BUMP, a Motion Description and Animation Package

Steven Anders Oakland
Master’s Project Report

Under Direction of
Professor Carlo H. Séquin

Cormputer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley

September 1987

ABSTRACT

This report describes Bump, the Berkeley Unigrafix Movie Package.
It is an animation-generating preprocessor for the Berkeley UNIGRAFIX
geometric modeling and rendering system. Bump allows motions to be
defined in the abstract, using a number of different motion styles such as
linear interpolation and B-splines. These abstract motions can then to be
applied to objects within UNIGRAFIX scenes. When used in conjunction
with the existing UNIGRAFIX rendering packages and other tools, Bump
provides a simple and effective mechanism for the production of anima-
tion sequences.

September 1987

1. INTRODUCTION

The UNIGRAFIX graphics package is a tool for the creation of images in a
variety of styles [8]. Over the course of about five years, it has grown in com-
plexity as many different contributors have added new modules. UNIGRAFIX
currently consists of a small library of shapes, a large number of filters and
generators, an interactive shell, and several renderers, including a recently
completed ray tracer [5]. It can be used to create intricate scenes of almost
anything that can be represented by polygons.

UNIGRAFIX has been described in more detail in a number of Master’s
reports and miscellaneous documents [7,8]. For the reader of this paper, it is
sufficient to consider UNIGRAFIX as a collection of tools for the definition and
rendering of three-dimensional scenes built of polygons.

However, UNIGRAFIX has no way of expressing motion, is unable to pro-
duce anything but single, static frames. This is unfortunate, as the addition of
motion makes computer graphics much more useful and interesting. For
example, a rotating model of a molecule is far easier to comprehend than static
views of the same molecule, and many geometrical transformations make
more sense if one can see them in progress. The transformation of a cube
through a cube octahedron into an octahedron is much clearer when shown as a
continuous action than as a series of static snapshots.

The Berkeley Unigrafix Movie Package, or bump, introduced in this
paper, is an animation preprocessor for UNIGRAFIX which supplements the
existing tools with time dependencies. With only five additions to the current
UNIGRAFIX scene description language, it allows the user to define deforma-
tions and motions of arbitrary complexity and apply them to conventionally-
defined UNIGRAFIX objects. These specific statements will be defined in more
detail below, and are also explained in the bump ttorial, Appendix C of this

paper.

This paper will first discuss the decisions made during the planning stages
of bump, in section 2. It will then describe bump’s external appearance, as
seen by a typical user, in section 3. Section 4 presents a view of the internals
of the system. Finally, section 5 contains a review of the project, with com-
ments on its deficiencies and suggestions for future work.

There are a number of appendices as well. Appendix A provides several
examples of animation produced by bump, listing -the original scene

September 1987

-2-

descriptions and motion specifications as well as presenting the resulting pic-
tures. Appendix B is a BNF description of the five bump extensions of UNI-
GRAFIX. Appendix C is a tutorial for the package, designed for the typical
user. Appendix D contains the bump manual pages, and appendix E briefly
describes the hardware and other facilities that were used for the production of
the demonstration videotape.

Bump is designed to be an easy-to-use addition to the collection of UNI-
GRAFIX tools. It strives to present a simple user interface and requires only
minimal additions to the UNIGRAFIX language, while providing a motion
description language rich enough to represent any action that the user can con-
ceive of.

2. DESIGN OF BUMP

We first had to define the abilities and limitations of the system, which
required decisions as to what sort of motions it should be capable of, what
types of objects would be capable of movement, and how the motions would
be applied to the objects. The treatment of time also posed problems. How
would the starting time and duration of motions be defined? Should it be possi-
ble for motions to be applied more than once, at different times and with dif-
ferent durations?

Beyond these basic decisions on the semantics of the system, there were
also many questions of syntax. At the most basic level, how would motions be
described? We had to make the motion description language as extensible as
possible, so that any later additions would be easy.

Throughout the design phase, the major emphasis was on the user inter-
face, with much consideration also given to ensuring that the resulting anima-
tion package would continue the existing UNIGRAFIX philosophy. This philo-
sophy, as well as it can be pinned down, is “*provide sufficient primitives, and
no more.”” Bump, in accordance with this, provides minimal yet sufficient
means of describing motions.

The solutions to the above questions were arrived at with a combination
of ideology and practicality. For example, it was decided that motions should
be considered to be time dependent transformations. Motions could not be
applied to fundamental entities such as object definitions and vertices, but only
to instances and arrays of definitions. The reason for this was primarily a prac-
tical one; in the current implementation of the UNIGRAFIX data structure, only
instances and arrays contain transformation lists to which new transformations

September 1987

-3-

could easily be appended. Allowing other objects to move would have
required that bump compute transformation matrices on its own, duplicating
the routines already available elsewhere.

We decided that the definition of a motion and its application would be
separate statements, paralleling the existing UNIGRAFIX treatment of objects.
The definition of an object and a motion would be semantically similar, while
the motion’s application to an object would be the equivalent of the instantia-
tion of an object via an instance or array statement. With this choice, we tried
to continue the existing UNIGRAFIX philosophy as much as possible.

The design and construction of bump was top-down, in that we first esta-
blished what the package should look like and what it would do, with the
assumption that we would later find some way of implementing it. There were
several early, major decisions which shaped bump:

2.1. Bypassing of the ASCII level.

In previous UNIGRAFIX work, the link between all modules was the
ASCII scene description language, commonly known as UFO.* All object
modifier programs expected their input to be expressed in UFO, and generated
UFO output. This provided easily-undérstood interfaces, as the language was
terse, well-defined, easy to parse and to generate, and readable by humans. It
was also particularly well-suited to the construction of pipelines of filters at the
UNIxt shell level. However, a great deal of time was being spent by each pro-
gram in translating the ASCII input into an internal data structure, and in
retranslating the new data back into ASCII once the module completed its
work. While the time required for this is not overly distressing for single
frames, such bottlenecks become intolerable when one must generate thirty
frames for a second of videotape. It was decided that bump would bypass the
UFO level as much as possible, and work directly with the UNIGRAFIX data
structure obtained from the new UG parser [6]. Once a renderer that can
directly read this data structure is completed, this decision will cut the time of
rendering each frame roughly in half.

* UFO stands for Unigrafix FOrmat.
+ UNIX is a trademark of Bell Laboratories.

September 1987

-4-

2.2. Decoupling of motion definition and application.

An essential decision was that motions could be first defined in the
abstract, and later applied to specific objects. Their starting times and duration
would be specified at the individual applications. This made it possible to
apply motions to more than one object, to apply motions at different times in
the scene, and most interestingly, to scale the duration of a motion to any
amount of time in global terms. This decoupling of motion definition from
application nicely parallels the existing treatment of objects in UFO, where
objects are first defined and later instantiated, with the different instantiations
of a single object typically having different initial transformations, such as
translations, rotations, and/or scaling.

2.3. Absolute frame of reference.

Another question was in what coordinate system the transformations
should take place. If, for instance, a rotation about the y-axis were applied to
an object, which y-axis should this be taken to mean? The y-axis of the space
in which the object resides, or the y-axis of the object itself? The conclusion
was that motions would be relative to the space in which the moving object
was defined, a choice which was consistent with the semantics of transforma-
tion concatenation in UNIGRAFIX.

2.4. LISP-like motion description syntax

It was decided that the UFO extensions comprising the bump motion
descriptions would resemble LISP. This was a format particularly well suited
to the lists of times and value pairs used in describing motions. It was also
easily extensible. As all statements would be delimited by a set of
parentheses, it would be easy for a program to disregard all non-understood
statements and pass them intact to the next step of processing. Furthermore,
this decision was consistent with plans to eventually convert the entire UFO
language into LISP syntax [9].

2.5. Concatenation of motions

The question of what should happen to a moving object once its motion
was completed was also considered. One possibility was that objects would
only be visible so long as there was a motion being applied to them; when the
motion expired, the object would vanish. This would have required a special
sort of pseudo-motion, ‘static,” to allow non-moving objects to remain in the
scene.

September 1987

-5-

This scheme did not match the existing semantics of UNIGRAFIX, in
which objects are visible at all times. It was decided that an object would move
so long as a motion was acting on it, and would then remain in the position and
orientation where it was deposited at the last frame of the motion. This had
several advantages, one of which was that it made it much easier from the
user’s viewpoint to concatenate motions, as each successive motion would
automatically begin exactly where the its predecessor expired. It also made
the results of multiple repetitions of a movement more reasonable. For exam-
ple, three repetitions of a 90° rotation would result in the object rotating from
0° to 270°, instead of from 0° to 90° three times in succession, with a snap
back to 0° after each.

A related question concerned what effect a motion should have before it
became active. Though this may sound meaningless at first, it was a matter of
serious discussion. Consider a rotation which carries an object from 10° at
time 5 to 30° at time 10. What rotation does this imply for the object before
time 5? One suggestion was that, since the effects of motions remain constant
after they expire, their effects should be similarly constant before they begin.
This scheme would result in the object being rotated 10° before time 5, rotat-
ing from 10° to 30° in the interval between times 5 and 10, and remaining at
30° thereafter. Itis graphically represented by line ‘a’ in figure 2.0.

