MORE...
CREATIVE GEOMETRIC MODELING

Carlo H. Séquin

Report No. UCB/CSD 86/278
December 1985

i

)

W

Computer Science Division (EECS)

University of California
Berkeley, California 94720

MORE ...
CREATIVE GEOMETRIC MODELING

Carlo H. Stquin
With contributions by:

Cecilia Aragon
Rajiv Bhateja
Eric Fan
Dan Filip
Philip D. Flanner
Ziv Gigus
Nachshon Gal
Mark Gerolimatos
Thomas Laidig
Lucia Longhi
Don Marsh
Gene Ressler
Jim Ruppert
Mark Segal
H.B. Siegel
Lun-Shin Yuen

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

This is a report on the second offering of the graduate course CS
292A, “Creative Geometric Modeling’" first offered in Fall 1983. As part of
the course, the students developed some new generator, modifier, and
general utility programs for the UNIGRAFIX system. These programs were
also used to create artistic displays.

This report gives a brief overview over the course syllabus, introduces
some of the new UNIGRAFIX programs, and demonstrates on several
examples what these new tools can be used for.

-2.

1. CS 292A, CREATIVE GEOMETRIC MODELING

In 1983 a new graduate course, "Creative Geometric Modeling” was added to the
catalog of our offerings in the area of computer graphics.! The main goals of this course
were:

a) To satisfy the increasing demand from students to learn more about the fast-moving
and ever more pervasive field of computer graphics.

b) To develop the spatial perception of the participants and to train their skills in
geometry.

¢) To give the recently developed UNIGRAFIX system a hard work-out to identify bugs in
the algorithms and in the user interface.

d) To enhance the UNIGRAFIX environment by adding facilities that make it easier to
create complex geometrical objects.

In spring of 1985 this course was offered for the second time. There were 14 formally
enrolled students, 10 graduates and 4 undergraduates, some of them from mechanical and
civil engineering, as well as a few auditors.

1.1. Syllabus

The course extended over 15 weeks with 1.5 lecture hours per week. The course had
formal homeworks during the first half of the term and concentrated on individual course
projects during the second half. Below is a rough outline of the lecture and discussion
topics and of the homework assignments on a week by week basis:

1) Importance of geometric skills and spatial perception.

Course goals, class format, deliverables, background questionnaire.
Exercises in visualizing 3-D geometric objects and constructions.
Role of creativity; handling problems with ambiguous solutions.
Course-related literature, inspiring books.
Hilbert curve in 2D

Assignment: Find solution for Hilbert curve in 3D.

Design a clover leaf for a 6-way highway intersection.

2) Introduction to UNIGRAFIX, object representation, toolbox.
Discussion of first homework; evaluating the quality of a solution.
Recursive formulation of the 3D Hilbert curve.

Recursive fractal surfaces derived from Sierpinsky curve.
Assignment: Study ‘mkworm’, Hilbert curve with mkworm.
Design a recursive surface inspired by Sierpinsky curve.

3) Difficulty of creating object descriptions, need for generators.
The generator program ‘mkworm’; axfile specifications, worm parameters.
Different approaches for the construction of recursively defined surfaces:
direct specification of surface in boundary representation by local deformations
versus CSG description and postprocessing with ‘ugisect’.
Assignment: Recursive path through 3D inspired by C-curve or Dragon curve.
Procedural description of a gear wheel: polygon and swept object.

4) The algorithms and data structures of ‘mkworm’.
Mitring at the joints, use of a suitable coordinate system.
Closed loops in ‘mkworm’; simple knots: trefoil and cinquefoil knots.

-3-

End-to-end axturn: can this be determined by analyzing the individual local joints ?
Assignment: Construct tight tetrafoil knot with ‘mkworm’.

5) Knot constructions with ‘mkworm’.
The analysis tools in ‘mkworm’: axspec and axdist.
Tight knots, constraints on ax distances; clover leaf knots.
Matching the edges in prismatic joints; multiple pipe joints.
Assignment: Construct tight cinquefoil knot with minimal axlength.
6) Experimental and constructive approaches to cinquefoil construction.
Knot-tightening by simulated annealing; movements, cost functions.
Other knots; square knots, granny knots, torus knots.
Assignment: Select and outline your course projects.

7) Introduction to the Platonic solids in 3D
Construction of exact vertex coordinates. Symmetry groups.
Archimedean solids and their duals.
The algorithms in ‘ugshrink’ and ‘ugtrunc’.
Assignment: Modification of platonic solids with ‘ugtrunc’,‘ugdual’,'ugfreq’...
Use mkworm and symmetry of platonic solids to create polylink.

8) Euler relations; convex polyhedra, arbitrary polyhedra of any genus.
More on modifier programs for polyhedra.
Quiz: How do you derive the structure of C10-H16 from knowledge of regular polytopes ?
Assignment: Prepare project proposal.

9) Construction of platonic solids in 4 and higher dimensions.
Simplex series, n-cube series (measure polytope), dual to n-cube (cross polytopes)
Enumeration of all regular polytopes in four dimensions.
Due date for: Project proposals.

10) Mental fitness quiz on hyperspace.
Projecting 4-dimensional objects to 3-dimensional space.
Construction of the more complicated 4-dimensional regular polytopes.
Assignment: Prepare formal proposal presentation.

11) Formal 5-minute project proposal presentations.
The purpose is to improve presentation skills.
Conceptual setting: a short interview with a venture capitalist.
You must convince him in 5 minutes to fund your proposal for a new tool.
You need: Viewgraphs, slides, posters ...

12) Discussion of results of ‘‘venture capitalist rally.”
Discussion of content, form, and impact of presentations.
How to prepare a manual page for your program.
Special problems in your projects: Naming of new vertices in tessellations.
Due date for: Progress reports.

13) More on special problems in your projects.
Useful data structures in ‘ugplot’ and ‘ugdisp’.
Random fractal surface generation, smoothing operations.
Quiz on geometry and spatial perception.
How to finish your project; how to prepare for art show.
Due date for: Formal manual pages.

-4-

14) Transformations between Platonic and Archimedean solids.
The translation-rotation operation ("snub” operation).
Toroids, Moebius bands, Klein bottles.

Toroids from regular polygons; minimal toroids.
Top priority: Your project.

15) Special session on paper folding of regular polyhedrons.
Course wrap-up at LaVals.

Due date for: Course projects.

18) Artshow and Reception.

2. THE NEW UNIGRAFIX PROGRAMS

This section gives a brief introduction to the programs developed or completed dur-
ing this course offering. For an overview over the UNIGRAFIX system see the original CS
292A course report! or a short overview over the Berkeley UNIGRAFIX Tools.2 Some of
the larger and more complicated programs are also described in detail in separate

report$.3'4'5’6

2.1. Generator Programs

We start with the programs that create an object description in UNIGRAFIX format
from scratch:
*mkgear’ (Laidig)
produces a UNIGRAFIX description of gear wheels or whole gear boxes based on the
specification of position and size, of gear wheels and shafts.

*mkrobot’ (Fan)
is a generator program that reads the predefined parts of a robot arm from the file
“ug/lib/rbparts, takes the values of the various position parameters from the com-
mand line, performs some checking on the size and ranges specified, and produces a
UNIGRAFTX description of the complete manipulator arm.

‘mkhouse’ (Bhateja)
constructs walls, windows, doors, and a roof of a simple parameterized house.

*mkeity ° (Gerolimatos)
is a city-sprawler that will generate a “downtown area” of a city in a random
fashion. It supports three types of prism-based buildings. Other parameters control
the block dimensions, number of blocks in the scene, street width, and the maximum
and minimum height of the buildings.

‘mklife’ (Ruppert)
gives a 3-dimensional rendering of successive generations of cells in John Conway's
game of Life.

