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ABSTRACT

We present a variant of the Simplex method which requires on the
average at most 2(min{m,d) + 1) pivots to solve the linear program
mincTz, Az = b,z =0 with A¢R™*%. The underlying probabilistic
distribution is assumed to be invariant under inverting the sense of any
subset of the inequalities. In particular, this implies that under
Smale’s spherically symmetric model this variant requires an average

of no more than 2(d + 1)? pivots, independent of m, where d <m.



1. Introduction

The Simplex Method for Linear Programming, originated by Dantzig in 1947,
is one of the most frequently used algorithms in industry and government. The
ordinary measure of complexity of this method is the number of pivot steps it
requires to solve a linear program, expressed as a function of the dimensions of
the problem. Vast practical experience indicates that this function is linear, or
at most polynomial (Dantzig 9 ., Kuhn & Quandt 15 ). However, examples have
been constructed for several variants of the Simplex method, showing that in
the worst case the number of pivots may grow exponentially with the dimensions
(Klee & Minty 14 , Jeroslow 12 and others). The Ellipsoid Algorithm (Khachian
13) was demonstrated to solve linear programs in time which is polynomial in
the length of the problem data in the worst case, but appears to be much slower

than the Simplex method in practice.

Recently, several works have tried to explain the efficiency of the Simplex
method by approaching the complexity issue probabilistically: Assuming some
distribution of the problem data, this approach tries to show that the awerage
number of pivots grows slowly with the problem’s dimensions. To quote these
results denote the number of variables in the problem by d and the number of
inequalities by n, and assume d <n. We use ¢ to denote a constant and c(d) to
denote a function of d only. Borgwardt ( 7, B ) showed that a parametric sim-
plex variant requires an average of at most ¢ n-d?(d + 1)® pivots for a proba-
bilistic model which generates only feasible linear programs. Srmnale ( 19 )
showed that the Parametric Self Dual Simplex requires an average of at most
c(d) (log (n — d))3{@*! pivots when the problem data is drawn from a spheri-
cally symmetric distribution. Megiddo ( 17 ) improved that bound to & (d). This
implies that the number of pivots tends to a finite limit when d is fixed and
m. - oo. However, this limit is super-exponential in d. Adler ( 1) and Haimovich
( 11 ) demonstrated that some Parametric Simplex variants require an average
of at most d steps once a vertex of the feasible region is given, but these results

do not have immediate consequences for the full (Phase I - 1I) Simplex method.

In ( 4 ) we defined a family of Simplex variants which we called Constraint-
By-Constraint (CBC) algorithms. We showed there that under probabilistic
assumptions which are weaker than Smale's, these algorithms require an aver-

age of no more than c(d) pivots where c(d) is between d-1.5% and 2%4,
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and 2%, depending on the algorithm and the probabilistic model. In this paper
we show that one of these variants, the Parametric-CBC algorithm, with proper
initialization, requires at most 2(d + 1)2 pivots on the average, independent of
m.. Our probabilistic model requires that the problem data is non-degenerate
and is generated by a distribution which is invariant under changing the sense of
any subset of the inequalities defining the problem. Since Smale’s probabilistic
model satisfies these assumptions, this implies that the Parametric-CBC algo-

rithm requires an average of at most 2(d + 1)? pivots for Smale’s model.

This result is one of three recent studies which obtain a quadratic bound on
the expected number of pivots of a Simplex variant. The other two are by Todd
( 21 ) and Adler and Megiddo { 5 ), who obtained an 0{d?) bound on the
expected number of pivots for the Self-Dual Simplex algorithm. The three stu-
dies make identical probabilistic assumptions and all three employ lexico-

graphic pivot rules.

After the completion of these three investigations Megiddo ( 18 ) observed
that, although the Parametric-CBC algorithm and the Self-Dual algorithm are in
general quite different, their lexicographic versions execute exactly the same
sequence of pivots. Thus all three investigations are concerned with the same
Simplex variant. However viewing this variant as a special case of the
Parametric-CBC algorithm enabled us to apply the results of Adler { 1) and

Haimovich ( 11 ), and thereby to obtain a simple and direct quadratic bound.

2. Preliminaries

For a matrix Ae R™*$, we denote by A or A . the i-th row of A, and by 4.;
the i-th column of 4. If S is a sequence of indices of rows (columns), we denote

by As (A.s) the submatrix obtained by taking only the rows (columns) in S.
The Linear Programming Problem is

mincTz
(P) sit. Ax=b
z=20



where c,z£R% , beR™ , AeR™*% .
The constraints of the form 4.z = b; are called matriz constraints, to be dis-

tinguished from the z; = 0 sign constraints. Define also

0
M:={£} V=g g RIt™ n:=d+m
b
So an equivalent presentation of (P)isminc¢ Te, Mz =v.

Let DeR*®, ji=maz(k ., l). If every jXj submatrix of D is non-singular we say

that D is strongly nondegenerate.