+40
]
430 S
Degrees :
of +20 _;
Rotation |
+10 _: a
I
0 _: C¢
i b/
t
i bbby bl T--------- 1
0 5 10 15
Time
Figure 2.0

Although this had the appeal of treating both extensions of the motion
symmetrically, it was dismissed for the practical reason that it would make
complex motion sequences very difficult to design, as the effects of a motion

September 1987

-6-

appended to the sequence could propagate backwards and change the position
and orientation of the object from the first frame on.

Another proposal was that the motion should be interpolated backwards,
as is shown by line ‘b’ in figure 2.0. This would have resulted in the object
being rotated -10° at time 0, and was rejected due to the great difficulty this
would have caused in designing complex motions.

The system eventually decided upon was that motions would have no
effect until the first time at which they were applied. At this time, the motion
would snap to its first value and proceed from there, remaining fixed at the
motion’s final value, as is is shown by line ‘¢’ of figure 2.0. Although this
solution treated the front and back extensions of the motion differently, its
practicality for defining motions was so great that this quirk was forgiven. It
allowed jumps to the motion’s initial position, if desired, and ensured that the
effects of one motion would not propagate backwards. If the motion director
preferred to avoid jumps, this could be done by the simple expedient of design-
ing each motion to start with the identity transformation.

2.6. Omitted features.

Several features were initially considered for bump, but eventually
rejected as they were deemed to be inconsistent with the existing UNIGRAFIX
philosophy.

One of these was the concept of ‘linking’ one object to another, so that
the linked object would follow the motions of the other. This would be useful,
for example, when a robot arm picked up an object and carried it from one
place to another. This was rejected, as it was decided that such a tool was
beyond the set of primitives essential for animation. Also, the required
mathematics of constraint solving would have been too involved to implement
at this time.

Another rejected notion was the concept of the camera as a ‘flying eye.’
In this scheme, the camera would be considered to be an object in the scene
like any other, and motions would be applied to it just as they were applied to
all other objects. The camera itself would be an imaginary four-sided pyramid,
with the viewer’s eye at the vertex, and the corners of the visible scene defined
by the rays from the pyramid’s vertex through the comners of its base.
Translating and rotating this pyramid would be the equivalent of moving and
turning the camera, while scaling its height would correspond to zooming it in
and out. Scaling in other axes would change the screen’s aspect ratio, an

September 1987

-7-

interesting effect but one of limited utility.

This scheme was rejected in favor of a scheme of describing camera
movements which was more closely related to the current method of specify-
ing the camera position. This has not yet been implemented, but is explained in
some detail as a proposed extension to bump in the final section of this paper.

2.7. The Bump language extensions

Tt was finally decided that bump would add five new statements to UFO.
Mdef and mapply supply the core functionality, respectively providing the
ability to define motions in the abstract and apply these motions to specific
objects, while move simultaneously defines a motion and applies it, as a short-
hand for motions that are used only once. For generating movements that
could not be easily described via mdefs, two escape mechanisms are provided.
The first of these, meval, allows the evaluation of expressions within UFO
files by making numeric fields time-dependent. This makes it possible, for
example, to change the coordinates of vertices without regard for the
geometric consequences. This can create non-planar faces, self-intersecting
solids, and other objects which are impossible for the current renderers to
display. However, it also supplies the user with the power to directly manipu-
late the scene at a very low level. Secondly, mexecute was introduced to
allow calls to arbitrary generator and filter programs, with the result of the call
inserted into the output file. This last command was meant to serve as a ‘back
door,” providing for almost any functionality desired. Together, these five
extensions create a small but effective motion description toolbox, which has
been proven capable of producing animated sequences of considerable com-

plexity.

Bump was influenced in its early stages by the BAGS project at Brown
University, which had similar goals [3, 11]. The combination of Bump and the
underlying UNIGRAFIX tools is very similar in functionality to BAGS. They
share a number of fundamental concepts, such as the separation of an entity’s
definition from its instantiation, and the use of lists of times and values to
describe motions. There are also some basic differences, such as BAGS’
heavy dependency on constructive solid geometry, and UNIGRAFIX’s close
links to the UNIX operating system.

3. USER’S VIEW OF BUMP

September 1987

3.1. General

A typical file using bump contains several object definitions and
instances, and possibly some lighting and color statements, specified in the
standard UFO fashion [7]). In addition, it will contain at least one bump state-
ment. Bump statements have a LISP syntax, and a complete BNF description
of the various types can be found in Appendix B. Several examples of typical
bump files can be found in Appendix A, which contains some of the many
files used to generate the UNIGRAFIX demonstration videotape.

The required command-line arguments to bump are the name of the input
file, the initial time value, the time increment per frame, and the number of
frames to make. There are several optional arguments. The -p option gives
the prefix of the output file name, telling bump where to put its output. If no
output prefix is given, bump will put each frame into a temporary file in
fust/unp, render it, and then delete the temporary file. The -r option is used to
give a file name containing the rendering command line. If this option is used
to provide a file name, bump will read this file for each frame and cat the
current output file through the command line it contains. This rendering file
can be made time-dependent via use of mexecute’s side-effects. If no render-
ing file name is given, bump renders the frames through UGplot with default
arguments, puts them into the Ikonas frame buffer, and sends a VAS-IV record
signal to /dev/tthy4.

3.2. The move statement

The following is a complete, simple bump file, defining a cube which in
the interval from time O to time 1 turns at a constant rate from an angle of
-135° to an angle of +45° about the y-axis. Simultaneously, it moves along the
x-axis from x=0 to x=100.

def cubedef;
include cube;
end;
i cubeinstance (cubedef -ry -45);
(move cubeinstance 0 1
(l1inear -ry (0 =-%0) (1 90))
(l1inear -tx (0 0) (1 100)))

The word ‘cubeinstance’ following the keyword move indicates the object to
which the move is being applied. The number ‘0" immediately following is
the starting time of the motion. Before global time 0, the motion will have no

September 1987

-9-

effect. At time 0, the motion becomes active, immediately adding a rotation of
-90° about y and a translation of 0 in x to the cubeinstance’s transformation
List.

The ‘1’ following the 0 indicates the duration of the motion. This partic-
ular motion has a duration of 1, meaning that the motion will be completed at
time 1 and will not change thereafter.

The two lines below the ‘move,’ each beginning with the word ‘linear’,
define the motion. This motion has two components. The rotation about the
y-axis is defined by the first component, which states that the motion style is to
be linear, that the operation is to be a rotation about y, and that the value of the
rotation is to be -90° at time 0 and +90° at time 1. These rotations are con-
catenated onto the -45° rotation specified in the cubeinstance’s instantiation,
resulting in a total rotation of -135° at time O and a rotation of +45° at ime 1.
The second component describes the translation in x in a similar way.

In this example, the components were conveniently declared to start at
the first time the motion became active, and to halt at the same time the motion
did. Tt is sometimes useful to use times outside of the motion’s range in the
component specifications. The start time and duration given in the motion
definition can be thought of as defining a window into the values listed in the
motion’s components. In the example below, this windowing feature is used
to eliminate the two endpoints of a spline.

def cubedef;
include cube;

end;

i cubeinstance (cubedef);

(move cubeinstance 5 5
(cspline -tx (0 3) (5 3) (10 =3) (15 =3))
(cspline =ty (0 0) (5 3) (10 6) (15 9)))

Since the above move statement begins at time 5 and has a duration of 5,
only the component values at times 5 and 10 will be interpolated. The values
at times O and 15 will fall outside of the window, but will still be active in
shaping the curve.

The move statement shown here is useful when a motion is to be used
only once. Move is the simplest of the bump statements, and perhaps the
most commonly used.

September 1987

-10-

3.3. The mdef and mapply statements

If a motion were to be used several times, either applied to a number of
objects, or multiple times to a single object, an mdef to define the motion fol-
lowed by an mapply applying it to specific objects would be more appropriate.
The following example creates two revolving planets, one at the origin and the
other five units away on the x-axis. Both rotate about the origin from -90° at
global time O to +90° at global time 1. As the first planet was instantiated at
the origin, this is merely a rotation about its center. But since the second
planet was translated before the rotation was applied, it will move in a circle of
radius five about the origin.

def protoplanet;
include planetfile;
end;
i planetl (protoplanet);
i planet2 (protoplanet -tx 5);
(mdef spin 0 1
(linear -ry (0 -90) (1 20)))
(mapply planetl
(spin 0 1))
(mapply planet2
(spin 0 1))

All time values given within an mdef are local to the mdef. It is possible
for a motion to start at any global time, and to be scaled to any duration in glo-
bal time units. This is illustrated in the following example, identical to the
previous one, except that planet! spins from time 5 to time 15, while planet2
spins from time 10 to time 30. The same spin motion is used, but the duration
is different in the two mapplys.

