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Abstract

A new mechanism for constructing highly available distributed programs is described. It
combines remote procedure call with replication of program modules for fault tolerance.

The set of replicas of a module is called a troupe. In a program constructed from troupes,
what appears to the programmer as a single inter-module procedure call results in a replicated
procedure call. A distributed program constructed in this way will continue to function as long as
at least one member of each troupe survives.

The semantics of replicated procedure calls and troupes are defined and algorithms are
presented that support these semantics.

1. Introduction

This paper describes replicated procedure call, a new mechanism for constructing highly
available distributed programs. Replicated procedure call combines remote procedure call with
replication of program modules for fault tolerance.

Remote procedure call allows program modules to be located on different machines.
Replicated procedure call generalizes this by allowing modules to be replicated any number of
times. The set of replicas of a module is called a troupe. When a client troupe makes a replicated
procedure call to a server troupe, each member of the server troupe performs the requested
procedure exactly once, and each member of the client troupe receives the results, as shown in
Figure 1. A distributed program constructed from troupes will continue to function as long as at
least one member of each troupe survives. Replicated procedure call has the following properties:

Transparency
Replicated procedure calls appear to the programmer like normal procedure calls. The
details of module replication are invisible.

Flexibility
The degree of replication of individual modules can be changed to achieve varying levels of
reliability without modifying or recompiling the program. Reconfiguration can occur while a
program is executing.

Generality
Many distributed algorithms, particularly those involving replicated servers and broadcast
communication, can be formulated in terms of replicated procedure calls.
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Figure 1: Replicated procedure call

Efficiency
The replicated procedure call algorithms are well suited to broadcast local-area networks.

This paper describes the semantics of replicated procedure call and the algorithms required
to implement these semantics.

2. Background and Related Work

Remote procedure call [3,27] enables programmers to write distributed programs in the same
style as conventional programs for centralized computers. Details of communication are hidden,
and the syntax of a remote call is identical to that of the local case. The protocol implemented in
the course of this research began as an attempt to transfer the Xerox RPC ideas [39] to an
environment based on Berkeley UNIX [17] and DARPA Internet protocols {30,31].

The idea of replication as a means of masking the failures of individual components dates
back to von Neumann {37]. Triple-modular and N-modular redundancy have long been familiar
to designers of fault-tolerant computer systems [1,25]. Early applications of redundancy to
software fault tolerance include the SIFT system [38] and the PRIME system [12]. Replication is
also the basis of methods proposed by Lamport [19] and Schneider [35] for constructing distributed
systems that meet given reliability requirements. These forms of modular redundancy, in which
each component performs the same function, are to be distinguished from primary /standby
schemes, in which only a single component functions normally and the remaining replicas are on
stand-by in case the primary fails [2,5].

Our approach is similar to one takem by Gunningberg, who proposed a fault-tolerant
message protocol based on triple-modular redundancy [15]. We have extended this idea to a
system based on remote procedure calls rather than messages, and with more general replication
and voting schemes than triple-modular redundancy and majority voting.



A methodology known as N-version programming uses multiple implementations of the
same module specification to mask software faults {6]. This technique can be used in conjunction
with replicated procedure call by constructing troupes from independently implemented modules,
thereby increasing software as well as hardware fault tolerance.

3. Processor Failures

We assume that the only type of processor failure is a crash, in which the processor simply
halts, losing its volatile state information. Schneider [35] has termed machines with this property
fail-stop processors.

If processors were not fail-stop, troupe members would have to reach Byzantine agreement
[20] about the contents of incoming messages, because a malfunctioning processor might send
different messages to different troupe members. Byzantine agreement could be added to the
algorithms presented here, but would result in a significant loss of performance. There is no
evidence that failures other than crashes occur often enough to warrant the increased expense.

