Talking to Smalltalk

Jeffrey Lo

University of California, Berkeley
College of Engineering
Department of Electrical Engineering
and Computer Science
Computer Science Division

ABSTRACT

This paper describes my research at UC Berkeley into an interfacing a
speaker dependent voice recognition system to the Berkeley Smalltalk system to
provide a better user interface for the Smalltalk system to increase programmer

productivity.

May 23, 1985

This work was sponsored by Defense Advance Research Projects Agency (DoD) ARPA Order No. 3803
Moritored by Naval Electronic System Command under Contract No. N00034-K-0251.
Publication of this report made possible by grant number 25078.

Talking to Smalltalk

Jeffrey Lo

University of California, Berkeley
College of Engineering
Departinent of Electrical Engineering
and Computer Science
Computer Science Division

1. Overview

The goal of this project was to tie
together two other projects, one being
the porting of Xerox’s Smalltalk-80,
system to the SUN Microsystems
workstation by David Ungar, one of
Professor Patterson’s graduate students,
the other being the Professor Broderson
and Robert Kavaler’'s Mara speech
recognition effort. The result of this was
a new user interface to the Smalltalk-80
system using speech. Once this was done,
we tried to discover how speech could
best be put to use to increase
programmer productivity in the Smalltalk
environment.
2. Using Smalltalk-80 with
Speech

It is simple to use Berkeley Smalltalk
with speech input. Each person that is to
use it must have his own account and
home directory. The templates for that
user’s voice are kept in a subdirectory in
his or her account. The Mara daemon
can then be started. This will download
software to the recognizer and open the
VU meter window. There must also be
a copy of Smalltalk-80.sources and a
Smalltalk image in the current directory.
Bs is then started up. Once the
Smalltalk system is running the wuser
must execute the method ‘train’ to load
the existing templates into the Mara
recognizer or prompt the user to say the
words if templates do not yet exist. At

1 Smalltalk-80 is a trademark of Xerox
Corporation.

this point the user can make full use of
the speech capabilities integrated into
Berkeley Smalltalk.

The user can now scroll any of the
windows by moving the mouse pointer
into a window, selecting it and saying a
scroll command into the headset
microphone. The current commands for
scrolling are ‘scrollup” to scroll the text
up, scrolling down is accomplished by
saying ’scrolldown’. It is also possible
to jump to the top or bottom of the
text in the window by saying ‘top” or
‘bottom”. If the mouse is pointing to
an editor window, by selecting text with
the mouse and saying an editor
command, the desired editor command
will be performed. . The current
commands are ‘accept’, “again’, ‘cancel’,
‘copy ‘Y, ‘cut’, “paste’, and ‘undo’.

3. Hardware Description

3.1. SUN
Workstation

Smalltalk requires a few pieces of special
hardware other than those specifically
required for the speech recognizer. These
are a bitmapped graphics display for it
to put its windows on, and a mouse to
use for pointing. To satisfy these
requirements, Berkeley Smalltalk runs on
a SUN Microsystems workstation. The
SUN workstation employs a Motorola
68010 for its processor and uses the
multibus that the recognizer plugs into.
The standard operating system is 4.2
BSD UNIX;. All of this fits into a

Microsystems

2 UNIX is a trademark of Bell Laboratories.

package that fits on a desktop. , 4. Smalltalk Virtual Machine

Most of the Smalitalk-80 system, the part
3.2. Mara Speech Recognlser actually written in Smalltalk, is portable
The Mara system has three main from machine to machine. The only part
hardware components, the recognizer that is different is the so called "virtual
board itself, a headset microphone for machine”. This is the lowest level part of
speech input, and an preamplifier for the Smalltalk, and handles all Smalitalk
microphone. The recognizer contains two primitives. When the Smalltalk code is
special purpose integrated circuits run, methods are executed that call other
developed at UC Berkeley. The purposes methods, and so on, but this all has to
of these chips are to do spectral analysis bottom out somewhere, and where it
and compute the Dynamic Time Warp bottoms out are the Smalltalk primitives.
Algorithm. There is also an Intel 80186 Primitives are used for all machine
processor for the higher levels of the dependent functions such as [ile access
recognition algorithm and to manage and running the graphics, for low level
templates. In addition to these basic operations that cannot be reduced any
compouents there is memory for the further by Smalltalk such as arithmetic
80186, the time warp algorithm, and operations, and for speeding up operation
storing templates. There are also the by making compiled code for commoaly
ports to connect the board to the used functions. Ouce there is a virtual
multibus amd two serial chanoels for machine for whatever hardware s
terminal communications. available, Smalltalk can be run on that
Berkeley smaltitaik Versionzu T et meer g T DML et el el e

