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Abstract

We present an overview of the current issues in the
design of CPU cache memories. Our stress is on those
issues of greatest concern to cache designers and builders,
including line size, associativity, real vs. virtual address-
ing, main memory update algoritbm, split tdata / instruc-
tions) cache vs. unified cache, cache consistency mechan-
jsms, cache size and number of cache levels. Brief mention
is made of other aspects of cache and S-unit design. The
Fairchild CLIPPER'™ is used as an example of
modern cache memory design.

1. Introduction

1.1. Cache Definition

Caches are high speed buffers that are used to hold
items in current use. They appear in CPUs as buffers for
main memory, in main memory and disk controllers as
buffers for the disk address space, and in the form of your
desk top as a buffer for your file cabinet. Caching is an
extraordinarily powerful concept, since it can be used
whenever there are uneven levels of (reluse for items or
information; the 80°20 rule or Zipf's law [Knut73] are other
expressions of this uneven use.

In CPUs, cache memories are high speed (associa-
tively addressed) buffer memories that are used to hold 2
(time varying’ portion of the main memory contents. Most
computer designs can be partitioned as is illustrated in
figure 1, in which the machine is shown to consist of an I-
unit (instruction fetch and decode', E-unit fexecution!, S
unit (storage), C-unit ichannel, or IO controller), and main
memory. The cache memory is located in the S-unit, along
with other S-unit components such as the translator, the
TLB (translation lookaside buffer), the memory interface,
write through buffers, address space identifier tables, etc.
The term cache memory is sometimes used to refer only to
the buffer memory previously defined. and sometimes is
used to refer to most or all of the S-unit.

1.2. Cache Justification

1t is extremely difficult and expensive to build 2 main
memory in a computer that can respond to read and write
requests from the I and E units quickly and frequently

tThe material presented here is partially based on research supported in
part by the National Science Foundation under grant DCR-8202591, and
by the State of California under the MICRO program.

enough so that the machine dues not become strictly lim-
ited in its performance by main memory speed. Main
memories are built from logic whose principal virtue is
density. not speed, and sre large and physically distant
from the other parts of the CPU; main memory perfor-
mance is inherently limited. Cache memories. since they
are much smaller, can be built with very fast iexpensive
and not-dense) logic and can be placed physically near the
other CPU functional units. These technology factors have
led to the increasing prevalence of caches in computer sys-
tems. such that now there are almost no computer systems
of moderate or higher performance that lack caches. The
Cray machines do oot have caches. but are designed with
different vectorr workloads in mind and different
cost performance constraints than most other machines.
and thus the lack of caches in those machines can probably
be justified for vector processing; we do suspect, however,
that the addition of caches to those machines would
improve their performance for scalar processing.)

Even with the inclusion of cache memories. almost all
CPUs are still most strictly limited in their performance by
the cache access time: in most cases. if the cache access

time were decreased, the machine would speed up accord-
ingly. Similarly, multiprocessor computers with shared
memory are most strictly limited by main memory
bandwidth, and the main memory traffic from each proces-
sor is determined by the success of the cache memory in
satisfying memory requests without main memory opera-
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tions. Accordingly, it is widely acknowledged that memory
system performance, and in particular, the cache memory
performance, is the most significant factor in achieving high
machine performance.

1.3. Why Do Caches Work?

Cache memories function effectively because of an
empirical observation known as the principle of locality,
[Denn72] which can be stated as: Information in use in
the near future is likely to consist of that ioformation
in current use (locality by time) and that information
logically adjacent to that in current use (locality by
space). The principle of locality is widely applicable, and as
noted earlier, it finds expression as the "80:20 rule” and
"Zipf's law". While ope can imagine reference patterns
that would defeat existing cache memory designs, it is the
author's experience that cache memories improve perfor-
mance for any program or workload which actually does
useful computation. We therefore discount the comments
that begin: “yes, but for my application. .."”.

1.4. Factors Determining Cache Performance

For the reasons given above, the proper design and
jmplementation of cache memories has become increasingly
important to computer designers. In order to evaluate a
cache design, it is necessary to specify one or more figures
of merit. There are two primary factors:

(1) (Mean) Access time to the cache on a bhit (data in
the cache). .

(2) Probability of finding the referenced information
in the cache.

When a reference (read, write, instruction fetch) is
made to a cache, the reference can either find the needed
information already in the cache fa hif) or a main memory
operation can be required ‘a miss). The miss ratio is the
fraction of references that miss, and the hit ratio is 1-miss
ratio. If m is the miss ratio. Th is the time to reference the
cache on a hit and Tm is the time to make a main memory
reference when there is a miss, then the mean memory
reference time is T=m*Tm + Th + E. where E is a term
to account for the secondary factors discussed immediately
below. Since m is usually small and Tm large, m and Th
are the most important factors.

There are also 8 number of secondary factors affecting
cache performance: (3) time to satisfy a read miss (Tm), (4)
memory bandwidth generated and consequent queueing
effects to main memory in a multiprocessor system, (5)

cache cycles "stolen” to maintain multiprocessor memory
consistency, and (6) delays due to queueing for main
memory writes. We refer to these as secondary factors,
since in a properly designed system, small changes in these
factors bave much less effect on system performance than
small changes in the first two factors.

