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Abstract

Given two trees, a guest tree G and a host tree
H, the subtree isomorphism problem is to deter-
mine whether there is a subgraph of H that is iso-
morphic to G. We present a randomized parallel
algorithm for finding such an isomorphism, if it
exists. The algorithm runs in time O(log’ n)on a
CREW PRAM, where n is the number of nodes in
H. Randomization is used (solely) to solve each
of a series of bipartite matching problems dur-
ing the course of the algorithm. We demonstrate
the close connection between the two problems
by presenting a log space reduction from perfect
bipartite matching to subtree isomorphism. Fi-
nally, we present some techniques to reduce the
number of processors used by the algorithm.
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1 Introduction

A subtree of a tree T is any subgraph of T that is
a tree. Given two (unrooted) trees, a guest tree
G and a host tree H, the subtree isomorphism
problem is to determine whether there is a sub-
tree of H that is isomorphic to G. There is
an O(n?%) sequential algorithm for this prob- -
lem due to Matula[Mat78], where n is the num-
ber of nodes in H. In this paper, we present
an O(log®») time randomized algorithm for a
CREW PRAM that exhibits the mapping be-
tween the trees, if such a mapping exists. We
assume the word size of the PRAM is clogn
for some constant ¢. With a few techniques to
reduce the processor count, the algorithm uses
< \/n-P(n) processors, where P(n) is the number
of processors needed for one bipartite matching
problem on n nodes using the fastest algorithm
for bipartite matching to date[MVV87], for a to-
tal of o(n*?) processors. More precisely. let M(n)
be the best sequential arithmetic time bound for
maltiplying two n x n matrices. Then our algo-
rithm uses n2°M(n)/log> n processors.

Our algorithm is based on Matula’s sequen-
tial algorithm. The main obstacle to develop-
ing a fast parallel algorithm from Matula’s algo-
rithm is that its running time is proportional to
the height of the tree. But by adapting the dy-
namic tree contraction algorithm of Miller and
Reif[MR85], we show that subtree isomorphism
is in random-NC (RNC). Dynamic tree contrac-




tion is one of two classic methods for achieving
NC and RNC algorithms for problems involv-
ing potentially unbalanced trees; the other is re-
cursively finding a vertex “1/3 — 2/3" separator
for the tree[LT75]. In a complementary effort,
Lingas and Karpinski[LK87] independently de-
veloped an RNC? algorithm for subtree isomor-
phism based on the latter method. In both al-
gorithms, the randomization is used to perform
the bipartite matching problems: if a {(determin-
istic) NC algorithm is found for bipartite match-
ing, then subtree isomorphism will also be in NC.

As in Matula's algorithm, we recast subtree
isomorphism as a problem on limbs of G and
H. A limb of a tree T is a subgraph of T
rooted at a vertex u consisting of an edge {u, v}
of T, together with the connected component of
T — {{u,v}} which contains v. Let T(u,v) de-
note the limb of T defined by the root vertex u
and the edge {u,v}. A rooted tree will be rep-
resented with each node (except the root) hav-
ing an edge directed to its parent. Any edge
{v,w} € T,w # u, will determine a limb T(v. w),
a subgraph of T{u, v), which we call a child limb
of T{u,v) (see Fig. 1). I {t;,t2} is the only edge
incident to t; in T, then the limb T (t,,tz) con-
tains all of 7, and is denoted a root limb, and
T{t5.1,) is denoted a leaf limb. A tree § is iso-
morphic to a tree T if and only if some root
limb 5(51,32) is isomorphic to some root imb
T(ty,tz), where sy is mapped to t; and 5o is
mapped to t;. This is called a limb imbedding
of S{sy.s2) in T(t1,t2). The height of a limb
T(t,,t;) denotes the maximum distance of any
vertex of T(t;, tJ) from the root vertex t,.

Given two trees G and H, one can test whether
there is subtree of H that is isomorphic to G as
follows. First choose a root limb G({g1.92) of G.
G can be imbedded in H if and only if G{g1.g2)
can be imbedded in some limb of H (typically
not a root limb). To determine whether G{g:, 9;)
can be imbedded in H{hg, h;), one can apply the
following theorem due to Matula:

Theorem 1 [Mat78]: Let G{g,,g;) be a limb
of a tree G and H(hi,hm) be a imb of a tree
H. Consider a bipartite matching problem be-
tween the child imbs of G(g.,g;) and the child
limbs of H{hi,hm), where there is an edge be-
{ween child limbs G{g;,gx) and H{hm ha) if and
only if G(g,,gx) is limb imbeddable in H{hm, ha).

Then there erists a matching that matches all the

child limbs of G{g..g,) if and only if Glg..g;} s
limb imbeddable in H{hi, hm).

In this way, an instance of the subtree isomor-
phism problem can be solved using a series of bi-
partite matchings by starting at Limbs of height
1 and progressing up to the root of the tree.

In order to achieve polylogarithmic running
time, we will apply dynamic tree contraction to
the guest tree. As G is contracted. each remain-
ing nonroot node represents larger and larger
subtrees of the original guest tree. For the rake
operation, we set up and solve bipartite match-
ing problems for each leaf limb in G, as in the-
orem 1. The difficulty lies in defining a suitable
compress operation which must combine two ad-
jacent G nodes (limbs) before it is known where
in H their respective remaining child limb can be
imbedded. For each Limb with exactly one child
limb, we compute and maintain a set of condi-
tionals defining its imbeddability in H as a func-
tion of the as-yet-unknown imbeddability of its
one child limb. As part of a compress operation,
such conditionals for a limb can be readily com-
posed with the conditionals for its child. Once G
has been contracted, we can determine the iso-
morphic mapping between G and H by expand-
ing G back to its original size, computing the map
for each G node as it is added back to the tree.

To reduce the number of processors, we will
apply two bipartite matching algorithms: one
for the decision problem (determine if a perfect
matching exists) while contracting the tree. and
one for the search problem (find the edges in a
perfect matching) while expanding the tree. Fur-
ther processor savings are achieved by solving
groups of related matching problems at once. Fi-
nally. we show that perfect bipartite matching
and subtree isomorphism are mutually NC re-
ducible by presenting a log space reduction from
the former to the latter.

Miller and Reif{MR85] use dynamic tree con-
traction to develop NC algorithms for the related
problems of tree isomorphism, canonical labels
for trees, and canonical labels for all subtrees.
The latter problem assigns labels to all nodes in
a rooted tree such that two nodes u and v have
the same label if and only if the marimal subtree
rooted at u is isomorphic to the marimal subtree
rooted at v. This differs from the subtree isomor-
phism problem, in which the subtrees of H are
not necessarily maximal.



(a)

Figure 1: (a) A tree T. (b) Limb T'(x, v).

Since our algorithm makes use of the work of
Matula[Mat78], Miller and Reif{MR85]. and Mul-
muley, Vazirani, Vazirani{MVV87]. we first re-
view their algorithms in the next section. (Read-
ers familiar with these algorithms may skip to
section 3). In section 3, we present our algorithm.
Section 4 describes how to reduce the number of
processors used, while section 5 presents a log
space reduction of bipartite matching to subtree
isomorphism.

2 Background work

We begin this section on background work with
Matula's sequential algorithm for subtree isomor-
phism.

Algorithm A[Mat78]: Given a tree H on ny
vertices {h1,...,hn, } and a tree G on ng ver-
tices {gl,...,gno}. this algorithm determines if
there is a subtree of H isomorphic to G.

