) Compute M =MATRIX_CONSTRUCTION (@s),B:s)-

Steps (1.1) and (1.2) are simple partial-sum computations, and can be imple-
mented using O(n+m) processors. Since steps (1) and (2) can be implemented

within the time and processor bounds used for step (3), the algorithm has the same



88

parallel complexity as the matrix construction algorithm. Note that we may per-
form step (2) with some criterion in mind (e.g. "construct a matrix with the smal-

lest possible number of 1's subject to ...").

The extension of the symmetric supply-demand problem turns out to be even
simpler. Here the natural extension would be that all the f values represent upper
bounds, since making a number "less positive” corresponds to less supply, and
making a number "more negative" corresponds to more demand. So in an instance
of this problem, the positive numbers would sum up to +H and the negative
numbers would sum up to —L, for some H>L.

Here, as opposed to the matrix construction problem, it is clear which value of
S works best (where S is the sum of the positive entries, and minus the sum of the
negative entries). By looking at the expressions for the slack vector, one can see
that decreasing S cannot ruin feasibility. Therefore S should be selected to be as
small as possible, i.e. S=L.

To summerize, only the positive f entries should be modified. Again, as in the
matrix construction problem, the best way to modify these numbers is to repeat-
edly subtract one unit from the largest entry until H-L units have been sub-

tracted.



89

References

[AHU] Aho, A.V., Hopcroft, J E. and Ullman, J.D., "The design and Analysis of
Computer Algorithms”, Addison-Wesley, 1974.

rAtal] Atallah, M.J. , "Parallel Strong Orientation of an Undirected Graph", Infor-
mation Processing Letters, 18, pp. 37-39, 1984.

'BT] Boesch, F. and Tindell, R., "Robbins’s Theorem for Mixed Graphs", Amer.
Math. Monthly, 87, pp. 716-719, 1980.

[BW] Beineke, L.W. and Wilson, R.S. eds. , "Selected Topics in Graph Theory",
Academic Press, 1978.

(Berge] Berge, C., "Graphs", North Holland, 1885.

[CGT] Chung, F.RK., Garey, M.R. and Tarjan, R.E , "Strongly Connected Orien-
tations of Mixed Multigraphs", Networks, 15, pp. 477-484, 1985.

(CL] Chartrand, G. and Lesniak, L., "Graphs & Digraphs" 2nd ed. Wadsworth &
Brooks/Cole , 1986.

[CW] Coppersmith, D. and Winograd, S. , "Matrix Multiplication via Arithmetic
Progression"”, Proc. 19th ACM Symp. on Theory of Computing, pp. 1-6, 1987.

[Camion] Camion, P., "Chemins et Circuits Hamiltoniens des Graphes Complets",
CR Acad. Sci. Paris (A) 249 pp. 2151-2152 , 1959.

[Cole] Cole, R., "Parallel Merge Sort", Proc 27th IEEE Symp. on Foundations of
Comp. Sci., pp. 511-519, 1986.

[(Cookl] Cook, S.A., "Towards a Complexity Theory of Synchronous Parallel Com-
putation”, L'Ensignment Mathematique XXVII, pp. 99-124, 1981.

[Cook2] Cook, S.A., "A Taxonomy of Problems with Fast Parallel Algorithms",
Information and Control, 64, pp. 2-22, 1985.

[ET] Eswaran, K.P. and Tarjan, RE., "Augmentation Problems", SIAM J. on
Computing, 5, pp. 653-665, 1976.

[FF] Ford, L.R. and Fulkerson, D.R. , "Flows in Networks", Princeton University
Press, 1962.



90

[Fich] Fich, F., "New bounds for Parallel Prefix Circuits", Proc. 15th ACM Symp.
on Theorv of Computing. pp. 100-109, 1983.

[GGKMRS] Gottlieb, A. , Grishman, R. , Kruskal, C.P. , McAuliffe, KM. ,
Rudolph, L. and Snir, M., "The NYU Ultracomputer - Designing an MIMD
Shared Memory Parallel Computer”, IEEE Trans. Comput. C-32 2 pp. 175-
189, 1983.

[GJ] Garey, M.R. and Johnson, D.S. , "Computers and Intractability", W.H Free-
man and Company , 1979.

(GP] Galil, Z. and Pan V., "Improved Processor Bounds for Algebraic and Com-
binatorial Problems in RNC", Proc. 26th IEEE Symp. on Foundations of
Comp. Sci.. pp. 490-495, 1985.

[GSS] Goldschlager, L.M. , Shaw, R.A. and Staples, J. , "The Maximum Flow
Problem is Logspace Complete for P", Theoretical Computer Science, 21, pp.
105-111, 1982. )

[GT] Goldberg, A. and Tarjan, R.E. , "A New Approach to the Maximum Flow
Problem”, Proc. 18th ACM Symp. on Theory of Computing, pp. 136-146, 1986.

[Gale] Gale, D. , "A Theorem on Flows in Networks", Pacific J. Math., 7, pp.
1073-1082, 1957. _

[Gusf] Gusfield, D., "Optimal Mixed Graph Augmentation”, Siam J. on Comput-
ing, 16 (4), pp. 599-612, 1987.

[Hillis] Hillis, W.D., "The Connection Machine" MIT Press , 1985.