1.5. Overview

In the remainder of this paper, we will first show how
a typical cache memory would look and work, and then we
will discuss in more detail the specification of cache aspects
and parameters, including the line (block) size, the place-
ment algorithm, the addressing method for the cache (vir-
tual or real addresses), the method by which main memory

“is updated, whether a machine should have one cache or

two (data/instructions), how consistency is maintained
when there are multiple processors sharing memory, and
whether there should be a single level or multilevel cache.
That material is followed by a very brief mention of other
aspects of cache and S-unit design.

Throughout this paper, we concentrate on providing
brief but clear discussions of the various issues. We refer
the reader to [Smit82) and {Smit84a} for more detailed and
extensive survey presentations. A very extensive bibliogra-
phy of the literature appears in [Smit86]. Except when
necessary, we do not cite and survey the research literature
bere; the interested reader should see the papers noted for
the appropriate references.

2. A Typical Cache Design

Before we discuss in some detail the various com-
ponents of the cache and the relevant design tradeoffs, we
will consider in this section the design and operation of a
"typical” cache memory, that for the Fairchild
CLIPPER'™ [Cho86, Hol187]. We've selected this
machine for discussion for three reasons: (a) we're
very familiar with its design; (b) it is modern and
state of the art; and (¢) it is more similar to
mainframe caches than to the primitive caches
typically associated with microprocessors; as such
it is a better example of future designs than
other existing microprocessor caches.

2.1. Overview

The Fairchild CLIPPER is & new (first shipped 1986)
high performance computer module consisting of three
chips, & processor chip and two CAMMU icache and
memory management unit) chips, as is illustrated in figure
2. The S-unit for CLIPPER is implemented as two
CAMMU chips, one each for instructions and data; the -
and E-units are botb on the processor chip, which we do not

CLIPPER
crPu Module
1=Unit
integer E-Unit
Floating Point E-Unit
Data
instruction Bus
Bus
.
instruction CAMMU Data CAMMU
Cache Cachs
TL® L8
Transiator Transiator

J

Main Bus

Figure 2: Fairchild CLIPPER Module

*CLIPPER is a trademark of Fairchild Semiconductor Corporation
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discuss in this paper. CLIPPER is a 32-bit machine; all
addresses are 32-bits, and in normal operation are virtual
addresses. (A real address mode exists, but would normally
be used only during startup.) The page size is 4096 bytes.
The high order 20 bits of a virtual address are the virtual
page address, which are translated in a two step process
through a 1024 entry page directory and a 1024 entry page
table. ’

Figure 3 is a diagram of the CLIPPER CAMMU eand
figure 4 is a flowchart of the CAMMU operation; each
diagram contains both control and data flow lines, where
appropriate. Each CAMMU contains a 128 entry, 2-way
set associative TLB, a 4096 byte cache, consisting of 256
16-byte lines, organized also 2-way set associative, and &
translator. We review the CAMMU operation on 2 CPU
read here, although we don’t discuss all of the features
shown in figures 3 and 4.

2.2. Cache Operation

The 32-bit virtual address for a memory reference
(data read or write, instruction fetch) is received over the
bi-directional address and data bus between the CPU and
each CAMMU chip. Parts of that address are named in
various ways, as is shown in figure §; we note that one par-
tition splits the address into the page number, the line
pumber and the byte within line. (Note the bit numbering
in that figure.) The page number is directed to the TLB for
translation. The low order 6 bits of the page number are
used to select one of 64 pairs of entries in the TLB (each
pair is known as & "set"). Each TLB entry contains a
pumber of fields, including the virtual and real addresses of
a page, and various control and protection flags. The vir-
tual address field of each of the two entries selected is com-
pared to the remaining 14 high order bits of the actual vir-
tual address; if there is a match, then the corresponding
real address is compared to the (real) address field of the

cache lines selected. as is explained below. If neither vir-.

tual address from the TLB matches the one from the CPU,
then the translator translates the virtual address, via the
page directory and page table, to a real address, and loads
the new mapping into the TLB, replacing the least recently
used entry in the set. The TLB is again accessed, continu-
ing as above; path "D” in figure 4 shows a possible optimi-
zation not implemented in the current version of CLIPPER.

The low order 7 bits of the line number ¢of the 8 bits
available) are used to select one of 128 sets of two entries
in the cache. Each cache entry consists of 16 bytes of data
(a line or "quadword"), a real address tag, and some control
bits (valid, dirty). The real address tag (bit 11, and bits
12.31 of the real address) of each of the pair of entries is
read into a comparator and compared with the real address
from the TLB (along with bit 11 of the virtual address).
Simultaneously, the two corresponding quadwords are
gated through multiplexors which use the word within line

bits to.select the addressed word. If the addresses match,
then the corresponding word is selected via another MUX
and then forwarded to the CPU over the CPU/CAMMU
bus. If there is no match between the real address (from
the TLB) and the real address tags from the two lines in
the cache, then the real address is sent to main memory,
main memory responds with the contents (16 bytes) of the
line corresponding to that real address, the LRU entry in

the cache set is loaded with that line, and the access
proceeds as above. If the entry to be replaced is "dirty", i.e.
modified with respect to main memory, it must be copied
back to main memory prior to the fetch of the new line.
(Note that path "E” in figure 4 shows a possible optimiza-
tion not implemented in the current version of CLIPPER.)

