An Appraisal of the Instrumentation in Berkeley

UNIX 4.2BSD

Michael David Kupfer

Computer Systems Research Group
Computer Scienee Division
Department of Electrical Engineering and Computer Sciences
University of California

Berkeley, CA 94720

Abstract

Berkeley UNIXt 4. 2BSD comprises four subsystems: networking, the file system, virtual memory,
and process management. We present explanations of how those subsystems work and problems with
their instrumentation in 4. 2BSD. We discuss inaccuracies in the reported performance indices, cases
where uninteresting indices are recorded, and cases where interesting indices are not recorded. We
restrict our attention mainly to tools that sites can use without special hardware and without their
changing the UNIX kernel. We also suggest tools for debugging and monitoring the networking and
file system subsystems. Last, we comment on general implementation issues at both the kernel and

user levels of the instrumentation code.

“The trouble with paper designs is you don’t get bloody enough.”

Butler Lampson

tuNix isa Trademark of AT&T Bell Laborataries.

This work was sponsored by the Defense Advanced Research Projects Agency {DoD), monitored by the Naval Electronics
Systems Cormmand under contract No. N0039-84-C-0089. Additional support was provided by the State of California MICRO
program, grant number 532422-19900. The views and conclusions contained in this document are those of the author and

should not be interpreted as representing official policies, either expressed or implied, of the Defense Research Projects Agency,
the US Government, or the State of California.

1. Introduction

We shall first explain the goals and recognized shortcomings of this paper. Then, as the
instrumentation of “tunable resources” is very important in this project, we shall discuss how to tune
kernel variables in 4. 2BSD. The last part of the Introduction previews the rest of the paper.

1.1 Geals

This project began with the notion that bugs had crept into the user-level and kernel routines that
instrument a Berkeley UNIX 4.2BSD system. Rather than embark on a massive debugging binge, it
seemed more profitable to consider UNIX instrumentation as a whole: get rid of fluff in the current
code; devise schemes to better monitor the system, especially in those parts that had changed the most
since Version 7 UNIX; and improve the engineering of the tools. For two reasons we did not want to
require of our users access to UNIX source code. The first reason was to make the project useful both
for sites with source access and for sites with such binary-only licenses as Digital Equipment
Corporation’s ULTRIX-32™ license [Ultrix|. The second reason was simply to streamline the project
by ignoring tools like gprof and kgmon [UserManual]. Many of the tools that we consider in this
paper deal with the use of system resources like memory, disks, or network connections. Most of the
remaining tools help system managers tune system parameters like the maximum paging rate or the
size of kernel tables,

In addition to studying the existing instrumentation, we shall also suggest tools to help debug or
otherwise monitor two major changes introduced in 4.2BSD): Interprocess Communication (IPC)
[Leffler et al 83a] [Sechrest] and the Fast File System [McKusick ef al 84]. The IPC tools are needed to
support a vast library of new and complicated code, whose effect on the system is not fully understood.
Also, writers of distributed applications need better tools for their work. Similarly, better tools are
needed to understand the effects of the new file system.

We should also make clear what the limitations of this project are. First of all, we are presenting
a paper design, not an experience report. Another limitation is that we desire no hardware support,
mostly so that our tools will be universally useful. Third, we are not designing an expert system for
configuring UNIXes. That is, the tools will not recommend steps to take to improve system
performance. Finally, we are not considering tools like time or gprof. These programs instrument
other programs, rather than the system as a whole.

1.2 Caveats

The title of this report is misleading. We are not really presenting an instrumentation package
for 4.2BSD, even though we shall say "4.2BSD” throughout the paper. In reality we are presenting a
package for Berkeley UNIX as it existed some time after the 4. 2BSD distribution tape was made, but
before the system was frozen for 4 3BSD. Thus, certain bugs in the 4.2BSD release will not be
considered because the project started after those bugs had already been fixed at Berkeley. More
important, the paper is trying to hit a moving target. [t is possible that future implementors will find
that parts of the paper are inaccurate or no longer relevant because of subsequent changes to
Berkeley UNIX.

Another important point is that this paper does not present a complete design. Implementors will
need to build some prototypes, either to verify the usefulness of certain tools or kernel modifications,
or to ensure that the new code will not substantially disturb the system being measured. Finally, we
make no guarantees that we have found all the bugs in existing instrumentation tools, nor do we
claim that the list of enhancements is exhaustive.

1.3 Tuning the 4.2BSD Kernel

Because we shall be talking about instrumentation of tunable kernel parameters throughout this
paper, we'll explain how to tune those parameters. Tuning gets done either in the system’s config file

{Leffler], by manually changing the initial values of kernel variables, or by changing the definitions
of symbolic constants in the kernel. When you first build a kernel (that is, the first time you type
“make”), the file /sys/conf/param.c is copied into the directory that you're building the kernel in.
Param.c initializes certain variables (e.g., nproc, nmbclusters) based on values in the kernel’s
configuration file and on some default rules. In fact, many system tables are sized according to the
maxusers entry in the config file. If you don’t like the default rules, you can edit param.c and then
rebuild the kernel. You can change other initial values by editing kernel source code. This technique
works both for variables (e.g., nbuf) and symbolic constants (e.g., SYSPTSIZE). Some variables, such
as nbuf and bufpages, are checked when the kernel starts up. If the variable is zero, then the kernel
computes a value for it based on default rules. If the variable is non-zero, then the kernel leaves it
alone. Thus a third way to change initializations is to patch the kernel object file using adb.

1.4 The Rest of the Paper

For this project, we break down Berkeley UNIX into four subsystems, corresponding to four major
system resources: networking and IPC, I/0 and the file system, virtual memory, and processes and
the CPU. We present [PC first because it is the newest and least instrumented of the subsystems. We
next present I/0 and the file system. This area is also new, but it seemed better instrumented and
understood than the IPC code. Third is virtual memory, which has been around for a relatively long
time (the Berkeley paging kernel was released in 1979), but whose instrumentation appeared cryptic.
Last come processes and the CPU. This paper also examines the 4.2BSD accounting package. We
consider accounting to be system instrumentation because commonly used programs (e.g., the vi
editor) will impair the entire system’s performance if they themselves make heavy use of system
resources. Although the accounting package covers all four subsystems, we have arbitrarily placed it
in the CPU section.

Each subsystem has its own section of the paper. Each section is itself divided into three parts.
The first part gives a brief, general explanation of how that subsystem works. The second part
explains what measurement tools already exist for that subsystem. If necessary, it explains in more
detail how the subsystem works. The third part critiques the existing tools, explains bugs that we
found, and suggests.improvements. Particularly detailed explanations and suggestions will be given
in smaller type, usually in a separate paragraph.

Section 6 of the paper contains general comments on implementing the ideas presented in the
paper. In particular, we shall discuss validation suites, methods for collecting and displaying
information, and software engineering. The Appendix lists the routines discussed in the paper, what
sections they're discussed in, and what bugs were found in them.

2.IPC and Networking

2.1 How It Works

The 4.2BSD IPC system was designed to serve as a test-bed for research in protocols and
distributed computing. This goal led to a 3-layer structure that we shall explain below, based on

sockets, protocol families, and interfaces [Leffler et al 83b]. Other interesting properties of the [PC
code are:

® [tdoes its own memory management (using a data structure called an mbu/)
® Routing is done on a system-wide (rather than protocol family-wide) basis
¢ The routing policy is implemented by a user process rather than in the kernel

We shall explain more about these issues shortly. We shall also comment on the Defense Advanced

Research Projects Agency (DARPA) Infernet family of protocols, which are the only protocols that
we’ll examine in this paper.

Sockets, protocol families, and interfaces

There are three major layers in the 4.2BSD networking code, going from the user level towards
the hardware: sockets, protocols, and interfaces. A socket is an endpoint for communication: you can
push bits in using write, and you can get bits out using read. There are three major flavors of sockets:
datagram, stream (also known as virtual circuit), and raw. Datagram sockets support connectionless
communication with no guarantee of delivery. Stream sockets support connection-based commu-
nication guaranteeing that messages will be delivered uncorrupted in the order that they are sent
[Tanenbaum]. Raw sockets provide user-level programs with the same interface that routines in the
kernel would see. When you create a socket, you specify a flavor, a protocol family, and optionally a
protocol within the family. If you don’t specify a protocol, the kernel picks an appropriate protocol,
based on the flavor of the socket. To actually use the socket, you must associate it with an address.
The form of this address is speeific to the protocol family, as we shall discuss next. You can also set
option flags for the socket, for instance whether the socket can aecept connection attempts from other
sockets, or whether the kernel will generate debugging messages when the socket is used.
Connections between sockets are created asymmetrically. Assuming a client-server model, the server
process creates a passive socket; client processes create active sockets and connect to the passive one.
The accept routine returns to the server a second socket that is connected to the client’s active socket,
and the passive socket continues to wait for new connections. The passive socket may have a queue of
connections that have been made but not yet accepted. Attempts to connect to a passive socket whose
queue is full are dropped on the floor.

Each protocol family has its own notions of addressing, message types, and message semantics.
For example, an address in the UNIX domain is simply a path name (i.e., a string). An address in the
Internet domain is a collection of integers with complex interpretations. Nevertheless, each family in
4.2BSD must support operations that are protocol- and family-independent. These requirements lead
to an implementation based extensively on C casts [Kernighan & Ritchie] and a protocol family
switch table: each protocol family is assigned an index into an array, and each element of the array
helds pointers to family-specific functions.

Once a protocol has decided to send a packet, it must send that packet to the appropriate device
interface (e.g., "il0,” the host’s first Interlan Ethernet controller). Finding that interface is the job of
the routing code, which we shall explain below. Although there is not exactly a switch table for the
interfaces, the idea is the same. The protocol is given a handle that contains pointers to the routines
implementing the interface’s common operations.

Routing

The routing code in 4. 2BSD is for the most part protocol family-independent, but it makes use of
protocol family-dependent routines (via the switch table) for hashing and some address-matching.
The kernel keeps a hashed set of routing entries that match destinations with interfaces. The entries
contain flags telling, for example, whether the interface connects directly to the final destination (the
alternative being that it connects to a gateway}, or whether the “destination” refers to a specific host
or to a network. The kernel first tries to find a routing entry specific to the destination host. If that
fails, it tries to find a routing entry for the network that the destination is on. If that fails, it looks for
a wildecard routing entry that it uses to pass the packet off to some other machine, presumably a
smarter gateway. This smarter gateway can then send back a redirect message with the real routing
information for the destination.

The routing table is maintained by a user-level routing daemon. The daemon can change the
table via two ioct! requests on the /dev/kmem device (loctl’s are explained in Section 3.1). One request
adds a route, the other deletes a route. Also, the daemon can exchange routing information with
routing processes on other machines, for example via raw ICMP [ICMP] sockets.

mbufs

Before there were mbufs, memory allocation in the kernel was crude. You could allocate entire
pages, and you could free entire pages, and that was it. Mbufs support dynamic allocation of smaller
amounts of data, for example enough to hold a socket structure. Each mbuf holds a small amount
(112 bytes) of data and some pointers. There are two ways to refer to data that won't fit inside the
mbuf. The {irst way is to string mbufs into a chain. The other way is for the mbuf to point to a cluster,
which is one or more pages containing only data (clusters are explained in more detail in Section 4.1}
Clusters are especially useful for moving large amounts of data: rather than running through an
mbuf chain and copying each byte individually, you change the page table entry for the destination
and then increment the cluster’s reference count.

When 4.2BSD boots, it allocates a small amount of memory to clusters and mbufs, If it needs
additional memory, it allocates more pages using the old, crude allocator and breaks them up into
mbufs. Once it has allocated this additional memory, it never gives it back.

Internet Protocols

The 4.2BSD release provided code for five protocol families {(also known as domains): UNIX,
{(DARPA) Internet, IMP (for communicating with ARPAnet Interface Message Processors), PUP
{Xerox Corp.), and DECnet (Digital Equipment Corp.). Most of the IPC-based “system” applications
in 4.2BSD (rlogin, rcp, rwhod, routed, etc.) use the Internet domain. One reason for this bias is that
the UNIX domain does not currently support communication between different machines. Alse, most
of the machines that Berkeley systems want to talk to speak Internet protocols.

When we critique protocol instrumentation later in this paper, we shall only consider Internet
protocols. The UNIX domain is uninteresting in part because it is rarely used. It is also
uninteresting because its eurrent implementation mostly just copies mbufs from one location to the
next, a task that we leave to gprof and kgmon to monitor. The PUP and DECnet code is
uninteresting because it’s old and rotting. In fact, the PUP code no longer even compiles at Berkeley.

There are four Internet protocols whose instrumentation we shall discuss. The Internet Protocol
(IP), a low-cost datagram protocol, is the backbone of the Internet family [IPl. The User Datagram
Protocol (UDP) is a more expensive datagram protocol {UDP]. The primary difference between UDP
and IP ig that an [P packet may be delivered damaged, whereas the UDP code throws corrupt packets
away. The Transmission Control Protecol (TCP) is a byte-stream protocol based on IP (not UDP)
[TCP]. The Internet Control Message Protocol (ICMP) defines control messages sent between
Internet-speaking hosts [ICMP].

2.2 Existing Tools

There is really only one program that instruments the IPC subsystem: netstat. Much of the
instrumentation in 4.2BSD is based on special counters kept by the kernel or on data structures used
by the kernel for normal operation. Netstat is no exception to this rule. In the rest of this section,
we'll present each of the ways you can use netstat and explain the information it presents.

netstat

Netstat's default behavior is to dump information about the sockets in the system that are
associated with Internet protocots. One line might look like:

tcp 709 0 wucbarpa.l018 ucbmonet.login ESTABLISHED

which says that the socket is associated with a TCP connection; it has 709 bytes on its input queue; it
has 0 bytes on its output queue; its local address is port 1018 (decimal) on host “ucharpa” the other
end of the TCP connection is the login server on host "uchmonet”: and the connection is in the
"ESTABLISHED” state [TCP].

Each protocol that the system knows about is listed in the file /etc/protocols. Netstat uses the getprotoent subroutine to
go through these protocols one at a time, comparing each with a built-in list of protocols. Every time there is a match, netstat
displays information for that protocol’s protocol control block. In the case of UDP or TCP, the protocol eontrol block is part of a
circular linked list; each element in the list points to a socket that uses the protocol. Netstat just follows the list and dumps the
status of each socket.

Options to netstat can change this behavior somewhat. The -n option tells netstat not to print
host addresses or port numbers symbolically. Thus the above example might appear as:

tcp 7089 0 128.32.0.4.1018 128.32.0.7.513 ESTABLISHED

The -A flag tells netstat to print the kernel address of the socket’s protocol control block (PCB). This
structure, which netstat thinks exists only for TCP connections, contains TCP-specific information
like the state of the connection. Ordinarily, netstat only prints information about the sockets that are
bound to specific addresses. The -a flag tells netstat also to print information about sockets that are
bound to a wild-card address. These sockets are typically used by server daemons; the socket is bound
to a fixed port, but the host address is a wild-card because the host may have several Internet
addresses. Finally, the user may also specify system and core files, which allows netstat to work from
crash dumps rather than the currently running system.

Hidden away in the netstat source code is also a -u option. This flag displays information for

UNIX domain sockets (which don’t have protocols associated with them). In this case one line might
look like:

8053eb0¢ stream 0 20 0 8053el8c 0 0

This line says that the socket structure starts at address 0x8053eb0Oc (“0x” means that the number is
hexadecimal), its flavor is “stream,” it has 0 bytes on its input queue, it has 20 bytes on its output
queue, it is not associated with any inode, it is connected to ancther socket whose protocol control
block is 0x8053e18c, no sockets refer to it, and it is does not refer to any other socket. If the socket at
the other end of the connection had a path name associated with it, that name would be displayed at
the end of the line. (A line like this one might describe one end of a UNIX pipe {Ritchie & Thompson].)

netstat -s and other protocol information

Netstat will also give summary information for each protocol. The -s option tells netstat to print
statistics for all the protocols it knows about (which in 4.2BSD are only IP, UDP, TCP, and ICMP),
The -p option gives statistics for whatever protocol the user asks for. Many of the protocol-specific
numbers are the counts of packets that the protocol code threw away because of, say, a checksum
error or because the header was given as being larger than the header and data combined. The ICMP

statistics also give the counts of each type of ICMP message that the host has either generated or
received.

netstat -ift], netstat -h

These two netstat options give device-related information. Netstat -i gives information about
each of the interfaces that the host is configured with. On one line appear the name of the interface
(e.g., "imp0”); the largest packet size that the device can handle, which is called its Maximum
Transmission Unit (MTU); the name of the network the interface connects to {e.g., "arpanet”); the
name that the host is known by on that network (e.g., “ucb-arpa™); the number of packets read in; the
number of input errors; the number of packets sent out; the number of output errors; and the number
of collisions. If you say netstat -it, you also see the value of the interface timer. To see information
specifie to one interface, for example en0, use the -f flag: “netstat -Ien0.”

Naot all interfaces use timers. For those that do, the timer value is decremented once per second. When the timer expires,
the if__watchdog routine for the interface is called and the timer is reset,

If you type netstat n, then netstat iterates. Every n seconds it displays the traffic and error
counts for the busiest interface (i.e., the interface with the most traffic since the system booted), and it
displays the traffic and error counts summed over all interfaces in the system. The first line has the
counts since boot time; subsequent lines are the counts since the previous line. The -t flag is ignored
in this case, and -l replaces the busiest interface with the specified interface.

Netstat-h gives information peculiar to IMP connections. Each line given by netstat -h refers to a
remote host that the local host is communicating with or was recently communieating with. The Qent
is the number of queued messages, waiting to be sent to the IMP. Q Address is the address of the first
message in the queue. RFNM is the number of RFNM (Request for Next Message) packets [Malis]
that the local host expects to receive from the remote host. If nothing is queued and no RFNMs are
outstanding, the structure is given a short time to live. If nothing happens within that time, the
structure is deallocated. Thus Timer shows how long the structure has left to live.