September 1987

-11-

def protoplanet;
include planetfile;
end;
i planetl (protoplanet);
i planet2 (protoplanet -tx 5);
(mdef spin 0 1
(linear -ry (0 -90) (1 90)))
(mapply planetl
(spin 5 10));
(mapply planet2
(spin 10 20)):;

When the motion is applied, the starting time (5) of the first mapply is
mapped to the starting time (0) of the mdef, and the mapply’s ending time of
15 (initial time 5 + duration 10) is mapped to the mdef’s ending time of 1 (ini-
tial time O + duration 1). This results in the motion being stretched to a dura-
tion of 10 for the first mapply, and in a similar way, to a duration of 20 for the
second. The length of motions specified in move statements cannot be scaled
in this way, as their times are given in global values when the motion is
defined.

It is also possible to change the duration of the motion within its mdef in
order to provide a finer time grain. These values, however, are local to the
mdef, and will have no effect on its duration in global time. The example
below is identical to the previous one, except that the duration of the motion,
within the mdef, has been changed from 1 to 100 for purposes of illustration.
It will have exactly the same effect as its predecessor.

def protoplanet;
include planetfile;
end;
i planetl (protoplanet);
i planet2 (protoplanet -tx 5):
(mdef spin 0 100
(l1inear -ry (0 -90) (100 90)))
(mapply planetl
(spin 5 10)):
(mapply planet2
(spin 10 20)):

September 1987

-12-

There are also two predefined pseudo-motions which can be applied to
objects. These are appear and disappear, which make objects visible and
invisible. Objects are visible by default and only become invisible when a
disappear is acting on them, so appear is actually unnecessary. It is included
for completeness. These pseudo-motions are applied in exactly the same way
as ordinary motions, as shown in the following example. Here, a cube
becomes invisible from time 5 to time 10.

def protocube;
include cube;

end;

i cubel (protocube);

(mapply cubel
(disappear 5 5))

3.4. The meval and mexecute statements

There are two other bump extensions to UNIGRAFIX, meval and mexe-
cute. Both allow the user to use time-dependent algebraic expressions in place
of constants in standard UFO statements. These expressions are written in C-
language syntax, and may make use of the operators { () - + > < <= >=
7. * /). The expressions to be evaluated are delineated by the reserved char-
acter ‘$’, and may contain the variable ‘T’, equal to the current global time.
Meval is designed to let the user avoid motion specifications entirely, and
hand-code the desired transformations. Mexecute is a general escape mechan-
ism, allowing calls to the shell from within a bump file.

3.4.1. The meval statement

Meval allows arbitrary transformations, with no consideration of the
logic of the geometry involved. For example, the following code segment
shows meval being used to define a square whose top two vertices move
together from time O to time 1. Note that the meval is enclosed by a def state-
ment, made necessary by the implementation of meval and mexecute.

September 1987

-13-

def quadrilateral;

(meval
v A $1-T$ 1 O;
vB1l-10;
v C-1-10;
v D $T-1$ 1 0;
f (A B CD);

)

end;

Meval gives the user the power to describe changing objects which could
not be defined otherwise. This power is not without its dangers, for it is easily
possible to create tremendous geometric blunders with meval, such as non-
planar faces or self-intersecting solids, which are impossible for the existing
renders to display properly.

3.4.2. The mexecute statement

Mexecute issues shell commands from within a bump file, and injects
the result of the command into the file. This provides the ability to call arbi-
trary programs with time-dependent arguments, and place their output into an
animated sequence. In this next example, we show mexecute being used with
the UNIGRAFIX program ugtrunc, to define a shape which is truncated from a
cube into a cube octahedron as time progresses from 0 to 50, and restored to a
cube from 50 to 100.

def shape;
(mexecute
cat cube | \
ugtrunc -t $(T < 50) 2 (T/50) : (2-(T/50)) 8
)
end;

Caution must be exercised when using mexecute. Although the above
example works in theory, the shapes returned from ugtrunc with truncation
values of exactly O or 1 will cause the renderers great difficulty. In addition to

such boundary condition problems, one should be aware that any error mes-
~ sages or diagnostics sent to standard output by the program called by the mex-
ecute will be injected into the file, almost certainly causing syntax errors when
the file is reparsed, and making bump halt abruptly. But if due care is taken,

September 1987

-14-

mexecute can be the most powerful staternent in bump’s vocabulary, allowing
the introduction of arbitrary time-dependent elements.

Furthermore, one can use mexecute solely for its abilities to change the
environment outside of the UFO file being animated. For example, the UNI-
GRAFIX generator program mkworm first reads an ‘axfile,” which defines a
wire in space, and then sweeps a polygon along this wire, outputting the result-
ing shape. A program which creates a time-dependent axfile for mkworm
could be called from a mexecute within the UFO file and given the current
time as a command-line parameter. If this program does not write to standard
output, it will have no effect within the UFO file. This could be followed by
another mexecute call to mkworm, which would generate a worm along the
newly-created axfile and insert it into the UFO file, with the final result being a
worm which squirms.

4. INTERNALS OF BUMP

This section gives a more detailed explanation of the implementation of
bump. A good understanding of this section is essential for anyone planning
to modify bump. There are two phases of bump’s work: A preprocessing
step, done once at the beginning of a sequence, and a loop executed for each
frame produced.

4.1. Preprocessing

4.1.1. Initial parse

After having opened its input file, Bump then gives the file pointer to the
UNIGRAFIX parsing routine UGread(), which parses it and returns a pointer to a
UG data structure.

Briefly, the UNIGRAFIX data structure is a set of circular linked lists,
where each list contains one type of statement. All the face statements are in
one list, all the edges in another, and so on. Each statement has two lists of
pointers, the ‘to’ and ‘from’ lists, where the ‘to’ list contains pointers to all
statements which refer to this statement, and the ‘from’ list has pointers to all
statements referred to by this statement. These pointers form a tree which
branches at each def statement. There is an implicit def pointing to the entire
file, which is instantiated by the camera. This data structure, recently
developed by Mike Natkin, is more fully described in the UG(3G) man page

[6].

September 1987

-15-

All of bump’s operations from now on are modifications to this data
structure. UGread does not understand bump’s statements, but is intelligent
enough to place all unrecognized statements within parentheses into a special
extension of the UG data structure, a UG_ESCAPE_STATEMENT. Bump
then searches the data structure for these escape statements.

4.1.2. Processing of mdefs and moves

Bump first processes all mdef and move escape statements in the UG
data structure. For each mdef which it finds, it builds an internal representation
of the motion, adds it to its list of defined motions, and deletes the mdef state-
ment from the data structure. The internal representation of a motion will be
described below. For any moves it encounters, it builds a motion representa-
tion corresponding to the one described by the move, stores it in the list of
defined motions, and replaces the move statement with an mapply referring to
the newly-constructed motion. For example, the move statement below,

(move cube 10 10
(linear -ry (10 0) (20 90))

becomes the mdef/move pair,

(mdef Internalmdefxxx 10 10
(linear -ry (10 0) (20 90))

(mapply cube (Internalmdefxxx 10 10))

4.1.3. Internal representation of a motion

A motion’s representation consists of the (local) initial time and duration
of the motion, and a list of the individual actions comprising the motion.
These entries can be either transformations or references to other motions. A
nested motion reference consists of the name of the motion, the (local) time at
which it will start, its duration, and the (optional) number of repetitions. A
transform is somewhat more complex. It consists of the type of transform (-rx,
-sa, etc), the motion style (currently one of ‘step’, ‘linear’, ‘bspline’ or
‘cspline’), a count of the number of parameters to the transform, and a list of
time values with their associated parameters. A transformation typically has
only one parameter, but up to sixteen are allowed. This makes it possible to
interpolate between four by four matrices. A motion definition such as the fol-
lowing,

September 1987

-16 -

(mdef slide-and-spin 0 10

(linear -tx (0 0) (10 100))
(spin 0 5 2))

which describes a motion of sliding in x from 0 at time O to 100 at time 10,
while spinning twice with a duration of 5 for each spin, is internally
represented by a structure similar to figure 3.0.

BPmdef_head:
NAME: slide-and-spin
START 0
DURATION 10
\
BPmdef-entry BPmdef-xform
TYPE: linear —»| TYPE -tx
NPARAMS 1
VALUES: ___ | J|TIME: 0 | |TIME: 10
l VALUE 0 VALUE 100
BPmdef-entry BPmdef-motion
TYPE: motion || NAME: spin
START: 0
DURATION 5
REPS 2

Figure 3.0: Internal motion representation

4.2. Runtime

After the preprocessing is completed, bump goes into a loop to produce
the consecutive frames of its animation. Once it has generated a frame, it out-
puts the frame in one of two ways. If an output file prefix was specified in the
command line, the UFO description of the current frame is written into a file
whose name begins with the given prefix and is suffixed with the frame
number. If no output prefix was specified, bump’s default action is to immedi-
ately render the frame via UGplot, put it into the Ikonas frame buffer, and
command the VCR to record the frame.