For both the TLB and the cache, after a match is
detected, the LRU bit for the set is set to reflect which
entry is least recently used.

One very effective "short cut” to the above operation
is also used. When the address is received from the CPU, it
is compared to 2 register which has the fvirtual' address of
the contents of the quadword most recently referenced. If
there is a match, then this reference is satisfied by select-
ing the next word from the corresponding quadword buffer,
and no cache or TLB access takes place, thus saving consid-
erable time. (See path "C” in figure 4.)

The above sequence of operations is quite similar to
that of the Amdahl 470, IBM 370:168 or the DEC VAX
11/780 [Smit82). In comparison to cache memories for most
current microprocessors, it is considerably more sophisti-
cated.

3. Design Choices

The design of the cache for the Fairchild CLIPPER, as
noted, is fairly "typical” of modern cache memory designs,
but we need to distinguish between "typical” and “stan-
dard™; there is no standard design. First, the cache design
is sensitive to priceperformance considerations, so that
choices appropriate for a single chip microprocessor are
often not suitable for a high end mainframe. Second, the
design is sensitive to changes in techpology, and in particu-
lar to factors such as memory access time, cache access
time, chip density, bus speed. the ability to include a cache
on the CPU chip, etc. The choice of design may be affected
by the extent to which the designers are willing to consider
more complex and higher performance designs. which is in
turn affected by the availability of suitable CAD tools and
enough time before promised product shipment. Finally,
within the space of acceptable (if not optimal) designs,
there is still considerable latitude for variation.

In this section, we discuss a number of cache parame-
ters or design choices, giving the arguments which
influence the choice, and when appropriate making some
comments about where the best choices lie. We start with

a discussion of line size, and then cover the cache place-
ment algorithm (i.e. mapping and associativity), virtual vs.
real addressing, the main memory update algorithm, the
use of a split (data‘instructions) cache, the problem of cache
consistency in multiprocessor systems, and the use of mul-
tilevel caches.

3.1. Line (Block) Size

The line size (or block size, as it is sometimes called)
is the unit of data transfer between the cache and main
memory. Each line in the cache has an address tag associ-
ated with it. For most of this section, we assume that a
line is either present or absent in the cache, although sec-
tor cache designs [Hill84] permit partial lines (subd-sectors)
to be present. -
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Changes in the line size affect a number of aspects of
the system design and performance. First, the miss ratio
will change. As the line size increases from very small to
very large, the miss ratio will initially decrease, since a
miss will fetch more data at a time. Further increases will
then cause the miss ratio to increase. as the probability of
using the newly fetched (additional’ information becomes
less than the probability of reusing the data that is
replaced.

To determine the effect on performance, miss ratio
must be.combined with the time to service 8 miss. That
time is typically of the form aZ +b, where Z is the line size
{in bytes), a is the marginal transfer time per byte and b is
the overhead per miss. Typical values for b for a system
based on a common bus (see figure 7) might be 100ns to
400ns, and for @ might be 10ns to 25ns (40ns to 100ns per
bus cycle, for a 32 bit bus). Thus, typically, b >> e

The issue of selecting an optimal line size is con-
sidered in detail in [Smit83b]. In table 1, we show the
range of line sizes for which the mean main memory delay
per instruction is (approximately) minimized, for three
values of @ and b for a unified cache; corresponding data for
instruction and data caches appears in [Smit85b]. For
CLIPPER, the line size chosen was 16 bytes, within the
optimal range of 16-64 bytes for the instruction cache and
8-64 bytes for the data cache. (Other factors, noted below,
also figured in the line size choice.)

There are a number of other factors which also
infuence the choice of line size. The size of the line affects
the fraction of the data storage in the cache that is actually
allocated to main memory data. For example, if the
address tags for a line take two bytes (16 bits) and the
lines are 4 bytes, then only 2/3 of the data is "useful”; if
tags are 2 bytes, and lines are 64 bytes, then only 1/33'rd of
the data storage is "wasted” by tags. This means that
increases in the line size actually slightly increase the
effective cache size.

Another factor is the frequency of page crossers and
line crossers. A page crosser is a memory reference spaa-
ning the boundary between pages, and a line crosser spans
the boundary between cache lines. (Neither is possible in
the CLIPPER, which requires aligned accesses, but both

Optimal Line Sizes (Bytes) - Unified Cache

Cache Size | a=15ns/byte | a=15ns/byte | a=4ns/byte

(bytes) b=2360ns b=160ns b=600ns
32 4-16 4-8 8-16
64 8-16 4-16 8-32
128 8-16 4-16 8-32
256 8-32 8-16 16-32
512 8-32 8-16 16-64
1024 8-32 8-16 16-64
2048 16-32 8-32 16-128
4096 16-64 8-32 32-128
8192 16-64 8-64 > =64
16384 16-128 8-128 > =64
32768 16-128 8-128 > =64

Miss Service Time = a*(line size) + b
Table 1

Page Nurber Byte Within Page
‘ Syte Within Une
e
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Page Dweciory Map Tivough Line Word Within
Page Tadie Mumder tine

Figure 5: Interpretation of Virtual Address.

are possible in the IBM 370 architecture.) Typically, a line
crosser reference will take additional time, since it is usu-
ally implemented as two accesses. One of the most difficult
aspects of CPU implementation is handling exception con-
ditions, such as traps, interrupts and page faults. A pege
crosser not only suffers from the same penalties as a line
crosser (since pages are multiples of a line size), but can
potentially result in up to two page faults, one on each
page touched; the CPU or cache complexity increases
accordingly.