A1l. Select a root limb G{g;,g2) of G and root
G accordingly. Order the (ng — 1) limbs
of G{g1,92) (one for each directed edge in
G(g1,92)) by non-decreasing height.

A2. Let Imbed[,] be an (ng — 1) x (2nyg -
2) matrix, with one entry for each pair
(G{gi,9;),H(he, k1)) of limbs associated
with the rooted G{g;, g2) and the nonrooted
H. During the course of the algorithm,
Imbed|(g:,9;), (h&, ki)] = “imbeddable™ if
and only if G(g,.g,} is found to be limb
imbeddable in H(k4, k). Initially, mark all

(b) ()

(¢) Limb T{v, w), a child limb of T (u. ).

limbs in G(g).92) of height 1 as “imbed-
dable” in all H Limbs. Mark all other entries

as "“don’'t know".

A3. Let h step by 1 from 2 through the height of
the limb G(g,.g2). For each limb G{g,.g,)
of height h and each imb H{h;. hy ), set up
and solve a bipartite matching problem as in
theorem 1, based on the values in the Iimbed
matrix for the respective child limbs. Set
Imbed({g,,4;). (k1. hm)] to “imbeddable” or

“unimbeddable™ accordingly.

A4. If there is a limb H({hi hj) such that
Imbed[{g,.2). (hi.h;)] = vimbeddable”.

then there is a subtree of H isomorphic to
G. If not. then no such subtree exists,

Theorem 2 [Mat758]: Given two trees G and H.
algorithm A determines if there is a subtree of H
isomorphic to G.

Algorithm A can be modified to exhibit the
mapping between G and a subtree of H (if any)
as follows. Retain the solutions to the matching
problems solved by the algorithm as it progresses
up the tree. Then retrace the algorithm from the
root of G back down to height 1, using these so-
lutions to determine the actual limbs matched.
With some tricks. Matula is able to reduce the
running time of his algorithm to O(ni,/QnG )-

Let T be a rooted tree with n nodes and root
r. Miller and Reif(MR85] define two generic op-
erations on T such that at most O{log n) applica-
tions of these operations are needed to contract



T to a single node. At step t, the first opera-
tion, called rake, removes all leaves (nodes with
in-degree zero) from the tree which resulted after
step t — 1. Let a chain be a maximal sequence of
nodes vy, ...,v; in T where v, 41 is the only child
of v; for 1 < i < k, v is not the root, and v; has
exactly one child and that child is not a leaf. The
second generic operation, called compress, com-
presses all chains in the current tree into chains
a constant factor shorter. The compress opera-
tion determines the parity of each node v, in its
chain. If v, is of even parity. then it is connected
to its grandparent v;_2, and its parent v,_; is
deleted from the chain. (This implementation of
the compress operation is sufficient for our algo-
rithm. See [MR85] for improved versions of the
compress operation). These two operations to-
gether form one contract phase. The power of
a contract phase is summed up in the following
theorem.

Theorem 3 [MR55]: A rooted tree with n nodes
can be contracted to a single node in Oflogn)
contract phases.

Consider a typical application of dynamic tree
contraction: there is a problem on trees where the
sequential algorithm to solve the problem starts
at the leaves of the tree and works up to the root.
Initially, the “values” of the leaves are known.
Inductively, the value of a node can be computed
once the values of all its children are known. In
dynamic tree contraction, one defines a suitable
“partial-value” for a node for which values are
known for only some of its children. As the tree
is being contracted, values are maintained for all
leaves and partial-values are maintained for all
other nodes.

In defining a contract phase, one distinguishes
between 4 types of (nonroot) nodes, based on the
number and type of their children.

1. The node has no children, i.e. it is a leaf.
As part of the rake operation, this node is
deleted from the tree.

2. The node has children and they are all
leaves. As part of the rake operation, this
node computes its new value from its partial-
value and the values of its children.

3. The node has some children which are leaves
and some which are not leaves. As part of

the rake operation, this node computes its
new partial-value from its partial-value and
the values of its leaf children.

4. The node has children, but none of them are
leaves. There are two subtypes to consider:

{(a) The node has > 1 (nonleaf) children.
This node sits out this phase.

The node has exactly 1 (nonleaf) child.
As part of the compress operation, this
node may either (i) be deleted. or (ii)
combine partial-values with its par-
ent (which gets deleted) to get a new
partial-value while making its grand-
parent be its new parent {one applica-
tion of pointer jumping).

(b)

We now sketch the Mulmuley, Vazirani, Vazi-
rani randomized algorithm[MVV87] for finding a
perfect matching in a bipartite graph. They first
assign random integer weights to the edges of the
graph in order to make the minimum-weight per-
fect matching of the resulting graph unique (with
probability > 1/2). Then they apply algebraic
techniques to enable each processor to indepen-
dently determine if its particular edge is in this
unique matching. Let det(A) denote the deter-
minant of a square matrix 4, adj(A) denote the
adjoint of A, and Aij denote the submatrix (mi-
h

nor) of A obtained by removing the M row and

jth column. Their algorithm is as follows:

Algorithm B[MVV87]: Given a bipartite graph
A=(UV,E), where U = {u;,...,un} and V' =
{vy,...,vn}, with at least one perfect matching.
this algorithm finds a perfect matching in A with
probability > 1/2.

B1. Assign random weights u,; to the edges of
A, chosen uniformly and independently from
the range [1,2n].

B2. Consider the weighted adjacency matrix M
for A, where the (i,j)th entry is 2%v if
(u,.v,) € E, and 0 otherwise. Compute
det(M), and obtain w, the highest power of
2 which divides det(M). This will be the

weight of the perfect matching found in A.

Compute adj(M); its (j.1)®

det(M,;).

B3. entry will be



B4. For each edge {u,,v,} in parallel do:

B5. Compute d——’——‘—et(M?’,)sz ;
B6. If this quantity is odd, include {u,, v, }

in the matching.
end;

Theorem 4 [MVV5§7): Given a bipartite graph
A = (U, V,E) with at least one perfect matching,
algorithm B finds a perfect matching in A with
probability > 1/2.

‘The resource requirements of algorithm B are
bounded by the time and processors needed to
compute det(M) and adj(M). They use Pan’s
algorithm[Pan85](GP85a] for inverting integer
matrices, which computes det(M) and adj(M)
in order to compute M ~!. Pan's algorithm takes
time O(log’ n) and n!M(n)logn loglog n bit op-
erations to invert (with high probability) an n xn
matrix whose entries are I-bit integers. (There
is a deterministic version which uses n times as
many bit operations). Thus algorithm B takes
O(log®n) time and n?M(n)loglogn/logn pro-
cessors, i.e. o(n**) processors, since the entries
of M are (2n)-bit integers.

3 The subtree isomorphism
algorithm

As in Matula[Mat78], we first select a root limb
G{g1,92) of G and root G accordingly. This de-
termines a set of ng — 1 limbs associated with the
rooted G. As the algorithm proceeds, it contracts
G using suitably defined rake and compress oper-
ations. We will associate the limb G{g,, g;) with
its second vertex g;, and name the limb G (x, g;)
to reflect the fact that the parent node of g; may
be changing throughout the algorithm as a result
of compress operations. The host tree H is not
rooted and thus has 2(ny — 1) limbs to consider.
As the algorithm does not alter H, we will name
its limbs with two vertices, e.g. H{hy, hi}.