2.2. Modifier Programs

Other programs act as filters; they start from a UNIGRAFIX description and produce a
new object:
‘ugtess’ (Gigus, Longhi)
is a filter that tessellates the faces of an arbitrary unigrafix object into convex
polygons without creating any new vertices. An option exists to triangulate the faces
instead.
‘ugfrac’ (Yuen)
subdivides all triangular faces into four new faces, where the three new vertices
corresponding to the middle of the edges are displaced by a random amount. Recur-
sive application creates wrinkled surfaces suitable to represent landscapes.
‘ugext’ (Siegel)
extrudes the vertices of one object by ratioing their distance from the origin with a
second closed surface. Useful mainly for the creation of unexpected artistic objects.
‘ug4Dprism”’ (Filip)
creates a 4-dimensional prism by sweeping the specified 3-dimensional solid along the
fourth coordinate axis.
‘ug4Dpyr’ (Filip)
creates a 4-dimensicnal pyramid on top of the specified 3-dimensional solid.
‘ug4Drev’ (Filip)
creates a 4-dimensional solid of revolution by rotating the specified 3-dimensional
solid along the z-w plane.
‘ugpipe’ (Flanner, Marsh)
produces ball and cylinder descriptions in the UniQuadriz descriptive format. It
starts from standard UNIGRAFIX scene descriptions and converts all vertices into balls
and all wire segments and face edges into cylinders. The output contains all of the
quadric and planar descriptions necessary to render the object with UniQuadrsz.
‘ugtight’ (Aragon)
uses a simulated annealing technique to move the joints of a knot in space with the
goal to minimize its string length without creating intersections or changing its topol-
ogy.
‘ugisect’ (Segal)
converts a scene description that contains intersecting faces into a proper UNIGRAFIX
description, where faces only intersect along joint edges. As such it is a preprocessor
for the renderers that rely on the coherence of planar non-intersecting faces in order
to minimize depth comparisons in the hidden feature elimination. ‘ugisect’ can also
perform Boolean set operations on two solids and return the union, difference, or
intersection of the two objects.

2.3. Renderers and Utilities

‘ugi’ (Gal)
is an interactive shell for assembling and displaying UNIGRAFIX scenes. Many of the
older batch facilities of the UNIGRAFIX system have already been incorporated into

-6-

this program and can run directly on the internal data structures of ‘ugi’ without the
need to convert back and forth to the UNIGRAFIX ascii format.>

‘ugdisp* (Gal)
is a pew renderer that combines some of the best features of ‘ugshow’ and ‘ugplot’.
In addition it can provide smooth Gouraud shading for polyhedral objects and it can
bandle intersecting objects directly.’

‘uq’ and ‘UniQuadrix’ (Ressler)
provide an extension of the UNIGRAFIX domain to curved objects. ‘UniQuadrix is a
language very similar to the UNIGRAFIX format that describes arbitrary quadric half-
spaces and planes. ‘uq is the corresponding renderer that will produce smooth-
shaded images of objects that can be described as the union of pieces formed by the
intersections between one quadric half-space and several planar half-spaces.®

‘ugman’ (Ressler)
is the general facility to run off one of the manual pages from the UNIGRAFIX library
of tools. It corresponds to the UNIX ‘man’ command.

2.4. Program Documentation

A detailed description of some of the above programs is available in the form of
Technical Reports or Master's Theses.

References

1. C.H. Séquin, “Creative Geometric Modeling with UNIGRAFIX,” Tech. Report
(UCB/CSD 83/162), U.C. Berkeley, Dec. 1983.

2. C.H. Séquin, “The Berkeley UNIGRAFIX Tools, Version 2.5,” Tech. Report
(UCB/CSD 85/), U.C. Berkeley, Jan. 1988.

3. C.H. Séquin, M.G. Segal, and P.R. Wensley, “UNIGRAFIX 2.0 User’s Manual and
Tutorial,” Tech. Report (UCB/CSD 83/161), U.C. Berkeley, Dec. 1983.

4. P.R. Wensley, “Hidden Feature Elimination and Visible Polygon Return in UNI-
GRAFIX 2,” Master’s Report (UCB/CSD 84/172), U.C. Berkeley, May 1984.

5. N. Gal, “The ugi Shell for UNIGRAFIX,” Technical Report (in preparation), U.C.
Berkeley, Spring 1986.

8. H.B. Siegel, “Jessie: An Interactive Editor for Unigrafix,” Master’s Report, U.C.
Berkeley, Dec. 1985.

7. N. Gal, “Hidden Feature Removal and Display of Intersecting Objects in UNI-
GRAFIX,"” Master's Report, U.C. Berkeley, Jan. 1986.

8. G.K. Ressler, “UniQuadrix,” Master's Report (UCB/CSD 85/240), U.C. Berkeley,
June 1985.

The following section presents the manual pages for the various new generator and
modifier programs and for some other new utilities. In a few cases, these are followed by
tutorial examples to show the variety of effects that can be produced with these programs.

mkecity () " UNIGRAFIX User's Manual mkecity ()

NAME
mkcity — Generate a random city

SYNOPSIS
mkcity [—d <block length, block width>]
[—b <# of blocks long, # blocks wide>]
[—s <street width> —h <height>][—f <command file name>]

DESCRIPTION
MKCITY is a city-sprawler which will "grow” a downtown area of a city in a ran-
dom fashion. Currently, mkcity supports three main types of buildings (box,
"random’’ (sort of like the Sears Tower in Chicago), and stepped), although the
internal representation does not necessarily prevent non-square geometries
from being used.

The constraints on the generator are maximum height, minimum height, block
dimensions, number of blocks in the scene, and street width, In addition, the
user may "seed” the scene with parksUNIGRAFX and “high rent districts”. The
park seeds affect the minimum heights of the buildings, while the high rent
seeds affect the maximum size. Otherwise, height of the buildings is quite
psuedo-random.

COMMAND LINE ARGUMENTS
—d <block length, blockwidth>

or blocksize <block length, blockwidth> in command file
Sets the physical demensions of the blocks: the length and width.
Currently, all blocks must be of the same dimension.

~b <# of blocks long, # of blocks wide>

or citysize <# of blocks long, # of blocks wide> in command file -
Gives the number of blocks in the city...length and width. Default is 300 x
100. }

—s <width of street>

or
Specifies the width of the street (seperation between blocks). Default is
50.

—H <height of building in stories>

Specifies maximum height of each building. Default is 50 (20ft) stories.
—h <minimum height of building in stories>

Specifies minimum height of each building. Default is 2.
Sc <posz posy> <severity (0->1)>

Specifies a high rent seed of severity at <x,y>.
Sp <posz posy> <severity (0->1)>

Specifies a park seed of severity at <x,y>.

—o <output file name>
Specifies output to go to an output file. Default is stdout.

—£ <command file name>
Take file <command file name> as input

Release 1988 1

" mkeity () UNIGRAFIX User's Manual mkcity ()

Note that while buildings are given by height, houses are stored in "storied"”
form, and their height will automatically be adjusted by the sprawler to look in
proportion to the block size.

EXAMPLE
mkeity -b 3 3 -d 100 100 -Sp 0 0 .6 -Sc 2 2 1 -s 80 -H 50 -h 3 -o city cat
~ug/lib/illum city |ugplot -ed-11-1 -sa -dv -sy 3

FILES
~ug/bin/mkecity
BUGS
Causes ugdisp to freak out in a massive way. Really can't figure out why. If

scenes get too large, ugplot may also have problems. To help remedy this, try '~
F <fudge factor>" to seperate pieces of buildings, slightly.

AUTHOR
Mark Gerolimatos

Release 198§ 2

MKGEAR (UG) UNIGRAFIX User’'s Manual MKGEAR (UG)

NAME

mkgear — generate graphical descriptions of meshing gears
SYNOPSIS

mkgear [—N][—a rotate-angle] [—s shaft] [—f facet—curvature]
DESCRIPTION

Mkgear takes a concise definition of shafts and gears from standard input, and produces a
unigrafix description of them on standard output. Any unrecognized input commands are
passed unchanged, so normal unigrafix commands included in the input (such as light
sources and descriptions of other objects to occupy the scene with the gears) will be passed
through without change. Normally. no command line options are needed, but the follow-
ing can be used to modify mkgear’s behavior:

—N Do not generate descriptions of gears. Just pass through the input with comments
describing the gears that would be generated.

—a angle
Rotate a shaft by angle degrees clockwise (as viewed from the first end of the
shaft). By default, the first shaft described in the input is rotated, but this can be
changed with the —s option.

—s shaft
Instead of rotating the first shaft in the input file, use the shaft named shaft.