As the lines get longer, & miss ties up the memory
interface for a longer period of time. This can affect perfor-
mance in a multiprocessor system, where other processors
may be locked out of shared memory for longer periods. It
can also cause J/O Overruns, which are events in which an
1/0 device overruns its own small 'O buffer, because it
cannot reach main memory. An IO overrun is usually
bandled by aborting and retrying the operation.

We briefly note the possibility of sector caches. A sec-
tor cache consists of sectors (blocks or lines) and sub-sectors
(sub-blocks). An address tag is associated with each sector,
and a validity bit with each sub-sector. On a miss, only
one sub-sector is loaded, causing an entire sector to be
replaced if necessary. A sector cache allows one to decrease
memory traffic at the cost of an increased miss ratio; this is
useful when b (the miss overhead) is not much larger than
a (the transfer time per byte), but not otherwise. The
behavior of sector caches is studied in [Hill84].

3.2. Placement Algorithm and Associativity

As noted earlier, caches are buffers for main memory,
and hold only a (constantly changing® portion of their con-
tents. That implies that the cache must be referenced in
an associative or partially associative manner; i.e. one or
more lines in the cache are retrieved, and then it is deter-
mined if any of them are the target. The degree of associa-
tivity and type of mapping affect performance.

Most caches are set associative, [Smit78a] which
means that an address is mapped into a set, and then an
associative search is made of that set; see figure 6. If there
is only one set (S=1), then the cache is called fully associa-
tive, and if there is ocly one element per set (E=1), then
the cache is called direct mapped. The tradeoffs involved in

_selecting the degree of associativity are discussed in detail

in [Hill87]; we summarize them here.

Empirically, and as one would expect, increasing the
degree of associativity decreases the miss ratio. We note
that this is an empirical phenomenon, since ome could
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easily write a program which would produce the opposite
effect. The highest miss ratios are observed for direct map-
- ping. Two way set associativity is significantly better, four
way is slightly better still, and further increases in associa-
tivity have little further effect. We note that changes in

miss ratio with associativity are sensitive to the workload, *

block size and cache size, and other parameters.

Unfortunately, increasing the degree of associativity
has some disadvantages. The normal parallel implementa-
tion of & cache requires that the number of comparators
and data readout paths equal the degree of associativity,
which is expensive, or if implemented on one chip, requires
significant extra silicon area. The output of the comparis-
ons are fed together (e.g. in a wired-or configuration or into
a multiplexor controlled by the comparator outputs), and
the speed of that circuit worsens with increased fan-in. A
direct mapped cache can be even faster, since the com-
parison requires only a "go-no go” decision, with no fan-in
at 2ll. (The go'no-go decision can also take place late in
the cycle and still successfully abort the operation if nega-
tive.) The optimal degree of associativity is a function of
the miss ratio, since small changes in an already low miss
ratio are unimportant relative to small changes in the
mean cache access time, and conversely. Using reasonable
assumptions sbout circuit technology and main memory
access time, in [Hill87] results are presented suggesting
that for caches larger than about 8-32Kbytes, direct map-
ping gives equal or slightly better performance than 2-4
way set associativity, and for smaller caches, a set associa-
tive design is better.

. Another factor affecting the degree of associativity in
8 cache accessed with real addresses is the desire to overlap
the cache access with the address translation through the
TLB. The overlap occurs because the path in Figure 4 from
the boxes labeled "w” through "1” can be overlapped with
the path from "y” to "z". If the page size is 4Kbytes (as
above), then the available untranslated address bits can
select among at most 4Kbytes. If a 16Kbyte cache is
needed, then four way associativity is required if transla-
tion is to be overlapped. This is the reason that the IBM
3033 (with a 64Kbyte cache) has 16-way associativity. We
note that in some machines, there is a small, on-chip TLB,
and a2 large off-chip cache; in that case, overlap is difficult
or infeasible, and all real address bits are available
"immediately” for cache access.

The considerations above suggest that degrees of asso-
ciativity of 1 to 4 are best, unless there is a need to overlap
translation and access in a very large cache.

T

S Sets _————{

E Elements
per Set

Figure 6: Set Associative Mapping

In the description of the operation of the Fairchild
CLIPPER, we noted that the set was selected using 7 bits
to select one of 128 sets. This is the simplest mechanism,
and is called bit selection. It is also possible to randomize
or hash some number of bits in order to select the set, but

as is shown in [Smit82], this yields no advantage in miss
ratio, and adds complexity and access time.