As G is contracted, the limbs remaining will
represent larger and larger subtrees of the origi-
nal tree. Let G{gp,g,) be the Limb in the original
tree that G{x,g,} currently represents. We will
call such a G{g,, g¢) the original-limb of G(x,g,)

Initially, and until the first compress operation
involving g;, G{g,,g;) will be the original-limb
of G(x,g;). As a result of a compress operation,
the new original-limb of G{x, g;} will be the cur-
rent original-limb of its parent (the parent gets
deleted). As G is contracted, we will say that
a limb G(x,g;) is imbeddable in a particular H
limb if and only if its original-limb is imbeddable
in the H limb. The algorithm continues to con-
tract G until it consists of just 1 limb (2 nodes).
which will by then represent all of the original
guest tree.

After initialization and throughout the course
of the algorithm, we will maintain the follow-
ing invariants on the G limbs. After ¢ contract
phases, the following properties hold for limbs re-
maining in the tree.

Invariants I:

o The value of any leaf limb of G has been
computed, i.e. the set of H limbs in which
(the original-limb of) the leaf limb can be
imbedded has been determined.

o The partial-value of any limb G(x, g,) with
exactly one child limb has been computed.
The partial-value gives the set of H limbs
in which (the original-limb of) G(x. g} can
be imbedded under certain conditions on
(the original-limb of) its child limb. Let
G(x,9;) be the child limb of G(x, 9) in
the current G tree. A limb H{hm, ha) is
in the conditional-set of the pair G({x,g.)
and H(hg, h;) if and onmly if {G{x.g;) is
imbeddable in H{hn, hy)} implies {G(x.g.)
is imbeddable in H(hg, hi)}. A short hand
notation for this situation is “H{hy, hy) if
H{hm. ho}'. Note: As a result of compress
operations, H{hpm . h,) may not be a child
limb of H({hg, k). The partial-value of a
limb with exactly one child is the collection
of its 2(ny — 1) conditional-sets.

¢ The trivial partial-value of any imb G(x. g,)
with > 1 child limbs has been computed.
i.e. a list of children raked in the first ¢ steps
from G(x,g;) has been retained, along with
the values of each such child.

In defining the (t+ 1)th contract phase, we dis-
tinguish between 4 types of (nonroot) nodes, as
in section 2. In contrast to the outline of a con-
tract phase presented in section 2, our contract



waits until a limb has only one child before it
computes a nontrivial partial-value for that limb.
Recall that we equate a limb G(x, g,) with its as-
sociated node g;.

1. The limb G(x,g,) has nc child limbs, i.e. it
is a leaf. As part of the rake operation, g, is
deleted from G, and its value is saved wiih
its parent.

2. The limb G{x, g,} has child limbs and they
are all leaves. We distinguish between two
subtypes:

(a) The limb has > 1 (leaf) child limbs. As
part of the rake operation, the node g,
computes its value by considering the
values of all children raked from this
node, this phase and previous phases.
As in theorem 1, determine the set of H
limbs in which G(x,g,) can be imbed-
ded using bipartite matching.

The limb has exactly 1 (leaf) child limb
G(x g;). As part of the rake opera-
tion, g, computes its value by plug-
ging the child's value into its partial-
value (conditional-set).  For exam-
ple, given the conditional “H{hi, h;) if
H{hm,hsa)" and the fact that G(* g;)
is limb imbeddable in H{hm, h,), con-
clude that G{x,g,) is limb imbeddable
in H(hk, h{)

3. The imb G{x, g,) has some child limbs which

are leaves and some which are not leaves.

(a) The limb has > 1 nonleaf child limbs.
The node g, sits out this phase.

(b) The limb has exactly 1 nonleal child
limb G(x,g,). As part of the rake op-
eration, g; computes its conditional-set
by considering the values of all chil-
dren raked from this node, this phase
and previous phases. For each limb
H{hs,h;), set up a series of bipartite
matching problems, one for each of its
child limbs. For child limb H({hny, h.),
solve a bipartite matching problem
between the child limbs of G{x,g.)
and the child limbs of H{hi, k), as
in (2a) above, except exclude child
limbs G(x,g,) and H{hm.h,) from the

matching problem. If there exists a
matching that matches all such child
limbs of G{x,g.), then G{=, g} is limb
imbeddable in H{hg, h;} on the condi-
tion that G(x,g;) is limb imbeddable
in H{hm,ha), and include “H{h;. h;)
if H{Am,hs)" in the conditional-set for
.

4. The limb has child limbs, but none of them

are leaves.

(a) The limb has > 1 (nonleaf) child limbs.
The node g; sits out this phase.

(b) The limb has exactly 1 (nonleaf) child
limb. As part of the compress opera-
tion, g, may either (i) be deleted. or
(ii) combine partial-values with its par-
ent (which gets deleted) while pointer
jumping to point to its grandparent.
Any node on a chain must have only
one child, so partia.l-‘values can be
combined by composing the condition-
als associated with g, and its parent.
For example, “H(h;, he) f H{hi, hm)"
in the conditional-set for the par-
ent and “H{h;, hpn) f H{hn. ho)" in
the conditional-set for G{=.g,), results
in “H(h;, hi) if H{hp.ho)" in the
conditional-set for G{~=.g:). This lat-
ter conditional-set reflects the fact that
G(*,9,) now represents the original-
limb of its former parent.

Fig. 2 demonstrates the effects of contract
phases on an example problem instance.

Lemma 1 Consider a tree T rooted at a root
limb. Let T be contracted to 2 nodes using dy-
namic tree contraction. Then the root node v of
T is not involved tn any rake or compress opera-
tions.

Proof: Since T is rooted at a root limb, r has
degree 1. Its one child will not become a leaf until
there are exactly two nodes left in the tree. The
root is never involved in a compress operation
since it has no parent. O

Thus there is no need to consider the root node
during contract.

Lemma 2 Let G be a tree rooted at a root limb,
and let G{x,g,} be a imb of G. Let contract



An example: An instance of the subtree isomorphism problem is solved using contract. At each
step, for a few of the G limbs, we show its original-limb and one of its conditionals.

a1 g1 g1 g
4
g2
G gs N g
g5
gk ® gk
(1) (2) (3) (4) (5)
H tree G tree G tree G tree G tree G tree
phase limb conditional original limb

(1) G{* g9.) “H{hm, ha) if H{hn, hg)” G(g2.9:}
G{x, &) “H(hg,hy) if H(h, k()" G{gj. gx)
(2) Glvgs)  “Hlhp b} if Hihm, b}’ Gla1.92)
G(*’ g') “H(hm’h‘"> lf H<hﬂ'hq)" G(QQvgl)
G (* g;5) “H(hn, hq) if H{hg h,)" G{g., 95)
G(*,gk) “H(hq,h,) if H(h,,h,) G(g,'-gk)
(3) G(x g.) “H{hp, hm) if H{Rn. hg)" G{g1,92)
G(*vgk> “H(hnvhq> if H(hmhs)“ G(gngj>
(4) G{* g:) “H{hp hm) if H{hy hg)” G{g1.92)
G (*, &) imbeddable in H{hn, Aq) G{g:. 95)
(5) G (% g:) imbeddable in H{hp. hm) G{g1.92)

Figure 2: Given two unrooted trees G and H, G is rooted at g; and then contracted using contract.
A circle around a node indicat=s that the value of its associated Limb has been computed. We show
some of the partial-values and values computed at each contract phase. For each limb listed. we
show only one of its many conditionals. After phase 5, we conclude that the rooted G is imbeddable
in the limb H{h,, hy) of H. In addition, contract would determine that the rooted G Is also limb
imbeddable in H (A, hm) and H(ho, hm)-

~3



be applied to G until the tree is contracted to 1
(final) limb. Then during the course of contract-
ing G, the number of child limbs of G(x g:) 1s
monotonically nonincreasing, and at some phase,
G(*,9,) has 0 or 1 nonleaf child limbs.