—f angle

Set the maximum facet curvature angle to angle degrees. Mkgear will divide the
meshing surface of each gear tooth into facets so that the arc approximated by each
facel has less than angle degrees of curvature. The default value of 25 degrees is
usually adequate; larger values result in coarser gears, but values much smaller can
cause mkgear to produce unconscionable amounts of output. As a special case, an
angle of O forces mkgear to use a single facet for each surface, which is useful for
test runs.

The input description consists of vertex, shaft, gear. cluster, and box commands. The
vertex command is the standard unigrafix vertex command, and is copied 1o the output
unchanged after being assimilated:

v vname xcoord ycoord zcoord ;

where vname is the name of the vertex, and xcoord . ycoord , and zcoord are the coordinates.
All gears must be on shafts, which are defined with the shaft command:

shaft sname (vertl vert2 diam) [—flat | —key | —hex | —spline nsplines] [

—inv];
where sname is the name of the shaft, vert] and vert2 are vertices at the two ends of the
shaft. and diam is the diameter of the shaft. By default. the shaft is round and is welded
to its gears (i.e. — there is no indication of what fastens them together), but it can be
made flatted, keyed, hexagonal, or splined by specifying the —flat, —key, —-hex, or
—spline option, respectively. For splined shafts, the number of splines is given by
nsplines. The shaft can also be made invisible, by adding the —inv option, allowing gears
to be drawn floating in space. Once a shaft is defined. a gear can be put on it with the gear
command:

gear gname (sname vert nteeth thickness) [—hub hubdiam hubthick [—inv];

where gname is the name of the gear. sname is the name of its shaft, vert is a vertex in the
same plane as the gear (e.g. — the vertex where a pair of gears meshes), nteeth is the
number of teeth on the gear, and thickness is its thickness. If the —hub option is given,
the gear is drawn with a hub hubdiam in diameter and hubthick in thickness. A hubbed
gear on a flatted, keyed. or hexagonal shaft is drawn with an Allen setscrew on the hub.

Release 1985 1985-5-9 1

MKGEAR (UG) UNIGRAFIX User’s Manual MKGEAR (UG)

toward the first end of the shaft. The gear can be made invisible with the —inv option.
which allows other gears to be drawn as if this gear were here. Once the gears are defined.
it is still necessary to describe which gears mesh togetber. This is done with the cluster

command:
cluster [cname] (gearl gear2 ...);

where cname is the optional name for this gear cluster, and gear! and gear2 are the names
of two gears that mesh. A cluster can have more than two gears, in which case each gear
meshes with the gear named before it and the one named after it. Mkgear computes the
diameter and bevel angle of each gear based on the positions and directions of the shafis
and on the gear ratios involved. If a gear must be two different sizes 10 mesh with each of
two other gears, it is drawn correctly for one of its neighbors. and an error is reported.
Note that no gear can be drawn unless there is another (possibly invisible) gear meshing
with it

In addition to gears and shafts, mkgear can produce complete or partial boxes. as directed
by the box command:

box [bname] (vertl vert2 vert3 ... [—bearing shaft1 ...]) ... thickness ;

where bname is an optional name for the box. vert], vert2, vert3, eic. are the vertices that
make up one wall of the box (listed in clockwise order as seen from the outside of the box
— actually, the choice of outside and inside is arbitrary, but all connecting box walls must
agree on which side is the inside and which is the outside), and —bearing shaft!, etc. list
all shafts (if any) that penetrate that wall of the box. The walls of the box are expanded
symmetrically around the defined faces to a thickness of thickness. For box walls to mate
properly. all connecting walls must be defined in a single box command.

EXAMPLE

If the file dermo contains

-2 2-2;
2 2-3;

bt bt ot
[SR- -

v shaftistart 0 O 5;
v shaftlend 0 0 20;
shaft shaft1 (shaft1start shaftlend 3) -flat;
v shaft2start 5 O §5;
v shaft2end 15 0 15;
shaft shaft2 (shaft2start shaft2end 3) -key:

v meshpoint 6 0 12:
gear gear1 (shaftl meshpoint 20 2) -hub 6 8:
gear gear2 (shaft2 meshpoint 15 3) -hub 6 8:
cluster (gear1 gear2);

then the command

mkgear -s shaftl -a 135 <demo | ugplot -sa -ed -1 3 -3 -dv -sy 3

Release 1985 1985-5-9 2

MKGEAR (UG) UNIGRAFIX User's Manual MKGEAR (UG)

FILES

produces

" ug/bin/mkgear executable
" ug/src/mkgear/* source code
" ug/lib/geardemo demonstration

SEE ALSO

ugplot (UG)

DIAGNOSTICS

BUGS

The diagnostics are intended to be self-explanatory. and include the line number where the
error was encountered. If this number is greater than the number of lines in the file, the
error was discovered after the input was completely scanned — usually an object name is
given 1o help locate the source of trouble.

Most esrors are nonfatal, in that mkgear will continue to process input to look for more
errors. It will also attempt to produce output correctly describing the part of the input

scene it understood.
Mkgear gives a return code of zero unless it encountered a fatal error.

The width of each gear tooth is chosen so the gear can mesh with any other gear. This
allows considerable lash between two gears with only a few teeth each.

The current algorithm for generating vertex names allows only 26°=676 vertices in any
one ring. This limits the maximum number of teeth on a gear to 169. If the facet curva-
ture angle is set to less than 11 degrees. some gears with fewer than 169 teeth will not
work.

The gears on a keyed shaft also have keyways cut into them, but no key is created. This is
not normally a problem, since the key is likely to be hidden from view anyway.

Shafts cannot penetrate box sides at other than right angles.

No more than three box walls can join at a vertex.

In fact. boxes don’t work at all yet.

AUTHOR

Tom Laidig

Release 1985 1985-5-9 3

MKHOUSE (UG) UNIGRAFIX User's Manual MKHOUSE(UG)

NAME

mkhouse - Create a UNIGRAFIX model of a building
SYNOPSIS

mkhouse | options | < input > output
DESCRIPTION

mkhouse reads data defining the floor plan and locations of doors and windows of a building from
standard input. It then generates a model of the building in UNIGRAFIX format. Internal walls
are not considered at present.

The first line of the input must contain the height of the building and its wall thickness. The floor
plan is defined as a polygon in the x-z plane with no branches or overlaps. The top of the building
is directed along the positive y axis. (Note that mkhouse uses the standard left-handed
UNIGRAFIX coordinate system.) The floor plan polygon is defined by specifying a list of nodes in
the x-z plane as a two-dimensional grid in clockwise order when viewed from the positive y half-
space. A typical nodal specification is given below:

n <node number> <x-coord> <z-coord>

The first and last nodes input for the floor plan are automatically joined to obtain a closed
polygon.

Windows and doors may be specified for the walls of the building. For example:

w <node-1> <node-2> <r> <s> <width> <height>

defines a window in the wall spanning node-1 and node-2, where r and s are factors between 0.0
and 1.0 specifying the location of the center of the window on the wall. For each wall, the r-axis
extends horizontally to the right from the lower left-hand corner of the wall (viewed from
outside), and the s-axis extends vertically upwards from the same point.

Similarly, a door is defined as:

d <node-1> <mnode-2> <r> <s> <width> <height>

Available options:

—8 <roof height > Creates a sloping roof of the specified height instead of the (default) flat roof.

1985-05-20 1

MKHOUSE (UG)

EXAMPLE
mkhouse -s 40 < housespec > house cat house illumF | ugplot -ed 900 100 -500 -sa -dw -sx 4.5

FILES

-8y 5

Contents of housespec:

90 6

n 180-50

n 2 -80 -50

n 3 -80 50

n 4 80 50

w12 0.2053040
w12 0.80.53040
d12 0.50.35 3060
w23 05054040
w41 05054040
w34 0.30.54040
w34 0.70.54040

UNIGRAFIX User's Manual

R 2
X

RO
R

o
ARNARN

NS
NRANA

NS

PAODGORINNIN SN
ARSI 3
AN

B

N

RN

A SR RS

“ug/bin/mkhouse, ~ug/src/generators/pascal/mkhouse.p

SEE ALSO
mktree (UG), mkstairs (UG), ugplot (UG)

BUGS

MKHOUSE (UG}

2
N

TR

B ety

It’s a good idea to make the walls thickness larger than life. Otherwise outer and inner wall faces

might not be distinguishable with the available device resolution.

When using the -s option, a space must be left between the letter ”s” and the value for the roof

height.