3.3. Virtual vs. Real Addressing

Portions of a program’s address space can be identified
two ways - by their virtual address, and by their real
address. The virtual address is that generated by the pro-
gram; after that address is translated by reference to the
page table, it becomes a real address and then refers to a
specific physical main memory location. This translation
process is invisible to the program, so that from the
program’s point of view, there is no significant difference
between the two.

An examination of the discussions above in sections 2
and 3.2 suggest that designing a cache memory to be refer-
enced on virtual address would be advantageous. First,
since no translation is required fpartially overlapped or
not), access to the cache should be faster. Tramslations to
real addresses (for reference to main memory) can be done
only when needed, need not be done quickly, and in any
case, can be overlapped completely with the initial cache
access. Second, because there is no need to attempt to
overlap translation and cache access, the degree of associa-
tivity in the cache can be set at will, and is otherwise
unconstrained. Although all address spaces have the same
set of virtual addresses within them, by attaching an
address space identifier to all address tags, virtual
addresses can be made unique. Due to the synonym prob-
lem (described below), however, virtual caches are difficult
to build.

The existence of virtual memory and the real to vir-
tual mapping means that it is possible that more than one
virtual address can be translated to refer to the same real
sddress. This hypothetical event can occur under several
circumstances: (a) Two different programs on the same
CPU share some number of (real' pages and those pages
are placed in different places in each program’s address
map. (One of those programs can be the operating system.)
(b} One program has, via a call to the operating system,
asked that different virtual addresses within its own (sin-
gle) address space be equivalenced to the same real
address. (¢) An IO device, using real addresses, references
a region of main memory which is also accessible to a pro-
gram via its virtual address space. id) A program runaing
oo another CPU and sharing the same physical memory

_ has some part of its virtual address space mapped onto the

same real memory locations as the first program.

When two virtual addresses refer to the same physical
address, they are referred to as synonyms, end the associ-
ated problem is called the synonym problem. The difficulty
is that is that any reference to a given real memory loca-
tion must affect all copies of the data in that location
simultaneously and in the same way (but see our
discussion below of cache consistency). As 8 practical
matter, this has two implications for how one would build a
cache referenced by virtual address (or & "virtual address
cache™. (1) A given real address should be represented
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under at most ope virtual address in a cache at any given
time. This implies that on a miss, the cache must be
searched to see if the contents of the given location are
already cache resident under a different “pame" (virtual
address); if so, the "name” of the data must be changed.
This in turn requires that the cache contain a mechanism
to map real addresses back to virtual addresses, for all vir-
tual addresses resident in the cache; we call this mapping
mechanism the RTB, or reverse translation buffer. (2) As
discussed in more detail in section 3.6, all references to
main memory must be translated to real addresses, and
then retranslated by the RTB in each processor to ensure

that the reference doesn’t affect something resident in the '

local cache.

For various reasons (discussed in somewhat more
detail in [Smit82,84a]), RTBs are difficult to build and use.
The result is that the only commercial machine (as far as
the author knows), running software which permits
synonyms and containing & virtual address cache is the
Amdahl 580, despite some significant advantages to such a
design. We expect, however, that over time, as logic
becomes cheaper and designers more experienced, virtual
address caches will become more popular.

3.4, Main Memory Update

Cache memory is only a temporary buffer for main
(addressable) memory, and any writes to memory by the
CPU must appear in main memory either immediately or
eventually. There are two basic approaches to updating
main memory: write-through (store through), and copy-
back. With write-through, all writes are immediately
transmitted directly to main memory; when using copy-
back, (most) writes are written to the cache, and then are
copied back to main memory as those lines are replaced.
There-are a number of factors affecting the choice between
these two possibilities.

Write-through has in the past been the most common
approach for a number of reasons. First, it is somewhat
simpler because on a replacement, it is never necessary to
copy anything back to main memory. Second, it makes it
somewhat easier to maintain consistency, since main
memory is always up to date; with copy-back, the only
valid copy of a given datum may be in a cache memory.
Third, reliability is often higher, since main memory is
usually implemented with elaborate error detection and
correction mechanisms, whereas cache memories seldom
have error detection, let alone error correction.

The main disadvantage to write-through is that it
usually generates much more memory traffic than copy-
back and thus can negatively affect performance in a sys-
tem in which memory bandwidth is a bottleneck. (Note
that if the cache is small and the line size large, copy-back
can actually have higher memory traffic) Write through
can also result in low performance if there is insufficient
write buffering to avoid frequent queueing om writes
{Smit78]; many writes in a row are common. Write buffers
can be used to avoid this problem, but their implementa-
tion is complex, since any memory reference (from either
this CPU, another CPU or by I/0) must also be compared
to the addresses of pending writes, to ensure that the most
recent copy of information is referenced.

Because of the trend toward shared memory multipro-
cessors, and the resulting memory bandwidth bottleneck,
copy-back caches are becoming the preferred design, but it
jsn’t that difficult to implement both copy-back and write
through. The Fairchild CLIPPER bas two bits associated
with each page (stored in the page table and buffered in
the TLB), which specify write through, copy back or non-
cacheable. Unpublished experiments show that perfor-
mance is from 1% to 10% lower when using write-through
than using copy-back.