This default can be changed by specifying a rendering file on the com-
mand line. A rendering file will contain the text of a shell command line,
presumably one which calls a renderer with several arguments. If the name of
one is specified, bump will open the rendering file for each frame, read its
current contents, and cat the ASCII description of the current scene through the

September 1987

-17-

command line given in the rendering file. For example, if the rendering file
contained,

ugplot -sa -ep 10 20 -30 -va 40
Bump would then execute a line similar to the following after every frame.

cat bumpout.xxx | ugplot -sa -ep 10 20 -30 -va 40

4.2.1. Stored state

Before making any changes to the data base, bump stores the current
state of the object being changed, so that the data structure can be restored
after the frame has been rendered. For instances or arrays, the stored informa-
tion is a pointer to the current end of the transformation list for this object, so
that the transformations appended specifically for this frame can be easily
deleted. For statements which are not to appear in the current frame, such as
any invisible instances or arrays and any bump statements, a pointer to the
statement is saved so that it can be returned to the scene later. In the case of
mevals and mexecutes, the original contents of the enclosing def are retained,
so that the def can be restored to its original state after the frame has been ren-
dered.

4.2.2. Applying motions

The most complex work is done when motions are applied to objects, via
an mapply. Much of this complexity is due to nested timeframes. As motions
are allowed to nest indefinitely, it is possible to have an arbitrary number of
nested timeframes. At a minimum, there are two: the global time, and this
time normalized to the range of the motion that is being applied. To illustrate,
assume that you are applying a motion beginning at global time 5 and with a
duration of 10. This makes the motion’s range, in global time, from Sto 15.
However, the motion’s definition may specify a different range, perhaps from
0 to 100. Thus, global time 5 would be mapped to local time 0, global time 10
to local 50, and global 15 to local 100. These nested timeframes make it possi-
ble to stretch a motion over any duration in global time.

The first step in processing an mapply is to check whether or not it is
active at this time. If the current (global) time is equal to or later than the start
time specified in the mapply, it is active. If the mapply is active, BUMP gen-
crates a list of transformations representing the results of the named motion at
this time, and appends it to the object’s transformation list. For arrays, the

September 1987

-18 -

transformations apply to the incremental transform between array elements. If
mapply is not active, then no transformations are appended for this mapply at
this time.

Generating the list of transformations is the heart of bump. Bump first
searches its list of defined motions for the motion referred to. This is a simple
linear search, as it seemed unlikely that a single scene would ever contain
enough different motions to make hashing necessary. In the most complex
scenes of the bump demonstration video, no more than a half-dozen motions
were ever defined at one time, so this appears to have been a reasonable
assumption.

4.2.3. Prior repetitions

Bump first determines how many, if any, repetitions of the motion have
been completed before this time. This is done by subtracting the motion’s start
time from the current global time, and then repeatedly attempting to subtract
the motion’s duration, as specified in the mapply, from the remainder. If this
is possible, and if the number of times this has been done is still less than the
number of repetitions called for in the mapply, a transformation list represent-
ing the transformation at the motion’s final time is obtained from
BPmake_tform() and appended to the moving object’s transformation list.
This will be done once for each prior repetition which has run to completion.
The mechanisms for generating these transformation lists will be covered in
detail below.

Once the transformations for any prior repetitions have been appended,
bump tackles the current repetition. The global time remaining, once the start-
ing time and the time required for all prior repetitions have been subtracted, is
normalized into the mdef”s range. This is done by dividing the remaining time
by the duration specified in the mapply, multiplying the result by the mdef’s
duration, and adding to this product the mdef’s starting time. If the result is
beyond the moton's ending time, it is sct to this ending time, with the result
that moving objects stop in place once a motion expires.

4.2.4. Building transform lists

The routine BPmake_tform() takes a pointer to a motion, and a time value
within the motion’s range, and builds and returns a list of transformations
representing the motion at this time.

September 1987

-19-

A motion contains a list of components, each of which can be either a call
to another motion, or a transformation. Nested motion calls may result in any
number of entries being added to the parent motion’s transformation list, while
each transformation will add at most one.

In the case of nested motions, BPmake_tform() calls another routine to
recurse on the nested motion, using the time normalized into the parent
motion’s time as the new ‘global’ time. The recursion will return a list of
transformations, which BPmake_tform() will append to its list of transforms
for the parent motion.

In the case of a transformation, bump calculates its value at this time and
appends a matching engry t0 the motion’s transformation list. Values are cal-
culated according to the motion’s style. Bump currently supports four dif-
ferent motion styles, which are stepped motion (STEP), linear interpolation
(LINEAR), an interpolating cardinal spline (CSPLINE), and an approximating
b-spline (BSPLINE). In addition, if one of the two pseudo-motions appear
and disappear is encountered, no transformation is added, but the visibility
flag for the current object is set or unset accordingly.

4.2.5. Calculating transformation values

The steps in determining a transformation value at a specific ime are as
follows: First, bump finds which interval of the component this time is within.
For example, if the component were specified with the time-value pairs ((0 1)
12)24)38)) the time 2.5 would fall in the interval between 2 and 3, with
the corresponding values 4 and 8. If the specified time is earlier than all of the
time values in the list, this component of the motion is not active, and no
transformation is added for it. If the specified time is later than all of the time
values, the computation continues as if it were equal to the latest value, ensur-
ing that objects lock in position once their movements run to completion.

Bump then selects the set of basis functions appropriate to this motion
style. The values for all styles of motions are calculated in the same way, the
only difference being in the basis functions which are used. Stepped motion
has the simplest basis functions, while the two types of splines have the most
complex. In all cases, the basis-function function for a specific style of motion
returns the value of the i-th basis function at u, where i is from 1 to 4, and u
ranges between 0 and 1. Graphs of the basis functions are presented in figures
4.0 through 4.3.

September 1987

-20-

1.1
0.1% | 0 1 0 1 0 1
fiu)=0 fa2u)=0 fiw)=1 Sou)=0
Figure 4.0: Stepped motion basis functions
11
0105 0 10 1 0
fiu)=0 fou)=u frw)=1-u folu)=0
Figure 4.1: Linear interpolation basis functions
1.1
/ _—
0.1% 0 1 0 1 0 1

Fau)= 1-3u+3u-ul Faolu)= 4—6u2-3u? Fiw)= 1+3u+3u>3u3 fo(ll)-'-%s-

Figure 4.2: B-spline basis functions

September 1987

.21 -

1.1

0.1

Faw)=4)= ——-2———""4“2'3"3 fiw)= __2'5“__:2":3“3 Folu) = —4¥2utu’

N

Figure 4.3: Cardinal spline basis functions

The final value for any computation is computed in the classic spline
manner, [2] where the final value is the sum of the values at the various nearby
intervals, weighted by their corresponding basis functions. Specifically,

value (i u) = f o(val [i=21)+f 1(val [i=11)+f 2(val [i)£ 5(val [i +1])

Where val[i] is the value at the right end of the current interval, val[i-1] the
value at the left end of the current interval (also the right end of the previous
interval), and so forth. If we are at one end or another of the list of values, so
that there is no value for either the next or prior interval, this imaginary value
is considered to be zero.

Once the transformations have been appended, bump checks whether a
disappear is acting on the object at this time. If so, an invisibility flag is set so
that the object will be removed from the data structure before the frame is ren-
dered. Conversely, if an appear is acting on the object, the invisibility flag is
unset, cancelling any previous disappears. Objects are visible by default.

4.2.6. Meval and Mexecute

The evaluation of meval and mexecute statements is fairly straightfor-
ward, compared to the complexities required for motions. In the first phase of
both, bump finds the def enclosing the meval or mexecute. This is done ina
horrendously inefficient manner, iterating through the list of all def statements
until bump finds one whose contents pointer matches the UGfile containing
the meval or mexecute. This was made necessary by the construction of the
UG data structure, which includes both pointers from statements to their

September 1987

-22-

enclosing UGfiles and pointers from defs to the UGfiles they enclose, but lacks
pointers from UGfiles to the enclosing defs. If a large number of defs are used
in a UFO file, this implementation will cause bump to slow linearly with the
number of defs. A more efficient method of locating the defs is suggested as a
future improvement in section 5.1 of this paper.

Once bump locates the enclosing def, it writes the contents of this def
into a file in /usr/tmp. As it writes, it searches for any expressions delineated
by dollar signs ("$"). It evaluates these expressions, and writes the result of
this evaluation in place of the original expression into the temporary file. The
actual evaluation is done by a simple yacc grammar [1] which can handle the
operations and symbols { () - + > < <= >= 7. * / } but does not under-
stand trig functions.

In the case of an meval, the resulting output is then reparsed via
UGread(), and the pointer of the enclosing def is set to the structure returned
from this UGread() [6]. Mexecute is similar to meval, except that after the
expressions have been evaluated, the resulting text is given to the shell for exe-
cution. The shell’s output is redirected to a second temporary file, and this
second file is reparsed and inserted into the enclosing def. This can cause
problems if the shell returns text which is not legal UFO text, as UGread() will

return a syntax error and exit when it reads it.