The Parametric Objective Problem is

min c¢Tz + 67z

Hz =v c.EeR% AER

where we wish to find the optimal solutions for all values of the parameter A.

Here ¢ is called the objective and € the co-objective.

This problem can be solved by the Parametric Objective Algorithm (Gass
and Saaty 10, Dantzig 9 ) which is a variant of the Simplex method. The algo-
rithm starts at a vertex optimal with respect to c¢Tz in F:={z | Mz > v}, and
(assuming non-degeneracy) when A increases follows a connected path of edges
and vertices of F. This path is called the efficient path. The union of the
efficient paths for co-objectives € and —€ is called the co-optimal path. We call
a vertex or an edge of F (c,T)-co-optimal if it is on the co-optimal path gen-

erated when ¢ is the objective and & the co-objective.

Every inequality of the form M;r = v; can be thought of as a half-space in
RS determined by the hyperplane M,z = v and a sign choice with respect to
that hyperplane. The opposite sign choice would yield the inequality M;z < v;.
Given k hyperplanes in R4, k =d, every one of the 2* possible sign combinations
determines a constraint set or an instance. Assuming non-degeneracy, every

instance is either infeasible or d-dimensional in which case it is called a cell.

Let S = §{s,.....5¢} C {1,....k ] be a set of d distinct indices of hyperplanes.

S is calied a basic sequence of M. Denote
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Msl Vs
My:=1| @ |Us:i=

M,

d
If det (M) # O, then these hyperplanes intersect in vertex T = {(M;) 'vs. In

that case we also say that S is the basis corresponding to Z. Under non-

degeneracy this is a one-to-one correspondence.

Adler { 1 ) and Haimovich ( 11 ) showed that (assuming non-degeneracy)
every vertex of the arrangement of hyperplanes is co-optimal in exactly (d + 1)

of the 2% cells incident on it.

A convenient way to present the sign choices is a sign matrix. A k Xk

matrix J is called a k-sign matriz (denoted J & SM (k)) if

_x1 ifi=j3
Jy=) 0 ifi#j

Thus for every matrix A ¢ RExd

[ A if Jy=+1

(JA:.-=| -4 i Ju=-1

So all the instances determined by the generating hyperplanes

Mz =vy i =1,..m can be represented by

JHM = Ju J &£ SH (m)

and clearly | SM(m)| = 2™.



3. The Algorithm

Several variants of Constraint-By-Constraint algorithms, as well as proofs of
their validity were presented in ( 4). We shall briefly state the Parametric-CBC
(PCBC) algorithm here, and refer the reader to ( 4 ) for details and proofs.

For the Linear Program min cTz, Mz =v where Me R* >3, (m =n—d)
define

x® .= (zeR® | Miz=v; i=1..d+k} k£=0L..m

X:= xm)

Stage 0:  Let T be the unique vertex of X0,
Choose € &€ B such that the unique minimum of &'z in xX©® isat £. Go to

Stage 1.

Stage k: (1<k =m): StartingatZ which minimizes &7z in X¥1),
use the parametric objective algorithm to solve
min{zTz —OM,z |z ¢ x®-1)). Stop at the first point Z along the path satis-
fying My Z = .
Set Z:= z and go to stage k + 1.
(If there is no such point along the path - Stop. X = ¢).

Stagem + 1 Starting at £ which minimizes eTzin X,
use the parametric objective algorithm to solve min{e’z + scTz |zeX].
The end point of the path yields the required solution. It may be either an

optimal vertex or a ray demonstrating that the solution is unbounded.

If the problem includes non-negativity constraints, we shall consider them
the first d constraints, so that x® = g4 In that case we may choose in step O
as the starting objective any € g R% satisfying € = 0. Similarly if the sign con-
straints Jz = 0 where J&SM(d) are :ncluded, we can choose any Je withe >0

as the starting objective. To prove our result we shall use the objective

e:=e(e):= (s.8%85,....8%)
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where ¢ is positive and sufficiently small.

For a linear program in form (P), we shall choose to solve either the primal

or the dual problem, so that the algorithm is always performed with d=m.