We pote that there is one important case where
write-through is still the best design That case is when a
microprocessor has a small on-chip cache, and when it is
designed to also run with a larger, ofi-chip cache. In that
case, memory consistency (see section 3.6) is most easily
maintained by making the on-chip cache write-through;
there is little if any performance loss, since the off-chip
cache only connects directly to one on-chip cache.

There are some variants of write through and copy
back caches. A cache is write-gllocate if a write miss
causes space for the line to be allocated in the cache and
the line fetched. It is possible to build either a copy-back
or write-through cache as either write-allocate or pot-
write-allocate. Write-update means that on a write the line
is updated in the cache if present; the alternative (in a
write-through cache) is write-purge, by which a write -
causes the line to be flushed from the cache.

3.5. Split DataInstruction Cache

Traditionally, computers have been built with one
(unified) cache memory; all references to memory, whether
reads, writes or instruction fetches. were handled by the
same cache. This is the semantically simplest arrange-
ment, since there is only one main memory, and it ensures
consistency by maintaining only one copy of information
which is-read both by the I-unit and E-unit, and is written
to by the E-unit. Sharing the cache also leads to the most
efficient use of & limited resource and thus lower miss
ratios than a split instruction‘data cache.

There are some disadvantages to & unified cache.
Since in a highly pipelined machine, instruction fetches

and data reads and writes are largely independent, access
conflicts to the cache can lower performance. Second, even
when there is no conflict, arbitration time may increase the
cache access time. Third, partitioning the cache into
separate data and instruction caches permits placing each
cache physically adjacent to the corresponding functional
unit (i.e. I-unit, E-unit), which cuts access time.

Until recently, the need to maintain cache con-
sistency, while permitting writes into the instruction
stream, has led to the continued prevalence of the unified
cache. More recently, in some modern designs such as
CLIPPER, the cache has been split to obtain the perfor-
mance advantages enumerated immediately above. Con-
sistency problems are avoided since for new architectures,
writes into the instruction stream can be prohibited as a
matter of architectural definition; this is not possible for
new (and upwardly compatible) implementations of old
architectures such as the IBM 360.



3.8. Cache Consistency

Increasing VLSI densities have recently made small
computers, such as those based on high-end microproces-
sors, much more cost effective per instruction executed
than large mainframes (Smit84b]. Such machines can be
combined to provide high aggregate (as opposed to serial)
performance. The programming of algorithms on such pro-
cessors is generally much easier when processors share a
common memory. The problem with such designs is that
when 'the individual processors have cache memories, the
cache memories can potentially hold inconsistent versions
of shared data.

A pumber of means have been invented to maintain a
consistent memory image in & shared memory multiproces-
sor. An overview of these methods appears in [Smit85¢c];
we provide a briefer summary here.

3.6.1. Shared Cache

The simplest possible solution to the cache consistency
problem is to have only one cache, and to share it; just this
solution was used in the Amdahl 470, in which /0 was
routed through the cache [Smit78b). There are two factors
which make 8 shared cache design poor. First, the access
time to the cache is the limiting factor in the machine per-
formance for many or most high performance machines,
and the access time to a shared cache would have to be
greater than for a dedicated cache due to longer (physical)
access paths, arbitration delays and access conflicts.
Second, it is difficult to make the bandwidth of a shared
cache sufficient to support even two high performance pro-
Cessors.

It is possible to build a machine in which each proces-
sor has its own cache for data local to that processor, and
then there is another cache which is shared smong all

processors. Data tagged as shared would be allocated to
the shared cache. This shared/private cache design is feasi-
ble although rather inelegant due to the lack of symmetry
of reference, but does have some problems. First, it must
be possible to identify what data is shared. There are a
pumber of cases, however, (see below) and it is easy to
designate far too much as shared. Second, the bandwidth
of the shared cache still limits the number of processors.
Finally, the slower access time to the shared cache may
still affect system performance.

3.6.2. Broadcast Stores

A solution used in some machines (e.g. the IBM
370/168, 3033) is to broodcast all stores to all machines.
The receiving machine then checks its own cache and if the
target of the store is found there, then either the target is
updated or (as with the 370/168 and 3033) it is invalidated.

The problem with this design is that the fraction of
the cache bandwidth required to service external
updates/invalidates grows (almost) linearly with the
number of processors and the resulting memory interfer-
ence makes this solution implausible for more than 2 to 4
high performance processors. By filtering out repeated
requests to invalidate the same block, by using a BIAS
Filter Memory (BFM) [Bean79), the pumber of processors
can be increased, but then the BFM bandwidth becomes the
limiting factor.
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3.6.3. Centralized Directory

The first hardware based consistency mechanism to be
described in the literature was that of a centralized direc-
tory [Tang76). In this architecture, main memory main-
tains a directory which keeps track of which lines are in
which caches, and in what status (e.g. shared / exclusive).
When a processor requests & line for shared access, the
main memory controller ensures that no other processor
has that line for exclusive access by searching its directory
and requiring that amy processor holding the line for
exclusive access relinquish it. When a processor requests a
line for exclusive access (or converts a line from shared to
exclusive) the controller invalidates the line in the caches
of any processor holding it.