It is necessary to enclose mexecutes and mevals within def statements,
due to the above-described implementation of the two statements. They need
not be the only statements within the def, but one should note that the entire
enclosing def is reparsed for each time value, so care should be taken to put as
little as possible within a def containing one of these two statements.

4.2.7. Rendering the frame

Once the data structure has been modified to represent the scene at the
current time, the pointer to this structure is given to a rendering routine. There
are currently two different ways of presenting the output frames. If a output
file prefix was given on the command line, the rendering routine merely calls
UGwrite to write out the frame in standard UFO format to a numbered file
with this prefix, and these frames are rendered and recorded at a later time.

Alternatively, if no output file prefix was specified, the rendering routine
puts the frame into a temporary file in /usr/tmp, renders it, and then deletes it.
By default, bump renders the frames through UGplot with default arguments,
puts them into the Tkonas frame buffer, and sends a VAS-TV record signal to

September 1987

-23.-

/dev/ttyh4. If a rendering file was specified by the user, bump uses the shell
line contained within this file as the command line through which the frame
should be rendered.

All these schemes involve converting the data structure into UFO ASCI
format before giving it to the renderer. Eventually, we plan to connect bump
directly to the renderers, saving a great deal of time by simply passing the data
structure pointer. ‘

4.2.8. Restoring the data structure

When the rendering routine completes, the data structure is restored to its
original state. This involves linking back in any statements which were
unlinked earlier, such as invisible objects and all bump escape statements.
Also, the transformations which were appended to any moving objects’
transformation lists are now truncated back off. Once the data structure has
been restored, the next frame is calculated.

5. DISCUSSION AND CONCLUSIONS

In the creation of the demonstration video, bump has clearly shown that
it and the supporting UNIGRAFIX environment are adequate for the creation of
interesting animation. However, the experience of designing and animating
the video has also pointed out that there are several improvements that would
make animation easier and make possible even more interesting creations.

5.1. Deficiencies of BUMP

A notable deficiency of bump is that there is currently no way to move
the camera. While a UG statement describing the camera does exist, bump
does not know how to animate it. This was a decision forced both by the pres-
sures of time and the limited short-term utility of such an feature; at the time
bump was being written, no renderers existed that could have used the camera
statement had bump been capable of handling it.

It is possible, though awkward, to create camera movement by running
bump’s UFO output files through a rendering routine which keeps track of the
current time and changes the camera parameters to the renderer accordingly.
For the demonstration scenes in which the camera moves, this was the method
used. Another method of creating camera movement is to use the side effects
of mexecute to create a time-dependent rendering file. However, both these
methods make it very difficult to design camera movements involving

September 1987

-24-

anything other than simple linear interpolation.

Bump lacks several other abilities, which are not as essential, but would
be desirable for some types of animation. These include the ability to change
light sources with time, and to change the colors of objects. Also, the addition
of a few more motion styles would be useful. Especially nice would be
ssaccelerate’” and “‘decelerate’” styles, suitable for introducing an object to the
scene or removing it. For more cartoon-like animation, splines that interpolate
but overshoot their control points in a predictable manner would be appropri-
ate [4].

While the current implementation of the motion styles themselves has
been elegant and effective for the simple cases it has been so far used on, the
system has several shortcomings. The functions which compute the basis
functions do not have access to the list of specified values at each time, so they
cannot change their basis functions according to these values. This makes it
impossible to implement more complex splines which take these values into
account, such as P-splines [10]. Also, bump implicitly assumes equal knot
spacing, while knot spacing dependent on the Euclidean distance between
parameter values would allow smoother motions [2].

Motion blur would be a worthwhile addition to bump. This cannot be
implemented solely at the renderer level, since the addition of blurs requires a
knowledge of the previous positions of the moving objects. The current
renderers accept only a single frame at a time, and thus lack the information
necessary for motion blurring. Blurring, if it is to be added at all, must be put
into the scene by the process that is calculating the motions in the first place.
As UFO currently has no provision for describing blurs, this would require
heavy modifications to the scene description language.

Three other deficiencies of bump lie in the implementation of meval and
mexecute. Currently, the entire contents of the enclosing def are reparsed for
each time value. This was a decision based on the convenience of switching
the def’s contents pointer, compared to the difficulties of replacing only those
elements affected by the meval or mexecute. However, the contents are
reparsed in isolation, with no access to the context of the surrounding file.
This makes it impossible, for example, for faces to refer to vertices or colors
defined earlier, outside of this def. While this can be worked around by the
knowledgeable programmer, it is a serious defect in bump, as apparently-
correct definitions can fail, due to the existence of a meval or mexecute in the
def.

September 1987

-25-

Secondly, one should note that there is an implicit def surrounding the
entire UFO file, which is instantiated by the camera. Following this train of
thought, it should be possible for a “free-floating’’ meval or mexecute, out-
side of any explicit def statement, to work properly, albeit at the cost of repars-
ing the entire input file for each time value. This is not implemented, due to
the fact that there is no representation of this implicit def in the UG data struc-
ture, so there is no corresponding pointer for bump to switch.

A final difficulty in the implementation of these two statements is found
in the mechanism for locating their enclosing defs. As mentioned in section
4.5, bump finds the enclosing def statement by iterating through the list of all
def statements until it finds one with a contents pointer that matches the file
containing the meval or mexecute. If a large number of defs are used in a file,
this implementation will cause bump to slow linearly with the number of defs.
A more efficient method would be to keep a separate list of all defs containing
meval or mexecute statements. This list could be generated at the time the
first frame was generated, using the current inefficient method. In the creation
of subsequent frames bump would be able to restrict its search to this newly-
constructed list, thus shortening the time required. If further speedups become
necessary, the list could be stored in a data structure more appropriate for
quick access, such as a tree or hash table.

Another addition to bump could be a .bumprc file, similar to .ugirc and
_mailre. This file would contain values for various environment settings, such
as camera specifications and rendering options, the location of the recorder and
the signal that should be sent to it, and any other appropriate information.

5.2. Supporting environment problems

There are a number of problems in the UNIGRAFIX environment which
hamper the creation of effective animation. These should be addressed at
some point.

A minor point is that it was difficult to preview the animation, as UGplot
is incapable of rendering wireframe scenes for the Ikonas. This made it neces-
sary to preview all frames with shaded faces, requiring roughly four times as
long as would have been necessary with wireframe rendering.

Bump is currently forced to translate its frames back into the UFO for-
mat, as there are no renderers that can take a data structure pointer directly as
input. Though not fatal, the time required by this process and its inverse as the
renderer reads the UFO file combine to slow the process of displaying a single

September 1987

-26-

frame by roughly a factor of two.

A more serious problem is that no renderers currently understand the data
structure’s camera statement, making it impossible to define camera move-
ments except by means of the cumbersome process described above. Also, all
current renderers except the costly UGRAY explode when something passes
behind the camera. Until a new renderer is completed without these flaws, or
an old one modified, it will be impossible to produce animation with interest-
ing carmera movements.

5.3. Conclusion

The decision that bump should avoid ASCII scene descriptions and work
directly on the new UG data structure should be especially beneficial in the
long run, although it was more difficult to implement in this way than on the
more straightforward ASCII level. Also, the decision to use a LISP-like syntax
for bump’s motion description language will mesh well with future plans for
converting the UFQ language into a similar syntax.

In the production of the demonstration video, bump has been proven
capable of producing interesting and informative animation. Evaluated in the
light of its original goals of providing a variety of animation extensions to UNI-
GRAFIX, while preserving the existing UNIGRAFIX philosophy and requiring
minimal changes to the existing scene description language, it seems that
bump can be judged a success.

Acknowledgements

This work was supported in part by the AT&T Information Systems One
Year On Campus program, and by Tektronix, Inc.

I would like to thank my research advisor, Dr. Carlo Séquin, for his
advice, suggestions, and encouragement throughout the development of bump.
Professor Dave Anderson provided a valuable outside viewpoint. Mike Natkin
wrote the UG parser, without which bump would not have been able to func-
tion, and Greg Couch maintained a sane working environment.

Mike Francisco of the Berkeley Educational Television Office provided
invaluable help in assembling the demonstration videotape.

September 1987

10.

11.

.27 -

REFERENCES

UNIX System V Support Tools Guide, AT&T Information Systems, April 1984.

R. H. Bartels, J. C. Beatty and B. A. Barsky, An Introduction to Splines for use in
Computer Graphics and Geometric Modelling, Morgan Kaufmann Publishers, inc.,
Los Altos, California, 1987.

E. Chang, Brown Animation Generation System (BAGS), Brown University
Graphics Group Report, 1986.

J. Lasseter, Principles of Conventional Animation Applied to 3D Computer
Animation, Proceedings of SSGRAPH ’87 , 1987, 35-43.

D. M. Marsh, UgRay: An Efficient Ray-Tracing Renderer for UniGrafix,
Computer Science Division, EECS, UCB, Berkeley, CA 87/360, Fall 1987.

M. Natkin, UG(3G) man page, on line documentation, degas.berkeley.edu.

C. H. Séquin, M. Segal and P. Wensley, UNIGRAFIX 2.0 User’s Manual and
Tutorial, Computer Science Division, EECS, UCB, Berkeley, CA 83/161, Fall
1983.