An IMP wiil allow the local host to begin a new transmission to a remote host before receiving a RFNM for the previous
message to that host. However, the IMP will only allow up to 8 outstanding RFNMs per remote host. An attempt to send a 9th
message will cause the IMP to block, which prevents communication via that IMP with any other remote system, until a RFNM

comes in from the host. "Timer” is actually the number of "slow™ timeouts left to the structure; slow timeguts happen every 500
millisecands.

netstat -m

The -m option of netstat reports on the memory allocated by the IPC subsystem. It gives the
number of mbufs that exist, it gives the number that are in use, and it categorizes the mbufs in use.
Categories include message data, socket structures, and entries in the routing table, Mbufs are
sometimes used for purposes that have absolutely nothing to do with [PC, like holding the accounting
information for a zombie process until the parent process reaps it (reaping is described in Section 5.1).
This happens simply because other parts of the kernel are taking advantage of the improved service
that the mbuf scheme provides. Netstat also gives usage numbers for clusters, it tells how much
memory is being held by the networking subsystem, and it tells how many requests for memory were
denied.

netstat -r{s]
Netstat -r dumps the routing tables. A line using this option might look like:

washington uw-v1si-gw UG 1 11427 imp0

This says that the entry is for a network (no H--for “host”--flag), the washington network in
particular. Packets to this network should be addressed to uw-visi-gw, which is a gateway (G flag),
via the imp0 interface. The gateway is up (U flag), there is one instance of someone using that route,
and 11427 packets were sent using that route. If you specify -rs, then netstat instead gives a

summary of the redirect messages that have been received, plus, for comparison, how many times the
wildcard route was used .

2.3 Problems with the Existing Tools

In this section, we shall discuss what netstat does wrong and what it lacks. We feel that network
instrumentation should say when problems are coming from outside as well as from within. Thus we
shall also present some measurements that tell what other hosts are doing to the local machine.

netstat

Our first complaint ensues from the detail that netstat provides as its default. We expect that the
first step in checking a system will be to get a general feeling for what the system is doing: is it using
the disk heavily, how much is it paging, how many processes are sharing the CPU, what's the
network traffic like. The most general invocation of netstat should give the most general
information. If you want more specific information, then you can specifically ask for it by giving flags
to netstat. The appropriate general information for [PC is an iterating display of network traffic.
That is, we could just make the netstat n option be the default for netstat (including the changes we
suggest below for netstat n). An added advantage of this iterating display is its consistency with
jostat’s and vmstat’s interface.

The socket information that netstat gives now is useful for debugging distributed programs. That
information should therefore still be available, but as a new option. That option would be even more
useful if it displayed the socket’s option flags, preferably as a hexadecimal number. (The flags are
defined in socket.h as hexadecimal constants. If the flags were defined as octal constants, then
netstat should print them in octal.) Also, netstat’s man page (the writeup in [UserManual] or
[ProgrammerManuall) should at least give pointers to documents that describe the different states a

connection could be in (e.g,, [TCP]). It would be even better if the man page itself provided that
information.

netstat -s and other protocol information

The most obvious hole in this area is that the -p option exists only in this paper and the manual
page; it has not yet been implemented. The code for -p should be a straightforward change to the code
for the -s option.

Our complaint about the -s option is that it is too detailed in one spot. Although the individual
error counts for each protocol should be kept for debugging work, it would be more useful for
instrumentation to lump all of the errors together into one “number of packets dropped” count,
especially as most of the counts are usually zero. The total number of packets sent and received
should be a part of each protocol’s statistics to give an idea of how important the errors are. In
addition, we propese the following additions for the protocols:

P
& number of packets to be forwarded
¢ number of packets actually forwarded

These numbers, combined with the number of packets read in, give an idea of how much load a
host’s gateway duties are causing.

¢ number of packets dropped because their Time To Live (TTL) expired [1P]

TTL information gives some idea of network congestion, routing problems, or errors at the

sending host (perhaps it is making the TTL too small). The TTL checks in 4.2BSD zre done in ip__forward
and ip__slowtimo.

number of input packets that had to be assembled from fragments

number of output packets fragmented because they were larger than the device MTU
{distinguishing between forwarded packets and packets originated in the host).

Fragmentation degrades performance, hence counts of some sort would be useful. Locally sent
and forwarded packets should be distinguished because locally sent packets are easier to control,
a problem with forwarded packets is harder to correct. The count of input packets telis how much work is

being caused by remote hosts. Input fragmentation is dealt with in ip__reass. The code in ip__output handles output
fragmentation.

TCP (per host)

number of idle connections

A TCP connection uses 3 mbufs at each end (1 for the socket, 1 for the Internet PCB, and 1 for the
TCP PCB). This gives us three-fourths of a kilobyte for each idle connection, sitting around doing
nothing, which is sufficient motivation to find out how many idle conneetions there are. (We
present a scheme for defining “idle” connections below.)

TCP (per connection)

The following information could be kept in the connection's TCP controi block, which netstat

looks at already.

number of useless bytes received

The number of “useless” bytes is the number of bytes that duplicate information already received.
This number gives an indication of how much of the network load is avoidable. TCP reassembly,
which is where duplicate bytes are dropped, is done in tep__reass.

number of timeouts

TCP times out on a per-connection basis. A connection that times out often is a sign of network
congestion or routing problems. The code that handles TCP timers is in tep__timer.c.

number of persist transmissions versus the total number of transmissions

A persist transmission is one that TCP can use to make sure that the other end of a connection has
net gone away. Comparing the number of persist transmissions with the number of
transmissions actually holding data would give an idea of how much useful work is getting done.

whether the transmission is idle

The persist transmission timer can notify the TCP code when a connection becomes “idle.” Thus
the per-system TCP information would tell us how much memory TCP connections are wasting,
and the per-connection information would tell us who the culprits are.

estimated round-trip time

TCP estimates the round-trip time between it and the remote host. It keeps this number in the
connection’s TCP control block and uses it to schedule timeouts. Someone experimenting with

routing algorithms (or even just hand-patching the routing table) could profit from knowing these
numbers.

cMmpe
the number of IP packets sent and received.

This number would tell how significant the count of ICMP messages is. These counts would be
shared with the instrumentation for IP.

10

netstat -ift], netstat -h

The interface information given by netstat has one outright bug and a few other problems. The
bug is that netstat doesn't really find the busiest interface when you use netstat n. Instead it just
uses the first interface that it finds.

Some of the other problems are problems of adequacy: netstat doesn’t tell you all that you'd like to
know. For example, each interface has a fixed-length queue that it puts input packets on. Bottom-
level protocols (e.g., IP) take the packets off these queues for processing. If there is no room in the
queue, the interface code drops incoming packets on the floor. For each interface, the kernel updates
the number of dropped packets with the IF DROP macro, but netstat doesn’t display these counts.
Also, netstat should display in hexadecimal the flags associated with an interface, which would be
useful for debugging. These flags are defined in if.h.

The interface-related code also has problems with the numbers it does display. One problem is
that the first values displayed by netstat n (the number of packets read and written since boot time)
are totals, rather than averages. Perhaps this is to be consistent with the displayed error counts
{which would likely be zero if displayed as averages). Nevertheless, it would be much more intuitive
to start out showing the average traffic, which is what vmstat and iostat do. This lets the user
directly compare the next lines from netstat with the first set of values, to see whether the load on the
system is unusually low or high. One solution is to display just traffic averages, and to use a separate
option to display total error and traffic counts.

The “collisions” count that netstat displays for the IMP interface is thoroughly warped. The
interface code wants to talk to the IMP using a specific "new” format: if it receives a message in some
other format, it chalks it up as a collision on the IMP interface. It also counts messages with
unrecognized or unused types as collisions. While it makes sense to record these errors, and the
“collisions” count would otherwise go unused for {MPs, this practice is misleading. Instead, each
interface should have one or more counters for special device-specific errors. For CSMA devices like
the Ethernet, this count would be the number of collisions; for IMPs it would be something else. Thus
in this case we are not propesing any real change to the structure of the instrumentation, just some
textual changes to make life less confusing.

An important problem with all instrumentation code in 4.2BSD is how it schedules iterations.
Rather than actually collecting and displaying numbers every, say, five seconds, netstat collects
numbers, displays them, and then tells the kernel “call me back in five seconds.” This strategy makes
the collection period longer than 5 seconds: it equals 5 seconds plus however long it takes to collect
and display the numbers. We shall discuss this problem further in Section 4.3,

Finally, hardware problems with an interface can generate spurious interrupts and bog down the
system. One symptom of this problem is a large number of errors on the interface within 2 short time.
However, if nobody is using the machine, the problem may go unnoticed. In the interest of finding
and fixing hardware problems as soon as possible, the interface should log cases of unusually large
error rates.

We can detect large error rates by keeping a second ecror counter that is decremented at a fixed rate. If the counter ever
gets above some threshold, then interface code should log a2 message and reset the counter. Finding the right threshold and the
right rate to decrement the counter will take some experimentation, though.

netstat -m

All of the problems with the -m option are eases where netstat doesn’t tell us as much as we'd like
to know. Part of the problem is that the kernel doesn’t provide enough information. One thing that
netstat could do for itself, though, is look for cluster leaks. That is, netstat should check that the
number of free clusters plus the sum of the cluster reference counts equals the number of clusters that
exist.

One place where we would like more information from the kernel is in mbufallocation. There are
two cases in which m_ clalloc will fail to allocate more memory for mbufs, The first case is when
there is simply no more core available (by “core” we mean physical memory of any sort). The second
case results from the resource management scheme used inside the kernel, Allocatable resources like

11

mbufs and swap space are described by a finite-sized map structure. This setup typically bounds the
number of objects that can be allocated, and fragmentation in the map can even force the kernel to
throw resources away. In the case of mbufs, at most (NMBCLUSTERS - 1} * CLPAGES pages can be
allocated for mbufs and clusters, independent of the available physical memory. Thus when the mbuf
code fails to allocate more memory, it should record whether the failure happened because the map is
too small or because there is no core available. If the mbuf map (mbmap} in a system is too small, it
can be grown by changing the value of nmbclusters (in param.c) and rebuilding the kernel. On the
other hand, there is little point in recording unsuccessful attempts to allocate clusters. When the
kernel boots it allocates exactly 32 kilobytes for elusters; it never allocates additional memory for
them. We would prefer that the amount of memory for clusters be tunable, but until that happens,
knowing how often a cluster allocation fails won’t be of much use.

A map structare is implemented in 4.2BSD as a list of free resources, using a starting location and size to describe each free
chunk, Thus if the resource becomes too fragmented, the resource manager will need more entries in the list than it can hold. If
this happens, it throws an entry--and hence a chunk of resources--away and logs a message telling which map got chopped, Two
other maps that might get fragmented are swapmap and argmap. The size of these maps, like the size of mbmap, is tunable.
The configuration parameter maxusers controls how many entries are in swapmap, and the symbolic constant ARGMAPSIZE (in
map.h) controls haw many entries are in argmap.

As we mentioned previously, some non-IPC routines allocate mbufs for their own purposes. In
fact, some device drivers even take me mory from the IPC pool without registering the memory either
as mbufs or as clusters. The problem here is that the allocator (m_ clalloc) doesn’t keep track of this
allocated memory. In 4.2BSD this slip isn’t too much of a problem: if netstat declares that a system
has allocated all nmbclusters worth of memory, but that mbufs and clusters account for less than
nmbclusters, we know where to look for core leaks. But not recording who is allocating memory from
the mbuf map is sloppy programming, which might return to haunt us some day.

netstat -r

Our only real complaint abeut netstat -r is that it could be made easier to use. One count that
we'd like to see is how often the system successfully uses the wildcard route. Unfortunately, the
current setup prevents us from getting this number. If a system uses the wildeard entry, the "smart”
gateway that it forwards the packet to isn't required to say whether it can forward the packet, nor is it
required to send back a redirect message. Thus the system will not always know whether it was
trying to send the packet to a non-existent address, or whether it just didn’t know how to get to that
address. We can get some idea of how often the address is bad based on the ICMP messages that the
system gets back from the gateway. Unfortunately, this would tie us to the Internet family for
routing instrumentation. Because we want to keep domain independence for instrumenting the
(domain-independent) routing code, we'll just forget about getting this information.

The problem with the interface to -r is that it doesn’t let you specify an “interesting” route. This
forces you to use grep ("get regular expression”) when looking for a specific route in a large table.
One drawback to using grep is that it causes extra context switches: netstat fills the pipeline bufTer,
grep empties it, netstat fills it again, and so on. Also, buffering by C’s I/O library usually makes you
wait until netstat has gone through the entire routing table before you can see anything. Instead,
netstat should recognize commands of the form netstat -r foo, where foo is the name of the host or
network that you want the routing entry for.

system traffic vs. user traffic

Just as iostat and vmstat break down CPU usage into "system” time and “user” time, it would be
useful to knew how much network traffic is from “system” functions and how much is from “"user”
functions. The problem, though, is how to define "system” functions so that they can be measured
efficiently. The most obvious approach is to say that traffic through sockets owned by root or daemon
is “system” traffic. There are two problems with this approach. The first problem is that parent and
child processes can share a socket, and either process can change its user id (e.g., by exec’ing a setuid
program, as explained in Section 5.1), so there is no elear ownership of sockets. There is also the
problem of deciding how to classify traffic in which one end is root and the other end is just some

12

random user. The second problem is that many programs in 4.2BSD provide "user” funetions but run
as root (the super-user) for security reasons (e.g., rep). A variant of this approach is to classify the
socket based on the program, rather than the user. This also has the ownership problem. Another
approach is to classify the traffic based on the Internet port number at one or both ends of a
connection (or datagram message). The problems here are relying on the Internet naming scheme
and having to make arbitrary decisions about what is “system” traffic and what is “user” traffic.

Nevertheless, we can use a variant of this last approach to get an idea of who is using the
network. If we distinguish between "instrumentation” traffic [Kupfer], “mail” traffie, “clock syn-
chronization” traffic [Gusella & Zatti]l, "file service” traffic [Hunter], rwhod traffic, and other
services, we avoid the problem of defining “system” traffic, we avoid boxing ourselves into one
protocol family, and we still have a good picture of how the network is being used.

Each protocol family eould implement this technique by keeping a list of distinguished addresses. Associated with each
distinguished address would be a pointer to the traffic counter, which could be copied into the socket structure. (The counter
could be for the entire system or just for that protocol family.) When bytes pass through the socket, the kernel would increment
that counter. For example, when an Internet stream socket connects or binds to such a distinguished address, the peinter could
be filled in then. An Internet datagram socket, however, would have a NULL pointer in the socket structure; sosend and
soreceive would use a new protocol-family request to ask the Internet code for the appropriate counter.

profiling distributed programs

One powerful UNIX tool is the profiler, which tells how much time a program is spending in what
parts of its code [Graham et al]l. However, UNIX profiling only works while the process is running;
time spent in the “sleep” state or waiting to run is not counted. Suppose you have a program that uses
a remote service by means of Remote Procedure Calls (RPC) [Birrell & Nelson][Cooper], and suppose
that the client typically waits a long time before receiving results from the server, This delay will not
show up in the profile, and you'll be left wondering why on earth your program is so slow. One
possible way around this problem is to take over a machine and profile both the client and the server
on it. The clock time required to run the client, less the total CPU time consumed by the two
processes, is the time attributable to communication delays, such as time in the Ethernet driver or
time spent accepting a packet. Of course, this solution is not practical even now at sites with few
machines, and it will be even less practical if many people are each developing such programs.

Another possible solution is for the kernel to record the time required to complete certain IPC-
related events, like sending and receiving an RPC packet, and make that information available to the
profiler. This is something of a hack to the profiling system, but its scope would be limited to selected
IPC routines. Also, it may prove to be very useful despite load variations at the server. It would
provide information about delays caused by the remote machine’s kernel, network congestion, and
gateways. This information, which the first method cannot always supply, would at least distinguish
local delays from remote delays. This approach is similar to that of the Distributed Programs Monitor
[Macrander], but it differs in that it is integrated, for better or for worse, with the existing Berkeley
UNIX profiling tools.

For example, to record the time required to open a stream connection, soisconnecting could put a timestamp in the socket
structure. Using that timestamp, soisconnected could add to a counter in the socket structure the time needed to complete the
connection {also incrementing a count of how many connetions were made). When the process exits, it can collect in one system
call the profiling information for that socket.

miscellanea

As we described earlier, if a passive socket’s connection queue is full, new connection attempts are
rejected in sonewconn. The active host is left to time out and assume that the passive host is down.
In 4. 2BSD the queue is limited to only 5 connections (SOMAXCONN, defined in socket.h). This small
size pretty much forces connection-oriented servers into an implementation style in which one process
accepts a new connection and then forks off a child process to handle it, even if the service is fairly
trivial (fork is described in Section 5.1). Because servers may need TCP for its guaranteed delivery,
not because they need a virtual circuit, we feel that a server should have the option of accepting and
processing requests one at a time, rather than forking off new processes to do the servicing. The small

13

queue size also means that an errant host could block all other attempts to use a service by flooding
the server with connection requests. Thus, when 4.2BSD can’t put a connection on the queue, it
should log that fact and identify the connections that are already in the queue.

Also, just as a system should log cases where a socket is flooded with connection attempts, it
should log cases where a host is flooded with Address Resolution Protocol requests [Plummer]. The
system should also record calls to a protocol’s pr drain routine, which is called when the kernel is
running low on memory and wants to reclaim space used for, say, caches,

One chore that internetworks (interconnected networks) brought with them is network config-
uration: deciding what hardware to use, how many networks to talk to, and where to put gateways.
Knowing how many bytes two hosts sent each other, similar to the information that hetstat -r
provides, would certainly aid in this planning.

One way to implement this idea would be to periodically examine the routing table, which already records the number of
packets sent along each route. The probiem with this scheme is that mast of the routing entries will be for networks, and we
want host-specific numbers, Thus it looks like the kernel wiil need another table to record this per-host traffic. To avoid
wasting too much space, the kernel could periodically throw out entries whose traffic count is under some threshold, or a user
process could periodically flush the kernel table after updating a disk file with it.

A useful tool for program debugging would record network traffic destined for or sent from the
machine on which the process is being debugged. In fact, the Distributed Programs Monitor can
already do this for us. In addition, we want the option of recording messages as an eavesdropping
third party, so that recording the packets doesn’t disturb the system being debugged. The PupWatch
tool at Xerox’s Palo Alto Research Center does just that for their systems. We would like a similar
UNIX-based tool to monitor Ethernet traffic here at Berkeley. Unfortunately, such tools require help
from the hardware: the network interface hardware must be willing to accept packets that aren’t
bound for it [Schoch & Hupp].