Doors and windows that adjoin walls, the floor or the roof result in coplanar faces that are

distasteful to ugplot.

AUTHOR

Rajiv Bhateja

Rel :1985

1985-05-20

MKLIFE (UG) UNIGRAFIX User's Manual MKLIFE(UG)

NAME

mklife — generate 3-D display of 2-D game of life
SYNOPSIS

mklife [options] [< initialgrid] [> ugobject]
DESCRIPTION

Mklife computes successive generations of an initial grid of binary cells in
accordance with the rules of John Conway's game of Life. The successive genera-
tions become layers in a 3-dimensional scene suitable for input to UNIGRAFIX.
The output can be cubes representing cells, planes representing entire genera-
tions, or wires connecting parents with offspring. Cubes are the most informa-
tive, but slowest to render. Wires are rendered quickly, but have no good depth
cues. Planes are intermediate on both accounts.

Options are:
—ia Specifies that the initial grid will be in ascii format (see below) and will be
taken from stdin. This is the default input format.

~ir Specifies that the initial grid is to be randomly generated. See the —d and
—s options (below).

—oc Specifies that the output will be in the format of UNIGRAFIX cube
instances. An appropriate cube definition will also be output. This is the
default output format.

—op Specifies that the output will be in the form of planes, via UNIGRAFIX
faces. No back (bottom) faces will be given.

—ow Specifies that the output will be in the form of UNIGRAFIX wire state-
ments, with wires connecting a cell to its neighbors in the previous gen-
eration.

—oa Specifies that the output will be the last generation only, in ascii format
(see below). This can be piped back into mklife.

—ot Specifies that all generations be output in ascii format for tracing by the
user. This is useful in determining what a configuration will become
without using a UNIGRAFIX renderer.

generations
Set the number of generations to compute. Mklife will stop before this if
the grid becomes empty. Default is 12.

-r TOWS
Set the number of rows in the grid. If the initial grid used with the -a
option has a different number of rows, that value is used. Default is 10.

—c columns
Set the number of columns in the grid. If the initial grid used with the Ha
option has a different number of columns, that value is used. Default is
10.

-w Turn on wrap-around at the edges of the grid. The east edge is adjacent
to the west edge, and the north edge is adjacent to the south edge. In
eflect, the grid becomes finite and toroidal. Default is off.

—a seed
Use the integer seed for creating random initial grid. Ignored if —ir
option not set.

—d density

Release 1985 1985-5-8 1

MKLIFE(UG)

UNIGRAFIX User's Manual MKLIFE(UG)

Use the integer density as a percentage density to fill a random initial
grid. Default is 24 (percent). Ignored if —ir option not set.

-G Turn off the reference grid that is normally included with UNIGRAFIX for-
mat output (—oc, —op, —ow options). Default is to output the grid.

-R rulestring
Use rulestring as the rule for computing successive generations. Format
of the rulestring is discussed below. Default is A12D8.

-S scale
Use scale as the scaling factor for UNIGRAFIX cube instances. Ignored if
—oc option not used. Value must be between 0 and 1 exclusive. Default is
0.99.

Input file format.

Input files are ascii files containing 0's and 1's (separated by spaces) as
values for the cells in the initial grid. Lines in the file correspond to rows
in the grid. A small file containing a "glider” might be:

oooo0000000000O0
00000000000000
00000000000000
01110000000000
00010000000000
00100000000000
pooo00000000000
0o0000000000000
00000000000000
00000000000000

The number of rows and columns in the grid overrides anything specified
with the -r and -c¢ options.

Next Generation Rule format:

Release 1985

The standard game of Life will demonstrate what a rule is, and show how
alternate rules are specified to mklife. To determine the status of a cell
in the next generation, count up the number of cells that are alive
amongst its 8 neighbors on the grid. If the current cell is alive, and
exactly 2 or 3 of its neighbors are alive, then the cell will be present in
the next generation. If the current cell is empty (dead), it will be alive in
the next generation only if 3 of its neighbor cells are alive. Otherwise the
cell will be empty in the next generation. So we really need two rules, one
that tells what to do if the current cell is alive, and one for when the
current cell is dead. Representing alive with 1 and dead with 0, we get the
following:

Number of neighbors alive currently 876543210
Living cell's status in next generation 000001100
Dead cell's status in next generation 000001000

If we view the statuses as binary numbers, the Alive rule is 000001100, or
12 decimal. The Dead rule is 000001000, or 8 decimal. Our composite

1985-5-8 2

MKLIFE(UG)

UNIGRATFIX User's Manual

MKLIFE (UG)

The syntax for a rule is

rule is summarized in the string "A12D8".
"A<num>D<num>", where <num> is 0-511.

sy 3 -dw
-sy 3 -dw
-sy 3 -dw

-sa-ed21-5-
-op | ugplot -sa -ed 21-5
-ow | ugplot -sa-ed 21 -5
in all 3 UNIGRAFIX output styles)

-g 20 | ugplot
-g 20
-g 20

(the "glider" file from above,

cat glider | mklife
cat glider | mklife
cat glider | mklife

EXAMPLES

>

H~‘:‘ﬁ ot b
OGS

-sy 3 -dv

5

)

-r 12-¢c 7 -w -d 50 -op | ugplot -sa-ed 2 1

(creating a random initial grid

mklife -ir -g 20

1985-5-8

Release 1985

MKLIFE(UG) UNIGRAFIX User's Manual MKLIFE(UG)

FILES
~ug /bin/mklife
~ug /src/mklife.c

SEE AlLSO
Martin Gardner's Mathematical Games column in Scientific American, early
1970's.
Berlekamp, Conway, Guy, “Winning Ways for Your Mathematical Plays"”, Academic
Press, 1982, Vol. II, Chapter 25. Contains lots of interesting ideas and starting
configurations.

DIAGNOSTICS
Echoes the parameters, and may complain and quit if drastically bad input
occurs.

BUGS
The -op option currently does not handle highly complex configurations. Funny
things may happen around the borders of the grid (say. gliders turning into
blocks) because interactions that would have occurred out of sight (on an
infinite grid) don't occur at all. This effect can be reduced by specifying a larger
grid, or by turning on wrap-around.

AUTHOR
Jim Ruppert

Release 1985 1985-5-8 4

MKROBOT (UG) UNIGRAFIX User's Manual MKROBOT (UG)

NAME

mkrobot - generate hierarchical definitions of a robot arm in UNIGRAFIX format
SYNOPSIS

mkrobot | options]
DESCRIPTION

mkrobot is a generator program which reads the predefiued parts of a robot arm from the file
“ug/lib/rbparts in the current directory, takes the values of the various parameters fromn the
command line, and sends a UNIGRAFIX description of the complete arm to the standard output
or a named file (-f option). This file contains the parts and the bierarchical definitions of the
assembled and moved robot arm. The physical limits imposed by the size and geometry of the
arm are checked by mkrobot to zvoid detached parts or interference.

The available options are:

-h <velue> Default: hb=65
This sets the value of the tower height, from the ground to the dipping axis of the
cylinder. The limits are 65 < h < 105.

—r <value> Default: r=0
This sets the value of the arm rotation about a vertical axis.

—d <value> Default: d=0
This sets the value of the dip angle of the cylinder, measured from a horizontal plane.
The limits are -35 < d < 35.

—e <value> Default: e=0
This sets the value of the piston extension, measured from the end of the cylinder to the
end of the piston. The limits are 0 < e < 100.

-t <value> Default: t=0
This sets the value of the twist of the jaw.

-a <value> Default: a=0
This sets the value of the jaw half-angle, measured as the angle through which a finger
rotates from the close position. The limits are 0 < a < 30.

—f <output file name> Default: standard output
This specifies the name of the output file.

EXAMPLE
mkrobot -h85 -r60 -d10 -e30 -t30 -a20 -f rbconf
cat “ug/lib/illum rbconf | ugplot -ed -1 2 -3 -sa -dv

Relezse 1985 1985-5-6 1

MKROBOT(UG) UNIGRAFIX User’s Manual MKROBOT (UG)

FILES
“ug/bin/mkrobot
“ug/lib/rbparts
“ug/src/mkrobot.c
SEE ALSO
ugplot (UG)

DIAGNOSTICS
If a value exceeds one of its limits, it is set to this limit and the action is announced. If any unk-
nown option, missing value, or missing option type is detected, a pertinent error message is issued
and no output will be generated. All dingnostics are sent to the standard error.