C. H. Séquin, The Berkeley UNIGRAFIX Tools Version 2.5, Computer Science
Division, EECS, UCB, Berkeley, CA 86/281, Spring 1986.

C. H. Séquin and D. M. Marsh, Unpublished work, 1987.

C. H. Séquin, Procedural Spline Interpolation in UniCubix, Computer Science
Division, EECS, UCB, Berkeley, CA 87/321, Spring 1987.

P. Strauss, A Tutorial Guide to the SCEFO Language, Brown University Graphics
Group Report, 1986.

September 1987

Appendix A: Examples of Animation

time =45

{first part of the meval sequence. BOX Progauces pidaLoiivs. ianss =uv e QLT O s f

1 sun 0.7 -1 1 -1 ;
1 hlightsun 0.2 -1 0 -1 ;
1 glow 0.1 ;

c orange 1 5 1 ;
c yellow 1 55 1 ;

-1 1 1;

1 -1 -1;
Y -11 -1;
z -1 -1 1;
N -1 -1 -1;
(Y YZ XY2 XY)
(XY XYZ Y2 ¥)
(2 XZ XYZ YZ):
(YZ XYZ XZ 2):
(Z YZ
{ Yz 2
{ X X2
(XZ X
(Y XY
{ XY Y

XZNZZ

DR S ddddddd
Z N ZNZ K

]
&

(X XY XYZ X2):
(X2 XYZ XY X):
ngd;

(mdef open 0 100
(linear -tx (0 -1))
(linear -ty (0 1))
(linear -rz (0 0) (100 -90))
(linear -ty (0 -1))
(linear -tx (0 1)))

(mdef containerturn 0 100
(linear -ry (0 180) (100 0)))

{mdef turn 0 100
(linear -ry (0 0) (100 180)))

def container;

i box (box):

i 1id (1id):

(mapply lid (open 0 20))
end;

i container (container orange -sa 1.5):
(move container 0 100
(containerturn 0 20)
(linear -tx (0 -12) (20 6) {70 -24))
(disappear 60 50))

def tetra:

iTuciuae Letray
end;

def cube;
include cube;
end;

def octa:
include octa:
end;

def icosa:
include icosa:;
end;

def dodeca;
include dodeca:
end;

tetra (tetra yellow);
cube (cube yellow);
octa (octa yellow)}:;
dodeca (dodeca yellow):
icosa (icosa yellow}):

T

(move tetra 0 100
(disappear 0 20)
{turn 0 100)

(linear -tx (0 6) (100 6))

(cspline -tz (60 0)
(cspline -tx (60 0)
(cspline -ty (60 0)

(move cube 0 100
(disappear 0 25)
(turn 0 100)

(100 -20))

(100 5))
(100 15)))

(linear -tx (0 3) (100 3))

(cspline -tz (60 0)
(cspline -tx (60 0)
(cspline -ty (60 0)

(move octa 0 100
(disappear 0 30)
(turn 0 100))

(move dodeca 0 100
(disappear 0 35)
(turn 0 100)
{(linear ~-tx (0 -3)
(cspline -tz (60 0)
(cspline -tx (60 0)
(cspline -ty (60 0)

{move icosa 0 100
(disappear 0 40)
(turn 0 100)
(linear -tx (0 -6)
(cspline -tz (60 0)
(cspline -tx (60 0)
(cspline -ty (60 0)

(100 -20))
(100 5))
(100 -5)))
(100 -3))
(100 -20))
(100 -35))
(100 -5)))
(100 -6))
(100 -20))
(100 -35))
(100 15)))

time = 25

time =75

time = 100

fourth of the meval demo sequence. Octahedron | ugstar. Takes 125 frames }

—_—

1 sun 0.7 -1 1 -1 ;

1 hlightsun 0.2 -1 0 =1 ;
1 glow 0.1 ;

c yellow 1551:

c orange 1 3 0.975;

def filter:;
include filter:;

end;
def octa:;

include octa;
end;

def larger;

(mexecute

(cat octa | ugstar -h \

$(T <= 12.5) 2 0 : ((T >= 37.5) 2 2.5 : (2.5 * (T-12.5) / 25))8))
end;

def smaller;

(mexecute

(cat octa | ugstar -h \

$(T <= 62.5) ? 2.5 : ((T >= 87.5) 2 0 : (2.5 - (T - 62.3) / (25/2.5)))%))
end;

def filters:
i (filter orange =-sa 3 -ty):
end;

filters (filters -ty 1 -tz -3):
octa (octa yellow):

smaller (smaller yellow):
larger (larger yellow):;

T

(mdef backandforth 0 125
(linear -ry (0 45) (125 135))
(linear -ty (0 1) (125 1))
(linear -tz (0 -3) (125 -3))
(cspline -tx (0 -6) (50 6) (100 -6)))

(move octa 0 125
(backandforth 0 125)
(disappear 12.5 75))

(move larger 0 125
(backandforth 0 125)
(disappear 0 12.5)
(disappear 50 1000)})

(move smaller 0 125
(backandforth 0 125)
(disappear 0 50)
(disappear 87.5 1000))

& L

D ¢

time = 4.5 time = 5.5

time = 7.5

¢ yellow 1 60 1;
¢ colfloor .8 40 .75;
c gray 0.5 40 0.5;

1 sun 0.7 -1 3 -2;
1 glo 0.2;

def robot:
(mexecute mkrobot \
-h $(T < 2) ? (65 + T *15) : ((T < 5) ? 95 : \
((T < 6) ? (85 + (T-5) * 10) : 105))§$ \
-r §((T<1) 2 0 : ((T<4) ? (60*(T-1)) : ((T<6) ? 180 : \
(180 + 90 * (6 - NS \

-d $(T < 1) 2 (35 -70*T) : ((T X< 2) 2?2 (35 * (T-2)) : O)$ \
—e $(T<1) 25 : ((T<2) 2 (5+55* (T-1)) : 60)$ \
-t $(T <1) 20 : ((T <2) 2 (90 * (T-1)) : 90)$ \
-a $(T < 4) 2 30 : ((T <5 2?2 (5+ 25 * (5-T)) : \
(T>7) 2 (5 + 25 * (T-7)) : 5)$
)
end;
def plane:;
include plane.shrunk;
end;

def platform;
include cube;

end;
def floor:;

v floorl -1 0 1;

v floor2 1 0 1;

v floor3 1 0 -1:;

v floor4d -1 0 -1;

f (floorl floor2 floor3 floord) colfloor;
end:;

i (floor colfloor -sa 20 -tx -140 -ry -0.01);

i (platform gray -sx 5 -sz 5 -sy 45 -tx -140 -ty 45);

i plane (plane yellow -sa 3 -rx 90 -tx 140 -ty 91 -tz 8);
i (robot):

(move plane 0 9
(linear -ry (0 180) (6 180) (7 90))
(linear -tx (0 0) (7 0) (9 392))
(linear -ty (0 0) (5 0) (6 10))
(disappear 9 1000))

Appendix B: BNF Grammar of Language Extensions

BNF grammar 1or tne BUMP extensions to unigrasia
Definitions:

indicate optional parts
indicate literal parts

!

-~

start, time, duration, value : real numbers
repetitions : integer

obj_name : arbitrary string
motion_name : arbitrary string

text : arbitrary text

white space is always ignored except to separate fields

bump_stmt : move_stmt
| mdef_ stmt
| mapply_stmt
| meval_stmt
| mexecute_stmt

move_stmt : *(’ 'move’ obj_name start duration
7(* m_style t_form value_list D A

mdef_stmt : ' (' 'mdef’ motion_name start duration
("m_style t_form value_list A I

mapply_stmt : (' 'mapply’ obj_name component_list ‘)’
meval_stmt : /(' 'meval’ text ')’
mexecute_stmt : ' (' 'mexecute’ text)’

component_list : ‘(' component_entry *)* [component_list]

component_entry : motion_name start duration [repetitions]

value_list : ¢ (' value_entry ')’ ([value_list]
value_entry : time param
param : number [number [number [number ... up to 16 of them ...]1]
t_form : ‘-sx’ | ‘-sy’ | r-sz’ | '-sa’ | -sv

| f-tx’ | '-ty’ | ‘-tz’ | ‘=ta’ | -tv

| f-rx’ | '-xy’ | ‘-rz’ | '-ra’ | -xv

| *=mx’ | ‘-my’ | ‘-mz’ | f-ma’ | -mv

| r M3’ | M4’
m_style : "step’

{ flinear’

| ‘bspline’

| fcspline’

Appendix C: Tutorial

Bump tutorial

The Berkeley UNIGRAFIX Movie Package, or bump, is an animation-generating front end to Berkeley
UNIGRAFIX. It adds five new ‘motion” commands to UFO, the UNIGRAFIX ASCII scene descripton format,
namely move, mdef, mapply, mexecute and meval. These will be more fully described below.