Our final suggestion is that ps optionally display for each process the PCB addresses for the
process’s sockets. First of all, this would be a big help for debugging. Also, it makes no sense to flag
idle or otherwise troublesome sockets if there is no way to trace them back to the program that is
actually causing the problem.

To find all the sockets, ps need merely run through the array of file descriptors in the process’s u. area. NULL entries can be
ignored, and a non-NULL entry will point to an entry in the file table. Thisentry will havea flag telling whether it’s a socket. If
itis a socket, the f__data field will point to the socket structure, which will have the address of the PCB.

14

3. 1/0 and the File System

3.1 How it Works

Since its inception UNIX has supported an elegant I/O and file system [Ritchie]. A major change
that 4.2BSD brought is a new file system, one with both functienal and performance enhancements.
We shall first describe in generazl the UNIX file system, then we’ll describe the notion of mounted
filesystems, and finally we'll describe the changes introduced in 4.2BSD.

regular files and special files

Each UNIX file is associated with a descriptor structure, called an inode in UNIX jargon. This
structure gives common information like the owner of the file, when it was last accessed, and who can
read it. It also tells what device the file is associated with and the type of the file. Regular files are
what you normally think of as files: a collection of bytes, usually on a disk. UNIX also supports the
netion of special files, which are typically devices like printers, terminals, or tape drives. Files are
named by giving a path in a directory tree, and you can’t deduce the file’s type from its name. Thus,
as with IPC, the implementation is based on a switch table, this time using the device number as an
index into the table.

There are two types of special files (devices): block special files and character special files. Block
devices are named for an organization based on randomly addressable blocks. They share a common
pool of I/0 buffers, and they have a highly structured interface that is well-suited for disk /O. A
character device is anything that isn’t a block device.

A process accesses a file through a file descriptor, which is simply an index into a per-process
array of pointers. These pointers point to entries in the file table. UNIX lets processes share a file,
down to the point of sharing the byte offset in the file. UNIX also lets processes share a file such that
their accesses are independent. This is done by having each entry in the file table hold an offset value
and peint to an entry in the inode tabie. There is exactly one entry in the inode table for every file
that is being referenced. Processes that share the file and the offset use the same entry in the file
table. Processes that share the file but have different offsets have different entries in the file table.
But each of the file table entries refers to the same entry in the inode table, as shown in Figure 3.1.

The 4.2BSD kernel allocates pages for the the I/0 buffers separate from the buffer headers. When
the system allocates a buffer, it checks that the number of bytes assoclated with the header is the
number desired. If not, it reailocates pages for that buffer to get the right number of bytes. Three
values control the allocation of buffer pages and headers. Bufpages is the number of clusters allo-
cated for buffer pages {clusters are described in Section 4.1). If bufpages is zero at boot time, the
kernel computes it as a fraction {five to ten percent) of the physical memory in the system. Similarly,
nbuf is the number of buffer headers. If nbuf is zero at boot time, the kernel allocates one half as
many headers as there are clusters, with a minimum of 16 headers. SYSPTSIZE is a symbolic constant
that controls the size of the kernel-space page table. If SYSPTSIZE is so small that there aren’t enough
page table entries for all the [/O buffers, nbuf is reduced so that there is enough reom. Similarly,

bufpages is reduced if it is greater than the number of clusters that the buffer headers could possibly
refer to at once.

mounted filesystems

In UNIX systems a disk pack is typically broken up into two or more digjoint partitions. UNIX lets
you associate these partitions with subtrees in the directory hierarchy. You do this by mounting the
partition {("filesystem”) on a “leaf” directory in the existing tree. Future references through that
directory are shunted over to the associated filesystem [Thompson]. This scheme is very convenient
for such purpoeses as moving disk packs between machines (e.g., if one machine has a power supply

15

A
:
/-; fite
c :
40
proc table file table inode table

Fig. 3.1: The file and inode tables. Processes A and B share the same file table entry; the next one to access the
file will he at offset 200. Process C has a different file table entry; it will accesse the file at offset 40. All three
processes use the same entry in the inode table.

failure). Files must exist wholly within a filesystem. This limits the size of files, though this is not
serious in practice, and it provides a cheap way to control and organize disk usage.

4 2BSD enhancements

The original UNIX file system was slow [McKusick et al 84]. One reason was that it transferred
blocks of 512 bytes, which meant that per-transfer overhead had a noticeable effect. Another problem
was random block layout. When files were freed, their disk blocks were merely placed at the end of a
free-list. New blocks for files were merely taken off the head of the list. After a while, the partition
would become a complete jumble. Sequential blocks in a file would be on different tracks, forcing a
seek for every transfer, and blocks on the same track would be randomly scattered among the
different sectors.

The 4.2BSD file system fixed these problems. The too-small block size problem was fixed by
increasing the block size, typically to 4096 bytes. To avoid internal fragmentation of the disk, 4.2BSD
introduced the netion of a fragment, which, for a 4K block size, might be 512 bytes or 1024 bytes.
Every file consists of some number of blocks followed by some fraction of a block (some integral
number of fragments). If the file grows, the disk block allocator tries to expand the chunk at the end
of the file. If that fails, it allocates a new, bigger chunk, eopies the old chunk over, and then frees the
old chunk.

The fix for the layout problem is a smarter disk block allocator. It tries to arrange blocks so that
seeks are few and far between, and it arranges blocks so that multi-sector transfers can be done with a
minimum of rotational delay (by "sector” we mean the basic block of the disk, which is usually
smaller than what the kernel thinks the block size is). The 4.2BSD file system reduces seeks by
dividing each filesystem into cylinder groups. The allocator tries to put all of a file’s blocks within one

16

cylinder group until the file reaches a certain size. Then it looks for a new, under-used cylinder group
to continue the file in. For this scheme to work in practice, though, the file system must keep minfree
percent of the disk free (10% at Berkeley). That is, if a partition is down to minfree percent free, the
allocator refuses to allocate any blocks in it (unless the allocating process is owned by root).

All of these enhancements were designed to be as flexible as possible. Thus all of the controlling
values are filesystem-specific (not system-specific) parameters. In the worst case (e.g., changing the
fragment size), you can change the parameters for the filesystem by dumping it to tape, regenerating
a virgin filesystem with the new parameters, and then reloading the old files from tape. Other
parameters, such as the required minimum free space on disk or the expected delay to process a disk
interrupt, can be changed without rebuilding the filesystem.

System configuration in 4.2BSD was also designed to be flexible. The descriptions that you put in
a config file only say that the device might be attached to the system. When the system boots, it goes
through a phase called auto-configuration. The auto-configuration code (e.g., in mbaconfig) probes
each device listed in the config file, checking whether the device really is there. If there is no
response to the probe, the device is ignored.

The 4.2BSD release also introduced some functional enhancements to UNIX. Disk quotas allow a
manager to limit the number of files and the number of blocks that a user may create. Shared and
exclusive (advisory) locks let processes coordinate their accesses to files (e.g., for database work).

3.2 Existing Tools

There are many more tools for the /O and file system part of 4.2BSD than there are for
networking. lostat gives general information about the system’s disks, pstat displays portions of
various [/O-related kernel tables, dumpfs dumps a filesystem’s parameters, and vmstat gives
information about interrupts.

iostat and df

tostat doesn’t have any real options: you can specify how often it will iterate, and you can specify
how many times it will iterate, but it always gives you the same numbers. First comes the average
number of characters read by terminals ("ttys” in UNIX jargon), then comes the average number of
characters sent out by terminals. This includes traffic both from “real” terminals and from pseudo-
ttys (called “ptys” in [ProgrammerManual]). Then, for up to DK NDRIVE disks, iostat gives the
following information: average number of kilobytes transferred per second, average number of
transfers per second, and average number of milliseconds per seek. Finally, the percent of time that
the CPU spent in user mode, executing nice'd processes in user mode, in system mode, and idle are
printed. ("Nice” is explained in Section 5.1.) The first line given by iostat contains averages since the
system booted. Thereafter the line contains averages since the previous line was printed. For each
drive, 4.2BSD keeps the number of clock ticks the drive is busy, the number of seeks done by the
drive, the number of transfers done by the disk, the number of (16-bit) words transferred, and the
disk’s transfer rate. The average seek time is computed by caleulating how much time the disk spent
transferring data, subtracting that from the time the disk was busy, and dividing by the number of
seeks done by the disk.

Df tells how full the disks are. For each filesystem it gives the name of the associated disk
partition (a special device, e.g., /dev/hp0a), the number of kilobytes in the filesystem, the number of
kilobytes in use, the number of kilobytes available, and the percentage of the filesystem that is in use.
The number of kilobytes available and the percentage in use are calculated after taking away the
10% minimum allocation described previously in “4.2BSD enhancements.” Thus df occasionally
reports that a partition is, say, 102% full. The -i option tells df to include the number of inodes in use,
the number of available inodes, and the percentage of inodes in use.

pstat

Pstat is not so much an instrumentation tool as it is a debugging tool {e.g., for analyzing crash
dumps). Nevertheless, its -s option is useful for instrumentation. As long as we're looking at that

17

option (in Section 4.2), we might as well look at the rest of the program. Pstat has three options that
we are interested in here (there is no default to pstat). Two of these options are related to the file
system, and one is related to terminals. Pstat -i dumps the in-core inode table. It gives data such as
the address of each entry, the inode’s flags, the number of references in the file table to the entry, and
the user ID of the owner. The flags are printed symbolically: each bit has a letter associated with it
that is printed if that bit is on. For example, A means that the file system needs to update the file’s
last-access time, and £ means that a process has an exclusive lock on the file.

Pstat -f provides similar information about the file table. An entry in the file table can refer to
objects other than files. In particular, it can also refer to a socket. If the entry is a file, DATA is the
address of the file’s entry in the inode table. Otherwise it is the address of the socket structure. MSG
1s the number of in-flight messages that refer to that file-descriptor via an access-rights mechanism
(implemented only in the UNIX domain).

The -t option of pstat prints information about ail the terminals in the system, including the
console and pseudo-terminals. Pstat arranges terminals according to terminal controller (e.g., DZ,
DH). 1t gives information like the size of the terminal’s input and output queues, its flags (which are
defined with the terminal ioctls in ioctl.h), its state, the address of some controller-specific values, and
the column that the kernel thinks the cursor is at (going from 0 through 255).

dumpfs

Dumpfs tells you more than you'll ever want to know about a filesystem. The first set of numbers
are stored in the filesystem’s super block; defined in fs.h, they are mostly filesystem parameters and
other numbers used by the disk allocator. Next comes a map showing how blocks are laid out on disk
and summary information about each eylinder group in the filesystem {e.g., number of free blocks,
number of free inodes). Finally dumpfs dumps information about each cylinder group, down to the
point of listing which inodes are taken and which fragments are free.

vmstat -i, vmstat -s

Vmstat, in addition to providing information related purely to virtual memory, also gives
information about interrupts. The -i option tells vmstat to dump an array of interrupt counters,
giving for each device the total number of interrupts and the average number of interrupts since the
system booted. The -s flag causes vmstat to dump the sum structure, which is a counter of events
mostly related to virtual memory. The sum structure also includes the number of device interrupts,
the number of software interrupts, and the number of interrupts from DZ terminal controllers that
locore (the assembly language code at the very bottom of 4.2BSD) uses to simulate a DMA interface.
(That is, the DZ driver, which is written in C, sees a DMA interface thanks to the code in locore.) The
sum structure also includes the number of traps and system calls, which can be compared against the
number of interrupts. The total number of interrupts given by -i should equal the number of device
interrupts given by -s plus the number of pseudo-DMA interrupts given by -s,

Vmstat -s also gives statistics on the namei cache, which was introduced after 4.2BSD was
released. Namei is the kernel routine that converts a path name (a string) to a pointer to an in-core
inode structure. A typical 4.2BSD system might spend 11% of all its cycles doing namei lookups
[Leffler ef al 84]. For this reason namei now caches recent translations, and it keeps information
about the cache’s effectiveness.

3.3 Problems with the Existing Tools

iostat and df

There are a few things that we’d like to get from iostat but don’t. First, iostat only gives per-disk
information. One benefit of mounted filesystems is that you can spread users’ files across all of the
disks in the system, and you can shuffle them around, for the most part transparently. This helps
avoid having one disk being too much of a bottleneck. Of course, after a while a system’s user
population can change, and what was once a well-tuned arrangement can become out-of-balance. If

18

iostat gave per-partition traffic, rather than per-disk, the job of retuning the filesystems (or even just
knowing if retuning would help) would be easier.

The header for an /O buffer could contain a peinter to the traffic counters for the appropriate partition. The pointer would
get set by getblk or geteblk, The counters would get updated either by the disk driver code or by the buffer I/0 functions that
call the disk’s strategy routine. The counters would also need information (e.g., device number) telling what disk partition they
are associated with. If the counters were kept in a linked list, with the head of the list in a well-known location, iostat could
trace down the list to display the per-partition numbers.

A major hole in disk-related instrumentation is that DK NDRIVE (the number of instrumented
drives) is defined in dk.h as always being 4. Furthermore, the drives instrumented are simply the
first four that the aute-configuration code finds, they aren’t even the four busiest drives. This limit
may have been placed to reduce the time that 4 2BSD spends doing instrumentation, but there’s no
point in halfway measures. All disks in the system (well, all partitions in the system) should be
instrumented.

The 4.2B5D kernel finds out what devices are available after it has set up physical memory. Perhaps configuration could
be done before physical memory is set, in which case the counters for each partition could be allocated with the process table,
inode table, I/O buffers, and so forth. If not, then either the counters could be kept in mbufs, or startup could use some scheme to
find out hefore configuration how many counters to allocate,

Rather than give for each disk the average number of requests per second, iostat should usually
give the percent utilization (i.e., the percent of the time that the disk was marked busy). In general
we are more interested in knowing that a disk was busy, say, 50% of the time, than in knowing
exactly how many requests were made per second. The number of requests per second and the
number of kilobytes transferred per second should be obtainable via a separate option.

Although vmstat already gives us the statistics on the namei cache, it really makes more sense
for those numbers to be a part of iostat. Also, as a tuning aid, iostat should give statistics on the
usefulness of the buffer I/0 cache, such as the number of hits, the number of misses, and the size of the
cache, The 4. 2BSD start-up code writes the size of the buffer [/Q eache and the number of buffers on
the console. This information is therefore available in /usr/adm/messages. If SYSPTSIZE does limit
the size of the buffer cache, a message noting the limit will also be in /ust/adm/messages. However,

as it usually takes a bit of poking through the file to find these messages, iostat should include this
information in with the buffer cache statistics.

pstat

Pstat has three problems. The symptom of the first problem is that it doesn’t recognize all the
possible flags for inodes or all the possible state bits for terminals. This hole is easily patched. What's
more important is pstat’s attempt to print that information symbolically. First of all, using one
character per flag takes up a lot of room on the screen if there are a lot of flags. Second, pstat quickly
runs out of single-letter mnemonics for the bits (e.g., "Z” in pstat -i means that someone is waiting for
an exclusive lock on the file). Finally, every time a new flag bit is defined, someone has to fix pstat to
recognize that flag. A better approach is for pstat just to print the flags in hexadecimal or octal; the
manual page for pstat can tell what each of the flags means. Thus pstat will print complete
information even when new flags are added (unless another flags word is begun). It would be naive to
say that the manual page would also track the new flags, but at least knowledgeable users could look
in the C header file that defines the flags.

The second problem in pstat is related to file offsets. The offset field in a file table entry is defined
as an off _t, which on a VAX is a 32-bit signed integer. First of all, if a file is larger than
approximately 2.1 gigabytes, its offset will be treated as a negative number (which means that
4.2BSD may act strange when dealing with files that size or larger). The dofile function in pstat
deals with this problem by printing "negative” offsets in hexadecimal. This whole mess would be a lot
cleaner if off _t were simply an unsigned integer. Pstat would then not need to test for negative
offsets, and the 4.2BSD kernel would (probably) be more robust. Sumlarly, the t col field of a tty

structure, which tells what column the terminal driver thinks the eursor is at, should be an unsigned
char, not just a char.

19

The third problem is that pstat -t assumes it is running in a world of Digital Equipment Corp.
hardware (DZ, DH, and DMF terminal controllers). Switching to a different vendor should only
involve changing one table inside of pstat, not rewriting a moderate amount of C code. The table

would simply list for each controller its name (as a printable string), and where to find information for
that controller.

dumpfs

One small complaint about dumpfs, and then we’ll get to the important stuff. The small
complaint is the way dumpfs displays its information. There’s something disconcerting about being
presented with a morass of numbers and cryptic abbreviations like “ipg® and
“es[l.cs__(nbfree,ndir,nifree,nffree}.” These fields should read more like “inodes per group” and
“summary information per cylinder group (blocks free, directories, inodes free, fragments free).”

More important, dumpfs should check the consistency of the numbers it produces, rather than
Just printing them. This is faster and less error-prone than having a human check the numbers.
Dumpfs should also compute the number of bytes per inode in the filesystem. When you create a
filesystem, you tell (perhaps indirectly) mkfs to create an inode for every so many bytes of data. Mkfs
converts the inode density to the number of inodes per cylinder group, which is the value stored in the
filesystem super block and is the value that dumpfs prints right now. We should point out; though,
that the inode density that dumpfs computes may not agree with the one used to create the

filesystem. This discrepancy might exist because mkfs enforces a limit of MAXIPG inodes per cylinder
group (defined in fs.h).

vmstat -I, vmstat -5

The biggest question about vmstat’s -i option is why it’s even there. A breakdown of system
interrupts doesn’t logically belong with statistics about the virtual memory subsystem. [t belongs
with other [/O information. The interrupt information that -s gives is more reasonable. It lets you
compare interrupts and traps caused by paging with the total number of interrupts and traps in the
system. Still, the count of “pseudo-DMA DZ interrupts” has little, if anything, to do with virtual
memory and should be displayed elsewhere.