BUGS
To be discovered

AUTHOR
Eric S. Fan

Release 1985 1985-5-6 2

ug4Dpyr (UG) UNIGRAFIX User's Manual ug4Dpyr (LUG)

NAME

ug4Dpyr — generate a 4-D pyramid from a 3-D solid
SYNOPSIS

ug4Dpyr [<options>] < oldobject > newobject
DESCRIPTION

Ug4Dpyr is a filter which produces a 4-D polytope from a 3-D solid by making a
4-D pyramid. The 3-D solid is put into the w = 0 hyperplane and each face of the
solid is connected to a vertex outside of the hyperplane by using a 3-D pyramid.
All statements besides the vertex and face statements are passed untouched to
the output. The input parameters are:

~wv<zyzw> Default:v=0001
This sets the vertex of the apex of the pyramid. The vertex must lie out-

side the w = 0 hyperplane (i.e. w component of v must not equal 0).

EXAMPLE
cat ~ug/lib/illum ~ug/lib/dodeca | ug4Dpyr | ug4hole | ug4to3 -ep 0 0 0 -2 |

ugplot -sa-ed 1 2 3 -dv

FILES
~ug/bin/ug4Dpyr

SEE ALSO
ug4Dprism (UG), ug4Drev (UG), ug4hole (UG), ugplot (UG)

BUGS
Yet to be reported.

AUTHOR
Dan Filip

Release 198§ <1985-4-16>

ug4Dprism (UG) UNIGRAFIX User's Manual ug4Dprism (UG)

NAME

ug4Dprism — generate a 4-D prism (swept solid) from a 3-D solid
SYNOPSIS

ug4Dprism [<options>] < oldobject > newobject
DESCRIPTION

Ug4Dprism is a filter which produces a 4-D polytope from a 3-D solid by making a
4-D prism. The 3-D solid is put into the w = 0 hyperplane and swept along the w

axis.
All statements besides the vertex and face statements are passed untouched to
the output. The input parameters are:

—d <real> Default-d= 10
This specifies the distance along the w-axis the solid should be swept.

FEXAMPLE
cat ~ug/lib/illum ~ug/lib/octa | ug4Dprism | ugdhole | ug4to3 -ep 0 0 0 1.7 |
ugplot -sa -ed 3 -2 7 -dv

FILES
~ug/bin/ug4Dprism

SEE ALSO
ug4Dpyr (UG), ug4Drev (UG), ug4hole (UG), ugplot (UG)

BUGS
Yet to be reported.

AUTHOR
Dan Filip

Release 1985 <1985-4-16>

ug4Drev(LG) UNIGRAFIX User's Manual ug4Drev (LG)

NAME

ug4Drev — generate a 4-D solid of revolution from a 3-D solid
SYNOPSIS

ug4Drev [<options>] < oldobject > newobject
DESCRIPTION

Ug4Drev is a filter which produces a 4-D polytope from a 3-D solid by making a
4-D solid of revolution. The 3-D solid is first putin a hyperplane containing the z
and w axes and then translated away from the origin. Copies are placed along
the z-w plane at intervals of 360/n degrees and corresponding edges and faces
are connected.
The input vertex statements must have four components. All statements
besides the vertex and face statements are passed untouched to the output.
The input paramelers are:
—n <integer> Default.n = 4
This specifies the number of copies that should be made.
—d <real> Default:d =4
This specifies the distance the 3-D object in the 4-D hyperplane should be
translated from the origin.
EXAMPLE
cat ~ug/lib/illum ~ug/lib/tetra | ug4Drev | ug4hole | ug4to3 -ep 0 0 2 2 | ugplot
-sa-ed 123 -dv

FILES

~ug /bin/ug4Drev
SEE ALSO ‘
ug4Dpyr (UG). ug4Dprism (UG), ug4bole (UG), ugplot (LG)

BUGS
Yet to be reported.

AUTHOR
Dan Filip

Release 1985~ <1985-4-16> 1

UGEXT(UG) UNIGRAFIX User’s Manual UGEXT (UG)

NAME
ugert - Polyhedral Extrusion Filter

SYNOPSIS
ugezt | —A fileln | [-1 fileOut | [—r radius |
| -8 scale | | —g goalObj] | —g file goalObj]

[-help]{-?]|-]

DESCRIPTION

Ugezt is a general-purpose polyhedral extrusion filter. It accepts a previously generated unigrafiz
object as input and “extrudes” the vertices through another goal object, usually a sphere or cube.
The resulting object retains the topology of the original object, but with the shape and size of the
goal object. For instance, a tesselated cube extruded through as sphere would look like a cube
that has had all of its vertices projected onto the surface of a sphere (for a scale factor equal to
one).

More interesting shapes make use of the scale option that creates the intermediary objects
between the original and goal object. The example above would create a "bloated” cube for
scales greater than zero and less than one. A scale of zero implies no change to the original
object, and a scale of one implies a full transformation to the goal object.

The most interesting shapes result when the value of the scale parameter is negative or greater
than one.

Since extrusions will often generate non-planar faces, it is recommended that the following
sequence of steps:

1) Cut all faces into triangles (See ugtess), (see BUGS below)
2) Tesselate the object with ugfreq (See ugfreg), (see BUGS below)
3) Submit object to Ugezt.

Ugezt accepts the following arguments:

-fl filename <default = stdin>
Use file filename as the ugezt original object.

—fo filename <default = stdout>
Use file filename as the ugert output file.

—r radius <default = 1.0>
This sets the radius of the goal object. The goal object is always centered around the
origin from -1 to 1, but these distances may multiplied by this optional radius.

—8 scale <default = 1.0>
This sets the amount of transformation from the original to the goal object.
scale < 0.0 : strange and interesting objects.
scale = 0.0 : original object.
0.0 > scale > 1.0 : in-between objects.
scale = 1.0 : goal object.
scale > 1.0 : strange and interesting objects.
Scales less than zero and greater than one may create intersecting faces which are
mathematically acceptable, but which may confuse the plotting programs. (use ugisect)

—g goalObj <default = sphere>
This option allows you to select a goal object other than a sphere. Ugezt also allows
extrusions through "tetra” and "cube”, using its internal formulations of these objects.

—g file goalfile
The extrusion goal object may be read in from a previously generated file "goalfile”. The

UGEXT(UG) UNIGRAFIX User's Manual UGEXT(UG)

best results are obtained by using polyhedral, regular objects centered about the origin
with a maximum unit distance from the origin.

~help Prints out an online usage manual for the program.
- Prints out an online usage manual for the program.

- Prints out an online usage manual for the program.

EXAMPLES
cat “ug/lib/tetra | ugfreq -f4 | ugext > sphereLikeObj
cat “ug/libficosa | ugfreq -f3 | ugext -g cube > cubedlcosahedron
cat “ug/lib/tetra | ugfreq -f6 | ugext -s 3.0 > electronShell

FILES
“ug/bin/ugext “ug/man/ugext

SEE ALSO
ugfreq (UG), ugplot (UG), ugisect (UG), ugtess (UG)

BUGS
Non-triangular input faces will probably create non-planar faces.

AUTHOR
H.B. Siegel

Release 1985 1985-4-20 2

UGFRAC(UG) UNIGRAFIX User's Manual UGFRAC (UG}

NAME

Ugfrac - A fractal subdivision filter that works on unigraphics objects composed of triangular
faces.

SYNOPSIS
ugfrac | options, arguments | < old object > new object

DESCRIPTION
Ugfrac reads in a flat UNIGRAFIX description from standard input, composed of triangular faces.
Each face is divided into four subfaces by the addition of 3 new vertices. One corressponding to
each edge of the triangular face. The new vertices are placed at a certain displacement from the
center of the original edge depending on the following options:

-f <fixed displacement> Default: disp = 0.10
This specifies the fixed displacement that will occur from the center of each edge in the
direction of the average of the normals of each adjacent face at that edge. The value can
range from -1 to 1 of one-half of the edge length.

-r <maximum random displacement> <seed> Default: maxdisp = 0.10
This specifies the maximum random displacement from the center of each edge. The
value can vary from O to 1 of one-half the edge length.