Proof: Contract only adds a new child limb
to a limb during a compress operation, where it
simply replaces one child limb by another. As for
the second claim, observe that a limb is deleted
only if it has 0 or 1 nonleaf child limbs. HG{x g)
is the final limb, it has O children, and if not, then
it gets deleted. O

Lemma 3 Let G be a tree rooted at a root limb.
Let G{%,g:) be a limb in G that has c child imbs.
Let contract be applied to G until the tree ts con-
tracted to 1 limb. Then (1) there are no bipartite
matching problems solved for node g, if ¢ £ 1,
(2) there is ezactly one phase in which there are
bipartite matching problems solved for node g, tf
¢ > 1, and (3) prior to the matching problems
during this phase, g, will nesther be deleted nor
change parent node.

Proof: There are three cases to consider. (i)
Suppose ¢ < 1. By lemma 2, it will continue to
have < 1 child imb. G(x, g;} can never be a type
(2a) or type (3) limb, and thus there will not be
any bipartite matching problems solved for g,.
(ii) Suppose ¢ > 1 and G(*,g,) has < 1 nonleaf
limb. Then G{x, g,) is type (2a) or type (3b) and
hence bipartite matching problems will be solved
for node g, this phase. After this phase, G(x, a.)
has at most 1 child. It follows from the previous
case that there will not be any more bipartite
matching problems solved for node gi. (i) Sup-
pose ¢ > 1 and G{x*,g,) has > 1 nonleaf imb. As
long as G{x, g;) has > 1 nonleaf child limb (type
(3a) or (4a)), it neither gets deleted nor changes
parent nor participates in any matching prob-
lems. If one of its children is deleted as a result
of a compress operation, then that child is not
a leaf, and another nonleaf limb takes its place.
Thus the number of children decreases only as a
result of a rake operation, i.e. when a child is a
leaf. By lemma 2, at some phase G{x, gi) goes
from > 1 to < 1 nonleaf child limbs. Since only
leaves are deleted, the former nonleaves must now
be leaves, and the node has > 1 children total.
It follows from the previous case that bipartite
matching problems will be solved for node g, only
this phase. O

Lemma 4 Let G be a tree rooled at a root imb.
Let contract be applied to G until the tree 1s
contracted to ! limb. Then during the course of
contracting G, the rool node of the original-limb
of any limb G(x,g,) still in the tree is the current
parent of g, tn the trec.

Proof: The proof is by induction on the number
of compress operations. The claim holds initially
and is not affected by a rake operation. Assume
it holds for k compress operations. Consider a
limb G(x,g:) that combines partial-values with
its parent G{x,g;) as a result of the (k + l)th
compress operation. Let G(gp,g,) be the current
original-limb of G({x,g,). By the induction hy-
pothesis, g, is the parent of g; in the tree prior
to this compress operation. As a result of this
compress operation, g, becomes the parent of g,
and G(x,g) assumes the role of G{x g;) in its
new conditional-sets. It follows that G(x, g.)'s
new original-limb has root g,. O

Lemma 5 Let G{x,g') be a limb of a tree G af-
ter t contract phases, and let H(h,h') be a limb
of a tree H. Suppose G(x,g') has > 1 child limbs.
which are all leaves, and that g is the parent of
g' in the contracted tree. For cach child limb
of G{x,g') raked from g' this phase and previous
phases, let S be the set of H limbs in which iis
original-limb can be imbedded. Then one can de-
termine if the original-limb of G{x,g') ts imbed-
dable tn H{h,h') by applying theorem 1.

Proof: We must show that examining the
child limbs in the contracted tree corresponds
to examining child limbs in the original tree.
Let G{x,g})....,G(* g;) be the child limbs of
G (= g') raked from g' this phase and previous
phases. By lemma 4 and the observation that the
original-limb of a leaf limb does not change when
the leaf is deleted. it follows that the original-
limbs of these child limbs all have root g’. Since
G(x,g'} has > 1 leaves, then by lemma 2. ¢’ has
not been involved in a compress operation. Thus
its original-limb is the same as its present limb.
i.e. G(g,g'). Therefore in G, the original-limb of
the parent limb is adjacent to the original-limbs
of its children. To test whether G(g.g') is imbed-
dable in H {h, k'), it follows that it suffices to con-
sider only child limbs of H{h, A"). Thus one can
apply theorem 1 to determine if G{g.4') is imbed-
dable in H(h.A'}). O



Lemma 6 A contract phase as defined above
preserves the invariants I above.

Proof: Assume the invariants | are true be
fore the contract phase, and consider a limb of
each type. If the Limb is a leaf, the contract
phase deletes it and saves its value for the < 1
phase of bipartite matching problems solved for
its parent (lemma 3). If all the limb’s children
are leaves, contract will determine the set of H
limbs in which (the original-limb of) the limb can
be imbedded (using theorem 1 and lemma 5) and
delete the leaves, creating a new leaf that satis-
fies the first invariant. If some are leaves and
some are not, there are two cases: (i) if it has
> 1 nonleaf children, contract deletes only the
leaves, creating a node that satisfies the third in-
variant, and (ii) if it has exactly 1 nonleaf child,
contract finds its conditional-set (by theorem 1
and lemma 5) and deletes the leaves, creating a
node that satisfies the second invariant. If none
are leaves, then the number of children at the
node remains unchanged. Thus, if there were
> 1 children before, contract leaves unchanged
a node that satisfies the third invariant, and if
there were exactly 1 child before, contract com-
poses conditional-sets, creating a node that sat-
isfies the second invariant. O

3.1 Pseudo-code for the algorithm

Our algorithm uses the following data struc-
tures. As in algorithm A, let Imbed[,] be an
(ng — 1) x (2nyg — 2) matrix, with one entry
for each pair (G(x,9,),H{hj, ht)) of limbs asso-
ciated with the rooted G{gi,g2) and the non-
rooted H. During the course of the algorithm,
Imbed[(x, g}, (h;, he}] will be set to 1 if and
only if G(x,g.) is found to be limb imbeddable
in H{h,, he). If it is set to 1, then G(x,g,) must
be a leaf. Thus g,’s parent will no longer change,
and Imbed[(x, g,), (h;, hi)] will be valid for the
rest of the algorithm. Let Conditionals(,| be an
auxiliary (ng —1) x (2nyg — 2) x (2ny —2) matrix,
used for storing the conditional-sets of all pairs
of limbs. Conditionals[(x,g,), (k. k&), {ht, hm)]
will be set if and only if G(*,g) is imbeddable
in H(h,,hi) on the (as yet unresolved) condi-
tion that the remaining child limb of G{x,g,) is
imbeddable in H{h;, hy). Recall that a short
hand notation for this situation is “H(h,, he) if

H{h;. hy)". Further implementation details will
be described in section 3.2.