4. Troupes

A troupe is a set of replicas of the same module. A troupe behaves like a single logical
module, but remains available as long as at least one of its members continues to function.
Increasing the number of processors spanned by a troupe increases its resilience to crashes. In
addition, the technique of N-version programming mentioned above can be used to increase
tolerance of software failures. The cost of increasing the reliability of a distributed program by
replication can be traded off against the cost of providing crash recovery facilities based on stable
storage, such as checkpointing and message logging [2,5,21,32].

5. Module Semantics

In order to describe the semantics of troupes, we must first describe the semantics of the
individual modules of which troupes are composed. This section presents a model of the execution
of a procedure in a module. Using this model, we can state precisely our assumptions about the
degree to which modules behave deterministically.

We adopt the usual definition of a module as consisting of private state information together
with a set of procedures that manipulate this state. At any moment, the state information
summarizes the net effect of the history of calls to the module. The module state is used
explicitly in our model; in a sense, the effects of procedure call execution are described by looking
inside the module. It is also possible to formulate an equivalent model, in terms of the call history
rather than the module state, which views the behavior of the module from the outside. This
duality between the two models of the behavior of a module is reflected in the two standard
methods of implementing a module that survives crashes: checkpointing the module’s state and
logging the module’s interactions [14,21].

For simplicity, we assume that module M consists of a single state variable S and a single
procedure P. We use the expression M.P(x) to demote the act of calling procedure P with
parameter X. An ezecution of M.P(x) in state S consists of the result of the procedure, the new
state of the module, and the trace of remote procedures called during the execution. Because of
nondeterminism, there may be a set of possible executions of M.P(x) in state S.

We say that M is completely deterministic if there is exactly one possible execution of
M.P(x) in state S.

Complete determinism is required in roll-forward crash recovery schemes such as replay of
messages [5,32] or re-execution of intention lists [14,21]. Previous methods for fault tolerance
based on modular redundancy [1,25,15] also assume complete determinism. Although this
requirement may be acceptable in certain applications, such as transaction processing, it is too
restrictive to be practical in the context of more general distributed programs.



The requirement of complete determinism can be relaxed by incorporating an application-
specific definition of what constitutes an acceptable degree of nondeterminism. We associate with
module M a state equivalence relation, and with each procedure in M a parameter equivalence
relation and a result equivalence relation. The module-specific equivalence relations induce an
equivalence relation on procedure executions in the module: two executions are equivalent if

(1)  the results are result-equivalent,
(2) the new states are state-equivalent, and

(3) the traces are identical up to parameter-equivalence of the remote procedures
called.

We define module M to be determsnistic up to equivalence if
(1) all executions of M.P(x) in state S are equivalent, and

(2) whenever X, is parameter-equivalent to Xy and S, is state-equivalent to S, all
executions of M.P(x) in state S are equivalent to all executions of M.P(x2) in
state S2.,

8. Troupe Semantics

When a program is constructed from troupes, what appears to the programmer as a single
inter-module procedure call actually results in a replicated procedure call. One way to achieve
this kind of transparency is to use a stub compiler [27]. The details of a stub compiler for
replicated procedure call are described elsewhere {7]. This section concentrates on the semantics
of replicated procedure calls between troupes.

When a client troupe makes a replicated call to a server troupe, each client troupe member
makes a one-to-many call to the server troupe, and each server troupe member handles a many-
to-one call from the client troupe. In the absence of crashes, a distributed program constructed
from troupes should behave exactly as if each troupe were a single module. Therefore, a
replicated procedure call should invoke the same procedure and produce the same side effects
exactly once at each server troupe member. The assumption of complete determinism or
determinism up to equivalence guarantees that the client troupe members all issue the same call,
and that the server troupe members all produce the same results.

When a troupe consists of completely deterministic modules, its members respond identically
to incoming procedure calls and make the same outgoing procedure calls.

When a troupe consists of modules that are deterministic up to equivalence, an incoming
procedure call may cause different (but equivalent) behavior at each troupe member. The
restriction on the trace of outgoing procedure calls guarantees that all troupe members will make
the same calls to other troupes in the same order while performing the incoming call.