The other problem with this information is that it is inherently machine-dependent. Actually,
vmstat -i handles this problem very well. It just looks in the kernel for an array of counts and an
array of names, and it displays them. Config puts these arrays in ubglue.s based on the devices that
the system is configured with. However, the sum structure that vmstat -s dumps, being defined in
/sys/h/vmmeter.h instead of somewhere in /sys/vax, makes the pretense of being machine-
independent. On the one hand, it is probably safe to say that any machine running UNIX has both
software- and hardware-initiated interrupts. On the other hand, machines not made by Digital
Equipment Corp. probably don’t use DZ terminal controllers. They may use pseudo-DMA for other
reasons, but in that case vmstat and its manual page should refer to the count simply as "pseudo-
DMA interrupts.” Furthermore, other architectures (e.g., a workstation with a bit-mapped display)
may find it useful to break down interrupts into categories other than what sum provides. At the very
least, vmstat should be structured so as to make this machine-dependency more explicit.

4.2BSD enhancements

In light of the 4. 2BSD file system enhancements, there are three types of tools that we would like
to have. The first set of tools helps tell how much benefit the enhancements really provide. The
second set tells whether the enhancements are really doing what they’re supposed to be doing. The
last set helps us administer the file system more effectively.

The original paper on the Fast File System showed that it could speed file accesses by up to a
factor of ten. The price of this speedup was 800 lines of code and comments. Unfortunately, because
of the way the system was implemented and tested, we don’t know which enhancements had what
effect on the system. One of UNIX’s advantages over other operating systems is its small size and
elegance. If certain code offers little improvement in functionality or performance, it should be

20

removed. A recent study [Ousterhout e¢ al} suggests that 70% of all sequential accesses in UNIX are
less than 40060 bytes long, which is less than the smallest block size in 4.2BSD. So we wonder about
the usefulness of 4.2BSD’s smart layout policies. The code to implement them is not trivial, and the
extra processing significantly slows down file growth [McKusick et all.

We would like to see additional information supporting the conclusions of [Qusterhout et all
before ripping out chunks of the file system code. However, rather than post-analyzing file system
traces, as was done in that study, we can use counters in the kernel to determine how much data is
transferred sequentially and how much is transferred in random-access mode.

Each entry in the file table could have a "last seek” field that would tell where the last seek on the file had moved to. When
the file is opened the field would be zero. When the file is next seeked on or closed, the kernel can determine how many bytes
were transferred sequentially and increment a counter. A user program could use an array of these counters to generate a
histogram. For example, the first counter could tell how many sequential tranfers were less than four kilobytes long {the
minimum block size in 4.2BSD). The next counter could teil how many sequential transfers were between four and eight
kilobytes, and se on.

If we conclude that the layout policies are still a good idea, then we want to make sure that they
are correctly implemented. For example, student projects at Berkeley in Spring 1984 [Seymour &
Lob], [Opperman & Davis] revealed a bug in the allocation code that was placing sequential sectors
(i.e., physical disk blocks) of a file farther apart than was ideal. These tools were modified versions of
fsck, clri, and dumpfs. Rather than using these tools once and then throwing them away, they should
be kept as options to the original programs, though perhaps no one outside of Berkeley would want to
use them.

As for administration, the quota implementation in 4.2BSD provides some tools for quota
management, such as a quota editor. At Berkeley, a student’s quota on "ucbeory” (used by the
Computer Science Division for undergraduate classwork) is based on what classes the student is
taking. Rather than manually keeping track of "special” quotas so that they can be reset at the end of
the semester, ucheory’s management wrote a program to flag quotas that are higher or lower than
normal. .

One number that would be useful for all three of the above categories is the number of times the
allocation code (in ufs alloc.c) could not put a block in an optimal location. If blocks are often put in
sub-optimal locations, then the complexity of the 4.2BSD layout code is wasted. Someone debugging
the allocator would want to know how often the allocator thought it was putting the block in the right
spot and how often it thought that the block was going somewhere else. Finally, if lots of blocks are

ending up in sub-optimal places, that would be a reason for increasing minfree (the percentage of the
filesystem that 4 2B5D keeps reserved).

logging

The 4.2BSD kernel already logs many types of errors, such as device parity errors, full system
tables, and full disk partitions. We have two complaints about error logging in 4.2BSD: the
information is incomplete in spots, and there are problems with how the kernel writes log messages.

One place where logging is incomplete is the disk block allocator. The kernel already writes a log
message when a process fails to allocate a disk block from a full filesystem. Unfortunately, the
message doesn’t include the ID of the process that wanted the block. Sometimes a partition is full
simply because users have not cleaned up after themselves in awhile. Other times the partition fills
because some program has run amok. It is for this second case that we want the process ID.

Another deficiency is that 4.2BSD does not log cases where the in-core per-user guota table--
represented by a linked list--is full. Because 4.2BSD allocates quota structures based on MAXUSERS,
making the size of the table tunable, it should log instances when the system runs out of them.
Another tunable resource whose scarcity doesn’t get logged are the system I/0 buffers. In this case, it
may not be a good idea to log each and every time that a process has to wait in geteblk for an empty
buffer. However, it would be useful to record the number of times this happens and write a log
message if the count exceeds some threshold within a given amount of time. (We discussed this “threshold”
logging in section 2.3 while discussing interface errors,)

21

On the other hand, we are quite content that 4.2BSD doesn’t log cases where a process tries to
allocate more than NOFILE open files. There certainly are cases where a process needs more files than
normal. We believe that if this error were logged, though, most of the messages would be noise--bugs
in the program, rather than a real need for many open files.

The problem with the logging implementation in 4.2BSD has two consequences. The first is
inefficiency. Kernel error messages in 4.2BSD are written to the system console via a special version
of printf. Unfortunately, other processes do not run while a message is being printf'd. In fact, if printf
is called at a high interrupt level, the kernel can even miss interrupts while the message prints. Thus
we have seen cases at Berkeley where a lightly loaded machine was sluggish because an infinite-loop
process was writing to a full file system, causing continuous console error messages. We also have
seen the case where the system clock slowly fell behind because kernel printf’s caused the system to
miss interrupts from the hardware clock. The second consequence is that there are two classes of
system error messages: those generated by the kernel, and those generated by user programs via
syslogd. One feature of syslogd is that it can send messages to system managers (e.g., when someone
gives an invalid super-user password). In some cases we want the kernel to send messages, too (e.g.,
when a disk is write-locked). To correct both of these problems, the kernel’s error-logging mechanism
should use syslogd. We suggest one change, though. When syslogd sends a message, it scribbles on
the user’s terminal. This is rude, especially if the message isn’t urgent. In those cases syslogd should
send mail instead.

In fact, selected printf calls have already been replaced at Berkeley by calls to a new log routine. This solves both of cur
complaints. Syslogd gets the kernel messages by reading from the /dew/klog device, and the error message is no longer printed
on the console.

miscellaneq

As UNIX becomes a more popular system, the average sophistication of its users drops. At some
point it will become (perhaps already has become) impractical to rely on users to tell management
that more resources (e.g., printers, tty lines) are needed. Therefore UNIX itself should record
information about contention for and utilization of resources. This information can also point to
resources that are being wasted or unused, which is something users will never complain about
anyway. For example, GNIX should record the average queueing delay that files see waiting for a
printer. It should also record the utilization of terminals and dial-in lines, and it should tell how
much of the “in-use” resources are actually being wasted by idle users. There would be little point in
recording such information about tape drives, though. For one thing, instrumentation of tape drives
is potentially complex (e.g., you have to account for use by other machines if the drive is multi-
ported). For another thing, tapes are usually used for file archiving and backup [Kridle]. Thus
relatively few UNIX users use tapes; those that do are typically sophisticated enough that they can
work out contention problems for themselves,

Another useful thing to know is how much wasted space is in a filesystem. This waste comes from
two sources: fragmentation and bad blocks. Fragmentation waste comes from a file’s not using all of
the last fragment allocated to it. This waste can be tuned by changing the filesystem’s block and
fragment sizes. The number of bad blocks can be "tuned” by getting a new disk. A program like fsck
can dig up fragmentation information while doing its normal disk-checking duties. The bad144
program already gives information about bad-sector forwarding, though there is no foolproof way to
find sectors marked bad by badsect. Because the number of bad sectors is probably small, we shall
ignore it and only worry about fragmentation.

Our third request is that ps display for each process the number of disk operations done by the
process (not including paging or swapping). This information, along with paging information already
given by ps, would help us track down offending processes when the disks are heavily loaded. The
display should include the number of sync and fsync calls. These calls force all buffers {(syn¢) or one
file’s buffers (fsync) out to disk if they are dirty, thereby synchronizing the buffer cache with the disk.
1If used too often, these calls can cause a heavy load on the system.

22

4. Virtual Memory

4.1 How it Works

In this section we shall explain the virtual memory subsystem in 4. 2BSD. Some of this code is
acknowledged as being VAX-specific--it is kept in /sys/vax. The rest of the code is supposedly
machine-independent and is kept in /sys/sys. However, the overall design, especially for paging, has a
heavy VAX color. Our presentation will net distinguish between the VAX-specific code and the
machine-independent code. Also, our description will only cover shared-text, demand-paged
programs, not older formats.

First we shall describe the virtual address space seen by each user process. Then we'll describe
the way 4.2BSD allocates physical memory. Third, we shall describe how it does paging and
swapping. Finally, we’ll describe the 4. 2BSD swap device abstraction.

the virtual address space

Each user process in 4.2BSD sees three segments: text, data, and stack. The text segment holds a
read-only copy of the process’s code. Each program being run is described by an entry in the text table.
Processes sharing a text segment (i.e., running the same program) share an entry in the text table.
The data segment is read-write data owned only by that process. It begins after the text segment and
grows towards the high end of memory. The stack segment is also read-write and is owned only by
that process. It begins at the high end of memory and grows towards the data segment.

allocation of physical memory

‘The bootstrap program loads the 4.2BSD kernel into the beginning of physical memory. As
shown in Figure 4.1, the kerne! start-up code allocates adjacent physical memory for tables whose size
is configuration-dependent (e g., the inode table and the file table), buffer headers, and buffer pages.
The start-up code also allocates a message buffer at the high end of physical memory; the kernel uses
this buffer for error logging. The remaining physical memory is available for use by user programs,
though the kernel may still allocate pieces of it (e.g., for mbufs). The kernel manages this remaining
memory using the cmap (“core map”) structure. Rather than allocating it in terms of pages, 4.2BSD
deals with clusters. That is, each entry in ¢map refers to a cluster of adjacent page frames, not a
single frame. The symbolic constant CLSIZE tells how many pages are in a cluster; CLBYTES tells how
many bytes are in a cluster.

paging and swapping

Both pageouts and swapping are handled by “system” processes. These processes are created
when the systemn boots; they run entirely in the kernel. The paging and swapping policy depends on 4
parameters: lotsfree, desfree, minfree, and maxpgio. If there are more than lotsfree pages available,
then the pager doesn’t run at all. Otherwise, the pager scans pages using a “clock” algorithm. The
farther the system is from lotsfree, the faster the pager scans.

The conditions for swapping are more complicated. [n general, the swapper will “get desperate”
(i.e., look for a process to swap out) if all three of the following conditions are satisfied:

® onthe average there are at least two processes swapped in

® the paging rate is greater than maxpgio operations per second or there are less than minfree
pages available

® both the 5-second and 30-second averages of available pages are below desfree

If the swapper isn’t desperate, it takes a leisurely stroll through the process table, looking for
swapped-out processes that are runnable, and looking for processes to swap out. In this case,

23

low end of high end of
memaory memory

kernel text tables, cmap’d memaory logging
buffers (eg., user pages) buffer

Fig.4.1: allocation of physical memory.

processes are swapped out if they are “idle” (i.e., have been sleeping or stopped for more than maxslp
seconds) and there are less than desfree pages available. If the swapper is desperate or if it has found
a process to swap in, it again looks for an idle process to swap out (but is less choosy than the first
time). If the swapper is desperate but can’t find an idle process, it just picks the biggest available
process to swap out. If the swapper wants to swap a process in (but isn’t desperate) and can’t find an
idle one, it tries to be fair by swapping out a large process that has been swapped in “for a reasonable
time.”

Ifthe swapper can't find an idle process to swap out, it finds the nbig processes taking up the most physical memory (nbig is
defined in vm__sched.c). If the swapper wants to bring a process in, it looks amo ng the nbig processes for the one that has been
in cove the longest. That process is swapped out only if it has been in core for more than maxslp seconds {thereby avoiding
thrashing),

The clock-style paging in 4.2BSD is complicated by the VAX’s lack of a use bit for each page
frame. Instead, 4.2BSD uses the frame’s valid bit to simulate a use bit. When a page fault occurs, if
the page table entry points to the frame holding the page, the kernel turns the hardware valid bit on
and returns from the trap. This is called a reclaim (because it satisfies the fault without resorting to a
disk read). The pager, using the 2-handed clock algorithm described in [McKusick et al 85], turns off
the hardware valid bit when the first hand reaches the page. If the hardware valid bit is still off when
the second hand reaches the page, the page is freed, and it is written to disk if dirty. Freeing the page
means putting the page frame in a free list, but leaving the page table entry pointing to the frame.
This scheme allows the process to reclaim the page if it faults on it before some other process has
grabbed the frame. A third way to reclaim a page is when some other process had owned it, for
example when a process faults on a text page for a recently-compiled program.

A page is always marked dirty the first time it enters memory. When a dirty page is paged out, it
1s copied to the process’s swap area, which the kernel allocated for the process when it exec'd the
program. (Execis explained in Section 5.1.) Thus when a process is swapped out, only its dirty pages
must be written to disk. When a process swaps back in, it pages itself in on demand. The paging code
tries to read or write adjacent clusters with a single disk request. Unneeded pages brought in this
way are put on the free list in the hope that they will be used soon. This technique is called klustering
(with a "k” to distinguish it from "clustering” with a “¢”); the pages read or written at once are called
a kluster.

24

When a page table is first set up, its entries are all marked fill on demand. Pages containing initialized data or text fill on
demand from the executable file. Pages containing uninitialized data are marked zero-fill on demand ("zfod”). So if pagein
doesn’t find the page in core, it has three choices. If the page is not fill on demand, pagein brings it in from the swap device. If
the page is zero-fill on demand, pagein allccates a frame, marks it dirty, and zeroes it. Otherwise, pagein atlocates a frame,
marks it dirty, and brings the page in from the file system.

Unless the system has little physical memory {under 2 megabytes), lotsfree is (equivalent to) 512
kilobytes, desfree is 200 kilobytes, and minfree is 64 kilobytes. Otherwise, these parameters are
caleulated as fractions of the available memory (i.e., after taking away space for the kernel, I[/O
buffers, and tables). Maxpgio is computed based on the number of disks with swap partitions. If,
however, these parameters are patched to be non-zero (as described in Section 1.3), they are left at the
patched value when the system boots.

The plan for 4.2BSD allows paging to take up two-thirds of the disk requests (assuming one request per disk revolution) as
long as there is only one digk doing paging. As soon as there is more than one disk for paging, though, maxpgio is raised to
allow for each disk one paging operation per revolution of the disk. Or at least that’s the intention. In reality, vminit computes
maxpgio for one disk (i.e., either two-thirds of or equal to the number of revolutions per second). 8init then multiplies maxpgio
by the number of disks doing paging. Unfortunately, vminit is called before nswdev, the number of disks with swap partitions,

is set. So wminit always thinks that there is only one disk doing paging. The solution is probably to move the code that deals
with maxpgio from vminit to binit.

the swap device

Conceptually there is only one swap device. If more than one disk has a swap partition, then the
blocks of the swap device are interleaved among the swap partitions. Swap space for each text
segment is allocated only once and shared by the processes running that program. Text is allocated in
chunks of dmtext clusters. The swap areas for a process’s stack and data segments are described by
two separate maps. The first entry in a map points to a chunk of dmmin clusters. The second points
to a chunk of 2*dmmin clusters. The third entry points to a chunk of 8*dmmin clusters. This pattern
continues until the entries point to chunks of dmmax clusters, at which point the chunks don't get
any bigger.

The paging and swapping code uses its own set of swap buffers, outside of the file [/O buffers
described in Section 3.1. Startup allocates half as many swap buffers as there are file I/O buffers, with
a maximum of 2568. This fraction is not tunable in 4. 2BSD. No pages are allocated to these buffers in
startup. Instead the code that does I/O for paging and swapping links the buffer headers to the pages
actually being paged or swapped.

4.2 Existing Tools

There are three tools in 4.2BSD that give information about the virtual memory subsystem:
vmstat, pstat, and ps. Vmstat gives general information about the virtual memory system (plus a pile
of other information, as we described in Section 3.2). Pstat displays information about the swap

device and the text table. Ps optionally gives virtual memory statistics for each process that it
displays.

vmestat

Vmstat gets most of its numbers from vmmeter and vmtotal structures kept in the kernel. When
certain events occur (e.g., pageins), the kernel increments counters in cnt, which is a vmmeter
structure. Once per second, the vmmeter function adds the values in ¢nt to sum (another vmmeter
structure), clears cnt, and recalculates rate (a third vmmeter structure) using a smoothed averaging
scheme. Every five seconds, vmmeter udpates swap counts and calls vmtotal, which updates total (a
vmtotal structure) based on information in the text and process tables. We will not try to justify the
rationale for this setup, other than to point out that some of the numbers (e.g., the amount of free
physical memory, the number of runnable processes) are used by the kernel to make scheduling
decisions. For this feedback, smoothed averages are better than raw counts because they are less
likely to cause instability [Ferrari].

25

Many of the numbers that vmstat displays need some additional explanation. For example,
“active” (as in “active virtual memory”) means that the process is either runnable or has been
sleeping for less than maxslp (typically 20) seconds. “Active virtual memory” is the sum of the virtual
address sizes of all "active” processes. The number of “blocked for resources” processes is actually the
number of processes that are sleeping with a "negative” priority (i.e., less than or equal to PZERQ).
The importance of negative priority is that the sleep can't be interrupted by signals. In fact, many of
the processes that sleep at a negative priority are the same ones that are waiting for resources.
However, some device drivers, for example, sleep at a negative priority beeause they are obeying a
locking protocol. The label "blocked for resources” is therefore misleading.