Algorithm C below gives a pseudo-code de-
scription of our subtree isomorphism algorithm.

Theorem 5 Given two trees G and H. algo-
rithm C delermines if there is a subtree of H
isomorphic to G.

Proof: We will sketch a proof based on induction
on the number of contract phases. After step
C2, the value of any leaf limb and the partial-
value of any limb with exactly one child limb has
been computed. Thus the invariants I hold. By
lemma 6, each contract phase (steps C4-C17)
maintains the invariants I. By theorem 3. the
WHILE loop of step C3 will succeed in contract-
ing the tree to 1 limb, call it G{x, g,). By lemma
1, the two nodes remaining in G will be g, and
.. Thus by lemma 4, the limb G(~, g;) represents
the entire tree G, i.e. its original-limb is G (g1. g2)-
Since G(*,g,} is now a leaf limb. it is known in
which H limbs its original-limb can be imbedded.
Therefore, there exists a subtree of H isomorphic
to G if and only if there exists a limb H (hi. hy)
such that Imbed[(*, g,), <hk, h()] =10

3.2 Implementation details and

analysis

In implementing algorithm C on a PRAM, it is
helpful to preprocess the two trees after step C1.
Even though G will change, the algorithm will
refer to the structure of the original tree when it
solves bipartite matching problems for any of its
nodes. For H, usea (2ny —2)x(2ny — 2} bit ma-
trix initialized to all zeroes. For each pair of H
limbs H(h,, h;) and H{h, ki), set the bit at row
(hi, hj), column (hy, hi), if and only if H{ht. ki)
is a child limb of H{(h,, A;}, i.e. j = k. Using a
parallel prefix algorithm|[LF80], compute the in-
dex of each child among its siblings and among
all children, thereby obtaining an allocation of
processors which can be used throughout the al-
gorithm. Note that there are O(n%) children in
all, since H is not rooted and thus a node of de-
gree k contributes k(k — 1) children to the total.

We can preprocess G in the same way (since
G is rooted, more efficient ways do exist). To
keep track of all leaves raked from a node. the
algorithm will maintain a list of the child nodes



Algorithm C: Given a tre¢ H on nH vertices {hl,...,hnﬂ} and a tree G on G vertices

{g1y-- s Gng)s this algorithm determines if there is a subtree of H isomorphic to G.

C1. Selecta root limb G{n go) of G, and for all g, except g1,
let g,.parent be the parent of g, in the resulting rooted tree.

c2. Initialize the Imbed and Conditionals matrices to all zeroes. Then for each
leaf limb G{*, ), =t trbed[{x g} (R hy)] to 1 for all H limbs H{h; hi)-
For each limb G{x g:) with exactly one child: for all H limbs H(h;, h&). set
Conditionals[(*,g,), {hy, hi)y (hes h)] to 1 for all its child limbs H{hk, ki)

C3. WHILE there exist > 1 limbs in G DO:

C4. IN PARALLEL fer all limbs G{x g:) In G DO:

[* rake all lea: es, upduie their parents accordingly */

Cs. IF leaf limb

Cs. delete g, from G at the end of this phase

C1. ELSE IF all children are leaves

Cs. IF node has > 1 child

C9. F'mdlmbedd'mgs_For-Node(g.)

. ELSE * node has exactly 1 child */

C10. detennine the set of H limbs in which limb G {x,8:) is imbeddable
from the conditionals and the H limbs in which the
r~maining child Glx, gJ) is now known to be imbeddable,

e.g if Conditionals{(x,g‘), (R ha). (hm, h)] = 1and
Tmbed[(x, g;)s {hm- ho)] = 1. set Imbed[(x, g.). (A& i)} to 1.

C11l. ELSE [F some children are leaves. some are not

C12. IF node has exactly 1 nonleaf child G{x ;)

C13. Find _Conditional_Imbeddings-For ‘Node(g..9;)

/* compress all chains */

ELSE /* no children are leaves */
C1i4. IF node has exactly 1 child AND node is of even parity on its chain
C15. compose the conditionals associated with g, and g,.parent.

e.g. “H{h:, hj)if H{he hi)"in parent and “H{hg. hi)
i{ H(hm ha)" i0 9 results in “H(hu, k) if H{hm. ha)'s
marking Conditionals accordingly.

C16. delete g,.parent from G at end of this phase
C17. g,.parent — (g,.pa;rem).parent
END
END

C18. Let G(w,g.) be the remaining Limb in G. I there 1s an H{hy. h;) such that

Imbed{{*, g:)s Lhee,s h)l =1 then there is a subtree of H isomorphic to G.
1f not, then no such subtree exists.

10




PROCEDURE Find Imbeddings For _Node(g'):

C19. IN PARALLEL for eack imb H(h h') of H DO:

C2o. IF &' has at least as many children as g’ in the original trees

C21. Set up a bipartite matching problem P where the boys are the child
limbs G{x,g.),...,G(* g}) of g', and the girls are the child limbs
H{k' k), ..., H(k',h}) of k'. There is an edge between boy G(x,g,)
and girl H(h', h}) if and only if G(~, g!) can be limb imbedded
in H{h', k}), i.e. Imbed[{x, g,), (A’ h})] = 1. Also, pad
the boys with dummy limbs, which have edges to all the girls,
to make the number of boys equal the number of girls.

C22. Find a perfect matching in P. If one exists, set Imbed[(, g'), (h, &"})] to 1.
END

PROCEDURE Find Conditional Imbeddings.For Node(g', g7 ):
C23. IN PARALLEL for each limb H{h, k') of H DO:

C24. IF ' has at least as many children as g’ in the original trees
C2s5. IN PARALLEL for all child limbs H (A’ h;) DO:
C26. Set up a bipartite matching problem P’ as above, except exclude

child limbs G(x.g.) and H(h', h}} from the matching problem.

C27. Find a perfect matching in P'. If one exists,
set Conditionals|(x, g'). (k. k'), (h', h})] to 1.
END
END

11



for each node. Let gi be the ith child of gy, and
let g; be the only remaining child of ge. U @
deletes g; as part of a compress operation, then
g1 replaces gi as the ith child of gj- It follows
from lemma 3 that this apprcach retains a list
of the leaves raked from a ncd: up until the one
phase in which bipartite matching problems are
solved for the node.

Here is a step by step analysis of algorithm
C. Recall that M(n) = n?*¢ is the best sequen-
tial arithmetic time bound for multiplying two
n x n matrices (¢ is < 0.4). It is convenient to
describe the implementation of some steps using
concurrent write instructions. in all cases, these
instructions will be simulated by an equivalent
set of exclusive write instructions.

e For step C1, we root the guest tree G since
we can assume it is no bigger than H. Given
a list of the edges of G, one can find a de-
gree 1 node using concurtrent write (arbi-
trary model) in O(1) time with ng proces-
sors. Then root the tree using the Euler
tour technique for trees[TV85], in O(logng)
time and ng/logng processors. The pre-
processing of G and H that follows requires
O(log ny) time and n% [1og 7y processors.
Given this preprocessing, step C2 takes O(1)
time and ngn% processors.