X 'W' : g .::r;’::::m -&-klﬂ-»w‘nv B vow j

v ot v AN

The Smailtalk -B0tm System Versnon 2
Capyright (¢) 1983 Xaerox Corp.
All rights resarved.

g Create File System

Disk = UnixFilaQiractory naw.
Karnel-Processes BN Sataintebi it
Kamal-Support Explalner initlalize-reloasa canScrall
Intarface-framawork MouseMaenuContraller basic controi sequenca scroil

ScreenControilar control dafaults scrollAmount
Intactaca-Lists ‘ BT R | 5c rollViow i
Interface-Taxt StandardSystemControliar | cursor [scronview: [
Interface-Manus StandardSystemView markar adjustmant scrollviawDown >
Interface-Prompt/Conflrm | ~~=w======== private scroilviawUp
Interface-8rowser | @ peo-c--messsss vigwDalta

interface-inspactor ANCE -~ 1 | ememmmemee-
again

icmllview: aninteger undo

"it anintager Is not zaro, tell the rwcioﬁ COpY lw to scroll by aninteger amount.*
cut

aninteger ~= 0 ‘%:,5,(:
IfTrua: print It
[view scroliBy: 0 @ accap

{(anintager min: view windr“;:r"‘n:: I viaw boundingBox top)
max: view window spawn[®W boundingBox bottom).
view claarinsida. explain

viaw display]

T Y e a3

R

Derkdey Smalltalk running on the SUN workstation

machine.

4.1. Berkeley Smalltalk

Smalltalk-80 was originally designed over
a period of tem years at Xerox's Palo
Alto Research Center to run on the
Dorado computer. To make Smalltalk-80
run on a SUN workstation, a new virtual
machine designed for the SUN had to be
written. This was the project of David
Ungar, a graduate student also here at
Berkeley. He wrote a virtual machine in
C for the SUN workstation. The result
of his efforts is Berkeley Smalltalk, also
known as ‘bs’.

4.2. My Changes

For Smalltalk-80 to be able to use the
Mara recognizer, it’s virtual machine
needed some new primitives to access the
recognizer. Because of this, I had to
modify the virtual machine. Two new

primitives had to be added, one to train
the recognizer, and one to get the output
of it.

The training primitive is passed a string
that is the word to be trained. It then
calls the Mara daemon with the word to
be trained. If a template does not
already exist for the word, a window is
popped up asking the user to say the
word. The template is then stored for
the recognizer. The daemon then returns
a value, the index number for that
particular word. The training primitive
then passes this back to the calling
routine.

The recognizer output routine is called
with no arguments. It calls the daemon
asking for the currently recognized word.
If nothing has been said or nothing was
correctly recognized, a negative value will
be returned. Otherwise the index of the
recognized word is returned.

5. Smalltalk System

The portable Smalltalk-80
developed at the Xerox Palo Alto
Research Center. It is am entire
programming environment that is based
on the object oriented Smalltalk language.
The environment is centered around the
ideas of windows and using a mouse for

system Wwas

used to
Apple

input. These ideas have recently
commercial success in the
Macintosh system.

§.1. My

In addition to the changes that I made
to the Smalltalk virtual machine, 1 had
to make some changes in the Smalltalk
system code. There were a couple of
new routines that were used in calling
the new speech primitives. One of these
called the training primitive and one
called the output primitive. There was
also a routine that when called would
train each word and store the values
returned from the recognizer in global
variables for use later when trying to use
speech commands. The speechInput
method will return the value trained for
the word that was said, or a negative
value if the word was not recognized or
nothing was said.

Changes

In each place that speech input was to
be used, the speechlnput was called to
get the number for the word that was
just said. This value is then checked
against the stored values for any of the

possible commands for that possible
routine, i.e. for the scrolling routine, the
values for scrolling the screem up and
down and jumping to the top or bottom
are compared. If one of these matches,
that command is performed just as if it
had been done with the mouse.