-H Default: Show all the faces.
This option leaves out all but the inner triangles at the last subdivision, creating them as

double faced triangles.

-n <number of iterations> Default: n = 1.
This specifies the number of times to repeat the fractal subdivision.

-M If this option is chosen, then all the edges that entirely lie on the X-Z plane will have new
points that are also on the X-Z plane, regardless of any of the other options chosen. This
option is useful in maintaining a part of an object on the X-Z plane fixed. For example
the base of a mountain.

X -Y -Z Default: All axes are chosen.
Choosing any combination of the axes forces the pertubations to occur in those axes only.

-R If this option is chosen then the displacments from the midpoint will only occur in the
radial direction, with the origin as the reference point.

EXAMPLE
cat “ug/lib/tetra illum | ugfrac -f-0.2-n 3 | ugplot -ed -5 2-10 -sa -dw -sy 3

1985-04-20 1

UGFRAC(UG) UNIGRAFIX User’s Manual UGFRAC(UG

cat “ug/lib/illum “ug/lib/tetra | ugfrac -r 0.4 999 -n 2 | ugplot -5 2 -10 -sa -dw -sy

FILES
“ug/bin/ugfrac

SEE ALSO
ugfreq (UG), ugplot (UG), ugtess (UG)

BUGS
Works only on hierarchically flat objects.

AUTHOR
Lun-Shin Yuen

Release 1985 1985-04-20 2

UGISECT(UG) UNIGRAFIX User's Manual UGISECT(UG)

NAME

ugisect — convert intersecting faces and wires into pon-intersecting objects
SYNOPSIS

uglsect [-1][-D|[-U][-A][-VVIF eps || -r] < inputfile > outputfile
DESCRIPTION

Ugisect reads a UNIGRAFIX file and cuts up any intersecting faces to produce a scene description
with no intersecting elements. Each existing intersecting element is partitioned into several
pieces. The default is to keep all these pieces together in a single statement with multiple contour
groups.

Instances of definitions that are intersecting are expanded to the mext lower hierarchical level,
where all components are again checked for intersection.

Command line flags cause ugisect to compute the boundaries of boolean combinations of two
solids. To use these options, the input file must consist of exactly two instances at the top level.
Faces and wires may occur only in definitions. Each instance must define the boundary of a solid
object for the output to be meaningful (ugisect does not check that the boundaries are well
defined). The instances may contain arbitrary hierarchy.

-1 Output the boundary of the intersection of the two solids specified by the two input
instances.

-D Output the boundary of the difference of the first specified solid minus the second specified
solid.

-U Output the boundary of the union of the two solids specified by the two input instances.

-A <name>
Simultaneously output the intersection, difference and union of the two specified solids.
With this option, nothing is placed on standard output; instead, three files name.inter”,
»name.difi” and "name.union” are created and the three separate results placed in them.
If no name is specified, "inter” is used.

The other flags are:
-V €eps

-V eps Change vertex tolerances. The first form sets the nominal tolerance assigned to vertices
as they are read in. The default value is 1e-9. The second form sets the maximum vertex
tolerance, which determines how near vertices must lie to be merged into the same vertex.
The default is 1e-7.

—f eps

—F eps Change face tolerances. The first form sets the minimum nominal tolerance for input
faces; a face may have a computed input tolerance larger than this value if at least one of
its vertices lies sufficiently far from its computed plane equation. The default is le-6.
The second form sets the maximum face tolerance that no face may exceed. It also deter-
mines how close together two faces must lie to be considered coplanar. The defualt is le-
4. If a maximum vertex or face tolerance is exceeded as intersection processing proceeds
(as the result of merging), an error message is printed, and the final output may be topo-
logically inconsistent.

-r Recover vertices. Normally, in the interests of eliminating redundant calculation, com-
puted intersection points are saved even if not immediately incorporated into a cut face.
Such a point may arise again in the consideration of other face pairs. However, for large
scenes, the memory cost may be prohibitive. The -r option prevents intermediate inter-
section points from being saved, considerably reducing storage requirements.

1986-1-6 1

UGISECT (UG) UNIGRAFIX User's Manual UGISECT(UG)

EXAMPLES
ugisect -A slabs < “ug/lib/slabs
ugplot -ed .4 .5 -1 -sa -dw -sy 3 < slabs.inter
ugplot -ed .4 .5 -1 -sa -dw -sy 3 < slabs.diff
ugplot -ed .4 .5 -1 -sa -dw -sy 3 < slabs.union

ugshrink -f 1.3 < “ug/lib/cube | ugshrink -H -f 0.6 | ugisect
| ugplot -ep -6 5 -10 -ab -sa -dw -sy 2.5 -sx 2.5

FILES

“ug/bin/ugisect, Tug/srcfugc

name.inter, name.diff, name.union
SEE ALSO

ugexpand (UG), ugxform (UG), ugshow (UG), ugplot (UG) ugdisp, (UG)
DIAGNOSTICS

Upon termination ugisect will print out statistics on the number of intersecting elements.

BUGS
Does nothing about wires; currently they always pass through uncut.

Will produce a warning and possibly incorrect results if coplanar faces are detected, unless each
member of the coplanar pair belongs to a distinct solid boundary.

Instances are expanded whenever their bounding boxes intersect; if it turns out that the instances
do not actually intersect the instances are left expanded.

Occasionally a hole is output as the first contour of a face when using boolean operations.

AUTHOR
Mark Segal

Release 1985 1986-1-6 2

UGMAN(UG) UNIGRAFIX User's Manual UGMAN(UG)

NAME
ugman - format and print a unigrafix manual page

SYNOPSIS
ugman [-t | | -r] title
ugman -k keyword

DESCRIPTION
Ugman is a man facility for unigrafix. Given title, ugman searches the directory “ug/man for a
manual text file by that title. When found and no -t option is specified, it checks "ug/man/nman
for an nrofi-formatted version of the title file. If none is found, it creates one. Finally, it executes
colert(1) and more(1) on the formatted file. Colcrt(l) provides a pleasing rendition of italicized
and tbl/equ-formatted text, however, it adds lines for underscores. Use the -r (raw) option to get
unmodified nroff output. With -t, the manual text file is typeset and sent to the imagen printer.

The -k option causes the first 20 lines of each formatted file to be searched for keyword. The
message ‘see: title’ is printed for each occurence.

To install a new man page, put the text file in “ug/man. After making changes to a text file, be
sure to remove the old formatted version so it will be updated by the next user to read it.

FILES
“ug/man/xxx
“ug/man/nman/xxx
DIAGNOSTICS
Complains if requested title does not exist.

BUGS
The command ‘ugman -r | Ipr’ works correctly only if the lp can handle nroff output, in
particular, tbl and eqn results. Though wasteful, manual text files are processed through tbl and
eqn to cover all bases.

AUTHOR
Gene Ressler

Rel :1985 1085-2-28 1

UGMERGE(UG) UNIGRAFIX User's Manual UGMERGE (UG)

NAME

ugmerge — merge close vertices and edges
SYNOPSIS

ugmerge | — eps tolerance | < oldobject > newobject
DESCRIPTION

Ugmerge is a filter that merges all vertices within tolerance distance of one another. Tolerance by
default is 1e-6, but can be changed with the —eps option.

EXAMPLE
cat “ug/lib/cube | ugshrink -f 0.9999 | ugmerge > sixSquares

cat “ug/lib/cube | ugshrink -f 0.9999 | ugmerge -eps 0.001 > sameQOldCube

FILES
“ug/new/ugmerge
SEE ALSO
“ug/new/ugcoin [old internal name |

BUGS
It does not merges vertices that lie close to an edge by merging such vertices into the edge itself.

AUTHOR
Paul Wensley created the old ugcoin.

UGPIPE(UQ) UNIGRAFIX User’s Manual UGPIPE(UQ}

ugpipe - generalized ball and cylinder filter for UniQuadrix

SYNOPSIS

ugplpe [options | < ugobject > uvy~bject

DESCRIPTION

Ugpipe is a filter which produces ball and cylinder descriptions for the UniQuadriz graphics
rendering system. Ugpipe accepts standard UNIGRAFLX scene descriptions. It converts all vertices
into balls, and all wire segments and face edges into cylinders. The output contains all of the
quadric and planar descriptions necessary to render the object with UniQuadriz.