The “number of processes in the run queue,” the swap-related counts (which vmstat does not
display), and the “active virtual memory” are strict counts. The "page” numbers and the “size of the
free list,” though, are averages. In the first line given by vmstat the “average” numbers are simple
averages over the lifetime of the system (i.e., sum values divided by the time since the system booted).
In the lines that follow, they are averages smoothed over the last 5 seconds (i.e., rate values). The
“size of the free list” is an exception to this rule: it is always an average smoothed over the last 5
seconds. The "disk faults” numbers are another exception: they are the same transfer averages that
iostat prints. The number of attaches is the average number of times that a process reclaimed a page
that was owned by another process (we explained this in Section 4.1). The "reclaim” eount that
vmstat displays is another average, but it doesn’t include attaches. The interrupts, system calls, and
context switches counts are also averages. The interrupts count doesn’t include clock interrupts or
software interrupts. The "cpu” information is just like that given by iostat, except that vmstat
doesn’t tell how much time is spent executing nice'd processes.

Deficit is a kernel variable used by 4.2BSD to control swapins. When the swapper decides to swap
a precess in, it “reserves” memory for the process by increasing deficit. (It alse increases deficit when
in “desperation” mode.) Vmstat usually displays deficit as zero because vmmeter reduces deficit,
simulating the effect of pageins, every time it is called.

One instrumentation structure that nobody displays is the swptstat structure. It keeps tabs on
whether a process’s page table shrinks, grows, or stays the same when it swaps. For example, 4. 2BSD
occasionally swaps out a process because there isn't enough room to grow the process’s page table in
core. This is called an expansion swap. Knowing that many processes’ page tables grew when they
were swapped out would be an incentive to increase USRPTSIZE, the number of pages allocated to user
process page table entries (defined in vmparam.h).

other options to vmstat

As we explained in Section 3.2, vmstat -s simply dumps sum. The number of “fast reclaims” is the
number of times locore {described in Section 3.2) can reclaim the page, rather than taking the extra
overhead of going to C code to handle the page fault. The number of “reclaims from free list” is the
number of reclaims made where the page had already been "freed.” The count of “intransit blocking
page faults” is the number of times a process faulted on a text page and slept while another process
brought the page in. The “swap text pages found in free list” and “inode text pages found in free list”
counts are the two components of the attach count that vmstat normally shows.

Vmstat -t produces numbers showing how much time is being spent doing reclaims and how much
time is being spent handling all page faults. If PGINPROF (“pagein profiling”) is turned on, pagein
records the time-of-day when it is called and subtracts it from the time-of-day after it has satisfied the
page fault. Vmstat digs out the two counters (total time spent doing reclaims and total time spend
doing pageins) and displays the total and the average times.

Vmstat -f produces information about forks and vforks, which we’ll explain in more detail in
Section 5.1. Specifically, it gives the number of forks and vforks since the system booted, and it gives
the total and average number of pages involved in each operation,

pstat -5, -x

Pstat -s produces information about the swap device abstraction. “"Wasted” swap space is how
much is allocated but unused by processes. The "avail:” line shows what chunks of swap space are

26

available (i.e., it shows how fragmented the swap device is). Pstat produces this information by
reading in the swap resource map {a map structure, as deseribed in Section 2.3), the text and process
tables, and the table of swap disks. It then mimies kernel code to caleulate numbers like how much
space is in use, how much is used by text segments, and how much is missing (i.e., unaccounted for).
The -x option causes pstat to display every entry in the text table. Not every field of an entry is
shown. Only the following are printed: the entry’s location, its flags (printed symbolically), the disk
address of the segment’s first swap block, the address of the first process using the text, the segment’s
resident set size (i.e., how much is in core), its total size, the virtual address of the inode that the text

came from, the number of processes sharing the text, and the number of in-core processes sharing the
text.

psv

The v option to ps tells it to print virtual memory information for each process that it displays.
We shall quickly note some quirks of this display. The “sleep time” and “residency time” are
displayed as 99 if they are larger than 99 (they get up to 127 in the kernel). The %MEM field is the
percent of memory described by cmap, not the percent of total system memory. LIM is the process's
maxrss (maximum resident set size). If the process's maxrss is infinite (the default), ps prints it as
“xx.” Otherwise ps prints it in kilobytes. If the process is sharing its text segment with (n— 1) other
processes, then the RSS field includes 1/n’th of the size of the text segment. (However, when ps prints
the 4-character process state and decides whether the process is over its maxrss, it ignores text used
by the process.) If the pager finds a page belonging to a process that has more than its maxrss in core,
it frees that page without further thought. Also, if the system has less than desfree pages free and a
process has more than its maxrss in core, the process is penalized by adjusting its priority.

4.3 Problems with the Existing Tools

In this section we'll run through a list of gripes about each of the tools, similar to what we’ve
presented in previous sections. However, we shall also discuss one problem that is common to all of
the instrumentation tools in 4.2BSD, which is how user programs and the kernel schedule sampling
iterations.

vmstat

There are many numbers that we’d like to see from vmstat (perhaps as additional options). One of
the problems with the current vmstat display is that the scan rate, paging rates, and number of free
pages exist in a vacuum. There is no easy way to compare them with system parameters like
maxpgio, lotsfree, and desfree. If nothing else, an option to vmstat should dump maxpgio, minfree,
desfree, lotsfree, fastscan, and slowscan. Also, that same option might as well dump dmmin,
dmmax, and dmtext,

Many of the numbers that vmstat produces are smoothed averages. As we mentioned previously,
this is in part because some of those numbers are used in a feedback loop to control the system.
Smoothed numbers are generally preferred in that case to avoid instability. Nevertheless, we'd also
like to know how hard the system is being pushed--what some of the peaks are. So in addition to the
average number of pages paged in and out, we'd like to know what the largest simultaneous number
of pages in transit was during the last sampling interval. This would tell us how hard paging I/0 is
pushing the disks. We'd also like to know the smallest number of pages that were availabie during
the last sampling interval. This would tell us how close the system really is to running out of
memory.

Checkpage, cleanup, and pagein can keep track of the paging traffic. Checkpage initiates pagecuts of dirty pages. [t can
bump the count of how many pageouts are being done at that time and keep track of the maximum count. Cleanup frees the
pages written by checkpage and can decrement that count. Pagein would keep the count of pages heing brought in and keep
track of the maximum count. The pagein count is in a critical region because more than one process can be in pagein at once,

However, only one process (the pager) is ever in checkpage or cleanup, so no mutual exclusion protection is needed for the
pageout count,

27

The code that maintains freemem (the number of free pages in the system) is spread out through various parts of the
kernel. The cleanest solution here is t0 use a macro to change freemem; this macro would keep track of the minimum freemem,

Another new number that we want is how many pages are locked in core by the kernel. For
example, a small mbuf leak might not cause the system to crash, but it might lock up enough memory
that performance would suffer noticeably. When we're first trying to figure out why a system is slow,
knowing that many pages are pinned by the kernel would help point us in the right direction. Pages
can be pinned in core either because they are being used by the kernel (so their type is CSY$), or
because they are locked {e.g., for I/O). In the second case, the ¢ lock bit of the corresponding cmap
entry will be set. -

We'd also like vmstat to tell us the number of swapins, swapouts, and pages transferred in each
case. Even though a process pages back in on demand after being swapped, the kernel brings in the
process’s page table and u. area (described in Section 5.1) at the time it swaps the process in. This
information on swapping would give us a more complete picture of what the virtual memory
subsystem is doing. Finally, as we mentioned in Section 4.2, it'd be useful to know the number of
expansion swaps the system has done, so that we can tune USRPTSIZE.

There are a couple of numbers that vmstat prints now whose usefulness is questionable. As the
size of physical memory in Berkeley UNIX systems grows, it takes longer and longer for the imaginary
clock hands of the pager to make one revolution through memory. Thus there is little point in
keeping track of how many revolutions the hands have made. Also, we question the usefulness of
“active virtual memory.” Because a process is not likely to access all of its virtual memory at once,
this number only approximates the load on physical memory (i.e., the amount of core being used). Of
course, before we dump the notion of active virtual memory, we should check how aceurate it really is.
We can do this by adding the resident set sizes for all the processes in the system and comparing the
sum with the "active virtual memory” number.

As we shall discuss shortly, sampling the system at the right time is an important issue in
instrumentation. In 4.2BSD the callout code provides an alarm-clock mechanism in the kernel. You
call timeout with a pointer to the function you want called when the alarm goes off, and you say how
many clock ticks later you want the alarm to ring. When the alarm goes off, softctock calls your
function, passing two parameters. First is a single argument that you'd supplied to timeout. The
second parameter tells how many clock ticks ago the function should have been called. In the case of
virtual memory metering, schedcpu is called every second via this mechanism, and schedcpu calls
vmmeter, which does the metering. Unfortunately, when schedcpu resets its alarm to go off one
second later, it ignores the number of ticks that it was late in being called. Thus if for some reason
softclock is late calling schedcpu, the metering code falls behind and never catches up again. How
serious this problem is depends on how busy the system would have to be before schedcpu got called
late.

A more important problem is how vmmeter decides when to call vmtotal. Rather than calling
vmtotal every fifth time, vmmeter looks at the time of day. If the number of seconds in the time-of-
day value is a multiple of 5, then it calls vmtotal. Thus if vmmeter is called when the time-of-day is
almost a multiple of 5 seconds, and then vmmeter is called when the time-of-day is just barely past a
multiple of 5 seconds, vmtotal gets lost in the dust. This causes the instrumentation numbers--one of
which is used for controlling system load--te stick for an extra five seconds, and it means that when
vmtotal is finally called, the numbers for swapins and swapouts will be twice what they should be.

We also dislike the way vimmmeter decrements deficit. Vmmeter assumes that, on the average, one
half of a maximum-size kluster is brought in (klusters are described in Section 4.1) and that one-half
maxpgio pageins are done (i.e., half for pageins and half for pageouts). If this number of pages is less
than 10 percent of deficit, though, vmmeter reduces deficit by 10 percent. We have vet to find a
convincing explanation for this strategy, and we think that "black magic” should have little place in
kernel code.

A consistency quibble is that the values for swapins and swapouts in rate are simple counts of
those events over the last five seconds. Every other value in rate is an average smoothed over the last
five seconds. If a program displays those counts, it should probably divide through by 5. Otherwise,
the user would have to remember which of the numbers displayed are averages and which are total
counts,

28

An interesting property of the instrumentation code involves swapped out shared text segments.
If all processes sharing a program (e.g., the emacs editor) are swapped out, then the corresponding
text segment is swapped out as well. If some new process want to run that program, 4. 2BSD loads the
text segment from the swap device, rather than from the file system. Thus, a process can cause the
system to claim that it swapped pages in, even though the process itself was never swapped.

other options to umsiat

The only problem with the -s option is that it includes numbers that should go somewhere else.
For example, there is little point in displaying the number of pseudo-DMA interrupts in vmstat, and
there is even less point in displaying statistics about the namei cache there. Those numbers should go
in iostat.

Vmstat -t has problems that are much worse. The first problem is that it uses numbers that are
not always calculated by the kernel. Unless the kernel was compiled with PGINPROF defined, the
variables used by vmstat -t exist but are not maintained. This means that vmstat -t will always
produce results, but you have no way of knowing whether the numbers mean anything. Instead, the
variables should only be defined if PGINPROF is defined, and vmstat should assume that if it can’t find
the variables, then the information isn’t available. Also, the kernel routine that computes the pagein
times is broken. [t currently assumes a 60 Hz system clock and that Ibolt contains the number of
clock ticks between exact seconds. To work properly, this code need only use time.tv usec, which is
the microsecond portion of the system time variable. -

pstat -3, -x

Many of the bugs in pstat -s result from the mimicry of kernel code inside pstat. One problem
with this mimicry is that it’s liable to mistakes. For example, the kernel computes in pieces the swap
space needed by a process. Pstat tries to bring those pieces all together, but in a couple of places it
forgets about rounding and units conversion. What's worse is that pstat won't easily track changes to
the kernel. Another problem is that pstat -s has to read 4 different data structures to do its job. This
increases the likelihood that the information will change while pstat is reading it, leading to
incorrect results. The only purpose of this full-scale mimicry is to find “missing” swap space. If,
however, most of the time the space is “missing” because of bugs in pstat, then you might as weil go to
a simpler scheme in which kernel code (in vsexpand, vsxalloc, vgetswu, vsxfree, vrelswu, and
swfree} keeps counts of how much space is free, how much is in use, how much is used for text
segments, and how much is wasted. To get {fragmentation information pstat would still have to read
in the swap resource map and try allocating chunks of different sizes, though this at least reduces the
number of reads from kernel memory. Also, under this scheme the kernel and pstat can share
common code (rmalloc, rmfree), which means that pstat need only recompile to track kernel changes.

Our only complaint with pstat -x is that it, like other pstat options, displays flags symbolically.
We discussed this issue in Section 3.3.

psv

One problem with the v option is its assumption that the process’s default maxrss is infinite. This
was the default in 4.2BSD, but in 4.3BSD the default will be based on the system’s physical memory
size. If we want to distinguish processes that have a default maxrss from those that do not, then ps
must change to recognize the new default. Because “infinite” resource limits aren’t really infinite in
Berkeley UNIX, just very large, there is no point in distinguishing processes with an “infinite” maxrss.

sampling

Both the kernel and iterating user programs {(vmstat, iostat, and netstat) use a scheme in which
an alarm goes off, they gather information, and then they reset the alarm. The kernel does this in
schedcpu by calling timeout when it has finished. A user program (we’ll use vmstat as an exampie)
does this by calling sleep when it has finished one iteration. This means that the system is sampled
every l-and-some-fraction seconds, rather than every second. On the one hand, this causes an

29

obvious inaccuracy in 4.2BSD instrumentation, especially when the system load is high. In the long
run it biases the results towards the lightly loaded case because the system misses data points from
the heavily loaded case. On the other hand, if the system is heavily loaded it will spend more time
getting “useful” work done instead of doing system measurements. We expect that at the kernel level
the inaccuracy may be only a clock tick or two anyway (though this should be checked). At the user
level, though, the resulting inaccuracy is simply intolerable. We can illustrate this problem even on a
lightly loaded system: we tell vmstat to iterate every second, and we wateh numbers that should
change every 5 iterations change five to ten percent of the time after only 4 iterations.

So we need additional measurements (“meta-instrumentation”) before deciding whether
schedcpu needs fixing, The fix would be to move the call to timeout to the front of schedcpu, rather
than the end. The user-level programs need to replace the call to sleep with a call to sigpause. A call
to alarm should go at the top of the sampling loop, plus there must be code to handle the case where
the alarm goes off before the process has reached sigpause.

In user-level code, the alarm signal handler should set a flag saving that the alarm went off: this flag should be cleared just
before calling alarm. The code immediately preceding sigpause should block alarm signals with sigblock and test that flag,
Only call sigpause if the flag is not set. Otherwise, just unblock alarm signals and gn back to the top of the loop.

miscellanea

We would like to see one change to virtual memory-related logging. In 4.2BSD a process can get
killed because there is no swap space. We would like log messages to distinguish the case where there
was simply not enough space from the case where there was enough space but it was too fragmented,

We'd also like to know exactly how much physical memory is available to user processes (i.e., the
size of physical memory less memory taken up by kernel text, kernel tables, and /O buffers). This
number would be useful to people running large programs who'd like to avoid paging.

Our final comment has to do with the calculation of rate, the calculation of the load average (to be
discussed in Section 5.1), and how vmmeter reduces deficit (discussed in Section 4.3). In the first two
cases, the 4.2BSD kernel is computing a smoothed average. The load average computation, which
uses exponential coefficients, was specifically designed so that the system would “forget” a specific
fraction of the system load after a specific number of seconds. The computation of rate, though, uses
linear coefficients (1/5 of ent plus 4/5 of the previous rate), which seems to put it in the category of
“wild-guess heuristic.” Similarly, the ten percent reduction of deficit in vmmeter seems poorly
motivated. It would be nice if these two parts of the kernel could be better justified.

30

5. Processes and the CPU

5.1 How it Works

First we shall explain how UNIX commands are executed and the states that a process goes
through during its lifetime. We'll then explain how 4. 2BSD schedules processes, and we’l} explain the
basic UNIX protection mechanisms.

process states; fork and exec

Two data structures describe a process in 4. 2B3D, The first structure is the proc (process) table,
It contains all the information that the kernel needs even when the process is swapped out. The other
structure is the process’s u. area ("user area,” pronounced “you-dot area”). This structure is swapped
with the process and contains information that is only needed when the process is swapped in. The
process table entry has the swap address of the u. area when the process is swapped out. It has a
pointer to the first page table entry for the u. area when the process is swapped in. The u. area has a
pointer to the process table entry.

In UNIX new programs are executed via fork and exec. When a process forks, UNIX duplicates that
process, giving the child process a copy of the parené process’s data and stack segments, open file
descriptors, and resource limits. The child and parent share the text segment. The parent and child
processes know which they are by looking at the return value of the fork system call. The child
process then execs the file that holds the new program. A variation of this scheme is for the parent to
use vfork instead of fork. In this case the kernel doesn’t copy the parent’s data and stack segments for
the child. Instead, the child is given the parent’s pages. The child is expected to almost immediately
exec a new program or die trying (i.e., exit). When either of these two events happens, the parent is
given its pages back.

The states that a process may be in are shown in Figure 5.1. A process’s first state is SIDL. This
state is used when the kernel is filling in the process table entry. [t reserves the entry but shows that
the process isn't runnable yet. Once the process has all of its resources (e.g., page table entries, swap
space) and the process table entry is all filled in, the process’s state changes to SRUN. The process can
go from this state to one of three other states. If the process stops, either for tracing or because of a
signal, then the process enters the SSTOP state. If the process enters the kernel and has to wait (e.g.,
for I/O or for a signal), then the process is put in the SSLEEP state while it is waiting. When the
process exits, its resources are taken away from it and its state changes to SZOMB ("zombie”). The
process stays a zombie while waiting for pending [/O to complete and while waiting for the parent
process to reap it. Reaping is the way that a parent process finds out what resources (e.g., how many

CPU cycles) its children used, and it provides a way for a child process to return a status code to its
parent.

scheduling

In 4.2BSD the priority of a runnable process is based on how much CPU time it has used lately,
the system load, and the process's nice value. Numerically lower priorities are better than higher
priorities. As a process runs, the kernel recaleulates its priority every four elock ticks (each tick being
10 milliseconds). The priority increases linearly as the process runs, and it decreases exponentially
while the process isn’t running. The greater the system load, the slower the priority will decay.
Every 100 milliseconds roundrobin forces the system to look for the process with the best (i.e., lowest)
priority. Once per second schedcpu recomputes the priorities of all processes that are runnable or
have been sleeping for less than one second. The nice value, which ranges from —20 to + 20, moves
the priority up or down independent of the process’s CPU usage.