4. The Probabilistic Model

We assume that the data (A,b,c)is generated according to a probability dis-

tribution satisfying the following properties:

a For fixed (A,b,c), all sign combinations of the inequalities

. x(cor=)b i=1..m . .
A‘x: é,<_ 3:, 23 0 jl=1,...,d are equi-probable. In other words, 2%*™ equi-

probable  instances J=[JY, J?] are generated  according to
Jle SM(d), J%eSHM (m) all having the form

minc’z
Jlz =20
JeAzx = J?b

Note that this condition is equivalent to the statement that all instances
[ 7]

generated by inverting signs of rows of [A,b] and columns of ch l are equi-

probable.

[ r]

b, With probability one, both \ 1} and [/,A,b] are strongly nondegenerate.

Smale ( 19 ) assumes that the data is obtained from a spherically sym-
metric distribution. Since every such distribution satisfies properties (a)
and (b) our results will hold in particular in his model. Our model, however,
need not assume that the distribution is continuous. In fact, it may gen-
erate a finite set of 2™ +d linear program instances, all corresponding to the

same strongly non-degenerate data (Ab.c).
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The advantage of the model described above is that it enables one to reduce
the probabilistic analysis to combinatorial analysis. The same kind of model was
used by May & Smith ( 18) for investigating random polytopes, and by Adler and

Berenguer (2, 3 ) for investigating several issues in random linear prograris.

5. Analysis

Consider data {4,b.c) satisfying our probabilistic model assumptions. This
data induces gm+d equi-probable instances, corresponding to all sign combina-
tions of the inequalities. In stage k + 1 of the Parametric CBC algorithm, d+k
constraints are present, and they induce 2F*% equi-probable instances. An
instance may be represented by the sign combination J =[JY, J?] it uses,

namely

Jlz >0

where J1e SM (d), J%eSH (k). Denote those instances by J1,....J gdsk-

All instances in stage k + 1 use —A.,, as the co-objective. The starting
objective &€ used in instance J, = [Jd, J] was determined in stage O to be

& (Ji):= Ji e. Denote these objectives by ey,....8 -
Consider a fixed basis S, corresponding to a vertex T in stage k + 1. Define

1 if basis S is (e;, =4 +1)—co-optimal
F(J;. g5, S):= in instance J;
0 otherwise

We are interested in the number of pivots actually performed by the PCBC
algorithm in all the instances in stage k + 1. Anupper bound to this number is
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Glk):= };, ; F(J, Jie, S)

That is, for every basis S we wish to count a pivot in instance J; only if the objec-

tive prescribed by the algorithm to be used in instance J; makes S co-optimal.

Adler { 1) and Haimovich ( 11) proved that for every basis S and for every

objective gy, assuming non-degeneracy

;F(J,-, e;, S)=d +1
i

From this we get the basic result

G(k)sg,ZZF(J.;, e;, S) = [" ;d] 2% (d + 1)

B, J‘

which was used in ( 4 ) to obtain the bound (d + 1) 23*%. We shall now improve

upon that result using the special structure of the vectore = e (g).

We say that a basis S is of type T if {1,..7} C S, {r + 1} S. In other
words, if the tight inequalities for that basis include z, = 0,....Zr = 0, but do not

include Z,,; = 0. The main observation we shall use is the following:

Theorem: If S is of type 7 and there exists e; such that F’ (J;, g5, S) = 1 then
Y F(Jie5 S)= 28-7-! for sufficiently small €.
[
4
We leave the proof to the end of this section. Let us first show how we use

this theorem to get our main result: Define

1 Y F(Ji.e5. S)=1
4]
G(Ji. S)Z=
0 otherwise

clearly

F(J{, J,-le.S)s G(J-,,,S) v Ji, S.
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If § is of type 7, then the theorem implies that

G(Ji.8) <Y F(di, g5, 8)j2 @™
¢

Now let us consider separately each type of S in the sum generating G{k):

G(k)=ﬁ S YR, e, S)=
J.

r=0 S
of typer
<Y ¥ LGk S)s
r=0 J
of type T
d
< 2 2 252 F(Ji, ej.s) 2_(d—1'—1);=
r= S J‘ o
of typer
=i )y iEEF(J,,eJ,S);z(d—r 1) =
=0 o
of typer
- i [k teTnT 1] §29 (¢ + 1)} 2787 =

r=0

=2%(d + 1) f} [k ti- 1] o= (t-1)
$=0

Since all 2¥*¢ instances in stage k + 1 are equi-probable, we get that the aver-

age number of pivots required to solve an m x d problem using the PCBC is:

m+1

+1
p(m.,d) 5"2 G(k) 2 *+) < (d + 1) [ 1] o-(k+t=1) =
k=1

N Ma.

k=11t

l[k +¢ —1]2 (k+t-1) <
1

=(d + 1)

]
n 1%

Lo
o

™Ma
™8

=(d + 1) [.Z] -5 =2(d+1)2

-
[1]
o
w,
1l
-

This result was proved for fixed strongly non-degenerate data, and is
independent of that data. Since our model generates strongly non-degenerate

data with probability one, the main result follows.
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Before proving the theorem, let us first prove two short lemmas:

Lemma 1: The Strong Nondegeneracy property is preserved under pivotal

transformations.