Options:

-b Subtract balls from final scene output (render with cylinders only,
truncated where they would have intersected the balls, had they been
included).

— Subtract cylinders from final scene output (render with balls only,
truncated where they would have intersected the cylinders).

-m Generate a mitred joint at each vertex. Overrides all ball specifications.

-t Generate transparent truncation planes and mirror planes. Truncation

planes define the intersection between balls and cylinders; mirror planes
define the intersection between cylinders (or cones) incident on the same
vertex.

—rb radius Specify global radius for all balls that do pot have a local radius
specification (see below). :

—rc¢ radius Specify global radius for all cylinders that do not have a local radius
specification (see below).

Input description format

In addition to standard UNIGRAFIX description files (including definitions, instances, and arrays),
Ugpipe accepts various extensions to allow maximal usage of the capabilities of UniQuadriz. For
example, the presence of UniQuadriz objects will not confuse the Ugpipe parser, so the user can
imbed his own UniQuadriz objects in the ball and cylinder output produced by Ugpipe.

The radius of each ball and the ends of each cylinder can be specified locally in the description file.
Such local specifications override the global radii specifications given on the command line. Note
that differing radii specifications at the ends of the same cylinder will result in a tapered or cone-
shaped “cylinder”, which is perfectly legal.

Although cylinders are only allowed to intersect balls or other cylinders at vertices, balls are
allowed to intersect other balls. This is handy for producing ball-models of molecules, for
example.

Specification of local radil

Ugpipe accepts an optional fourth argument for each vertex which allows the user to specify a
radius for the ball surrounding the vertex. This radius will override any global ball radius
specification. The format is:

v|id)zyz|radius]

Radii can be specified for the cylinders generated from face edges in a similar fashion:

f]id] (id id id { id }) | redius] { (moreids...) | radius | } | radius |

UGPIPE(UQ) UNIGRAFIX User’s Manual UGPIPE(UQ}

Although it may be of limited utility, a local radius can be specified for each set of contour edges
individually. The final radius specification is applied to all contour edges that don’t have an
individual radius specification. If none of these local radii specifications are present, the global
cylinder radius value is used for all cylinders associated with the edges of this face.

The specification of cylinder radii along a wire is more complicated. The global cylinder radius
can be overridden by specifying one radius for the entire wire, which can then be overridden by
specifying a radius for certain segments within the wire, which can be overridden by radius
specifications at particular joints. (Don't worry, we'll do an example in a minute...)

The general format of the wire statement is:

w|id] (id | radius] id | radius] { id | radius]})| radiue]
{ (more wire segments...) | radius | } | radius |

Here's an example of a complicated wire statement:
w (al a2 a3 1 a4) 2 (bl b2 b3) (c1 ¢2 3 ¢3) 4 5;

The radius of 5 specified at the end of this statement indicates that all cylinders in this wire will
have radius five (overriding any global radius specification) unless specified otherwise by other
local definitions. The first wire segment (the one going through vertices al, a2, a3, and a4)
actually overrides this specification immediately, declaring that the radius of all cylinders in it will
be 2. Inside this segment, however, we have specified a radius of 1 at vertex a3. This means that
we will get a cone-shaped cylinder whose starting radius is 2 at vertex a2, tapering to a radius of
1 at a3. The cylinder from a3 to a4 begins with a radius of 1 and ends with a radius of 2.

In the second segment, since there are no overriding specifications, the cylinders will have radius
5. In the third segment, all cylinders have radius 4 except for the cones incident on vertex c2,
which will have a radius of 3 at that point.

EXAMPLES
cat “ug/lib/cube viewF | ugpipe -rb 0.4 -rc 0.2 | uq
cat “ug/lib/dodeca viewF | ugpipe -rc 0.2 | uq

UGPIPE(UQ) UNIGRAFIX User’s Manual UGPIPE{UQ)

FILES
“ug/bin/ugpipe
BUGS
Cylinders must not intersect other cylinders or balls except at vertices.

Ug currently complains profusely (thousands of warnings about coincident vertices') when fed
Ugpipe output. This is Ugpipe's fault for generating unnecessary mirror planes. These warnings
are bothersome, but they will not adversely impact the rendering.

Ugpipe does not understand include or color statements. Comments are removed.

Cones don’t intersect in a plane, so don’t expect their edges to match up exactly. Cones of
differing radii meeting at a vertex can generate very large or sometimes infinite quadrics if a
mitred joint is specified.

Although ball/ball intersections are calculated and displayed correctly, no such calculations are
made for balls belonging to different instances or array definitions.

AUTHOR
Philip Flanner, Don Marsh

UGTESS(UG) UNIGRAFIX User’s Manual UGTESS{UG}

NAME
ugtess — tessellate faces into convex polygons or triangles

SYNOPSIS
ugtess [-t | < oldobject > newobject

DESCRIPTION
is a filter that tessellates the faces of an arbitrary unigrafix object into convex polygons without

creating any new vertices.

-t The faces are triangulated.

EXAMPLE
cat $(LIB)/dodeca illumF | ugshrink -H -f 0.2 | ugtess | ugplot -ed -7 2 -5 -sa -dw -5y 3 -6x 3
cat $(LIB)/dodeca illumF | ugshrink -H -f 0.2 | ugtess -t | ugplot -ed -7 2 -5 -sa -dw -sy 3 -sx 3

FILES
“ug/bin/ugtess

SEE ALSO
ugext (UG), ugfrac (UG), ugfreq (UG)

BUGS
Yet to be found.

AUTHORS
Ziv Gigus, Lucia Longhi

Release 1985 1985-4-16 1

UGTIGHT (UG) UNIGRAFIX User’s Manual UGTIGHT (UG}

NAME

ugtight - tighten knot using simulated annealing algorithm

SYNOPSIS

ugtight | i |

DESCRIPTION

Ugtight reads from a file “ax” in the current directory that contains a single loop of ax-joints
specified in the format for axfiles for mkworm and tightens the loop by minimizing total
axlength using the simulated annealing algorithm. The program outputs an axfile "ax0" that
contains joints of the tightened knot and is readable by mkworm .

The file “ax” must begin with LOOP or L and end with RETURN or R. Lines specifying joints
must begin with ”j” and each such line must contain 4 real numeric fields. The 4th field in the
first line is then used globally as the ax radius. The file cannot contain any comment lines. The
program writes status information about the simulated annealing algorithm and the initial and
final states of the knot into a log file "log”.

The -i option puts the user in interactive mode. This option is intended for a user with some
knowledge of the simulated annealing algorithm and provides her/him with the ability to fine-tune
the algorithm, print out intermediate results, and read from a file other than "ax”. The program
will print out a menu of options that include changing the temperature manually, reinitializing the
random number generator, changing the number of moves per temperature, keeping some of the
joints fixed, and having every other move be in the direction of an ax-segment (the default) or all
moves random.

The program takes a long time to run, especially on larger knots, so it might be best to run it in
the background or overnight using at.

EXAMPLE

Release

vi ax; mkworm -n 6 -r 1; mv worm worml; ugplot -sa < worml,;
ugtight; cp ax0 ax; mkworm -n 6 -r 1; mv worm worm2; ugplot -sa < worm2;
The figures show several stages in the tightening sequence.

1985 1985-5-8 1

UGTIGHT (UG) UNIGRAFIX User's Manual UGTIGHT (L=

FILES

“ug/new/ugtight “ug/src/ugtight, ax, ax0, log
SEE ALSO

mkworm (UG), ugplot (UG)
BUGS

Sometimes does not find exact global minimum—i.e. knot is tight but not as tight as it could
possibly be. Only takes one loop as input. Needs more error checking. Holding one or more
joints fixed seems to adversely aflect the performance of the algorithm.

AUTHOR
Cecilia Aragon

Release 1985 1985-5-8 2

3. END-OF-COURSE ART-SHOW

Using a combination of the new programs, some crafty hand-editing of the
UNIGRAFIX description at some stage of the transformation process, as well as clever
arrangement of objects generated with different runs, the students managed to create
some rather artistic displays. Somewhat more elaborate versions, typical ranging two to
three feet in size, were exhibited at the second UNIGRAFIX Art-show in the CS Lounge on
May 10, 1985 (see poster below). Some simplified versions more suitable of the limited
size of these pages are recreated and displayed on the following pages. In some cases, a
short explanatory paragraph gives some information about the concept and the steps that
were used to produce the artwork. In other cases, the artist only provided some
tantalizing remarks to stimulate the imagination of the reader. We hope that the
presentation of these examples will entice the reader to try on his own to make creative
use of the Berkeley UNIGRAFIX tools.