Steps C4~C17 perform on» contract phase.
The tests in steps C3, C5, £7, C8, C11, C12.
and C14 depend on the structure of the cur-
rent tree. In each case, we wish to determine
if a node has 0, 1, or > 1 children of a par-
ticular type. The most time-efficient way to
perform these tests is using concurrent write
(arbitrary model). Each node g, with parent
g, writes 7 in cell 7, then reads cell j to see
if it has succeeded in its write attempt. If
not, it complains to its parent. This takes
O(1) time and ng processors. Alternatively,
the algorithm could preprocess the tree each
time, at a cost still less than that of other
steps inside this WHILE loop. The second
test in step C14 can be done in O(logng)
time with ng processors: the index of each
node in a chain is computed by O(logng)
applications of pointer jumping.

Steps C6, C16, and C17 can be done in O(1)
time and ng Processors.

e Step C10 takes O(1) time and n% processors
using concurrent write for each g,. For step
C15, perform a boolean matrix multiplica-
tion for each g; in O(1) time and M (ng ) pro-
cessors using concurrent write. Note that a
temporary matrix is needed here, since Con-
ditionals is updated in place.

For step C9, i.e. steps C19-C22, for each g..
O(ny) bipartite matching problems of size
< npy are solved in parallel. Using algo-
rithm B, step C22 takes O(loanH) time
and n}; M(npy)loglog ny [log ny processors
for all matchings for each g,. Steps C20 and
C21 use the preprocessing information ob-
tained for H and obtained and maintained
for G to set up the adjacency matrices for
the matching problems.

Similarly, for step C13, i.e. steps C23-C27.
for each g,, O(n?% ) bipartite matching prob-
lems of size < ny are solved in parallel
Thus step C27 takes O(log® ny) time and
n4 M(ny)loglogny /logny processors for
all matchings for each g,.

Step C18 can be done in O(1) time and ng
Processors using concurrent write.

By theorem 3, there will be O(logng) itera-
tions of the WHILE loop, and so steps (3-
C17 will take O(logng log” ny) time. Thus
any instruction above using concurrent write can
be simulated by O(logn) equivalent exclusive
write instructions at no increase to the running
time or processor count. By lemma 3. step
C9 or step C13 will be executed at most once
for each g,. It follows that algorithm (' runs
in O(log nglog? ngy) time on a CREW PRAM
with ngni M(ng)loglogny [log ng log ny pro-
cessors, i.e. o{ngn?) processors. In the next
section, we show how the processor count can be
significantly reduced.

In order to exhibit the mapping between & and
a subtree of H, we will add new instructions to
algorithm C' as follows. We save sufficient infor-
mation about each deleted node to enable us to
uniquely determine a mapping while expanding
the tree top down, starting with the final limb.
While contracting the tree, count the number of
contract phases applied so far, in order to save
the “time" each node was deleted. When a node
is deleted as a result of a rake operation. also



save the name of its parent; for a compress oper-
ation, save the name of its child. The precise in-
structions added to algorithm C are listed below
(shown properly indented to fit into algorithm
C). SavelImbed is an (ng — 1) X (2ny - 2)
matrix and Save_Conditionals is an (ng — 1) X
(2ny - 2) x (2ng — 2) matrix.

Given the above additions to algorithm C, the
procedure Expand_Tree shown below can be
used to exhibit the mapping. Initially, we know
that a mapping exists with the final limb G{*, g:)
imbedded in some limb H{hg, hi). Let g,.home =
H{hy,h;). Let p be the total number of contract
phases used to contract G. Expand_Tree p
forms a series of expand phases, with the ith
such phase splicing back into the tree all nodes
and edges deleted at the (p —1+ 1)th contract
phase, while maintaining the “home” in H for
each Limb in the tree. Prior to the final expand
phase, these *home” limbs will typically be scat-
tered throughout H, with the missing edges filled
in by subsequent expand phases.

Clearly the time and processor count for this
procedure is bounded by the time and processor
count for algorithm C.

€r-

4 Processor efficiency

We have recast the subtree isomorphism prob-
lem as a problem on limbs, as in Matula’s al-
gorithm, in order to save having to try out all
possible Toots for the trees. In this section, we
show how to reduce further the number of pro-
cessors needed. First, we observe that the algo-
rithm need not construe! any matchings in or-
der to determine a home H limb for the rooted
G. Algorithm C determines whether a partic-
ular pair of limbs can be matched in a perfect
matching by solving a matching problem with
the pair removed from the graph. Steps (22 and
C27 simply test if a perfect matching exists. We
can save processors by using an algorithm for de-
ciding whether a perfect matching exists while
contracting G, and an algorithm for constructing
the matching while expanding G. (There are cer-
tain advantages to constructing the matchings as
we contract G: see section 6).

We modify our algorithm as follows. First,
use a decision algorithm for steps C22 and C27.

save the name of the remaining child. Then, de-
termine the mapping while expanding the tree.
We will maintain the invariant that the home
H limb is known for every limb in the current
G tree. Initially, the home limb is known for
the final limb in the contracted G tree. As be-
fore, determine the home of each new G limb
as it is added back to its tree. We modify Ex-
pand_Tree as follows. (i) If g, was raked for a
matching problem (C31), and no matching prob-
lem has been solved for G(x, gi), construct the
matching and save the results in Save Imbed.
In this case, the home limb H(h,,hs) of the
parent limb G({x,g,) is known, so it suffices to
solve a matching problem between the children
of G(=.g;) and the children of H{hy k). (i) U
g, was raked for a conditional matching prob-
lem (C35), and no matching problem has been
solved for G{x,g,), construct the matching and
save the results in Save_Conditionals. In this
case, both the home limb H (h¢. k) for G(= g:)
and the home limb H(A, h,,) for the remaining
child G(x, g,) of G{~, g,) are known, so it suffices
to solve a matching problem between the children
of G{x.g,) (except for G{x, g,)) and the children
of H{hx, ki) (except for H{hi hm)).

The running time for expanding the tree is
O(log ng log® ny). using algorithm B for con-
structing the perfect matchings. The processor
savings can be seen from the following lenuna.

Lemma 7 While erpanding the tree, there is at
most one bipartite matching problem solved for
each node in the rooted H.

Proof: An H limb can not be host to two Limbs
of G. Since H is rooted, each node is associated
with a unique limb in H. By lemma 3. there was
at most one phase of bipartite matching prob-
lems solved for a node g, while G was contracted.
Thus, in the modified Expand_Tree procedure,
there will be at most one bipartite matching
problem solved for g, while G is expanded. Let
H{h, k') be the home limb for G{x.g,) at the time
¢ that a matching problem is solved for g,. Once
assigned, a home limb does not change unless the
node’s parent changes. But by lemma 3. g,'s par-
ent did not change at any time < f. and thus
H{h, 1) will continue to be the home limb for
G{x.g,) as the tree is expanded. It follows that
there is only one matching problem solved for £".

Step C22a is removed and step C27a will simply 0O

13



Algorithm C (revisions): These instructions, when added to algorithm C', can be used with the
procedure Expand_Tree in order to exhibit the isomorphic mapping between the two trees.

Ceé6a. save for g, the current “time” and the name of its parent {g..parent)
C10a. Save Imbed[(x, g;), (hx, hi)] — (hm, hn)
Ci15a. Save_Conditionals[{x, g}, (k. 2} (Am: hn)] — (hes hi).

where g, is the parent of g,

Ci6a. save for g,.parent the current “time"”, the name of
its child (g,), and the name of its remaining grandchild

C22a. IF perfect matching M exists, save it. In particular, for each child limb
G{x,g!) of G(x,¢'). Save Imbed|[(=.g,). (h. R')] — (R R),
where G (=, g!) is matched with H{Ah', h}) in M.