8. Mara Software

The software that operates the Mara
recognizer is integrated with the suntools
environment of the SUN workstation. The
central part of this software is a daemon
that talks directly to the Mara recognizer
board and communicates with all
processes that want to use the recognizer.
The Mara system uses some windows of
its own in the suntools environment. One
of these contains a VU meter that shows
the strength of the spoken word and
shows the background noise. Another part
of this window shows what words could
have been spoken and gives a score on
how well each template matched. A new
window is popped up when a user is
asked to train a word.

open [164] t1
move [1686] t1
expose [166] ti
eddie [169] t1
close [174] t1
hide [176] t1
guit [188] t1

bob

The Mara unndow with VU meer end scores

7. Conclusion

Overall, the combination of speech and
Smalltalk worked well together. 1 found
myself using it as 1 was developing it so
that I would not always have to move
my hands from the keyboard to the

mouse.

As the system exists now, speech can be
used to scroll any window on the screen

up or down or jump to the top or
bottom, and the editor menu commands
can speech. This could

be -used with

easily be expanded so that all system
menus or a1 menu in a user program
could use speech. Menus seem to make
an ideal candidate for something that
could be converted to use speech since
these commands are short and can
therefore be spoken more quickly than
they could be typed or pointed to with
a mouse. However, some things do not

Anything graphical does
it is much

work as well.
not seem to work well since

easier and [faster to wuse a mouse to
point than to keep saying to the
computer ‘left, left, left, down, down’,
and so on.

Speaker dependence is another problem.
With current technology, the only way
speech can be recognized in real time
with desktop machines is to use speaker
dependent systems that require that the

system be trained for each word by each
person who will use it. This was not too
bad as it oaly took about 2 minute to
train 11 words, and is dome oaly once
per Eventually it is hoped that
speaker indcpendence can be achieved
where any person can say anything in
the computer’s dictionary and have it
kpow what he said. Once this problem is
solved, speech will probably become a
more common user interface since it will
be easy for everyone to use.

user.

8. Code for Speech

8.1. Virtual Machine Code

statle char resld]] = “$Header: speechPrims.c,v 1.1 85 /04 /24 12:08:58 jlo Exp §";
/*

* Copyright (C) 1988 by the Regents of University of California
* All Rights Reserved.

*/

#include <stdio.h>

#include <math.h>

#include <sgtty.h>

#include <signal.h>

#include <ctype.h>

#include <sys /types.h>

#include <sys /vtimes.h>

#include <sys /timeb.h>

#include "utils.h”

#include "mem.h”

#include "io.h”

#include "prims.h”

®

* dincludes for speech input.
*/

#include <stdio.h>
#include <sys/ioctlh>
#include "../mara/mara.h”
#include <sys/socket.h>
#lnclude <signalh>
#include <fcntlh>

#define

#deflne

#deflne

#define

SmalllntegerRATest\

register ocop_t regl, reg2;\
\

regl = *p;\

reg? = rp|l}

SmalllntegerRAConvert\
convertTolnteger(regl);\
convertTolnteger(reg2)

SmalllntegerOperationFinishWithOverflow(label) \
asm({” jvs label™);\
if (lisIntegerValue(regl)) {\
asm("label:”);\
retarn (NullRp);\
A
*p++ = integerObjectOf(regl);\
return (ac)

SmalllntegerOperationFinish \
If (lisIntegerValue(regl))\

return (NullRp);\
*p = integerObjectOf(regl);\
return (ac)

convertTolInteger

if

return

return

*
* Get the input from the mara descriptor.

*/

rp_t
SpeechPrm(rp, ac) SpeechPrm
register oop_t ¥rp;
rp_t ac;
SmalllntegerRATest;
SmalllntegerRAConvert;
*
* Return speech input.
®

regl = speechlnput();
SmalllntegerOperationFinish;

}

char *names]MAXUNAMES];
statlc Int initialized = O;

speechlnput() speechInput
{)
HEARING *“ir;
int i;

int retval;
Int numbytes;

if (initialized == 0)
if (initializeSpeech() < 0)
return(—1);

*

* [ind out how many bytes are ready to be read from
* the connection to the mara daemon.
Y/
numbytes = speechReady();
®

* If there is not any data ready to be read, then just return —1.
* By doing this we don’t lose the data that we would if the
* descriptor is non-—blocking.
"
If (numbytes <= 0)
return(-1);

hr = GetHecaring(NULL);
If (br == NULL)
return(—1);
/* If new data, then store in retval and return. */
retval = hr—>hr_datal0].hr_uname;
FreeHearing(hr);
return(retval);

/*
* Return number of bytes available to be read from speech input.
* On error return —1.