There are some limitations to the centralized direc-
tory method. First, the central controller is expensive and
complicated. Second, processing of misses can be slow due
to the need to reference the directory and perhaps recall
lines from other caches; queueing delays will slow up
memory access even further. Finally, the bandwidth of the
controller must be sufficient to accommodate all processors
at all plausible miss rates.

3.6.4. Common Bus Methods

With the availability of high performance, large
address space microprocessors, multiprocessor designs in
which several microprocessors all share the same (common)
main memory bus have become popular; this architecture is
illustrated in Figure 7. Because all processors share the
same path to main memory, each can monitor misses from
all other caches, and the directory method can be imple-
mented straightforwardly in a distributed manner. Each
cache maintains a directory for the information that is
locally resident.

In general, bus methods for maintaining multiproces-
sor consistency function as follows. All caches bave an
intelligent interface between the cache and the common
bus to main memory. Any processor operation (such as a
read miss, a write miss, or an attempt to write a line which
is currently unmodified) which threatens to produce an
inconsistency must in some way be announced on the bus.
Correspondingly, every cache interface must watch the bus,
and must take whatever actions are necessary (e.g. invali-
date local copy or preempt read from memory and supply

" local copy) to preserve consistency.

The first bus comsistency method was proposed in
[Good83). Improvements and extensions have appeared

" since. A recent paper in this area is (Swea86], in which a

class (MOESI) of compatible protocols is described. That
class of protocols has the property that a processor can
jmplement any protocol within the class (and may imple-

" ment different protocols for different pages, or may change

the protocol over time), and still maintain consistency even

~ though other processors may implement different (compati-

ble) protocols. The MOESI class of protocols includes a
number of the previously published ones as special cases.

There are several problems with the bus methods
which limit their applicability. First, all processors must
share a common bus, which may be difficult due to aggre-
gate memory traffic and other reasons such as bus length,
bus loading, physical configuration, etc. Second, the bus
traffic limitation sets an upper limit on the number of pro-
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cessors that can be accommodated. Finally, the interface
between the cache and the bus must be fairly sophisticated.

%3.6.5. Software Methods

In order for a computation to be deterministic, syn-
chronized access to shared resources, such as memory, must
be enforced. This implies (although not trivially) that the
operating system software knows which areas of memory
will be shared and when, and it can issue commands to the
various processor caches so that references to that shared
memory will be correct. Therefore, it is also possible to
implement consistency via software.

There are two issues in enforcing consistency: (1)
When a processor requests a line for a read, it must get the
latest value; this can be arranged if all misses are serviced
from main memory and if main memory is itsell
guaranteed to be up to date. Main memory can be made

* current either via write through, or by flushing modified
data from a cache when the sbared region is released. (2)
When an area of memory is referenced sequentially by pro-
cessors A, then B, and then A agsin, we must be sure that
the values that A sees are not “stale”, through baving
remaining in A's cache while B modified them. The tradi-
tional solution to this problem is to have A purge its own
cache when it releases the shared area of memory,
although in [Smit85¢], a mesans is described to prevent
access to shared data without purging the cache. (A
“unique identifier” is attached to both the line and the
corresponding TLB entry, and must match for sccess to be
permitted. Deleting ibat identifier prevents further
access.)

Software enforcement of cache consistency has one
general problem, which is that it must be possible to iden-

tify just when cache must be purged or fushed. While this

is presumably possible, since correct operation requires
correct synchronization, performance considerations make
this very tricky. The problem is that synchronization
operations are much faster (less costly) than cache flush or
purge operations. Consequently, if the cacbe is flushed or
purged on every synchronization operation, performance
will be very adversely affected; if the cachbe is not, then pro-
gramming errors are likely to be introduced, and debug-
ging is likely to be difficult.

The trend is toward the use of bus based consistency
methods for systems with small or moderate numbers of
processors, and toward software control for systems with
very large numbers of processors. Cache consistency is a
very active area of research and hopefully better solutions
than those described above will be developed in the next
few years.

3.7. Cache Size and Multilevel Cache

The size of the cache is one of the two parameters
(along with line size) which most strongly affects the miss
ratio, but cache size is usually constrained by a variety of
factors. Clearly, the larger the cache, the lower the miss
ratio and all other things being equal, the better the cache
performance. Larger caches, however, tend to be slightly
slower even when implemented in the same technology and
in the same place (board, chip) in the system, due to larger
fan in/ fan out requirements on circuits and slower circuit
rise times. Further, cache sizes are constrained by physical
limits such as chip and board area, economic considerations
such as cost, and related limits such as power and cooling.

As an aid to selecting a cache size, keeping in mind
the above tradeoffs and constraints, we have developed
(Smit85a.b] what we call design target miss ratios, which

Unit/E~Unit = Unit/E ~Unit
Cache Cache
Momory Bus Main
Wemory
Cache Cache
I-Unit/E-Unit 1=Urit E~Unit

Figure 7: Common Bus System Design

are "expected” miss ratios as a function of a given cache’
size and line size; our design target miss ratios from
(Smit85b] are shown for a unified (combined
ipstruction‘data) cache in table 2. Miss ratios to be
observed in practice will vary sharply with workload, but
the design target miss ratios were created for use by
designers, and as a basis for comparison between designs,
given some "average” workload; these design target mies
ratios are comparable to those measured on real machines
running real workloads {e.g. Clar83]. Beyond the range of
cache sizes shown in table 2, we note that measurements at
Amdah] [Smit82] suggest that the miss ratio tends to drop
roughly as C**(-.5), where C is the cache size; i.e. quadru-
pling the cache size halves the miss ratio.