To generate an animated scene in the simplest way, the user first creates an extended-UFO file con-
taining objects and their movements. He then feeds this file to bump along with the starting time value, the
number of frames, the time increment between frames, and the prefix of the output file names. Bump then
gives the extended UFO file to the new UNIGRAFIX parser, recently completed by Mike Natkin, which con-
structs a matching data structure and places any statements it does not recognize, presumably concerned
with motion, in a special escape statement.

Bump then processes the motion statements, and for ecach time increment recalculates the time-
variant parameters of any moving objects, inserts these new values into the data structure, and calls an out-
put routine. This loop continues until the specified number of frames have been computed.

Typically, the output routine mezely prints the data structure as a standard UFO file, one for each
frame of animation. Once bump has completed, these can be individually rendered and displayed by the
user. There are two command-line options that can change this behaviour, namely -r and -p, which will be
described in the "Sample Runs” section of this tutorial.

1. MOVE - Specify a Motion

Motions are time-dependant transformations. In particular, they are composed of the fundamental
operations of translation, rotation, and scaling. A motion is described by a list of transformations and their
values at specified times. Intermediate values are calculated with various styles of interpolation. The gen-
eral form is:

(move object_name start_time duration
(motion_type transformation { (time param_values) D))

Motions computed by bump are appended to the moving object’s transformation list. As an example here
is a turning page:

i page (protopage -1y -45);

(t;n.c;ve page01
(linear -ry (0 -90) (1 90)))

In the interval from time O to time 1 the page swings at a constant rate from an angle of -135 degrees
10 an angle of +45 degrees.

2. MDEF - Define a Motion.

Motions can also be defined in the abstract and given a name, so that they can be applied multiple
times or to more than one object. Once a motion has been defined, it can be applied to any object in the
scene with the mapply statement o be discussed later. These abstract motions have their own local time
frames within which all their individual motion elements are defined. When such a motion definition is
applied to an object, its ime frame can be scaled to stretch over any desired time duration in the context of
the time frame in which the application is specified.

As a simple example, here is a motion describing a spin about the y-axis. At time zero, the rotation
is zero degrees, and by time one, the object will have umed 360 degrees. The motion type is specified as
linear.

(mdef spin 0 1
(linear -ry (0 0) (1 360)))

Any object can now be made to spin once about its y-axis, by applying this motion to it via mapply.
The pair of numbers immediately following the motion name represents the *visible’ time interval of the

-2

motion. When the motion is applied, its local time will run through this range, and any transformations with
time values out of this range will not appear. This is especially useful in specifing invisible control points
on splines, as on this more complex motion definition, which describes an object rolling along an S-curve
in the x-y plane.

(mdefroll 11
(inear -rz (1 0) (2 360))
(cspline -tx (0 0) (1 50) (2 100) (3 150))
(cspline -ty (0 0) (1 -50) (2 50) (3 0)))

The first transformation applied to the object will be a rotation about z. It is then translated in the x-y
plane by the next two lines, causing it to travel in an S-curve. Since the motion starts at internal time 1 and
has a duration of 1, the spline control points associated with times 0 and 3 will not be interpolated. How-
ever, they will still be active in shaping the curve.

There are currently four motion types, namely step, linear, cspline, and bspline. Step allows
objects to jump from one position to the next, with no continuity between positions. Linear specifies a
simple linear interpolation between control points. Cspline is an interpolating cardinal spline. Bspline is
an approximating b-spline, which provides the smoothest moves but is the most difficult to design.

3. MAPPLY - Apply a Motion to an Object.

Mapply is how motions are are applied to objects. Motions can be applied only to instances and
arrays. The general format of an mapply is:

(mapply object_name
(motion_name starttime duration [optional number of applications]))

i copycube (protocube -tx 10);
(mapply copycube
(spin 0 45 3))

This will swing the copycube three times around the y-axis at a distance of 10 because the motion is
with respect to the coordinate system in which copycube is described. The first spin starts at global time 0,
the next at 45, and the third at time 90 and terminates at 135. Each spin will begin where the prior one left
off.

Applying a motion to an array will affect the incremental transform between the individual the array
elements. For example,

a cubearray (protocube) 10-x 1;
(move cubearray 0 1
(linear -tx (00) (19)

will result in an array of cubes spaced one unit apart at time zero, and spaced ten units apart at time one. If
you would like to move the entire array, you would have w do the following:

def cubearray_def;

a cubearray (protocube) 10 -tx 1;
end;
i cubearray_instance (cubearray_def);
(mapply cubearray_instance

(spin 0 45 3))

An array of spinning cubes can be produced as follows:

def spinning_cube;
i temp_cube (protocube);
(mapply temp_cube (spin 045 3))
end;
a cubearray (spinning_cube) 10 -tx 3;

Multiple motions can be applied; assuming that the object ‘ball’ and motions ‘bounce’ and ‘pop’
have already been defined, here is a ball bouncing several times and then popping. Each of the four
bounces will start from the final position of the previous one, and take 50 time-units. At time 200, the ball
will pop once, taking ten units to do so.

(mapply ball
(bounce 0 50 4)
(pop 200 10))

4, Nested Motions

A mdef can contain nested motions. As an example, here we have an object stepping along a diago-
nal line every 5 time-units, and spinning for 10 after having taken the third of the steps.

(mdef leap_and_spin 0 25
(step -tx (0 0) (5 10) (10 20) (15 30))
(step -ty (0 0) (5 10) (10 20) (15 30))
(spin 1510 1))

There also are two predefined pseudo-motions, appear and disappear. When these are applied to an
object, it is inserted into or removed from the scene. This can be useful for deleting objects which have
moved behind the camera, or objects which are out of sight and need not be rendered to save time. Objects
are visible by default whenever there is no disappear acting on them, which makes the appear pseudo-
motion redundant. It is included for completeness. The use of these pseudo-motions looks like this:

(mdef twinkle 0 10
(disappear 0 5)
(appear 5 5))

(mapply object_name
(twinkle 0 10 50))

This will result in the object disappearing for five time units every ten time units, with a total of 50 such
twinkles. The appear in the mdef above is not really necessary, as the object will appear anyway when the
disappear expires. However, appear can be used to override a disappear, if desired. These pseudo-
motions can also be used in move statements, as shown in the following example which makes the object
disappear from time O to time 5.

(move object_name
(disappear 0 5))

5. MEVAL - Evaluate Time-dependent Fields.

meval allows the insertion of arbitrary time-dependant text. Within an meval, the UFO text can
contain algebraic expressions referring to the global varable T, the time, and these expressions are
evaluated for each frame. The fields to be evaluated are designated with the special character °S'. In the
following example, we define a squid with three time-dependant tentacles. In the time from O to 1, the ten-
tacles rotate about different axes with different phase offsets.

def body;
include body_file;

end;

def tentacle;
include tentacle_file;

end;

def squid;
i (body);

(meval
i (tentacle -rx $360*T + 1208);
i (tentacle -ry $360*T + 2408);
i (tentacle -1z $360*T + 3603);
)

end;

6. MEXECUTE - Call Shell With a Generator.

Mexecute allows the insertion of output from arbitrary generators and filters. This is a powerful
tool, allowing the definition of objects that change shape with time. For example, here is a cube undergo-
ing greater and greater truncation as time progresses (presumably from 0 to 100).

def shape; !
(mexecute
ugtrunc -t $T/1008 < cube)
end;

Both meval and mexecute require an enclosing def. This is due to the implementation of the two
statements, which work by evaluating and reparsing the entire contents of the def containing the meval or
mexecute, and replacing the def’s prior contents with the result of the reparse.

7. SAMPLE RUNS

This section gives several examples of the more unusual ways of using bump. These are primarily
concerned with different ways of specifing or dynamically changing the output routine. The -r filename
command line option allows the user 10 name a file which is read for each frame to privide the rendering
command line. For example, the command line,

bump inputfile 0 1 5 -r renderfile

will cause bump to read inputfile and then produce five frames of animation. When it is done calculating
each frame, it will read renderfile and then cat the current frame through the command line that renderfile
contains. If the contents of renderfile were,

ugplot -ep 10 20 -30

this would result in each frame appearing on the user’s screen, viewed from the point (10 20 -30). When
combined with mexecute, the -r option can provide a way (0 move the camera. If the extended-UFO file
contained the statements,

def foo;
(mexecute echo "ugplot -ep 10 20 -30 -va $T*5+5%" > renderfile)
end;

and the original command line was
bump inputfile 0 1 5 -r renderfile

the final result would be that frame number 0 would be rendered with view angle 5, frame number 1 with
view angle 10, and so forth.

-5-

The previous two examples are incomplete, in that each frame is merely dumped to the screen and
then forgotten. If one plans to record the sequence, it is necessary to use more complex renderfiles, such as
the one created by the statements,

def foo;
(mexecute echo "ugplot -di -sf -ep 10 20 .30 -va $ST*5+5$; mv rastiv fusr/tmp/raster.T" > renderfile)
end;
This will render each frame with a different view angle and move the raster files to distinctly-named files in
Justimp. One can go even further and automate the entire rendering and recording process with a render-
ing file such as,

ugplot -di -sf; \
fc/grafix/binfiv rastiv; \
echo\' > /devfityhd; \
sleep 6;

This is in fact, exactly the default rendering sequence used by bump if no rendering file name is given on
the command line.