*
speechReady() speechReady
{
int x;
If (initialized == 0)
If (initializeSpeech() < 0)
return(-1);
if (ioctl{mara_fd, FIONREAD, &x) < 0)
return(-1);
return(x);
}
initializeSpeech() initializeSpeech
{
WORD *w;
int x;
int window;
initialized = 1;
ConnectRecognizer(TRUE);
SetMaraFlags(FLG_EVALMODE, FLG_EVALMODE);
OnRecognizer(TRUE);
if(getenv(”WINDOW_ME")) {
sscanf(getenv(” WINDOW_ME"), ” /dev /win%d”, &window);
OnRecognizer{FALSE);
1f{! Assoc Window(window)) {
fprintf(stderr,
"Cannot associate with window %d.\n”, window);
return(—1);
} else {
OnRecognizer(TRUE);
}
}
®
* Train the word passed as a string.
*/
p_t .
TrainPrm(rp, ac) TramnPrm
oop_t *rp;
rp_t ac;
int x;

If ((x = TrainWord(rp)) < 0)
return(NullOop);
*p = integerObjectOI{x);

/*

* Train it.

-9 -

return (ac);

TrainWord(rp)
register oop_t *rp;

{

char word|BUFSIZ|;
int x;

char %;

char path{128];

OffRecognizer();

getString(rp[1], word, FALSE);

fprintf(stderr, "TrainWord(%s)\n”, word};

fflush(stderr);

UnloadaSpelling(word);

if ((x = LoadaSpelling(word, 0)) == MERROR)
return(-1);

fprintf(stderr, "Loaded\n”);

fflush(stderr);

names|x] = (char *) malloc(strlen(word)+1);

sprintf(names|x], ”%s”, word);

TpVerify();

OnRecognizer(TRUE);

return (x);

TrainWord

8.2,

- 10 -

Smalltzlk-80 System Code

speechlnput

train

< primitive: 255>
“self primitiveFailed

" nil speechlnput ”

”

» Train the words for scrolling the screens and running editor menus.
Scrollup + self trainWord: 'scrollup’.
Scrolldown + self trainWord: 'scrolldown’.
Topscreen + self trainWord: 'top’.
Bottomscreen + self trainWord: 'bottom'.
SpAccept + self trainWord: 'accept’.
SpAgain + self trainWord: ‘again’.
SpCancel « self trainWord: ’'cancel’.
SpCopy + self trainWord: 'copy’.

SpCut + self trainWord: 'cut’.

SpPaste « self trainWord: ’paste’.
SpUndo +« self trainWord: 'undo’.

”»

” self train

trainWord: tl1

» Train the string passed as the argument 7
<ptimitive: 254>
“self primitiveFailed

” gself trainWord: 'test’ ”

speechMenu

» Use speech input to run the menu of the editor

SpVal = SpAccept ifTrue: [self accept. “self].

SpVal = SpAgain ifTrue: [self again. “self].

SpVal = SpCancel ifTrue: [self cancel “self].

SpVal = SpCopy ifTrue: [self copySelection. “self].

SpVal = SpCut ifTrue: [sell cut. “self].

SpVal = SpPaste ifTrue: [self paste. “self].

SpVal = SpUndo ifTrue: [self undo. “sel]
speechScroll

scroll

SpVal +« nil speechlnput.

SpVal = -1 ifTrue:[self].

self canScroll ifFalse:| self}.

SpVal = Scrollup ifTrue: [self scrollViewDown. self moveMarker. “self].
SpVal = Scrolldown ifTrue: [self scrollViewUp. self moveMarker. “self].
SpVal = Topscreen ifTrue: [self scrollView: 2000. self moveMarker. “self].
SpVal = Bottomscreen ifTrue: [self scrollView: -2000. self moveMarker. “self]

»Check to see whether the user wishes to jump, scroll up, or scroll down.”

| savedCursor regionPercent |
savedCursor +— sensor currentCursor.

- 11 -

[self scrollBarContainsCursor]
whileTrue:
[Processor yield.
self speechScroll.
regionPercent «— 100 * (sensor cursorPoint x - scrollBar left) / scrollBar width.
regionPercent <= 40
ifTrue: [self scroliDown]
ifFalse: [regionPercent >= 60
ifTrue: [self scrollUp]
ifFalse: [self scrollAbsolutel]].

savedCursor show