When troupes are used to implement different levels of abstraction, a single procedure call at
the highest level may give rise to a chain of replicated procedure calls from troupe to troupe. But
if each troupe is deterministic in either of the two senses above, it follows that the program as a
whole will exhibit the correct behavior.

7. Algorithm Structure

Figure 2 shows the relationship between the various layers that make up replicated
procedure call. A paired message protocol [7] is a distillation of the communication requirements
of conventional remote procedure call protocols [3,27,39]. It provides

(1) reliably delivered, variable-length, paired messages (e.g. CALL and RETURN), and

(2) message sequence numbers that uniquely identify each pair of messages among
all the ones exchanged by a given pair of processes.
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Figure 2: Abstraction structure

The algorithms that follow assume such an underlying paired message layer.

8. One-to-many calls

The client half of the replicated procedure call algorithm is shown in Figure 3. The client
sends the same CALL message with the same sequence number to each member of the server

Client Server

call P P: proc

Figure 3: A one-to-many call



troupe. The paired message layer guarantees that the resulting RETURN messages all carry the
same sequence number, so it is a simple matter to gather together the set of responses to the call.

In a language with multiple processes, a one-to-many call could be expressed as many
concurrent processes, each performing a conventional remote procedure call. Our single-process
formulation shows more clearly how the algorithm can be implemented using the multicast
operations provided by local-area networks [4,11].

9. Many-to-one calls

We now consider what occurs at a single server when a client troupe calls a server troupe.
The server receives CALL messages from each client troupe member, as shown in Figure 4. The
server is supposed to perform the requested procedure exactly once and send the same RETURN
message to each member of the client troupe. Two problems must be solved by the many-to-one
call algorithm:

(1) When a lone CALL message arrives, how does the server decide if it is a single call
or part of a replicated call?

(2) When more than one CALL message arrives, how can the server decide whether
they are unrelated calls or part of the same replicated call?

Our solution to the first problem requires a unique ID for each troupe (assigned by the
binding agent) and a client troupe ID field in each CALL message. When a server receives a CALL
message, it maps the client troupe ID into the set of module addresses of the members of the
client troupe, by consulting a local cache or contacting the binding agent. In this manner, the
server determines from whom to expect CALL messages as part of the many-to-one call.

To avoid interaction with the binding agent in the common special case of an unreplicated
client, a distinguished troupe ID is reserved to indicate that the client troupe is a singleton. This

Client Server

Figure 4: A many-to-one call



insures that the degenerate case of a ome-to-one call is equivalent to a conventional remote
procedure call not only in function, but also in performance (in terms of the number of messages
sent and the number of calls to the binding agent).

We now turn our attention to the second problem: gathering together the set of CALL
messages that forms a particular many-to-one call. Gunningberg [15] proposed using message
sequence numbers for this purpose, as in the one-to-many case. This requires that the message
sequence numbers of troupe members remain completely synchronized. The assumption of
deterministic troupe members is sufficient to insure this, but note that this constrains the
implementation of the underlying paired message layer to manage message sequence numbers on a
per-process basis. This is not the case, for instance, in the Xerox PARC implementation (3],
which shares a single sequence number counter among all the processes on a machine by taking
advantage of the fact that the sequence numbers of successive remote procedure calls need only be
monotonically increasing. :

We present a more general solution that does not require the message sequence numbers of
troupe members to remain synchronized. This is important when troupe members are permitted a
greater degree of nondeterminism, although the complete algorithm for the nondeterministic case
is beyond the scope of the present paper.

We first observe that it is a simple matter to extend the familiar notion of a call stack to
the case of programs constructed from remote procedure call. The distributed call stack consists
of the sequence of contexts (possibly spanning machine boundaries) that have been entered but
not yet returned from. At the base of the stack is the top-level context that originated the chain
of calls. At the top of the stack is the context of the procedure currently being executed.

Next, we extend this idea to programs constructed from troupes by introducing the notion of
a replicated call stack. An entry for an active procedure in a replicated call stack consists of a set
of contexts, one from each member of the troupe implementing that procedure.