C27a. IF perfect matching M exists, save it and the remaining child.
In particular, for each child limb G(x,g!) of G(%,g') (except G{=, 9%))
Save_Conditionals|(x, g/}, (k. k'), (h', h}})] — (h', h}), where .
G{*,g!) is matched with H(h', ;) in M, and g;.remaining_child — g

PROCEDURE Expand_Tree:

C28. Let t step by —1 from the number of contract phases down to 1

C29. IN PARALLEL for limbs G{x,g,} in G DO:
C3o0. IF g, deleted at time {
C31. IF raked for a matching problem (i.e. by step C9)
Ca2. OR rake of last child (i.e. by C10)
C33. add g, to tree
C34. g..home — Save Imbed[(~. ). {h. hi}], where
H{hi. hi) is (g,.parent).home
C35. ELSE IF raked for a conditional matching problem (i.e. by C13)
C3s. add g, to tree
Car. g,.home — Save Conditionals|(x, g,). (h, h'), (A", h}}].

where H{h, k') is (g,.parent).home
and H(h', h}) is (g,.remaining.child).home

ELSE /* deleted by a compress operation (i.e. by C16) */
C38. g,.parent — (g,.child).parent /* splice into tree */
C39. (g.child).parent — g,
C40. g;-home « (g,.child).home
C41. (g.child).home — Save_Conditionals|(x, .}, {h;, A&}, {1 hm )],

where H{h,, ki) is g,'s new home
and H(hi, hp) is (g,.grandchild).home

14



Define the work of an algorithm to be the sum
over all processors p, of the number of PRAM in-
structions foperations executed by p, during the
course of the algorithm. Let w be the amount of
work to expand the tree using the modified Ex-
pand _Tree procedure. Clearly w is dominated
by the work to construct the matchings. Let d;
be the degree of node h;. By l:mma 7,

w < Zdw )log d, log log d,
ny
< nH;M(nH)lognHloglognHZdj
=1
€ O(n4yM(ny)lognyloglogny)

(This bound holds even if the word size of the
PRAM is 1 bit).

We will now analyze the complexity of con-
tracting the guest tree using a decision algorithm
for bipartite matching instead of a search algo-
rithm (which uses more processors). Borodin,
von zur Gathen, Hopcroft's algorithm[BvzGH82]
for deciding if a bipartite graph has a perfect
matching assigns random integer weights of only
O(log n) bits to each of the edges in the graph,
and runs in time O(log® n). A processor-efficient
version of their algorithm computes determinants
over Zp, the 'mtegers modulo some suitable prime
p of size O(n?)[RV84]. This can be done on a
PRAM using Preparata and Sarwate’s matrix in-
version algorithm[PS78] with O(\/nM(n)) work,
since all operations involve O(log n)-bit numbers.
(Galil and Pan[GP83b] have a slightly better al-
gorithm for inverting matrices over Z). Since
algorithm C solves O(ngn%) blpanne match-
mg problems, and the work for its other steps
is O(ngM(ny)), it follows that the work to con-
tract the tree is O(ngn%> M(ny)).

The tree can be contracted with less work by
observing that the inverse of a matrix can be used
to decide perfect matching problems on its mi-
nors. The a;; entry of the adjoint of A contains

the determinant of 4;; (the (5,: )d'l cofactor). By
testing whether a cofactor is 0, we can determine
if a perfect matching exists when the parent limb
and any one H limb are left out of the match-
ing. From Rabin and Vazirani[RV84], it follows
that this holds even when the adjoint is computed
over Z,. In order to find in which parent limbs
H{hj, h) adjacent to h; the limb G({x,g,) can be

imbedded, solve one bipartite matching problem
where the boys are the child limbs of G(», g,). and
the girls are the child limbs H(h;, k) adjacent to
hi. Pad the boys to match the number of girls
as before, except that one of these dumamy boys
is designated to correspond to G{x,g,}). From the
matrix inverse computed, test the cofactors of the
dummy row corresponding to the parent G{x. g,).
G(*,g¢.) is imbeddable in H(A;, hi) if and only if
its cofactor is # 0. Thus for each node g,. < ny
bipartite matching problems (one per each ;)
will be solved, each with < d; = deg(h,) chil-
dren. Let w be the work to solve these matching
problems. Then

ng Y Vd,Md;)
1=1

O(ng/nuM(nyg))

This technique can be applied to conditional
matching problems as well, where the parent is
left out of the graph and the dummy row cor-
responds to the remaining child (or vice-versa).
For each node g,, < 2ny — 2 bipartite matching
problems are solved, each with < npy children. It
follows that the work for contracting the tree is
O(ngn}°M(nn)).

Given the analysis of the work for contract-
ing and expanding the tree, we can apply Brent’s
scheduling lemma[Bre74] to determine the num-
ber of processors needed. Before each phase 1.
the algorithm can determine the operations to be
done during the phase and allocate the processors
accordingly in time O(logny) using ngni pro-
cessors. Since there are O(logng) phases. this
overhead increases the running time and work by
at most a constant factor. Let algorithm C’ be
the improved version of algorithm C" which uses
the above steps to save processors and to print
out the mapping. Then the following theorem
follows from theorem 5.

€

Theorem 6 Given a tree H on ny vertices
and a tree G on ng vertices, algorithm C'
determines, with probabikty > 1/2, if there
is a subtree of H tsomorphic to G, and ez-
hibits the mapping. It runs in time t €
O(logng log®ny) on a CREW PRAM with
(ng +nHlognH loglog ng )n}>M(ng)/t proces
sors, i.e. O(log>n) time wzth n2SM(n)/log’ n
processors.

We omit the proof.



5 Reducing matching to

subtree isomorphism

In this section we show that perfect bipartite
matching is log space reducible to subtree iso-
morphism. Let G = (X, Y,E) be a bipartite
graph, where X = {1‘1,1‘2,...,1‘,,} and Y =
{yl,yg,...,yn}. We will construct trees Tz, Ty
corresponding to the vertex sets X and Y, such
that every imbedding of T; in T, yields, in a nat-
ural way, a perfect matching in G. It is conve-
nient to view T, and T} as rooted at R; and Ry
respectively. This creates no obstacle since our
construction forces R, to be mapped to Ry in
any imbedding. The structure of the trees is as
follows:

T,: R hasn+2 children - X;. X2,..., Xa, V1,
V,. X, corresponds to vertex Iz, in G. W
and V, have no children. For 1 < i <n, X,
is the parent of i children, X,;, each of which
is a root of a path of length n — 1 + 1.

T, : Ry has n+2 children - Y1, Y2, .. LY, Uy, Us.
Y, corresponds to vertex y; in G. V; and
V, have no children. For 1 < 1 < n, Y,
is the parent of n children, Yi,, where Y,
is the root of a path of length n — 7 +1 if
{w,z;} € E and length n — j otherwise.

Note that this reduction can clearly be performed
in log space.

Lemma 8 The subtree rooted at X, can be
imbedded in the subtree rooted at Y; if and only

1f {l‘g,y]} € E.