The traditional cache is just one level in a multilevel
memory hierarchy, but recent technology trends increas-
ingly favor multilevel caches. Using SSI, MSI or LSI tech-
nology, caches are implemented as separate collections of
chips, and it is difficult to cresate sufficiently different per-
formance and cost Jevels such that more than one level is
justified. With the ability to build an on-chip cache
(Motorola 68020, 68030) or & single chip cache (Fairchild
CLIPPER), a multilevel cache is much more appealing.
The reason for the change is that with VLSI, different lev-
els of cache are differentiated by both significantly different
access times and also significantly different sizes, although
both levels may be implemented using the same circuit
technology. Thus the >50% miss ratio for the caches in
the 68030 almost mandates a larger off-chip cache, and the
approximately 10% miss ratio for the CLIPPER [Cho86]
justifies a very large board size cache (e.g. 256K) in a high
performance multiprocessor system.

Another factor affecting cache size is the choice of-
chip technology. Usually, one builds an off-chip cache of

Design Target Miss Ratios

Line Size: 4 8 16 32 64 128

32 0.717 | 0.556 | 0.500 | 0.722 | O 0

64 0.686 | 0.488 | 0.400 | 0.410 0672 | 0
128 0.674 | 0.467 | 0.350 | 0.330 | 0.400 | 0.630
256 0.643 | 0.420 | 0.300 { 0.258 0.276 | 0.386
512 0.596 | 0.390 | 0.270 | 0.216 | 0.197 | 0.257
1024 0.473 | 0.309 | 0.210 | 0.162 0.137 | 0.151
2048 0.405 | 0.258 | 0.170 | 0.124 0.098 | 0.093
4096 0.329 | 0.193 | 0.120 | 0.082 0.059 | 0.050
8192 0.232 | 0.135 | 0.080 | 0.050 0.033 | 0.025
16384 0.182 | 0.103 | 0.060 | 0.036 | 0.023 | 0.016
32768 0.124 | 0.070 | 0.040 | 0.024 | 0.014 0.009

Table 2

Design Target Miss Ratios, Unified Cache
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the fastest chips that one can buy; these are currently fas-
ter than Sns in ECL and about 10-12ns in CMOS. The
problems with such fast chips are cost, power, and density,

and one often will use somewhat less than the fastest tech-

nology; price drops rapidly with decreasing performance
and density also increases. (The fastest static CMOS chips
are 16K or 64K; the largest dynamic RAMs in commercial
production are 1M.) This same tradeoff carries over to on-
chip caches. Using the same technology as the 1Mbit
DRAM, one can have approximately 32Kbytes of DRAM or
8Kbytes of SRAM on 25% of a processor chip. By using the
data in table 2, and making some reasonable assumptions
about the time to satisfy a cache miss and the time to
reference the cache (for the two technologies), one can
decide between the two. (Calculations by the autbor favor
the DRAM design.)

We see the trend in microprocessors toward increas-
ingly large on-chip caches, with 2'nd level board-size caches
in higher performance and multiprocessor systems. The
chip-size caches of the CLIPPER represent the technology
available in 1986. Using that technology, on-processor-chip
cache sizes are insufficient to justify their use. The
CAMMUs in the CLIPPER are equivalent to the on-chip
cache of the future.

3.8. Other [ssues

There are many other issues in cache design besides
those discussed above. For reasons of space, we only list
some of those other issues bere; we refer the reader to
[Smit82.84a]) for more extended discussions. We particu-
Jarlv mote the issues of fetch algorithm (demand'prefetch),
replacement algorithm (LRU, random, FIFO), error detec-
tion and correction, pipelined access to the cache, and arbi-
tration for multiple ports to the cache.

3.8. ‘Other Types of Caches

As we poted in the introduction, caches are used in
many other ways and places in computer systems. Here we
list a number of those other ways. We note that TLBs are
small caches; see [Smit82,84a]. {nstruction buffers are res-
tricted instruction caches. The branch target buffer is a
cache for branch targets [Lee84). Disk caches cache por-
tions of the disk address space (Smit85d].

4. Conclusions

Memory system performance is currently the most
critical aspect of computer system design, and the perfor-
mance of the cache memory is the single most important
architectural factor in the CPU performance. In this paper,
we have described cache memories, provided an example of
a modern cache design, and then have discussed, in varying
detail, a number of factors that need to be considered by
the computer system designer.

We believe that cache memories will continue to be
jmportant. Continuing research is needed on multi-cpu
cache consistency, quantifying the cache performance as &
function of parameter values, the design of virtual address
caches, the use of caches in vector processors, the charac-
terization of workloads as they affect caches, measuring the
behavior of real machines using hardware monitors, the
development of improved prefetch algorithms, the design of
caches for static workloads (such as microcode) and the
design of multilevel caches.
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