Proof: Since a pivotal transformation is nonsingular, the rank of every dxd
submatrix is preserved under such transformations. So if every dxd submatrix
of the original matrix is nonsingular, the same is true after the pivotal transfor-

mation.

Corollary 1. In the non-basic part of the transformed matrix described in

Lemma 1, every I X! submatrix is nonsingular, where l=1,...4d.

Proof: For L =d this follows directly from Lemma 1. Let @ be al x! subma-
trix of the non-basic part of the transformed matrix, with i <d. By adding some
unit columns from the basic part (and reordering rows and columns if neces-
(90l
0

sary), a dxd matrix of the form lo 7j can be generated. By Lemma 1 this matrix

is nonsingular,hence & is nonsingular.

Lemma 2 Let P(g):=&(a + f: a; &) with « # 0. If for £ > 0 sufficiently small
i=1

P(g) > 0, then for every polynomial P (t) obtained from P(g) by changing the

signs of some of the coeflicients g;, also P(e) > 0.

Praaf: Since £ > 0, also a + i a; £t > 0. Since that is true for sufficiently
i=1

small £, then by continuity at £ =0 we get a= 0. Since a# 0 we get a>0.
Hence also o + i (+ ag) € > 0 for ¢ sufficiently small, for every possible sign
=1

combination.
-



-12-

Proof of Theorem

To prove the theorem, we shall show that the following holds for sufficiently

small £:

Let S be of type r and let J; be any instance. Let € be any objective out of
e, ..e f S is (&, a)co-optimal in J, then for every
T =y . Frers J (Brezn. Ea)), JESM(d -7 - 1), S is also (€, a)-co-optimal in

e
Since | SM(d —7 — 1) | = 2% 7! this will complete the proof.

For S of type 7, the corresponding basis takes the form

T d-r
B = I 0 T
TpT | BT |77

(The numbers above and to the right of the matrix are the dimensions of the
corresponding sub-matrices). In order that S will be (&, a)-co-optimal there

must be some ¥ ¢ K satisfying

(BT) ' (g +8a2)>0

where the strict inequalities are implied by the non-degeneracy of the data.

Let us express the inverse explicitly:

T d-r T 1 d-r-1
D -1
(BT)™ = [_.__‘___] = I —pDE-1 | = I v F T
o | B | |e———|-——-——— || d -1
0 E-1 0 | w G

The last equality is introduced to define the first non-unit column of the

inverse matrix. Define alsou:= (B7)™! a. So the condition:

3 ¢ st (BT)! (g +8a)>0
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is equivalent to:

or, redefining & =: (€, &4, €2) where &'eR", &, ¢R, g2g ReT1

o N

3 8 st | |+ & [3)] + [g] g2+ %u >0 (1)

Using the Fourier-Motzkin Flimination method, the system (1) has a solution 4 if

and only if the following system has a solution:

1 L.
van(l+ o] >0 Ui w<o@D)

2 enlz) e @e) - 25
[5)-ale) (e

Now we want to show that if (2) holds for sufficiently small £, every change

>0 7 x st u = 0 (22)
k

in the signs of the coordinates of the vector g2 will still keep the system (2)
valid. By the equivalence of the systems (1) and (2) this will complete the proof.

Since the data is strongly nondegenerate, Corollary 1 (with ! =1) implies
u, # 0 for all k, so all the inequalities in (2) are of the form (2.1). These can

be partitioned into two types:

Typel: i<t or j=rT.
The inequalities here take the form

ek + ¥ P(e) >0

where k = min(i,j) <7, « # 0 and P (¢) is a polynomial in &. By Lemma 2

the result follows.

Type2: 1i,j>T

These inequalities have the form
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wy i
tEr'H[—u-:—- a—J—+8r+2P(£)>0
: ¢]

By the strong non-degeneracy of the data, Corollary 1 {(with I =2) implies

w;  w;

—12:—— ;’—# 0. So again the conditions of Lemma 2 hold and the result fol-
' ¢]

lows.

8. Concluding Remarks

1.