Given an active replicated procedure call, we can trace back the replicated call stack to a
unique troupe at the base. We call this the root troupe of the replicated procedure call. It is the
originator of the chain of replicated calls of which the given call is a part.

Finally, we can describe our solution to the problem of determining which CALL messages are
part of the same replicated call. We add a root ID to each CALL message. The root ID contains
two components: the troupe ID of the root troupe of the call, and the sequence number of the root
troupe’s original replicated call (the one that initiated the current chain of calls). The root ID
plays the role of a transaction identifier. Whenever a server makes a replicated call on behalf of a
client, it propagates the root ID of the call it is currently performing.

The sequence number component of the root ID is well-defined only if all the CALL messages
sent by the members of the root troupe as part of the original call bear the same sequence
number. This is true if the root troupe is a singleton, which will be the most common case in
practice. Otherwise, the members of the root troupe must take explicit action to synchronize
their sequence numbers. Note that this constraint applies only to the root troupe.

Root IDs have the following essential property: two or more CALL messages arriving at a
server have the same root ID if and only if they are part of the same replicated call. The way in
which root IDs are propagated guarantees that messages that are part of the same replicated call
have the same root ID. To see the converse, observe that the transfer of control during a
procedure call (including a replicated one) implies that unrelated calls to the same server must
originate in different threads of control. So unrelated replicated calls will have different root
troupes and therefore different root IDs.

10. Collators

In both the one-to-many and many-to-one algorithms, a client or server receives a set of
messages from the members of a troupe when a conventional remote procedure call client or



server would only receive a single message. If the troupe members are completely deterministic,
all the messages in the set should be identical. If the troupe members are only deterministic up to
equivalence, the messages in the set should be equivalent according to the application-specific
equivalence relation. We introduce collators as a general way of allowing applications to perform
these checks. ’

A collator is a function that reduces a set of messages into a single result. A typical collator
would check that all the messages in the set were equivalent, and raise an exception otherwise.
Application-dependent collators add considerable flexibility to the replicated procedure call
mechanism, but this flexibility is achieved by sacrificing transparency, since the programmer must
now be aware of the fact that modules are replicated.

The framework of replicated procedure calls and collators is general enough to encompass
majority voting [25,36,37|, weighted voting [13,29], and a variety of other distributed algorithms,
particularly those based on broadcasting information to multiple recipients (22, 28].

11. Concurrent Replicated Calls

The question of the semantics of concurrent replicated calls from different client troupes to
the same server troupe is beyond the scope of this paper. This is a different problem than that
posed by a many-to-one call; the latter is solved by the algorithms already described. For a
server module to operate correctly in the presence of concurrent calls from different clients, even
without replication, it must appear to execute those calls in some serial order. Serializability may
be achieved by any of a number of concurrency control algorithms [18,24].

When the server is a troupe, not only must concurrent calls from different client troupes be
serialized in some way by each server troupe member, but they must be serialized in the same
way by each server troupe member. Le Lann describes this synchronization requirement as
follows: ‘ :

In this context [fully replicated computing], the purpose of a synchronization mechanism is to
guarantee that the ordering of actions processed by consumers is identical for all consumers [24].

Proper coordination between the replicated procedure call mechanism and a concurrency control
mechanism such as nested atomic actions [26,34] is required for correct semantics. The design of
such a unified mechanism, which also allows a wider spectrum of determinism constraints on
troupe members, will appear in the author’s dissertation [8].

12. Binding for Troupes
This section describes a binding agent for troupes, with the following characteristics:
(1) Programs import and export troupes by name.
(2) Replication is invisible to importers and exporters.
(3) A single replicated procedure call suffices to import or export a troupe.
The binding agent and its clients make use of the following types of objects:

Module names
A module name is what a program uses to import or export a module, and is typically
determined by the programming environment. Module names are represented as character
strings.