Proof: By construction, the trees rooted at
Y, .- Y, -1 are paths of length at least n—i+1,
and the trees rooted at Y; 41.-- ., Y, . are paths
of length less than n — ¢ + 1. Furthermore, the
tree rooted at Yj; has length at least n — ¢ + 1 if
and only if {z,,y;} € E. Now, since the children
of X, are roots of paths of length n —1+1 and
there are i of them, the claim follows. O

Lemma 9 In any imbedding of T; tn Ty, Ry 1s
mapped to Ry.

Proof: The degrees of R; and R, are n +2. Al
the other vertices in T, have smaller degree. O

Theorem 7 T, is imbeddable in T, tf and only
if G has a perfect matching.

Proof: Let M = {{z1, vy }+---» {Za ¥n)}} e
perfect matching of G. By lemma 8, the subtree
rooted at X; is imbeddable in the subtree rooted
at Y, for all 1. It follows that T is imbeddable
in Ty.

Conversely, assume there is an imbedding of
T, in 7,. By lemma 9, R, is mapped to Ry.
and it follows that X, is mapped to some Y, for
each i. By lemma 8, {z;,yu)} € E for all 1, and
thus the set of edges {{z1, ¥} -+ {Tn Yin) 1}
constitutes a perfect matching of G. O

Corollary 1 The problem of deciding if a btpar-
tite graph has a perfect matching 1s log space re-
ducible to the problem of deciding if a tree i3 130-
morphic to a subtree of another tree.

Corollary 2 The problem of constructing a per-
fect matching in @ bipartite graph ss log space re-
ducible to the problem of constructing an tmbed-
ding of a tree into another tree.

Lingas and Karpinski|[LK87] independently dis-
covered an NC! reduction of bipartite perfect
matching to subtree isomorphism.

Theorem 8 The number of imbeddings of T, in
T, ts 2nl(n — 1)i(n - 2)t-.-2! times the number
of perfect matchings of G.

Proof: A perfect matching, M = {ri ym )
vow {Tn, Yy }} of G induces a unique mapping -
of X,'s to Y;'s. The subtree rooted at X, can
be imbedded in exactly :! ways into the subtree
rooted at Y,y. The vertices V1.1, can be mapped
in two ways to Uy, L. The theorem follows. O

Corollary 3 The problem of determining the
number of imbeddings of a tree in another tree
is #P-complete.

6 Remarks

We have presented a randomized parallel al-
gorithm for deciding whether there is a sub-
tree of a first tree isomorphic to a second tree,
and finding the mapping if it exists.  Since
the Mulmuley, Vazirani, Vazirani algorithm re-
quires O(n}i}\l(ny)log ny loglognp) work. we
have reduced the work of our algorithm down
to max(l,nG/\/ﬁlognHloglog ny) times the
work to solve one matching problem {from ng ny,
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times). While our algorithm is not optimal when
compared with the sequential algorithm, this is
a positive indication that most of the loss was
already present in the bipartite matching algo-
rithm. Nevertheless, it would be nice to shave
the extra o /) off the work. Matula has demon-
strated, for the sequential case, that subtree iso-
morphism can be done in the same number of
operations as bipartite matching. It is an open
question whether the same can be said for the
parallel case.

There are two additional observations that
Matula makes in order to reduce the work
(i.e. time) for the sequential algorithm. First,
Matula exploits the fact that the work for sequen-
tial bipartite matching{HK73] is proportional to
both the number of boys p and the number of
girls ¢ (i.e. the work Is O(pg'®)p < q). In the
parallel case, the matrices must be square in or-
der to apply the known fast bipartite matching
algorithms. If there were a fast parallel decision
(search) algorithm for bipartite matching which
required, say, pg'? (pg>*) processors, then the
work for our algorithm would equal the work
for constructing a matching. Second, Matula
reduces the number of bipartite matchings per-
formed. and thus the work, by using breadth first
search to construct all deg(k;) matchings involv-
ing a node k; from a single matching involving
h;. If we were to use a search algorithm for bi-
partite matching when contracting the tree, we
could likewise use a parallel shortest path algo-
rithm (which uses matrix multiplications) to con-
struct all the (deg(h;))? conditional matchings
involving h; from a single matching involving h;.
Such an implementation of our algorithm runs in
O(log ng log® ny) time on a CREW PRAM with
ngny M(ny)loglog ny /(logng logny) proces-
sors. However, since we use a decision algorithm
for bipartite matching when contracting the tree

(which gives us less overall work), we do not con- -

struct any first matching from which the others
could be constructed. It is an open question how
to extract the desired deg(h,) cofactors of each
of the deg(h;) appropriate minors from a single
adjoint matrix, without increasing the time and
processor bounds present in the Pan or Preparata
and Sarwate matrix inversion algorithms.

The bipartite matching algorithms used are
both Monte Carlo algorithms, i.e. they run in
fixed time and produce the correct answer with

high probability (higher success probabilities can
always be achieved by repeating the algorithms).
Given a bipartite graph G = (U, V, E) with |U]| =
|[V] = n nodes, and a matching M of size < n. we
can test whether M is a maximum matching for
G as follows. Let G' = (U’, V', E') be the graph
obtained from G by directing all matched edges
from U to V, and all unmatched edges from 1" to
U. There exists an augmenting path in G if and
only if there exists a path from some unmatched
node in V' to some unmatched node in U’. The
latter can be determined, by taking the transitive
closure of the adjacency matrix for G', in time
O(logn) on a CRCW PRAM with M(n)/logn
processors. (We can construct an augmenting
path, by performing a shortest path calculation
on G', in time O(log” n) on a CREW PRAM
with f\[(n)/log2 n processors). The Mulmuley.
Vazirani, Vazirani algorithm for constructing a
perfect matching can be used in parallel with
the above test. The result is a Las Vegas al-
gorithm: it runs in expected time O(log® n) on
a CREW PRAM and always produces the cor-
rect answer. If we use the Mulmuley. Vazi-
rani, Vazirani algorithm while contracting the
guest tree, our Monte Carlo algorithm can simi-
larly be extended to a Las Vegas algorithm with
ngny M(ny)loglog ny /(lognglogny) proces-
SOTS, and expected running time
O(log ng log2 ny).

Alternatively. while contracting the guest tree.
we could use the Galil and Pan processor-
efficient version[GP85a] of the Karp. Up-
fal. Widgerson randomized algorithm[K U W 86]
for constructing a perfect matching. This
leads to a Las Vegas algorithm using only
ngnyM(ny)loglogny [logng processors. but
requiring O(log ng log® ny ) expected time.

Throughout this paper. we have made the
reasonable assumption that the PRAM word
size is O(logn). If we consider arithmetic-
PRAM'’s, which can perform addition. subtrac-
tion, multiplication, and division of arbitrary
length numbers in one step. our algorithm uscs
only ngnyM(npu)/(logng log® ny) processors.
This follows from the fact that the Mulmuley.
Vazirani. Vazirani algorithm requires just M{n)
arithmetic-PRAM processors to construct a per-
fect matching in a bipartite graph with n boys
and n girls.

The case where G (or H) has bounded maxi-



mum degree d can be done deterministically in
time O(dlog?nylogns) on a CREW PRAM.
Simply solve the bipartite matching problems in
our algorithm using d applications of the above
method for constructing an augmenting path in

parallel.

With appropriate implementation, our algo-
rithm is in RNC®. To see this, observe (i) without
the matchings, our algorithm runs in O(log® n)
time, and can be implemented on an NC circuit
of depth O(log> n), and (ii) the bipartite match-
ing algorithms used are in RNC?.
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