In 4.2BSD loadav computes a system [oad average every five seconds, similar to what was dene in
Multics [Saltzer & Gintelll. Actually, the kernel computes three exponentially smoothed averages of

31

SSLEEP SSTOP

SRUN

SIDL ., .¢ sZoms

Fig. 5.1: the life cycle of a process

the number of runnable jobs. The first is the average over the preceding minute, the second is the
average over the preceding five minutes, and the third is the average over the preceding fifteen

minutes. The 1-minute average is used to control how quickly a process regains priority when not
running.

security

Each Berkeley UNIX user is associated with a user [D and one or more group IDs. Each file, on the
other hand, is associated with exactly one user ID and exactly one group ID. Each file has three sets
of three permission bits (one bit for read, one for write, and one for execution). When a process tries to
access a file, there are three possible cases, If the process and file are owned by the same user, then
the kernel uses the first set of permission bits. If the user IDs are different but the file’s group is
among the groups for the user, then it uses the second set of bits. Otherwise, it uses the third set. The
exception to this rule is: if the process is owned by root (the super-user), then the process always
passes the security check.

Actually, each process has two user IDs associated with it: an effective user ID and a real user ID.
Normally these two values are the same. However, i a process execs a file that has the setuid ("set-
you-I-D”) bit set, then the process’s effective user [D is changed to the user ID of the file’'s owner. For
example, the rep program runs “setuid to root” so that it can communicate through a reserved
Internet port. Similarly, a process has an effective group ID and a real group ID (in addition to
belonging to a list of groups). The effective group ID can change by exec’ing a file with the setgid bit
set. This mechanism allows "trusted” programs to access an important resource (e.g., a database),
while keeping untrusted programs out. In fact, an example of this use will come up in Section 6.4.

5.2 Existing Tools

The 4.2BSD distribution provides a variety of process-related tools. Ps, who, and rwhod do some
processing of system information, whereas pstat just pretty-prints system tables.

32

Ds

Ps’s purpose in life is to provide interesting numbers based on the contents of the process table and
u. areas. Some of its options {a, g, t, and x) control which processes ps reports on. Other options (¢, e,
l,s,u, v, and w) control what information is printed about the process.

Ps tries to print the name of the program that the process is running, along with its arguments. [t
may also print the program name that will be used for system accounting, which may differ from the
other name. The swapper and pager processes don’t have associated command names, but they have
well-known process [D)’s, so ps can still print a reasonable “name” in those two cases. When a process
is exiting, though, it is no longer associated with a program. In this case ps prints the name
“<exiting> " If the process has made it all the way to zombie status, the name is " <defunct > "

The “state” letter that ps prints is determined by the process’s state, its flags, and its priority. If
the state is SSTOP, then ps prints “T.” If the state is SSLEEP, then ps looks at the priority. If the
priority is “positive,” then ps prints either "S” (if the process is active) or “I” (if it is not). (We
discussed “"negative”--non-interruptible--priorities and "active” processes in Section 4.2.) If the
process is in state SSLEEP and its priority is “negative,” then ps looks at the SPAGE flag for the
process. If that flag is set, then ps prints “P.” Otherwise, it prints “D.” If the process’s state is SRUN,
then ps prints “R.” Finally, if the process’s state is SZOMB, it prints “Z.” This means that the
processes that vmstat lists as “blocked for resources” are the same ones for which ps prints a “D”
state, except that the vmtotal function (which maintains those numbers for vmstat) ignores the pager
and the swapper. This also means that ps’s documentation is misleading for the same reason that
vmstat's is: the process isn't necessarily waiting for the disk or for any other resource, it’s just waiting
at a numerically low priority.

If the process being displayed is swapped in, the ADDR field (ps) is the number of the page frame
that starts the process’s u. area. Otherwise ADDR is 0. The %CPU field is a smoothed average telling
what percentage of the CPU the process has used recently. The kernel keeps this number solely for
ps’s use. The CP field, however, is used by the kernel to compute process priorities. It is incremented
with every clock tick that the process is running, and it decreases according to an exponential
smoothing function based on the 1-minute load average.

pstat

Given a page frame number, pstat -u dumps selected fields from the u. area stored there. You can
get the page frame number from either ps ! or pstat -p (the ADDR field in either case).

The -p option to pstat causes it to dump certain fields for each entry in the process table. None of
this information is symbolic. Even the state is given as a decimal integer. We shall briefly mention
some trivia about the fields of pstat -p. Only the least significant 16 bits of the process’s flags are
given; the rest of the flags field is dropped. The "signals received” field refers to signals received but
not yet processed by the process. SLP and TIM (time sleeping and time in core) are often 127, which is
the limit the 4.2BSD kernel places on them. The ADDR field displays the address of the process’s u.
area. If the process is swapped out, the address is a block number on the swap device. Otherwise it is
the number of the page frame at which the u. area starts. You can tell whether the process is swapped
in or out by looking at the flags. If the SRSS (“resident swap size at last swap”) is zero, that doesn’t
necessarily mean that the process has never been swapped out. It's possible that the pager had taken
all of the process’s pages before it got swapped out. The LINK field is used for mere than just
connecting runnable processes. For example, it is also used to connect all of the processes that are
waiting on a given event.

When a process calls sleep, it gives an integer specifying what “event” it is waiting for. This integer is typically the
address of a data structure associated with the fanction being performed. For example, when the pager is waiting for something
to do, it calls sleep with the address of its own entry in the process table. The code in sleep puts the process in a chain of
processes that are waiting for the event. When a process does a wakeup call on that event, the kernel puts all of the processes
that were sleeping on it back into the run queue.

If you use pstat -pa, you get all of the entries in the process table. Otherwise you just get the
“active” entries, which in this ease means all the entries that are in use.

33

who

The “who” command lists the users on the system. It does this by scanning fetc/utmp, which lists
for each terminal who is logged on, when that person logged on, and, if the terminal is associated with
a pseudo-tty, what machine the user is logged on from. Another program, rwhod, broadcasts similar
information on each network to which the system is connected. The difference is that rwhod broad-
casts each user’s idle time, rather than the remote machine the user is logged onto. [t computes the
idle time by stat’ing the terminal that the user is logged on and checking its last modification time
{recall that there is a file for each UNIX device). In the same packet rwhod also broadcasts the
machine’s load average and the time it booted at. Two pregrams in 4.2BSD read the informaticn that
neighboring machines have broadcasted. Rwho prints the who-like information (user, tty, idle time).
Ruptime prints the machine’s name, how long it's been up, the number of users on it, and its load
averages. Both rwho and ruptime normally consider only "active” users, which are users with idle
times of less than one hour.

A rwhod process spends most of its time listening for packets from other rwhods. When it gets a packet from the rwhod
on, say, uchernie, it copies that file into /usr/spool/rwho/whod.ucbernie for use by rwho and ruptime. Every so many minutes
an alarm goes off and it broadcasts a packet of itsown. '

w

Using /etcutmp and the process table, the w program tries to tell what each user on the system is
doing. Its first line gives the system load average, the number of logged-on users, and how long the
system has been up. (If w is invoked as uptime, that’s all it prints.) For each logged-on user, w then
prints the user’s login ID, what terminal the user is on, when the user logged on, the user’s idle time,
an estimate of the CPU time used by the user’s "job” (login session), an estimate of the CPU time used
by user’s currently running processes, and the name of the "current” program. W associates processes
with jobs by looking at the process’s controlling tty. The per-job time is the sum of the time used by
the active processes and the active processes’ children. W picks the "current” program based on
process [IY's and whether the program is receiving interrupts from the terminal.

the accounting package

We consider the 4. 2BSD accounting package to be a facet of overall system instrumentation. We
back up this claim by noting that if commonly used programs are slow, then the system as a whole
will be slow; we can use the accounting package to instrument the system by finding out which
programs are used the most and what system resources they consume.

When a process exac’s a file, the kernel records the name of the program or command file (“shell
script” in UNIX jargon) being run. As the process runs, the kernel records in a structure what the
process requests from the system. Example fields from this rusage (“resource usage”} structure are
the CPU time spent in kernel mode (system time), the CPU time spent in user mode, the number of
disk block transfers, the number of messages received, the number of reclaims (defined in Section

~4.1), the number of pages faulted in from disk, and the number of “voluntary” context switches. Some
of the accounting information is recorded at the same time system-wide values are recorded (e.g.,
number of pages faulted in from disk). Other accounting information is recorded independently from
system-wide instrumentation (e.g., number of disk block transfers). (If there is little room in
/usr/adm, the kernel instead announces that it has suspended accounting. It then drops accounting
records on the floor until space frees up again.) The sa program produces accounting reports and
condenses /usr/fadm/acct still further.

5.3 Problems with the Existing Tools

ps

Ps, so far as it goes, does pretty much what we want it to. However, 4.2BSD does not have a
program that gives a summary of all existing processes. Thus we would like a separate tool that

34

displays the number of runnable or nearly-runnable processes, the number of processes that have
been sleeping or stopped for a moderate time, the number of processes that have been sleeping or
stopped for a long time, and the number of zombie processes. The number of zombie processes might
point to an error in a server that forgot to reap its children. The number of sleeping processes might
point to idle server processes that should be combined into one program, as was done at Berkeley after
4.2BSD was released [Leffler et al 84]. The number of long-term sleepers (or stopped programs) might
point to users who don’t log out when they leave. For system administration, we would like to see how
many processes are running with “negative nice” {i.e., artificially high priority}. Most of this infor-
mation is available with the numbers that the 4.2BSD kernel already keeps. The only change would
be to differentiate between short-term sleepers, medium-term sleepers, and long-term sleepers
(treating a stopped process the same as a sleeping one). The kernel would have to record the process’s
“sleep time” at least until it hits the “long-term” category.

The numbers that distinguish medium-term from short-term and from long-term need to be thought about more and
perhaps experimented with. The boundary between (nearly) runnable and short-term sleeper might be a few seconds. The
boundary between short-term sleeper and medium-term sleeper might be on the crder of minutes. The boundary between
medium-term sleeper and long-term sieeper should probably be at least an hour.

Of our suggestions for changes to ps, most correct minor bugs. One trivial bug is that ps thinks
that sleeping at priority PZERQ is interruptible. Well, ps got the boundary condition wrong. As we
explained in Section 4.2, a sleep at PZERO is not interruptible. Another small bug involves the
program name that ps prints. The 4.2BSD kernel does not clear the SWEXIT flag when the process
becomes a zombie. Ps checks this flag before it checks the process’s state, which means that ps prints
" <exiting>" even if the process is a zombie. Another problem with program names is that the area
ps looks at is writable by the process. Thus we occasionally see “"commands” that were given as

rcp /usr/bin/ps ucbernie:/usr/bin
displayed by ps as
rcp fusr/bin/ps uchernie /fusr/bin

because of processing by rep. Of course, the process could have put anything it wanted there. One
way around this administrative loophole is the -¢ option, which tells ps to print the command name
used for accounting (which is not changeable by the process).

A more general problem with ps’s implementation is that it doesn’t read the process table in all at
once. [nstead it reads in a piece, decides what entries to keep, stashes them away, and reads in
another piece. As we shall discuss in Section 6.4, a typical problem with 4.2BSD instrumentation is
that the numbers being displayed can change from underneath the program displaying them, leading
to inconsistencies or other weird results. Reading the process table in pieces makes ps more
susceptible to this problem than if it read the entire table at once. We could argue that the memory
requirements for reading in the entire table are excessive. On the other hand, we note that w and
pstat read in the entire process table, so we don’t think that this argument holds up.

If we have a tool that tells how many processes are in what state, then we'd also like ps to identify
processes that are long-term sleepers (or are stopped for a long time). This would let us get a better
handle on what processes are tying up space in the process table. Ps would not necessarily have to
flag such processes explicitly. If the kernel only records the sleep time up until the process reaches
the "long-term” eategory, then we can use grep to find the long-term processes via a string search,

Finally, ps’s performance is bad. As we shall explain later, ps is the tool of choice for finding what
processes are bogging down the system. Unfortunately, we usually have to ask ourselves whether we
want to run ps and wait a long time, or whether we’ll just grit our teeth and hope the load goes away
soon. [f we look at a profile of ps uax, we find that the CPU time used by ps is pretty much
proportional to the number of entries that ps records information about. Thus a useful addition to ps
would be an option telling ps to ignore swapped-out processes: they essentially contribute nothing to
system load, and they seem to be about one-third of the processes on the machines at Berkeley.

Ps sifts through the process table, calling save for each entry that it wants to keep. After that, it sorts the entries and
displays them. Thus ignoring swapped-out processes would just be another test to skip calling save.

35

pstat

Once again we have many difficulties with pstat to report. The single bug that we found in pstat -
p is that it was not printing the correct value for the ADDR field. This happened because pstat failed
to track a change in the kernel. Also, we would like the -p option to print all of the flags in the process
table entry, not just the least significant 16 bits of the flags.

There were three small problems with pstat -u and one very big one. The first small problem was
that pstat was trying to read the u. area from /dev/kmem (kernel virtual memory) instead of
/dev/mem (physical memory). Of course, a process’s u. area is accessible from kernel virtual memory,
but the page frame number given to pstat -u only makes sense when dealing with physical memory.
The second problem was that the array for system call arguments had grown and pstat wasn't
printing the last 3 arguments. The third small problem was that pstat was printing the u ssave
structure twice and not even labeling the first copy. Perhaps this was a hack to get around the big
problem, which is that the u. area no longer fits inside a single cluster. This is a problem first of all
because the u. area is not necessarily stored in sequential page frames. So knowing the frame
number of the first page of the u. area doesn't help pstat find the next cluster of the u. area. Second,
simply changing pstat -u to use, say, a process ID instead of a page frame number won't work either.
One use for pstat that we haven’t mentioned is to examine the u. area in user program dumps, for
which you give zero as the frame number. Perhaps the solution is for pstat to accept a process ID
instead of a frame number, but to read from the start of the core file if the user doesn't give a process
ID. (The 4.2BSD pstat complains about not getting enough arguments if the user doesn’t give a
process ID))

who

Rwha and ruptime decide that a system is down (and that the rwhod file for it can’t be trusted) if
the rwhod file has a timestamp that is too old. Of course, “too old” is relative, depending on how often
rwhod broadcasts. In the last 18 months, the broadeast interval at Berkeley has changed twice, from
1 minute to 5 minutes to 3 minutes. Each time both ruptime and rwho had to be edited to track the
change. Instead, rwhod.h, the header file shared by rwhod, rwho, and ruptime, should define the
broadcast interval, a macro for determining a system’s status (based on the timestamp age and the
broadcast interval), and the maximum idle time for an “active” user.

Another problem with rwhod, rwho, and ruptime comes from rwhod’s broadeasting only the first
1024 bytes worth of user names. This is a reasonable tactic to avoid wasting network bandwidth
when one or more systems are presumably busy. Unfortunately, rwhod does not flag the cases where
there were more users than would fit in one kilobyte. The rwhad packet should include such a flag.
Rwho and ruptime should note those systems for which the flag is set.

Our final comment is that who should (perhaps optionally) display the idle time for each user.
This time would be more up-to-date than using rwho, the list of users would not get truncated (which
is possible using rwho), and it would take this function away from w, which, as we shall explain next,
we would like to eliminate.

w

The main use of the w command is to find out who is doing what. (It might also be used to list user
idle times, but that is something we'd rather have done by who, as we’ve just noted). The problem is
that w is simply not accurate enough. It biils processes according to the controlling tty, even if the
user who started the process is not the one currently on that terminal. And even if the user is the
same, w still doesn’t always get the right command. Also, w only looks for a single command. If
someone is running one or more background processes, w won’t find them, though they may be
contributing the most to system load. We could add yet another option to ps, this one causing it to sort
the output by user. The problem with that scheme is that the results won’t be any more useful than
the output from ps u. The solution seems to be to junk w and use ps u, using the previously discussed
option not to dispiay swapped-out processes.

36

the accounting package

Before we discuss the problems with the current accounting package, we should point out that we
have not looked at the entire package. In particular, we have not tried to find bugs in sa or in the
mechanism that writes accounting records to /ust/adm/acct. We have, however, considered what the
accounting records contain and how the kernel gathers resource information. First we shall consider
numbers that the system gathers incorrectly. We'll then discuss additions to the records.

One flag in an accounting record tells whether the process used super-user privileges (e.g., to
allocate a disk block when there is less than minfree percent left, as described in Section 3.1). This
flag is set in the kernel by the suser routine, which checks the process’s effective user ID.
Unfortunately, there is a long list of routines that check the proeess’s user [D themselves, instead of
going through suser. One reason for avoiding suser is that it sets the process’s global error flag if it
fails the super-user test. This may be an unwanted side effect. Another reason not to use suser is
when the check s against the real user ID, instead of the effective one. What we need are two
routines. One checks the effective user ID, the other checks the real user ID. Each one should take an
argument that tells whether it should set the process’s error flag if the super-user check fails.
However, changing the kernel to use those routines is not a simple mechanical string replacement.

Calls to those routines should only be made if the process has failed all other permission tests. Thus
code like: -

if (u.u uid != 0 && u.u_uid != ndp->ni_pdir->uid)
should look more like:
if (u.u_uid != ndp->ni_pdir->uid 8& !suser{SET_ERROR))

Another problem is that 4.2BSD bills a process’s resident set size (the p rss field in the process
table entry) entirely to the data segment, rather than billing the data segment size to the data
segment and the stack segment size to the stack segment. Fixing this inaccuracy requires that the
kernel keep track of the in-core data and stack sizes separately. This should require little work. The
routines that maintain p rss already distinguish the text segments from the data and stack
segments. Separating data from stack would only be another if test.