Module addresses
A module address uniquely identifies an instance of a module in the internet. It is a
refinement of the internet process address provided by the underlying paired message
protocol [7], since processes may import and export any number of modules.

Troupes
A troupe is represented by the set of module addresses of its members.



Troupe IDs
A troupe ID corresponds to a unique troupe in the internet. Since troupes may be long-
lived, a permanently unique ID is recommended.

The interface to the binding agent is specified by the following procedures:
find troupe by name: module name — troupe
find troupe by ID: troupe ID — troupe

join troupe: module name X module address — troupe ID

A client imports a module by calling find troupe by name. The set of module addresses
associated with that name is returned.

A server exports a module by calling join troupe. If there is already a troupe associated
with the specified name, the address of the exported module is added to it; otherwise, a new
troupe is created. The troupe ID is returned.

A server that receives a CALL message as part of a many-to-one call uses the find troupe
by ID procedure to map the client troupe ID into the module addresses of the client troupe.

Since binding is such a pivotal component of the replicated procedure call system, it is
essential that the binding agent be highly available. Naturally, this is accomplished by
replication, in the form of a troupe of binding agents and replicated calls to the binding
procedures.

Before a program can call a binding procedure, it must first import the binding agent (to
learn the module addresses of the binding agent troupe). But the binding agent cannot be used to
import itself. Eliminating this circularity requires what Lampson [22] calls a sandwich: a special
case of one abstraction (importing the binding agent), supporting a second abstraction (replicated
procedure call), which in turn supports the general case of the first abstraction (importing an
arbitrary .module). The simplest solution is to assign the module addresses of the binding agents
in advance. A better approach is to assign a broadcast address [11] to the troupe of binding
agents; this allows the actual number of binding agents to vary.

13. Crash Detection and Recovery

A troupe is resilient to the crashes of all but one of the processors on which its members
reside. We assume that crashes are detected by the paired message protocol (presumably using a
timeout mechanism). At some point it becomes desirable to replace troupe members that have
crashed, because a diminished troupe is more vulnerable to future crashes. In this section we
describe a general mechanism for adding a new troupe member to an existing troupe. The
question of how long to wait before replacing defunct troupe members is beyond the scope of this
paper.

Adding a new troupe member to an existing troupe requires that the new member be
brought into a state consistent with that of the other members. We propose two solutions to this
problem, depending on whether all the processors in the distributed system have the same
instruction set architecture and operating system.

In the homogeneous case, a variant of process migration [33] can be used. Process migration
enables an existing process to be moved to another machine without otherwise changing its state.
Such a mechanism can easily be modified to copy rather than move the process.

If process copying is impossible because of heterogeneous machines, a mechanism similar to
checkpointing to stable storage can be used. In this variation, the state information of an existing
troupe member is sent in a standard external form to the newly created troupe member. The
transmission method for abstract data types proposed by Herlihy [16] can be used for this



purpose.

14. Directions for Future Research

The algorithms described in this paper have been incorporated into Circus, a replicated
procedure call system in operation at Berkeley [7]. We are just beginning to gain experience with
the system.

There are several directions we intend to follow in the course of future research [8]. We are
investigating the relationship between the replicated procedure call algorithms described in this
paper and various algorithms for general-purpose concurrency control via nested atomic actions
[26,34]. At the same time, we are pursuing ways of relaxing the strong determinism requirements
on troupe members.

We are designing a configuration language and a configuration manager to cope with the
programming-in-the-large aspects of constructing programs from troupes. A configuration is a
correspondence between the logical module structure and the physical troupe structure of a
program. The configuration language allows the programmer to specify the set of acceptable
configurations of a program. The configuration manager uses this specification to perform the
necessary creation and binding of troupe members when the program is started or dynamically
reconfigured. We intend to build on existing work in this area [9,10,23,27].

We are investigating how to express arbitrary application-specific collators and integrate
them into programming languages. In the process, we hope to identify existing distributed
algorithms that can be formulated in terms of troupes, replicated procedure calls, and collators.
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