An alternative method of simulating camera movements is 1o use bump to create consecutive scenes
in individually-named UFO files, and render them via a shell that gradually changes the parameters to the
renderer. This is what was done for the bump demonstration video. For example, if the command line
were,

bump inputfile 0 1 5 -p foo

bump would produce five (presumably different) UFO-format output files named "foo.0” through "foo.4."
The user could then write a simple shell to render and record these files sequentially with different parame-
ters to UGplot for each one. Note that the -p option will override the -r option; if an output prefix is
specified, bump will not render the frames but will merely write them to a file.

8. Camera movement

Currently, bump supports camera movement only in the indirect ways described above. If a more
direct treatment of camera movement were 10 be added in the future, the following would be a simple way
to describe it in a manner consistent with the rest of bump.

The camera would be animated via interpolations of the parameters which define it. These parame-
ters would be referred 10 in move and mapply statements as if they were instances. Camera parameters are
either points or scalars, and can be manipulated via normally-defined motions. Points such as ‘-ep’, would
be moved about with translations, while scalars such as ‘-va’ could be scaled. This is demonstrated in the
next few examples. The first one would ‘slide’ the camera right from -5 on the x-axis o +5 over one hun-
dred time units.

(mdef track_right 0 100
(linear -tx (0 -5) (100 5)))

(mapply -ep
(track_right 0 100))

(mapply -vc
(track_right 0 100))

Note that we must explicitly tell the camera to move its view center. Making the camera circle the
origin at a distance of 50 while zooming in from va=90 to va=30 would be like this:

{move -ep 0 100
(step -tx (0 50))
(linear -ry (0 0) (100 360)))

(move -va 0 100
(linear -sa (0 90) (100 30)))

Since the camera position is specified like a point (with -p) in the global world system, the above
turn motion would rotate the camera around the global x-axis keeping it aimed on the origin. Scaling ‘-va’,
assuming it was set to 1 initially, would generate the effect of zooming in.

9. For further reading

The man page for bump offers a condensed version of this tutorial. For a look at the inner workings
of bump, see the more lengthy report, "BUMP, a Motion Description and Animation Package,” by S. A.
Oakland.

Appendix D: Manual Pages

BUMP (UG) UNIX Programmer’s Manual BUMP (UG)

NAME
bump — animate a UNIGRAFIX file

SYNOPSIS
bump infile initial increment number [-p prefix) [-r rendfile] [-d]

DESCRIPTION
Bump reads an extended-UFO UNIGRAFIX file and produces an animated sequence. It either generates a
series of standard-UFO files, or sends the frames one-by-one to a renderer for immediate recording.

COMMAND LINE ARGUMENTS
infile name of extended-UFO input file

initial value of time at start of sequence

increment
time increment per frame

number
number of frames to be produced

-p prefix
optional. Prefix which will be used in generating names of output files. If no prefix is given, the
frames will be immediately rendered and then deleted.

-r renderfile
optional. Name of file containing shell command line through which frames should be sent. By
default, bump will call ugplot to render the frame for the Ikonas, display it, and send a VAS-IV
record signal to /dev/iyhd. If -p is turned on, this argument is ignored.

-d optional. Turns debugging on, produces unflattened output files, and provides a unning commen-
tary on what bump is doing. The more -d’s, the more commentary.
EXTENSIONS TO UNIGRAFIX

Bump recognizes five extensions to UNIGRAFIX, namely move, mdef, mapply, meval, and mexecute.
Mdef is used to define motions in the abstract. Mapply applies these motions to specific objects, while
move both defines a motion and applys it, as a shorthand for motions which are used only once. Meval
provides evaluation of expressions within UFO files. Mexecute allows calls 10 arbitrary generator and
filter programs outside of the UFO file. The general forms of these extensions are as follows:

move
(move named_object start_time duration
(motion_style transformation (time value) (ime value) ...))
mdef
(mdef motion_name start_time duration
(motion_style transformation (time value) (time value) ...))
mapply
(mapply named_object
(motion_name start_time duration [repetitions]))
meval
def definition_name;
(meval ...any UFO text, containing *$...$* where evaluation is desired...)
end;
mexecute

def definition_name;
(mexecute ...a shell command line, containing *$...$" where evaluation is desired...)
end;

7th Edition 1987-8-31 1

BUMP (UG) UNIX Programmer’s Manual BUMP (UG)

EXAMPLES

The following is an extended-UFO description defining a cube which spins from 0 to 360 degrees in the
time from 50 to 150:

i cube (protocube);
(mdefspin 01

(linear -ry (0 0) (1 360)))
(mapply cube (spin 50 100))

Move provides a shorthand for doing the same thing:

i cube (protocube);
(move cube 50 100
(linear -ry (50 0) (150 360)))

Creating five frames of animaton, at T={0,25,50,75,100}, and putting the output in files named
fusriimp/foo.{0,1,2,3,4} would require the following command line:

bump samplefile 0 25 5 -p /usr/tmp/foo

If the output file prefix is omitted, bump will put the output into a temp file and immediately render it. By
default, it will render the scene for the Ikonas via UGplot, put it into the Ikonas buffer, and send a record
command to /dev/ttyhd, where the VAS-IV is presumably listening.

This behavior can be modified with the -r renderfile option. If the name of a rendering file is given, bump
will read this file for a shell command line, and then cat the UFO description of the current frame through
this command line.

MOTION STYLES

BUGS

Bump currently recognizes four different motion styles. These are:
step, for stepping from value to value with no intermediate positions.
linear, for linear interpolation between subsequent values.
cspline, for cardinal spline interpolation between values.
bspline, for b-spline approximation of values.

The pair of numbers immediately following the motion name in an mdef represents the ‘observable’ time
interval of the motion. This is useful for specifing invisible control points on splines, as on this motion
definition which describes an object rolling along an S-curve in the x-y plane.

(mdefroli 11
(linear -rz (1 0) (2 360))
(cspline -tx (0 0) (1 50) (2 100) (3 150))
(cspline -ty (0 0) (1 -50) (2 50) B 0)))

The first transformation applied to the object will be a rotation about z. It is then translated in the x-y plane
by the next two lines, causing it to travel in an S-curve. Since the motion’s internal tme starts at 1 and the
duration is 1, the control points associated with times 0 and 3 will not be interpolated. However, they will
still be active in shaping the curve.

Mexecute does not expand shell expressions like ""ug/lib” and "SHOME". These must be spelled out
manually.

The bump process tends to grow slightly with each frame. This seems to be due to memory fragmentation,
as it is careful to free all space that it allocates. It is therefore sometimes necessary to break up long
sequences into several smaller runs to avoid exceeding the maximum process size.

7th Edition 1987-8-31 2

BUMP(UG) UNIX Programmer’s Manual BUMP (UG)

Comments are not allowed within bump statements.
Error diagnostics can be cryptic. Syntax errors will sometimes cause core dumps.
Evaluator for meval and mexecute is simpleminded and does not know about trig functions.

FILES
“ug/bin/bump
“usr/tmp/bump.XXxXXx
~usr/tmp/bumpout.XXXXX.X
SEE ALSO
babybump (UG), ugplot (UG)

AUTHOR
S. A. Oakland

7th Edition 1987-8-31 3

Appendix E: Production Details

Bump has been used to create a three-minute animated videotape demonstrating the
current status of the UNIGRAFIX project. The roughly six thousand frames comprising
this movie were generated over a period of two months, using a Vax 750 (degas) and a
Vax 8650 (vangogh) displaying frames on an Ikonas frame buffer in 480 by 512 resolu-
tion. The Ikonas RGB signal was converted to NTSC format by a Tektronix 1474 color
sync generator and a Bosch TCE-2000 digital color encoder, and recorded by a Sony
VO-5850 % inch videocassette recorder operated by a Lyon/Lamb VAS-IV controller
connected to the Vax 750.

This raw footage was assembled into a completed videotape by Mike Francisco of
the Berkeley Educational Television Office. During post-production, we discovered a
number of problems with the Graphics Lab animation hardware. Specifically, the video-
cassette recorder’s head switching is visible, resulting in a band of static at the bottom of
the picture. Also, the color sync generator is very poorly adjusted, resulting in a signal
that cannot be played through a time base corrector. This makes it impossible to use
sophisticated editting equipment, and very difficult to edit the tape at all or even copy it!
Finally, the color encoder is also mistuned, and is generating an "illegal” color signal.

The final demonstration videotape is only barely acceptable, and it is essential that
the three devices mentioned above be fixed before any other serious animation is begun.

The background music for the video is a piece called "Xango", from the album
"Forthcoming" by Sky. Since I used it without permission, we will run into serious copy-
right problems if the videotape is distributed outside the university. The master video-
tape has the voiceover and music on separate tracks, so it will be easy to substitute other
music or eliminate it completely if necessary.