[1S] Israeli, A. and Shiloach, Y., "An Improved Parallel Algorithm for Maximal
Matching in a Graph", Information Processing Letters, 22, pp. 57-60, 1986.
(KU] Karlin, A.R. and Upfal, E. , "Parallel Hashing - an Efficient Implementation
of Shared Memory", Proc. 18th ACM Symp. on Theory of Computing, pp. 160-

168, 1986.

[KUW1] Karp, RM. , Upfal, E. and Wigderson, A. , "Are Search and Decision
Problems Computationally Equivalent?”, Proc. 17th ACM Symp. on Theory of
Computing, pp. 464-475, 1985.

(KUW2] Karp, RM. , Upfal, E. and Wigderson, A. , "Constructing a Perfect
Matching is in Random NC", Combinatorica, 6 (1), pp. 35-48, 1986.



91

[Ladner] Ladner, RE., "The Circuit Value Problem is log Space Complete for P",
SIGACT News, 7,1, pp. 18-20, 1975,

[Lawler] Lawler, EL. , "Combinatorial Optimization, Networks and Matroids",

Holt, Reinhart and Winston, 1976.

[Luby] Luby, M., "A Simple Parallel Algorithm for the Maximal Independent Set
Problem", Proc. 17th ACM Symp. on Theory of Computing, pp. 1-10, 1985.

[MR] Miller, G.L. and Reif, J H., "Parallel Tree Contraction and its Application”,
Proc. 26th IEEE Svmp. Foundations of Comp. Sci., pp. 478-489, 1985.

[MVV] Mulmuley, K., Vazirani, U.V. and Vazirani, V.V., "Matching is as Easy
as Matrix Inversion”, Proc. 19th ACM Symp. on Theory of Computing,

[Moon] Moon, J.W., "Topics on Tournaments", Holt, Reinhart & Winston , 1968.

(Naor] Naor, J., "Two Parallel Algorithms in Graph Theory", Technical Report
CS-86-6, Department of Computer Science, Hebrew University, June 1986.

[NS] Nisan, N. and Soroker, D. , "Parallel Algorithms for Zero-One Supply-
Demand Problems”, Report No. UCB/CSD 87/368, Computer Science Division,
University of California, Berkeley, August 1987.

(PS] Papadimitriou, C.H. and Steiglitz, K. , "Combinatorial Optimization: Algo-
rithms and Complezity", Prentice-Hall , 1982.

(Pipp] Pippenger, N. , "On simultaneous Resource Bounds", Proc. 20th IEEE
Symp. Foundations of Comp. Sci., pp. 307-311, 1979.

[RT] Rettberg, R. and Thomas, R., "Contention is no Obstacle to Shared-Memory
Multiprocessing” CACM, 29 (12) pp. 1202-1212, 1986.

[Redei] Redei, L., "Ein Kombinatorischer Satz", Acta Litt. Sci. Szeged, 7 pp. 39-43
, 1934.

[Renade] Renade, A.G. , "How to Emulate Shared Memory", Proc 28th IEEE
Symp. on Foundations of Comp. Sci., pp. 185-194, 1987.

[Robbin] Robbins, H. , "A Theorem on Graphs with an Application to a Problem of
Traffic Control", Amer. Math. Monthly, 46, pp. 281-283, 1939.

[Rober] Roberts, F.S., "Applied Combinatorics”, Prentice Hall , 1984.

[Ryser] Ryser, H.J., "Traces of Matrices of Zeros and Ones", Canad. J. Math., 9,



92

pp. 463-476 , 1960.

[SASLMW] Schneck, P.B. , Austin, D., Squires, S.L. , Lehmann, J., Mizell, D
and Wallgren, K., "Parallel Processor Programs in the Federal Government",
IEEE Computer, 18 (6) pp. 43-56 , 1985.

(SV] Shiloach, Y. and Vishkin, U. , "An O( log n) Parallel Connectivity Algo-
rithm", J. of Algorithms, 3, pp. 57-67, 1982.

[Sorol] Soroker, D. , "Fast Parallel Algorithms for Finding Hamiltonian Paths
and Cycles in a Tournament”, J. of Algorithms. to appear.

(Soro2] Soroker, D. , "Fast Parallel Strong Orientation of Mixed Graphs and
Related Augmentation Problems", J. of Algorithms, to appear.

[Soro3] Soroker, D., "Optimal Parallel Construction of Prescribed Tournaments",
Report No. UCB/CSD 87/371, Computer Science Division, University of Cali-
fornia, Berkeley, September 1987.

[TV] Tarjan, R.E. and Vishkin, U. , "An Efficient Parallel Biconnectivity Algo-
rithm", Siam J. on Computing, 14 (4), pp. 862-874, 1985.

[Tsin] Tsin, Y.H., "An Optimal Parallel Processor Bound in Strong Orientation of
an Undirected Graph", Information Processing Letters, 20, pp. 143-146, 1985.

[Upfal] Upfal, E. , "A Probabilistic Relation Between Desirable and Feasible
Models of Parallel Computation”, Proc. 16th ACM Symp. on Theory of Com-
puting, pp. 258-265, 1984.

[Vishl] Vishkin, U., "Synchronous Parallel Communication - a Survey", TR 71,
Dept. of Computer Science, Courant Institute, NYU, 1983.

[Vish2] Vishkin, U., "On Efficient Paralle! Strcng Orientation”, Information Pro-
cessing Letters, 20, pp. 235-240, 1985.