UNIGRAFIX
ART-SHOW & RECEPTION

Friday, May 10, 3-6pm, CS Lounge

The class CS292A ‘Creative Geometric Modeling’
and the UNIGRAFIX group
invite students, staff and faculty
to stop by the CS Lounge that afternoon
to admire the results of four months of course work,
and to celebrate the end of the Spring Term 1985.

(As with every decent artshow,
there will also be some hardware and software
that cater to a different kind of taste.)

Capturing Geometry
Eric S. Fan

Division of Structural Engineering and Structural Mechanics
Department of Civil Engineering
University of California, Berkeley, CA 94720

ABSTRACT

The robot arm is reaching out to the wonderful world of
geometry to capture its share.

The robot arm has six degrees of freedom: for the tower -
vertical motion, for the arm - horizontal sweep, dip or raise,
and extension, for the jaw - twist and opening. The simula-
tion of movement is accomplished by adjusting the transfor-
mations within the hierarchical framework of the arm
definition. The floating objects are icosahedron, dode-
cahedron, cube, octahedron, tetrahedron, and rhomboedric
dodecadron.

"
36
RO

N
NS

X

ANAANANY
NN

CAPTURING GEOMETRY

Eric Fan

" TETRA - TANGLE "

Carlo H. Séquin
Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

Five tetrahedra can intersect each other in a symmetri-
cal manner so that their corner vertices coincide with the
vertices of an icosahedron. Here the edges of the tetrahedra
are replaced with properly mitred tubes of a suitable diame-
ter so that the tubes just touch and give rigid stability to the
whole construction.

The position of the tetrahedra was specified manually;

Ugpipe produced the specifications for the mitred cylindrical
sections; and UniQuadriz rendered the final image.

-

- TANGLE

TETRA

équin

,

Carlo H. S

" HILBERT PIPE "

Carlo H. Sequin
Computer Science Division
Flectrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

This was inspired by Hilbert’'s famous curve in two dimen-
sions. The challenge was to get a similar space-filling curve in
three dimensions. Additional design constraints were to
make the curve closed, to make it bilaterally symmetrical
with respect to more than one plane, to have no two subse-
quent pipe segments collinear and not more than three sub-
sequent segments coplanar. - Well, a solution was found ...

The renderings of the second and third generation
curves were produced with the help of mkworm, ugpipe, and

HILBERT PIPE

Carlo H. Séquin

**Ugpipe Object”

Don Marsh and Philip Flanner

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

Using standard Unigrafix filters, we began with a dode-
cahedron (that's a regular object whose faces are pentagons), and
attached a 5-sided pyramid to each face. We then truncated the
top part of each pyramid, and ran the result through our *‘ugpipe”
filter which replaces edges with cylinders and vertices with balls.

The entire command is:

ugstar <~ug/lib/dodeca | ugtrunc | ugpipe -rc 0.1 -rb 0.15 | ug

UGPIPE OBJECT

Don Marsh and Philip Flanner

*‘Dizzy Tetrahedrons"’

Don Marsh and Philip Flanner

Computer Science Division
FElectrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

These nested tetrahedrons were generated from a single
definition of a tetrahedron using ““ugpipe.”” This definition was then
incrementally scaled to produce smaller instances inside the origi-
nal. Using a negative scaling factor, each tetrahedron flips orien-
tation with respect to its immediate parent. This was a particu-
larly fun image to design, because the equations that describe how
to generate a smaller tetrahedron that nests exactly inside the

last one turn out to be surprisingly simple and beautiful.

DIZZY TETRAHEDRONS

Don Marsh and Philip Flanner

—p—

DISINTEGRATING CUBE

Lucia Longhi

MATHEMATICAL DONUTS:
TOPOLOGY WITHOUT WORDS

Jim Ruppert

*“Mr. Snowman"’

Don Marsh and Philip Flanner

Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

Before the advent of Uniguadrix and Ugpipe, Mr. Snowman
remained an elusive and somewhat mythical creature. Although
reports of occasional sightings continued, many doubted his
existence. But with these new tools at our disposal, we are able to
offer this conclusive proof that Mr. Snowman is not a figment of the

demented imagination.

Mr. Snowman was crafted using intersecting balls fed through our
“ugpipe” filter. The ears and arms were created by threading
wires through Mr. Snowman's head and body. Below is the file

which created him.

v lowerbody 0 -3.6 0 2.3; v upperbody 000 2;
vhead 030 1.2; vnose 03.3-1.1.53;

v lfeye -.5 3.6 -.9.2; vrteye.53.6-9.2
vmouth 02.7-0.90.3;

v leftear -1.2 5 .2 0; vrightear 1.2 5.2 0;
w (leftear head .8 rightear) 0;

v leftarm -3 1 0.8; vrightarm 2.7 1.6 0 .8;
w (leftarm upperbody rightarm) .6;

view vrp 0 0 0 dop 0 .5 -2;

MR. SNOWMAN

Don Marsh and Philip Flanner

**High-tech Potatochip Basket"

Don Marsh and Philip Flanner

Computer Science Division
Elecirical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

ABSTRACT

The High-tech Potato-chip Basket could easily be the invention
of the decade. Using a sophisticated new ‘‘anti-magnetic’ field,
the potato chips (and potato chip fragments) are gently suspended
in mid-air, keeping them fresh and beyond the reach of scavenging
insects. A harmless electric field will also repel the hands of young

children attempting to snack between meals.

HIGH-TECH POTATO-CHIP BASKET

Don Marsh and Philip Flanner

" FREE - FLOATERS “

Carlo H. Sequin
Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

The twenty corners of a dodecahedron are the centers of
spheres that cut out holes from the large sphere. The result-
ing object is then reduced in size and replicated in the center
and in each one of the cut-out holes.

The wire frame of the dodecahedron and the specification
of the desired sizes of the spheres were fed to the new pro-
gram ugpipe, which produced the the proper specification of
the intersecting planes between the spheres. These
specifications were then converted into a smooth-shaded plot
by UniQuadriz.

SRR
RN SRR

FREE - FLOATERS

Carlo H. Séquin

" STONEHENGE - 2000 “

Carlo H. Sequin
Computer Science Division
Electrical Engineering and Computer Sciences
University of California, Berkeley, CA 94720

This mysterious group of gigantic knotted arches, stand-
ing in a special, not yet fully understood configuration on an
imaginary plane in Northern California, is believed to have
originated from a tribe known as the Unigrafists.

The currently accepted theory assumes that these
artifacts are the cooperative result of several computer tools.
First a spline program was used to create the smooth curve
of the knot axis from only a few points. An enhanced version
of mkworm was then used to sweep the cross section of the
beam along this axis; this program can also scale and rotate
the swept cross section independently with three degrees of
freedom. The resulting object was then rendered with ugdisp,
a new renderer with smooth Gouraud shading. There are no
clues, however, as to the purpose of this creation.

STONEHENGE - 2000

Carlo H. Séquin

FRACTAL MOUNTAINS

Lun-Shin Yuen

e et

DOWNTOWN TOLEDO, 1997

Mark Gerolimatos

hdiand

GEAR SYMPHONY

Thomas Laidig

ROBOT DNA

Thomas Laidig

COSSRESISSNSs DRSS

SRS %
A AR AR AR

TOBOR AT THE PIANO
.B. Siegel

hdind

GUMBY & POKEY

H.B. Siegel

-

given it by
h orders

.

‘5
£
5 2
g
5
S 3

{ obey orders
cept when suc
the First

ith

would conflict W1

Law.

to harm.

ot mus
ing ex

bot may not injur
be

through inaction,

being to come

@ A rodb
a human

m Arxo
ing, or,

st pro-
exis-

[3] A robot mu

s own

tect 1t

ch
does not
th the First

g as su
or Second Law.

tence as lon

protectio

confll

n

.

ct W

IRoO

k]

_ISAAC ASIMOV

MARCH OF THE ROBOTS

Nachshon Gal and H.B. Siegel