An inaecuracy that is harder to fix is how 4.2BSD bills disk writes. When a process writes some
bytes, the block-device buffer usually sits in core for a while before UNIX writes it out to disk. This
strategy can save on disk transfers. For example, consider a write that covers less than a complete
block. If it is followed by another write to the same block, then UNIX can do two writes with only one
disk access. I/O accounting is done at the disk access level rather than at the system call level. This is
because the disk access is significantly more expensive for the system than the system call is. The
probiem is that if process A writes to a disk block and then process B writes te the same block soon
afterwards, process A will get charged for the entire disk access, but process B will not get charged
anything. It is not clear what to do about this inaccuracy. The only “fair” scheme is to bill both
processes, but then the system would bill for more disk transfers than it actually did. Note that if the
system bills the process when the buffer is actually written to disk, it could find itself trying to bill a
process that has already exited. Thus the existing seheme seems to be the only workable one. In any
event, though, it seems rare for more than one process to be writing to the same disk block at nearly
the same time, so we believe that the problem is not worth pursuing further.

Another hard problem is how to deal with execs. When a process does an exec, its resource
information is not cleared. Unfortunately, only the last file to be exec'd is associated with the
accounting record for that process. One solution would be to generate an accounting record when the
process does an exec. However, if we assume that most processes only exec one program and that
they do the exec almost immediately after being forked, then the system would generate twice as
many accounting records and gain little additional information. So once again, the problem seems
small encugh to ignore.

Another naming problem is that the name in an accounting record is only the final name of the
file’s path. For example, both /bin/csh and /usrinew/csh are recorded as ¢sh. The exec code could

37

record the entire path for the program, but we'd like to avoid allocating dynamically sized buffers,
and a buffer large enough to hold most path names would waste kernel memory. The solution that we
propose is to record the "reverse path” of the program. For example, the two previous cases would be
recorded as csh/bin/ and ¢sh/new/usr/. This scheme provides more information than just ¢sh, and it
should differentiate many cases even when the entire path doesn’t fit in the accounting record. For
example, assuming a limit of ten characters, we could reascnably conclude that c¢sh/new/us is
/usr/new/csh. We don’t recommend that the kernel try to figure out the full path name if it wasn’t
given one. In the case of the standard UNIX commands, the kernel will usuatly get a full path name to
work with. The other cases (not standard commands) are not as important to us.

The tail end of execve copies the program name from the namei argument structure into u.u__comm, which holds it until
the process exits. The catch is that if it's a shell script being execed, the name--but not the complete path--of the shell script is
stashed away and then later copied into the namei argument structure. Thus the change to store the reverse path must take
care of both cases: regular program and shell script.

There are two new sets of numbers that we’d like to see in the accounting records. One set, the
number of voluntary and involuntary context switches, is already kept by the kernel, but it isn't
included in the accounting record when the process exits. These numbers would be useful on servers.
If a machine is mostly used for non-interactive work, then it might be useful to lengthen the system
time-slice {(i.e., the time between calls to roundrobin). This lengthening would only really help,
though, if most of the processes’ context switches are inveluntary, rather than voluntary. Hence we'd
like to see these numbers in the accounting package.

The other set that we want is the number of messages sent and received by the process, as well as
the number of bytes sent and received. The routines sosend and soreceive already record the number
of messages sent and received, though these counts are not in the accounting record. To get a
complete picture of how much IPC load the process caused, however, we need to know both the
number of messages and the number of bytes.

miscellanea

As with previous sections, we want the system to log cases where it ran out of some important
resource. The code in 4.2BSD already does a good job of this. Our only request is that fork1 (in the
kernel) log attempts by a user to create more than MAXUPRC processes. This failure probably oceurs
infrequently (in contrast with the problem of opening too many files at once) and would be useful for
tuning MAXUPRC on systems with special work loads.

Also, we should point out another general problem with instrumentation in 4 2BSD. Information
about, say, the states of the CPU and of disks is obtained by sampling every so many milliseconds,
even though the systems at Berkeley have a hardware clock with microsecond resolution. The
instrumentation code assumes that whatever the state of the system when it is sampied, that’s the
state it was in for the entire clock period. If the system state changes often with respect to the
sampling rate, then the samples we get are not going to be accurate. We have not dealt with this
issue for this project, though it is certainly an important topic for further research.

Another timing problem is that if the sampling rate is not relatively prime to the rates of the
periodic system functions that influence the variables being measured, then the samples will be
biased. Fortunately, 4 2BSD supports an "alternate profiling clock” that at Berkeley runs at 109 Hz
(the normal system clock runs at 100 Hz). The kernel uses this clock to keep track of how often the
CPU is in what state and how often the disks are busy. We therefore consider this problem to be
solved.

38

6. Comments on Implementation

In addition to the implementation details that we’'ve given so far, we have some general
comments about implementing the ideas in this paper. First we shall comment on the UNIX “religion”
and on what is appropriate in a UNIX system. Then we'll comment on current research at Berkeley
that will affect instrumentation of future systems. QOur third topic is that of test suites to validate the
instrumentation code. Fourth, we shall recommend ways to get numbers from the kernel to the user
level. We'll then discuss the construction of user instrumentation programs and general software
engineering tips. Finally, we shall comment on documentation.

6.1 To Hack or Not To Hack

The ideas presented in this paper are only a portion of those considered while working on this
project. We have tried to home in on the utilization and administration of critical system resources,
such as disks and memeory. Until someone tries out the ideas in this paper, though, we can not be sure
which ones are worth keeping. People should not add code to UNIX just because they think it will be
useful in certain cases. There are three reasons for this, based on the accepted notion of UNIX as a
small, elegant operating system. The first and least important reason is aesthetics. There’s no point
in altering good clean code unless you get some return for your efforts. The seeond reason is
performance. Instrumentation is system overhead. Although we have presented mostly cheap
counting schemes, there is the possibility that the proposed changes will noticeably degrade
performance. The final and most important reason is to reduce complexity. More code means more
chances for bugs, and it often means more work when making future modifications. Instrumentation
code is useless, even harmful, if it gives wrong numbers. Berkeley UNIX has already been criticized
for its size and complexity. Changes should be implemented only if they are worth their debugging
and maintenance costs.

We therefore suggest that the people who implement these ideas carefully consider which ideas

they choose to work on. We suggest that the following projects be given higher priority than the
others:

¢ fix bugs in existing code
® add gateway information to the IP statistics
® instrument the different types of network traffic (e.g., mail, files, rwho packets)

® record traffic between different hosts (for network configuration)

¢ add an option to ps to print socket PCB addresses

® ingtrument all disk drives, not just the first four

® add per-partition numbers to iostat

® display disk utilization in addition to the number of transfers per second

¢ use alarm and sigpause in user programs, instead of sleep

® replace w with ps u, and add an option to ps to ignore swapped-out processes
.

fix the accounting package to record message load

Finally, we suggest that the resulting system be profiled to make sure it’s not spending too much time
monitoring performance.

39

6.2 Changes to Berkeley UNIX

Berkeley UNIX is a research effort, which implies that it frequently provides new services. We
have briefly considered some proposed enhancements to Berkeley UNIX, and we have a couple of
suggestions for instrumenting them.

A substantial research project at Berkeley has been the development of a remote file system
[Hunter|. This project is based on the notion of mounting a remote machine’s disk partition on a local
directory, in much the same way UNIX already mounts local disk partitions on local directories. There
will be two different numbers with which we would like to measure such a system. The first is the
percentage of network traffic that the remote machine sees because it is “exporting” a filesystem. If
the file-related traffic is too high, then perhaps copies of the files should be distributed to the
machines using the files. The other number is the percentage of file requests on the local machine,
broken down by filesystem, that are serviced remotely because the local machine is “importing” a
filesystem. If that number is too high, then perhaps it should be the filesystem’s exporter, or perhaps
an entirely separate copy of the filesystem should be made.

Another project in the works at Berkeley is a Remote Procedure Call (RPC) system {White| based
on the work in [Cooper]. This project will mostly affect the IPC instrumentation, but we don’t have
any specific suggestions. In fact, a general area for research is the integration of additional protocols
{e.g., Xerox's XNS protocol) into Berkeley UNIX. As these protocols are built, there must be instru-
mentation to support them.

One unfortunate side effect of this and other research is that the details given in this report may
be out-of-date by the time anyone tries to use them. Once the 4.3BSD distribution tape has been
made, all code is liable to being rewritten. Some routines may do different tasks, others may
disappear entirely. In faet, we cannot guarantee that the overall organization of the source code will
stay the same. Because there is no way to predict these changes, our only advice is to use tags
(documented under ctags in [UserManuall) to find routines and type definitions.

6.3 Test Suites

In this section we shall first present our motivation for test suites. We’'ll then make some general
observations about how the suites should work, and we’'ll close by suggesting certain suites.

One way to find bugs is to stare at the code and find them "by inspection.” We did some of that for
this project. Unfortunately, it's often hard work just understanding the simple cases. The obscure,
bug-causing cases are even harder to grasp. We don’t recommend this technique. A better technique
is to run the instrumentation programs on a live system and look for numbers that don’t look right.
We caught quite a few bugs this way, too. There are two problems with this approach, though. The
first problem is that a strange number can result from a bug in the instrumentation, or it can result
from a bug in the system being measured. It may even be that you didn't fully understand the system
you're measuring. If the system is complex, it can be very hard tracking down the cause of the
discrepancy. The second problem is that just because a number looks okay, that doesn't mean it's
correct. A reliable but difficult approach is to measure the same values using two completely
different methods. The problem with this approach is that many of the measurements we have
presented rely on counting; a second independent measuring technique would be very hard to find.
Thus we recommend checking out the code by exercising the system in a controlled way and checking
that the instrumentation numbers agree with your expectations. (Unfortunately, we didn’t use this
technique at all for this project.)

To get a controlled environment in UNIX, run the system in single-user mode. In this environment
the only processes that will be running, other than a shell (command interpreter) and your test
programs, are the pager and the swapper. The test programs are not the same as the workload
generators typically used in performance analysis. Those programs strive for “realistic” loads. All we
want are programs (or command files} that cause certain events to happen in a deterministic way.
Whether or not the events are realistic is less important.

The appendix of [Leffler ef al 84] contains short, simple programs that were used for tuning
4.2BSD. These programs provide a model for the ones we have in mind, and some (like the program

40

that sends itself messages) could even be used directly. There are unfortunately too many numbers
that we want measured for us to list all of the necessary test programs. Nevertheless, we can make
some general observations and a few specific suggestions.

Some IPC-related test programs should generate messages of varying sizes. They should exereise
all of the different paths in Berkeley UNIX for sending and receiving messages (e.g., write, send,
sendto, sendmsg), using all the applicable instrumented protocols. There should be test programs
that simulate certain activities of remote hosts. Some of these programs must even run on remote
machines (e.g., to cause packet collisions on an Ethernet [Shoch & Hupp], [Cabrera et ai]). You could,
for example, probably exercise the mbuf instrumentation adequately by varying the number of
routing entries, sockets, and TCP connections in the system.

We primarily want the [/O-related programs to exercise the disk. This means causing seeks,
reads, and writes to occur in a controlled way, as well as doing specific numbers of sync¢s and fsyncs.
Also, we want to compare dumpfs’s results with the arguments to newfs that created the filesystem,
and we also want to exercise the instrumentation of slow devices (e.g., tapes, printers). The trick for
disk tests will be controlling seeks and transfer rates. This trick will be easier to do if the test is run
on a freshly-created filesystem, which you'd get when you test newfs and dumpfs.

The virtual memory test programs should force certain paging rates (e.g., reclaim rate, rate of
dirty page pushes, page scan rate by the pager process) and cause a certain number of swapins and
_swapouts. One test would be to compile a program and immediately execute it, forcing the system to
“attach” pages. Some routines will need to lock pages in core in a controlled way. This must be done
inside the kernel.

Exercising the process-related instrumentation involves ereating a fixed number of processes.
Processes could do things like sleeping, sending themselves signals, and changing their priorities.
Another test is to write entries to /etc/utmp and make sure that rwho, ruptime, uptime, and who all
give the right results. Also, we want programs that exercise each of the fields in an accounting
record. For example, to test the memory usage field, a program could ailocate a predetermined
number of bytes. To test the user time field, a program could execute a short loop a few million times
(i.e., long enough that the process’s user time is essentially the time it spent in the loop). If the

execution time of the loop is known, you can compare the user time given by the accounting package
with the expected time.

6.4 From the kernel to user-level

UNIX programs running in user mode cannot directly access kernel memory. In 4.2BSD there are
therefore two special device drivers. One (/dev/kmem) gives user processes access to kernel virtual
memory, the other (/dev/mem) gives access to physical memory. To read one or more bytes at some
location, the process opens the associated special device, seeks to that location, and then reads as
many bytes as it wants. Programs like vmstat or ps use nlist to find the kerne! virtual address of
variables that they want to read. They call nlist with a list of strings (e.g., “proc,” “rate,” “avenrun™,
and nlist returns a list of addresses.

There are two problems with this approach. The first problem is security. If you can read any
location of kernel memory, you can read passwords. The solution to this problem is to make
/devikmem and /dev/mem readable only by members of a particular group (the kmem group at
Berkeley) and allow "authorized” programs to run setgid to that group. Unfortunately, this puts a
bureaucratic crimp on users who want to write instrumentation programs that, for example, display
pie charts or correlate two different load metrics. The second problem is that most programs must
typically read a few variables every time they print results. This raises the number of system calls
(one seek and one read per different variable). It also raises the likelihood of not getting a consistent
snapshot: the variables might change while the program is pulling out its information.

So let’s consider schemes that dont use /devikmem. One suggestion is to implement an
instrumentation system call (e.g., [Eckhardt]). This call would take as an argument a pointer to a
buffer and a value telling what variables the program is interested in. This scheme avoids the
security loophole that we just mentioned. It can be made atomic because the code can lock the user’s
pages in core and raise the system interrupt level during the transfer. The chief drawback to this

41

approach is its inflexibility. Sites with binary-only licenses would not be able to change the system
call code. They couid not, for example, decide to look at ¢ntif that weren't already provided for.

The scheme that we recommend is derived from this idea, though. If we have an
“instrumentation device” driver, then we have the advantages of the system call approach, plus
binary-only sites can write their own drivers if they so choose. Programs can gather information
using toctls. A sample ioct! might be

joct1{instrdev, [IOCGETLOAD, &buf);

to copy predefined load numbers {e.g., average number of runnable processes, disk transfer rate, and
network transfer rate} into buf. This scheme has the same advantages as the system call approach
and none of its drawhacks.

We also think that the concept of an "instrumentation server” should be explored. As deseribed in
[Kupfer], an instrumentation server would let machines gather instrumentation numbers from
remote machines the same way they gather them from the local machine. However, it’s not clear
whether such an implementation is efficient enough to be the bottom-level instrumentation interface.

6.5 Tools

We think of instrumentation tools as falling into three categories. The first category contains all
the tools we have talked about so far: UNIX-flavor “tools.” In the second category are picture-oriented
programs. Programs of this type already exist at Berkeley, and one called systat will be in the
4. 3BSD release. The third category contains what we refer to as "integrated” tools. These are
programs that coordinate different instrumentation values, such as the load average, the pagein rate,

and the disk traffic. Programs in this category also exist at Berkeley. One called vsta will be in the
4.3BSD release.

simple tools

We define as UNIX-flavor tools those that produce output that other programs can use. These
programs are necessary for three reasons. First, they let us record instrumentation numbers over a
long interval. Second, they provide exact numbers when those are desired (as opposed to pictures,
which give approximate results). Third, it’s still not cheap enough, either in terms of CPU cycles or
display hardware, for everyone to see pretty pictures when they want to monitor the system.
However, we feel that using, say, vmstat output to drive another program is a bad idea except for
quick hacks. First, under a heavy load there is no guarantee that vmstat will run when it’s supposed
to unless you give it a hefty boost in prierity. Programs that try to correlate information from, say,
vmstat and iostat are doomed to be unreliable. Second, there is additional system overhead from
extra context switches and passing characters through a pipe. Finally, there is the added inefficiency
of converting a slew of numbers into a readable character form, only to convert them right back into
binary. It is usually better just to read the numbers from /dew/kmem (or the proposed
instrumentation device) directly instead of going through some intermediary.

Nevertheless, if your program really needs to read output from vmstat, then a “no headers” option
for vmstat would be helpful. Vmstat and iostat both print headers every 20 lines so that you don’t
forget what the different columns mean. Also, they take pains to squeeze all the numbers into 80
columns, so that everything fits on a standard terminal screen. The “no headers” flag would tell
vmstat not to print headers, and it would let vmstat use as many columns as necessary.

We should point out, though, that programs like ps already have (perhaps too) many options. In
previous sections of this paper we have suggested more options, and now we've just suggested
another. We caution implementors not to blindly add options to programs. In particular, it may be
better to split programs like vmstat and iostat into different programs, rather than overdosing on
options.

42

picture-oriented tools

Another class of tools are those that draw pictures. At the simple end of the spectrum, programs
can generate bar charts showing CPU and disk utilization. An example of this type is the Cedar
Watch tool [Teitelman]). At the sophisticated end of the spectrum, programs can generate a diagram
showing how "balanced” the system is (i.e., point out bottlenecks). Such a picture is called a Kiviat
graph [Ferrari]. A moderately sophisticated program might generate a picture showing the
communication between nodes of an internetwork, using the thickness or color of the line to show the
traffic rate between any two nodes.

Even standard 24-line by 80-character terminals can display simple pictures via the UNIX curses
package. Also, there seems to be a trend towards personal UNIX workstations, each having its own
high-resolution bit-mapped display. This trend opens up many possibilities for picture-oriented
instrumentation tools. The introduction of high-resolution color displays will widen the range of
possibilities still further. Our only regret is that different vendors’ workstations will probably have
different graphics interfaces.

integrated tools

A third class of tools integrates the display of different instrumentation numbers. The program
vsta attempts to show the state of the major subsystems. The idea is that a user need only run vsta to
find the system bottleneck, rather than running ps, iostat, vmstat, and netstat to track down the
problem. One problem in designing vsta was deciding on what numbers were absolutely essential
and how to fit them all on the screen. Hence, you might want other integrated tools that are more

narrowly focused. For example, you might want a program that gives detailed concurrent
information about disk traffic and paging rates.