The PCBC algorithm can be implemented by a lexicographic rule, without

any explicit use of &. The reasoning behind this is as follows:

Let the current co-optimal basis in stage k + 1 be BT. The co-
objective is @ := — A4, and without loss of generality assume the objective
is . let @:= B 'a, #:= B 'e. According to the Parametric Objective
Algorithm, the next variable to leave the basis is determined by the ratio

test:

. 2 A
min { — where N:={i| & <0}
ieN | -

Recall that
2, =(B'e) =B 'e =Bl e+ B} g2+ - + Bl

Because B lies on the eflicient path & >0 WV ;.x. Let I(i) be the index of
the first non-zero element in row B;"!. If ¢ > 0 and is sufficiently small, this
can happen only if for all ieN B;3ti) > 0. In other words, the matrix By! is
lexico-positive. Again, for £ > 0 sufficiently small, if i,J eN and {(i) >1{j)
then j cannot be the minimizing index in the ratio test. So only indices i
with I(i) = t := max{l(j) | j £ N} are candidates to win the ratio test. Since
they all have the form & = B{l¢ef + ... + B 3&%, we need to perform the

ratio test:
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WS

(%) ga}:ima] &

(The strong non-degeneracy guarantees that there will be no ties in this

test, so we never need to go beyond the leading elements to compare

Bl 04 5o on). So the leavi iable is th hich lexi i
_ a‘l . ng variabie 15 e one wiic ex1cograpniy
‘f.—l

|ie N}, and no ¢ is involved in the actual implemen-
-0y

cally minimizes [

tation.

The result obtained here holds also for other forms of linear programs. In
( 4 ) we showed that presenting the linear program with non-negativity
constraints is immaterial. The essential requirement is sign invariance with
respect to each of the constraints present in the problem. In general, for a
problem with n arbitrary constraints and d variables, under our model
assumptions the expected number of pivots is no more than
2 (min{d,n —d)+1)% By duality this also yields similar results for linear

programs with equality constraints.

A desirable extension of our analysis is to relax the strong non-degeneracy
assumption. This may allow improvement over the results obtained in { 4)
for structured linear programs which yield sparse matrices, e.g. ones aris-

ing from transportation problems.

The crucial property for our analysis is sign invariance, which may be inter-
preted as a special kind of symmetry around the origin. However, in (20)
Smale stated that the results he had proven in { 19 ) can be obtained on the
weaker assumption of invariance under coordinate permutations. Blair (8)
proceeded to show that indeed the requirement that the distribution be
continuous can also be removed and still the permutation-invariance
assumption yields essentially the same results as Smale’s. However, that
result required that m > d. It may be interesting to extend our model in

that direction.
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A troublesome point which we discussed in ( 4), and which was mentioned
in several previous papers, is the behavior of the sign-invariant model in the
case where the ratio of the dimensions is very far from 1: For m > d, all
but a vanishing fraction of the linear programs generated by the model will
be infeasible. Similarly, for m <« d, almost all problems generated will be
feasible and unbounded. Both of these categories of linear programs
appear to be easier to solve than problems which are feasible and bounded.
That may indicate that this model is inadequate for obtaining meaningful

results in such a situation.

This does not seem to be a severe limitation of our results, since they are
also meaningful when m and d are approximately equal. In particular, in
the case m = d for which Klee and Minty ( 14 ) demonstrated a worst case
behavior which is exponential in d, we get that the average case behavior of
the algorithm is at most quadratic in d. Also, when m=d the proportion of
cells containing optimal solutions out of all instances is O d‘*). So the
expectation of the number of pivots per instance, conditioning on the

instance having an optimal solution, is 0(d®?).

Still, investigating a model which generates only feasible and bounded prob-

lems seems an interesting next step.

Can similar results be achieved for other variants of the Simplex method,
besides the one investigated by Todd ( 21 ), Adler and Megiddo { 5) and by
this work? (It is interesting to note that most of the probabilistic results
obtained so far - perhaps with the exception of { 4 ) and ( 8 ) - have used

parametric variants of the Simplex method).

Another interesting open question is obtaining higher moments of the ran-
dom variable investigated, especially obtaining the variance of the number

of pivots.

Except for rough bounds (like Pr[no. of pivots=a 2(d +1)*] = %

obtained from Markov's Inequality), it seems that new proof techniques and

perhaps stronger probabilistic assumptions are required for such analysis.
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8. By more refined analysis, our bounds on the number of pivots can be
reduced by a constant factor. Can a further refinement (specifically exact
computation of the function G(k)) reduce the degree of the polynomial?
Conversely, can a tight lower bound be obtained for the average number of
pivots using the PCBC algorithm?
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