6.6 Software Engineering

In this section we shall present a few specifics about what to do and what not to do when writing
instrumentation code. We'll also present a couple of general comments on problems that we've seen
in existing code. One problem is the use of floating point. Not every machine running Berkeley UNIX
supports floating point numbers efficiently, so fixed point representations should be used when
fractions are needed. We also find fault with printf format strings that look like "%5d%4d%5d."
Instead use ' %4d %#3d #4d." Even if the numbers being displayed will *never” spill into the most
significant digit, bugs in the kernel or in the instrumentation routine may cause an overflow. It may
not be a simple matter to figure out where in the resulting tangle of digits one number ends and the
next begins.

Now for the list of things that you should do. First of all, use header files to define common data
(or even common code if you're sharing a routine between the kernel and a user-level program),
unless all the occurences are near each other. It may be easier in the short run just to copy a number
or algorithm, but the first time you make a change and forget to propagate it everywhere, you'll wish
you'd defined it in a header file. Also, beware of byte-swapping and architectural differences in
general. For example, rwhod sends packets in binary form. Thus a 68000-based system cannot read
rwhad packets broadeast from a VAX, which is a ridiculous situation to be in. Finally, work in sanity
and consistency checks where possible. For example, if you have a count of mbufs and have
information on their allocation, make sure that all mbufs are accounted for. In the accounting
package, make sure that the total of user and system times doesn’t exceed the elapsed (wall-clock)
time.

A final suggestion is to include version stamps in kernel structures, including regular system
structures like proc and user as well as metering structures like vmmeter. We at Berkeley find
ourselves constantly tripped up by new kernels that break debuggers, ps, w, and so forth because the
kernel has, say, a differently defined u. area. In fact we should consider ourselves lucky--the
programs usually break in obvious ways (e.g., the load average always comes out zero or the program

43

blows up). Instead, we should put ourselves in the position that if the header file changes, the user
programs will themselves complain that they need to be recompiled.

Of course, there are reasons nof to use version stamps. One argument against version stamps in
structures is that they waste space. On the other hand, the stamps can be conditionally compiled in,
so that only sites doing kernel work need include them. Another argument against version stamps is
that somebody must maintain them, and they are useless if not kept up-to-date. At least at Berkeley,
though, SCCS [Allman] is used to maintain the kernel sources. A scheme using SCCS keywords could
keep the version stamp current.

We would now like to tell two sermons. One day while we were working on this paper we
encountered an interesting problem. Vmstat claimed that a machine was not spending any time in
user mode, any time in system mode, or any time idle. Because this was a research machine, our first
reaction was to recompile vmstat. The problem didn't go away. After poking around in the kernel for
awhile, we decided that the machine had missed an interrupt from the profiling clock, which must be
“reprimed” after each interrupt. That is, at some point the clock went off, but its interrupt handler
didn’t get called, so the clock didn’t get reprimed, so we never heard from it again. We rebooted the
machine to get everything back to normal. The most obvious moral of this story is that the sampling
code isn’t as robust as we'd like, though it's not clear how we'd fix it. The other moral is that the
system is always capable of surprising you.

The second sermon concerns hidden assumptions in code. If we look at the definition of the
vmmeter structure, we find the two fields v firstand v last. If we look in the code for the vmmeter
function, we find that it expeects that the members beginning with v first and ending with v last
are all normal-size integers (ints). If someone slipped a short integer or a floating point number in
between v firstand v last, the code would break. Now, this assumption of all int’s is obvious from
looking at the code. But it would not be obvious just from looking at the definition of the vmmeter
structure, nor would it be obvious from reading our description of how the vmmeter routine works.
Two morals here: “Get rid of the hidden assumptions!” and “"Watch Your Step.”

6.7 Documentation

Documentation at a research organization is rarely up-to-date. Even if you're willing to expend
the energy to document each and every change when it happens, you still find yourself unable to keep
up with all the changes. So it was no surprise when we found that the on-line documentation
deseribed a world noticeably different from the one described by the code. In fact, for this paper we
gave up noting each and every documentation bug. It seemed more profitable just to wait until ail the
code is frozen for the next release and then go in and revamp the documentation. Nevertheless, we
can at least point out a couple of trouble areas. Some of the manual pages still cling to the belief that
“the” UNIX clock runs at 60 Hz. As we have mentioned, that is no longer true at Berkeley; neither
clock runs at 60 Hz. Also, the manual pages for pstat and ps explain the meanings of the various flags
that might be displayed. Unfortunately, many of the flags have changed meaning since the manual
pages were written.

We would also like to see more complete documentation. For example, the manual page for ps
tells us that RSS is the “real memory (resident set) size of the process.” From that you might assume
that it includes all three segments: text, data, and stack. Or you might assume that it includes only
data and stack, as the p rssize member of a process table entry includes only those segments. But
no, the answer is that RSS is the sum of the data and stack segments, plus the process’s “share” of the
text segment if the text is shared. This is a reasonable approach, as it shows the load the process is
placing on physical memory. We just wish that RSS were more precisely defined. Another example is
the documentation for netstat. It is likely that the people who write distributed programs will know
little about the details of, say, TCP. However, when they use netstat to debug their programs, they’ll
be expected to know what FIN WAIT 2 means. That sort of information should be in the netstat
doeumentation. - -

44

7. Conclusions

After poring through most of the Berkeley UNIX kernel and looking at almost every “official”
instrumentation program, we would like to make two observations. First of all, the 4.2BSD
instrumentation for IPC is clearly skeletal. This is of course understandable, as it is new and still
being developed. Second, Berkeley UNIX instrumentation faces a large danger from software rot. For
example, we spent a lot of time tracking down bugs in pstat, a program that used to work. It's even
likely that some of the bugs won’t get fixed until after 4. 3BSD is released because of time constraints.
Netstat is another example: it sprang a leak when a new type of mbuf was created. We think that this
points to a need for better engineered code: code that will track future changes and that will not fail in
subtle ways. We note that test suites ironically provide yet another place for software rot to strike,
but we think that they, along with many of the other ideas discussed in this paper, will be worthwhile
in the long run.

45

Acknowledgements

Golly, this project’s been a lot of work. But it wouldn't have been possible without the support and
guidance of Luis Felipe Cabrera and Domenico Ferrari. The project would also have been sunk were
it not for the patient assistance of Mike Karels, who was always willing to answer “just one more
question.” 1also thank Kirk McKusick for the questions that he answered.

I got some ideas for this project from talking to other Berkeley students, [got a couple of ideas
from talking to other summer interns at Xerox PARC, and I got lots of ideas from people who [talked
with while job-hunting. Not all of those ideas made it inte this report, but I'd like to thank Chris
Baldwin, Dave Goldberg, Rusty Sandberg, and Gerd Tuchen for their suggestions that did make it in.
Also, thanks to Ed James for deseribing his quota-management tool.

I'm grateful to the organizations that provided my financial support for the last two years. I'd also
like to thank Keith Sklower and Diana Wear for their help with the mechanics of getting the report
written. Also, thanks to Robbie Rackar for reading an early draft of the report. Last, but not least,
thanks to Miriam Amaos for her support and for not letting me goof off (much).

References

{Allman]
Eric Allman. "An Introduction to the Source Code Control System,” UNIX Programmer's
Manual, 4.2 Berkeley Software Distribution, Virtual VAX-11 Version, March 1984.

[Birrell & Nelson]

Andrew D. Birrell and Bruce Jay Nelson. “Implementing Remote Procedure Calls,” ACM
Transactions on Computer Systems, Vol. 2, No. 1, February 1984,

[Cabrera et al]
Luis Felipe Cabrera, Edward Hunter, Mike Karels, and David Mosher. “A User-Process Oriented

Performance Study of Ethernet Networking Under Berkeley UNIX 4.2BSD,” Berkeley Technical
Report UCB/CSD 84/217, Decerber 1984,

[Cooper]
Erie C. Cooper. "Circus: A Replicated Procedure Call Facility,” Proceedings of the 4th Symposium
on Reliability in Distributed Software and Database Systems, October 1984,

[Eckhardt]

Dave Eckhardt. USENET article <1587@psuvaxl.UUCP>, Pennsylvania State University,
December 1984.

[Ferrari]

Domenico Ferrari. Computer Systems Performance Evaluation, Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1978.

[Graham et al]
Susan L. Graham, Peter B. Kessler, and M. Kirk McKusick. “Gprof: A Call Graph Execution

Profiler,” Proceedings of the SIGPLAN '82 Symposium on Compiler Construction, SIGPLAN
Notices, Vol. 17, No. 6, June 1982.

46

{Gusella & Zatti]

Riccardo Gusella and Stefano Zatti, “"TEMPO: Time Services for the Berkeley Local Network,”
Berkeley Technical Report UCB/CSD 83/163, December 1983.

{Hunter]

Edward Hunter. “Adding Remote File Access to Berkeley UNIX 4.2BSD Through Remote
Mount,” M.8. Report, University of California, Berkeley, Decemnber 1984.

(ICMP]

“Internet Control Message Protocol,” RFC 792, Information Sciences Institute, Marina del Rey,
California, September 1981,

[IP]

“Internet Protocol,” RFC 791, Information Sciences [nstitute, Marina del Rey, California,
September 1981.

[Kernighan & Ritchie]

Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language, Prentice-Hall, Inc.,
Englewood Cliffs, New Jersey, 1978,

[Kridle]
Bob Kridle. Private communication, 14 May 1985,

[Kupfer]

Michael Kupfer. “Performance of a Remote Instrumentation Program,” Berkeley Technical
Report UCB/CSD 85/223, February 1985.

[Leffler]

Samuel J. Leffler. “Building 4.2BSD UNIX Systems with Config,” Computer Systems Research
Group, University of California, Berkeley, July 1983.

[Leffler et af 83a]

Samuel J. Leffler, Robert S. Fabry, and William N. doy. “A 4.2BSD Interprocess Communication
Primer,” Berkeley Technical Report UCB/CSD 83/145, July 1983.

[Leffler ef al 83b]

Samuel J. Leffler, William N. Joy, and Robert S. Fabry. "4.2BSD Networking Implementation
Notes,” Berkeley Technical Report UCB/CSD 83/146, July 1983.

[Leffler et al 84}

Sam Leffler, Mike Karels, and M. Kirk McKusick. “Measuring and Improving the Performance
of 4.2BSD,” Berkeley Technical Report UCB/CSD 83/218, May 1984,

{Macrander]

Cathryn M. Macrander. “Development of a Control Process for the Berkeley UNIX Distributed
Programs Monitor,” M.S. Report, University of California, Berkeley, December 1984.

[Malis]

Andrew G. Malis., "The ARPANFET 1822L Host Access Protocol,” RFC 878, Information Sciences
Institute, Marina del Rey, California, December 1983,

47

[McKusick et af 84]
M. Kirk McKusick, William N. Joy, Samuel J. Leffler, and Robert S. Fabry. “A Fast File System
for UNIX,” ACM Transactions on Computer Systems, Vol. 2, No. 3, August 1984.

[McKusick ef al 85]
M. Kirk McKusick, Mike Karels, and Sam Leffler. “Performance Improvements and Functional
Enhancements in 4.3BSD,” Proceedings of the Portland Usenix Conference, June 1985.

[Opperman & Davis]
Mark R. Opperman and Mike B. Davis. "4,2BSD UNIX File System Performance,” unpublished
CS 262 class report, University of California, Berkeley, Spring 1984,

{Qusterhout et al]
John K. Ousterhout, Hervé Da Costa, David Harrison, John A. Kunze, Mike Kupfer, and James
G. Thempson. “A Trace-Driven Analysis of the UNIX 4.2BSD File System,” Berkeley Technical
Report UCB/CSD 85/230, April 1985,

[Plummer]
David C. Plummer. “An Ethernet Address Resolution Protocol,” RFC 826, Information Sciences
Institute, Marina del Rey, California, November 1982,

[ProgrammerManual]

UNIX Programmer’s Manual, 4.2 Berkeley Software Distribution, Virtual VAX-11 Version,
March 1984,

[Ritchie]

Dennis M. Ritchie. "The UNIX /O System,” UNIX Programmer’s Manual, Seventh Edition,
Volume 2B, 1979,

[Ritchie & Thompson]
Dennis M. Ritchie and Ken Thompson. “The UNIX Time-Sharing System,” Communications of
the ACM, Vol. 17, No. 7, July 1974

[Saltzer & Gintell]

Jerome H. Saltzer and John W. Gintell. “The Instrumentation of Multics,” Communications of
the ACM, Vol. 13, No. 8, August 1970.

[Sechrest]

Stuart Sechrest. “Tutorial Examples of Interprocess Communication in Berkeley UNIX 4.2bsd,”
Berkeley Technical Report UCB/CSD 84/191, June 1984.

[Seymour & Lob]
Harlan Seymour and Clifford Lob. "UNIX 4.2BSD File System Locality Measurements,”
unpublished CS 262 class report, University of California, Spring 1984.

{Shoch & Hupp]
John F. Shoch and Jon A. Hupp. “Measured Performance of an Ethernet Local Network,”
Communications of the ACM, Vol. 23, No. 12, December 1980.

[Tanenbaum]

Andrew S. Tanenbaum. Computer Networks, Prentice-Hall, [nc., Englewood Cliffs, New Jersey,
1981.

48

[Teitelman]
Warren Teitelman. “The Cedar Programming Environment: A Midterm Report and
Examination,” Xerox Palo Alto Research Center Report CSL-83-11, June 1984,

[Thompson}
Ken Thompson. “The Unix Time-Sharing System: Unix Implementation,” Bell System Technical
Journal, Vol 57, No. 6, July-August 1978.

{TCP]

"Transmission Control Protocol,” RFC 793, Information Sciences Institute, Marina del Rey,
California, September 1981.

{CDP]
“User Datagram Protocol,” RFC 768, Information Sciences Institute, Marina del Rey, California,
August 1980.

[Cltrix]
ULTRIX-32 Documentation Set, Digital Equipment Corporation, May 1984,

[UserManual]
UNIX User’s Manual, 4.2 Berkeley Software Distribution, Virtual VAX-11 Version, March 1984,

[White]
Karen White. Untitled M.S. Report, University of California, Berkeley, in preparation.

Appendix

This Appendix summarizes the routines that we looked at for this project. The listing for each routine
tells what sections it was discussed in and what bugs we found in that code. The problems listed here
are not our only complaints, just the ones that cause the code not to do what it’s advertised as doing.
Not all of these bugs were mentioned in the report. Not all of these bugs are necessarily in the
4.2BSD release, for reasons discussed in the report. Bugs that have been fixed after we discovered
them are so noted.

accounting (Sections 5.2 and 5.3)

Many kernel routines check u.u__uid themselves, rather than going through suser. In particular,
the following functions are guilty of this: fork (but only the second call; the first call is just to save
some work), killpg1, chkdq, chkiq, ttioctl (all 4 calls), ptsopen, alloc, realloccg, access, namei,
socreate, in__pcbbin, <cnopen, dhopen, dmfopen, dzopen, setpgrp, donice, kill, chmod1.

The billing of ru_ oublock for delayed write buffers (in realloceg, bwrite, and bdwrite) is only
guaranteed to be right if the same process does the the second write.

The data segment gets billed for the process’s entire resident set size; the stack segment doesn’t
get billed for anything.

49

df (Sections 3.2 and 3.3)
dumpfs (Sections 3.2 and 3.3)

iostat (Sections 3.2 and 3.3)
iostat uses sleep instead of alarm and sigpause.
kernel (excluding accounting) (Sections 2.1,2.2,2.3,3.1,3.2,3.3,4.1, 4.2, 43,51,52 and5.3)

The "collisions” count for the IMP interface has nothing to do with packet collisions.

Code to support vmstat -t (timing information about page faults and reelaims) is broken.
schedcpu doesn’t know when it’s been called late,

vmmeter uses "if (time.tv__sec % 5 = = 0)” instead of a counter to decide when to call vmtotal.
schedcpu calls timeout just before it returns, rather than right after it’s been called.

sbreserve had the line "sb->sb max = MAX(cc * 2, SB_MAX):”. The call to MAX should
have been to MIN. FIXED,

DK__NDRIVE is fixed at 4, rather than actually being the number of drives in the system.
The type off__tshould be an unsigned long instead of an int.
The t_ <ol field (in struct tty) should be an unsigned char.

nswdev hasn’t been set up by the time vminit is called. So the test *if (nswdev >= 2)” always
fails, so maxpgio is usually two-thirds of what it should be.

netstat (Sections 2.2 and 2.3)

netstat -m claimed that the network memory in use was a negative percentage of the network
memory allocated. FIXED.

netstat -m claimed that there were missing mbufs. This happened when we created a new mbuf
type. FIXED.

netstat -p is not implemented.
netstat deesn’t actually decide which interface is the busiest in, say, “netstat 5”.
netstat -1 uses sleep instead of alarm and sigpause.

ps (Sections 2.3,3.3,4.2,4.3,5.2, and 5.3)

ps thinks that sleeping at PZERQ is interruptible.
ps checked SWEXIT before checking SZOMB, so it never displayed * <defunct>". FIXED.

pstat (Sections 3.2,3.3,4.2,4.3,5.2, and 5.3)

pstat -t assumed that there would never be more than 128 DZ or DH (terminal) lines on any one
system. FIXED.

pstat -s was reporting missing swap space. This was because calls to cIrnd and ctod were missing.
FIXED.

50

pstat -u used /dev/kmem instead of /dev/mem. FIXED.

pstat -u printed one field twice and didn’t print all the system call arguments. FIXED.,
pstat -u is broken because sizeof (struct user) > CLBYTES.

pstat -p printed CLKT in the banner but didn’t print a number in that spot. FIXED. (The number

that used to get printed there is no longer kept where pstat can get at it without going through
more bother than it's worth.)

The ADDR field given by pstat -p was wrong. FIXED.

rwho (Sections 5.2 and 5.3)

Ruptime and rwho don’t agree on long to wait before declaring a system to be down. FIXED (but
not cleanly),

rwhod (Sections 5.2 and 5.3)

Rwhod packets are in binary, so machines with incompatible architectures can’t read each others’
packets.

ruptime (Sections 5.2 and 5.3)

Ruptime and rwho don’t agree on long to wait before declaring a system to be down. FIXED (but
not cleanly).

vmstat (Sections 3.2, 3.3,4.2, and 4.3)
vmstat uses sleep instead of alarm and sigpause.

who (Sections 5.2 and 5.3)

wluptime {Sections 5.2 and 5.3)

